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ABSTRACT

The sensitivity of the atmosphere to soil moisture is explored

using a coupled soil-atmosphere model. The model is one dimensional

(in the vertical) and diurnally forced. The atmospheric component

of the model includes only radiative and free convective processes;

atmospheric dynamics and condensation are not considered. In the

soil, a detailed treatment of moisture and heat transfer, as deve-

loped by Philip and de Vries, is used.

With the assumption that the soil is perfectly dry, the model

is integrated to find the state of diurnally forced radiative-

convective equilibrium. The temperature profiles produced by this

integration resemble typical profiles observed in the lower atmo-

sphere (z < 10 km) under conditions of strong free convection,

except that diurnal temperature fluctuations in the diurnal boundary

layer are too small.

Two integrations are then performed to determine the sensitivity

of the atmosphere to different amounts of soil moisture. These inte-

grations differ only in the specification of the initial soil moisture

content; in one case the soil is only slightly moist, while in the

other case, a thin layer of soil ajoining the surface is assumed to

be saturated. As the model contains no provision for condensation,

the integrations are stopped when significant supersaturation occurs

in the atmosphere.

The calculations reveal that:
1) If the sol is initially slightly moist, no appreciable

effect on the atrosphere can be detected. In this case, the latent

heat flux is negligible.
2) When the initial soil moisture content at the surface is

high, the atmosphere is influenced, mostly by alterations in the sur-

face energy balance. In this case, the latent heat flux is large.

3) The amount of supersaturation that occurs in the atmosphere

does not appear to be greatly influenced by the initial soil moisture

content.
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I. Introduction

It is well known that significant amounts of moisture can be

found in the soil beneath the surface of the earth. In all but the

driest soils, this water is not locked tightly to the soil particles

but is capable of movement in all directions. Exchanges of moisture

occur across the earth-atmosphere interface which can affect both

the atmosphere and soil.

The nature of this interaction and the strength of its effects

have yet to be extensively studied. Crude parameterizations for soil

hydrology have been developed for use in atmospheric models (for exam-

ple, see Manabe (1969)). These parameterizations, based on a simple

moisture budget scheme for a column of soil (on the order of 1 meter in

depth), fail to incorporate important physical processes such as gra-

vitational drainage, capillarity, and adsorption. Evaporation from the

soil has been calculated from formulas relating the rate of evaporation

to the surface wind and surface moisture gradient. The attraction of

such methods appears to be their simplicity and attendant economy of

calculation; however their accuracy has not been demonstrated.

Using the crude parameterizations mentioned above, Manabe and

Holloway (1975) studied the seasonal variation of the hydrological

cycle over the earth using a general circulation model. Their model

calculated the magnitude and distribution of evaporation, precipitation,

soil moisture, and runoff. A comparison between the calculated and

observed values of evaporation and precipitation showed fairly good

agreement, although the rates of precipitation over continental areas



were too high.

Soil moisture in the model was controlled by the amount of solar

radiation (which influences evaporation), and the rate of precipitation.

For example, areas such as the Amazon basin, where the rate of

precipitation exceeds the high rate of evaporation, had a high soil

moisture content. On the other hand, the soil in the Sahara desert

was found to be very dry because of the small amount of rainfall, and

the large flux of incident solar radiation.

Philip and de Vries (1957) applied a knowledge of soil physics

to derive a set of partial differential equations which govern the time-

dependent moisture and heat fields in the soil. These equations were

employed by Philip (1957) to study the case of steady-state evaporation

from bare soil. Philip argued that evaporation is limited either by

meteorological conditions (i.e. evaporation can never exceed the poten-

tial evaporation) or by the ability of the soil to transfer moisture

to the surface of the earth. In the latter situation the evaporation

rate is only a function of water-table depth and soil characteristics.

However, for very dry soils (with depths to the water table > 3 meters)

the evaporation rate becomes sensitive to the heat flux in the soil.

Sasamori (1971) incorporated the work of Philip (1957) into a

numerical study of the atmospheric and soil boundary layers. In this

study a coupled atmosphere-soil system was designed which allowed both

heat and moisture exchange across the soil-atmosphere boundary. The

calculation simulated conditions observed by Lettau and Davidson (1957)

during the Great Plains Turbulence Field Program and a fairly good

agreement was found between the observed and calculated values for
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temperature and humidity (temperature errors were around 20C). However,

the model was unable to accurately simulate the boundary layer winds.

Other studies suggest that the atmosphere may be quite sensitive

to soil moisture. Walker and Rountree (1977) investigated the effects

of soil moisture on circulation and rainfall over West Africa using

an eleven layer tropical model. (This model employed the crude soil

hydrology parameterization given in Manabe (1969)). Two experiments

were conducted to isolate the effects of soil moisture; the only dif-

ference between them being the specification of initial soil moisture

content between 14°N and 32°N. In one case a desert was simulated;

in the other case, the soil was initially prescribed to be moist.

The integration period varied from 10 days for the dry case to 20

days for the moist case. They found that:

(1) The initial soil moisture content had a large influence on

future precipitation. In the dry case aridity was maintained north of

140 while in the moist case, rainfall occurred persistantly over what

was, in the dry case, a desert.

(2) The energetics of disturbances that developed during the inte-

grations differed. In the dry situation, the large meridional temp-

erature gradient that was formed between the hot desert and the cooler,

moist land to the south caused the production of eddy kinetic energy

through baroclinic instability. In contrast, in the moist experiment

condensation in the atmosphere was a significant source of energy and

the eddy kinetic may have been maintained by a mechanism similar to

CISK.
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This thesis will make a further investigation of the interaction

between soil moisture and the atmosphere. A one-dimensional (in the

vertical) model will be constructed with a detailed treatment of

soil hydrology. This model will simulate a diurnal cycle occuring

in an arid region where free convection is the dominant form of

(vertical) sensible heat and moisture transfer. To determine the sen-

sitivity of the atmosphere to soil moisture, two integrations will

be performed corresponding to initially dry and moist soil condi-

tions. To avoid the complications of clouds andmoist convection,

the integrations will be stopped when significant condensation occurs.

Chapter 2 develops the basic atmospheric model used in this

thesis. It includes both radiative and convective processes but

does not include soil hydrology. This model is closely patterned

after the radiative-convective model presented by Gifrasch and Goody

(1968) for a study of the Martian atmosphere.

In chapter 3 a detailed model of soil hydrology will be coupled

to the atmosphere. Integrations for dry and wet soil conditions will

be done and the results presented.

Chapter 4 concludes the thesis and gives some suggestions for

future work.



II. The Radiative-Convective Model without Moisture

2.1 Introduction

Calculations (Manabe and Moller, 1961) have been done to determine

the temperature structure of the atmosphere in pure radiative equili-

brium. These calculations reveal that the lower troposphere (below

6-7 km) is hydrostatically unstable due to the existence of super-

adiabatic lapse rates. Therefore, as radiative processes pull the

atmosphere towards radiative equilibrium and unstable lapse rates,

convection will result attempting to restore the atmosphere to a con-

dition of stability. An equilibrium situation is attained between

radiative and convective processes; this state is called radiative-

convective equilibrium.

This chapter will develop a model which simulates a state of

diurnally forced radiative-convective equilibrium for the earth's

atmosphere. To simplify matters, we shall introduce two important

assumptions. These assumptions cause the neglect of important physi-

cal processes and consequently, the model should not be considered as a

highly realistic representation of the earth's atmosphere. However,

by including the action of both radiative and convective processes,

results can be produced which resemble vertical temperature profiles

found in the atmosphere.

Firstly, in keeping with the one-dimensional nature of the model,

we shall ignore atmospheric dynamics. The winds are assumed to be

very small for all time. An important consequence of this assumption

is the neglect of mechanisms (such as advection and forced convection)

for the transport of atmospheric quantities (i.e. heat, moisture).



Secondly, radiative heating rates will be calculated by using the

grey approximation. This avoids the much more complicated non-grey

situation found in the real atmosphere. In addition, when computing

radiative heating rates, the atmosphere will be assumed transparent

to solar radiation, and water vapor will be considered the only ab-

sorber of long-wave radiation.

It should be noted that in certain areas of the globe, advection

is weak compared to free convective processes (i.e. advective time

constants are much larger than convective time constants) and that

free convection is stronger than forced convection. For example, an

area that roughly meets these criteria is the Sahel in West Africa.

In such situations, given accurate initial conditions, the model should

be expected to give good results for integrations over a short time

period. For longer times, errors caused by the neglect of dynamics

and non-grey radiation will become serious, and unreliable results will

be produced.

2.2 The Basic Equations

We have assumed that the velocity of the wind is very small and

that advection is weak. With this realization, the basic equations for

the atmosphere are:

(1) thermodynamic (heat) equation

/0 C __ 7 Qrad -0 COf cv 
2.2.1



(2) hydrostatic equation

2.2.2

(3) equation of state

with the following notation:

a. dependent variables

po) -T = pressure, density, and temperature

b. independent variables

, t - height, time

c. constants

0 p = specific heat at constant pressure

A?

d. heating terms

SCon v

2.2.3

(9.96 x 106 ergs/g °K)

= gas constant for dry air

(2.87 x 106 ergs/g OK)

= acceleration of gravity

(980 cm/sec2)

= heating per unit volume due to radiation

= heating per unit volume due to free convection

In the soil, heat transport takes place primarily by molecular

conduction, as expressed by the heat conduction equation,

/ '



_ 7' = - _ . 2.2.4

where T5 is the temperature of the soil, and C the volumetric

heat capacity. H/ is the soil heat flux given by

H =--k 7 2.2.5

where p is the thermal conductivity of the soil. In this chapter,

the soil is assumed to be perfectly dry, and both ( and kP. are

taken to be constants.

Given expressions for Or-d and con v ,and appropriate

boundary and initial conditions, the mathematical problem is that of

finding the pressure, density, and temperature profiles as functions

of time. Further simplification can be made by noting that for the

equilibrium solution to the equations, diurnal fluctuations in tempera-

ture are small, except in a diurnal boundary layer close to the ground.

(The reasons for this will be discussed later). Hence to a good degree

of approximation, the pressure and density can be considered as functions

of height only, and the equations needed to calculate P and P

(2.2.2 and 2.2.3) can be decoupled from the heat equation. (Of course,

when calculating these variables, we need to use a temperature dis-

tribution which closely approximates the true, time-dependent profile.

In practice, this profile is determined by trial and error).



2.3 Radiation

The assumption of a grey extinction coefficient for long wave

radiation considerably simplifies the computation of radiative heating

rates. The equation of radiative transfer is easily integrated, and

once the mass extinction coefficient is specified and the distribution

of absorbing gas known, the long wave flux can be determined. Since

the atmosphere is considered to be transparent to solar radiation,

the heating rate is just the negative divergence of the long wave flux.

