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Time-dependent chemical equilibrium outgassing histories of
primitive, undifferentiated chondritic planets are presented.
The compositions considered range from an ordinary chondrite
model to a model of ¢0% ordinery chondrite + 10% Cl carbon-
aceous chondrite material. The sequence of mineralogical
changes in the surface regions cf these models due to ox-
idation by outgassing of volatiles is investigated up to

the disappearance of metallic iron. The time-dependent
equilibrium chemistry of many compounds and gases and the
evolution of a 'raw' atmosphere are presented. Applica-

tions of these models to the Solar System are proposed.
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1. Introduction

The planets of our solar system were formed about
4.6 billion years ago. Upon accretion the interiors of the
planets heated up, releasing volatiles to the surfaces.

The composition of these gases changed with time, according
to the oxidation state of their source and of the material
through which they passed on their way to the surface. The
purpose of this thesis is to show how, over a range of
initial assumptions, the mineralogy of the surface regions
of a typical, undifferentiated terrestrial planet and its
atmosphere will evolve during outgassing.

Most of the meteorites that fall én Earth today are
chondrites and of these most are ordinary chondrites
(Mason, 1962; Wasson, 1974). Also, most Earth-crossing
asteroids are of ordinary chondrite compositicn (Chapman,
1976). Furthermore, the bulk composition of the Earth
itself is most like an H chondrite, with slightly more
metallic iron (Larrimer, 1971; Fig. 1). According to
Lewis' (1972) models of planetary accretion the compositions
of the planets are highly dependent on the temperature
conditions in the primordial solar nebula at which they
formed, and the temperature is in turn a strong function

of distance from the Sun (Cameron, 1973). Ordinary chon-



drites in his models were formed in the vicinity of the
Earth's orbit, while ths carbkonaceous chondrites, which
contain more volatiles, formed under coclder conditions,
beyond the orbit of Mars. Therefore, a planet like the
Earth, for instance, can be considered to have accreted
mostly from ordinary chondrite material that existed in
the vicinity of its orbit, with a small amount (a few
percent) of material sampled from further out (Cox et al.,
1978; Cox and Lewis, 1979). The dynamical models by Cox
show that there is no need to invoke models in which discrete
events occurring over a short period of time, such as
veneering, are necessary.

Anders and Owen (1977), in order to explain the
abundances of magnetite and volatiles in the Earth, have
proposed an inhomogeneous accretion model in which the
Earth accreted most of its present-day mass from ordinary
chondrite material and was then veneered by carbonaceous
chodrite material. This model is based on calculations
by Weidenschilling (1975), which show that small carbon-
aceous chondrite objects between the orbits of Mars and
Jupiter could have been perturbed by Jupiter into Mars-
or Earth-crossing orbits or out of the Solar System.

Anders and Owen go on to determine an exact mixture of

seven various chondrite types to account for the volatile



content of the Earth. This model thus has no predictive

capabilities for the other terrestrial planets. Furthermore,

it assumes that the carbonaceous chondrite objects were
perturbed into the vicinity of the Earth at the end of its
accretion and fails to explain why the present flux of
meteorites on Earth is mostly ordinary chondrites. (If
the carbonaceous chondrite objects had been perturbed into
Zarth's orbit before the Earth finished accreting, accre-
tion would have been homogeneous anyway). The isotopic
compositions of hydrogen, nitrogen, and carbon on the
Earth resulting from this model do not agree with the
isotopic abundances on Earth today (Lewis et al., 1979),
which happen to resemble most closely ordinary chondrites.
In fact, the isotopic abundances in Anders' and Owen's
model agree most closely with C3 chondrites.

Another problem with Anders' and Owen's seven-com-
ponent model is that it attempts to explain the bulk
composition of nine different planets and satellites
(Mercury, Venus, Earth, Moon, Mars, Galilean satellites);
it seems dynamically unlikely that planets in the same
orbital vicinity, that is, Earth-Moon and the four Galilean
satellites, would have accreted from radically different

mixtures and subsequently evolved differently. It is more



reasonable to assume that the differences amcong these bodies
are due to other facters such as size or, in the case of
the Galilean satellites, different temperature and pressure
conditions due to Jupiter at their orbits.

