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ABSTRACT

The variations in total relative angular momentum of the
atmosphere are examined for annual and shorter time scales.
Use of a 5 year data set consisting of zonally-averaged values
from the NMC twice daily analysis allows the construction of
2-dimensional (latitude-height) descriptions of the phenomena.

Spatially coherent patterns have been identified asso-
ciated with annual, semi-annual, and 40-50 day periods. An
empirical orthogonal function (EOF) analysis provides a good
spatial description of structures with primarily annual and
semi-annual variations. These structures are very similar to
those described by Newell et al. (1974) based on a Fourier
decomposition of the zonal wind field. To describe the 40-
50 day variations, an amplitude-phase extension of the EOF
technique was used. This 'oscillation' consists of a tropical
component which is similar to the motions described by Madden
and Julian (1971, 1972), and a coherently connected northern
hemisphere mid-latitude component which is believed to be pre-
viously unreported. The tropical component shows well-defined
phase propagation downward and poleward, while the northern
hemisphere 'teleconnection' has phase essentially independent
of height.
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INTRODUCTION

The total relative atmospheric angular momentum, M,

given by [1] is a quantity which has historically been more

of theoretical interest to meteorologists as a dynamical con-

straint than as an object of observational interest, particu-

larly on time scales shorter than one year.

Where U = zonal wind,
= latitude,
= longitude,

p = pressure,
a = earth radius,
g = gravitational acceleration,

and p = surface pressure.
This equation is derived for a thin (scale height<< a)
hydrostatic atmosphere.

Recently there has been increased interest in this

quantity primarily because of its' relationship to the earth's

rotation rate or length of day (LOD). The only significant

torques acting on the total earth-atmosphere system are gravi-

tational tides. These tidal forces primarily introduce

periodic monthly and semi-monthly changes and a slow, rather

steady increase in length of day.

Some changes in the length of day may be due to geo-

physical effects such as large spatial scale earthquakes and

core-mantle coupling; however these effects are believed,

somewhat empirically, to be weaker than meteorological effects

on time scales from tens of days to one year (Hide et al.
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1980, Langley et al., 1981). On this time scale it would

then seem reasonable to treat the total angular momentum of

the system as a conserved quantity, with possible corrections

for monthly and semi-monthly tides, and associate all changes

in LOD with transfers of M between the atmosphere and the

solid earth through surface friction and form drag (mountain

torque) terms. This assumption yields a relationship between

changes in M and changes in LOD given by [21.

ALoD p A[
LOD 6) [2]

Where A represents the change in a quantity from some
mean value, I = moment of inertia, and W = the rota-
tion angular frequency of the earth.

Is in this equation represents the moment of inertia,

about the rotation axis, of the part of the planet which par-

ticipates in these changes. This is generally taken to be the

crust and mantle with a decoupled core. A value for I

computed from a seismologically inferred density model is

7.04.1037 KgM2 (Jordan et al., 1974) yielding a linear rela-

tionship , [3], between M and LOD (Langley et al., 1981).

A LOD = 1.6&8 •10 AM 131

.LOD in S, AM in KgM2 S-1

This relationship is of interest in a meteorological

context because LOD is a quantity which can now be measured



with great accuracy independently of any meteorological input

(Lambeck 1980). An example of such a time series is given

in the next section. It will become apparent in the follow-

ing sections that the M time series is a surprisingly good

indicator of coherent atmospheric motions with annual,

semi-annual, and 40-50 day time scales. This perhaps purely

fortuitous relationship allows an independent estimate of

the magnitude of, and in the case of the 40-50 day 'oscilla-

tion' the reality of these effects. This is particularly

important because the only easily analyzed daily M records

start with January 1976, while LOD records with 5 day resolu-

tion from lunar laser ranging and other techniques exist back

to at least 1971 (Langley et al., 1981).

Descriptions of the data analyses which have been per-

formed are divided into four sections. The first describes

the data sets and techniques used in the estimation of M.

In the second the seasonal variations are examined. In the

third, non-seasonal anomaly values are computed, and various

forms of spectral analysis and filtering techniques are

employed for guidance in finding the spatial structure of the

changes. The fourth section examines the space-time structure

of the non-seasonal changes, particularly the 40-50 day

'oscillation'.

Due to the short length of the data set (5 years) no

attempt has been made to examine variations on a time scale

longer than one year. It should be noted that the anomaly



time series exhibits significant low frequency power and work

by Arkin (1981) and Selkirk (1982) indicates that 200 mb

zonal winds are strongly correlated with the Southern

Oscillation Index in a way that would indicate a contribution

to the atmospheric angular momentum. Future studies could

probably gainfully apply techniques similar to those used in

this work to fields of low pass filtered monthly-mean winds

to describe the low frequency variations.