Our first task is to find the long wave radiative flux. For a

plane stratified grey atmosphere, the equation of radiative transfer is:

2.3.1

where = cosine of the zenith angle

S /= a G = integrated intensity

3 = / T = integrated source function for

= 7 a grey atmosphere in local ther-

modynamic equilibrium ( a- , the

Stefan-Boltzman constant, has a

value of 5.67x10-5ergs/(cm2sec K 4))

The optical depth, T , is defined as
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2.3.2

where = mass extinction coefficient (cm2/g) and

)pp{1 = density of absorbing gas.

Equation 2.3.1 can be easily integrated by using the integration factor

e-'/. The limits of integration depend upon the sign of .

For ,4 > O , we integrate between the reference level (i.e. - )

and the ground ( = ~- ). The appropriate boundary condition

applied at the surface of the earth is:

47

where 7 is the surface temperature. This boundary condition

simply states that the earth radiates as a black body. Integration

then yields,

7T

/- 2.3.5

A- )

(In the above expression, we have explicitly noted the dependence

of T on 7 by writing 7T( r ).



For ,4&(0 , the integration is carried out between the top

of the atmosphere ( = 0) and the reference level. Since no long

wave radiation is incident at the top of the atmosphere, the upper

boundary condition is

TrC)A) 0 a 7 =/ 0 " a 4 2.3.6

After integration we have

77

We now find the net upward flux, F

-(' 2.3.74
a Z 2.3.7

, defined as:

dn ot

#1l(

where is the azimuth angle. Now

integrations over T/ / l and

Integration over the azimuth angle gives

after simplification,

that 1 (r*t) is known,

are needed to find F .

.2r7 , and we obtain,

/
z:/CGC

for < <

2.3.8



fr 7 I - 2

-Ic

We use the above representation of the flux to find the heating

rate, which is the negative divergence of F . Remembering that Z

is a function of Z , we write

=( - ---d yF 2.3.10
dz

The integrations over Z: and ItA needed to find the flux,

and the differentiation needed to find the heating rate, are best

done numerically. These procedures will be taken up at a later time.

2.4 The Convective Region

Radiative processes in the model cause the formation of unstable

lapse rates below about 5 km. Free convection occurs, taking heat

from the earth and distributing it throughout the range of convection.

This region extends from the surface of the earth, to a height Z.t

(which varies in time); above this height the temperature is radia-

tively determined. In this section, we will devise a model for finding
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the convective heating, Con v , in the convective region.

When discussing turbulent convection, it is convenient to assume

that the same type of equation that governs molecular transfer also

applies to turbulent transfer. We write, for the atmospheric heat

flux, ,

H = p-, ,( - r 2.4.1

where kH is the vertical eddy diffusivity, and , the dry

adiabatic lapse rate (-9.8 x 10- 5 oC/cm).

In our model convection is driven by unbalanced bouyancy forces

which only occur under unstable conditions. Under stable conditions

no free convection exists, hence

H6 k'P o 21 > 0 2.4.2

(This also tells us that free convection can only transfer heat

upwards).

For unstable conditions, the formulation of Priestly is used for

H . We have,

k = -'/A z7 2.4.3

where .- , a constant, is approximately 0.9.

Sundararajan and Macklin (1976) indicate that this free convection
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formula does yield a reliable estimate of the heat flux in a stability

range with Richardson numbers between -0.1 and -2.0. They compared

three methods of computing the heat flux with observations of the flux

from the 1968 Kansas surface layer data (Izumi, 1971). They found

that the most accurate representation of the data was given by the free

convection formula of Priestly.

Outside the convective region the heat flux is zero and there

is no convective heating. In the convective region, Q orn is

obtained by taking the negative divergence of the heat flux:

- (-P K'H~ ~7 i)) 2f/ 0 2.4.4

This expression for conw leads to a second order differential

equation for T and two boundary conditions are required.

The lower boundary of the convective region is very close to

the surface of the earth, but not precisely at the surface. Even

under the most turbulent conditions there is always a thin layer of

air, which due to viscous and cohesive forces, adheres to the earth

with great tenacity. In this laminar layer, the transport of heat

(and moisture) takes place by molecular conduction and the gradients

of temperature and humidity can be quite large.

For the lower boundary condition, we require that the heat fluxes

match at the height of transition from molecular to turbulent transfer.

Hence,



where ZLL is the thickness of the laminar layer (of order 1 cm,

as we shall see) and H, is the heat flux through the layer.

An expression for H and an estimate of -LL are needed.

Since the flux across the laminar layer is due only to molecular

conduction, we expect it to depend on the temperature difference

across the layer. Kraichnan (1962) made a theoretical study of heat

transfer in fluids contained between two horizontal flat plates.

This theory was applied by Gierasch and Goody (1968) to get an expres-

sion for the diffusive flux. (Although Gierasch and Goody were con-

cerned with the Martian atmosphere, their expression is also valid

for any atmosphere with appropriate values of parameters). The flux

is proportional to the four-thirds power of the temperature difference,

and is given by the formula:

/Y

1 , 0 (7-- 2.4.6

where / is the density of the air at the earth's surface, k is

thermal diffusivity of air, I/ the kinematic viscosity, and T the

temperature at the top of the laminar layer. (For a heuristic deri-

vation of the above equation, see appendix I).



Equation 2.4.6 has not been subject to direct experimental veri-

fication in the atmosphere, and it should only be relied upon to give

approximate results.

By rearrangement of equation 2.4.6, the temperature junp across

the laminar layer can be estimated. We have,

[79 7::
31

Hq
2.4.7

A rough guess is made for H, by taking it to be about 40% of the

net average solar flux. (i.e. net solar flux -,d C" e

where Te is the effetive temperature of the earth -- 251 OK).

This estimate of H, applies specifically to a dry surface.

Taking

A- ,, eryS/(cm2sC)

v /0- ~~

The thickness of the laminar layer can

the Rayleigh number, CL , defined as

. c M3 /s eC

4., ., ,1 , /tee.
TL N Jb /W/

be estimated by considering

where L67 is the temperature difference across the distance d. At a

HI

/0

IC,

we have

79

d 3 n7
Rce %

~t~ ~2/ ~Ti"



critical value of the Rayleigh number, c , which divides

regimes of molecular and turbulent transfer, d corresponds roughly

to the thickness of the laminar layer, and 2 7 , to the tempera-

ture jump across the layer. Hence, solving for ZL_ , we obtain:

.43

~LL ~0~c~

2.4.9

With C /0 3

above, we obtain

, and using the estimate for d T given

Z,, .. / C#

The laminar layer is indeed thin, and the gradients of temperature

and moisture can be quite large across it.

At the top of the convective region, the heat flux vanishes

and therefore we take

dT J7= 0 et 3--- 2.4.10

as the upper boundary condition. This assumes that convection simply

stops where t /P . In reality, it is possible for

some of the convective eddies to "overshoot" this level, and the

temperature profiles above Z & will be influenced. In this thesis,

we assume that the effect of convective overshoot is small, and we

make no attempt to include it in the model.



The upper boundary condition does not prevent a temperature

discontinuity between the radiative and convective regions. Yet

observational evidence indicates that such discontinuities do not

exist for reasons that we shall presently elucidate.

Let 7. and 7R be the temperatures infinitesimally below

and above the level of transition between the radiative and convective

zones. (For lack of a better word, we shall refer to this level as

the "tropopause"). Above the tropopause, the convective heat flux

disappears, and the temperatures are solely determined by the radiative

flux. When equilibrium has been attained, these temperatures assume

their radiative equilibrium values.

A positive discontinuity ( 7 - 7 >0) is shown

in figure 2.4.1a. As convection only carries heat upwards, the region

just below the tropopause must be convectively heated, and for a

stable discontinuity to exist, radiative cooling must take place in

this region. However, this is not possible in a equilibrium situation.

As 7- is less than its radiative equilibrium temperature (which

we may safely take to be 7R , since 7c, is just an infinitesimal

distance below T7~ ), in actuality, radiative heating must occur.

Hence a layer of stability will be formed, convection will cease, and

the tropopause will drop until the discontinuity vanishes.

For a negative discontinuity 7 - 7 O) as depicted

in figure 2.4.1b, molecular heat conduction will cause the formation

of a shallow layer of great instability. Hence convection will result,

and the tropopause will move up until the discontinuity is ironed out.
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Figure 2.4.1. The profile labelled "a" shows a positive

temperature discontinuity; "b" shows a negative temperature

discontinuity.



Therefore, for the reasons stated above, we also require conti-

nuity of temperature at the upper boundary of the convective region,

2.5 Boundary Conditions

The boundary conditions for the convective region and the boundary

conditions applied to the equation of radiative transfer have already

been given. At the surface of the earth, the atmosphere and soil are

coupled together via the surface energy balance equation,

H, F S - ,-w = 0 2.5.1

where S(t) is the solar forcing function (written as 566) to

explicitly show its time dependence), L the latent heat of con-

densation (2.9 ' X /Di __e3L- , and , , the net upward mois-

ture flux from the surface. (Since we are assuming dry conditions

for the calculations carried out in this chapter, L is equal to

zero.) - is the downward long-wave flux incident at the earth's

surface, given by

F ( o7-YrC14 2.5.2
F- I 0 7 e " "

In addition, continuity of temperature must also exist at the earth's

surface, or



r / 2.5.3

In the soil, a no-flux boundary condition is specified below the

depth of diurnal fluctuations, which we take to be 1 meter. Therefore

2.5.4

It is easy to show that the diurnal temperature wave dies out

well before reaching a depth of 1 meter. The skin thickness () of

the temperature wave, associated with the time scale t , is

given by

- 2
-3 cm

where is the thermal diffusivity of the soil ( 2 x 10 secsec

see section 2.7). For diurnal fluctuations Z -' 24 hours, and

we have

For all practical purposes, the diurnal wave is completely attenuated

at a depth of 4 skin thicknesses, anditis clear that our lower boundary

condition is well below this level.



2.6 The Numerical Model

For the system of equations stated in the previous sections, it

is very difficult, if not impossible, to find analytic solutions.

Unfortunately, we must resort to numerical techniques. In this sec-

tion, we develop the structure of the model, and then show how the

equations can be solved numerically.

a. Structure of the Model

The vertical coordinate in our model is 2 , with the origin

at the ground surface. There are 59 grid points for Z ; this

divides the atmosphere into 58 layers. Some variables are calculated

at the grid points, while others ( 7, ) ,... ) are calculated

between two ZZ levels. With the subscript /t, as the index,

figure 2.6.1 shows the indexing used for the model, and the variables

to be calculated. ( W , the vapor flux, and , the specific

humidity, are needed for the work presented in chapter 3). The layer

, is between Z,, and ,, and we regard 7"

p Q Z mZas the values of these variables at the point ' "-

Vertical derivations of 7- (and ) are given by

-0% Al 2.6.1

where A is either 7 or , and . is the distance

between the midpoints of layer , and layer ' -/ . For a/ / ,

all variables are calculated at the surface.
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Figure 2.6.1. The coordinate system for the atmosphere.