Inhomogeneous accretion models have been proposed
by Turekian and Clark (1969). A consequence of inhomo-
geneous accretion models is that very rapid (4105 years
for the Earth) accretion is required to generate enough heat
to melt and differentiate an iron-nickel core. If the
Moon accreted inhomogeneously, it would need to accrete
in less than 100 years to generate enough heat to melt and
differentiate. Rapid accretion models fail totally to
explain why Vesta is differentiated. Even if Vesta
accreted instantaneously, its temperature would rise only
lOoK, far from enough to melt it. Another heat source
was present on Vesta, one that must have been present in
the other planets as well; thus it is unnecessary to
require rapid accretion to generate enough heat for
melting and differentiation. Compositional studies by
Lewis and Barshay (Lewis, 1972a; Barshay and Lewis, 1976)
of inhomogeneous accretion models also indicate important
chemical discrepancies: FeO and hydrous silicates do not
form, so that the Earth is deprived of water, and each of

the terrestrial planets, including Mars, shculd possess a



massive iron core.

Ringwood (1966), in order to explain the presence of
ferric iron in the Earth's crust and upper mantle, has
proposed that the Earth formed completely from Cl carbon-
aceous chondrite material. Cl chondrites contain no metal,
little or no ferrous iron, up to 40% magnetite by weight,
up to 20% water, 2-4% carbon, 0.5% nitrogen, 100 times
the rare gas content of the Earth and ordinary chondrites,
and sulfur in the form of sulfates and free sulfur (Mason,
1971). 1In fact, of all the chondrites, Cl chondrites in
terms of éomposition are farthest from the bulk composition
of the Earth (Fig. 1). Ringwood's hypothesis requires
that rapid accretion occur and that most of the enormous
quantity of volatiles initially present upon accretion
be totally outgassed and blown catastrophically off the
Earth. The Earth in this model would need to lose an
amount of volatiles equivalent to one to two times the
mass of Mars in order to reach its present day abundance
of volatiles. Ringwood further claims that Venus but not
Mars formed from carbonaceous chondrite material, However,
observations (McCord and Gaffey, 1974; Chapman et al., 1975)
indicate that there is carbonaceous chondrite material in
the asteroid belt, which implies that Mars would also have

to be carbonaceous. Thus, besides the serious problem of



explaining how Cl chondrites would be able to form under

the pressure-temperature conditions of the primordial nebula

at Earth's orbit to the exclusion of ordinary chondrites,
it is extremely difficult to explain, without requiring
catastrophic events, why the Earth would evolve thermally
from Cl carbonaceous chondrite composition to, coincident-
ally, ordinary chondrite composition.

Ringwood (1978) has drastically altered his original
Cl carbonaceous chondrite model to a model consisting of
only 10% Cl carbonaceous chondrite material. However,
even this model has an overabundance of volatiles as
compared to the Earth and still requires massive loss of
volatiles.

Mac (1974) has found experimentally that under
extremely high pressure and temperature conditions such as
those found near the Earth's core-mantle boundary, ferrous
iron disproportionates into iron metal plus ferric iron.
Early in the thermal history of the Earth the ferric iron,
being incompatible with the denser, downgoing metal and
sulfide melt and with the ferromagnesian silicates in
the mantle, would partition into a low density silicate
melt and migrate upward toward the surface. It will be
shown in this thesis how magnetite will be formed from

metallic and ferrous iron simply by oxidizing these two
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components with HZO included in gases traveling upward
from the interior. Thus there is no need to invoke veneering
or a radically different initial composition solely to
explain the presence of ferric iron in the crust and upper
mantle.

It is more likely that the Earth accreted homogeneously
from cold, ordinary chondrite material with no more than a
few percent of more volatile carbonaceous chondrite material
mixed in. During the early history of the Earth the radio-
active heat sources were still large. As soon as the Earth
accreted to a large enough radius and the melting temperature
of the Fe-FeS eutectic was reached, melting and differentia-
tion of the interior began to occur. The Fe-FeS melt,
being denser than the primitive bulk material, began to
sink/releasing more heat in the process (Fig. 2). This
process became autocatalytic, such that differentiation
into an Fe-FeS core, a ferromagnesian silicate mantle,
and a thin, SiOz—rich crust of volatiles and other light
elements occurred.

A philosophical point must be raised here. 1In our
study of the universe, it is most desirable to apply the
principle of Occam's Razor. Models that depend on highly

unlikely coincidences and catastrophic events should be

avoided if simpler models can achieve the same results.
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The cold, homogeneous accretion model, being a closed
system besides being simple, is thus the best currently
available first-order model that we have to describe the
histories of the planets in our solar system.

