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A Fermi-Fermi mixture of 40K and 6Li does not exhibit the Efimov effect in a free space, but the Efimov
effect can be induced by confining only 40K in one dimension. Here the Efimov’s three-body parameter is
controlled by the confinement length. We show that the three-body recombination rate in such a system in the
dilute limit has a characteristic logarithmic-periodic dependence on the effective scattering length with the
scaling factor 22.0 and can be expressed by formulas similar to those for identical bosons in three dimensions.
The ultracold mixture of 40K and 6Li in the one-dimensional–three-dimensional mixed dimensions is thus a
promising candidate to observe the Efimov physics in fermions.
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I. INTRODUCTION

Recent realization of an ultracold Fermi-Fermi mixture of
40K and 6Li with interspecies Feshbach resonances opens up
new research directions in cold atomic physics �1–3�. Such
examples include the creation of the Bose-Einstein conden-
sate of heteronuclear molecules and the investigation of the
effect of mass difference on the superfluidity. More impor-
tantly, the two-species mixture offers the possibility of
species-selective confinement potentials, which provides
novel subjects such as Fermi gases imbalanced in terms of
the dimensionality of space �4,5�.

It has been shown in Ref. �4� that when 40K is confined in
one dimension or two dimensions with 6Li being in three
dimensions, the 40K-6Li mixture with a resonant interspecies
interaction exhibits the Efimov effect characterized by an
infinite series of shallow three-body bound states �trimers�
composed of two heavy and one light fermions. Their bind-
ing energies are given by

E3
�n� → − e−2�n/s0

�2��
2

2mKLi
for n → � , �1�

with mKLi=mKmLi / �mK+mLi� being the reduced mass and
s0=1.02 in the one-dimensional–three-dimensional �1D-3D�
mixed dimensions and s0=0.260 in the two-dimensional–
three-dimensional �2D-3D� mixed dimensions �4�. �� is the
so-called Efimov parameter defined up to multiplicative fac-
tors of e�/s0 and will be calculated in this Rapid Communi-
cation. The emergence of such Efimov trimers in the 40K-6Li
mixture is remarkable because they are absent in a free space
but induced by confining 40K in lower dimensions. An alter-
native way to realize the Efimov effect using the 40K-6Li
mixture would be to apply an optical lattice to 40K to in-
crease its effective mass by more than a factor of 2 �6�.

In this Rapid Communication, we will show that the Efi-
mov effect in the 40K-6Li mixture when 40K is confined in
1D, is experimentally observable through the three-body re-
combination rate which has a characteristic logarithmic-
periodic behavior as a function of the effective scattering
length. In particular, the three-body recombination rate is
found to exhibit resonant peaks that can be explained by
confinement-induced Efimov resonances. We note that the

three-body recombination rate has been successfully em-
ployed to obtain evidences for the Efimov trimers in a Bose
gas of 133Cs �7,8�, a Bose-Bose mixture of 87Rb and 41K �9�,
and a three-component Fermi gas of 6Li �10,11�.

II. EFIMOV PARAMETER IN THE BORN-OPPENHEIMER
APPROXIMATION

Before developing an exact analysis of the three-body re-
combination rate, it is worthwhile to demonstrate how the
Efimov effect is realized by confining 40K in 1D. For gener-
ality, we shall consider a three-body problem of two A atoms
and one B atom with the resonant interspecies interaction in
which a two-dimensional harmonic potential is applied to
only A atoms. When the A atoms are much heavier than the
B atom mA�mB, one can first solve the Schrödinger equation
for the B atom with fixed positions of the A atoms, which
generates the following effective potential between two A
atoms: V�r�=−�2c2 / �2mBr2�, with c=0.567. Then, the rela-
tive motion of A atoms is governed by the Schrödinger equa-
tion �here and below �=1�

�−
�r

2

mA
+

1

4
mA�2x2 + V�r����r� = �E3 + ����r� , �2�

where � is the oscillator frequency and r= �z ,x� with
x= �x ,y� is relative coordinates between two A atoms. Fermi
statistics of A atoms implies ��−r�=−��r�.

