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ABSTRACT

Linear mid-latitudes models on a beta-plane were formu-
lated to study the simulation of the vertical propagation of
forced planetary waves in numerical models. Computations
were made applying the rigid top boundary condition w=0 at
various finite heights with different vertical resolutions
and compared with exact solutions. The influence of the
zonal wind distribution and of Newtonian cooling was examined
using vertical profiles of winds and temperature representa-
tives of winter, fall, and summer.

The main conclusions are:

1) With constant values of the zonal wind and temperature,
and without Newtonian cooling, no model is capable of repre-
senting the structure of a vertically propagating wave.
This is due to the false reflection of planetary waves at
the top. External modes, with no energy propagation, are
well represented by the models.

2) With realistic distributions of temperature, zonal winds
and Newtonian cooling, it is always possible to obtain a
good simulation of planetary waves, provided there is enough
vertical resolution. With good vertical resolution, the
effect of the artificial top boundary condition is minimized
during winter and summer because the mean zonal winds produce
a natural reflective stratospheric layer. During fall,
Newtonian cooling absorbs most of the upward energy before
it reaches the top.

3) The absolute minimum number of levels necessary to obtain
a relatively good wave structure simulation is ten.

4) The most important factor to obtain a good tropospheric
representation is good resolution near the ground. For a
fixed number of levels, the best results are obtained with
high resolution at the extremes of the atmosphere.



5) For a fixed number of levels, the solutions are very
sensitive to the position of the top. When the winds pro-
duce a reflective layer in the stratosphere, a relatively
low top can improve the simulation. When Newtonian cooling
is an important factor, a high top is better because more
damping is allowed to occur. The optimum position of the
top is therefore seasonally dependent.

Two "sponge layer" mechanisms to reduce the reflection
of wave energy at the upper boundary were also tested. In
one of them, a complex index of refraction modified by a
coefficient of viscosity, was introduced in a layer below
the upper boundary, in such a way that the waves could be
damped before they reached the top. A complex index of
refraction that increases smoothly with height was found to
produce better results that a constant one. It was found
that there is an optimum value of the viscosity coefficient,
which is a function of the frequency of the waves and the
depth of the sponge layer. Lower values produce insuffi-
cient damping, and higher values produce internal reflec-
tions due to the strong vertical gradient of viscosity.
The second approach uses a single layer at the top to
eliminate the reflected wave by producing destructive inter-
ference between the wave reflected at the top and the wave
reflected at the bottom of the sponge layer. A generaliza-
tion of this method when several frequencies are present is
proposed.

Thesis Supervisor: Eugenia Kalnay-Rivas
Title: Associate Professor
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1. INTRODUCTION

The simulation of vertical propagating waves by nume-

rical models depends strongly on the vertical resolution of

the model and on the characteristics and position of the

upper boundary. Poor vertical resolution is considered to

be a possible cause of the inadequacy of the simulation of

the stationary planetary waves (Manabe and Terpstra, 1974,

and Kasahara et al., 1973). In the latter case, the use of

a rigid top at 35 km also contributes to an unrealistic low

simulation of the stratospheric temperature (Holton, 1975).

Lindzen et al. (1968) analyzed the effects of intro-

ducing dp = 0 at some finite altitude as an upper boundary

condition. Comparisons with results from an unbounded model

showed that spurious reflections due to the upper boundary

condition produced distortions in the wave structure.

More recently, in similar studies, Kirkwood and Derome

(1977), and Nakamura (1976), using a quasi-geostrophic model

made simulations of forced stationary waves. The results

showed that insufficient resolution in the stratosphere can

lead to a spurious energy reflection at the upper boundary

and to an incorrect wave structure.

The dynamics of the planetary vertical propagating

waves has been discussed by Charney and Drazin (1961), and

Dickinson (1969), among others. Charney and Drazin showed

that stationary quasi-geostrophic disturbances superimposed



on a uniform mean-zonal flow propagate energy vertically

only when the zonal flow is westerly and less than a criti-

cal velocity. This critical velocity increases as the

horizontal scale of the waves increases. Because of the

observed mean winds, during the summer hemisphere when winds

in the upper stratosphere are easterlies, there is no pro-

pagation of stationary waves. Under these conditions, the

use of a rigid top as an upper boundary condition would not

prevent a model from properly representing these waves.

The westerly jet during the winter is sufficiently strong to

prevent much propagation during the winter months. However,

the propagation of ultra-long stationary waves are essential

features in the dynamics of the stratosphere. In the

equinoxes during the initial development of the westerly

symmetric circulation, large upward propagation of planetary

waves are predicted by the Charney-Drazin theory. There is

no observational evidence of this prediction. Dickinson

showed that there is a large attenuation of planetary waves

propagating through sufficiently weak westerly winds due to

the effect of Newtonian cooling.

In the present study we will be concerned with the

simulation of vertically propagating waves by numerical

models and with the determination of how the structure of

forced waves is affected by the vertical resolution and by

the type of boundary condition used at the top. We will



also be concerned with the development of an efficient

mechanism to avoid or reduce the reflections generated at

the top.

In a model with finite number of layers, there is no

way to avoid the imposition of an upper boundary of the

atmosphere which has no physical reality. The waves pro-

duced in the troposphere and propagated upward can reach the

upper boundary and may be reflected by the artificial top

of the model. The waves in the lower atmosphere may be

affected by the spuriously reflected waves. In the real

atmosphere, the waves can never reach the infinite height

(p=0) within a finite time, so the condition dp _ 0 at
dt

p=0 has no influence on the waves. In a numerical model

the waves can reach the top in a finite time, even if it

is at p=0.

In the discussion of the upper boundary, two different

problems arise. Firstly, the upper boundary can be placed

anywhere. For example, someone interested in the simulation

of the troposphere may want to put the upper boundary in the

lower stratosphere. Because the reflection of vertical pro-

pagating waves is a natural phenomenon that occurs in the

atmosphere, a boundary condition to avoid reflection can be

very inaccurate. A proper top boundary condition should

avoid both the spurious reflection of waves that propagate

vertically, and the absorption of waves which in reality are
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reflected. Secondly, although the top can be placed high

enough to allow radiative damping and wave interactions,

some waves can penetrate further and reach the top. In

this case, a radiation condition or an equivalent mechanism

must be used.

In this work, we discuss various alternatives to this

problem, especially following the concept of "sponge layer"

in the fashion introduced by Arakawa and Tokioka (1974).

In dealing with the vertical structure of the waves,

two different lines of approach are possible. A steady-

state approach where, given a basic state solution and

suitable boundary conditions, we solve for the wave struc-

ture. Another way is to introduce the time dependence and

look at the transient behavior of the flow. In this dis-

cussion we limit ourselves to the steady-state case, leaving

the time dependence approach to a future study.

The ultimate goal is to study the effect of the verti-

cal resolution and the characteristics of the boundary con-

ditions used at the top in a general circulation model.

However, a general circulation model involves many physical

processes and simulates not only planetary waves of global

scale, but also synoptic scale waves and other phenomena,

and consequently, what we see is the coupled behavior of all

of them. A general ciruclation model is too complicated to

study the effects of vertical resolution and the upper

boundary directly. For this reason, we are going to deal
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with more simple numerical models as a prerequisite to a

simular study with a general circulation model.

A description of the models used is given in Section 2.

In Section 3 we examine how the upper boundary condition

influences the vertical propagation of wave energy. The

results of several simulations under different atmospheric

conditions are presented in Section 4. Finally, in Section

5 we discuss alternative approaches to the upper boundary.



2. DESCRIPTION OF THE MODELS

In this section we will describe several simple models

which share with the more complete ones some of the essential

features to simulate vertical propagating waves. Two of

these linear models are based on the primitive equations on a

beta-plane, while the other two are based on the quasi-

geostrophic equations.

The models are used to simulate the structure of forced

quasi-stationary waves. The forcing is assumed to have small

amplitudes so that the governing equations can be linearized.

We shall consider small amplitude perturbations superimposed

upon a basic state with zonal winds that are a function of

pressure (or log-pressure) alone.