The cold, homogeneous accretion model has one other
great advantage over many other models, that is, its ability
to predict and quantify results that can be applied to other
planets. Anders' and Owen's model, for instance, can only
be applied to a planet post hoc; it is powerless in its
ability to predict the composition and evolution of other
planets.

There are two extreme mechanisms for outgassing:
vulcanism and percolation. If a gas percolated upward
from a deep magma laver, it would more or less reach
equilibrium with the surrounding minerals as it traveled
upward, depending upon its rate of ascent. If a gas
erupted upward from a deep magma layer and were ejected
volcanically, it would equilibrate only with the atmosphere
and the near-surface layer. Both processes occur at one
time or another in a planet's history; determining to
what extent each of these affects the compositions of
the crust and atmosphere and at which points in a planet's
evolution is a key to understanding the formation of an

atmosphere.



2. Procedure and Results

Five different chondritic compositions were
analyzed. These compositions are: H-chondrite, 99%
H-chondrite + 1% Cl-chondrite, 98% H + 2% Cl, 95% H +
59 Cl1, 90% H + 10% Cl. The elements, gases, and minerals
considered are presented in Table 1 and the mineralogy
of each of the five assemblages is presented in Tables
2-6.

An IBM 360 computer, maintained by the Laboratory
for Nuclear Science at M.I.T., was used to construct
models of planets of each of the above compostions and
to aid in chemical calculations. The Fortran IV lan-
guage was utilized for all programming.

The initial conditions were homogeneous composition,
a primordial thermal gradient based on abundances of
U238, U235, Th232, and K40 4.6 billion years ago, a radius
of 6000 km., and a surface temperature of 278°K.

The abundances of the long-lived radionuclides
4.6 billion years ago were determined by solving the
following equation:
e-lit

N;=Nio

In 2

where A.=
1€
1/2i
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= £f=11 )
tl/2 half-life of component 1

i
t = 4.6 billion years
Ni = present abundance of component i
Nio = abundance of component i 4.6 billion

years ago.
The thermal gradient was then obtained from the equation:

dT _ A

dz K

where K thermal conductivity = 4.5 x 10-3 cal/sec-cm~°K
A = heat flow
and was determined to be about 20°K/km.

The outer layer of each model planet was divided
into 21 layers, each 3 km. thick, much like an onion,
such that a range of temperatures from 308°k to 1508°K
was considered (Fig. 3). The temperatures at which
chemical equilibrium calculations were done were those
in the middle of each layer. Thermodynamic data were
drawn from the Janaf tables and those compiled by
Robie and Waldbaum (1978). The lithostatic pressure of
each layer was considered to be a simple function of

density and the gravitational acceleration at the cor-

responding radius, assuming an uncompressed, homogeneous

-body; that is, Plith. = pgz

where ¢ = density, g = gravitational acceleration

z = depth inside the planet
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The average, uncompressed density of the planet was
taken to be 3.7 gm/cm3‘

Studies of Earth rocks by Brace et al. (1572)
and by Brace and Orange (1963) have shown that the
pore volume ranges from 1072 to 107% o’ per cubic
centimeter of rock. Chondrites also exhibit the same
range of pore volumes (Alexeyeva, 1958). The pore
volume in this thesis was assumed to be 10—3.

The initial equilibrium assemblage at the tem-
peratute and pressure conditions in the middle of each
layer was then calculated, using sets of simultaneous
mass balance and equilibrium equations; Ideality
was assumed throughout. The solid solutions considered
were:

Iron-nickel-graphite-nitrogen (Metal)

Forsterite-fayalite (Olivine)
Enstatite-ferrosilite (Pyroxene)
Albite-anorthite (Feldspar).

The activity of each of the above components (with the
exception of nitrogen and graphite; see below) was
considered to be the mole fraction of that component

in its solution, such that the activity of each solution
was always 1 if at least one of its components existed.

Orthoclase was assumed to be a separate phase with
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activity = 1, not included in the feldspar solution.
The solubility of nitrogen in iron metal at
high temperatures, according to Sievert's Law, was

taken into account. Sievert's Law states that

_ 1/2
[N] = K(Py )

2

where [N] = concentration of nitrogen in the metal
and K is obtained from Fig. 4.