In a free space �=0, it is known that the mass ratio
mA /mB=6.67 for the 40K-6Li mixture is too small to form
Efimov trimers �12�. However, the confinement potential
term in Eq. �2� makes it possible by effectively reducing the
dimensionality of A atoms. When mA /mB	1 / �2c2�=1.55,
bound-state wave functions with E3
0 behave at long dis-
tance �z�� l as

��r� → e−�x�2/�4l2� �z�3/2

z
Ki���mA�E3��z�� . �3�

Here �	� c2mA

2mB
− 1

4 and l	 1
�mA�

is the confinement
length. For shallow bound states E3→−0, the Bessel
function in Eq. �3� oscillates as Ki���mA�E3��z��
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�sin
� ln��mA�E3��z� /2�−arg��1+ i����, and their binding
energies can be determined by matching this asymptotic be-
havior with the numerical solution of Eq. �2� for E3=0. The
oscillating asymptotic behavior implies that there exists an
infinite number of bound states with two successive binding
energies separated by a factor of e2�/�. In particular, in the
case of 40K-6Li mixture with mA /mB=6.67, we find
E3

�n�→−14.0e−2�n/� / �mAl2� for n→�, from which we obtain
s0�� and the Efimov parameter �� in Eq. �1� as
���1.91 / l.

One should bear in mind that those numbers may not be
accurate because of the Born-Oppenheimer approximation
we employed �13�. However, the analysis presented here re-
veals the remarkable qualitative aspect of the Efimov effect
induced by the confinement potential: the Efimov parameter
is determined by the confinement length, and therefore it is
tunable by an external optical trap to a certain extent. This is
in sharp contrast to other systems in a free space where Efi-
mov parameters are determined by short-range physics that
is in general difficult to control.

If the confinement length l is much smaller than mean
interatomic distances and the thermal de Broglie wavelength
of the system at finite densities and temperature, one can
consider A atoms to be fixed on the 1D line neglecting their
motion in the confinement direction. Consequently, the re-
sulting system becomes a two-species Fermi gas in the
1D-3D mixed dimensions �4�. However, when the Efimov
effect is present, the confinement length scale cannot be re-
moved from the problem completely but appears as the Efi-
mov parameter �� in the three-body scattering problem as we
will see below.

III. EFFECTIVE FIELD THEORY APPROACH

In order to develop a model-independent analysis of the
Efimov effect in our system, it is useful to adopt an effective
field theory approach, which has been a powerful method to
study the Efimov physics in identical bosons �14�. The two-
species fermions in the 1D-3D mixed dimensions is univer-
sally described by the action �5�

S = dt dz��A
†�i�t +

�z
2

2mA
��A + g0�A

†�B
†�B�A�

+ dt dzdx�B
†�i�t +

�z
2 + �x

2

2mB
��B. �4�

Here �A�t ,z� and �B�t ,z ,x� are fermionic fields for
A atoms in 1D and B atoms in 3D, respectively.
Their bare propagators in the momentum space
are given by i / �p0− pz

2 /2mA+ i0+� for A atoms and
i / �p0− �pz

2+p2� /2mB+ i0+� for B atoms with p= �px , py�. The
interspecies short-range interaction takes place only on the
1D line located at x=0 and thus the interaction term should
be read as g0�A

†�t ,z��B
†�t ,z ,0��B�t ,z ,0��A�t ,z�.

The two-body scattering of A and B atoms is depicted in
Fig. 1, and its amplitude A2 is given by �5�

A2�p0,pz� =
2�

mB

1
1

aeff
− �mAB

M pz
2 − 2mABp0 − i0+

, �5�

where M =mA+mB is the total mass. Here the effective
scattering length aeff is introduced, which is related to the
bare coupling g0 and the ultraviolet cutoff � by
1
g0

−
�mBmAB

2� �=−
mB

2�aeff
. aeff→−0 corresponds to the weak at-

traction and aeff→+0 corresponds to the strong attraction
between A and B atoms. When aeff	0, there exists a shallow
two-body bound state �dimer� whose binding energy
E2=− 1

2mABaeff
2 is obtained as a pole of the scattering amplitude

in the center-of-mass frame: A2�E2 ,0�−1=0. The dependence
of aeff on the scattering length a in a free space, which is
arbitrarily tunable by means of the interspecies Feshbach
resonance, was determined when the A atom is confined in
1D by a harmonic potential �4�.

We now proceed to the three-body scattering of two A
atoms and one B atom and show the existence of the Efimov
trimers. All the relevant diagrams can be summed by solving
the integral equation for T�E ; pz ,qz�, which is depicted in
Fig. 2. Here E is the total energy in the center-of-mass frame
and pz �qz� is the momentum of the incoming �outgoing� A
atom. T has a property T�E ; pz ,qz�=T�E ;−pz ,−qz� and can
be decomposed into even- and odd-parity parts;
Te�o��E ; pz ,qz�	�T�E ; pz ,qz��T�E ; pz ,−qz�� /2. The Efimov
effect arises in the odd-parity channel To, which satisfies an
integral equation

