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ABSTRACT

A new method is demonstrated for solving a one-dimensional chemical-

dynamical model for odd nitrogen in the upper stratosphere, mesosphere,

and lower thermosphere. Essentially, the method involves time integrating

a photochemical-diffusive equation through dissimilar daytime and night-

time regimes by means of the Lorenz N-cycle scheme. The model uses

average daytime and nighttime input data instead of time-dependent data or

diurnally averaged data. The system results in a steady-state solution in

the upper stratosphere and lower mesosphere and a pseudo steady-state

solution in the upper mesosphere and lower thermosphere. The results

should be more physically realistic than those obtained from a model which

utilizes diurnally averaged data. Some of the chemical and dynamical

processes are also investigated by changing the eddy diffusion coefficient

and changing the fraction of N( S) produced from the dissociative recom-

bination of NO+ .
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1. Introduction

One of the significant problems aeronomers have faced in strato-

spheric-mesospheric modelling is how to treat diurnal variations in sun-

light intensity in order to predict the most realistic species concen-

trations. A number of approaches have been used including calculating

the photolysis rates using the approximation of a mean solar zenith

angle, obtaining the photodissociation rates by numerically integrating

them over a diurnal cycle, and obtaining a diurnally time-dependent

solution. Of the three, the last approach is the most realistic; but

it is also the most expensive and is not without problems, such as hand-

ling the sunrise and sunset transitions. The first two approaches do

not treat nighttime processes adequately, if at all, and presumably give

concentrations which are averaged over a 24-hour day, thus making it dif-

ficult to compare these values with daytime values. Furthermore, the

average predicted concentration values often differ by as much as 50

percent from the average values computed from a time-dependent solution

because of the inherent difficulties in averaging photodissociation rates

over a diurnal cycle.

Here we will demonstrate a new method for solving a one-dimensional

chemical-dynamical model for odd nitrogen in the upper stratosphere, meso-

sphere, and lower thermosphere. The resultant model is a diurnally time-

dependent one which simulates nighttime processes but uses average day-

time and nighttime input data, observational wherever possible. Essen-

tially, the method involves the time integration of a photochemical-

diffusive equation by means of the N-cycle scheme of Lorenz (1971) with
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the values computed at the end of the daytime used as the initial values

for the nighttime integration and vice versa. The system results in a

steady-state solution in the upper stratosphere and lower mesosphere and

a pseudo steady-state solution in the upper mesosphere and lower thermo-

sphere. In other words, the concentration remains constant throughout the

daytime and nighttime in the steady-state regime and varies cyclically in

the pseudo steady-state regime. The average values thus obtained should

be more physically realistic than values obtained from a solution which

averages photolysis rates over a 24-hour day either by integration or by

use of a mean solar zenith angle.

In addition to the viability of this method being demonstrated,

some of the physical processes in the odd nitrogen system are also inves-

tigated since odd nitrogen plays an important role in the catalytic

destruction of ozone.
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2. Input Data

The reactions which are used in the odd nitrogen model are presen-

ted in Table 1. Almost twice as many reactions were initially considered

for the model, but the other reactions were not included because they

were shown to be negligible in their effects when compared to the inclu-

ded reactions. Even some of the included reactions have little impact

on the results, as we shall see later. An attempt was made to obtain

the best available rate constants and photolysis rates. Many of the rate

constants were taken from data surveys prepared for the Climatic Impact

Assessment Program, Department of Transportation.

Some of the reaction rates were not included in the table and can

be found in Appendix A. Photolysis rate Jl was calculated by Strobel

(1971b) at a 600 solar zenith angle. This angle was chosen to represent

a mid-latitude, daytime average sunlight intensity. Photolysis rate J7

was evaluated by Cieslik and Nicolet (1973) at a 60* zenith angle in

detailed calculations based on the absorption of the discrete Schumann-

Runge bands of 02. Diurnal mean values for rates J13 and J58 were calcu-

lated by Prinn et al. (1975) in a modified version of their model

extended to 68 km. The rates were multiplied by 2 to obtain daytime

values. Rate J13 did not vary significantly over the height range of

interest so that a constant value was used. The production rate of

nitrogen atoms by electron impact dissociation of N2, r3 1 , was obtained

from a table and graph by Strobel et al. (1970) and Strobel (1971b),

respectively. Their values were divided by 2 in order to represent the

production rate of one N( S) atom or one N(2 D) atom, following the dis-

cussion by Oran et al. (1975). The rate constant for the dissociative



Table 1. Reactions, photodissociation rates, rate constants and references. Photodissociation rates

-1 6 -1 3 -1
have units sec - . Rate constants have units cm sec and cm sec for 3- and 2-body

reactions, respectively.

Reaction

1. N2 + hv(1098-1249A) + N(4S) + N(4S)

2. N( S) + NO + N2 + 0

3. N( S) + 02 NO + 0

4. N( S) + 02 (IAg) - NO + 0

5. N(4S) + 03 - NO + 02

7. NO + hv(1750-1908d) - N(4S) + 0

9. N(2D) + 02 NO + 0

10. NO + 03 NO2 + 02

11. NO + 0 + M +NO 2 + M

12. NO + 0 +NO 2 + hv

13. NO2 + hv(2396-3950X) - NO + 0

14. N( S) + NO 2 - products

14a. N( S) + NO2 -N20 + 0

14b. N( S) + NO2 +N 2 + 0 + 0

14c. N( S) + NO 2 +N2 + 02

Rate

Jl (see text)

k2=l.5x10T-12T

k3=1.lxl0-1 4Texp(-3150/T)

k 4=2x10-14exp(-6.Oxl 2/T)

k =5.7xlO-1 3

J7 (see text)

k9=4.4x10-13 T

k10=9x10-13 exp(-1200/T)

k l=3.0xl0 33exp(940/T)
-18

k12=4.2x10 18

-3

J =9x10 3

13

k 1=1.85x10-l l
14

k14a"8. x10-12

k 4b= 2 .4x10 1 2

kl4c=1.9x10- 1 2

Reference

Strobel (1971b)

Phillips and Schiff (1962)

Baulch et al. (1973)

Clark and Wayne (1970)

Baulch et al. (1973)

Cieslik and Nicolet (1973)

Slanger et al. (1971)

Herron and Huie (1972)

Baulch et al. (1973)

Becker et al. (1973)

Prinn et al. (1975)

Phillips and Schiff (1965)

Phillips and Schiff (1965)

Phillips and Schiff (1965)

Phillips and Schiff (1965)



Table 1. (Continued)

Reaction

14d. N( S) + NO 2 + NO + NO

15. NO2 + 0 + NO + 02

16. N( 4S) + OH + NO + H

17. N(2D) + N2  N( S) + N2

20. N( 2D) + 0 + N( S) + 0

25. N( S) + 0 + NO + hv

31. N2 + e- (fast) - N(4S) + N(2D) + e

32. NO+ + e- N(2D) + 0

-+ N( S) + 0

34. N2 + + NO+ + N(2D)

35. N2 + 0+  NO + + N(4S)

39. N( S) + 02 + NO + 0

54. N20 + 0(1 D) + NO + NO

55. NO2 + OH + M HNO3 + M2 3

56. HNO 3 + 0 OH + NO3

Rate

kl4d= 6 .•xl0- 1 2

-12
k 15=9. 1x10
15

k 6=5.3x10 1 1

k 17-2.3x10 4

k20=1.8x10 12

k25=2x10 7

r3 1 (see text) +

k 3 2 =3.5x10- 7 (T/380) - 0 . 5 (A)

k3 2=3.5x10
- 7(T/380)- 0 .5 (1-A)

-9 -0.44
k 34=3. xl0 T-

k3 5=1.2x-102(300/T)

k 39=1. 8x10 - 1 0

k54=1. 1xlO0-10

8.5x103exp(360/T)
55= 1.5x10 8 + [M]

k56=1.Ox 10-11 exp(-1860/T)

Reference

Phillips and Schiff (1965)

Davis et al. (1973)

Baulch et al. (1973)

Husain et al. (1972)

Davenport et al. (1976)

Banks and Kockarts (1973)

Strobel et al. (1970),

Strobel (1971b)

Huang et al. (1975), see

text

McFarland et al. (1974)

McFarland et al. (1973)

Goldan et al. (1966)

Garvin and Hampson (1974)

Prinn et al. (1975)

McConnell and McElroy (1973)



Table 1. (Continued)

Reaction

57. HNO 3 + OH > H20 + NO3

58. HNO 3 + hv(1860-3450) - OH + NO 2

59. N2 + cosmic rays N(4 S) + N(4S)

* Must be multiplied by M efficiency

-3 -1
+ Has units cm sec .

Rate

k571.3x10- 1 3

J58 (see text)

r5 9 (see text) +

Reference

Garvin and Hampson (1974)

Prinn et al. (1975)

Nicolet (1975)

of 1.31.
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recombination of NO , k32 , is written with an adjustable parameter, A,

which is the fraction of the total recombination events resulting in the

production of N(2D) atoms. If A = 1, each event produces one N(2D) atom

and no N( S) atoms. If A = 0, the converse occurs. The impact of

changes in this parameter is investigated. Finally, r5 9 , the production

rate of nitrogen atoms by cosmic rays at a geomagnetic latitude of 400N,

was obtained from Nicolet (1975) for the height range 35-85 km. Nicolet

showed that the dissociation and dissociative ionization of N2 by cosmic

rays yield approximately one nitrogen atom for every ion pair produced

by cosmic rays. In this model it is assumed that all the nitrogen atoms

produced by cosmic rays are in the ground state (4 S).

Since the model only predicts odd nitrogen components, concentra-

tion profiles of the other species had to be provided for both the daytime

and nighttime for the height range 35-100 km. This was done by using

either observational data or other model data. For almost all the input

profiles, points were taken at 5 km intervals and intermediate values

were obtained by computer interpolation using an Aitken-Lagrange inter-

polation scheme. This was also done for photolysis rates J1, J7, and J58

and production rates r3 1 and r5 9. In some instances additional points

were provided either to resolve a special feature in a profile or because

the interpolation scheme needed more points to produce a meaningful curve.

All the profiles can be found in Appendix A with.values given at 1 km

intervals, except for the M profile for which values are given every 0.5

km.

It would have been a more consistent and satisfactory approach to

calculate the photolysis and production rates and some of the concentration
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profiles rather than to use the results of other modelers or to average

many observational profiles. However, since the primary goal was to

evaluate a new method for solving a one-dimensional odd nitrogen model,

we felt that the calculation of our own profiles would complicate the

model and consume too much time for an initial study.

We will now discuss the sources of the profiles. The temperature,

N2 , and 02 profiles for the height range 35-100 km were taken from the

Cospar International Reference Atmosphere (1965) at intervals of 1 km,

5 km, and 5 km, respectively. The interpolated values for [N2] and [02]

were in excellent agreement with the CIRA values. In this study [02]

indicates the number density or concentration of the quantity within the

brackets, in this case molecular oxygen. The atmospheric number density,

[M], was calculated by adding [N2 ] and [02] for z (altitude) less than 90 km

and [N2 ], [02], and [0] for the height range 90-100 km.

The profiles mentioned thus far are valid for both the daytime and

nighttime. However, the following species differ in their daytime and

nighttime concentrations. The daytime ozone profile for the height range

35-80 km was taken from Nicolet's (1971) model. This profile compares

very favorably with a mid-latitude, mean annual ozone model profile

derived by Wu (1974) from daytime measurements. However, Nicolet's

values were used in order to keep the major odd oxygen components, 0 and

03, compatible since Nicolet's atomic oxygen profile was also used. Model

ozone values for 90-100 km were taken from Thomas (1973). The ozone con-

centration at 85 km is an average of Nicolet's and Thomas' values. The

nighttime ozone profile in the upper stratosphere does not differ from

the daytime profile; consequently, Nicolet's model values were used for
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35-55 km. Above this region (60-100 km) nighttime ozone values were

taken from Thomas. His model profile exhibits a dip in the ozone con-

centration around 80 km which simulates somewhat an actual dip around 75-

km in the nighttime ozone concentrations derived from satellite observa-

tions (see Wu). The daytime atomic oxygen profile for the 35-85 km region

was taken from Nicolet (1971). The 0 values for 90-100 km were taken at

2 km intervals from the Jacchia (1971) model atmosphere (exospheric

temperature = 9000K) and reduced by a factor of 2 in order to make them

compatible with observations by Henderson (1971) and by von Zahn et al.