The activity of graphite was taken to be a
function of its concentration in the metal (Lewis

et al., 1979), according to the equation

log Agr = log PPMgr,+ (2300 + 2000XFNi)/T + .3XFNi - 6.24

where Agr = activity of graphite
PPM__ = parts per million by weight of
9 gravhite in the metal
XFNi = mole fraction of nickel in the metal

T = temperature
The initial equilibrium gas composition of
each compositional model is presented in Figures 5-9.
Each mineralogical assemblage is dominated by N, at low
temperatures and by CH4 above about 430°K. Note the
non-linear behavior of N2 at 1200°K due to Sievert's

Law and the non-linear behavior of HCl at high
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temperatures. Talc is stable only in layers 1 - 3;
the phase change from talc-forsterite-enstatite to
forsterite-enstatite accounts for the discontinuities
of the hydrogen-bearing gas curves at layer 4.

The initial mineralogical equilibrium assemblage
of each layer for each chondritic model is presented
in Figures 10-1%.

Table 7 lists the sequence of mineralogical
changes as outgassing progresses; the sequence is the
same for each of the five assemblages considered.

The time-dependeﬁt evolution of talc, forsterite,
fayalite, iron metal, and magnetite is presented in
Figures 15-19.

The behavior of each of the components in
solid solution is as follows:

Feldspar

Albite and anorthite exist in solution with
each other during the initial sequence of outgassing
steps. As oxidation of the layer progresses, nepheline
and muscovite become stable according to the reactions:

NaAlSi308 = NaAlSlO4 + 2SlO2

Kalsi, o, + CaAl,si.O

30g ,5i,0g + MgO + H,0 = RR1,Si 0,4 (0H),

2 3°73
+ CaMg (5i0,),

8
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The activity of anorthite reaches 1 when the albite
is depleted. Muscovite forms rapidly until the ortho-
clase is depleted; part of the anorthite is used up
in the reaction to form muscovite + diopside (added
to the diopside present initially).
Olivine

As can be seen from Figures 15-19, forsterite
and fayalite achieve a steady state fairly rapidly.
When the activity of iron metal becomes less than
0.5, fayalite begins to be oxidized into magnetite
together with the iron metal until both the iron and the
fayalite are depleted. At the same time, talc and
forsterite increase slightly in abundance to accomo-
date the SiO2 released upon fayalite depletion.
Pyroxene

.Ferrosilite becomes stable in layer 4 (488°K)
in all of the assemblages considered. Enstatite exists
initially in the surface layer of each assemblage
except for 90%H + 10%Cl, but gets rapidly depleted into
talc + forsterite as hydrogen and oxygen are intro-
duced into the layer with each step.
Metal

The activities of nickel and iron metal remain
fairly constant throughout most of the outgassing

sequence, due to the much greater molar abundance of
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iron relative to nickel. The activity of iron begins
to decrease rapidly toward the end of the outgassing
sequence and the avtivity of nickel approaches 1 as the
iron and fayalite disappear.

Table 8 lists the composition of the ‘'raw’
atmosphere of each model at the final step considered.
Methane is dominant throughout the outgassing
sequence as long as iron metal is present in the
surface layer. Atmospheric escape of hydrogen, inter-
actions with the surface layer, and other atmospheric
processes were not considered; table 8 is merely a
listing of the gases pumped out of the éurface layers

of the outgassing models.
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3. Summary and Proposals for Further Research

The results presented in this thesis are for only
one set of initial temperature-pressure conditions, specif-
ically, a model of the early Earth; the main purpose of
the thesis was to analyze the thermodynamics of equilibrium
outgassing. Future research in this area, besides invest-
igating further the evolution of the surface regions of an
outgassing planet, will take into account different sets
of initial conditions.

A simple model of vulcanism, that is, outgassing
from the 1208°K layer directly into the surface layer, has
been presented here. Percolation can also be modeled
fairly simply. A model can be set up such that when the
equilibrium composition of each layer has been calculated,
the resulting gas in each layer is moved upward to the next
layer and reequilibrated. (An infinite gas reservoir below
the bottommost layer is assumed). Preliminary calculations
indicate that the evolution of the surface layers up to
about 450°X and atmosphere will not be much different from
the volcanic model.

The lithostatic pressure is a direct function of
radius; the radius of the model presented here is, needless
to say, the upper limit for terrestrial planets in our

solar system. With a smaller radius, if the thermal
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gradient is steep enough, it is possible that gas vulcanism
from unmelted high temperature layers could occur, since the
lithostatic pressure would be less than the gas pressure.

Of course, the gas pressure is also dependent on volatile -
content; a planet composed of carbonaceous chondrite material
will outgas more violently than a planet composed of
ordinary chondrite material.