To�E;pz,qz� =
mB

4�
K�E + i0+;pz,qz�

+ 
0

� dkz

2�

To�E;pz,kz�K�E + i0+;kz,qz�

�mB+mAB

M kz
2 − 2mABE − i0+ − 1

aeff

�6�

with

K�E;pz,qz� = ln� pz
2 + qz

2 +
2mA

M pzqz − 2mABE

pz
2 + qz

2 −
2mA

M pzqz − 2mABE
� . �7�

When mA /mB	2.06, the integration over kz has to be cut
off by �� l−1 and the limit �→� cannot be taken. Instead,
the dependence on the arbitrary cutoff � can be eliminated
by relating it to the physical parameter �� defined in Eq. �1�.
The spectrum of three-body bound states is obtained by poles

= +

FIG. 1. Two-body scattering of A �solid line� and B �dotted line�
atoms. The double line represents the scattering amplitude iA2.

= +iT iT

FIG. 2. Three-body scattering of two A and one B atoms.
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of To�E�. When E approaches one of the binding
energies E3
−

��aeff�
2mABaeff

2 , we can write To�E� as
To�E ; pz ,kz�→Zo�pz ,qz� / �E+ �E3��. By solving the homoge-
neous integral equation from Eq. �6� satisfied by Zo�pz ,kz� at
the two-body resonance �aeff�→�, we can obtain an infinite
series of binding energies E3

�n� expressed by the form of Eq.
�1�. The ultraviolet cutoff is found to be related with the
Efimov parameter by �=0.460�� for the mass ratio
mA /mB=6.67 corresponding to the 40K-6Li mixture. From
now on we shall concentrate on this most important case of
A= 40K and B= 6Li.

Away from the two-body resonance �aeff�
�, there can be
a series of resonances associated with the Efimov trimers. On
the positive side of the effective scattering length aeff

−1 	0, the
three-body binding energy E3

�n� for a given n decreases by
increasing the value of aeff

−1. Eventually E3
�n� merges into the

atom-dimer threshold E3=− 1
2mABaeff

2 at the critical effective
scattering length given by aeff��=0.0199en�/s0. At such val-
ues of aeff, resonant behaviors in the atom-dimer scattering
are expected to occur �15�.

Similarly, on the negative side of the effective scattering
length aeff

−1 
0, E3
�n� increases by decreasing the value

of aeff
−1. Eventually E3

�n� merges into the three-atom threshold
E3=0 at the critical effective scattering length given by
aeff��=−1.89en�/s0. The three-body resonances at such values
of aeff shall be referred to as confinement-induced Efimov
resonances and bring significant consequences on the three-
body recombination rate for aeff
0.

IV. THREE-BODY RECOMBINATION RATE

The three-body recombination is an inelastic scattering
process in which two of three colliding atoms bind to form a
diatomic molecule �A+A+B→A+AB�. Assuming the bind-
ing energy of the dimer is large enough so that the recoiling
atom and dimer escape from the system, the three-body re-
combination rate can be measured experimentally through
the particle loss rate of A atoms: ṅA=−2�nA

2nB. Here nA�B� is
the one-�three-�dimensional density of A�B� atoms, and � is
the three-body recombination rate constant. The other
three-body recombination channel �A+B+B→AB+B�,
which does not exhibit the Efimov effect as far as
mA /mB	0.00646 �4�, can also contribute to the particle loss
of A atoms. However, it is subleading in the dilute limit
�aeff�→0 we consider below and thus negligible.

A convenient way to compute � is to use the optical
theorem which relates � to twice the imaginary part
of the forward three-body scattering amplitude �Fig. 2�. In
particular, in the dilute limit where �aeff�nA�1 and
�aeff�nB

1/3�1, the odd-parity channel dominates the
three-body scattering, and � can be expressed as
�=4�2�aeff /mB�2Im To�0; pz , pz� �pz→0. Because we can find
Im To�0, pz ,qz� �pz,qz→0� pzqz from Eq. �6�, it is useful to in-
troduce a dimensionless function t�qz� by To�0; pz ,qz� �pz→0

	mABpzqzaeff
2 t�qz� /�. Accordingly, the rate constant

to the leading order in aeff becomes �
=16��mAB /mB

2�p̄z
2aeff

4 Im t�0�. Here p̄z
2 is the statistical aver-

age of the A atom’s momentum squared and equals to

��nA�2 /3 at zero temperature and mAT at high temperature.
Now t�qz� satisfies the integral equation

t�qz� =
1

aeff
2 qz

2 + 
0

� dkz

2�

kz

qz

t�kz�K�0;kz,qz�
�mB+mAB

M kz − 1
aeff

− i0+
. �8�

It is clear that t�0� has a nonzero imaginary part only for
aeff	0 in which the three-body recombination into the shal-
low dimer is possible. Remarkably the integral equation for
t�qz� is quite similar to that for the s-wave scattering ampli-
tude of three identical bosons in three dimensions �16�, and
therefore, the solution has the similar property: Im t�0� is a
logarithmic-periodic function of aeff�� with a scaling factor
e�/s0 =22.0. The rate constant � for aeff	0 is plotted in Fig.
3. We can see that the dimensionless quantity mA� / �p̄z