(1977). At night [O] drops off rapidly below 85 km and is important

only in the lower thermosphere. Values for [O0] between 75 and 80 km were

taken from Thomas (1973). At 85 km the value is the daytime value from

Nicolet, while values for 90-100 km are the daytime Jacchia values. No

difference between daytime and nighttime number densities is apparent in

this region. Daytime [OH] between 45 and 70 km was obtained from

Anderson (1971) who inferred the OH concentrations from dayglow measure-

ments of OH resonance fluorescence. Values for the height ranges 35-40

km and 75-95 km were obtained from the model results of Hunten and

Strobel (1974 ). At night [OH] decreases significantly in the upper

stratosphere and in most of the mesosphere so that values were taken from

Thomas (1973) only for the height range 60-100 km. Near 80 km the

model profile exhibits a rapid increase and then a rapid decrease in [OH].

A daytime electron density profile for the height range 55-100 km at a

solar zenith angle of 600 was obtained by averaging the profiles of

Mechtly and Smith (1968) obtained over Wallops Island, Virginia. These

profiles were found in a paper by Reid (1971). The nighttime electron
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density profile was taken from a model by Ogawa and Shimazaki (1975) for

the height range 75-80 km and from a model by Keneshea et al. (1970) for

85-100 km. The daytime NO+ number density for 70-75 km was taken from the

observations of Narcisi and Bailey (1965). These observations are illustra-

ted in Fig. 6.16 in a book by McEwan and Phillips (1975). For the height

range 80-85 km [NO + ] is an average of the values in the aforementioned Fig.

6.16 and the observational values from Fig. 1 of Narcisi (1973). For 90-95 km

[NO ] is an average of the Narcisi values and the observational values of

Johnson (1966) which are illustrated in Fig. 6.15 of McEwan and Phillips.

At 100 km the number density is an average of three observational values

from Johnson and Narcisi. Two of the values are from Figs. 1 and 5 of the

Narcisi paper. Nighttime [NO + ] was taken from a model by Ogawa and Shimazaki

(1975) for 75-80 km and from a model by Keneshea et al. (1970) for 85-100 km.

Mid-latitude diurnal mean values for [O( 1 D)] were obtained from the

extended model of Prinn et al. (1975) and multiplied by 2 to obtain daytime

values for the height range 35-50 km. At night 0(1D) effectively dis-

appears in this region. The daytime nitrous oxide profile was determined

from the balloon and rocket data of Ehhalt et al. (1974, 1975). Their

values at 29.5, 32.0, 44.5, and 50 km were graphed, and then N20 concen-

tration values were taken at 5 km intervals from 35-50 km. Since reac-

tion 54 becomes unimportant at night because of the disappearance of

0(1D), the inclusion of the nighttime N20 profile is unnecessary. The

daytime 0 2 ( Ag) profile for the height range 50-95 km was obtained by

averaging the observational profiles in Fig. 2 of Llewellyn et al. (1973).

At night [02 ( 1A)] decreases considerably throughout the 50-95 km height

range, thus making reaction 4 unimportant in this model. For this reason
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the nighttime 02( A ) profile was not included. The daytime 02 profile

was taken from the same sources as the NO+ profile. The value at 75 km

was from Fig. 6.16. The value at 80 km is an average of values from

Figs. 6.16 and 1. At 85 km the value is from Fig. 1. For 90-95 km the

number densities are averages of values from Figs. 6.15 and 1. At 100 km,

the value is an average of values from Figs. 6.15, 1, and 5. The night-

time profile is not included since [02+ ] decreases appreciably thus making

reaction 39 unimportant. The daytime N2 profile for 90-100 km was deter-

mined by averaging Johnson's (1966) model values in Strobel et al. (1970)

and the model results of Ogawa and Shimazaki (1975). The nighttime

profile is not included since [N2+
] decreases appreciably thus making

+
reaction 34 unimportant. Finally, the daytime 0 profile for 95-100 km

was taken from Ogawa and Shimazaki's model. The nighttime profile is not

included since [0 +  decreases considerably thus making reaction 35 unnec-

essary.

Since vertical transport in the model is described by diffusion,

the appropriate eddy and molecular diffusion coefficients had to be

prescribed. The profiles that were used can be seen in Fig. 1. One of

the profiles chosen is that recommended by Hunten (1975), and the model

using it will be referred to as model AL. This K profile increases

5 2 -1
exponentially to a value of 1 x 10 cm sec at 50 km with a scale

6 2 -1
height, H , of 9.43 km, to a value of 1 x 10 cm sec at 80 km with

HK = 13 km, and then remains constant to 100 km. A modification of this

profile above 80 km, hereafter referred to as model AH, allows K to

6 2 -1
increase exponentially to 4.5 x 10 cm sec at 100 km with HK = 13.3 km.

This "high" K comes from Colegrove et al. (1966). A profile with lower
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K values in the upper stratosphere and the mesosphere was also chosen for

investigation. This profile, hereafter referred to as model BL, is a

slight alteration of a profile used by Hunten and Strobel (1974). The

6 2 -lprofile increases exponentially to a value of 1 x 106 cm sec at 80 km

(HK = 8.607 km) and then remains constant to 100 km. Again, a modifica-

tion of this profile above 80 km, hereafter referred to as model BH,

allows K to increase exponentially to 4.5 x 106 cm2  -1 at 100 km with

H = 13.3 km. The molecular diffusion coefficient, D, was approximated

by an expression obtained from Strobel et al. (1970) with a = 2.98 x 1017

-1 -1 -1/2
cm sec (OK) for nitric oxide. In the 90-100 km region the number

densities of all other odd nitrogen constituents are much less than [NO]

so that molecular diffusion of other odd nitrogen species did not have

to be considered in this model.

Since the model requires upper and lower boundary conditions for

its solution, actual observational values were chosen for those boundary

conditions. At the lower boundary (35 km) we used the average total

measured NOy (= NO + NO 2 + HNO3) from Fig. 4 of a review paper by Ridley

(1977). The value for the number density was 1.68 x 10 cm- 3 . At the

upper boundary (100 km) an average of the NO measurements of Barth (1966)

and Meira (1971) was calculated. The values were taken from Meira's

7 -3
Fig. IV-8. The number density obtained was 7.4 x 10 cm . It was

assumed that the boundary conditions would not vary diurnally. More will

be said later about this assumption.



- 20 -

3. Model Formulation

This section will deal with the formulation of the equations for the

odd nitrogen model. The odd nitrogen components we will be concerned

with are N(4 S), N(2D), NO, NO2 , and HNO3. In order to solve our one-

dimensional aeronomical problem, we need to specify a continuity equations

for i constituents

(1)

where n. is the number density or concentration of the ith constituent,

t is time, i is the flux of i, z is the altitude, and Pi and 1. are the

chemical production and loss rates per unit volume. In our case i refers

to total odd nitrogen. The vertical flux, 4i, is described by the stan-

dard mixing length approximation

ON = -K[M1] o

(2)

where K is the eddy diffusion coefficient, [M] is the atmospheric number

density, and fN is the number mixing ratio of ON. For the height range

90-100 km the effect of molecular diffusion is included

+ON( K+ Do)CM1 3

(3)

where DON is the molecular diffusion coefficient for nitric oxide, as

mentioned previously. The addition of molecular diffusion in this fashion
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is a valid approximation if the scale height of the diffusing species is

approximately equal to the scale height of the background atmosphere (see

Equation 3, Hunten and Strobel, 1974); this is the case here. With the

continuity and flux equations specified, and with the boundary conditions

provided previously, all that remains is a specification of the production

and loss rates before the numerical technique can be applied. An initial

condition is also needed, but this is no problem.

However, before discussing the production and loss terms, a few

words should be said about the interaction between chemistry and dynamics

in this model. One of the simplest ways to examine this question is to

compare the chemical and dynamical time constants for the loss and diffu-

sion, respectively, of odd nitrogen. The chemical time constant, Tc, is

governed by reaction 2 with reactions 1 4a, 14b , and 14c being important

in those regions where NO2 is a significant fraction of the total odd

nitrogen. The dynamical time constant, TK, is H2/K where H is the scale

height of the background atmosphere. After examining the time constants

in Table 2 for models AL and AH for both the daytime and nighttime, we

can make several observations. Since the dynamical time constants are

on the order of or less than the chemical time constants, transport by

eddy diffusion cannot be neglected. No diurnal variation in odd nitrogen

will be evident in the upper stratosphere and through most of the meso-

sphere since the dynamical and chemical time constants are much longer

than a day. Some diurnal variation in the upper mesosphere and lower

thermosphere can be expected since the dynamical and chemical time con-

stants are on the order of one day. Finally, because the dynamical time

constants are much smaller than the chemical ones, transport of odd
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Table 2. A comparison of chemical and dynamical time constants for

models AL and AH ("high" K profile). Time constants have

units sec.

z (kmn) T (AL)

2.4x107

1.6x107

1.0x10 7

6.5x106

3.9x106

2.4x106

1.5x106

9.0x105

5.4x105

3.1x105

3.1x105

3.2(3.0)xl05+

3.7(3.2)xl05+

4.2(3.0)xl0 5+

T (AL)* T (AL)*
-c---- -c

1.9x109

1.7x10 8

3.4x10 7

1.8x107

7.2x10 6

3.3x106

1.6x10 6

7.8x10 5

4.1x10 5

1.9x10 5

7.6x104

4.6x10 4

3.7x104

3.3x104

6.2x1010

7.0x101 0

5.9x10

6.1x10

3.2x1010

2.1x101 0

6.0x10

2.3x109

8.6x108

4.3x109

2.0x108

1.4x108

1.1x108

3.6x107

T (AH)-K-

2.4x107

1.6x10 7

1.0x107

6.5x10 6

3.9x106

2.4x106

1.5x106

9.0x10
5

5.4x105

3.1x105

2.1x105

T (AH) T (AH)
-c-- -c

1.9x109

1.7x108

3.3x10
7

1.8x10 7

6.8x106

2.9x10 6

1.2x106

4.9x10 5

2.0x10 5

1.0x105

5.9x10
4

35

40

45

50

55

60

65

70

75

80

85

90

95

100

6.2x101
0

7.0x101 0

5.9x1010

6.1x1010

3.2x101
0

2.1x101
0

6.1x109

2.5x10
9

1.5x10
9

6.4x10
9

7.8x10
8

5.2x10
8

2.1x108

3.6x10
7

Daytime values.

** Nighttime values.

Values in parentheses are H2/(K + DON)

1.5(1.5)xi0 5+ 5.0x10

1.2(1.1)x10 5+ 4.3x104

9.3(8.5)x10 4+ 3.3x104
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nitrogen at night is very important while chemical loss is insignificant.

Since the numerical method involves integrating through two differ-

ent regimes, the daytime and the nighttime, each 12 hours long, we will

likewise separate our discussion into one dealing with the daytime chem-

istry and one with the nighttime chemistry. First, we will discuss the

daytime regime, which we will divide into three separate regions: the

upper stratosphere, from 35-50 km; the mesosphere, from 50-80 km; and

the lower thermosphere, from 80-100 km. The stratopause is at 50 km and

the mesopause at 80 km. In the upper stratosphere the primary odd nitro-

gen constituents are NO and NO2 . HNO3 is included for the sake of com-

pleteness. NO and NO2 are in photochemical steady-state during the day-

time since their chemical time constants for loss are much shorter than

12 hours and much shorter than the time constants for eddy transport.