The layer "n" ,n 2, is between the levels n and n-l.
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The spacing of the grid points is designed to give accuracy

where it is needed, while also attempting to minimize the amount of

computation time. This is achieved by dividing the atmosphere into

layers of variable thickness.

Near the earth's surface, the resolution is high, to pick up

details of the diurnal boundary layer. Above this, moderate resolution

is necessary to represent the convective region, and to accurately

locate its upper boundary. A coarse resolution is satisfactory in

the upper atmosphere (Z > /0 m) , as the temperature does

not vary much with height or time.

The spacing of e levels is adopted with the above requirements

in mind. Z is prescribed as follows:

Z - lO Z/0 5 cj2.,'e CM

The values of C for all r are shown in Table 1.

As stated in section 2.2, the pressure and density are considered

as functions of height only. Once they are calculated, they are known

for all time. When finding these values, we need to choose a tempera-

ture profile which is close to the one to be calculated using the



Table 1

Values of zn and the pressure, pn , at each level "n". The density,

jg ,, is defined for the layer between the levels n and n-l.

n z Pn /nxl0 3

(cm) (mb) (g/cm3)

1 0.0 1000
2 3.0 1000 1.16
3 6.3 1000 1.16
4 10.0 1000 1.16
5 16. 1000 1.16

6 25. 1000 1.16
7 40. 1000 1.16
8 63. 1000 1.16
9 100. 1000 1.16

10 158. 1000 1.16

11 251. 1000 1.16
12 398. 1000 1.16
13 631. 1000 1.16
14 1000. 999 1.16
15 1585. 998 1.16

16 2511. 997 1.16
17 3981. 996 1.16
18 6309. 993 1.16
19 10000. 989 1.15
20 .25x105  972 1.14

21 .5x105  944 1.13
22 .75x105  917 1.10
23 1.0x105  891 1.08
24 1.25x10 5  865 1.06
25 l.5x10 5  840 1.04

26 1.75x105  815 1.01
27 2.00x10 5  791 .991
28 2.25x10 5  767 .970
29 2.50x10 5  743 .949
30 2.75x105  721 .928

31 3.0x105  698 .908
32 3.25x10 5  677 .888
33 3.5x105  655 .867
34 3.75x105  635 .848
35 4.0x10 5 614 .829



Table 1 (continued)

n

36
37
38
39
40

z
n

4.25x105

4.5x105

4.75x10 5

5.0x105

5.25x105

5.5x10 5

5.75x105

6.0x10 5

6.25x10 5

6.50x10 5

6.75x1 5
7.0x10
7.25x10 5

7.50x10 5

7.75x10 5

8.0x105

8.25x10 5

8.50x10 5

8.75x105

9.0x10 5

9.5x105

10.00xi05
16.00x105

100.00x105

Pn

594
575
556
538
520

502
485
468
452
436

420
405
390
376
362

349
335
321
309
296

273
252

954
10- 4

10

P n

.810

.791

.773

.754

.736

.718

.701

.684

.667

.650

.633

.617

.601

.585

.570

.555

.566

.543

.522

.501

.471

.435

.267

.011



heat equation. Our profile is:

77 ) = 2.6.2

or, in other words, a constant lapse rate atmosphere /= f O'C/km)

to 8 km; and above 8 km, and isothermal atmosphere with a temperature

of 2100.

Using the hydrostatic equation and the equation of state, it is

a very simple exercise to derive a pressure distribution for the pro-

file specified above. (For example, see Hess (1959), chapter 6).

We obtain:

4-

30-/ ) 2.6.3

pP-I 0/0 t 2.6.4

where PS is the surface pressure taken to be 1000 mb, and tr Km

the pressure at 8 km calculated by using equation 2.6.3.

Once P is known at all levels, the hydrostatic equation,

cast in finite difference form, is used to find the density for each

layer. We have



/... j 2 0 2.6.5

Table 1 shows the values of p and / used in the model.

(Remember that P, corresponds to the density of the layer just

below 9, ).

These density values depend upon the pressure, calculated from

the assumed temperature profile (eq 2.6.2). However, the results

of the model integration, presented in figure 2.8.3 indicate that the

actual profile is more like

-~

2.6.6

Fortunately, the difference between the "actual" profile and the assumed

profile does not cause large errors in the density values. The

density values can be re-calculated using the above profile and com-

pared to the densities given in table 1. This procedure reveals that

the errors are quite small. For example, for the layer between .75

-3
and 1 km (layer #23), table 1 shows that the density equals 1.08x10 3.

cm

-3 gThe "re-calculated" density is 1.12x10 -3 giving an error of about

4%. Other errors are of this size or smaller.

In the ground, 22 grid points are used with the spacing very

small near the earth's surface and increasing with depth. This is
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acheived by using the coordinate transformation, = -// (, ) ,

with equal intervals in 1 j of 4 . .27 . This value of 2

was chosen so that the first layer would have a thickness equal to

(.? ) I/  , where K is the thermal diffusivity of the

soil, and 6 t , the time step. This is the minimum thickness

necessary for the computational stability of an explicit difference

scheme.

b. Numerical Methods

Starting with an initial temperature profile, a time marching

scheme is used to find the equilibrium solutions to the atmospheric

and soil heat equations. For the atmosphere, at each time step

(denoted by the superscript L ), the radiative temperature change,

ad dl , , and the convective temperature change, X7c/

are calculated for the layer ,y, i Z ) . The new temperature is

found by adding these changes to the old temperature:

7- 71,7" 2.6.7

(The temperature of the ground " is found by using the

surface energy balance equation).

d Tr,, is given by

7" - 4 2.6.8



where ad,, is calculated from the finite-difference analogue

of equation 2.3.10. In the numerical calculations, Qrd,, is a

row matrix of 59 elements, and is determined by the matrix multiplication

5q .4

Q =dj ~ /cAin~ l ,.., 59 2.6.9

( 'Q , " conveniently turns out to be the downward long wave

flux at the surface, F- ). /mn I] is a square (59x59)

matrix whose elements depend only on the distribution of the absorbing

gas. 7 is a column matrix of length 59 whose elements

are the fourth power of the temperatures at the time step $ .

The calculation of 1f9,'3 is a lengthly algebraic exercise

which is done in appendix II.

Equations 2.6.8 and 2.6.9, along with an equation to find the

surface temperature,

(where S / is the net incoming solar flux r0 7" e ) can be

incorporated in a time marching scheme to calculate a steady state

radiative equilibrium profile for the atmosphere. If we assume that

the distribution of -Z is given by

(i.e. see Goody (1964), pg. 333), we find the radiative equilibrium



profile shown in figure 2.6.2.

Also shown is a profile computed by using the Eddington approxi-

mation. We see that there is good agreement between both methods,

particularly in the middle atmosphere, and the similarity of the two

profiles allows us to conclude that our method has an accuracy com-

parable to the Eddington approximation. However, we must keep in mind

that the response of the grey atmosphere to diurnal forcing may be

significantly different from the real, non-grey case, particularly

near the earth's surface; and, without resorting to lengthy calculations,

we have no means of accurately determining this difference.

Finding the convective temperature change at each time step

presents special computational problems. With kHq sometimes

8 2
assuming values as high as 10 cm /sec, and with a maximum grid

spacing of .25 x 105cm in the convective region, an explicit difference

scheme exhibits computational instability unless the time step is

made very small ( 4& t 3 sec). Such a small time step requires

too much computer time, and it is necessary to employ an implicit

scheme where the time step can be made much larger. Unfortunately,

an implicit: scheme results in a highly non-linear set of algebraic

equations which reflect the non-linear character of equation 2.4.1.

This set is difficult to solve.

One way out of this dilemma is to use a linearized implicit tech-

nique and we adopt a linearized centered-implicit (Crank-Nicolson)

scheme to calculate the convective temperature change. This method

requires a small time step ( .d .- 1 minute) for the lineariza-

tion to be accurate, but the time step is not so small as to make

the computation time excessively large. Appendix III gives the



- - -- Eddington approximation

__ results from the model

/O

-T (Eddington) = 35~ O

2 T (model) = 3T *

J0oo J Jo so

Figure 2.6.2. Radiative equilibrium profiles. The solid line is

the profile calculated using the method presented in section 2.3;

the dashed line is the profile calculated using the Eddington

approximation. Between 1 km and 6 km the two profiles are

indistinguishable.



details of this method as applied to the model.

To check the validity of the numerical technique persented above,

a different scheme was devised for finding the convective tempera-

ture change. This scheme employed a "convective adjustment". For

each time step, the radiative temperature change was calculated and

added to the existing temperature profile , to give the new "radia-

tive" temperatures, 7rad, ) (- -) .2) . The new profile was

checked to determine the extent of the convective region, and then

the lapse rates and temperatures were adjusted to account for heat

transport by free convection.

This adjustment method used an iterative scheme at each time

step to find the new temperatures T d'  in the convective region,

the top of which has an index of A . These temperatures are

found so that:

1) energy is conserved in each layer, or

(z2 )('t, ) = m 'I ,2.6.10

2) the surface energy balance is obeyed. (The ground temp-

erature is calculated from this requirement).

3) the lapse rate at each level " in the convective

region ,d r ) corresponds to the heat flux through the

level , by the relationship:



which upon rearrangement yields,

S' Z 2.6.12

If, after the iteration is complete, the increase in temperature of
layer 1 has made the lapse rate superadiabatic,

we replace R by o -/ and repeat the iteration.

The convective adjustment used a time step of 30 minutes, as

opposed to the 15 second time step used in the Crank-Nicholson pro-

cedure. Both of these methods were used to find the diurnally forced

equilibrium solution to the heat equation. The results were vir-

tually identical, with maximum errors in temperature less than 10 K.

This finding increases our confidence in the accuracy of the numerical

techniques we have adopted.

The heat equation in the soil is solved using an explicit scheme.

In explicit difference form the soil heat equation (eq 2.2.4) becomes:

ie gie 2.6.13

with the soil heat flux given by

$A q 2.6.14a 

(



Figure 2.6.3. The computational procedure.
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( 6 Zs, is the distance between the grid points r,- and n-/

in the soil).

The order of the calculations as performed by the computer at

each time step is shown in figure 2.6.3. This procedure is repeated

again and again until convergence is attained.

2.7 Description of the Calculation

Before doing any calculation, various parameters of the model

must be specified. We choose an area of the earth where the model

is most applicable; that is, where free convection is strong and ad-

vection weak on a diurnal scale. One area which roughly meets these

requirements is the Sahel in West Africa - an arid strip of land

paralleling the southern border of the Sahara desert, and lying

between the latitudes of 150N to 200 N. It is for this region

that the parameters are defined.