2.1 Basic Equations

The linear primitive equations on a beta-plane, in

pressure coordinates are:

D-& + u 2_s _ $ LO °  :_ot_
ax 6 a -c

U& 'DU + .4 -9m z (2)

/T FTo +ToT (3)
--- + U-+ -- + - -)

t x b p Cr)I



(4)

(5)
-R

T

in which the beta-plane approximation f = fo+ y was made,

neglecting y except when f is differentiated. In

equations (1) to (5) 6 is the horizontal divergence

Bu v9- +y , ( is the vertical component of the vorticity

vector DV D , and a is the pressure dependent9x ay

Newtonian cooling coefficient. Other symbols used here are

as follows:

x eastward horizontal coordinate

y northward horizontal coordinate

p pressure

u eastward perturbation velocity-

v northward perturbation velocity

W vertical p-velocity ( )
dt

p perturbation geopotential

T perturbation temperature

U mean zonal wind

To temperature of the basic state

fo Coriolis parameter

8 variation of Coriolis parameter with the latitude

coordinate df
dy

g acceleration of gravity

SwC

aq
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R gas constant

Cp specific heat at constant pressure

A second system of linear primitive equations on a

beta-plane is derived using log-pressure coordinates defined

by z = -H ln( ) where H = RT is a scale height, and
Ps 9

ps is a standard reference pressure. The equations are:

Tx- 'z -a z(6)

_V' =.f

zz C F.

H

(7)

(8)

(9)

(10)

where w is the z-vertical velocity dzdt"

For these two systems of equations (called models P

and Z for reference) is easy to derive the quasi-geostrophic

equations (called models PG and PZ).

The equations for model PG are:

--

T
--- t

ZTO_6 'a + w9
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'DT 3T ' To + Bo ~ u37- - C (12)

T (13)

in which the geostrophic vorticity g - v -ug 2

9x ey fo
The equations for model ZG are:

33 - -3r7 4

' o + 4- +

T14

+ H

{ oV4

The use of two different systems of vertical coordinates

will allow us to make comparisons and derive conclusions with

respect to the simulation of vertical propagating waves on

general circulation models, as most of these models use ver-

tical pressure coordinates.

--- +4-t

M

(14)

(15)

(16)



2.2 Formulation of the Models

The four systems have solutions of the form:

oT Re- L (EDFWT) (17)

in which k is the longitudinal wavenumber, t is the

meridional wavenumber, and w is the frequency. The velo-

city potential X defined by X = V2 6 and the stream-

function i defined by i = V2 are also introduced.

By substitution of expression (17) into the models, it

is possible to solve for the variables E, D, F, W, and T.

As an example, we consider model ZG. First, we obtain:

2M E exP[tQKX+LUL)] (18)

-M D e- t(V(19)

2 24 m C20)

IqV, E 1& (21)

in which m2 = k2 + 2 .



Applying equations (18) to (21) to the system (14) to

(16), we obtain:

.- i ± E C-T Y- UE E + _W W

dz . Ci

c .- Y-T -T Y F -To + 37- - .3: _

Using the

that F =

thermal wind relation T - fH dU and the fact
y R dz 'n tea

foE , we arrive to the system:

K U) F -- IH
H

L RS
+(- ( YuEt C1 UL

(22)

(23)

In order to simulate conditions similar to numerical

weather prediction models, finite differences in the vertical

were used. The atmosphere is divided from p = Ptop to

P = Pb into N layers with variable grid intervals, as

shown in Figure 2.1.

By specifying F1 at P = Pb and W at P = ptop
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Figure 2.1



and using the finite difference form of system (22) to (23),

a linear algebraic system of 2N-2 equations is obtained. By

changing Azk = zk+ 1 - zk ' N and ptop , various models

from low resolution to high resolution are obtained.

Similar descriptions can be made for models P, PG, and

Z.

2.3 Basic State and Specification of Parameters

Since we are interested in the performance of numerical

prediction models, it is desirable to choose the basic state

and the different parameters in our models as close as

possible to those of the real atmosphere. The mean tempera-

ture profile for mid-latitudes was taken from Houghton (1977)

and is shown in Figure 2.2. The static stability

S = 3To RTo for the P and PG models, and S = To + g
Sp p cp z cp

for the Z and ZG models is calculated using the temperature

profile shown.

The basic zonal winds are plotted in Figure 2.3. These

profiles are similar to those used by Nakamura (1976) and

Charney and Drazin (1961). The winter profile presents a

strong stratospheric jet. The fall presents weak westerlies,

and the summer easterlies in the stratosphere. The profile

of Newtonian cooling coefficient is based on Dickinson (1973)

and is shown in Figure 2.4.
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Figure 2.2 Vertical Profile of Mean Temperature
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Figure 2.4 Vertical Profile of the Newtonian Cooling Coefficient



Our beta-plane is centered at 55ON because, according

to observations presented by Matsuno (1970), the vertical

propagating waves in winter with wavenumber 1 have a maximum

amplitude at 550 N. Consequently fo= 1.194 x 10 4 sec ,

1011 m 1  -1
and the value of 8 is 1.313 x 10 m sec . We made

experiments with wavenumbers 1 and 2. For Lx =27 , we

used the length of the latitude circle at 550, and half of

that length, respectively. For Ly = 2Tr we used values

similar to those presented by Charney and Drazin, 18 000 km

and 9 000 km. The phase velocity c = was taken equal

to zero for the simulation of stationary waves. Computa-

tions with c = 5 m sec-1 were also made.

In our models, the variables have been assumed to have

the form:

The real part of it,

Xp oC+ -" YL (P) nM ( 3 + wL)

can be written as

in which the phase c is a function of pressure.



In the results we will present the phase c and the

scaled amplitude e- z/ 2H IE(p) as a function of pressure.

The advantage of using the scaled amplitude is due to the

fact that it is proportional to the square root of the

wave-energy density.

At the surface p = Pb (or z=0 ) the forcing is

specified by

in which F is an arbitrary constant.

The upper boundary condition is different for the

models in pressure coordinates than in the log-pressure

coordinates. For all models, the upper boundary condition is

specified by

CU>~~ (X C, or *

while for reference models (Z and ZG) a radiation condition

at the top of the model is used.

As will be seen in the next section, a model with

coefficients independent of the vertical coordinate is needed

in order to apply a radiation condition. A model that uses

log-pressure coordinate has coefficients independent of z,

if U, H, and a are constant (see equations (22) to (23) ).

To show it, expression (17) is applied to the system (11) to

(13), to obtain:



2, 2

__T 4- R* -LY c

S- -T

Using the thermal wind relation To - fp 3U and the rela-
gy R Sp

tion F = foE , we obtain:

io

L 1

W (24)

Then, assuming U, To, and a independent of pressure, is

not enough to obtain constant coefficients because equation

(24) becomes

2

L7c,  fz" (-+O K-C Lo
C? P, (LJU uv-Io4 )

in which pressure p appears explicitly.

The use of a radiation condition in the log-pressure

models makes them appropriate as reference models. Models

with a rigid top may be compared to them. The description



of the implementation of the radiation condition is done in

the next section.

3. VERTICAL PROPAGATION OF WAVE ENERGY

In this section, we examine how the upper boundary con-

dition and the wave mean-zonal-winds interaction influence

the vertical propagation of wave energy.

We start with the system (22) to (23), assuming an

isothermal basic state, so that the scale height H and the

static stability S are constant. We also assume a constant

basic-zonal wind U and no damping, a. = 0.

By elimination of W, we obtain

F
F -D (25)

Equation (25) has the analytic solution:

IF( 7)= A eoi7 + 1 en) z

where

(v 1Y1) - ( -'- =

2H - ()0 K



If A = 1 4HRS(-m 2 (U-c)) < 0 , sinusoidal solutions are
f H(U-c)

possible and waves propagate vertically, while if A > 0

only exponential solutions result. Consequently, the condi-

tion of vertical propagation is given as follows:

O 4. U-c z. Ucr;t (26)
trn + -- - -

At the level z = Zcrit , where U - c = Ucrit , the

waves are reflected,while at another critical level, where

U - c = 0 , the waves are absorbed.

The upward energy flux is given by wc , where the

overbar denotes zonal mean. From equation (17) we obtain

where the asterisk denotes the complex conjugate. Using

equations (22) and (23) we evaluate:

4R) RL ( 4 8F F)L am (27)

F(z.) = A N:/2 A - EZ

with Er = Real E > 0 , and Ei = Imag E > 0 for definiteness.



With B = 0 , and after some manipulations,

H (w4-U

In a similar way, with A = 0 ,

ELR H'z +e2Er

Consequently, the A term is responsible for the propagation

of energy upward, while the B term represents the downward

propagating mode.