The temperature of each layer in the model presented
here is a function only of long-lived radionuclides and the
surface temperature. Future models will take into account
the heat produced by accfetion and gravitational infall of
denser material toward the coré. Again, a higher thermal
gradient will induce more outgassing.

The sequence of mineralogical changes up until the
depletion of iron metal has been investigated here.

Further outgassing will continue to oxidize the surface
regions until eventually the gas pumped into the atmosphere
will be oxidizing. Serpentine becomes stable when the iron
metal is depleted. When all of the forsteiite is depleted
and the talc-serpentine buffer is reached, troilite will
begin to be oxidized into magnetite plus pyrite. Nickel
sulfide was not considered here; however, millerite (NiS)
is believed to be stable once much of the iron metal is
depleted. Calcium and magnesium sulfates will become
stable when the troilite is depleted, as will liquid

water. As the oxygen fugacity increases, hematite will
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eventually form until the magnetite is depleted.

Applications of these outgassing models to the ter-
restrial planets and satellites should yield very interesting
results. Venus can be modeled roughly as an ordinary

4 times the abundance of water found in

chondrite with 10~
ordinary chondrites (Lewis, 1270). Such a compositional o
model is expected to be much more oxidizing than a hydrogen-
rich mineralogical assemblage. Application to the Moon

may provide clues as to whether a co-accretional model with

the Earth is viable. A modest amount of water in an or-

dinary chondrite model of the Moon may oxidize all of the

iron metal into ferrous oxide; any atmosphere produced by
outgassing on the Moon would be lost to space due to the

Moon's feeble gravitational field. Mars may be modeled as

a C3 chondrite (Anders and Owen, 1977); the outgassing

results are expected to be much the same as that of the
10%C1-90%H model with a greater abundance of carbon.

Closer investigation of the sulfur chemistry of volatile-

rich models is expected to provide many insights into the
outgassing process on Io. Io is very oxidized due to
atmospheric escape of hydrogen from dissociation of out-

gasses hydrogen sulfide. In fact, it is so oxidized that

elemental sulfur exists in the surface regions of the



satellite. Models of Io would have to take into considera-
tion the tremendous gravitational attraction of Jupiter, a
major factor in the outgassing process on Io.

Further research in this area will provide us with
many more insights into the processes of outgassing and
should contribute to our quest to understand the evolution

of the Solar System.
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Caption to Table 1l: A list of the compounds and gases
considered. Minerals that are stable at one time or
another are listed in column A. Those marked with an
asterisk do not undergo any changes from their initial
abundances during the sequence of outgassing steps.
The gases considered are listed in column B. Other
compounds considered that never became stable are

listed in column C.
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Table 1

A B C
Mg28104 CO Slq2
Fe28104 CO2 MgO
MgSiO3 CH4 FeO
FeSiOg H, Mg (OH),, .
% .
FeS o, MgBSleS(OH)4
NaAlSl308 HZS Cao
CaA12$1208 802 A1203
KAlSl3O8 Cos NaZO
CaMg(5103)2 HZO K20
*Ca3(PO4)2 82 PZOS
*Ca5(P04)3F N2 NiO
* .
3NaAlSlO4.NaC1 NH3 Fe203
NaAlSiO4 HC1 MgCO3
KA13513010(0H)2 HF MgSO4
Mg3514OlO(OH)2 Cl2 CaCO3
C F2 Na
Fe

Ni
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Table 2

The initial mineralcgical assemblage before equilibration
of the H-chondrite model.

Mineral Weight Percent
Mg28104 25.7
Fe28104 9.4
Mgsio, 19.6
FeSiO3 6.5
FeS 6.1
NaAlSJ.3O8 6.3
CaA1281208 1.4
CaMg(SiO3)2 4.2
Ca3(PO4)2 0.26
CaS(PO4)3F 0.26
3NaAlSiO4.NaCl 0.14
KAlS:L3O8 0.63
C 0.10
Fe® 17.9
Ni® 1.7
Hzo 0.05
N 0.005
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Table 3
The initial mineralogical assemblage before equilibration

of the 992H + 1%Cl chLondrite model.