The solar forcing function,- 5L) , is expressed as:

/ S.(/-oe C, e>O

s)
/

(e <0 2.7.1

ho = solar constant (2 cal/cm
2

oC = albedo

S = cosine of the zenith angle

= 1.4x106 ergs/cm2 sec)

In terms of the latitude 0 , the solar declination / , and the

earth's rotation rate -f ,

where



' r Cos cos c,,J2.6t SmI & Tr r 2.7.2

where t is measured from local noon. For the Sahel, the soil is

dry and light-colored, and the albedo is taken to have a relatively

high value of ~ 0.33. We specify 0 as 180 N, and is 00

(i.e. the equinox).

The soil is assumed to be perfectly dry, and for its thermody-

namic properties, we take:

C = 9.63 x 106 ergs/cm 3 oK

= 2.09 x 10 ergs/cm sec OK

S-3 2= 2.17 x 10 cm /sec

These values are for a soil known as Yolo light clay, a soil found

in California. It would be preferable to use soil parameters which

are representative of the Sahelian region, but unfortunately we lack

information as to the soil types of the region and their thermody-

namic properties. (However, it is entirely possible that there is

enough natural variation in soil properties over the region that the

above specification would be as "representative" as any other).

A distribution of absorbing gas (water vapor) and a mass extinc-

tion coefficient are needed to compute the radiative heating rates.

Newell (1972) presents maps showing the horizontal distribution of

specific humidity over the Sahelian region at different pressure levels
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and for different months. The vertical vapor content can be estimated

by picking a point on the maps (we choose 180N latitude, 0O longitude),

and for each pressure level, averaging the value of ? at this

point over a year. This "averaged" value of f is then used to

find the water vapor density, P0 , by using the relation 7,V i

Table 2 shows the "annual averages" of these quantities at each pressure

level. (Also shown is the height corresponding to each pressure

level).

It is convenient to have an analytical expression for 04 as

a function of E . After plotting /., vr. Z , we see that

a good expression for , is:

p = -'/Le /.m 2.7.3

The values of , calculated from Newell's data and the curve that

we use to represent ,p are shown in figure 2.7.1. The curve fits

the data fairly well.

To calculate radiative heating rates, a value is needed for the

mass extinction coefficient , ~C . From a rearrangement of the defi-

nition of the optical depth (eq. 2.3.2), we obtain for ( :

=rl , 2.7.4

where T is the total optical depth of the atmosphere and MV is

the total columnar mass associated with the value of * . Given



Z~---=--~C- C ~6 6 6- C ~~------C c -

Table 2

"'Annual Average" of q

z(km)

0

1.4

3.0

5.5

7.1

p(mb)

1000

850

700

500

400

and 1, over the point (18*N, 0 ').

q(g/kg)

7.6

3.5

1.6

.6

.3

P1o (g/cm
3 )

8.9 x 10 - 6

3.7 x 10 - 6

1.5 x 10
- 6

4.3 x 10-7

1.8 x 10 - 7



Sp, from table 2

the curve p4, = .o.o/- 0.S5m

Ik

/ I I I I I I I

Figure 2.7.1. The density of water vapor py , as a function of

height. The encircled dots are the values of the density from table

2; the solid line is the curve that is fit to these points.



approximate values for C and /Ctr , this relationship can be

used to estimate , .

Non-grey radiative equilibrium calculations done for mid-latitude

conditions (Moller and Manabe, 1961) correspond closely below 10 km

to a grey radiative equilibrium profile with C = 4. A value for

Ar for mid-latitudes, say 35*N, can be estimated from the specific

humidity data presented by Oort and Rasmusson (1971). (Table A6,

page 47, gives year and seasonal values of the vertically averaged

mean specific humidity C7 at different latitudes). The vertically

averaged annual value of L_ at 35*N, which we denote by

is 2.4 g/kg. is related to riA, by the expression

S2.7.5

With Ad /0 $ A_ ,e we obtain /1 4j = 2.55 g/cm2. Using

this value for / and with Z C , we have for iw :

-,S.-- 2.7.6

We must keep in mind that this value of k__ is chosen so

that the grey radiative equilibrium profile simulates closely the

non-grey profile below 10 km. However when using the grey approxima-

tion, radiative heating rates, for temperature perturbations away

from radiative equilibrium, cannot be accurately determined for per-

turbations of all spatial scales.
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To examine this point in greater detail, it is instructive to

consider radiative relaxation times for sinusoidal perturbations

imposed on the radiative equilibrium profile of a non-grey atmosphere.

(This is discussed in Goody (1964), section 9.1). Given a sinusoidal

disturbance with wavelength A , there is only one value of the

grey coefficient, which when used with the grey approximation to calcu-

late heating rates, yields the "correct" relaxation time, i.e., the

relaxation time associated with the scale of the disturbance in a

non-grey atmosphere.

To illustrate this point, table 3 presents in column 6 appropriate

values of the grey mass extinction coefficient KA, , for a wide

range of perturbation wavelengths in a non-grey atmosphere with a

distribution of water vapor as shown in figure 2.7.1. These values

of k, give the "correct" relaxation times for the scale lengths

( - ) shown in column 1. They were determined by first finding
42

the effective volume absorbtion coefficient, kvy , shown in

column 4. The effective coefficient is taken from figure 9.3 (pg 365)

of Goody (1964), and therefore it takes into account the non-grey

behavior of water vapor. (When calculating k,. , we used values

for fv given in column 3. These are the average values of j*v

between the surface and a height =-- ). Next, the grey volume

coefficient , presented in column 5, is found. It is related

to k,v through the expression

&,= - 2.7.7



Table 3

A-6

9x10-6

9x10 -6

9x10-6

9x10 - 6

8.7x10- 6

6.7x10-6

1.4x10 -6

-31.92x10

9.00x10-4

2.85x10 4

-5
2.85x10 5

3.67x10 - 6

5.32x10 - 7

8.44x10-8
8.44xi0

A
0rr
1 cm

10 cm

im

10 m

100 m

1 km

10 km

1

10-1

-210

10- 3

10
- 4

10-5
10- 6

io6

( cm,-')
-3

1. 93x10 3

9.13x10- 4

2.99x10 4

-5
2.99x10 5

3.90x10- 6

5.83x10-7

9.88x10- 8

214

101

33.2

3.3

.45

.09

.07
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where , is the wavenumber ( ~ Finally the mass extinction

coefficient is determined by dividing K, by On .

From the table we see that in order to accurately calculate re-

laxation times (or equivalently, heating rates) for a perturbation of

10 meters (approximately the scale of the diurnal boundary layer), a

mass extinction coefficient of about 3.3 cm2/g is appropriate. In

contrast, a wavelength with a scale of 1 km, roughly the scale of the

convective region, requires a mass extinction coefficient of .09 cm 2g.

If one of these values is chosen for our use, we sacrifice the accurate

determination of the heating rates associated with the other impor-

tant scale of our problem, and furthermore, we will be working from

a radiative equilibrium profile which is far from realistic. The

value of k,,,, that we have adopted (1.57 cm
2/g) appears to be a

reasonable compromise. It gives accurate radiative relaxation times

for an intermediate scale between the diurnal and convective scales

and it also represents quite well the true non-grey radiative equili-

brium temperature profile.

By substituting the expressions for , and K,, into

equation 2.3.2, it is possible to find the relationship between "

and . We have

.a

which when integrated yields

.=,2) _ .2, x /5S0/C M
2.7.9CLLJ - ~L'~v
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At Z = 0 , we have C = 2.2. The total optical depth for the

arid Sahel, with its relatively small amount of atmospheric moisture,

is much less than the optical depth of more humid areas of the earth.

For the calculations done in this chapter, we assume that the

turbulent atmospheric motions do not alter the moisture distribution,

and therefore the profile of Z is fixed for all time. In

chapter 3, this condition will be relaxed.

2.8 Results

The calculation was carried out by starting with an initial condi-

tion very close to the actual solution. (The initial condition was

determined by trial and error during the development of the model).

The time step was 15 seconds. The temperatures were assumed to have

reached their equilibrium values when the temperature differences

between successive days were less than .030K, or about 10 per month.

As the initial profile was within 10K of the final profile, and conver-

gence took about 3 days, the e-folding time for convergence is about

1 day.

The ground temperature , the temperature at 1.5 cm 7

and the height of the convective region are shown in figure 2.8.1.

The solar forcing 3 , and the heat flux through the laminar layer

( H I ), are shown in figure 2.8.2. From these figures we see that

the difference between the extremes in the ground temperature is

about 50*K, and the maximum jump across the laminar layer (i.e., , - )

is about 370K and occurs at 1300 hours. This corresponds to a heat

flux of about 3 x 10 5 ers , or about 3/8 the solar flux at that time.
cm sec
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Figure 2.8.1. The lower graph is the height of the convective
region ;t , as a function of time. The upper graph depicts the

the ground temperature 7I  , and the temperature at a height of

1.5 cm, 7 .
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Figure 2.8.2. The solar forcing S is represented by the solid
line; the flux through the laminar layer /, is represented
by the dashed line.



It is interesting to note that the heat flux is not symmetric

about 1200 hr. This is because during the morning and early after-

noon hours, the soil near the earth's surface accepts energy, which

is given back to the atmosphere, some in the form of sensible heat,

during the late afternoon and throughout most of the night. In addi-

tion, the thermal inertial of the atmosphere contributes to the lag

of the heat flux behind the solar forcing.

Figure 2.8.3 shows two temperature profiles - one at 0600 hr

and the other at 1800 hr. These two profiles bracket the profiles

observed at other times. During the day, convection extends to a

maximum height of 7 km. Above this height, the temperature is essen-

tially constant, while below 7 km the diurnal temperature changes

range from less than 10K at 5 km to about 30K at 1 km.

Very close to the surface ( Z < 10 meters), there is a diurnal

boundary layer where large diurnal temperature fluctuations take place.

Figure 2.8.4 shows profiles below 7 meters for four different times

during the day. The largest variations in temperature occur below

1 meter.

Within the framework of assumptions that have been made, the

results seem physically reasonable. For the earth's atmosphere, the

radiative time constant tl, , is about 107 seconds, which is

much greater than the diurnal time scale, 105 seconds. Hence, from

a consideration of radiative processes alone, we expect that diurnal

fluctuations in the atmosphere will be quite small, except very close

to the ground ( a < 10 meters in our model).



(km)

0600 hr 1800 hr
S1800 hr

/ \

Figure 2.8.3. Atmospheric temperature profiles at 0600 hr and 1800

hr. These two profiles bracket the profiles observed at other times.

The 0600 hr profile is the solid line; the dashed line is the 1800 hr

profile.
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Figure 2.8.4. The temperature profiles below seven meters at four
different times during the day. The tags below each curve are the
ground temperatures.



As seen from figure 2.8.3, the daily temperature change in the

convective region, above the diurnal boundary layer, is about 20
0K.