Alternatively, by using the form

F ,1, ZP- _ = J:Z C_05 -YX -k o

in equation (27), the expression for the upward energy flux

is given by

Consequently, the vertical flux of energy depends upon the

tilt of the wave with height. A wave with the phase tilted

windward transports energy upward, while waves with phase

lines tilted downstreams transport wave energy downward. A

vertical wave (phase constant with height) does not transport

energy vertically. These results were first obtained by



Eliassen and Palm (1961).

In this study, the models Z and ZG will be used as con-

trol solutions to test the effect of a rigid boundary condition

in the models P and PG. For that purpose, a radiation condi-

tion is used in the log-pressure coordinate models.

Above a certain level, we assume that the flow is adiaba-

tic and that the vertical shear of the mean flow vanishes.

Under these conditions, solving for W in equations (22) and

(23) results in

CLz 8W

H - - (a-+u-r (28)

The upper-boundary condition is derived by requiring

that the wave energy be propagated away from the source below

the assumed top of the atmosphere. We already showed that

vertical propagation of energy is only possible if expression

(26) is satisfied. Under this condition, the solution which

propagates energy upward is chosen by setting B = 0 in

W(Z.)= Ae V M e

This implies the boundary condition:

aW - at z = ztop  (29)=z



If condition (26) is not satisfied, we will have external

modes. A = 0 is required to have the energy bounded as z

goes to infinity, which leads to the boundary condition:

_z _0 - at z = ztop  (30)

The system to be solved consists of equations (22) and (23)

together with the lower boundary condition (Section 1.3) and

the upper boundary condition (29) or (30).

Next, we examine the effect of introducing dp = 0 at

some finite altitude as an upper boundary condition. Trans-

formation of the dependent variable in the vertical structure

equation (26) from W to Q = e- z/ 2H W gives,

A - (31)

where y is defined by y2 = RS(K-m 2 -Km 2 U) 12 (32)HfZ(w+UK) -H(

The solution of (31) is:

C)= Ae B e

We are going to consider the radiation condition case

(B=0, only upward propagation of wave energy) to be the

exact solution in the following discussion. Assuming for

convenience that the amplitude of the forcing is equal to 1,

iyz
the vertical structure is Q(z) = e
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dp ( dzIf the upper boundary is dt- 0 (or dt 0 we

obtain Q = 1 at z = zb , and Q = 0 at z = zto p

Then,

A + BBe-A-b IL

and

e= e. -

± -4- yZ
2 .

4 L ~

A and B are complex numbers that become infinite when

- - _O

-zZ- = 3 IT

(33)

(34)

(35)

(j _ 2) - - )

Comparing with the exact solution, we have that the real part

of A is instead of 1, while the real part of B is not

zero, so that there is downward energy wave propagation.

For free oscillations in the atmosphere, 2 = 0 at

z = zb and at z = zto p . We obtain an homogeneous system

of equations in A and B. To obtain non-trivial solutions:

or when



L -6 7-+L -6Zt

which is equation (35). The resonance in the forced case

corresponds to the free oscillation resonance.

From this discussion it is clear that with the boundary

condition dz = 0 (or dp 0 ) at z = Ztop B cannotbe
dt dt top

zero, therefore, there will be spurious reflections. A

discussion of various ways to avoid or reduce the reflec-

tions produced at the upper boundary will be done in a later

section.

4. NUMERICAL RESULTS

In this section, numerical results obtained with the

four linear models previously described are reported. In

the analysis of the results obtained with models that use

different vertical coordinates, the distribution of compu-

tational levels that each model has, must be taken into

consideration. The top of the models were placed at .0001 mb,

or about 110 km, and five different resolutions were used,

N = 5, 10, 30, and 100, where N is the number of levels.

The simulations thus obtained were compared to a reference

simulation produced with the log-pressure model, with N = 200,

and using a radiation condition. The different distribution



of levels are presented in the following table:

Number of Levels

Troposphere (0-10 km)

Stratosphere (10-50 km)

Mesosphere (50-110 km)

Model P

10 30 50

7 22 37

2 7 12
- - -

100

74

25

Model Z

10 30 50 100

1 3 5 10

3 9 15 31

5 17 28 58

The similarity in the representation of the stratosphere

is only apparent. The pressure model that best represents

the stratosphere has its uppermost computational level at

35.1 km. The position of the uppermost computational level

is presented in the following table, in kilometers:

Number of Levels

Model Z

Model P

5 10 30 50 100

88.1 93.9 97.4 98.1 98.6

15.3 18.9 27.7 30.5 35.1

The quasi-geostrophic models were tested by reproducing

some of the results that appear in the paper by Derome and

Kirkwood (1977). Although the formulation of the models are

different, they are formally equivalent. Results using the

primitive equation models are described in the next subsection.

II_ ~__l -i -iWI.- _^l_-~P~ LII~*P-- t~---~-LL--.~1.



4.1 Comparison Between the Primitive Equation Models and

the Quasi-Geostrophic Models

In general, primitive equation models represent an

improvement with respect to quasi-geostrophic models because

the assumption of small Rossby number, which is violated in

regions of strong winds and in the tropics, is not made.

Then, it was interesting to study the performance of our

approximate primitive equation model in the simulation of

vertical propagating waves. In Figures 4.1, 4.2, and 4.3

we present three cases in which models Z and ZG are solved

under the same conditions. Figure 4.1 corresponds to
-l

constant conditions: U = 20 m sec -1, a = 0, and

T = 2390 K (or H=7 km), and Figures 4.2 and 4.3 correspond

to winter conditions, with and without Newtonian cooling

respectively.

In every case, the amplitudes calculated with the pri-

mitive equation model are smaller, although there is agree-

ment in the vertical structure presented. For the constant

case, both simulations are consistent with the case of upward

propagation discussed by Charney and Drazin (1961), with the

wave tilting westward with height. However, for the model Z,

the energy density is no longer uniform, suggesting the

presence of some mechanism of dissipation. Figures 4.2 and

4.3 support this idea. Comparing the ZG models with and
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without Newtonian cooling, it is clear that the inclusion of

a damping mechanism modifies the vertical structure of the

wave and reduces the upward flux of energy.

Since we have not included any explicit dissipation

mechanism in our primitive equation model, this effect must be

due to the model's approximations. This is confirmed by the

following analysis of the model Z. By applying expressions

(18) to (21) to model Z (equations (6) to (10) ) we obtain:

(mUu + Y 2 K U - ( ) -

wi + dT0 - fH dUH T rn D

in dwhich To fH d by the thermal wind relation and
dy R dz

S is the stability parameter, S = dT0 +
dz cp

To keep the analysis simple, we assume constant condi-

tions, that correspond to the situation presented in



Figure 4.1. Then, with U, H, To  constant and a = 0, we

solve for W,

2 *2
_ ~ ~.4- o

2. H J 7- HU (K U 4 -O

The coefficient of W is a complex number that produces

a complex index of refraction in this wave equation. The

damping effect is due to this complex index of refraction.

To confirm this interpretation, we repeat the simulations for

constant and for winter conditions, but with k = 0. In this

situation ( £=0 ) the index of refraction is no longer a

complex number. For constant conditions, both simulations

are identical, with the energy density constant with height.

For winter conditions the results are shown in Figure 4.4.

The wave structure is the same in both simulations, with

differences in the computed amplitudes.

For the general case, Z - 0, the index of refraction is

complex. This important limitation comes from the fact that

we have assumed a constant Coriolis parameter except when

it is explicitly differentiated. This "constant coefficient"

assumption was made to allow solutions of the form described

in (17). The undesirable complex index of refraction does

not appear if we keep fo + y in the equation and solve

for the vertical structure equation, as shown by Lindzen (1967).
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However, with this approach, solutions of the form described

in (17), with the advantages of simplicity and the possibility

of one-dimensional formulation, are no longer possible.

Therefore, in the remainder of this work we are going to

limit the discussion to the quasi-geostrophic models ZG and

PG.

4.2 Results Obtained with Constant Conditions

Before the study of the vertical propagating waves under

general conditions is done, we are going to study the behavior

of the models PG and ZG using constant zonal wind, and with

a = 0 in an isothermal atmosphere. The results obtained under

such conditions will help in the interpretation of the results

obtained under more general conditions.