Mineral Weight Percent
M928104 25.7
Fe28104 9.5
Mgsio3 19.4
FeSiO3 6.5
FeS 6.2
NaA181308 . 6.2
CaA1281208 1.4
CaMg(Si03)2 4.2
Ca3(PO4)2 0.25
CaS(PO4)3F 0.27
3NaAlSiO4.NaCl 0.15
KA181308 0.63
C 0.13
Fe° 17.7
Ni® 1.7
Hzo 0.15
N 0.008
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Table 4

The initial mineralogical assemblage before equilibration
of the 98%H + 2%Cl chondrite model.

Mineral Weight Percent
M928104 25.9
Fe28104 9.6
Mgsio3 19.2
Fe8103 6.4
FeS 6.3
NaAlSJ.3O8 ‘ 6.2
CaA1281208 1.4
CaMg(SlO3)2 4.2
Ca3(PO4)2 0.25
Ca5(P04)3F 0.27
3NaAlSiO4.NaCl 0.16
KAlSi3O8 0.63
C 0.16
Fe® 17.5
Ni° 1.7
HZO 0.25
N 0.01
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Table 5

The initial mineralogical assemblage before equilibration
of the 95%H + 5%Cl chondrite model.

Mineral Weight Percent
Mgzslo4 26.1
Fe28104 9.9
Mgsio3 18.4
FeSiO 6.4
eSi 3

FeS 6.6
NaA181308 ' 6.2
CaA1281208 1.4
CaMg(SiO3)2 4.2
Ca3(PO4)2 0.24
Ca5(PO4)3F 0.29
3NaAlSiO4.NaCl 0.19
KAlSi308 0.63
C ' 0.25
Fe°® 16.9
Ni° 1.7
H20 0.55
N 0.018
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Table 6

The initial mineralogical assemblage before equilibration
of the 90%H + 10%Cl chondrite model.

Mineral Weight percent
Mg,Si0, 26.6
Fe281o4 10.5
MgSiO3 17.4
FeSiO3 6.2
FeS 7.2
NaAlSlBOS ) 6.1
CaA128i208 1.4
CaMg(Slo3)2 4.2
Ca3(PO4)2 0.23
CaS(PO4)3F 0.31
3NaAlSiO4.NaCl 0.24
KA151308 0.64
C 0.41
Fe® 16.0
Ni® 1.6
H20 1.1

N 0.031
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Caption to table 7: The sequence of mineralogical
changes in layer 1 as outgassing progresses. Each
of the mineralogical assemblages starts at step A
with the exception of the 90%H + 10%Cl assemblage,

which starts at step C.
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Table 7
Sequence of mineralogical changes in layer 1 as out-

gassing progresses.

A. Enstatite, forsterite, fayalite, talc, iron metal,
anorthite, albite, orthoclase

enstatite depleted

B. Forsterite,fayalite, talc, iron metal, anorthite,
albite, orthoclase

nepheline, muscovite appear

C. Forsterite, fayalite, talc, iron metal, anorthite,
albite, orthoclase, nepheline, muscovite

orthoclase depleted

D. TForsterite, fayalite, talc, iron metal, anorthite,
albite, nepheline, muscovite

albite depleted

E. Forsterite, fayalite, talc, iron metal, anorthite,
nepheline, muscovite

magnetite appears

F. Forsterite, fayalite, iron metal. talc, anorthite,
nepheline, muscovite, magnetite

iron metal, fayalite disappear

G. Forsterite, talc, anorthite, neheline, muscovite,
magnetite



Table 8

Composition of 'raw' atmosphere of each model after final outgassing step in terms
of log of mole fraction of each gas.

Gas H chondrite 99%H + 1%Cl 98%H + 23%Cl 95%H + 5%Cl 90%H + 10%Cl
CH, - 0.041 - 0.025 - 0.020 - 0.018 - 0.017
N, - 1.15 - 1.32 - 1.40 - 1.43 - 1.46
NH, - 1.70 - 1.98 - 2.21 - 2.40 - 2.56
H, - 4.57 - 4.97 - 5.87 - 5.90 -'5.93
H,0 - 8.65 - 9.05 - 9.95 -10.2 -10.5
H,S -15.0 -15.4 -16.3 -16.6 -16.9
co, -21.7 -22.1 -23.0 -23.3 -23.6
co -22.5 -22.9 -23.2 -23.5 -23.8
HF -33.7 -34.1 -35.0 -35.3 -35.6
CoSs -34.5 -34.9 -35.8 -36.1 -36.4
S, -36.9 -37.3 -38.2 -38.5 -38.8
HC1 -40.0 -40.4 -41.3 -41.6 -41.9
so,, -55.3 -55.7 . -56.6 -56.9 -57.2
0, -88.6 -89.0 -89.9 -90.2 -90.5
cl, -107.7 -108.1 -109.0 -109.3 -109.6