If we assume that all solar energy arriving at the earth during a

24 hour period goes into a uniform heating of the convective region,

we can estimate an upper bound for the daily change in temperature

above the diurnal layer. Denoting d ATt7, as this upper bound, we

have

Eo'T --- - 2.8.1

where

E, - total solar heating JSc#) dt

,Z, 5 .- Zs/O erg5

p - /0- ---.

With the above values we get

The actual temperature variation is less than AT..,,~ but of

the same order of magnitude. This result adds to the physical rea-

sonableness of our results.

The convective time constant e , is defined as



2.8.2

Using typical values from the model

we have

This is much shorter than Z eop - therefore convective

processes act much more quickly than radiative processes, and in our

model, the temperature profile is convectively determined (below 7 km).

This is shown vividly in figure 2.8.3 as the lapse rate of tempera-

ture departs very little from the dry adiabatic lapse rate during

the entire day.

The model seems to faithfully represent the physics that has been

built into it. However, there are some differences between what the

model predicts and what actually occurs in an arid region, particu-

larly in the diurnal boundary layer. In the model, daily tempera-

ture fluctuations in the diurnal layer seem too small; the difference

between temperature extremes at 2 meters (a height where a thermo-

meter is likely to be hung!) is only 50K. Surface synoptic observations

for a desert region show diurnal changes which are much larger than



this, and also, these changes are not uncommonly associated with

temperature inversions during the night. Our model predicts no

inversion, which may account for the small temperature change.

The poor results in the diurnal layer may be due to the use of

the grey raidation approximation. In this layer the important scales

of radiative transfer are less than 10 meters. As our mass extinc-

tion coefficient corresponds to a radiative scale between 10 and 100

meters (as discussed in 2.7), some error in the computation of heat-

ing rates will occur; these errors could contribute to the poor

simulation of daily temperature fluctuations in the diurnal layer.



III. The Model with Moisture

3.1 Introduction

In the previous chapter, we considered a model that did not expli-

citly contain any moisture. In this chapter, additions are made to

the model to allow moisture transfer in a coupled system consisting

of both the soil and the atmosphere.

The mere inclusion of moisture has the potential to significantly

affect the atmosphere in many ways. Soil water affects the atmosphere

by its influence on the surface energy balance (as stated by the sur-

face energy balance equation). The soil heat flux depends upon the

thermodynamic properties of the soil which are functions of the soil

moisture content. Soil water can evaporate and become atmospheric

moisture and the resulting latent heat flux can greatly alter the sur-

face energy balance. The thermodynamic consequences of atmospheric

moisture are well known and include the role of vapor as an absorber

of radiant energy, the latent heat released by the condensation of

water, the albedo effect of clouds, etc.

In this chapter we ignore clouds and the processes that are

involved in their genesis, such as condensation. Hence to maintain

realism in the results, the integrations are stopped when significant

condensation occurs. Furthermore, the action of vegetation, which can

influence moisture transfer across the air-soil boundary (and other

aspects of the surface energy balance), is ignored.



3.2 Equations of Moisture and Heat Transfer in the Soil

Moisture transfer in the soil occurs in both the liquid and vapor

phases. Transport in the liquid phase is caused :mainly by the action

of capillary forces and gravity, while vapor transfer takes place

primarily by molecular diffusion down gradients of specific humidity.

In addition, during the course of moisture transfer, evaporation and

condensation occur within the soil, thereby influencing the soil

heat flux. Equations have been derived that govern these processes,

and what follows is a brief outline of the derivation. For a more

detailed account, the interested reader is referred to the papers of

Philip (1957) and Philip and de Vries (1957).

The basic equation for flow in porous media, including soils,

is Darcy's law:

W = V 3.2.1

where W$ is the vector moisture flux (cmz sec- ) P0 the density

of liquid water (1 g/cm3 ), Kw the hydraulic conductivity tensor

(cm/sec), and I the total potential (cm). As we are only con-

cerned with flow in the vertical direction in isotropic media, equation

3.2.1 becomes

Ws ' = 3.2.2

Equation 3.2.2 holds for both "saturated" and "unsaturated" flow.

Unsaturated flow, with which we are concerned, takes place when the



pore spaces between the soil particles are not completely filled with

water. In this case XW and # are strong functions of the

volumetric moisture content, ( 9 is the volume of water per

unit volume of bulk soil). Figure 3.2.1 shows the relationship between

kw and e for Yolo light clay.

The total potential is comprised of a capillary potential 1

and a gravitational component Z , the height above some datum

level. We have

)49 (+ 
3.2.3

We may define as the energy required to pull a unit mass

of water from an unsaturated soil. Since this definition calls for

the expenditure of energy to overcome capillary forces, is

negative. It is conveniently expressed as a length, somewhat analogous

to the concept of "head" in hydraulics. Figure 3.2.1 shows the rela-

tionship between and 9 . We see that as e decreases,

becomes more negative. This reflects the fact that as the soil

becomes drier, the surface-volume ratio of intersticial water increases

with a consequent increase in capillary forces (per unit mass). (For

a more complete explanation of , see Kirkhan and Powers, (1972)).

When the expression for . is substituted into equation 3.2.2,

we obtain

WS // ..... 3.2.4P0 )
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With the definition

equation 3.2.4 becomes

W5 =s, 3.2.6

The quantity D(O) is called the "moisture diffusivity" with

dimensions of cm2/sec. Figure 3.2.2 is a graph of D(e) for Yolo

light clay. The hump on the curve centered about e equal to .04

is due to moisture transfer in the vapor phase down gradients of mois-

ture. This mechanism becomes important under dry conditions.

Equation 3.2.6 is valid only for isothermal systems as thermal

gradients in the soil can also induce moisture movement. To include

this effect, it is necessary to aaa a term

-p r Zo'K) ( 3.2.7

to the right hand side of equation 3.2.6. V7.J(6) is called the
2

"thermal moisture diffusivity" with units of cm It is also a
sec K It is also a

function of e and is plotted in Figure 3.2.3.

We now have for the moisture flux

w, ? jn8 8. -,a y~~ "~~
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By combining the above equation with the requirement of continuity

__ W 3.2.9

we obtain

This equation governs the transport of moisture in unsaturated soils.

The boundary conditions associated with this equation will be stated later.

The existence of moisture in the soil requires the modification of

the expression for the soil heat flux. Both temperature and moisture

gradients can cause "distillation" effects. That is, heat energy can

be transfered by the evaporation and condensation of water within the

soil. With this effect in mind the heat flux is:

HS - () TL LD9, ) 3.2.11

The thermal distillation effect is incorporated in the functional form

of the thermal conductivity, K3 . ( K is graphed in Figure 3.2.4).

The second term on the right hand side of equation 3.2.11 represents

the distillation effect induced by moisture gradients. svvp (o) is

called the "isothermal vapor diffusivity" and it is shown in Figure 3.2.3.

Since va2 (0) is very small, this term is usually not important

unless -- is very large. In our calculations, it contributes

only about 2% to the soil heat flux.
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With the new expression for H , the soil heat equation be-

comes:

C( ) T5,kj c) L_69) 3.2.12

where C(e) , the volumetric heat capacity, is given by:

e) --- x )IV / 0S 3.2.13
CMJ OX

Equations 3.2.10 and 3.2.12 govern the simultaneous moisture and heat

fields in the soil.

3.3 Moisture Transfer in the Atmosphere

As in the case with heat transfer, it is convenient to assume that

the equation governing moisture transfer by turbulent eddies has the

same form as a diffusion equation. For the moisture flux we have,

-- " W 3.3.1

where , is the eddy moisture diffusivity. As the same physical

mechanism (turbulence) transfers both heat and moisture, A is taken

to be the same as KH

The rate of change of the atmospheric specific humidity is found

by taking the negative divergence of the moisture flux:



/0- 23 2 ) 3.3.2

Two boundary conditions are required for equation 3.3.2 which are

analogous to the two needed for determining the convective heating

(equation 2.4.4).

At the bottom of the convective region, moisture is transfered

via molecular conduction across the laminar layer, and we have

-0af .3.3.3

where W4 is the moisture flux through the laminar layer, given by

4 / 3.3.4

q, is the value of the specific humidity at the top of the laminar

layer. PM , the diffusivity of vapor in air, has a value of about
2

.25 cm (Equation 3.3.4 is derived heuristically in appendix I and

is analogous to Kraichnan's expression for the heat flux).

At the top of the convective region, turbulence ceases, and we

have

-p'O rO a<t j: 3.3.5



Since H is equal to zero at 2r= L , it is not necessary for

the gradient of 5 to be zero.

To allow interchange of moisture between the atmosphere and soil,

the equation governing moisture transfer in the atmosphere and the soil

must be coupled together in a physical manner.

First, fluxes at the surface must balance in accordance with the

surface energy balance equation (eq. 2.5.1). For the calculations in

this chapter the term /14 , is not neglected.

Second, continuity of the moisture flux is required at the earth-

atmosphere interface. We have

h/q i 4 a = O 3.3.6

where WQ is the atmospheric moisture flux at the surface. For the

calculations carried out in this chapter, 1/4 is identical to the

flux through the laminar layer, 1 .

The final condition, applied at the soil surface, states that the

liquid soil water must be in thermodynamic equilibrium with the

atmospheric water vapor. At a given temperature, the vapor pressure

in the soil is less than that over a plane surface of water. This is

because the water molecules, besides being attracted to themselves,

are also attracted to the soil by cohesive (i.e. capillary) forces.

A measure of this attraction is the capillary potential . By

associating ( 1  with the specific Gibbs function for the soil water,

it is possible to derive an expression for the relative humidity in

terms of the volumetric moisture content. We have
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r= l -;3.3.7

where r is the relative humidity (relative to a plane surface of

water), and Rk the gas constant for water vapor (4. / X/ 6

(In the above expression we have written as /( to

explicitly show its dependence upon 0 ). The above equation is

analogous to Kelvin's law for raindrops and it is derived in a similar

manner. (For example, see Businger and Fleagle (1963), pg. 81).

Figure 3.4.1 shows r as a function of ( for a temperature of

3000 K. (As r is not highly sensitive to changes in 7 , graphs

for other values of 7T would be similar). Above a moisture content

of .1, the soil presents to the atmosphere a surface, which in effect,

acts as if it is saturated.

For our calculations, it is necessary to have an expression for the

surface specific humidity. , can be written as

= _ 3.3.8

where 6 is a constant (.622) and e is the vapor pressure,

given by the relation

C = re 5 3.3.9

, of course, is found from equation 3.3.7. is the saturation
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Figure 3.4.1. Relative humidity r, plotted against the volumetric

moisture content G , for a temperature of 300*K. Above G = .1,
the relative humidity has a value of 100%.



vapor pressure, expressed as a function of 7 by the Clausius-

Claperyon equation,

e 5  = H mb - c  "  + 3.3.10

By combining the above three equations and our expression for /

(eq 3.3.7), we obtain for F

--i'6' / _ /) 3.3.11
Ve 77 7

Ps

is both a function of the volumetric moisture content and the

surface temperature.