In Figure 4.5, the results of the wave structure computed

using both models are presented. The values used were
-l

To = 2390 K (or H=7 km), a = 0, and U = 20 m sec -1. The

reference solution (model ZG with number of levels N = 200)

has the scale amplitude constant with height, with a vertical

wavelength of about 70 km. The solutions obtained with the

PG model clearly indicate that the condition dp 0 at somedt

finite height, is capable of modifying the numerical solution.

The scaled amplitudes are no longer constant with height but

there is no net vertical propagation of energy since the phase

is still constant with height. Figure 4.5 also shows that the
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solution is sensitive to the vertical resolution of the model.

As N (the number of levels) decreases, the uppermost compu-

tational level is lowered, and this produces the effect of a

rigid top at some finite height (Lindzen et al., 1968). When

the wave energy reaches this upper boundary, the wave is

reflected and the energy propagates downward. The inter-

ference produced by the forced and the reflected waves modify

the computed solution.

To test the effect of the rigid top and the vertical reso-

lution of model ZG, we performed the same experiments using

dz
both the radiation condition and dz = 0. The vertical reso-dt

lution was tested using N = 10, 30, 50, 100, and 200. When

the condition dz = 0 is used (Figure 4.6), the solution is
dt

drastically altered. Because of the more uniform distribution

of levels in the ZG model, the solutions for N = 30 to

N = 200 are the same. The phase is no longer tilted westward

with height and presents discontinuities at 18 and 52 km. The

solution N = 10 is even worse with a discontinuity at 11 km.

When the radiation condition is used (Figure 4.7), the N = 10

solution is completely erroneous. As the vertical resolution

is increased, the numerical solution approaches the reference

solution. From N = 50 to N = 200 there is practically no

difference in the solution.

The results obtained by applying the boundary condition

w = 0 (or W=0) at p = ptop illustrate the conclusion already

obtained by Lindzen et al. (1968). The application of that
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boundary condition in a finite difference model, has the

effect of a rigid top at some finite height producing spurious

reflections which are dependent on the vertical resolution of

the model. They also suggest that for a typical general cir-

culation model with a number of vertical levels of the order

of 10, the standing planetary waves are seriously misrepresented

throughout the whole troposphere and stratosphere. This problem

will be discussed in more detail in a later section.

For the numerical values used in this experiments we can

calculate, using expression (25), the critical velocity at

which the waves are reflected. In our case, the critical velo-

city is 34.8 m sec- 1. In order to study the solution corres-

ponding to an external mode, we carried out the same experiment

but increasing the mean zonal wind to a value higher than the

critical velocity. In Figure 4.8 the results using

U = 60 m sec 1 > Ucrit are presented. In contrast with the

internal mode situation, the structure of the external wave

can be properly simulated by both models, regardless of the

use of a rigid top. The solution shows an external wave

without any propagation of vertical energy. Only for the

N = 10 case there is a small difference in the amplitude.

The similarity of results in this case is due to the fact that

the medium produces internal reflection, because of the large

value of U. Consequently, much less energy can arrive to

the upper boundary.
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4.3 Simulations with Realistic Winds and Dissipation

In this section we discuss several experiments made

with realistic winds and dissipation for Winter, Summer, and

Fall conditions. The temperature, zonal winds, and Newtonian

cooling profiles are those described in Section 1.3.

In order to be able to use an exact radiation condition

in model ZG we modified the temperature, mean zonal wind, and

Newtonian cooling coefficient profiles, above 75 km. In this

region, the temperature is kept constant at 2100 K, the
-7 -1

Newtonian cooling coefficient at 1.5 x 10 sec , and the
-i

mean zonal winds are 55, 24, and -30 m sec- for Winter,

Fall, and Summer respectively. Later we repeat the computa-

tions with a rigid top boundary condition.

4.3.1 Control Solutions with and without Newtonian Cooling

The results obtained with model ZG with N = 200 are

taken as reference solutions with which other results are

compared. In interpreting the results we have to have in

mind the effects of the zonal winds and the dissipation due

to Newtonian cooling. A critical velocity can be determined

analytically for an isothermal adiabatic atmosphere with

constant mean zonal winds (expression (26) ). For stationary

waves, with westerly winds less than the critical velocity,



the medium allows a vertical flux of energy. Otherwise, the

medium behaves as a reflector and the wave energy density

decays exponentially.

The results for Winter are presented in Figure 4.9.

The scaled amplitude of the wave is oscillatory below 40 km

and decays toward the top of the model. The upper region of

strong westerly winds, in which the amplitude decays and

the phase remains constant, represents a reflective medium.

In the region of light westerly winds, the medium allows a

wave of the internal type. The oscillatory nature of the

waves in this region is a result of the interference between

the forced waves and the reflected waves due to the presence

of the upper winds. The results show how the medium allows

an external mode above a certain level and an internal mode

below that level.

To study the effect of the Newtonian cooling, the same

simulation with a = 0 was performed. The wave is now ver-

tical (the phase is constant in the vertical) with discon-

tinuities at 15 and 3 km produced by the interference

between the upward and downward waves. The computations

clearly indicate that the inclusion of the radiative damping

modifies the vertical structure of the wave and substantially

decreases the net upward flux of energy. It is interesting

to notice that the damping has small influence on where the

maximum of the amplitude occurs but strongly reduces it.
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For Fall conditions (Figure 4.10) the zonal winds are

westerly and weak at all levels, so there is no restriction

to the vertical propagation of wave energy. The phase tilted

westward all the way up. The case a = 0 shows the impor-

tance of the radiative damping in Fall, as was pointed out

by Dickinson (1969). The results confirm the observational

evidence that there is not a large upward propagation of

planetary waves as predicted by the Charney-Drazin theory.

For Summer conditions (Figure 4.11) the results are

qualitatively similar to those of Winter. The strong

easterly stratospheric jet does not allow propagation of

wave energy. Up to 20 km, with westerly winds, the wave is

oscillatory. Above this level, the wave decays very rapidly.

The phase becomes constant above 20 km, confirming the

existence of the upper reflective medium. As in previous

cases, when a = 0, the amplitude of the wave is greater

and, consequently, the intensity of the interference is

also greater.

4.3.2 Different Horizontal Wavenumbers and Phase Velocity

In another set of experiments we study the behavior of

the ZG model under different horizontal wavenumbers k and

Z, and phase velocity c according to the following

table:
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Case k k c
-7 -

I 2.7347 x 10 3.4902 x 10-7 0.
-7 -

II 2.7347 x 107 6.9804 x 10-7 0.
-7 -

III 5.4696 x 10 3.4902 x 10-7 0.
-7 -

IV 5.4696 x 10 6.9804 x 10-7 0.-7 -
V 2.7347 x 107 3.4902 x 10-7 5.

-7 -
VI 2.7347 x 10 6.9804 x 10-7 5.

Case I represents a stationary wave with zonal wave-

number 1, and a northward width of 18 000 km. Case II redu-

ces the northward width to 9 000 km.

Cases III and IV are the same as I and II but for

zonal wavenumber 2.

Cases V and VI are transient waves, with zonal wavenum-

ber 1 and northward widths of 18 000 and 9 000 km respecti-

vely.

Simulations for Winter, Summer, and Fall were made for

the six cases. The results are shown in Figures 4.12, 4.13,

and 4.14. The general features for each season, discussed

in the previous section, are present in these simulations.

In Winter (Figure 4.12) for cases II, III, and IV, the

waves are reflected at a lower level -about 12, 13, and 7 km

respectively. Using expression (26) we evaluate the critical

velocity for the first four cases, assuming a = 0 and

H = 7 km. The critical velocities are 34.8, 17.7, 21.8, and

13.6 m sec - 1 respectively. These values explain the reduc-

tion of vertical penetration and confirm the observational
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evidence that wavenumber 1 is one of the most freely propagat-
-l

ing waves in the atmosphere. The inclusion of c = 5 m sec

(cases V and VI) results in more vertical penetration (see

expression (26) ), but reduces significantly the amplitude of

the wave.

In Fall (Figure 4.13), with weak westerlies, there is no

inhibition of the vertical propagation of wave energy.

However, for cases II and IV, the medium allows a wave of the

external type in the upper levels. We confirmed these

results by calculating the index of refraction y under con-

stant conditions using expression (32). For cases I and III,

y is real, while for II and IV, y is imaginary.

In Summer (Figure 4.14), the decreasing of the horizontal

wavelengths results on an increasing in the amplitude at low

levels, without changing the wavelike structure. At upper

levels, the easterlies inhibit vertical propagation.