THE MEASUREMENT OF ATMOSPHERIC RELATIVE ANGULAR MOMENTUM

The principal data set used in this work was constructed

from the National Meteorological Center (NMC) twice daily

(OZ, 12Z) analyses. The data set represents values of the

zonally averaged zonal winds, [U], at 73 latitudes (2.50

spacing) and 12 pressure levels (1000, 850, 700, 500, 400,

300, 250, 200, 150, 100, 70, and 50 mb). The zonally aver-

aged data are available for about 80% of the period with the

largest gaps on the order of 4 days. On many days only the

OZ values are available. A more complete description of the

data set is given by Rosen and Salstein (1981). It should

be emphasized that without the existence of the precomputed

zonal averages, the compilation of an M time series from the

NMC analyses would have been computationally awesome. This

is the primary reason for the unavailability of data for

periods before 1976.

The NMC final analysis includes data from radiosonde,



aircraft and satellite sources. The use of this data set

for general circulation studies has been examined by Lau et

al., (1981) and Rosen and Salstein (1980). In these papers

the authors compared various quantities computed from the

NMC analysis and another data set computed from station ob-

servations using an objective analysis scheme. The degree

of correlation varied, particularly for derived quantities

such as fluxes. However U appeared to be a relatively robust

quantity with analysis-produced variations in [U] being less

than 10% of its mean value. It sould be noted that the NMC

analysis scheme makes use of a numerical model forecast as

the initial guess and there is a possibility that variations

in the output fields, particularly in data sparse regions,

may represent the model's rather than the atmosphere's

physics. This problem should be severe only for very short

time scale motions, on the order of a few days, and the pre-

sence of the feature in the independently measured LOD time

series will serve to alleviate these fears.

The first step in the data analysis was the construc-

tion of a daily data set for all latitudes and the lowest 10

levels. The 70 and 50 mb data were not used due to concern

about their accuracy (Rosen and Salstein, 1981). The OZ and

122 values were averaged when both were available; if neither

was available the missing datum was linearly interpolated

between existing daily values. The NMC southern hemisphere

data for 1976 contains a large step-like change of dubious



reality which is examined in Appendix A. For this reason

data before this event have not been included in the computa-

tion of any statistics although they appear on the plots of

time series.

The 1977-1980 means for [U] are shown in Figure 2-1.

These values of [U] agree well (-10% variation) with measure-

ments of other time periods using station data (Newell et al., 1972

Starr et al., 1970). Figure 2-2 shows the standard devia-

tion of [U] taken daily for the period. Note that the major

peaks are equatorward of the northern and southern hemisphere

jet cores and that the southern hemisphere jet shows signifi-

cantly smaller variations although it has a larger mean

velocity. These factors are in good agreement with the 12

month Fourier decomposition of zonal wind given by Newell

et al. (1974) and shown in Figure 3-10.

Starting with the zonally averaged winds it is not

possible to compute M as given in [11 because of the longi-

tudinal variation of Ps. Instead an approximation of Ps

= 1000 mb is made yielding [4].

M1 n ' -- ] [4]

Where [] is the traditional zonal average operator.

This quantity is estimated from the data set by [5].
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Where vP(P) is the thickness of a layer with central
pressure P. vP(1000) is taken to be 75 mb (one-sided
layer), and vP(100) is taken to be 50 mb so as to
give equal weighting with the data for 250-150 mb.

The above weightings represent an approximation of [4]

which includes contributions for 1000 to 75 mb using data

from 1000 to 100 mb. As concluded by Rosen and Salstein

(1981) it is very difficult to evaluate the error in such a

computation; however, one would expect a possible bias of

about 7.5% due to the omission of the top 75 mb.

A time series of daily atmospheric M values computed

in this way for 1976-1980 is presented as Figure 2-3. This

figure is essentially identical to the one computed from

the same data set by Rosen and Salstein (1981). Figure 2-4 is

a time series of the inferred value for M based on a 5-day

resolution lunar laser ranging LOD record. The momentum

scaling of the LOD series is in accordance with [3]. Notable

features of these time series include a very strong yearly

variation with an easily detectable semi-annual harmonic

component. As discovered by Langley et al. (1981) there are

40-50 day period variations which show very good agreement

between the two methods. The 40-50 day variations appear to

occur asynchronously with the annual cycle.
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One significant difference between the two measurements

is the presence of a large low frequency variation in the LOD

series. These variations are believed to possibly result

from core-mantle interactions (Stacey 1981). It also appears

that the LOD series exhibits a stronger semi-annual harmonic

than the M series, this is entirely reasonable considering

the structure of the semi-annual changes in [U] reported by

Newell et al. (1974) and reproduced as Figure 3-10. This

figure indicates the presence of important semi-annual con-

tributions to M at altitudes above 100 mb. Another possible

cause for the difference in the semi-annual amplitudes is the

existence of annual and semi-annual solid body tides. A

final comment on the comparison is that the LOD series does

not appear to support the anomalously low values of M for

early 1976 that are discussed in Appendix A.