Assuming photochemical steady-state for NO2, we can write the following

relation for the interconversion of one species into another

ENOjI E P 01

(4)

where = ( io 03 +AR, oj0 M] -am,[ol)/( (4,3+A 3 [ )

Equation 4 is actually valid for the entire height range 35-100 km since

T = 111 sec for NO . HNO3 is also assumed to be in photochemical steady-c 2 3

state although the approximation is not as good since the chemical time

constant is on the order of 9 hours at 35 km and 2 hours at 50 km. The

following relation can be written
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~INNOi~,I citJOJ

(5)

where = i- e[O 1 [] / (n4.rog [o) the7 flog I a s

We can now define odd nitrogen in the following manner

[oN] [NJo]3 + [No:] + [ H 1 C]

(6)

Using equations (4) and (5) we obtain

[No] = Y [oN]

(7)

where Y = ( / (I + 4 )

We are now ready to write an expression for the production and loss

rates of odd nitrogen:

(8)

Equation (8) can be written in terms of ON by using Equations (4) and (7)
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(with kl 4  k + k + k 4 ):
14abc 14a 14b 14c

N-o-- S0 [0(')C ] - I[NE S)] Y [ON] + + , )) + 1

(9)

The only unknown that remains to be specified is [N( S)]. Since it

is in photochemical steady-state we can write (using Equation (7))

N N S)l oI + sq)( YO3 (A2+)

(10)

With Equations (9) and (10) given, the description of the odd nitrogen

chemistry for the height range 35-50 km is complete.

In the daytime mesosphere odd nitrogen consists almost entirely

of NO. NO2 and HNO3 , determined by using c and S, respectively, are very

small fractions of the total ON. The largest constituent other than NO

is ground state atomic nitrogen, N(4S), which at its closest, comes

within approximately 2.5 percent of ON (in model AL at 79 km). Therefore,

we can assume

[oN] 2t ENo1
(11)

The expression for the production and loss rates of odd nitrogen is

(using Equation (11))
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N= -2 [ N)J LONl

(12)

N( S) is assumed to be in photochemical steady-state with the longest

chemical time constant calculated to be approximately one hour (model

AL). We can write (using Equation (11))

E PM-s ] =-a, [o,?/((. [oNi .,3o2; +A.[-(,,C)] +-J.311 +,,[OH])

(13)

Equations (12) and (13) describe the odd nitrogen chemistry for the

height range 51-79 km.

In the daytime lower thermosphere odd nitrogen again consists

almost entirely of NO so that Equation (11) applies. The largest

constituent other than NO is again N(4 S) which comes, at its closest,

within approximately 10 percent of ON (in model AL at 87 km). The expres-

sion for the production and loss rates of odd nitrogen is (using Equation

(11))

O 3as [o+ ] [Nts1

(14)
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N( S) is again assumed to be in photochemical steady-state with the

longest chemical time constant calculated to be approximately two hours

(model AL). We can write (using Equation (11))

(z-J1 [till+ 'TION]J +EN(2b)3 (., INAj +41oTJ)

+A.3 + I I -A)[N0o4j[e- +[j 0+1o [N ])/ (42.0N

1,[0,l +g[0 CAo, -A 0,2o +Allom

(15)

In order to calculate [N( S)], we need an expression for atomic nitrogen

in the excited state (2D). N(2D) is in photochemical steady-state in

this region since it has extremely short chemical time constants.

Therefore, we can write

SN(1+ ,,(A) [No(5' Lle- + 1 ] [o1)/ (k o1al

(16)

Equations (14), (15), and (16) end the presentation of the daytime odd

nitrogen chemistry necessary in the formulation of the model.

In the nighttime regime the chemistry undergoes a significant change

since the reactions driven by sunlight are no longer important. Nitric
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oxide is rapidly converted to NO2 via reaction 10 up to a height of

approximately 62 km where the [NO] is reduced to about 6 percent of its

initial value in 12 hours. NO can therefore be considered in photochemi-

cal steady-state below this height, and we can write the following expres-

sion

[No] = Mts)J (3 To + ] +.AjP,, + 2 oN)), [o1

(17)

The concentration of odd nitrogen is given by

CON] £ [N0;]
(18)

since NO2 is the primary species. Nitric acid is inconsequential in this

region at night because of a lack of significant production mechanisms.

Nitrogen trioxide is expected to have a strong diurnal variation with

maximum concentrations during the night. However, the reaction of NO2

with 03 is not fast enough to produce concentrations of NO3 that are a

sizable fraction of the total odd nitrogen. Therefore, we have not inclu-

ded NO3 in the model. The concentration of N( S) is much smaller at night

in the entire height range (35-100 km) because the main source of N( 4S),

reaction 7, is no longer operating. The primary source of N( S) is now

the dissociation of molecular nitrogen by cosmic rays. N( S) is assumed

to be in photochemical steady-state with the longest time constant calcu-

lated to be approximately 2 hours (model AL). The expressions for N( 4S)
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will be presented later in this discussion.

In the height range 62-72 km, odd nitrogen is given by

[ON] [NOI + EN0
(19)

with [NO] increasing and [NO2 ] decreasing upwards. At 72 km [NO] is

reduced to 95 percent of its initial value in 12 hours by reaction 10.

Above 72 km odd nitrogen is given by

(20)

since reaction 10 is no longer an important loss mechanism for NO. One

point should be made about the limiting heights 62 and 72 km. These

values are not rigid since they are based on time constant considerations.

A criterion of approximately 5 percent was used. Slightly more conser-

vative heights were used in the actual model calculations. Finally, NO2

is in photochemical steady-state above approximately 79 km since reaction

15 is so rapid in converting NO2 to NO. The expression for NO2 is (using

Equation (20))

CNoD2 =oN] (-,k ojl +411o] [M1 Mx lol) /0,,1 o

(21)

The expressions that were used in the model for the nighttime pro-

duction and loss rates of odd nitrogen can now be presented. For the

height range 35-60 km the expression is (using Equation (18))
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o,-i,-),, =Al - 2. (,, ,) [ s'N j ON]

(22)

The N4 S) concentration is given by (using Equation (18))

EN 0sU = E, 0i +,A , , [0No 3
(_23)

For the height range 61-78 km the production and loss rates are

(24)

By using Equation (19) and recognizing that k2 is approximately equal

to kl4abc , we can write Equation (24) as

oN( - ,ON = " - C i .- Ia. t osJ ( o

[N(4S)] is given by (using Equation (19))

+ os Io,3 +A1 , CoH])

(26)

For the height range 79-100 km the production and loss rates are

(using Equation (20))

(25)
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(27)

[N( S)] is given by (using Equation (20))

tj((j = ( +et , (I-A) [N04][e- + [N(.D)] (_4I7II] ± J2 o]))/

(, [o0 +AI, Lo, + 4 [o0 + ,, [oH A Lo]))

(28)

N(2D) is in photochemical steady-state since it has extremely short

chemical time constants. Therefore, we can write

EN (DA= -4,(A) [No*J ]/(-47 10,21 + 1,+to t]+ oL)

(29)

Equations (27), (28), and (29) end the presentation of the nighttime

odd nitrogen chemistry necessary in the formulation of the model.

+014 ,,O = 17S' - '.9 'kI t4 IS N
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4. Numerical Technique and Results

This section will discuss the numerical techniques used and the

results obtained, from a numerical standpoint. In order to perform a

time integration of the continuity equation for odd nitrogen, Lorenz's

(1971) simple N-cycle scheme was used with N = 4. The time steps varied

from At = 0.1 hr to At = 0.3 hr, the choice of which appeared to depend

upon the K profile in the upper thermosphere. The fundamental time

increment is actually NAt since the predicted values were always taken

after the fourth cycle was completed. We will, however, refer to At

as our time step. Central differences were used for the finite differ-

ence equivalents of the spatial derivatives. The vertical resolution

of the model was 1 km (Az = 1 km).

In order to apply the N-cycle scheme, Equation (1) was first put

in the following form

(30)

From this point on the terms in the brackets will be referred to as the

flux convergence, conv, on the left, and the chemical production and

loss rate, chem, on the right. If cony is positive, the flux of odd

nitrogen converges; if negative, the flux diverges. If chem is positive,

there is a net production of odd nitrogen; if negative, there is a net

loss. The convergence term was written in finite difference form as

follows
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(31)

where k refers to levels in the model at 1 km intervals beginning at

35 km and ending at 100 km. The intermediate levels (k ± 1/2) lie half-

way between the levels at which values were calculated for fONO The

fluxes of odd nitrogen were calculated at these intermediate levels

with the following finite difference form

(32)

For the height range 90-100 km, K was replaced by K + DON. With the

right-hand side of Equation (30) in finite difference form, values for

this quantity were calculated at every level from 36-99 km at each time

step in the N-cycle scheme, and then were used to calculate new values

for f at every level. The f values were taken after the fourth cycle
ON cON

was completed.
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Before the time integration of Equation (30) could begin, the bound-

ary conditions at 35 and 100 km and an initial profile for fN had to be

provided. The mixing ratio equivalents of the odd nitrogen concentration

values discussed in the Input Data section were used for the boundary

conditions. The initial profile used was the mixing ratio equivalent of

the following expression

(33)

The time integration was started using daytime chemistry and was run for

a period of 12 model hours. The fN values computed at the end of that

period were then used as initial values for the nighttime integration

which proceeded for a period of 12 model hours. The f0N values at night's

end were then used as input values for the daytime integration; this

cycle was repeated until equilibrium was attained. No discernible nume-

rical problems were encountered in switching from one regime to another.

This behavior is consistent with the dynamical and chemical time con-

stants exhibited in Table 2 which imply that no large diurnal variation

in odd nitrogen is to be expected throughout the entire height range of

the model.

The following criterion was used to determine if an equilibrium

state had been achieved. Since the dynamical and chemical time con-

stants are largest in the upper stratosphere and are much greater than

a day, the time necessary to reach equilibrium for the entire model will

be determined by the chemistry and dynamics in the upper stratosphere.
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Here an actual steady-state solution is expected (and was obtained);

therefore, the sum of the average chemistry and average flux convergence

terms should be equal to zero. The method was to compute (at every point

from 36-50 km) a ratio of the average of the daytime and nighttime flux

convergences to the average of the daytime and nighttime chemical produc-

tion and loss terms. The absolute value of this ratio should be equal to

1 at steady-state. However, since we are dealing with a numerical model,

this ratio will be close to 1. In the upper mesosphere and lower thermo-

sphere this ratio should be significantly different from 1 since a pseudo

steady-state solution is expected. These statements are confirmed by the

equilibrium results shown in Table 3 for model AH and Table 4 for model

AL. Illustrated are the daytime and nighttime flux convergences and

chemical production and loss rates along with the ratios calculated using

these terms. The chemistry and convergence values were taken at the end

of the daytime and nighttime integrations. It is evident that in the

upper stratosphere and in most of the mesosphere the absolute value of

the ratio is close to 1, while in the upper mesosphere and lower thermo-

sphere it is appreciably greater than 1. After the absolute values of

the ratios in the upper stratosphere were calculated, the absolute values

of the differences between these ratios and 1 were calculated and com-

pared with a set value which we shall call crit. If the differences

were less than or equal to crit for the entire height range, then

equilibrium was attained. This condition had to be met for a period of

5 consecutive days in order for the model to stop integrating. A further

check was performed by determining if the diurnally integrated flux into

the top of the model was balanced by the sum of the diurnally and
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Table 3. A comparison of model AH (A = 0.5) daytime and nighttime

flux convergences and chemical production and loss rates. The

absolute value of the ratio of the average of the convergences

to the average of the chemical rates is also presented. Rates

-3 -1
and convergences have units cm sec .

NIGHTTIME

chem cony

x 101

x 101

x 100

x 100

x 100

x 100

x 100

x 100

x 100

x 101

x 101

x 101

x 101

x 101

x 102

x 10 2
x 102

x 102

x 102

x 102

x 10
x 103

-3.07 x 101

-1.50 x 101

-3.98 x 100

1.97 x 100

3.93 x 100

4.02 x 100

4.44 x 100

4.62 x 100

4.80 x 100

5.29 x 100

6.47 x 100

9.27 x 100

1.56 x 101

2.81 x 101

5.24 x 101

1.00 x 102

1.88 x 102

3.27 x 102

4.51 x 102

4.14 x 102

2.36 x 102

4.80 x 101

chem

7.54

4.92

3.29

2.24

1.52

1.04

7.44

4.73

3.27

2.34

1.62

9.27

2.74

-1.77

-1.59

-2.11

-1.89

-5.25

-8.99

-1.87

-4.56

-1.36

Iratio

-I
x 101

x 10-1

10-1

x 101

x 10
-1

x 10-1

x 10
-2

x lo-2

x 10

x 10
- 2

x -2

x 10--2

x 10-3

x 10-3

x 10
- 3

x 10
- 3

x 10
- 2

x 10-2

x 10-2
x 10

- 1

x 10-1

x 100--i

0.982

0.979

0.986

0.937

1.001

0.999

1.001

1.005

1.011

1.014

1.023

1.039

1.067

1.106

1.151

1.210

1.244

1.278

1.290

1.215

1.093

1.013

DAYTIME

z(km) cony

-3.42

-1.50

-3.92

1.98

3.93

4.15

4.41

4.58

4.72

5.09

5.99

7.97

1.26

2.13

3.66

5.90

1.11

1.80

2.78

4.86

8.57

1.44

x 101

x 101

x 100

x 100

x 100

x 100

x 100

x 100

x 100

x l00

x 100

x 100

x 101

x 101

x 101

x 101

x 102

x 102

x 102x 102

x 102

x 103

6.54

3.01

7.68

-4.44

-8.01

-8.29

-8.92

-9.20

-9.45

-1.02

-1.22

-1.66

-2.64

-4.47

-7.73

-1.32

-2.40

-3.96

-5.65

-7.41

-9.99

-1.46
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Table 4. A comparison of model AL (A = 0.5) daytime and nighttime flux

convergences and chemical production and loss rates. The abso-

lute value of the ratio of the average of the convergences to

the average of the chemical rates is also presented. Rates and

-3 -1
convergences have units cm sec .