3.4 Numerical Procedures

In chapter 2, we found the new atmospheric temperatures "

and the new soil temperatures, IJ , at each time step. When

moisture is added to the calculations, it is also necessary to find

the specific humidity , the optical depth at each level

and in the soil, the moisture content, . To

calculate these five variables the following procedure is employed:

1) Given T and , , calculate L1 7,d . With mois-

ture present, the values for /7 are affected not only by the

atmospheric temperatures, but also by the time-dependent distribution

of optical depth, which influences radiative heating rates. Hence the

matrix "_/ has to be calculated at each time step.
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2) Find Z6Tf6h, . This is done in exactly the same manner as
I" I)

given in appendix III, except that the term - L- is not omitted

from the left hand side of the surface energy balance equation (eq.

2.5.1). When finding the surface temperature , we use the

moisture flux from the previous time step, , . Since the time

step is so small ( < 15 seconds), this is an excellent approximation.

3) Given k (the surface moisture content), and ,

calculate , and the 5 , such that the conditions given

in section 3.3 are fulfilled. Details of this step are shown in

appendix IV.

4) Find the ,

5) Given 7,, and , calculate iand for

/n, ~ 2 (To accomplish this, the soil moisture equation (3.2.11) and

the soil heat equation (3.2.12) are written in explicit difference

form).

6) Using the S found in step 3, calculate the Z.,,

This is done by multiplying the S by /', Kw. to find the

optical thickness of each layer, A simple summing procedure, starting

from the top of the atmosphere where Z = , then yields the new

distribution of the optical depth.

When computing the soil temperatures in step 5, the variation of
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k and C with respect to 0 is taken into account. Table 4

shows the values of p and used for the calculations. In the

expression for the soil heat flux (eq 3.2.11), the "moisture gradient"

term (- p L p( is much smaller than the diffusive

flux (-s and it is neglected. To show the validity of

this approximation we consider both wet and dry soils. For wet soils

(e 0 /5) , the moisture gradient term is zero since P,(pL) is

essentially zero. In a dry soil with 9 roughly equal to .03,

and with the typical values (as observed during the "slightly moist"

integration presented in section 3.6, for example see figure 3.6.3):

sec

we obtain

With the diffusive term having a typical value of / rq ,
Cni ' Sec

the neglect of the moisture gradient term is justified.

The coordinate system for the soil temperatures is found by using

the coordinate transformation mentioned in chapter 2, with 6 ;

specified as .252. The resulting grid spacing is wide enough to avoid

problems of computational instability when an explicit differencing

scheme is used, but not so wide as to be inaccurate. In explicit

finite difference form the soil heat equation becomes:



Table 4

of Kj the thermal conductivity; C, the volumetric heat capacity;

the thermal diffusivity.

KI(x 10- 4)
ergs/(sec cm OK)

-7
C (x 103 )
(ergs/cm )

.96

1.07

1.17

1.38

1.59

1.80

2.01

2.22

2.43

2.64

2.85

3.04

S3
K (x10 )

(cm2/sec)

2.17

2.71

3.68

5.80

6.29

6.56

6.42

6.13

5.88

5.83

5.75

5.63

Values

and K,

9

0

.025

.05

.1

.15

.20

.25

.30

.35

.40

.45

.495

2.1

2.9

4.3

8.0

10.0

11.8

12.9

13.6

14.3

15.4

16.4

17.1



3.4.1

with the soil heat flux given by

The coordinate system used for calculating the soil mositure con-

tent is identical to the soil coordinate system, except that an extra

grid point is placed just below the surface at a depth of .07 cm.

(This is done in the interests of accuracy).

The soil moisture equation is also solved using an explicit

technique. With '" as the vertical index, equation 3.2.9 can be

written in finite difference form as:

p(('d 4. ) ~- I/n -

14/5il

with the soil moisture flux given by

w~ ; *i~ B/e~n'- .s,, /c w(~ ari d~cc / ll~'I3.4.4

A-A, is the distance between the grid points -Y

is the average value of 7W and ,, /

and /-, - / ,

and

( 22i J

3.4.3

H z17.[ T.'
C(O),,, ~ i,,--



Soil temperature coordinate
system
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Soil moisture coordinate
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Figure 3.4.1. The soil temperature and soil moisture coordinate
systems. The grid points between 4.85 cm and 199 cm are not shown
because of lack of space.



is the soil temperature gradient evaluated between the grid points

/yA and / . /.

Figure 3.4.1 illustrates the two systems. The soil heat flux

As/ and the soil moisture flux Vs are evaluated at the mid-

poiht between the level kA and k* /

3.5 Initial Conditions

In the calculations that follow, the integrations start at 0600

lhursand run until significant condensation occurs in the atmosphere.

Initial profiles are needed for the soil moisture content, the atmo-

spheric specific humidity, and the soil and atmospheric temperatures.

Data on the soil moisture content at various depths is not readily

available for the Sahelian region, if it exists at all. However, an

approximate distribution for the soil moisture can be derived by

considering steady-state evaporation from a water table. We assume

that the steady-state case roughly represents an annually-averaged

moisture profile.

In the steady-state situation, 0= O and the moisture

flux is constant. By neglecting the thermal term, which has little

net effect when averaged over a long period of time, equation 3.2.8

can be rearranged to yield:

-= d 3.5.1

Since D (~) and hew (0) are only functions of 0 , and

k9 is a constant (to be determined), equation 3.5.1 can be



integrated to give . as a function of e . We have

/() _' 3.5.2

9. is the soil moisture content at the surface, which can be

determined from equation 3.3.7. (With 7- ' 3000K, and r - .3,

, 0^_ .028). The maximum value of 0 occurs when the pore

spaces in the soil are completely filled with water. At this depth,

which corresponds to the depth of the water table, w, 0 assumes its

saturated value, es . ( 0, = .495 for Yolo light clay).

In order to integrate 3.5.2 t's must be known. W is

only a function of the water table depth; this functional relationship

is shown by a graph publishedby Philip (1957). According to a map of

West Africa published by Michelin (1973), a typical value for RW in

the Sahel is about 10 meters. For this depth the moisture flux is

about 1.6 x 10-8 cm sec. By using this value for WS in equation

3.5.2 and integrating between 00 and (9 , the steady-state

profile of & can be produced as shown in figure 3.5.1. With

this distribution of e , the soil is very dry; such conditions

would prevail only in an arid region.

As diurnal fluctuations in soil moisture do not occur below

about 10 centimeters, it is convenient to specify a value of 9 below

this level to serve as a lower boundary condition for equation 3.2.10.

In the numerical calculations, 9 is specified as .17 at the last

soil moisture grid point, 199 cm below the surface. The profile be-

tween 0 and 199 cm is the initial condition for 0.
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Figure 3.5.1. Steady-state soil moisture profile for a depth to
water table of ten meters. The insert to the right is a "blow-up"
of the profile between 0 and 2 meters.



With this moisture profile, the thermal conductivity and heat

capacity of the soil have different values than they would have if

the soil were perfectly dry. This alteration of the thermodynamic

properties of the soil has some effect on the atmospheric and soil

temperatures. To isolate the magnitude of this effect, the model of

chapter 2 can be integrated with the single change that the thermo-

dynamic properties of the soil correspond to the moisture profile

of figure 3.5.1. A comparison of the results of this integration and

the perfectly dry case reveals that this effect is small. (However,

it could be much larger for a soil which contains more moisture).

Figure 3.5.2 shows tha quasi-steady ground temperatures comptuted

for the "slightly moist" case and the perfectly dry case. The maxi-

mem difference in temperature is about 20K.

For the initial condition of the atmospheric temperatures, the

temperature profile at 0600 hr from the "slightly moist" calculation

is used. This condition is designated as PROFILE I in figure 3.5.3.

The initial soil temperatures, shown in the figure, are also taken

from the 0600 hr of the slightly moist calculation.

The humidity profile of figure 2.7.1 is used as the initial

condition for the specific humidity.

3.6 Results

Starting from 0600 hr , the model was integrated with the initial

conditions as specified in section 3.5. (The results of this inte-

gration will be referred to as the slightly moist case, abbreviated

as "SM"). Saturation in the atmosphere occurred just after 0700 hr,
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Figure 3.5.2. The temperature of the ground. The dashed line is
for the slightly moist soil; the solid line is for the perfectly
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350

34'0

330

3020

3/1b

340

.2q0



I.-

3o00

.2o ;3 o ;V 7SD

-r (4k)

Figure 3.5.3.
temperatures.
exaggerated).

The
(The

Cr

initial conditions for the soil and atmospheric
vertical distance scale for the soil is greatly
is the static stability ('K/km).

/0

5

- 5O(A~

./e0 cn

0 700 .o fo ;90



yet the calculation was not stopped until 1000 hr. Figure 3.6.1

shows the ground temperature ., the solar forcing $ , and the

surface fluxes of sensible heat (M,) and latent heat (L W,

(Also shown for the purpose of comparison is the ground temperature

T and the sensible heat flux /''dy calculated in chapter 2

for the dry case). The latent flux is negligible, and the ground

temperatures and sensible heat fluxes of the two cases are almost

identical. Small differences do exist; these can be attributed to dif-

ferences in the thermal properties of the soil (as discussed in the

previous section). The atmospheric temperature profiles for the SM

case are almost exactly the same as for the dry situation, and conse-

quently they will not be shown.

Figure 3.6.2 shows the distribution of specific humidity at 0600,

0700, and 1000 hrs. With values of as large as .5 x 107 secm2

convection is very efficient in transfering moisture upwards from the

lower part of the convective zone. The transfer of moisture across

the earth-soil boundary is small ( - 10- 7  cm ), since for the dry
sec

soil, capillary forces hold the soil moisture tightly (i.e., /P/ is

large). Hence, with essentially no input of moisture from the soil,

the lower part of the convective region experiences a loss of moisture

with time. This is shown vividly in figure 3.6.2 as the specific

humidity decreases markedly below 1 km as the day progresses. (The

dashed part of the 1000 hr curve indicates that the specific humidity

equals or exceeds its saturated value - at this time saturation has

occured between 2 and 3.25 km).
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flux S, and the surface fluxes of sensible heal H, and
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Figure 3.6.2. Specific humidity profiles for different times.
The dashed portion of the 1000 hr profile indicates that q
equals or exceeds its saturated value. The tag below each curve
indicates the surface specific humidity. Note that the humidity
jump across laminar layer is small.
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The abrupt bends in the 0700 and 1000 hr profiles represent

"discontinuities" in the moisture profile. As convection transfers

moisture upwards, it "accumulates" below the top of the convective

region because of the no flux boundary condition, and a discontinuity is

formed.