THE STRUCTURE OF SEASONAL CHANGES

The next step in the examination of the data set was

the construction of a seasonal cycle climatology for [U].

The year was divided into 92 4-day segments, the last contain-

ing only 1 day, 2 for leap years. The mean values for each

latitude-pressure resolution cell were computed for each seg-

ment using the data from 1977-1980.

A plot of the mean annual cycle of M is given as Figure

3-1. The standard deviations of the [U]'s are shown in

Figure 3-2.
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An analysis which has proven to be quite helpful in

understanding the structure of the spatial patterns is the

construction of a map consisting of correlation coefficients

relating each latitude-pressure cell to a single time series.

This produces a field depicting the square root of the frac-

tional variance of that cell's [U] which is explained by the

time series. Figure 3-3 is a contour plot of such a field

for the seasonal climatological winds, where the time series

was the M values derived from the same winds as the time

series. The results of this analysis show the strong seasonal

component in the regions of high standard deviation equator-

ward of the northern and southern hemisphere jets. The

northern hemisphere jet is shown to be positively correlated

with M and the southern negatively. The trade winds appear

with the opposite sign consistent with increased easterlies

in the winter hemisphere.

Empirical orthogonal function (EOF) analysis is a

technique where a field of time series is expanded in the

form given by [6].

A0 N

[U] Z an ? ( 6n (t [6]n:I

Where [U] is an order N estimate of [U].

It has been shown that for a given order N, the a's

and b's which minimize a weighted error [7] are the eigen-

vectors of the weighted data covariance matrix corresponding
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to the N largest eigenvalues (Lorenz 1957).

M2 A 2 [7]

Where W , and W are appropirate error weighting
functios.

The a's are generally referred to as EOF's with the b's

as associated time series. The hope, of course, is that the

EOF's will separate the important physical processes repre-

sented in the data. This is not always the case and even

under the best conditions the analysis cannot separate

processes whose physics are not orthogonal.

The maximum number of independent eigenvectors which

can be computed is equal to the number of spatial cells or

the number of observations, whichever is less. It is pos-

sible to compute the eigenvectors corresponding to either

the a's or b's depending on whether one constructs the co-

variance matrix to represent either the temporal or spatial

variances respectively. In this work there are generally

fewer independent observations, particularly with the filtered

data set which is described in later sections, and I have

chosen to compute the b's and find the a's from [8]. This

method has been criticized by Rasmussen et al. (1981), who

feel that it is subject to numerical inaccuracies and advocate

finding ordered eigenvectors of the larger, singular co-

variance matrix. In spite of this concern I chose to find

the eigenvectors of the smaller matrix as it is still by far
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the easiest method to implement using available routines.

For this data set, a test case produced EOF's that were in-

distinguishable.

Where b (t) has been normalized so that

A measure of the effectiveness of a particular eigen-

vector is the fraction of the variance explained, which is

2 2 2 2
equal to (E -EN)/E 2 where E2 is the weighted sum of theN-1 N o  O

squares of [U] (T, p). The weighting functions have been

taken to be Wp = vP(p) (see [5]), and Wf = cos(?) . These

2.
values yield a mass weighted covariance matrix where EN is

proportional to the zonal kinetic energy of the unexplained

winds.

The first three EOF's of the seasonal changes explain

87.2%, 3.6%, and 3.5% of the variance. Contour plots of them

are given as Figures 3-4 to 3-6. Figures 3-7 to 3-9 show

correlation coefficient maps of the seasonal climatological

[U] field vs. the time series of the EOF's. These plots,

which are directly comparable to Figure 3-3, show where each

EOF is effective in explaining the seasonal variation. The

plots are proportional to a plot of the amplitude of the EOF
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divided by the standard deviation of the winds.

Since we are also interested in explaining the M time

series, some measure of the contribution of an EOF to the

total relative angular momentum is required. The method

which I use is to compute MN , given by [9], which is a

normalized measure of the amplitude of M which would

result from a motion described by an eigenvector with the

amplitude with which it appears in the expansion. This

value is a measure of the M series which would occur if the

only motion were that which is explained by the particular

EOF.