DAYTIME NIGHTTIME

z(km) cony chem cony chem Iratiol

36 -3.46 x 101 6.54 x 101 -3.12 x 101 7.54 x 10 - 1 0.994

39 -1.53 x 101 3.01 x 101 -1.52 x 101 4.92 x 10-1 0.996

42 -4.04 x 10 7.78 x 100 -4.01 x 100 3.29 x 10 - 1 0.993

45 2.00 x 100 -4.22 x 100 1.98 x 100 2.24 x 10-1 0.998

48 3.81 x 100 -7.68 x 100 3.74 x 100 1.52 x 10 - 1 1.003

51 3.92 x 100 -7.83 x 100 3.83 x 100 1.04 x 10 - 1 1.004

54 4.05 x 100 -8.14 x 100 4.04 x 100 7.45 x 10- 2  1.003

57 3.97 x 100 -7.95 x 100 3.98 x 100 4.74 x 10- 2  1.005

60 3.73 x 100 -7.47 x 100 3.76 x 10 3.28 x 10- 2  1.008

63 3.49 x 100 -6.99 x 100 3.53 x 100 2.38 x 10- 2  1.009

66 3.32 x 100 -6.64 x 100 3.40 x 100 1.68 x 10- 2  1.015

69 3.32 x 100 -6.70 x 100 3.52 x 100 1.05 x 10- 2  1.023

72 3.74 x 100 -7.60 x 100 4.13 x 100 4.97 x 10- 3  1.035

75 4.57 x 100 -9.23 x 100 5.14 x 100 6.03 x 10 - 4  1.052

78 6.60 x 100 -1.19 x 101 6.04 x 100 2.21 x 10 1.060

81 3.38 x 10 -1.12 x 101 9.46 x 100 -1.52 x 10- 4  1.146

84 1.06 x 101 -2.74 x 101 2.29 x 101 -1.33 x 10- 2  1.219

87 3.67 x 101 -7.33 x 101 5.36 x 101 -4.32 x 10- 2  1.231

90 7.36 x 101 -1.55 x 102 1.20 x 102 -8.32 x 10- 2  1.252

93 1.31 x 102 -2.87 x 102 2.41 x 102 -1.81 x 10 - 1 1.293

96 3.62 x 102 -5.43 x 102 2.94 x 102 -4.52 x 10 - 1 1.206

99 1.19 x 103 -1.24 x 103 9.00 x 101 -1.36 x 100 1.028
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spatially integrated chemical production and loss in the model and the

diurnally integrated flux out of the bottom of the model. In other

words,

(33)

This check was applied to the final day of a model run.

The results obtained will now be discussed from the standpoint

of the equilibrium criteria chosen. Three runs were made with the

model AL K profile with parameter A being varied from 0.0 to 1.0. For

A = 0.5 the model reached equilibrium in 708 days with crit = .02 and

At = 0.3 hr. A crit value of .01 did not allow the model to reach

equilibrium. Actual computer execution time (not including input-

output time) was 0.58 min. The left- and right-hand sides of Equation

(33) came within 1.56 percent of each other. The other two runs were

similar. Three runs were also made with the model AH K profile with A

varied from 0.0 to 1.0. For A = 0.5 the model reached equilibrium in

573 days with crit = .08 and At = 0.1 hr. A crit value of .05 did not

allow the model to reach equilibrium. Execution time was 1.42 min, and

the balance in Equation (33) was within 1.15 percent. The other two

runs were again similar. Model BL was run with A = 0.5. It reached

equilibrium in 1390 days with crit = .04 and At = 0.3 hr. A crit value

of .02 did not allow equilibrium to be reached. Execution time was
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1.12 min, and the balance in Equation (33) was within 1.56 percent.

Model BH (A = 0.5) presented a problem. With a crit value of less than

approximately .95, the model would not stop integrating. With a value

greater than that, the model would stop in a very short period of time,

but it would not be in equilibrium. In order to obtain some results,

the model was run for 738 days (execution time was 1.76 min) with

crit = .01 and At = 0.1 hr. Even though the model was integrated for

approximately half the number of days that model BL was integrated, the

daytime stratospheric [ON] values from both models differed by only 1-5

percent with the differences increasing upward from the bottom of the

model. Also, the balance in Equation (33) was within 0.98 percent. The

values computed for the ratio of the convergence to the chemical produc-

tion and loss were examined to determine why the crit value had to be

set so high in order to stop the model. The ratios ranged from 1.003 to

2.52 at 43 km. This high value occurred at a point in the daytime regime

where conv and chem change signs in going from 43-44 km. After checking

the results of the other runs, we found that the highest or lowest value

for this ratio in the stratosphere occurred at or near this area of sign

change which remained the same in all the models. Therefore, it is not

surprising that the values for the ratios did not behave smoothly in this

region. Finally, the values chosen for crit were not very critical. In

other words, a point was reached where lower values for crit would not

result in significantly different odd nitrogen concentrations in the

upper stratosphere.

We will conclude this section by discussing the time steps chosen

for integrating the model. An attempt was made to select the largest
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time step possible in order to minimize the computer time needed and to

insure that an equilibrium state could be attained in a reasonable amount

of running time. Therefore, several time steps were tried in each model

in order to achieve this goal. For model AH a time step of 0.1 hr was

found to meet the criteria while a time step of 0.15 hr resulted in the

model becoming unstable. For model AL a At of 0.3 hr was adequate with

a time step of 0.4 hr resulting in instability. Since the only differ-

ence in the two models.is the eddy diffusion coefficient in the lower

thermosphere, it was suspected that a larger K necessitated a smaller

time step. This was confirmed by running a model in which the largest K

5 2 -1
was 3 x 10 cm sec in the lower thermosphere. A time step of 0.6 hr

was suitable while a time step of 1 hr resulted in instability. It

appears that the numerical scheme requires relatively small time steps

to resolve relatively large fluxes of odd nitrogen.
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5. Chemical and Dynamical Results

In this section we will illustrate the results of the model and

augment some of the previous discussions in order to improve our under-

standing of the odd nitrogen chemistry and dynamics. The results of all

the runs can be found in Appendix B in tabular form. If the reader

wishes to compare these results with the results of other one-dimensional

odd nitrogen models, the following sources can be consulted: Norton and

Barth (1970), Strobel et al. (1970), Strobel (1971a, 1971b, 1972a, 1972b),

Brasseur and Nicolet (1973), McConnell and McElroy (1973), Oran et al.

(1975), and Ogawa and Shimazaki (1975).

The results for [ON] for the model AL and model AH K profiles with

A = 0.5 can be seen in Figure 2. The daytime and nighttime profiles were

taken at the end of the daytime and nighttime integrations. The average

profile was calculated by averaging the daytime and nighttime profiles.

Such an average profile will be used to portray the results of different

eddy diffusion coefficient models in many of the remaining illustrations.

We will assume that our average [ON] profile in the upper mesosphere and

lower thermosphere is representative not only of the diurnally averaged

ON concentration profile but also of the daytime and nighttime average

ON concentration profiles. We can justify this assumption by referring

to Figures 3 and 4 which present the ON concentrations as a function of

time for models AL and AH. These values were taken from the last two

days of each model; the values at time 0 hr are the initial values for

the daytime integration. It is clear from these diagrams that the day-

time and nighttime concentrations are quite symmetric and decrease and
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increase,respectively, exponentially, except for the model AH concentra-

tions at 95 km which are somewhat asymmetric and non-exponential. Since

the concentrations decrease, at the most, by approximately 60 percent, a

linear average of the initial and final daytime concentrations will be a

very good approximation for the average daytime ON concentration and also

for the average nighttime ON concentration because of symmetry. Since

the averages will be the same, we can call the value the diurnally aver-

aged ON concentration. The approximation is not as good in the 95 km

region of model AH, but it can still be used to give a fairly good

diurnally averaged ON concentration.

We can now return to a discussion of the results in Figure 2. As

we inferred from time constant considerations, there is no diurnal vari-

ation in [ON] in the upper stratosphere and in most of the mesosphere

so that a true steady-state has been achieved. In the upper mesosphere

and lower thermosphere a diurnal variation was expected and is evident,

albeit a small one. Thus, a pseudo steady-state has been attained, as

is illustrated in the aforementioned Figures 3 and 4. This pseudo

steady-state can be explained by looking at some simple chemical-

dynamical arguments. Neglecting eddy transport for a moment, we can

describe the ON chemistry in most of the lower thermosphere by the fol-

lowing approximations

At(34)

[N~s] c
(35)
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Combining the two equations, we arrive at the following simple differen-

tial equation

cJ-7oNh]O

(36)

which can be solved for [ON] to yield

(37)

where [ON]o is the initial concentration of ON in the daytime. Equation

(37) will predict the decay of [ON] during the daytime at some chosen

7 -3
height. For example, for model AH at 90 km, [ON]o = 4.65 x 10 cm and

-6 -1
J7 = 9.60 x 10 sec . For t = 12 hr, the period of our daytime inte-

-3
gration, we obtain [ON] = 2.03 x 10 cm whereas the actual value is

7 -3 7 -3
2.90 x 10 cm . For model AL at 90 km, [ON] = 1.18 x 10 cm . For

o

6 -3
t = 12 hr, we obtain [ON] = 5.15 x 10 cm whereas the actual value is

6 -3
7.76 x 10 cm . The odd nitrogen concentration is not allowed to decay

to the calculated values because of eddy transport which has a time con-

stant on the order of a day. There is an influx of odd nitrogen from

above which replenishes some of the odd nitrogen indirectly lost through

photodissociation. At night the chemical production and loss become

insignificant and transport dominates (see Tables 3 and 4). The ON is

increased, evidently exponentially, by a large flux of ON from above

until it attains its initial daytime value. Thus the pseudo steady-state

is explained in terms of chemical-dynamical considerations.
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After looking at the model results in Figure 2, we can conclude

that the choice of the eddy diffusion coefficient profile in the lower

thermosphere is very important in determining the equilibrium [ON] profile

in the lower thermosphere and upper mesosphere. In other words, trans-

port of odd nitrogen by eddy diffusion is a vital factor in this region

and must be examined. In Figure 5 we have depicted the average ON mixing

ratio profiles for models AL and AH. We can infer from these profiles

that there is a strong downward flux of odd nitrogen in the lower therm-

osphere, a weaker downward flux in the upper mesosphere, and a small

upward flux in most of the upper stratosphere and in the lower mesosphere.

Points of zero flux occur between 35 and 40 km and between 60 and 70 km.

These inferences are confirmed by the ON fluxes shown in Figures 6 and 7

for models AL and AH. The average fluxes were computed by averaging

the fluxes obtained at the end of the daytime and nighttime integrations.