Figure 3.6.3 shows soil moisture profiles between the surface and

a depth of 5 cm. Most of the variations in soil moisture content occur

within 3 cm of the surface; below this level the values of 0 are

essentially constant. At 0600 hr, with a surface soil moisture con-

tent of 0.28 and a surface temperature of ^ 290*K, the surface
-3

specific humidity is about 2 x 10 -3. Immediately above the surface,
-3

the humidity is higher ( 8 x 10 ) and consequently moisture is

transfered from the atmosphere into the soil. This downward transfer

is still continuing at 0700 hr, as shown by the positive moisture gra-

dient in the soil. Also at this time, a positive moisture gradient

exists in the atmosphere, but only up to a height of about 1 meter.

At 1000 hr the upward transfer of moisture by convection has

left the atmosphere near the earth's surface in a relatively dry condi-

tion. The potential for evaporation is high, and the atmosphere

"demands" moisture from the soil. In an attempt to meet this demand,

a large gradient of 0 is formed just below the surface as shown

in the figure. This happens because in the expression for the moisture

flux (eq. 3.2.8), the moisture diffusivity is very small (since the

capillary forces are large); and also, as is positive in this

instance, the thermal term acts in opposition to the upward transport

of moisture. (The gravitational term is negligibly small for such dry

soils).
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From an examination of the results presented above, one could

conclude that the presence of a very small amount of soil moisture

has no appreciable effect on the atmosphere. However, the moisture

content in the upper part of the soil is not always so dry; it can

increase rapidly due to precipitation, and it is possible that the

atmosphere can be significantly influenced by such a change. Therefore,

a study of the response of the model to a perturbation in soil moisture

content, presumably caused by precipitation, seems merited.

To undertake this study, we first construct a soil moisture pro-

file that includes a "precipitation perturbation". Then the model is

integrated, starting from 0600 hr and using the same initial conditions

as the SM case, except for the inclusion of the perturbation. By

comparing the results of this integration to the SM case, the impor-

tance of the perturbation can be determined.

To construct a precipitation perturbation we start with the soil

moisture profile used as the initial condition in the SM case. Next,

we assume that rainfall occurs, the surface becomes immediately satu-

rated (i.e. , = eS ), and water infiltrates into the soil.

After two hours, 1 1/2 cm of water has been accepted by the soil, and

the moisture profile existing at this time is considered as the

perturbed profile. (Mathematically speaking, the profile was generated

by numerically integrating the equation governing soil moisture mois-

ture transport (3.2.10), with the thermal term being neglected. The

initial condition was the initial SM profile. The upper boundary condi-

tion of e, = e was applied at the surface; at a depth of 10 cm the

lower boundary condition was specified as 0 = .031. The integration



was carried on for two hours).

This profile is shown in figure 3.6.4. As can be seen, the soil

is almost completely saturated to a depth of about 3 centimeters.

When using this profile in the calculations that follow, it is neces-

sary to change the grid spacing of the soil moisture coordinate system,

and the time step, to avoid computational instability. The new grid

spacing consists of equal intervals in As , with L7 s equal to

.2 cm; with this spacing a time step of 2.5 seconds is used.

Figure 3.6.5 shows the ground temperature 7 , the latent

heat flux L 4 and the sensible heat flux /7, for the

"perturbed" case. (Also shown is the solar forcing, S ). With the

precipitation perturbation, the surface energy balance is much different

than for the SM situation, and there are large differences in the ground

temperatures and the fluxes of latent and sensible heat. The total

energy transmitted to the atmosphere by the latent and sensible heat

fluxes is larger in the perturbed case; and in this situation the

latent flux is much larger than the sensible heat flux. This is in

contrast to the SM situation, where the latent flux is neglibibly small.

The atmospheric moisture profiles at different times are shown

in figure 3.6.6. The gradients of moisture are very large close to

the surface of the earth ( 1~ 10 meters) as evidenced by the long

"tails" or the 0700 and 1000 hr curves. The large gradient is due to

the inefficiency of convection close to the ground, where A1c is

samll. Condensation occurs just after 0700 hr and by 1000 hr , the

atmosphere is saturated between 1.75 and 2.75 km. (In comparison,

recall that in the SM case, saturation occurs between 2 and 3.25 km



89

6 F 7 /0

I I I "

330 33o

3/0T " 3/0

300. 300

aqo .,qo

/e s

Pei Ye S

X -I I LW,

Figure 3.6.5. The ground temperature , , and the surface
fluxes of sensible heat H,1 and latent heat L h for the
perturbed case. S is the solar flux.
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for the perturbed case. The end of the 1000 hr curve
The end of the 1000 hr curve extends to 18 Xi0-

Figure 3.6.6. Specific humidity profiles at different times

for the perturbed case. The dashed portion of the 1000 hr curve

indicates that q equals or exceeds its saturated value. The tag

below each curve is the value of the surface specific humidity.

In this case, the humidity jump across the laminar layer is large.

The end of the 1000 hr curve extends to q = 18X10 .



at 1000 hr.).

Figure 3.6.7 presents profiles of soil moisture. The amount of

moisture in the upper few centimeters decreases considerably over the

period of integration. This is due to two factors: first and most

importantly, the combined action of gravitational and capillary

forces pulls the moisture downwards, and second, some moisture leaves

the soil as thelatent heat flux.

The 1000 hr temperature profiles (below 10 meters) for the SM

and perturbed case are shown in figure 3.6.8. The slight difference

between the profiles can be attributed to the difference in ground temp-

eratures between the two situations. Above .25 km, the temperatures

are virtually identical.

It is interesting to compare the amount of "condensation"

(i.e., supersaturation in our model) that occurs during the integrations.

We denote this quantity by ",", and it is given by the integral

C /0 L3.6.1

region

where fs is the saturated specific humidity (a function of 7

and p ), and the saturated region is wherever y ? s.

When C is computed at 1000 hr we find that the amount of

g
condensation is nearly equal in both cases: .102 cm2  for the per-

turbed case and .105 -gc for the SM case. This result is surprising.

Intuitively, one would expect much more condensation to take place when

the upper part of the soil contains an abundance of moisture. Con-

densation appears not to be enhanced when the ground is saturated
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SM case.
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because, when compared to a drier soil condition, water is not carried

to as high a level in the atmosphere where condensation is encouraged

due to the cooler temperatures.

For the above calculations, the initial atmospheric temperature

profile up to 7 km had a static stability ( - , defined as )

very close to zero. We shall repeat the calculations but with a dif-

ferent initial temperature profile - one with a static stability of

1.5*K/km. This is designated as PROFILE II in figure 3.5.3. The

use of a more stable initial condition retards the onset of condensation,

and therefore the results are physically consistent for a longer

period of integration. In the following set of calculations, condensa-

tion occurs just before 1000 hrs.

Figure 3.6.9 presents the ground temperatures, and the fluxes

of latent and sensible heat for the SM and perturbed cases (both with

= +1.5). Up until 1000 hr the temperatures and fluxes

show the same general characteristics as when the static stability is

zero. After 1000 hr in the perturbed situation, intense drying takes

place at the soil surface, and the latent heat flux decreases.

This drying, which is shown clearly in the 1000 hr soil moisture

profile of figure 3.6.10, is confined to the first half centimeter

of the soil. In this layer, the gradient of becomes very large,

yet the moisture flux decreases since the soil is drier, and the mois-

ture diffusivity ( D(9) ) assumes a smaller value. As the soil

surface is saturated at 0600 hr, and is quite dry at 1100 hr, the

transition interval between a wet and dry surface is about 5 hours.

The 1100 hr atmospheric moisture profiles for both cases are
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Figure 3.6.9. The ground temperature, and the flux-es of
sensible and latent heats for the perturbed and SM cases,
( 0 = +I.S*K/K%) . The solid line indicates the perturbed
case; the dashed line indicates the SM case. "S" is the
solar forcing.



.5-

Figure 3.6.10. Profiles of
( r = +LoK/k).

0 for the perturbed case,

.2



97

presented in figure 3.6.11. The amount of condensation is again

(nearly) equal, with ( ~, / 5 / 2  for both cases.

This is significantly less condensation than occurs when the initial

static stability is zero.



3I
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.---- 0o ( per 4ur be case)

3 'IL 9 - ,o I

Figure 3.6.11. 1100 hr profiles of specific humidity for the SM and
perturbed cases, ( 0 =4I1.5kK/m). The tag below each profile
indicates the value of the surface specific humidity.



IV. Some concluding remarks

This thesis, using a simple coupled soil-atmosphere model, has

investigated the sensitivity of the atmosphere to different amounts

of soil moisture. The atmospheric component of the model was greatly

simplified, so that some important physical processes were ignored

(such as condensation, cloudiness, and precipitation) and this limits

the usefulness of the calculations. However, some tenative conclu-

sions can be drawn based on the results presented in chapter three.

These are:

1) For a very dry soil, the soil moisture has no significant

effect on the atmosphere. For all practical purposes, the latent heat

flux is neglibible, and a no-flux boundary condition for moisture can

be applied at the earth's surface.

2) If a thin layer of soil bordering the atmosphere becomes

saturated, say by precipitation (as represented in the calculations

by the "precipitation perturbation"), the surface energy balance is

greatly altered. The latent heat flux is no longer negligible; instead

it becomes several times larger than the flux of sensible heat. The

calculations indicate that the transition time for a saturated soil

surface to become dry is about five hours.

3) Condensation in the atmosphere appears not be be enhanced

when the soil surface is wet - a surprising result. When compared

to a dry soil surface, one would intuitively expect more condensation

to occur with a wet surface as an abundance of water is available for

evaporation. However, this factor appears to be offset by the relative

weakness of the turbulent heat flux under wet soil conditions. The
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weak flux prevents the transport of water vapor into higher (and

cooler) parts of the atmosphere where condensation is most favored.

More study, with-an improved model, is needed to confirm the

above conclusions. To improve the model and increase its usefulness,

it is necessary to relax some of the constraints that have been

imposed. First, a simple treatment of condensation, clouds, and

precipitation could be put into the model. When this is done, the

integrations would not have to be stopped after condensation occurs,

and it would be possible for the model to operate for a longer period

of time than just a few hours. Second, non-grey radiation could be

used instead of the grey approximation. Errors in the radiative

heating rates would be reduced, and the temperatures throughout the

atmosphere, but particularly in the diurnal boundary layer, could be

predicted with greater accuracy.

With these changes, the model should be able to simulate, over a

period of a few days, the weather occuring in a region like the Sahel.

Numerous experiments could be performed by varying the amount and

distribution of soil moisture, and then observing the response of

the atmosphere to these changes. These experiments should yield a

greater understanding of the physics of soil moisture-atmosphere

interaction. It would also be interesting to add vegetation to the

model, to determine how much influence it exerts on the atmosphere.