The first term of this expression is a measure of the

relative angular momentum content of the normalized EOF, and

the second term is a measure of its amplitude in the expan-

sion.

The last measure needed is a way of compactly describ-

ing the features of an EOF time series. The yearly clima-

tology can be considered to be periodic, so a description

based on yearly harmonics as given by [10] would seem to be

appropriate.
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Using the measures which are defined above, one can

describe the temporal structure of the EOF's. Table 3-1

lists the variance explained, the amplitude and phase of the

annual and semi-annual harmonics, the value of MN for the

EOF, and the amplitude of the contribution of the EOF to the

annual and semi-annual harmonics of M.

The first EOF clearly explains almost all of the main

seasonal cycle from the standpoint of-either zonal K.E. or

M. A comparison of the first EOF and the annual component

of the Fourier decomposition of the zonal wind given by Newell

et al. (1974) and reproduced as Figure 3-10 shows them to be

very similar as would be expected from the harmonic decomposi-

tion of the EOF's time series. An interesting feature of

the southern hemisphere annual variation, as shown in Figures

3-3 and 3-7 is the existence of a dipole-like feature caused

by the fact that the 45OS-600 S winds are stronger during the

southern hemisphere summer than winter. The time series of

the second EOF contains terms for the 900 out of phase sea-

sonal component and some of the semi-annual component of

zonal K.E., but is not a very important contribution to M.

The third EOF, which is very similar to the semi-annual wind

decomposition from Figure 3-10, is the major contribution
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Amp(12 mo.) Phase(12 mo.) Amp(6 mo.)

4.7 0.161r 0.4

3.4 -0.34-W 2.7

1.7 0.641'( 4.1

Ph(6 mo.)

0.79 1Y

-0.83 iY

-0.59 I

Table 3-1

Seasonal Fourier components of EOF time series

EOF

1

2

3

% Var

87.2

3.6

3.5

Mn (12)

3.16

0.55

0.38

M (6)

0.26

0.44

0.91
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to the 6 month periodicity in M.

The centering of EOF 3 slightly south of the equator

is an interesting, if somewhat puzzling effect. The zonally-

averaged data set contains no information on forcing terms

so it is not possible to use it to evaluate the physics of

this motion. Newell et al. concluded, after examining the

momentum budget, that it is probably due to a modulation of

the Hadley cell intensity, possibly due to mid-latitude eddy

forcing. The southern positioning of the EOF center would

also seem to argue for the importance of a southern tropical

influence in this motion, perhaps the Southern Pacific Con-

vergence Zone.

THE NON-SEASONAL VARIATIONS

Using the seasonal climatology for the [U] field, it

is a simple matter to subtract this from the original time

series to produce an anomaly field. A plot of the anomaly

time series is given as Figure 4-1. Disregarding the 1976

step, which is discussed in Appendix A,,the major va*tiations

appear to have time scales greater than 1 year, 'synoptic'

scales of less than 10 days, or a 40-50 day quasi-periodicity.

As mentioned before the length of the data set is such that

it is not possible to adequately examine the low frequency

variations. In order to remove the very low frequency content

and the high frequency synoptic scale noise, I have constructed

a filter with a broad band pass whose frequency response is
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shown in Figure 4-2. The results of an application of this

filter to the M time series is given in Figure 4-3. This

plot shows the 40-50 day 'oscillation' to change both fre-

quency and amplitude with no apparent pattern.

In an effort to provide a more concise description of

the temporal variations in M, several spectral analysis

techniques were used. I will present the results for three

of these estimators, a classical Blackman-Tukey (1959)

method referred to as B-T, a high resolution autocorrelation

based technique due to Capon (1969) and generally referred

to as the maximum likelihood method (MLM), and a high resolu-

tion autoregressive method due to Burg (1967) and referred

to as the maximum entropy method (MEM). Descriptions of

the computation of these estimates are given in Appendix B

and its references.

The choice of a spectral estimator is a complex

question which is dealt with in considerable detail by Kay

and Marple (1981). Basically the best choice of estimator

is determined by the characteristics of the signal which one

is measuring. The classical analysis techniques estimate

the spectrum by fitting Z-transform plane zeros, which cor-

respond to spectrum nulls. The autoregressive techniques,

and the MLM technique in a somewhat more obscure way, fit

Z-transform plane poles, which correspond to spectrum peaks.

The classical spectral estimates generally tend to be rather

broad with sharp nulls, while the MEM spectra tend to have
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smooth nulls and sharp peaks with good ability to separate

narrow band signals, in fact, sometimes creating them even

when they are not indicative of the true spectrum. The MLM

estimator, which can be considered to be a type of average

of N (the autocorrelation order) MEM spectra, is much better

than the MEM at representing broad band processes but in-

ferior in separating closely spaced, line-like components.