In both models the nighttime fluxes are greater than the daytime fluxes

except at the very top of the model where the converse is true. It is

clear that a strong downward flux of ON exists in the lower thermosphere

while a weaker downward flux is present in the upper mesosphere. There

is also a small upward flux of odd nitrogen from the upper stratosphere

into the lower mesosphere, and a small downward flux at the very.bottom

of both models. Points of zero flux can be found in both models at

approximately 37 km, and at approximately 63 km in model AH and 67 km in

model AL. These points exist because there are no strong sources or

sinks of ON immediately above or below these levels. Finally, the model

AH fluxes are much stronger than the model AL fluxes in the lower thermo-

sphere and upper mesosphere.
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The sources of odd nitrogen for these large fluxes into the top of

the model are the large production rates of N(2D) above 100 km via reac-

tions 31, 32, and 34, and predissociation of N2 in the absorption bands

between 800 and 1000 X. The N(2D) then reacts with 02 (reaction 9) to pro-

8 -3
duce NO concentrations of approximately 1 x 10 cm in the 100-110 km

region (Meira, 1971; Ogawa and Shimazaki, 1975). A calculation of the N(2D)

production rates and the NO production rate from reaction 9 can be found in

Strobel et al. (1975) for the region above 100 km. Furthermore, an estimate

of the flux into the top of the model can be made by using Meira's (1971)

6 2 -1
NO observations. With a K of 4.5 x 10 cm sec , the NO flux at 100 km is

9 -2 -1 6 2 -1
-1.0 x 10 cm sec ; with K = 1.0 x 10 cm sec , the NO flux at 100 km

8 -2 -1 5 2 -1
is -2.9 x 10 cm sec . The D value is 4.0 x 10 cm sec . These

NO

fluxes are very similar to the fluxes obtained from the model AL and AH

calculations.

In order to understand the interaction between chemistry and dynamics

in the models and to explain the shape of the profiles in Figure 2, we will

refer to the previously mentioned flux convergences and chemical production

and loss rates for models AH and AL in Tables 3 and 4, respectively. During

the daytime in both models, there is a significant loss of odd nitrogen via

reaction 2 throughout almost the entire height range of the model, except

at the bottom where there is a small net production of ON via reaction 54.

The loss is strongest in the lower thermosphere. The primary source of atom-

ic nitrogen for this loss is photodissociation of nitric oxide, reaction 7.

At equilibrium this loss is partly balanced by a flux convergence of odd ni-

trogen throughout almost the entire height range of the model, except at the

bottom where the flux diverges. As we would expect, the convergence is stron-
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gest in the lower thermosphere. At night the chemistry changes radically.

Reaction 7 no longer operates; the sources of N( S) are now dissociation

of N2 by cosmic rays (production rate r59) in the upper stratosphere,

mesosphere, and the bottom of the lower thermosphere, and dissociative

recombination of NO , reaction 32, in the lower thermosphere. Reaction

54 is not a factor. However, these sources are very small and result

in very small chemical production and loss rates in the entire height

range of the model. Transport now predominates with the flux convergence

providing the remainder of the odd nitrogen lost during the daytime. At

the bottom of the model the flux diverges in order to balance the remain-

ing odd nitrogen produced during the daytime. Thus, the shape of the

individual ON density profiles in Figure 2 is essentially a consequence

of nitric oxide being photodissociated to produce N( S) which recombines

with NO to roduce molecular nitrogen; the large daytime and nighttime

ON fluxes into the top of the model mitigate this loss somewhat. The

difference between the model AL and model AH equilibrium density profiles

in the lower thermopshere and upper mesosphere can be explained in terms

of the large difference in transport times between the two models. In

model AH transport by eddy diffusion is much faster than in model AL,

thus not allowing the chemistry to reduce the concentration of ON as

much as in model AL by the time equilibrium is reached. In model AL the

chemistry is a much larger factor because the transport of ON is not as

fast; thus the ON concentration is reduced further by the time equili-

brium is attained. Although transport by molecular diffusion is included

from 90-100 km, its effect is small when compared to eddy transport.



NIGHTTIME NUMBER DENSITY (cm- 3 )

101 102

3 -3103  104

DAYTIME NUMBER DENSITY (cm- 3

Figure 8

H

H7

Cz:

10 10
6



NIGHTTIME NUMBER DENSITY (cm-3 )

10-1 100 101 102 103 10

100 -- " I
2"/

N( D)-Night r.

N( D)-Day _.- - I

90 ---- - -
,1

80-

- N( S)-Night N( S)-Day

70 -

Figure 9



- 55 -

Since atomic nitrogen in the ( S) state plays an important role in

the chemical loss reaction for odd nitrogen, we have illustrated the

daytime and nighttime [N(4 S)] profiles for models AL and AH and for

various values of parameter A in Figures 8 and 9. Some [N(2D)] profiles,

which are the same for both models, are also shown in Figure 9. All of

the profiles were calculated by assuming photochemical steady-state. We

will now discuss the [N(4 S)] profiles from the standpoint of determining

which reactions are important in calculating these profiles. We will

refer to the expressions for these reactions that can be found in the

Model Formulation section. We will also discuss the importance of the

reactions which are included in the chemical production and loss expres-

sions for odd nitrogen. We will refer to the model AL profile (with

A = 0.5) although the comments will be just as valid for the model AH

profile except for those reactions involving [ON] which are even more

important in model AH since the equilibrium ON densities are larger in

the upper mesosphere and lower thermosphere. The effects of variations

in parameter A will be discussed later.

In the daytime upper stratosphere Equations (9) and (10) were used

to describe the odd nitrogen chemistry. In Equation (10) for [N( S)],

reaction 7 is an important source of N( S) while production rate'r59

is a very small source and can be neglected. As far as loss processes

are concerned, reactions 3 and 5 are important while reactions 2 and 14

can be neglected. In Equation (9), the expression for chem, reaction 54

is very important in the lower part of the upper stratosphere while reac-

tion 2 is very important in the upper part. Production rate r5 9 is rela-

tively unimportant but was included since chem undergoes a sign change in
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this region. Reactions 14a, 14b, and 14c are not important and can be

neglected. In the daytime mesosphere Equations (12) and (13) describe

the ON chemistry. Reaction 2 in Equation (12) is obviously important

since it is the primary loss process for ON in the mesosphere. There are

no important sources of ON. In Equation (13) for [N( S)], reaction 7 is

the only important source of N( S). As far as loss processes are con-

cerned, reactions 2, 3, and 5 are significant in the entire mesosphere

with reaction2 becoming more important in the upper mesosphere along with

reaction 16. Reaction 4 can be neglected. In the daytime lower thermo-

sphere Equations (14) and (15) describe the ON chemistry. In Equation

(14), the expression for chem, production rate r3 1 and reactions 1 and

34 are small sources of ON while reaction 35 can be omitted. Reaction 2

predominates in this region. In Equation 15 for [N( S)], reaction 7 is

the most important source of N( S) while reactions 1, 20, and 32, and

production rate r3 1 are small sources. Reactions 17 and 35 can be neglec-

ted. With regard to loss processes, the following reactions vary in their

degree of significance depending on the altitude: 3, 5, and 16. Reac-

tion 2 is important throughout the entire region. Reactions 4, 25, and

39 can be omitted.

At night the odd nitrogen chemistry undergoes a significant change,

as was discussed previously. We can see in Figures 8 and 9 that the

nighttime N(4S) densities are appreciably less than the daytime densities

throughout almost the entire height range of the model. For the height

range 35-60 km Equations (22) and (23) describe the ON chemistry. In

Equation (22) production rate r5 9 is very important while reactions 14a,

14b, and 14c are relatively unimportant. In Equation (23) for [N(4S)],
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production rate r5 9 is the only important source of N( S) while reactions

3 and 5 are significant loss processes. Reaction 14 is a relatively

unimportant loss process. For the height range 61-78 km Equations (25)

and (26) describe the odd nitrogen chemistry. In Equation (25) r5 9 is

still an important source of ON while reaction 2 becomes more significant

with increasing altitude. In Equation (26) for [N(4S)], production rate

r59 is an important source of N( S) while reaction 32 can be neglected.

As far as loss processes are concerned, reactions 3 and 5 are significant;

reaction 2 becomes more important with increasing altitude, and reaction

16 is important in the upper part of this region. For the height range

79-100 km Equations (27) and (28) describe the odd nitrogen chemistry.

In Equation (27) the production rate r5 9 disappears by 85 km while reac-

tion 2 is very important throughout the entire height range. In Equation

(28) for [N( 4 S)], reaction 32 is a very important source of N( 4S) while

reactions 17 and 20 are relatively unimportant unless A = 1.0. Production

rate r5 9 disappears by 85 km. With regard to loss processes, reaction 16

is only important up to approximately 85km; reactions 3 and 5 are rela-

tively unimportant. Reaction 2 is very important while reaction 25 can

be neglected. A brief comment should be made about the dip in [N( 4S)]

around 80 km. This dip is the result of an increase and then a decrease

in the nighttime OH concentrations around 80 km.

We can now discuss the effects of variations in parameter A on the

odd nitrogen and atomic nitrogen density profiles. Figure 10 depicts

the average equilibrium odd nitrogen density profiles obtained by varying

A from 0.0 to 1.0 in models AL and AH. If A = 0.0 in reaction 32, all

the atomic nitrogen produced is in the ( S) ground state; if A = 1.0,
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all the atomic nitrogen is in the (2D) excited state. For model AH changes

in A do not alter appreciably the average [ON] profiles. The effect upon

the atomic nitrogen density profiles can be seen in Figure 9. The daytime

[N(4 S)] profile is affected slightly from approximately 90-100 km. This small

change, however, does affect, albeit slightly, the ON density profiles all

the way down to the upper mesosphere. The reason for the small change in day-

time [N( S)] is that reaction 32 only provides a small source of N( 4S) while

reaction 7 is the major source, especially in model AH since the ON concen-

trations are much higher than those in model AL in the lower thermosphere.

Nighttime [N( S)] shows a very large change since reaction 32 is the major

source of N( S). If A = 0.0, [N(4 S)] is maximum; if A = 1.0,[N( 4S)] is mini-

mum. The same behavior is evident during the daytime. However, the nighttime

chemistry does not affect the [ON] profiles since transport is the predomi-

nating factor at night. For model AL changes in A result in significantly

larger changes in the [ON] profiles. The effect upon [N( S)] can be seen in

Figure 8. Greater changes are evident in the daytime [N(4S)I, and these re-

sult in changes in the [ON] profiles all the way down to the upper meso-

sphere. In the upper part of the lower thermosphere, if A = 0.0, [N(4S)] is

maximum; if A = 1.0, [N( S)] is minimum. The same is true during the night-

time. However, the opposite occurs for daytime [N(4S)] in the lower part of

the lower thermosphere and in the upper mesosphere although the change is ve-

ry small. This behavior is the result of the ON density change affecting

reactions 2 and 7 in the expression for [N(4S)]. The reason for the larger

change in the [ON] profiles in model AL is that chemistry is a more

important factor than in model AH because eddy transport is not as fast.

In both models if A = 0.0, more N(4S) is available at any particular

moment for recombination with NO thus decreasing the ON concentration.
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Since reaction 32 has its largest impact in the upper part of the lower

thermosphere, smaller ON concentrations probably decrease the amount of

ON available for transport into the rest of the lower thermosphere and

upper mesosphere, thereby decreasing the ON concentrations in those

regions. If A = 1.0, the opposite occurs. These effects can be seen in

Figure 10. In this study we decided to use A = 0.5 as a representative

value for parameter A since the correct ratio of N(4 S) to N(2D) produc-

tion is not known. It is also evident from this discussion that large

changes in A will not affect the results greatly.

Having presented the important results of models AL and AH, we can

now briefly compare these results with actual measurements. In Figure 11

we have illustrated the average equilibrium odd nitrogen density profiles

for models AL and AH along with nitric oxide denisty profiles calculated

from rocket measurements of the dayglow NO emission rate in the y(1,0)

band by Meira (1971) and by Barth (1966). In the region of comparison

above approximately 70 km, the average odd nitrogen density profiles are

equivalent to average nitric oxide density profiles since odd nitrogen

is almost entirely in the form of nitric oxide in this region during both

the daytime and nighttime. It is obvious that the comparison is not very

good except for the model AH profile above approximately 80 km. -However,

it is mentioned in Strobel (1972b) that Meira's data are not really sen-

sitive to mesospheric NO because the major contribution to the y(1,0)

band emission comes from NO above 95 km. Also, Meira's results are not

easily reconciled with current models of D-region chemistry since they

lead to electron densities approximately a factor of 10 larger than

observed electron densities. In our model we have used observed daytime
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electron densities. This is recommended by Strobel (1972b) who argues

for reduced NO concentrations in the mesosphere similar to those obtained

in our model AL. Our results are in good agreement with the results

obtained by Strobel (1972b) and by Ogawa and Shimazaki (1975).