2aeff
4 �

oscillates between zero at aeff��=0.404en�/s0 and the maxi-
mal value 1.93 at aeff��=1.89en�/s0. Such zeros in � have
been explained by the destructive interference effect between
two decay pathways in the case of identical bosons �17�.

The effect of deeply bound dimers on the three-body re-
combination rate can be taken into account by analytically
continuing the Efimov parameter to a complex value as
��→ei��/s0�� �18�. Here �� is a real positive parameter to
make the Efimov trimers acquire nonzero widths due to de-
cays into the deeply bound dimers. � for aeff	0 at ��=0.1
and 0.5 are plotted in Fig. 3 as well as at ��=0. We find that
our numerical solutions can be excellently fitted by the fol-
lowing formula motivated by that for identical bosons �18�:

mA

p̄z
2aeff

4 � = b+
sin2�s0 ln�c+aeff���� + sinh2����

sinh2��s0 + ��� + cos2�s0 ln�c+aeff����

+
b+

2

coth��s0�sinh�2���
sinh2��s0 + ��� + cos2�s0 ln�c+aeff����

.

�9�

Here b+=284 and c+=2.48 are two fitting parameters.
When ��	0, the solution to Eq. �8� can have a nonzero

imaginary part even for aeff
0 because the three-body re-
combination into the deeply bound dimers becomes possible.
The rate constant � for aeff
0 at ��=0.01, 0.1, and 0.5 are
plotted in Fig. 4. Again we find that our numerical solutions
can be excellently fitted by the following formula �18�:

Η��0

0.1

0.5

10 50 100 500 1000 5000
aeff Κ�

0.5

1.0

1.5

2.0
mAΑ� pz

2aeff
4

FIG. 3. �Color online� Two periods of
mA

p̄z
2aeff

4 � as a function of
aeff��	0 at ��=0, 0.1, and 0.5 for mA /mB=6.67. Curves behind
data points are from the two-parameter fit by Eq. �9�.
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mA

p̄z
2aeff

4 � = b−
sinh�2���

sin2�s0 ln�c−�aeff����� + sinh2����
, �10�

with two fitting parameters b−=143 and c−=0.528. We can
see that when ���1, the three-body recombination rate ex-
hibits sharp resonant peaks at aeff��=−1.89en�/s0, which are
clear signatures of the confinement-induced Efimov reso-
nances.

Unlike the Efimov parameter ��, we cannot determine the
width parameter �� because it involves the complicated
short-range physics, but we can estimate �� to be very small
in our system. The size of the Efimov trimers is typically
given by the confinement length l. In order for the Efimov
trimer to decay into the deeply bound dimers, the three
bound atoms have to come within the range of an
interatomic potential r0�
l�. Its probability ��r0 / l�4.39 for
mA /mB=6.67 �19� multiplied by the typical energy scale of
the short-range physics �r0

−2 provides the order-of-

magnitude estimate of the width of the Efimov trimer. The
width parameter is therefore found to be ����r0 / l�2.39�1
and scales with respect to l. The small value of �� sharpens
the characteristic features in the three-body recombination
rate such as the destructive interferences at aeff	0 and the
resonant peaks at aeff
0 as seen in Figs. 3 and 4.

Finally we note that all the qualitative arguments pre-
sented in this Rapid Communication hold for the 40K-6Li
mixture when 40K is confined in 2D. However, the scaling
factor in the 2D-3D mixed dimensions is e�/s0 =1.78�105,
and therefore it is possible that the confinement-induced Efi-
mov resonances may not be observed in a range of the ef-
fective scattering length surveyed by experiments.

V. CONCLUSIONS

We have shown that the Fermi-Fermi mixture of 40K and
6Li in the 1D-3D mixed dimensions is a promising candidate
to investigate the Efimov physics in fermions. Unlike other
systems in a free space, the Efimov parameter is controlled
by the external confinement potential and we can estimate
the positions of the three-body resonances to be at
aeff / l�−0.989� �22.0�n. An observation of the confinement-
induced Efimov resonances in the three-body recombination
rate at such predicted values of the effective scattering length
will provide the first unambiguous evidence of the Efimov
trimers in Fermi-Fermi mixtures.
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