F, -156.1 -156.5 -157.4 -157.7 -158.0

—ZE—
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Caption to Figure 1: Plot of Fe°+FeS vs. FeO of the
various chondrite types. The bulk composition of the
Earth and the mean composition of the present flux of

meteorites are included.
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Caption to Figure 2: Plot of time-dependent evolution
of temperature vs. depth of the geotherm in the early
Earth. 1Initially the body is a cold, homogeneous
mixture. As time progresses, the interior is heated up
by radionuclides. When the temperature of the Fe-FeS
eutectic is reached af a certain point in the interiér,
the Fe-FeS eutectic begins to melt and differentiate,
and being denser than the surrounding minerals, begins
to sink. More heat is released from the gravitational
energy of the sinking process, causing runaway melting

to occur.
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Caption to Figure 3: Pie section of model planet and
sketch of the surface regions. The initial equilibrium
composition of each layer was calculated. Layer 16
(1208°K) was chosen as the typical magma layer; the

gas from layer 16 was moved up to layer 1, reequilibrated
with layer 1, and then dumped into the atmosphere.' An
infinite reservoir of magmatic gases from layer 16

was assumed for the calculatiocns in this thesis.
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Caption to Figure 5: The initial gas compostion of each
layer of the H-chondrite model on a log P vs. -1/T plot.
Note that the gas pressure in each layer is always lower

than the lithostatic pressure.
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Caption to Figure 6: The initial gas composition per
layer of the 99%H + 1%Cl chondrite model. The gas
pressure exceeds the lithostatic pressure in layers

4-6 .
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Caption to Figure 7: The initial gas composition per
layer of a 98%H + 2%Cl chondrite. The gas pressure

exceeds the lithostatic pressure in layers 4-13.
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Caption to Figure 8: The initial gas composition per
layer of a 95%H + 5%Cl chondrite. The gas pressure

exceeds the lithostatic pressure from layer 4 onward.
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Caption to Figure 9: The initial gas composition per
layer of a 90%H + 10%Cl chondrite. The gas pressure

exceeds the lithostatic pressure from layer 3 onward.
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Caption to Figure 10: 1Initial abundances of iron,
forsterite, fayalite, enstatite, ferrosilite, albite,

and anorthite in each layer of the E chondrite model.
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Caption to Figure 11: 1Initial abundances of iron,
forsterite, fayalite, enstatite, ferrosilite, albite,
and anorthite in each layer of the 99%H + 1%Cl chondrite

model.
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Caption to Figure 12: 1Initial abundances of iron,
forsterite, fayalite, enstatite, ferrosilite, albite,

and anorthite in each layer of the 98%H + 2%Cl chondrite

model.
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Caption to Figure 13: 1Initial abundances of iron,
forsterite, fayalite, enstatite, ferrosilite, albite, and
anorthite in each layer of the 95%H + 5%Cl chondrite

model.
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Caption to Figure 14: 1Initial abundances of iron,
forsterite, fayalite, enstatite, ferrosilite, albite,
and anorthite in each layer of the 90%H + 10%Cl chondrite

model.
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Caption to Figure 15: The time-dependent evolution during
outgassing of the mineralogy of the surface layer of
an H chondrite planet. Note the rapid changes that
occur when the magmatic gases are first pumped into
the layer. The initial abundance of graphite is
steadily depleted as CH4 is produced until the only
carbon in the layer is that introduced by the CH4

from the magma layer; the carbon introduced from the
magma layer remains as CH4 and is dumped into the
atmosphere. As soon as the graphite is depleted Fe304
begins to form from the progressive oxidation of Feo;
Mg3Si4010(OH)2, Mgzsio4, and FeZSiO4 échieve a steady
state until the £final steps when Fe28i04 begins to be

depleted and together with the Fe® is oxidized into

Fe, O

374°
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Caption to Figure 16: The time-dependent evolution
during outgassing of the mineralogy of the surface
layer of a 99%HE + 1%Cl chondrite planet. See caption

to Fig. 15.