Finally, when these simple studies are complete and the results

understood, a "regional" climate model for an area like the Sahel

could be constructed which would include atmospheric dynamics as well

as soil hydrology and vegetation. This model could be used to examine
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Charney's (1975) hypothesis of desertification.

The above suggestions would take a great deal of time to accom-

plish. However, the model in its present primitive form, with some

slight modifications, could still be used to some profit. The accuracy

of the "moisture-budget" soil hydrology parameterization used in the

GFDL GCM (Manabe (1969)), has never been tested for accuracy. It

is not known whether this simple scheme can adequately predict the

latent heat flux, which is often an important component of the surface

energy balance. It would be very enlightening to compare this para-

meterization to the more realistic formulation given in this thesis.

The error of the moisture budget scheme could be estimated, and it is

possible that an improved simple soil hydrology parameterization could

be developed.
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Appendix I

In this appendix, we heuristically derive expressions for the

diffusive fluxes of heat and moisture which are transferred through

the laminar layer.

Let the thickness of the laminar layer be c . Above d ,

moisture and heat are transfered by turbulent convection, while within

the laminar layer, molecular transfer of these quantities takes place.

For the diffusive fluxes through the layer, we have

cd

v M A.1.2

where ,/, ( = heat and moisture fluxes through the layer

40 = differences of temperature and specific humidity
across the layer

= molecular diffusivities of heat and moisture in air

An estimate is needed for d . At approximately this height,

where molecular transfer ends and turbulent transfer begins the Ray-

leigh number

c tA.1.3



assumes its critical value, .c . Solving for d

ci AI/

we obtain

3e(V
This expression for d is substituted into equations A.1.1 and

A.1.2 to get

H, c

k4n7

'/3
(Al -)

LI?

where is a constant, roughly equal to

Ra, ,v /OD A -'

that A 0 d 'C2

(R~~) I~ . (With

). Gierasch and Goody (1968) argue

(= ..a) and this is the value that is

used in the thesis.
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A.1.4

1/3

A.1.5

A.1.6
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Appendix II

Derivation of the elements of the matrix AMi7]

We recall that qra e is defined as:

Qrac -d (r w

Putting this in finite difference form, we get

-FQ,.d, Fn Fm',
Z'" 9'P.

F- f
A4. - lr-

where F, - F ( r )

TT 
41r C2fe

c Ch- f{ 7Yz.+ - ;t, Y+6- .4 Z

-c;2a" (
-I

0"(LJ e

o

(In the above expression for F , we recall that in our indexing

notation,

A.2.1

A.2.2

c/'2o

A.2.3

d~c

_ 6r /- ,r,,)1144

r

and 7 = 7 eqi



By making the substitution in the last term of

equation A.2.3, we get, after simplification,

o-Tj ,

o rT e

r T.g1 e

0 /

and the heating rate is given by

Qrd,'o. a'7j

/I

~2 J e"~'~

4~27'

fi iZ,
0S( .

.Ii °#

I- '- z4 ,'ct~lM" 7-

tr
- -

/

4,

A.2.5

We now split some of the integrals up, in this manner,
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A.2.4d_~ jL c=- ,/ d

T , - )/,M)
'0'4

(IzM - ZM-I)

ill



(in i e , )

1' ( ' ' -!,C~11

--

and rearrange to get

'/

/

K
-/??)( e -

C-/

r/ C2ae

o-~ ~

.4

I-,

- ef ,)-

-e

-e

7'Y
( ,

- / (A /.M

By regarding the temperature in a layer as a constant, we can

express equation A.2.6 as a sum over all layers:

I)

I)

I
106

4.

"rac1

dor0

<4

A.2.6

ter,,- r-M ),44

_ e,To- rv A4)/ d z

- C/ -C^ - C I )/."Up

zI- - I,,)
d -r) C
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gr~dn. -/

Qrodm-/

zje - , _ tj/*7jz5? b/r

or 10"

(e/

- e-

-e)~'7i*. 7z

A.2.7

The above expression is valid for all A,~ , _ . . If in the summation

sign, the initial index equals or exceeds the final index, for example

the term is ignored.

We now seek the elements of the matrix . Some careful

scrutiny reveals that ,e') /1 is given by:

)1,4jo V 4( 7'
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C, =

, , 4-

( e -

( e

IZ

2t (e-(,
0

- ('-! I~et2sU
Al ,C

sLl!

-/ - ,Cl

e

A.2.8

When doing the numerical calculation, it is convenient to

first row of the matrix f, , so that " ,,

actually the downward long wave flux at the surface, F-

is done by defining 14c as:

0 )r. i,

t,.

define the

" is

SThis

'I 

(>1

A.2.9

e/, r ) t=

& 

/
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In practice, the integrals over p are done first. They can be

calculated by using Gaussian quadratures, or if the numerator of

arguement of the exponent (for example, T,_, - Z ) is small, by

a series expansion given in Goody (1964), appendix 8. The following

integration over C is trivial.
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Appendix III

For the differential equation

dt (A.3.1

the central-implicit (i.e. Crank-Nicolson) method can be represented as:

yd#'_ 71//Ilr
d(rIdr A.3.2

As we see, the function F is evaluated at the average value of

7-i and T "  . For more information, see Gerald (1970).

Let the subscript " " represent the index of the top of the

convective region. In the computer program, .C is located by

starting from the bottom and checking each lapse rate until the first

subadiabatic lapse rate is found - its index is " ".

Let be the temperature change due to convection.

T /C
From the heat equation we have

which when put in centered-implicit form becomes:A.3.3

which when put in centered-implicit form becomes:

At
A.3.4

ifT'~14/

A//



f 
4

is given by:

0 1 n =

I

(To economize on space, from henceforth we let

and Y LIOfIf .,;
(7'/K1/

When equation A.3.4 is applied to each layer in the convective region,

a set of .- / non-linear algebraic equations is formed, with

unknowns ... 7  . As there is one more

unknown than the number of equations, an extra equation is needed,

which is the surface energy balance equation. It is (in centered-

implicit form),

T 

46Es

A.3.6

rL/

111

A.3.5

S=

.2 -Ofn-/12. .7',, • , / 2

(- - i

71- 7
oC2 _= J , d --

0~9 aIY~t'/ /
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The first term of equation A.3.6 is the soil heat flux at the surface

in finite difference form. is the soil temperature at

the depth 4 (= '2at)

Making the substitution 6 7 7/- w (where

n .. is the convective temperature change) into equations

A.3.5 and A.3.6 gives:

A.3.7

A.3.8

4 Y 72 + _ _

S, 3 
/7'PI;

&, (7, -T-C /'_ Z3Z -d j"5& j l

-0 6 Ft

A.3.9

F 0

If the time step is small, T is presumably small, and

the above equations can be linearized with a good degree of accuracy.

We obtain:

//}" //, / IO
IA --_

/4,~~ z7l, __

.7 Em A.3.10

Ca
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-3 . A.3. 11

/1- -a, _F ,s

A.3.12

3 - /

-,, _ 4,1, _o

In the surface energy balance equation, we have approximated f_' 2

by the term F- . This is a reasonable approximation since

the temperature does not change very much during each time step.

We now have a set of , linear equations with the same

number of unknowns d 7c, L7c) ... d . This set can be

put in the form:

,4 7, e A 4  *L 3 6i T 7C3

S. A.3.13



The matrix rOnM is a tridiagonal symmetric matrix, with

elements:

11 K (7 , ))/x
c, 27, 3

dc,,. - -a

The column matrix

The column matrix [8^ is given by

7,, -7

Jr I+C 2~~

B, = FK.~.5d#V/'tf~I1,s ,p.t=,

Bn . ,C_,hLI, /'mJ I
As the matrix "4,,, is tridiagonal, this set of linear

equations is easily solved by elimination.
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A.3.14

A.3.15

A. 3.16

A. 3.17

A.3.18

A. 3.19

~" I

X, X 7 - 77
z 

k- 

-1 

/

o3 C~h ~~-C

P/; I
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Appendix IV

To solve for the new atmospheric specific humidities and

the surface soil moisture content, 6s  an implicit difference

scheme is employed. For the differential equation:

S= ) A.4.1

the implicit method is written as

SA.4.2

4 t

The function j) is evaluated at the new humidities

instead of , as would be done in an explicit method.

Let " R " denote the index of the top of the convective

region. In implicit form the equation of moisture transfer (eq 3.3.2)

can be written as:

- W h - A.4.3

where kV,, equals:

,, ( - A.
jF 0 d)_ ""'st/ /
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In the above expression for W,t , represents the quantity

and ,, is the density at the level e, . Also we have used

the eddy diffusivity (4/) and the temperatures / '; 7-) from

the previous time step . This is an excellent approximation

because of the small time step.

By making the substitution = , 4 into equations

A.4.3 and A.4.4 we obtain:

,,, V - A.4.5

with

SK ,A.4.6

When equation A.4.5 is applied to each layer in the convective region,

a set of .- / linear algebraic equations is formed:

' /YL

A10 4. -1- )

- s (A j~ r ~A.4.6

* *e 1 ). .-
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In the above set of equations there are R unknowns,

d', z, .. ..) . This is one more unknown than the number of

equations.

To obtain a closed set of equations we must employ the conditions

stated in section 3.3 First, 1,7" is a function (which we denote

as Q ) of the surface moisture content as stated by equation

3.3.11. We have

L 614
A.4.7

With the above relation, we obtain

A.4.8

Equation A.4.8 along with the equations A.4.6 consists of a set of

equations and j / unknowns d", . The

additional equation that makes a closed set is the condition that

moisture fluxes must be continuous at the surface. (eq. 3.3.6).

finite difference form, we have:

the

In

z f~ dt)- T)T
fg - ) e a)h ( Or(M)( A.4.9

where ,is the value of the moisture content at the depth djA, and

S is the average value of 01 and
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The closed set of equations (A.4.6, A.4.8, and A.4.9) contains two

non-linear equations A.4.8 and A.4.9. The set can be solved using

an iterative scheme. With the 6 - approximation of the variable

denoted by (.X), the scheme is as follows:

1) If -/ or s . , we choose a value of (' m which

is close to the actual solution. In practice

A.4.10

If , >.2 , this step is ignored.

2) Given is calculated from

equation A.4.8. With (d ~,, known, the equations A.4.6 form a

closed set. As the associated matrix of the coefficients is tridia-

gonal, the set is easily solved by elimination. We obtain ( ',~,

In a,

3) We define the function ( ) such that

G= / :<> -uk

( A , - j+ A.4.11

With ( Z) known, the



quantityG WS W,
WO 

W

is calculated.

If it is less than .0001, we stop.

5) If v = / , return to step 1 and obtain a value for j

If / M 23 ,the next value of ( ,"' ) is calculated using

the so-called "secant method":

-- A.4.12( " f

(This method is just a way of finding the root to the function (7 ,d 2 )

6) Repeat the process until convergence is obtained.

This method requires about 3 iterations to converge.
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