These results suggest that the effect of the artificial

top boundary condition a = 0 will be much more serious for

the longest stationary planetary wave than for waves which are

either shorter or transient.

4.3.3 Winter Simulations

The performance of the model PG under Winter conditions

is shown in Figure 4.15. The N = 100 model is in very good

agreement with the control solution, so we may conclude that
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the spurious reflection at the rigid top is insignificant.

The amplitude and energy propagation of the forced wave are

small in the vicinity of the upper boundary. The decrease in

resolution produces systematic changes in the computed struc-

ture, until N = 5 model has little resemblance with the

control solution.

We have already shown that the use of a rigid top pro-

duces undesirable reflections. By decreasing the resolution

of the PG models, we decrease the height of the highest com-

putational level. If the resolution is sufficiently poor,

the model becomes completely unaware of the existence of the

reflecting layer produced by the strong westerly winds.

Consequently, the forced wave in a low resolution model is

not subject to an internal reflection by the medium, and pro-

pagates energy to the upper boundary where it suffers

reflection.

Figure 4.16 shows the performance of the model ZG with

a rigid top boundary condition. The simulations with

N = 30, 50, and 100 are identical to the reference solution.

The wave structure is well represented because the models

have many levels uniformally distributed throughout the

atmosphere, and consequently, they can simulate accurately

the atmospheric conditions. When the levels decreased to

N = 10 and 5, the model could not resolve the wave struc-

ture properly due to the sparcity of layers in the lower

atmosphere. With N = 10 there is only one level in the

troposphere, while for N = 5, the first computational level
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is in the mid-stratosphere.

4.3.4 Fall Simulations

Figure 4.17 shows the PG computations for Fall conditions.

The results are in reasonable agreement with the control simu-

lation, suggesting that the upper boundary condition is not

that important. The Fall zonal winds, being westerly and

weak at all levels, do not inhibit the vertical propagation

of wave energy. Consequently, the explanation here must be

different from the winter case. In the fall, Newtonian cooling

must be the mechanism that absorbs most of the vertical propa-

gating wave energy before it reaches the upper boundary. To

test this interpretation, the same simulation with a = 0

was performed. The results are shown in Figure 4.18. The PG

simulations have little resemblance with the control solution.

The oscillatory nature of the waves and the discontinuities in

the phase are a consequence of the interference between the

forced wave and the reflected wave. Then, with a = 0, more

wave energy reaches the upper boundary and is reflected down,

increasing by interference the amplitude of the wave.

An important difference with the Winter simulations are

the solutions obtained with low resolution models. The N = 10

and 5 models produce a reasonable simulation of the troposphere

and low stratosphere. These results have an important signifi-

cance for the simulation of planetary vertical waves by
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general circulation models. They suggest that with a proper

lower boundary condition (orography and surface temperature),

a good tropospheric resolution will produce adequate tropos-

pheric results regardless the conditions of the upper

atmosphere.

The Fall simulations using model ZG are shown in Figure

4.19. The N = 100, 50, and 30 models produce similar

results. The mesosphere is not well represented due to the

effects of the upper boundary conditions. Some of these

effects also affect the stratospheric wave structure.

The simulations with low resolution ( N = 5 and 10) are

completely erroneous due to the scarcity of computational

levels in the lower atmosphere.

4.3.5 Summer Simulations

For Summer conditions, we must expect results similar to

those of Winter. During the Summer the stratospheric easter-

lies prevent the vertical propagation of wave energy, while

during the Winter this is done by the high westerly winds.

The results using the pressure model are in Figure 4.20.

For the low resolution simulations we obtained the expected

departures from the control solution, due to the fact that

the model is unaware of the easterly winds. The N = 100,

50, and 30 models present a good agreement with the reference

case. The PG models have all the computational levels in the
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troposphere and low stratosphere, where the main activity

takes place during the Summer. Figure 4.21 shows the simu-

lations with the log-pressure coordinate model. The N = 100

and 50 simulations are in good agreement with the reference

case. As the resolution decreases, the wave structure

becomes erroneous. The sparcity of levels in the tropo-

sphere and low stratosphere is responsible for this

misrepresentation.

4.3.6 Rigid Top at 35, 20, and 12 km

We have seen that the vertical profiles of the zonal

winds in the stratosphere for Summer and Winter were very

important in the determination of the structure of the ver-

tical propagating waves. For Fall, with weak westerly

winds, the damping effect produced by Newtonian cooling is

the main factor.

By decreasing the depth of the atmosphere in the model,

we do not allow some of these factors to interact with the

vertical propagating waves. Several experiments with a

rigid top at 35, 20, and 12 km were made for Summer, Winter,

and Fall conditions. The model ZG was used because, as we

already saw, a numerical model which uses Az increments

provides a more uniform resolution for waves that propagate

energy vertically than a model that uses constant Ap

increments, since these waves have a sinusoidal dependence
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on z. The effect of decreasing the depth of the atmosphere,

using a pressure model that simulates a currently used general

circulation model, will be discussed in the next section.

Figure 4.22 shows the simulation of the reference case

together with the simulation using a rigid top at 35 km for

Summer, Winter, and Fall. For Summer there is no difference

in the scale amplitude between both simulations. The model

is well aware of the presence of the easterly winds above

20 km. The boundary condition specified at the top had no

influence upon the solution. For Winter, the rigid top

qualitatively simulates the presence of the reflective layer

produced by the strong westerly winds, although there are

small quantitative differences in the calculated amplitudes.

The Fall simulations present more differences, because the

rigid top interrupts the vertical propagation producing

spurious reflections. The interaction between the upward

and downward modes produces the wavelike profile. The

decrease in resolution using the rigid top, produces little

effect in model ZG, as shown in Figure 4.23.

The simulations for each season, with the top at 20 km

(about 50 mb) and at 12 km (about 100 mb), are presented in

Figures 4.24, 4.25, and 4.26. In all cases, the solution is

strongly affected by the upper boundary condition, and gets

worse when the top is lowered.
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4.3.7 Simulations with the N = 10 Models

One of the purposes of this study is to increase our

understanding of the effect of the top boundary condition on

current general circulation model simulations. Therefore,

we made extensive comparisons of the numerical results

obtained using N = 10 levels (typical of current general

circulation models) but varying the position of the top and

the distribution of vertical levels.

We chose the 10 level models with the position of the

top at six different heights: 1, 5, 10, 50, 100, and 200 mb.

As reference, we are going to specify each model by the

position of the top in mb. (i.e., T10 means that the top is

situated at 10 mb.)

To help in the interpretation of the results, the dis-

tribution of the computational levels are given in the

following tables:

Top in mb. 1.0 5.0 10.0 50.0 100.0 200.0

Top in km. 53.5 36.7 30.5 18.9 14.5 10.3

50.2 34.0 28.6 17.9 13.7 9.8

41.1 19.3 25.0 15.9 12.3 8.9

34.7 25.2 21.5 13.9 10.8 7.9

Computational 28.6 21.2 18.3 12.0 9.4 7.1

Levels 23.2 17.5 15.2 10.1 8.1 6.1

Model ZG 18.3 14.0 12.2 8.3 6.8 5.0

13.7 10.6 9.4 6.6 5.3 3.9

9.4 7.5 6.8 4.7 3.7 2.8

5.3 4.2 3.7 2.5 1.9 1.4



Top in mb.

Top in km.

1.0 5.0 10.0 50.0 100.0 200.0

47.1 35.3 30.7 20.4 16.1 11.7

19.9 19.5 18.9 16.0 13.6 10.5

13.1 12.9 12.8 11.6 10.5 8.5

Computational

Levels

Model PG

As illustration, we

9.8 9.8 9.7 9.0 8.2 6.9

7.6 7.6 7.5 7.0 6.5 5.6

5.8 5.8 5.8 5.5 5.1 4.4

4.3 4.3 4.3 4.1 3.8 3.3

3.1 3.0 3.0 2.9 2.7 2.4

1.9 1.9 1.9 1.8 1.7 1.5

0.9 0.9 0.9 0.9 0.8 0.7

present the levels distribution of

some of the general circulation models currently

GFDL(18) GISS(9) BMO(12) NCAR(12)

Height (km) :

27.90

21.47
18.33
15.29
12.89
10.50
8.68
6.86
5.43
4.01
2.11
1.49
0.86
0.52
0.17
0.08

20.2

5.5
4.0
2.7
1.6

0.6

Models:

in operation.