46 1320

o
#

3860

T I s sebenn RSt b
REETES e Rt REEER SRS
S e stets Sebweststs S S — e
| i S T o MR By
P AP S ———— e e
SRS s guasmsy B Sgp— e
ARSI USRI S GNANS P :
wo pum—— T QU D S DS U P
AT T u‘l|vx“l‘(|*l|.l“ﬁ\}v‘ Tl | SOt | oo T
LI Jspuiubguianty thenpsiuipio o 1
&
T :
!
s w
= : :
- : : = ;
P __ - —
e - :
e S
T S T

S

T

b

USSR RN U Sy

1400

e

3000

2 600

2200

! $c0
steps

of

No .

400

1000

JOSuhib it Do

o mr m e e e e} e

e

[ IS S

o

Ve

B S ——

A

PSS S SN

LI TOIL jimIod

i
Geoo

oA

v bt

200




46 1320

7 X 10 INCHES (D

KEUFFEL & ESSFR CO MADEINUSA

10 X 10 TO '3 INCH

KeE

rTIrTTToT T T T T

PR Aot B S b

DU I RN

T
s
he
[Pyt ..cw.:. T e 1 — T— : - pu—
I
t

txn , ,.l h ,
P by 1= e i i
Bt S St RSt ated (bbb Rttt el S it St
e e e e e e : ; fm—e
- 1 ——t PUPAEDERTRANE S

: : i
PSS Sape— S
e St uaieat B _ i e — ]
: . - :
[T 1 + L T " } :
T =T : — Tt : ; :
i - hihhidhaiehdhitthand St o )
. T
S e tel ey R ! ! : } :
R Tt R einl Pebemonmatan: e el s Mt els Pl ;
| S : + T T It
: : t 1 = —— 1 T
z SIrTItoeI I T 1 T +
1 L * Ji 1 !
Py b " s = ;
s B — r N 1 v
- - B M P |
T + “
SRR e st — —— f
s S t— . ]
| T H 1 1
o : :
i T T i1
! : ]
+ 1 T 1
, _

RS RN RSy N

SRS

6400

-4 4 H

T 1
1 : i ! I
b . i }
1 1
4 1 11 T I
)t ] - 1 }
! T : : ;
— .
T T " W
t 4 ¥
i T H
. ; : : :
o !
H 1 1 1 I
: 1 — § I T
i + 1 I
1 : ;
: o :
“ I - b
: : ! ; —
: —
1. \M -
m——— T ! ' f 1
I -
1 |
:
1 4. —_—
:
T
) >
t L ;. I'd
: : f ; “ -
p— : ! —
! ; -
" i .L
T t t T 3 F
e PG = I —— ] : e
o e 1 ;

- T T § U— T m X
-t I . + J - N .
R SRR =T T i T T 1
RN SR p E—_— I — R 9 :
e A + T 1
| T T : T i {
s Rt oo Sumtinibesmning § 1 g t JRoputin rsp i ai it St Sl S,
1
e ey T e { < - P a— —
e s S s et A8 A 1 sl et po e : g
i w P el (et s SRS G - b e + = -
P e Rt ieaent e ST I T T s S
T I P 0 U oG P R i UMD S S
P S e = T SR, PUSRE S St e
"

t T o N +

PRI S pu

T L T T T T I A T I T T DT T T I T T

s e e e
e i i R sus st Susbipiuisssl posmgeliomst Plestabimmats sttt fong s e
SIS el otes S ibisisnsis S pes S saiig Seb i b pisuiunissgn Su il pebisastayea &

S S —ru. [OOSR WD S GO SRS S R
SITOITIIILYTTIIIIET “H.n..t TIoILTTTIITT tom o e .HHHU.HWMJIJ e
PG S U s Sy i Sou .H}.H#lﬂd,nﬁtﬂtﬂm wﬂwﬂwﬂﬂu LIl im,l.wm LIITT
D T TR P et P mek e Lot SRR sesd Sraaayn Bty

Yood

e L0f X

7200

6300

4300 5200 5600 &dOD
No. ap 5“‘Qf’5 -

Y400
Fia.lb (cont))



- 66 -

Caption to Figure 17: The time-dependent evolution
during outgassing of the mineralogy of the surface
layer of a 98%H + 23%Cl chondrite planet. See caption

to Fig. 15.
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Caption to Figure 18: The time-dependent evolution
during outgassing of the mineralogy of the surface
layer of a 95%H + 5%Cl chondrite planet. See caption

to Fig. 15.
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Caption to Figure 19: The time-dependent evolution
during outgassing of the mineralogy of the surface
layer of a 90%H + 10%Cl chondrite planet. See caption

to Fig. 15.
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