Estimates of the M anomaly spectra using these three

estimators appear as Figures 4-4 to 4-6. The spectra were

computed for the part of the sample between day 300 and day

1836 (day 1 = Jan. 1, 1976). The choice of filter order for

the MEM estimator is farily critical. The use of too high

an order will result in breaking up broad band processes

into lines with no real significance. I have attempted to

choose an order which adequately describes the singal;

however, there are no good objective ways of doing this.

These spectra are consistent with a model possessing

a poorly resolved low frequency component, and a relatively

broadband peak at frequencies corresponding to 40-50 day

periods. The spectra also seem to show some evidence for

power at 17- and 12-day periods. These higher frequency com-

ponents have significant coherency values in some of the

computed cross spectra but efforts to describe a coherent

spatial structure have been hindered by the very small

amount of power in these lines.
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A logical next step in studying the 40-50 day variations

is the construction of a time series which isolates the

motion. This was done with a Hamming window based linear

filter whose frequency response is shown as Figure 4-7.

The impulse response length of the filter is 179 points and

the effective correlation length of the output series

is about 100 days giving a Nyquist sampling rate of 50 days.

The filter is normalized so that its peak gain is 1.0.

Plots of the filtered time series and the standard

deviation of the filtered [U] field are given in Figures 4-8

and 4-9. The spatial distribution of the 40-50 day band pass

standard deviation looks very similar to that of the anomalies

themselves, indicating a need for somewhat more elaborate

processing to reveal a spatially coherent structure, if it

exists. I will show the results of some of these techniques

in the next section.

THE SPATIAL STRUCTURE OF THE 40-50 DAY 'OSCILLATION'

The presence of 40-50 day tropical wind and surface

pressure variations was first observed by Madden and Julian

(1971) and later described in somewhat more detail in Madden

and Julian (1972). Surprisingly, as far as I can tell, no

more recent observational studies of this phenomenon have been

published. There has been a considerable amount of theoreti-

cal work, mostly attempts to explain the motions as linear

equatorial Kelvin waves (Chang 1977 and others). Madden and
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Julian (1972) describe the surface pressure variations as a

wave-like disturbance with eastward and poleward phase propa-

gation. They found the amplitude of the oscillation to in-

crease as the disturbance travelled over the tropical west

pacific. It is this modulation which probably causes the

associated time variations in M and [U] as a pure travelling

wave would make no contribution to the zonally averaged

quantities. Madden and Julian searched for but were unable

to find an influence of this oscillation in the northern

pacific surface pressure records. They also examined zonal

winds from a small number of the IGY radiosonde stations,

some of which showed limited evidence of vertical phase

propagation, while some showed an abrupt sign reversal at a

mid-tropospheric height.

In order to describe motions with propagating phase

it is necessary to extend the analyses used in the section on

seasonal variations. To do this an orthogonal version of the

filitered data set was constructed by phase shifting each

component of the series 90*. Such a series is generally re-

ferred to as a Hilbert transform of the filtered series

(Oppenheim and Schafer 1975). There are some non-obvious

issues involving the orthogonality of such a transform in a

sampled realization, which are discussed in Appendix C.

Appendix C also discusses the extension, using the Hilbert

transform series, of the correlation and EOF analyses for

the production of amplitude-phase fields.
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Figures 5-1 and 5-2 show the correlation amplitude and

phase for the band pass filtered [U]'s vs. the M series com-

puted from the same data. In classical terms the correlation

coefficients are equivalent to the coherency of the cross

spectrum of the time series vs. the resolution cell time

series at the 45-day period. In those terms the cross-

spectra have about 60 degrees of freedom yielding a 95% con-

fidence interval for correlations slightly greater than 0.4

(Goodman et al., 1961). The sign convention is such that the

phase propagation is in the direction of increasing phase.

The pattern indicated by this analysis is one of a co-

herent tropical motion where the high altitude equatorial

winds lead the M series and the phase propagation from there

is poleward and downward. The structure of the correlation

amplitudes shows two tropical maxima spanning the equator,

with the center slightly north of the equator, but otherwise

very similar to the structure of the semi-annual variation.

The northern hemisphere results show a well-defined phase

propagation to 45 north and a dipole like structure north of

that. The southern part of this dipole is approximately 1800

out of phase with the equator and the northern part is essen-

tially in phase. The northern hemisphere correlations show

almost no vertical phase propagation. The southern hemisphere

correlations are quite different from the northern hemisphere

with a sharp drop in correlation and a halt in the southward

phase propagation at about 200S. An important question which
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I have not answered is whether this lack of southern hemisphere

correlation is the result of different physics or is simply

due to a much poorer analysis than the northern hemisphere.