At this point a few comments can be made about the assumption that

the boundary conditions would not vary diurnally. At the lower boundary

this is a valid assumption since no diurnal variation in odd nitrogen is

observed in the upper stratosphere because of the long chemical and

dynamical time constants. At the upper boundary the assumption is prob-

ably not as good because of the small diurnal variation obtained in the

lower thermosphere. However, nighttime observations of NO were not

available. We will assume that this approximation is reasonably good

since the diurnal variations in the lower thermosphere are relatively

small.

The model was also run with a smaller K profile in the upper strato-

sphere and mesosphere in order to see what effect this profile would have

on the ON concentration profile. Two variations of this smaller K pro-

file were investigated: model BL and model BH (see Input Data section

for discussion of profiles). The results can be seen in Figures 12 and

13 which compare the average equilibrium odd nitrogen density profiles

obtained from the previous models with the density profiles obtained by

using the lower K profile. The old and new K profiles are equivalent in

the lower thermosphere. In Figure 12 the results of models AL and BL

are compared. The model BL [ON] profile is slightly higher in the lower

part of the upper stratosphere and is somewhat lower in the upper part of

the stratosphere and in the mesosphere than the model AL [ON] profile.
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The same is true for the model BH [ON] profile versus the model AH [ON]

profile in Figure 13. It would appear that lower K values in the upper

stratosphere and in the mesosphere do not alter substantially the equil-

ibrium average odd nitrogen density profiles. Chemistry appears to be a

greater factor in models BL and BH than in models AL and AH since trans-

port by eddy diffusion is not as fast. Consequently, where changes be-

tween the profiles are evident, the chemical loss process reduces the

equilibrium ON concentrations in the upper part of the profile, and the

chemical production process increases the equilibrium ON concentrations

in the lower part of the profile. In the lower thermosphere there is no

difference between the old and new [ON] profiles. One can therefore con-

clude that changes in mesospheric and upper stratospheric K values will

probably have no effect on [ON] profiles in the lower thermosphere.

We have also compared the average vertical fluxes of odd nitrogen

for models AH and BH in Figure 14. It is evident that the fluxes are

similar in magnitude and direction. The fluxes in model BH in the upper

stratosphere and in the mesosphere are somewhat lower than the fluxes

in model AH. A comparison of the model BL and AL average fluxes will

give similar results. Finally, the points of zero flux for model BL

occur at approximately 38 and 65 km; for model BH at approximately 38

and 62 km.

We will conclude this section by depicting in Figure 15 a number

of different odd nitrogen species during the daytime and nighttime for

models AH and BH. Most of the relevant chemistry for this illustration

was discussed in the Model Formulation section. Many of the profiles

were calculated by assuming photochemical steady-state. The daytime and
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nighttime profiles were determined by using values at the end of the

daytime and nighttime integrations. This point is relevant in the upper

mesosphere and the lower thermosphere where a diurnal variation exists.

It is evident that there is very little difference between the density

profiles obtained in the upper stratosphere and lower mesosphere with

the model AH and BH K profiles, as would be expected from the previous

discussion. It should be noted that the daytime NO 2 density at 35 km

is approximately equal to the daytime NO density at 35 km but falls off

very rapidly until it is only a small fraction of the daytime NO density

at the stratopause.
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6. Summary

We have demonstrated a new method for solving a one-dimensional

chemical-dynamical model for odd nitrogen. The application of the

Lorenz N-cycle scheme coupled with the use of average daytime and night-

time input data results in a steady-state solution in the upper strato-

sphere and lower mesosphere and a pseudo steady-state solution in the

upper mesosphere and lower thermosphere. The odd nitrogen density

profiles obtained from this model should be more physically realistic

than those from a model which utilizes diurnally averaged data. This

method could be applied to other chemical-dynamical systems to simulate

their processes as realistically as possible without having to solve a

completely time-dependent system.

We should also mention some of the more important chemical and

dynamical results. The choice of the eddy diffusion coefficient profile

in the lower thermosphere is very important in determining the equili-

brium [ON] profile in the lower thermosphere and upper mesosphere. How-

ever, changing the K profile in the lower thermosphere appears to have

no effect on [ON] in the upper stratosphere and a very small effect on

[ON] in the lower mesosphere. Changing mesospheric and upper strato-

spheric K values appears to have a small effect on [ON] in those regions

and no effect on [ON] in the lower thermosphere. There exists a strong

downward flux of odd nitrogen into the top of the model and in the

lower thermosphere; at the stratopause there is a small upward flux of

odd nitrogen. As far as chemistry is concerned, changing the fraction

of N(4 S) produced from the dissociative recombination of NO
+ does not
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affect the equilibrium [ON] profiles greatly; a slightly larger effect

is noticeable when a smaller K profile is used in the lower thermosphere.
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APPENDIX A

Profiles of Input Data

All of the input concentration profiles (units cm 3 ) along with

-3 -1
profiles for production rates r3 1 and r5 9 (units cm sec ), photodis-

-i
sociation rates J1, J7, and J58 (units sec- ), and temperature T (units

OK) are included in this appendix. The notation used to represent powers

of ten is the following: value±x = value x 10 x . Nighttime concentrations

are identified by the subscript "n".

z(km) T N2 [ [0] [M] [OH]

35 240.3 .1380+18 .3700+17 .2400+9 .1750+18 .4000+7
36 242.3 .1189+18 .3187+17 .3429+9 .1508+18 .4060+7

37 244.4 .1027+18 .2749+17 .4817+9 .1301+18 .4120+7

38 246.4 .8871+17 .2375+17 .6650+9 .1125+18 .4180+7

39 248.5 .7675+17 .2055+17 .9017+9 .9730+17 .4240+7

40 250.5 .6650+17 .1780+17 .1200+10 .8430+17 .4300+7

41 252.6 .5769+17 .1544+17 .1566+10 .7313+17 .4360+7

42 254.6 .5011+17 .1341+17 .2004+10 .6352+17 .4420+7

43 256.7 .4068+17 .1090+17 .2512+10 .5528+17 .4480+7
44 258.7 .3797+17 .1017+17 .3082+10 .4814+17 .4540+7

45 260.8 .3310+17 .8870+16 .3700+10 .4197+17 .4600+7

46 262.8 .2888+17 .7739+16 .4297+10 .3662+17 .4560+7

47 264.9 .2522+17 .6759+16 .4888+10 .3198+17 .4520+7

48 266.9 .2196+17 .5885+16 .5461+10 .2784+17 .4480+7
49 269.0 .1923+17 .5155+16 .6000+10 .2439+17 .4440+7
50 271.0 .1690+17 .4530+16 .6500+10 .2143+17 .4400+7
51 268.2 .1499+17 .4018+16 .7012+10 .1901+17 .4590+7
52 265.5 .1333+17 .3574+16 .7472+10 .1690+17 .4767+7

53 262.7 .1187+17 .3184+16 .7865+10 .1506+17 .4929+7

54 259.9 .1058+17 .2839+16 .8178+10 .1342+17 .5074+7

55 257.2 .9430+16 .2530+16 .8400+10 .1196+17 .5200+7

56 254.4 .8360+16 .2243+16 .7984+10 .1060+17 .5306+7

57 251.6 .7402+16 .1987+16 .7586+10 .9389+16 .5389+7

58 248.8 .6548+16 .1758+16 .7207+10 .8306+16 .5450+7

59 246.1 .5783+16 .1553+16 .6845+10 .7336+16 .5487+7

60 243.3. .5100+16 .1370+16 .6500+10 .6470+16 .5500+7
61 240.6 .4490+16 .1206+16 .6171+10 .5697+16 .5219+7
62 238.0 .3948+16 .1060+16 .5856+10 .5008+16 .4960+7
63 235.3 .3466+16 .9307+15 .5557+10 .4396+16 .4722+7

64 232.6 .3038+16 .8158+15 .5272+10 .3854+16 .4502+7
65 230.0 .2260+16 .7140+15 .5000+10 .3374+16 .4300+7

66 227.3 .2326+16 .6240+15 .4767+10 .2950+16 .4113+7

67 224.6 .2030+16 .5447+15 .4552+10 .2575+16 .3941+7
68 221.9 .1771+16 .4747+15 .4353+10 .2246+16 .3782+7



-- 72 -

z(km)

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

z (km)

90
91
92
93
94
95
96
97
98
99

100

T

219.3
216.6
213.5
210.5
207.4
204.4
201.3
198.2
195.2
192.1
189.1
186.0
186.0
186.0
186.0
185.9
185.9
185.9
185.9
185.9
185.8
185.8
188.4
190.9
193.5
195.9
198.2
200.4
202.4
204.4
206.3
208.1

.5400-1
i7645-1
.1087+0
.1551+0
.2224+0
.3200+0
.4624+0
.6709+0
.9774+0
.1430+1
.2100+1

.1542+16
.1340+16
.1162+16
.1007+16
.8708+15
.7514+15
.6470+15
.5557+15
.4778+15
.4089+15
.3486+15
.2960+15
.2488+15
.2084+15
.1741+15
.1452+15
.1210+15
.1012+15
.8469+14
.7087+14
.5931+14
.4965+14
.4133+14
.3413+14
.2829+14
.2347+14
.1950+14
.1630+14
.1367+14
.1149+14
.9681+13
.8180+13

.1000+0
.2431+0
.5480+0
.1146+1
.2223+1
.4000+1

.4131+15
.3590+15
.3115+15
.2702+15
.2338+15
.2019+15
.1740+15
.1495+15
.1285+15
.1099+15
.9365+14
.7950+14
.6683+14
.5598+14
.4677+14
.3900+14
.3250+14
.2718+14
.2273+14
.1901+14
.1590+14
.1330+14
.1106+14
.9165+13
.7591+13
.6279+13
.5190+13
.4290+13
.3544+13
.2926+13
.2414+13
.1990+13

[0]

.4169+10
.4000+10
.3960+10
.3920+10
.3880+10
.3840+10
.3800+10
.5720+10
.7857+10
.1002+11
.1208+11
.1400+11
.1588+11
.1793+11
.2052+11
.2422+11
.3000+11
.4255+11
.6444+11
.1042+12
.1800+12
.3320+12
.4530+12
.5650+12
.6533+12
.7100+12
.7370+12
.7360+12
.7095+12
.6640+12
.6072+12
.5480+12

[I

.1955+16
.1699+16
.1474+16
.1277+16
.1105+16
.9533+15
.8210+15
.7052+15
.6063+15
.5187+15
.4422+15
.3755+15
.3156+15
.2644+15
.2209+15
.1842+15
.1535+15
.1284+15
.1074+15
.8988+14
.7521+14
.6328+14
.5284+14
.4386+14
.3653+14
.3045+14
.2543+14
.2133+14
.1792+14
.1508+14
.1270+14
.1072+14

[OH]

.3635+7
.3500+7
.3560+7
.3620+7
.3680+7
.3740+7
.3800+7
.3602+7
.3401+7
.3199+7
.2999+7
.2800+7
.2402+7
.1885+7
.1360+7
.9063+6
.5600+6
.3223+6
.1736+6
.8783+5
.4195+5
.1900+5
.8341+4
.3487+4
.1388+4
.2563+3
.1900+3
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z (km) 13 3 ( -7- - 59-
35 .2000+13 .2000+13 - .2530-7 .9000+0
36 .1878+13 .1865+13 - .4127-7 .7758+0