GFDL(9)

31.60

18.00

12.00

8.30

5.50

3.30
1.70

0.64

0.07
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Simulations were performed using models ZG (constant Az

with H variable) and PG (constant Ap ) for four different

situations: constant, Winter, Fall, and Summer conditions.

Figure 4.27 shows the results obtained with the PG model

under constant zonal winds and temperature conditions. The

models Tl, T5, and T10 are completely in error. As the top

is lowered from T50 to T200, the solution approaches the

reference solution. This surprising behavior is explained

by the fact that the lower boundary condition strongly

influences the solution in the troposphere. As the top is

lowered, the tropospheric resolution increases. For T200,

the ten levels are in the troposphere. Using equations

(33) and (34) the analytic solution

Cos Z - - ir2-bZi

is obtained. For values of y2t near , cos y is

dominant and is near unity in the vicinity of the ground.

Essentially the same results are obtained with the ZG

model, as shown in Figure 4.28.

Figure 4.29 shows the PG Winter simulations. To inter-

pret these results two facts have to be taken into considera-

tion: the effective position of the top, and the effect

of the lower boundary condition. Models Ti, T5, and T10

have a poor representation of the troposphere, while as the

top is lowered, the representation of the troposphere
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improves. For Winter (see Section 3.3.3) there is a reflec-

tive layer around 40 km. None of the PG models can detect

the strong stratospheric winds that produce the reflective

layer. The inclusion of an artificial top can help to

simulate that reflective layer, but the effective position of

that top becomes crucial.

In order to investigate this interpretation, the simula-

tion of wavenumber 2 for Winter was performed (Case III in

Section 3.2). In this case, the position of the reflective

layer is situated at a lower height, aroung 20 km. The

results shown in Figure 4.30 are in reasonable agreement with

the reference solution. Model T100 produced the best results

as it seems to obtain a good combination of tropospheric

resolution and position of the top. More evidence is obtained

in another experiment in which the vertical resolution is

varied as in the GFDL model (Smagorinsky et al., 1965). The

levels are arranged to give maximum resolution in pressure

at the extremes of the atmosphere, namely near the ground and

in the stratosphere. The Winter simulation using this verti-

cal structure (Sl0 for reference) is shown in Figure 4.29

and is by far the best tropospheric simulation.

The Winter simulations using model ZG are shown in

Figure 4.31. The T1 model is in very good agreement. The

top has no influence in the solution since it is situated

inside the reflective layer. However, the troposphere with

only two levels is not well represented. As the top
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decreases, the tropospheric representation improves but the

effect of the rigid top is more evident and clearly modifies

the vertical structure.

Figure 4.32 shows the PG Fall simulations. Here the

picture is quite different from the Winter case. The models

TI, T5, T10 are in good agreement with the reference solution.

It seems that with weak westerly winds the damping effect of

Newtonian cooling removes the upward energy in such a way that

the position of the top is not important. However, as the

top is lowered, in models T50 and T100 the effect of the

rigid top becomes evident. For model T200 this effect is

partially canceled by the effect of the lower boundary.

These results strongly suggest that the optimal position

of the top for a N = 10 model is seasonal dependent. As

expected, model S10 produces good tropospheric results

(Figure 4.33).

With model ZG (Figure 4.34), model T1 produces a good

simulation in the stratosphere. Models T5 and T10 with more

tropospheric resolution produce a reasonable simulation

throughout the atmosphere. Model T50, in spite of having

a better tropospheric resolution, it does not produce a good

simulation. On the other hand, models T100 and T200 produce

good tropospheric simulation.

Figure 4.35 shows the results obtained with the PG model

under summer conditions. Models Tl, T5, and T10 are in very

good agreement with the reference simulation. The effective
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rigid top has little influence in the wave structure since

it is situated in the vicinity of the reflective layer produced

by the easterly winds. When the top decreases (models T50,

T100, and T200), the rigid top is no longer able to simulate

the reflective layer, and the wave structure presents the

effects of the reflected waves.

The S10 model produces very good results since it has

good resolution in the troposphere and low stratosphere

(Figure 4.36).

The Summer simulations obtained with the ZG model are

presented in Figure 4.36. Models TI, T5, and T10 present good

agreement with the reference solution in the stratosphere.

For the troposphere, the sparcity of levels does not allow for

a good simulation in this region. Models T50, T100, and

T200, as in the PG simulations, misrepresent completely the

wave structure. The position of the top in these models is

too low to represent the effects of the reflective layer.

5. ALTERNATIVE APPROACHES TO THE UPPER BOUNDARY CONDITION

In the previous sections we showed that the upper bound-

ary condition can fundamentally affect the entire solution by

the reflections produced at the rigid top. In this section

we will be concerned with developing a mechanism to reduce

or to avoid the reflections at the upper top.
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5.1 Sponge Layer

One possible mechanism is to have a complex index of

refraction in a layer below the upper boundary, so the waves

can be damped before they reach the upper boundary. The index

of refraction of this sponge layer can be modified by the

introduction of viscosity in the horizontal equations of

motion,

'(a S%7+

or by the Newtonian cooling coefficient, or the thermal

conductivity coefficient in the thermodynamic equation,

- U -- + w -T + . T

With these modifications, the ZG model becomes:

4-. M - M U))
4- L K4-L

LrsdF
..... - -

dz +
\AI _ _ _

(36)

(37)
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in which i the viscosity coefficient, and n the thermal

conductivity coefficient are in general, functions of z.

Assuming constant conditions, system (36)-(37) can be

written as:

L -(38)

Z /Z H

in which .--L- . eZ

V.wM M)R L- L

and - ( U-' ( 1  - (39)

The expression for y2 shows that the presence of at

least one of the coefficients p, a or n are necessary to

obtain the complex index of refraction. It also shows that

both methods (dynamic or thermodynamic effects) have inverse

behavior with respect to the horizontal wavenumber k.

However, they are essentially equivalent methods if the

appropriate coefficients for the desired range of horizontal

wavelengths are used.

The inclusion of this sponge layer has the purpose to

damp the upward propagating wave energy before it can be

reflected from the upper boundary. Because of the influence

of this damping layer on the wave structure, it is necessary

to evaluate its reflection characteristics. An analysis

I~j~/ tLIIII~- I~LI~



based on linear wave theory is presented below.

Beneath the sponge layer, the solution of (38) is:

S(z = Ae 4- S e (4 0)

in which n is the appropriate index of refraction for the

atmosphere. In the sponge layer, the solution will be:

. z Cz) = C + D (41)

providing that p, a or n are constant coefficients.

For a horizontal wavenumber k > 0, the A term

corresponds to upward propagation of energy, while the B

term represents the downward propating mode (see Section 3).

By assuming IAI = 1 for convenience, the value of IBI

will be a measure of the reflectivity produced by the upper

region. By matching solutions at z = z0  (bottom of the

sponge layer), and by imposing 2 = 0 at the top z = ztop'

the expression for B becomes:

2irm (z -Zo]

n-m - (m+n) e8 (42)

t 4 + ( r-) e

At the interface between the two media, there is a dis-

continuity in viscosity that will also produce reflections.

In order to minimize this effect caused by a rapid increase
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in viscosity, we will gradually increase the coefficient i

(or a ) from zero at z = zo to a constant value lk at

the top z = ztop , according to:

or some other suitable expression. Under these conditions,

or some other suitable expression. Under these conditions,

expression (42) is no more valid. To obtain a new expression

for B, we have to solve the equation:

2

C1fl. 2 O
.4-

in the domain z z z topo Ztop

Assuming zo = 0 for simplicity, the matching condition

= Q at z = 0 produces:

and cn= aiti.o dz d

and condition d - d 2  produces:
dz dz

- LfI 2 __ 9)

LAz

By eliminating B, we obtain the condition:

(43)

_li_ -_I~-PL~EI-L--*- -L-yl-il~ ~I~LI~I~Y~n~lll~ _
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+ fl- - f - (44)

at z = 0. Then, we solve (43), subject to (44) and 0 = 0

at z = zto p . We obtain the solution numerically by using

second order differencing and inverting the resulting tri-

diagonal matrix. Then, we calculate B by:

le = at z = 0.

The depth of the atmosphere, below the sponge layer,

does not influence B. B only depends on the depth of the

sponge layer, the vertical wavenumber n , and in the

characteristics of the coefficients ( , or n ) used.