The first amplitude-phase EOF of the band pass filtered winds

explains 36% of the variance and is shown as Figures 5-3 and

5-4. Figure 5-5 shows the correlation of the [U] field with

the EOF time series. The absolute phase of the EOF is arbi-

trary. The pattern revealed is very similar to that of the

correlation with the M series, with somewhat higher correla-

tion values, particularly in the northern hemisphere. This is

not surprising as the EOF time series is in some sense opti-

mum. To determine the significance of the tropical-northern

hemisphere connection, several point to point cross-spectra

were computed. The results for two of these are included

in Table 5-1.

The second amplitude-phase EOF (Figures 5-6 to 5-8)

explains 22% of the variance and shows a very coherent south-

ern hemisphere structure with poleward phase propagation from

200 S to 400 S and constant phase from 500S to 700S. This is

a very interesting structure, but I feel that further in-

vestigations should use a more appropriate data set for the

study of a southern hemisphere high latitude feature.

DICSUSSION AND CONCLUSIONS

The major results of this work are the creation of a

new observational description of the tropical 40-50 day
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200 N, 250 mb. vs. 37.5N 250 mb.

Period (days)

160
80
53
40
32
26
22
20
18
16
15
13

Coh 2

0.46
0.43
0.52
0.69

,0.47
0.12
0.05
0.03
0.10
0.04
0.12
0.03

Phase/7(

37.5 0 N, 250 mb.

Coh2

0.89
0.93
0.93
0.91
0.96

-0.91
-0.91
0.96
0.98
0.77
0.62
0.60

vs 500 N 700 mb.

Phase

0.95
-0.95
0.95
0.80
0.92

-0.92
-0.99
0.86
0.73
0.80
0.86
0.95

Table 5-1

[U] anomalies. For 95% confidence Coh2 0.29

i 6

Cross spectra of
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variations discovered by Madden and Julian and the discovery

of associated northern hemisphere changes. Madden and Julian

suspected that there might be a mid-latitude component but

failed to find one in the north pacific surface pressures.

This was probably because the nature of the northern hemis-

phere response appears to be a shift in the positions of

zonally-averaged temperature gradients, resulting in a change

in the thermal wind pattern. It is not necessary for such

a change to be accompanied by a large change in surface pres-

sure. To make such a change in the zonally-averaged tempera-

ture field would seem to require a variation in the energy

fluxes due to the general circulation.

All the important motions for fluxes in the mid-

latitudes involve eddy terms which do not appear in the

zonally-averaged field and can not be seen in this data set.

To describe the mechanism by which these connections are

accomplished will probably require a study of the 3-

dimensional wind and temperature field. However the well-

defined phase propagation and the existence of the equatorial

component as a coherent phase reference should make the

search considerably easier.

The amplitude-phase EOF description of the tropical

component of the oscillation is somewhat more detailed than

that of Madden and Julian in that it describes a definite

downward phase propagation of the motion. This should be

useful in assessing the results of analytical work,



particularly the linearized Kelvin wave model of Chang (1977),

which was commented on by Stevens and White (1979), where the

vertical phase structure of the observed motion is important.

The similarity of the tropical structure to that of the semi-

annual variations is suggestive of a modulation of the Hadley

circulation as described by Newell et al. (1974) for the semi-

annual case. Madden and Julian believed that the amplitude

modulation of the motion was due to increased convection

over the west pacific, and if measurements show this to be

the case a related modulation of the Hadley cell flux could

be expected.

Another question which still has to be resolved is the

reason for the time scale of 40-50 days. As noted by Madden

and Julian, the broadband nature of the time series would

seem to rule out any tidal effects. A broadband peak such

as this could result from either the stochastic forcing of

a system with the bandwidth of the observed oscillation, or

the response of a broadband system to forcing with preferen-

tial time scales. Webster (1973) examined the properties of

the linear equatorial waves and concluded that the 40-50 day

periodicity was probably the result of forcing with 40-50

day time scales. Experiments with the GFDL model (Hayashi

1973) also failed to show strong dynamical resonances at 40

to 50 days.

In conclusion, I believe that the resolution of these

questions will probably require further measurements,
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particularly in the area of the tropical forcing, especially

air-sea interactions as suggested by Madden and Julian (1972),

and calculations of the variations in northern hemisphere

eddy transports. It seems that the well-defined northward

phase propagation should assist in the study of the connec-

tion mechanisms and the understanding of this effect may aid

greatly in the study of other tropical influences on the mid-

latitudes.
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APPENDIX A

As shown by Figure 4-1 a large step-like change occurs

in the global M time series around day 240 (Sept. 1, 1976).