37 .1683+13 .1669+13 - .6436-7 .6706+0

38 .1453+13 .1444+13 - .9638-7 .5811+0

39 .1215+13 .1215+13 - .1391-6 .5050+0

40 .1000+13 .1000+13 - .1940-6 .4400+0

41 .8097+12 .8097+12 - .2625-6 .3844+0

42 .6477+12 .6477+12 - .3454-6 .3380+0

43 .4569+12 .5140+12 - .4434-6 .2971+0

44 .4059+12 .4059+12 - .5566-6 .2613+0

45 .3200+12 .3200+12 - .6850-6 .2300+0

46 .2541+12 .2541+12 - .8297-6 .2020+0

47 .2015+12 .2015+12 - .9865-6 .1773+0

48 .1592+12 .1592+12 - .1158-5 .1557+0

49 .1261+12 .1261+12 - .1345-5 .1367+0

50 .1000+12 .1000+12 .8800+10 .1540-5 .1200+0

51 .7947+11 .7947+11 .1001+11 .1752-5 .1064+0

52 .6321+11 .6321+11 .1127+11 .1974-5 .9578-1

53 .5048+11 .4783+11 .1253+11 .2207-5 .8669-1

54 .4020+11 .3874+11 .1379+11 .2449-5 .7644-1

55 .3200+11 .3200+11 .1500+11 .2700-5 .6800-1

56 .2541+11 .2707+11 .1500+11 .2964-5 .5801-1

57 .2015+11 .2318+11 .1500+11 .3237-5 .4883-1

58 .1592+11 .2000+11 .1500+11 .3518-5 .4290-1

59 .1261+11 .1733+11 .1500+11 .3809-5 .3814-1

60 .1000+11 .1500+11 .1500+11 .4110-5 .3400-1

61 .7947+10 .1302+11 .1376+11 .4431-5 .3092-1

62 .6321+10 .1115+11 .1262+11 .4788-5 .2820-1

63 .5048+10 .9338+10 .1156+11 .5135-5 .2568-1

64 .4020+10 .7610+10 .1059+11 .5479-5 .2330-1

65 .3200+10 .6000+10 .9700+10 .5810-5 .2100-1

66 .2541+10 .4496+10 .8878+10 .6072-5 .1866-1

67 .2015+10 .3253+10 .8121+10 .6311-5 .1648-1

68 .1592+10 .2273+10 .7426+10 .6530-5 .1447-1

69 .1261+10 .1534+10 .6787+10 .6734-5 .1265-1

70 .1000+10 .1000+10 .6200+10 .6930-5 .1100-1
71 .7947+9 .6055+9 .5388+10 .7158-5 .9536-2
72 .6321+9 .3577+9 .4650+10 .7387-5 .8236-2

73 .4941+9 .2081+9 .4004+10 .7634-5 .7088-2

74 .3956+9 .1204+9 .3455+10 .7857-5 .6080-2

75 .3200+9 .7000+8 .3000+10 .8070-5 .5200-2

76 .2645+9 .4292+8 .2680+10 .8258-5 .4441-2

77 .2214+9 .2670+8 .2420+10 .8411-5 .3781-2

78 .1877+9 .1685+8 .2208+10 .8561-5 .3211-2

79 .1611+9 .1078+8 .2037+10 .8700-5 .2721-2

80 .1400+9 .7000+7 .1900+10 .8830-5 .2300-2

81 .1201+9 .1650+8 .2039+10 .8963-5 .1940-2

82 .1030+9 .3141+8 .2179+10 .9089-5 .1633-2

83 .8835+8 .4828+8 .2321+10 .9219-5 .1371-2
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.3 3 --2 --- 597- 59-
84 .7578+8 .5990+8 .2461+10 .9327-5 .1149-2
85 .6500+8 .6000+8 .2600+10 .9420-5 .9600-3
86 .3985+8 .5735+8 .2580+10 .9490-5 -
87 .2546+8 .5203+8 .2503+10 .9524-5 -
88 .1685+8 .4505+8 .2375+10 .9557-5 -
89 .1148+8 .3743+8 .2204+10 .9582-5 -
90 .8000+7 .3000+8 .2000+10 .9600-5 -
91 .5671+7 .2332+8 .1775+10 .9627-5 -
92 .4063+7 .1768+8 .1540+10 .9650-5 -
93 .2925+7 .1315+8 .1307+10 .9670-5 -
94 .2103+7 .9635+7 .1084+10 .9687-5 -
95 .1500+7 .7000+7 .8800+9 .9700-5 -
96 .1030+7 .5179+7 - .9720-5 -
97 .6980+6 .3819+7 - .9740-5 -
98 .4665+6 .2806+7 - .9760-5 -
99 .3075+6 .2055+7 - .9780-5 -

100 .2000+6 .1500+7 - .9800-5 -

z(km) [N [e- 122 J--

75 .7000+4 .2500+1 .6000+1 .7000+1 - -
76 .4660+5 .2882+1 .1132+2 .9552+1 -
77 .3493+6 .3823+1 .1996+2 .1156+2 -
78 .2949+7 .5687+1 .3296+2 .1528+2 -
79 .2803+8 .7657+1 .5117+2 .3108+2 - -
80 .3000+9 .1600+2 .7500+2 .5000+2 .1500-13 .1650-2
81 .8986+9 .3323+2 .1042+3 .9087+2 .2078-13 .2565-2
82 .2465+10 .6500+2 .1379+3 .1845+3 .2892-13 .4039-2
83 .6912+10 .1157+3 .1745+3 .3427+3 .3614-13 .6439-2
84 .1424+11 .1838+3 .2124+3 .6048+3 .4315-13 .1040-1
85 .3000+11 .2600+3 .2500+3 .1000+4 .5000-13 .1700-1
86 .5786+11 .3092+3 .2824+3 .1452+4 .5701-13 .2815-1
87 .1022+12 .3472+3 .3139+3 .2009+4 .6469-13 .4720-1
88 .1653+12 .3766+3 .3459+3 .2683+4 .7377-13 .7043-1
89 .2448+12 .4023+3 .3805+3 .3496+4 .8515-13 .1251+0
90 .3320+12 .4300+3 .4200+3 .4500+4 .1000-12 .2400+0
91 .4530+12 .4808+3 .4720+3 .6070+4 .1222-12 .5393+0
92 .5650+12 .5411+3 .5339+3 .8184+4 .1512-12 .1331+1
93 .6533+12 .6135+3 .6084+3 .1103+5 .1890-12 .3604+1
94 .7100+12 .7015+3 .6988+3 .1486+5 .2377-12 .1072+2
95 .7370+12 .8100+3 .8100+3 .2000+5 .3000-12 .3500+2
96 .7360+12 .9497+3 .9515+3 .2449+5 .3737-12 .3995+2
97 .7095+12 .1126+4 .1129+4 .2904+5 .4656-12 .4574+2
98 .6640+12 .1349+4 .1352+4 .3336+5 .5800-12 .5254+2
99 .6072+12 .1633+4 .1637+4 .3712+5 .7225-12 .6055+2

100 .5480+12 .2000+4 .2000+4 .4000+5 .9000-12 .7000+2
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z(km)

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

.6000+1

.8846+1

.1335+2

.1802+2

.2229+2

.2800+2

.3274+2

.3707+2

.4096+2

.4453+2

.4800+2

.5336+2
.5929+2
.6583+2
.7304+2
.8100+2
.9296+2
.1079+3
.1309+3
.1540+3
.1800+3
.2048+3
.2307+3
.2473+3
.2756+3
.3100+3
.3606+3
.4253+3
.4957+3
.6055+3
.7600+3
.9966+3
.1451+4
.2045+4
.2877+4
.4000+4
.5212+4
.6397+4
.7926+4
.9758+4
.1200+5
.1514+5
.1918+5
.2440+5
.3118+5
.4000+5

-[NO +

.2500+3
.2692+3
S2890+3
.3091+3
.3295+3
S3500+3
.3706+3
.3910+3
.4111+3
.4309+3
.4500+3
.5570+3
.7152+3
.9456+3
.1277+4
.1750+4
.2341+4
.3152+4
.4272+4
.6150+4
.8000+4
.9388+4
.1068+5
.1186+5
.1295+5
.1400+5
.1554+5
.1721+5
.1900+5
.2093+5
.2300+5

.1500+6

.1500+6

.1500+6

.1500+6

.1500+6

.1500+6
.1500+6
.1500+6
.1500+6
.1500+6
.1500+6
.1401+6
.1301+6
.1199+6
.1099+6
.1000+6
.2273+6
.5240+6
.1226+7
.2908+7
.7000+7
.2153+7
.7806+6
.3337+6
.1682+6
.1000+6
.7248+5
.5253+5
.3807+5
.2759+5
.2000+65
.1450+5
.1051+5
.7615+4
.5519+4
.4000+4
.2801+4
.1939+4
.1326+4
.8973+3
.6000+3

z(km)

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

z(km)

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

.7000+10
.4662+10
.3095+10
.2049+10
.1352+10
.8900+9
.5839+9
.3947+9
.2586+9
.1666+9
.1050+9
.6326+8
.3712+8
.2121+8
.1181+8
.6400+7

J
--:15&--58-

.2920-4

.3394-4

.3901-4

.4439-4

.5001-4

.5580-4

.6170-4

.6765-4

.7355-4

.7936-4

.8500-4

.9057-4

.9585-4

.1007-3

.1052-3
.1090-3

[o(1 >)]

.5200+2
.6421+2
.7820+2
.9393+2
.1113+3
.1300+3
.1498+3
.1702+3
.1908+3
.2110+3
.2300+3
.2320+3
.2340+3
.2360+3
.2380+3
.2400+3



z(km)

35.5
36.5
37.5
38.5
39.5
40.5
41.5
42.5
43.5
44.5
45.5
46.5
47.5
48.5
49.5
50.5
51.5
52.5
53.5
54.5
55.5
56.5
57.5
58.5
59.5
60.5
61.5
62.5
63.5
64.5
65.5
66.5
67.5
68.5
69.5
70.5
71.5
72.5
73.5
74.5
75.5
76.5
77.5
78.5
79.5
80.5

.1624+18

.1401+18

.1210+18

.1046+18
.9055+17
.7850+17
.6815+17
.5926+17
.5158+17
.4494+17
.3920+17
.3421+17
.2989+17
.2605+17
.2285+17
.2013+17
.1792+17
.1595+17
.1422+17
.1267+17
.1126+17
.9979+16
.8834+16
.7807+16
.6890+16
.6072+16
.5342+16
.4693+16
.4117+16
.3607+16
.3155+16
.2756+16
.2406+16
.2096+16
.1823+16
.1583+16
.1372+16
.1188+16
.1026+16
.8849+15
.7611+15
.6547+15
.5611+15
.4792+15
.4077+15
.3451+15

z(km)

81.5
82.5
83.5
84.5
85.5
86.5
87.5
88.5
89.5
90.5
91.5
92.5
93.5
94.5
95.5
96.5
97.5
98.5
99.5

- 76 -

.2890+15
.2417+15
.2017+15
.1682+15
.1404+15
.1174+15
.9826+14
.8222+14
.6881+14
.5783+14
.4827+14
.4003+14
.3335+14
.2782+14
.2328+14
.1955+14
.1644+14
.1384+14
.1166+14



- 77 -

APPENDIX B

Odd Nitrogen Concentration Profiles

The equilibrium odd nitrogen concentration profiles resulting from

all of the runs are included in this appendix. The values are those at the

end of the daytime and nighttime integrations and are identified by the

subscripts "D" and "N", respectively. The notation used to represent powers

ox -3
of ten is the following: value-+x = value x 10. Units are ncm

Model AL

A=O.0O A=0.5 A=1.0
z(km) [ON] [ON [ON] [ON1 [ON] [ON1---- D --- N --- D ---N --- D ---N

35 .1680+10 .1680+10 .1680+10 .1680+10 .1680+10 .1680+10
36 .1463+10 .1462+10 .1463+10 .1462+10 .1463+10 .1462+10
37 .1264+10 .1262+10 .1264+10 .1263+10 .1264+10 .1263+10
38 .1084+10 .1083+10 .1084+10 .1083+10 .1084+10 .1083+10
39 .9237+9 .9231+9 .9239+9 .9232+9 .9340+9 .9234+9
40 .7837+9 .7832+9 .7838+9 .7834+9 .7840+9 .7836+9
41 .6622+9 .6619+9 .6624+9 .6621+9 .6625+9 .6623+9
42 .5578+9 .5576+9 .5580+9 .5578+9 .5581+9 .5580+9
43 .4689+9 .4688+9 .4691+9 .4690+9 .4693+9 .4692+9