The reflectivity B is plotted in Figure 5.1 as a function

of ak using for a the expression:

E- (o.'Zo ) - (45)

for several thicknesses of the sponge layer. In order to

make comparisons, we utilize as conditions for the atmosphere

those defined in Section 4.2. The results show that for a

given d (d is defined as the ratio of the depth of the

2'r
sponge layer z -top z to the vertical wavelength 2 ) '

top 0 n
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B first decreases rapidly with increasing ak and then

begins to increase. The large reflectivity at low values of

a k results from the reflections at the upper boundary due to

insufficient damping. The damping is not enough to eliminate

the amplitude of the wave before it reaches the top of the

layer. On the other hand, when the value of ak becomes

larger, its vertical gradient is responsible for internal

reflections. As the sponge layer increases in depth there

is a general decrease in reflectivity. Nevertheless, we must

say that the effects upon the reflectivity are rather

complicated. Reflections occur from the upper boundary as

well as throughout the sponge layer. The effect of these

partial reflections on the atmosphere below, depends upon the

phase of the reflected mode when it reenters the atmosphere.

We tested these results using the ZG model under constant

conditions and with a rigid top (see Section 4.2). The

exponential function (45) was applied at the levels below the

top of the model. From Figure 5.1 we selected the best

value for each d: ak = 7.5 x 10- 6 for d = and d = 2/3

and ak = 1.0 x 10 5 for d = 1/ . The results appear in

Figure 5.2. As expected, as d increases, the numerical

solutions approach the reference solution.

For comparison, other profiels were evaluated. For three

of these,
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O . - ,Z

o= O(i only for z0 S z ztop

the-reflectivity B is shown in Figure 5.3. We choose the

case d = 2/3 , but other values of d produce similar

results. Reflection from the constant profile is high for

all ak , due to the discontinuity of z = z . The other

profiles, all of which increase ak gradually from zero

at z = z0 to ak at z = z top produce comparableo k top

results.

If only waves with a single wavenumber were present, it

should be possible to use a relatively thin sponge layer with

the a k chosen to achieve the minimum possible reflection

for that thickness. In general, we must be concerned with

a range of frequencies, all of which will have a specific

pair of vales d , a k that minimize the reflectivity. The

desired damping for one frequency will not be, in general,

adequate for other frequencies. The results, also show that

relatively big values of the coefficients does not

guarantee a proper damping.

I11Y_ IIX^I____1______Y___~_~~____~_I_
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5.2 Destructive Interference

The sponge-layer method showed the importance of the

waves produced at the interface between the atmosphere and

the viscous layer above. To deal with this problem we are

going to use this uppermost layer to eliminate the unwanted

waves by producing a destructive interference between the

waves reflected at the interface and the waves internally

reflected in the sponge layer. We are going to show that,

if only waves with a single frequency are present, a simple

layer is enough to eliminate them. -Unfortunately, we must

be dealing with a range of frequencies. For this situation,

say N frequencies, a layer with N sub-layers, each of

them with a characteristic index of refraction, is needed.

The following discussion is based in a linear wave analysis.

Let us express the general form of a linear steady-

state wave in the atmosphere as:

i Ka MT_ L'Ko nz.

A 'e + 0 e

in which ko is the wavelength of the wave in an arbitrary

medium n , and

L K * . _7- >a Vn 7-
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for the sponge layer. As we mentioned before, the A terms

correspond to the mode that propagates energy upward while

the B terms represent the mode propagating energy down-

ward. Graphically, we have

AOe B e Ae Se
II I

=o z=L

Because we want to avoid the downward mode, suitable

values of L and m must be chosen, to obtain B = 0.0

By imposing the conditions Bo = 0, continuity of Q and
dG
dz at z = 0, and Q = 0 at z = L, we obtain the system:
dz

4 = At + 31 (46)

Y =m - (47)

. Koyh _L Kom

A, P + 0 e (48)

Solving for AO and Bo in (46) and (47), and substituing in

(48), we obtain:

21 KomL

+ (m-n) = O (49)(m+n) e
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The reflected waves produced at z = 0 are cancelled

by interference with the waves reflected at z = L. However,

the mathematics mask this physical interpretation, which is

shown in an appendix. Equation (49) solves the problem for

waves with a single frequency, because the values of the

distance L and the index of refraction m that satisfy

(49) make the amplitude B of the reflected wave vanish.

The idea behind the general procedure can be shown with

the two frequency case. Let us consider two waves with wave-

length ko  and k1 respectively. Under linear conditions,

these two waves can be treated separately. Graphically we

have

~A~n.L Ko V 2Z.
A. Ai e.

I I
l v,no7_L -- ,% V nj 7_ -'L I im . - nzz- - n- 2 n7 -

The procedure to eliminate the reflection in the atmo-

sphere, Bo = Do = 0, is as follows. Firstly, we impose

A2 = B2 = 0, so that the waves of wavelength k0  are not

transmitted into the medium n2 . This is formally

equivalent to the case N = 1. Consequently,

+ (n I- C)
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is obtained, and L1 and n evaluated. Secondly, the waves

of wavelength k are transmitted into the media nI and

n2 . At each interface, reflected waves are generated. We

select n2 and L2  (note that L1 and nI are already

determined) so that Do = 0. This means that the reflection

in the atmosphere of these particular waves is avoided. By

a procedure similar to that of the previous case, we obtain:

1 = Ci -6 D (50)

(51)

i , ni L1
+ I Ki nL L,

iL i nl2 L2

+ Dz

L K1 n2 L

- r 2 C2e.

= O

Solving for C and D in (50) to (53), and substituing in

(54), we obtain:

-n2 D2 e

(52)

(53)

(54)

no n C j - Vn4 t)
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2i Cn, Lj

S (this z- equation, L1n) eand n are known,

In this equation, L 1 and n 1 are known,

L2 and n2

For the general case of

( i = 1, 2,

( f1i - V)

and we solve for

N wavelengths,

..., N ), the following recursive formulas are

obtained:

n4 + 1no
0 2n

nj+1

L ., (n3 + nl,.,) L3

so r-no
211

ri, -n,
2 nj .l

11j+1 + n,
2- nj+i

-i Kv n, Lh

For each m varying between 1 and N, j varies between

0 and m-l. Therefore, to obtain the values of and

nj, N equations must be solved. For m = M, the values

ki:1

n4 +i.

=0

2LK14 0s(L2- L-)

Y, n (ij +np, ) LVI (,,- "j,) Lj

(n -nj+j) L3
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of LM and nM are evaluated using the known values of

L. and n. ( j = 1, 2, ... , M-1 ) previously calculated.

This method was tested by solving numerically a simple

case. For constant conditions, and Case I of Section 4.2,

a value for n of 1.25664 km- 1 was obtained. By solving

equation (49) with an arbitrary depth of the sponge layer

of L = 10 km, a complex number 1.73572 + i 0.09074 for

m was obtained. Then, we solved equation

& ' a. 2
+ n -CL (55)

in the atmosphere with 2(0) = 1, and equation

22
4 - 0 (56)

in the sponge layer, subject to Q(top) = 0.

The solution was obtained numerically by using second

order differencing and inverting the tridiagonal matrix that

results. Figure 5.4 shows the results for the atmosphere.

For comparison, computations made with a radiation condition,

and with Q(top) = 0 without the sponge layer are included.

The results confirmed the viability of the method. However,

the computations were made using several levels in the sponge

layer, an impractical procedure from the point of view of
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a general circulation model. Reducing the number of levels

in the sponge layer caused trouble, because system (46) to

(48) corresponds to a continuous cases (infinite number of

levels, Az - 0 ) and instead a discrete solution was

obtained that was highly dependent on the value of Az (by

decreasing the number of levels, Az increases). The

outline of the correct procedure to be applied on the discrete

case is presented below.

In finite difference form, equation (55) becomes

and equation (56), becomes equation (57) where n is

replaced by m. The solution of these equations are

KK4~A~ and C 6 +13

respectively, where A, B, C, D are constant coefficients,

7 260 6j) z 2- (58)

and (b2 1b3 ) is obtained by replacing n by m in (58).

By specifying for convenience A = 1, the discrete
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structure as

K=L

and B = 0 to avoid reflections, the analog in finite

difference of system (46) to (48) becomes:

i= C+ D

L LC2 b -o

&+ (z -r ) + (c b

By eliminating C and D, the analog equation of

(49) can be obtained. Then, by specifying the depth of the

sponge layer L, it is possible to solve for m.