Figures A-I and A-2 show maps of the mean departure from the

1977-1980 climatological values for the months of July 1976

and October 1976 respectively. The maps show a large nega-

tive anomaly in the southern hemisphere high latitudes be-

fore the step. This feature appears as all heights and has

a magnitude of greater than 7 M/S at the surface. These

figures also show an equatorial response similar to the 45

day pattern which I believe is due to the atmospheric re-

sponse to the 1976 El Nino as described by Selkirk (1982).

To test the reality of this change I have examined the

monthly mean 500 mb winds from the high latitude southern

hamisphere stations which are compiled in Monthly Climatic

Data for the World (NOAA 1976). The four stations which are

in the affected area are Marion Island (46S, 38W), Punta,

Areans, Chile (53S, 71W), Comodoro Rivadavia Argentina (46S,

57W), and Invercargill, New Zealand (46W, 168E). Monthly

mean data for 300 mb winds were also available which were

also available which were compiled from the Australian

Meteorological Research Center southern hemisphere analysis

(Chiu, personal communication). The monthly mean zonal wind

values from these sources are given in Table A-I. As men-

tioned before, the NMC analysis shows a positive step in

September. The Australian analysis shows a negative
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Fig. A-2. Mean [U] anomaly, October 1976



63

[U] monthly means(m/sec)

July 1976 Aug. 1976 Sept. 1976 Oct. 1976

NMC 500S 500 mb.

Aust. 500 S 300 mb.

Marion Island 460S
500 mb.

Punta Arenas 530S
500 mb.

Comodora Rivadavia
460 S 500 mb.

Invercargill 460 S
500 mb.

8.0

23.6

23

17

missing

13

9.8

22.5

25

17

15.2

20.2

19

12

15

24

Table A-1
Monthly Mean winds 450S-500S

17.8

22.3

25

7
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step-like feature at this time. The station data does not

show such dramatic changes, but tends to support the Austral-

ian values more than the NMC values.

In view of this uncertainty I have chosen not to use

the NMC data for this area before the transition, thus the

seasonal climatology consists of only 1977-1980 values.



65

APPENDIX B

The power spectrum of a weakly stationary process is

generally defined as the Fourier transform of the autocorrela-

tion function and is given by [B2] where the autocorrelation

function is defined, for a real process, by [B11].

E[] is the expectation value operator.

Using: R X(e) = R (-k) for a real process.

The Blackman-Tukey (1958) (B-T) estimate of the power

spectrum is given by [B3] following the above definition and

is a windowed Fourier transform of a sampled estimate of the

autocorrelation function.

Where W() is a window function to allow the use of a
finite length autocorrelation estimate.

The window function which I have chosen to use is one

found to be optimum for a criterion relating estimate var-

iance and spectral resolution by Papoulis (1973) and given by

[B4] .
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An unbiased estimate of the autocorrelation function

is given by [B5]. This estimate is generally not used be-

cause there is no assurance that its Fourier transform is

non-negative. Instead the biased estimate given by [B6]

which can be efficiently computed by fast Fourier transform

techniques is often used.

Where N is the number of available observations.

( T)(tt2) t o 4&,T C13

One major advantage of the B-T estimator is that given

suitable assumptions about the process, it is possible to

derive confidence limits for the estimator. These are given

by Chatfield (1980) and for the parameters used in this work

(N=1536, T=128, Papoulis window) are about±l.6 dB for 95%

confidence.

The Capon (1969) maximum likelihood method (MLM) esti-

mate of P xx() is computed as the reciprocal of the totalxx

energy in an order M optimal filter centered at frequencyw .

These filters are constructed so that they have unity gain at



wand minimize the sum of the power from all the other

frequencies for a signal with a known autocorrelation func-

tion. The power spectrum estimate yielded by this approach

is shown by Capon to be given by [B7].

S" LXx S

Where Rxx is the autocorrelation matrix of the process,
S is a signal vector given by S=eiwt and SH is the
conjugate transpose of S.

To produce a meaningful spectrum estimate the autocor-

relation matrix must be positive definite. This can be

assured by using [B6] as the autocorrelation estimator.

A disadvantage of using the MLM and most other non-

linear spectral estimators is that no analytical expressions

for the expected error of the estimates exist. However,

it has been shown by Haykin and Kesler (1979) that the error

of the maximum entropy method (MEM) and MLM estimates asympto-

tically approaches that of the B-T estimator for large N.