44 .3932+9 .3932+9 .3934+9 .3934+9 .3936+9 .3936+9
45 .3293+9 .3294+9 .3295+9 .3296+9 .3297+9 .3298+9
46 .2754+9 .2756+9 .2756+9 .2758+9 .2758+9 .2759+9
47 .2303+9 .2304+9 .2305+9 .2306+9 .2306+9 .2308+9
48 .1917+9 .1919+9 .1919+9 .1921+9 .1921+9 .1923+9
49 .1604+9 .1606+9 .1606+9 .1608+9 .1608+9 .1609+9
50 .1346+9 .1347+9 .1347+9 .1349+9 .1349+9 .1351+9
51 .1136+9 .1138+9 .1138+9 .1140+9 .1140+9 .1141+9
52 .9606+8 .9624+8 .9623+8 .9641+8 .9641+8 .9658+8
53 .8127+8 .8145+8 .8144+8 .8162+8 .8161+8 .8179+8
54 .6875+8 .6893+8 .6892+8 .6909+8 .6909+8 .6927+8
55 .5811+8 .5829+8 .5828+8 .5846+8 .5845+8 .5863+8
56 .4886+8 .4904+8 .4903+8 .4920+8 .4919+8 .4937+8
57 .4103+8 .4120+8 .4119+8 .4137+8 .4136+8 .4153+8
58 .3444+8 .3461+8 .3460+8 .3477+8 .3476+8 .3493+8
59 .2888+8 .2905+8 .2905+8 .2921+8 .2920+8 .2937+8
60 .2422+8 .2439+8 .2439+8 .2455+8 .2455+8 .2471+8

61 .2033+8 .2049+8 .2049+8 .2065+8 .2065+8 .2081+8
62 .1709+8 .1724+8 .1725+8 .1741+8 .1741+8 .1757+8
63 .1440+8 .1455+8 .1456+8 .1472+8 .1472+8 .1488+8
64 .1218+8 .1232+8 .1234+8 .1249+8 .1250+8 .1266+8
65 .1035+8 .1049+8 .1052+8 .1067+8 .1068+8 .1084+8

66 .8857+7 .8997+7 .9031+7 .9176+7 .9195+7 .9346+7

67 .7638+7 .7777+7 .7816+7 .7960+7 .7983+7 .8134+7
68 .6650+7 .6789+7 .6832+7 .6978+7 .7004+7 .7157+7
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Model AH

A=O. 0
z(km)

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

A=1.0
[ON] D

.1680+10

.1464+10

.1265+10

.1086+10

.9264+9

.7868+9

.6656+9

.5614+9

.4727+9

.3970+9

.3331+9

.2792+9

.2340+9

.1954+9

.1640+9

.1380+9

.1170+9

.9943+8

.8460+8

.7205+8

.6139+8

.5210+8

.4424+8

.3763+8

.3206+8

.2740+8

.2351+8

.2028+8

.1762+8

.1545+8

.1368+8

.1226+8

.1114+8

.1028+8

.9617+7

.9143+7

.8826+7

.8663+7

.8627+7

.8720+7

.8933+7

.9257+7

.9722+7

.1028+8

.1093+8

.1167+8

.1243+8

.1680+10

.1463+10

.1264+10

.1085+10

.9258+9

.7863+9

.6653+9

.5612+9

.4726+9

.3971+9

.3332+9

.2794+9

.2342+9

.1955+9

.1641+9

.1382+9

.1172+9

.9961+8

.8479+8

.7224+8

.6158+8

.5230+8

.4444+8

.3783+8

.3226+8

.2760+8

.2372+8

.2049+8

.1784+8

.1568+8

.1393+8

.1253+8

.1143+8

.1059+8

.9979+7

.9560+7

.9318+7

.9250+7

.9332+7

.9567+7

.9952+7

.1048+8

.1120+8

.1206+8

.1309+8

.1430+8

.1565+8

A=0.5

rON1- [ON],

.1680+10 .1680+10

.1464+10 .1463+10

.1265+10 .1264+10

.1086+10 .1085+10

.9266+9 .9259+9

.7869+9 .7864+9

.6658+9 .6655+9

.5615+9 .5614+9

.4728+9 .4727+9

.3972+9 .3972+9

.3333+9 .3334+9

.2794+9 .2795+9

.2341+9 .2343+9

.1955+9 .1957+9

.1641+9 .1643+9

.1381+9 .1383+9

.1171+9 .1173+9

.9956+8 .9974+8

.8472+8 .8491+8

.7217+8 .7236+8

.6151+8 .6170+8

.5222+8 .5242+8

.4436+8 .4456+8

.3774+8 .3794+8

.3217+8 .3237+8

.2751+8 .2771+8

.2362+8 .2383+8

.2039+8 .2061+8

.1773+8 .1796+8

.1556+8 .1579+8

.1379+8 .1404+8

.1238+8 .1265+8

.1126+8 .1156+8

.1040+8 .1073+8

.9750+7 .1012+8

.9282+7 .9712+7

.8975+7 .9483+7

.8823+7 .9430+7

.8801+7 .9533+7

.8910+7 .9791+7

.9144+7 .1021+8

.9492+7 .1077+8

.9987+7 .1154+8

.1057+8 .1245+8

.1127+8 .1353+8

.1205+8 .1482+8

.1286+8 .1625+8

.1680+10

.1464+10

.1265+10

.1086+10

.9267+9

.7870+9

.6659+9

.5617+9

.4730+9

.3973+9

.3334+9

.2795+9

.2343+9

.1956+9

.1642+9

.1383+9

.1173+9

.9968+8

.8484+8

.7229+8

.6162+8

.5233+8

.4446+8

.3784+8

.3227+8

.2761+8

.2372+8

.2049+8

.1784+8

.1566+8

.1390+8

.1249+8

.1138+8

.1052+8

.9879+7

.9419+7

.9122+7

.8980+7

.8972+7

.9098+7

.9353+7

.9724+7

.1025+8

.1087+8

.1160+8

.1243+8

.1329+8

.1680+10

.1463+10

.1264+10

.1085+10

.9261+9

.7866+9

.6656+9

.5615+9

.4729+9

.3974+9

.3335+9

.2797+9

.2344+9

.1958+9

.1644+9

.1384+9

.1174+9

.9986+8

.8503+8

.7248+8

.6182+8

.5253+8

.4466+8

.3805+8

.3248+8

.2782+8

.2393+8

.2071+8

.1806+8

.1590+8

.1416+8

.1277+8

.1168+8

.1086+8

.1026+8

.9861+7

.9645+7

.9608+7

.9730+7

.1001+8

.1046+8

.1106+8

.1187+8

.1283+8

.1398+8

.1533+8

.1684+8
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Model AH

[ON] D
.1330+8
.1431+8
.1552+8
.1693+8
.1862+8
.2054+8
.2265+8
.2494+8
.2754+8
.3007+8
.3262+8
.3560+8
.3899+8
.4289+8
.4752+8
.5285+8
.5897+8
.6598+8
.7400+8

.1725+8

.1915+8

.2139+8

.2402+8

.2719+8

.3085+8

.3502+8

.3966+8

.4492+8

.4998+8
.5469+8
.5938+8
.6364+8
.6730+8
.7041+8
.7265+8
.7397+8
.7439+8
.7400+8

A=0.5
[ON]D

.1378+8

.1486+8

.1613+8

.1762+8

.1941+8

.2146+8

.2372+8

.2619+8

.2902+8

.3176+8

.3451+8

.3768+8

.4121+8

.4518+8

.4979+8

.5495+8

.6068+8

.6701+8

.7400+8

Model BL

A=0.5
[ON] D

.1680+10

.1563+10

.1404+10

.1228+10

.1052+10

.8873+9

.7389+9

.6093+9

.4988+9

.4057+9

.3287+9

.2655+9

.2142+9

.1721+9

.1388+9

.1123+9

.9155+8

.7491+8

.6149+8

.5062+8

.4177+8

.3441+8

.2841+8

.1680+10

.1562+10

.1403+10

.1227+10

.1051+10

.8869+9

.7386+9

.6092+9

.4988+9

.4058+9

.3288+9

.2656+9

.2143+9

.1722+9

.1390+9

.1124+9

.9166+8

.7502+8

.6159+8

.5071+8

.4186+8
.3450+8
.2850+8

[ON] -N
.1795+8
.1996+8
.2233+8
.2511+8
.2844+8
.3224+8
.3652+8
.4123+8
.4653+8
.5154+8
.5614+8
.6067+8
.6474+8
.6819+8
.7109+8
.7313+8
.7427+8
.7453+8
.7400+8

.1426+8

.1540+8

.1673+8

.1831+8

.2021+8

.2237+8

.2479+8

.2745+8

.3049+8
.3345+8
.3641+8
.3976+8
.4343+8
.4748+8
.5206+8
.5704+8
.6239+8
.6805+8
.7400+8

A=1.0

.1865+8

.2078+8

.2328+8

.2620+8

.2968+8

.3362+8

.3802+8

.4281+8
.4814+8
.5310+8
.5759+8
.6197+8
.6585+8
.6909+8
.7178+8
.7361+8
.7456+8
.7466+8
.7400+8

Model BH

.1680+10

.1574+10

.1422+10

.1250+10

.1077+10

.9124+9

.7628+9 -

.6311+9

.5182+9

.4228+9

.3434+9

.2781+9

.2250+9

.1813+9

.1468+9

.1191+9

.9751+8

.8020+8

.6622+8
.5490+8
.4572+8
.3808+8
.3187+8

A=0.5
[ON] v

.1680+10

.1573+10

.1421+10

.1250+10

.1076+10

.9119+9

.7624+9
.6310+9
.5182+9
.4228+9
.3435+9
.2783+9
.2252+9
.1814+9
.1469+9
.1192+9
.9763+8
.8031+8
.6633+8
.5501+8
.4583+8
.3818+8
.3198+8

A=0.0
z(km)

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

z(km)

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
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Model BH

z(km)

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

A=0.5

.2355+8

.1960+8

.1639+8

.1379+8

.1169+8

.9987+7

.8618+7

.7517+7

.6635+7
.5929+7
.5368+7
.4920+7
.4566+7
.4286+7
.4073+7
.3908+7
.3786+7
.3697+7
.3631+7
.3598+7
.3574+7
.3561+7
.3554+7
.3515+7
.3504+7
.3526+7
.3602+7
.3758+7
.4041+7
.4512+7
.5238+7
.6283+7
.7761+7
.9533+7
.1164+8
.1425+8
.1741+8
.2132+8
.2640+8
.3321+8
.4260+8
.5572+8
.7400+8

Model BL

A=0.5

.2363+8

.1968+8

.1647+8

.1386+8

.1176+8

.1006+8

.8692+7

.7594+7

.6715+7

.6014+7

.5459+7

.5020+7

.4676+7

.4411+7

.4214+7

.4069+7

.3968+7

.3903+7

.3862+7

.3851+7

.3840+7

.3826+7

.3808+7

.3799+7

.3870+7

.4038+7

.4329+7

.4782+7

.5463+7

.6412+7

.7703+7

.9432+7

.1179+8

.1467+8

.1823+8

.2280+8

.2844+8

.3517+8

.4298+8

.5137+8

.5978+8

.6752+8

.7400+8

[ON]

.2685+8
.2279+8
.1950+8
.1686+8
.1474+8
.1305+8
.1171+8
.1067+8
.9865+7
.9265+7
.8836+7
.8550+7
.8390+7
.8342+7
.8409+7
.8573+7
.8842+7
.9212+7
.9669+7
.1025+8
.1088+8
.1158+8
.1231+8
.1303+8
.1390+8
.1493+8
.1618+8
.1766+8
.1944+8
.2147+8
.2373+8
.2620+8
.2902+8
.3176+8
.3452+8
.3768+8
.4121+8
.4518+8
.4979+8
.5495+8
.6068+8
.6701+8
.7400+8

.2696+8
.2289+8
.1961+8
.1697+8
.1485+8
.1317+8
.1185+8
.1082+8
.1004+8
.9466+7
.9076+7
.8839+7
.8745+7
.8785+7
.8964+7
.9272+7
.9712+7
.1029+8
.1099+8
.1186+8
.1284+8
.1394+8
.1516+8
.1649+8
.1811+8
.2008+8
.2241+8
.2516+8
.2847+8
.3226+8
.3654+8
.4124+8
.4654+8
.5155+8
.5614+8
.6068+8
.6475+8
.6819+8
.7110+8
.7313+8
.7427+8
.7453+8
.7400+8
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