Unfortunately, to solve this system is quite more complicate

than to solve system (46) to (48), since b2 and b3 have

a functional dependence with m.

-2z

__ __ __
K---&z
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6. SUMMARY AND CONCLUDING REMARKS

In the present work, linear mid-latitude models on a

beta-plane, were formulated to study the consequences of

using a rigid top as an upper boundary condition, to examine

the effect of vertical resolution and the position of the top

on the simulation of forced planetary waves, and to test

alternative approaches for the upper boundary condition. Two

of the models are based on the primitive equations (with

pressure and log-pressure vertical coordinates respectively),

while two other are based on the quasi-geostrophic equations,

with the same two vertical coordinates. The simulations using
dp dz

a rigid top boundary condition, - = 0 (or - = 0 } were

compared with a reference model using a radiation condition.

Forced small perturbations subject to Newtonian cooling were

superimposed upon a mean thermal basic state having realistic

vertical mean zonal wind profiles for Winter, Fall, and Summer.

The use of a constant coefficient beta-plane approxima-

tion in the primitive equation models produced a complex

index of refraction, introducing artificial damping of the

solutions when the meridional wavelength was finite. There-

fore, most of the computations were performed with the quasi-

geostrophic models.

Simulations were performed first using constant values of

the zonal velocity and temperature. This allowed us to make
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comparisons with analytic solutions. In agreement with pre-

vious investigations we found that the introduction of a rigid

top at some finite height produces spurious reflections which

are dependent on the vertical resolution of the model. The

pressure and log-pressure coordinate models were incapable of

representing a vertically propagating wave, although external

modes, with no energy propagation, were well represented by

the models.

We later performed computations of the planetary wave

structure with the pressure and log-pressure coordinate models

using realistic mean zonal wind profile for Winter, Fall, and

Summer, and Newtonian cooling. We found that for Winter and

Summer the planetary waves can be successfully simulated in

spite of the presence of a rigid top, if there is enough ver-

tical resolution. With low resolution models, the wave struc-

ture was in error throughout the entire atmosphere. For the

pressure model, insufficient stratospheric resolution produced

an inadequate definition of the zonal wind structure, and, in

consequence, the models were unable to detect the stratospheric

reflective layer. The spurious reflections produced at the

upper boundary were responsible for the misrepresentation of

the wave. For the log-pressure simulations, the models could

not resolve the wave structure properly due to the sparcity

of levels in the lower atmosphere. Under Fall conditions,

Newtonian cooling was found to be an important factor, in

agreement with Dickinson's results C1969). The simulation

__IL I~ _I_ __
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with high resolution pressure models produced a wave struc-

ture in good agreement with the reference model. The cooling

prevented some of the wave energy from reaching the upper

reflecting boundary. Also good agreement was obtained with

the high resolution log-pressure models, except in the meso-

sphere where the values of Newtonian cooling are small, and

consequently the damping was not effective. The low resolu-

tion models present a different behavior depending on the

vertical coordinate. The log-pressure simulations were

completely erroneous due to the poor resolution in the lower

atmosphere. On the other hand, the pressure models produced

reasonable simulations suggesting that with a properly

resolved lower boundary condition, good tropospheric resolution

will produce adequate tropospheric results regardless the

conditions of the upper atmosphere.

From the results obtained for Winter, Fall, and Summer,

with different resolutions, it may be concluded that the

absolute minimum number of levels necessary to obtain a rela-

tively good wave structure simulation is ten.

The influence of lowering the upper boundary in a model

with high resolution was not critical to the structure of the

waves for Winter and Summer, if the upper boundary was placed

at the middle stratosphere. However, the Fall simulation was

in error because the model was not affected by the damping

effect of Newtonian cooling at the upper stratosphere. If the

upper boundary was placed below 35 km, distorsions in the
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wave structure due to energy reflection at the upper boundary

became evident, regardless the wind profile used. When the

top was set at the lower stratosphere, the wave structure was

substantially modified.

The pressure and log-pressure models with ten levels were

used to study the behavior of the vertical propagating waves

when the height of the rigid top was varied. For Summer and

Winter, the use of an artificial top can help to simulate the

reflective stratospheric layer, but the effective position of

that top becomes crucial, The results show that the optimal

position of the top is seasonally dependent. The conclusion

obtained for a model with ten levels is that in order to obtain

good results, a compromise between the low atmosphere resolu-

tion and the position of the top has to be made. For the log-

pressure models this compromise is more difficult to obtain

because if the top is placed at the appropriate height, the

tropospheric resolution becomes very poor. The best simula-

tions were obtained with a nonuniform vertical resolution

similar to the one used by Smagorinsky et al. (1965), in which

levels are chosen to-give maximum resolution at the extremes

of the atmosphere. For the Fall, with weak westerly winds

that does not inhibit energy propagation, the radiative

damping compensates the effects of the rigid top, However,

for the log-pressure models is more evident that poor tropo-

spheric resolution produces a misrepresentation of the wave

structure in this region,
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In view of the modifications in the wave structure that

a rigid top can produce, two "sponge layer" mechanisms to

reduce the reflection of wave energy were tested. In one of

them, a complex index of refraction was set in a layer below

the upper boundary, in such a way that the waves could be

damped before they reached the upper boundary. To obtain the

desired index of refraction, adequate coefficients of viscosity

or of Newtonian cooling were used. A complex index of refrac-

tion that increases smoothly with height was found to produce

better results that a constant one. It was found that there

is an optimum value of the viscosity (or of the Newtonian

cooling) coefficient, which is a function of the frequency of

the waves and the depth of the sponge layer. Lower values

produce insufficient damping, and higher values produce

internal reflections due to the strong vertical gradient of

viscosity. The second approach uses a single layer at the

top to eliminate the reflected wave by producing destructive

interference between the wave reflected at the top and the

wave at the bottom of the sponge layer. With this approach

the thickness of the sponge layer can be chosen in accordance

with the requirements of the model used. A generalization

of this method when several frequencies are present is proposed.

The problem of the proper choice and effect of the top

boundary condition on general circulation models is very

complex. The results obtained in this study with simple models

can provide a guidance in the analysis of the effect of the

rigid top boundary condition in a realistic general circulation



115

model, in the choice of an optimum distribution of vertical

levels for a minimization of the negative effect of the rigid

top, and in further studies of the possible improvement of

the treatment of the top boundary condition.
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APPENDIX

The principle of operation of the destructive interfer-

ence can be seen with the help of Figure A.1, where a layer

with its two interfaces is shown. A wave of unit amplitude

is incident at the first interface. A fraction R12 of

the amplitude is reflected. The transmitted wave of ampli-

tude TI2 proceeds on to the second interface, where it is

reflected again and partially transmitted (or as in our case,

only reflected). The reflected wave proceeds back to the

first interface, where part of it is transmitted out to

the first medium and is added to R12, and part is reflected

back to medium 2, and so on.

The total reflected wave is the vector sum of the ampli-

tudes produced by all the multiple reflections. The change

in amplitude and the phase retardation caused by the

traveling of the layer has to be included.

Firstly, by a procedure similar to that of page 102, we
+,-(n-in) an

calculated that 1 + R = T 2 , R (n+m) and12 12 12 (n+m)'
T (2n) where n and m are the indices of refrac-I2 -(n+m)

tion of the media 1 and 2 respectively.

Secondly, we calculated the first reflections:

First R2
12

Second T 2R T e2iKL = (1-R 2 )R e2iKL
12 23 21 1 2  2 34iL2 2 4iKL

Third T R R R T e4iK L = (1-R 2)R2 R 2 4iKL
12 23 21 2 3 2 1 1 2 2 3 2 1
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and by induction, the N reflection will have an amplitude

2 N-1 2i(N-1)KLequal to (1-R23 ) R2 1 e . Then,

2 2iKL 2iKL 2 2 4iKL
total 12 ( 1 2 )R 2 3  (+R 2 1 R2 3 e +R2 1 R2 3 e

and because I R2 1 R2 3 e2iKLI < 1,

S+ (1-R2 ) R e2iKL
total 12 2iKL

1 --R21 R23 e21 23

For the case considered in Section 5, R23

Then
2imLRI - e

Rtotal 1 2imL
l-R1 2e

= -1 and k = m.

(59)

We have no reflection if the numerator in (59) is zero,

or when (n-m) - (m+n) e2 imL = 0, equation (49).
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