The MEM estimate, which was introduced by Burg (1967),

is based on the concept of prediction filtering. Given a

length T filter of the form shown in [BS] which is in some

way optimal in predicting the value of the next sample

based on the previous T samples, it is then possible to create

what is known as a prediction error filter (PEF).
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The PEF is T+1 points long and is given by (l,-h(k)).

The output of the PEF is simply the difference between the

predicted value of the next point and the actual value.

Burg derived the MEM spectral estimate by extending the

input series in such a way that the amount of information

expressed by the series was minimized. The resulting spec-

tral estimate is given by [B9].

/1 I

A somewhat more intuitive way of looking at the MEM

estimator is to consider the output of the PEF filter. If

the prediction filter is a good one, the output of the PEF

should contain very little information and will be in some

sense 'white'. Thus the PEF is a filter which takes the

original series as its input and outputs a 'whitened' one.

The MEM estimate of the process power spectra is then the

reciprocal of the PEF frequency response.

Various techniques have been proposed for the calculation

of the prediction filter coefficients. The one which I have

used is due to Marple (1980) and minimizes the squared pre-

diction error when applied to the original series forwards

and backwards. This particular method does not require an



estimate of the autocorrelation function and can actually

be used to generate one.

Burg (1972) has shown that the MEM and MLM estimates of

the power spectrum are related by [Bl0] when the same auto-

correlation estimates are used.

This relationship shows the order M MLM spectrum to be

a sort of average of the MEM spectra for orders 1 to M.

This gives some insight into the ability of the MEM estimator

to detect lines and the MLM estimator to do a better job of

depicting broadband processes.



APPENDIX C

In order to investigate the phase propagation behavior

of a phenomenon it is often useful to construct a series

orthogonal to the original one with the same energy and a

90 phase shift. Such a series is generally referred to as

a Hilbert transform of the original series. A good descrip-

tion of the role of the Hilbert transform and the construc-

tion of Hilbert transformers is given in Oppenheim and

Schafer (1975). In this work I am generally concerned with

the construction of an orthogonal realization of a Hilbert

transform of a bandpass filtered time series. The required

sampling interval to completely define a band limited pro-

cess is called the Nyquist interval and is equal to 1/2 of

the period corresponding to the process bandwidth. For the

output of the 45-day filter used in this work the Nyquist

interval is about 50 days. I have chosen to sample the

series at 30-day intervals, somewhat faster than required,

so as to put the peak of the frequency response near the

center of a sampled frequency domain whose limits correspond

to 30- and 60-day periods. This is done so that no signal

power is aliased to zero frequency where the frequency

response of any Hilbert transformer is zero. A Hilbert

transform pair of time series, I(t), and Q(t) are created

from 44 samples of the band pass filter output as shown in

[:. Pk j



Where A and B are given by [C2].

f(t) is the sampled time series.

I(t) and Q(t) are orthogonal as defined by [C31 due to

the orthogonality of the integral period sines and cosines.

Because of thiS orthogonality I and Q explain completely

independent parts of the variance of any series and one can

define a complex correlation coefficient given by [C4].

f~se. (r-) Arl (r (i,3x' + e r( x)

Where r(I,X) and r(Q,X) are the correlation coefficients
I vs. X and Q vs. X,respectively.

It is also useful to extend the EOF analysis to amplitude-

phase eigenvectors. Specifically the EOF expansion now takes

the form given by [C5].
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AyN c sill

Where 1 and m are the in-phase and out-of-phase
amplitudes associated with a time series I and its
Hilbert transform Q.

The squared error after the first EOF is given by [C6].

f I

Expanding the product and dropping terms which equal

zero .due to the orthogonality of I and Q gives [C7].

E -- 2__£ f ~~ ~ ,.-- ? :r_- : .- +. z"-,,',', J.

- 'l7- + L Ec - -2:t ,(u-m

Now taking the Hilbert transform of (U-mQ), which pre-

serves the error, gives (H+mI) where H is the Hilbert trans-

form of U and yields [C81.

E7 = C 9( "V-- f E - -,?Ir +

The first term is a constant so optimization requires

minimizing the second summation. This is a traditional EOF

problem for a sample consisting of U and H giving EOF's

which represent 1 and -m. The absolute phase of the solution

[C- 7



73

is arbitrary.

The same analysis can then be repeated after removing

the explained variance from U and H. If one constructs the

eigenvectors of the covariance matrix of the combined U and

H field each eigenvector will be repeated with the same

amplitude anda 90'phase shift. Any choice of one of each

pair gives an optimal solution to the original problem which

was stated as [C5].
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