
a,7 ;;~: 0000::; : f:0-; : ;; :000 ;:_ ::~~ : ::- -:; : f 0: · .-- .f:. 0

X ,- ,- --n: r- -paper
~~~~s ~~EaC,-~a ... .t-- -......J-.L , -

: ,~ :: . '... 

s:::::;l E, !- ". -<"V-''-'', ,'..

I" :· 's ;0000k ;EE;fE :i u0n'LE00 ,0 t'' 000
'''~~~~~~~~ "'' J -' 'J '--'-'' \'-''-La 

;4.0 0 -;: -;-t007; Fi- 0 ;E~; t H$N0 OG 00~~i:: : : f: 0MASSACHUSET TSr- INST ITUEOF TCHNLOG

.'
1.····;�·

:· i ;i-
·:

·. --.i·
: -· - · ·-- · r

.. ::;: z :.·� · ·i - ; --·:

:1'
:· :-··

-.· ·;-.. -·I·;·

'" ': i

.· '. �I ---

:·

� :
�· · .

·
i-.:· ' · ·- - · �· · �'· ·i·

r.;

·:i :-·'



PARAMETRIC INTEGER PROGRAMMING:
THE RIGHT-HAND-SIDE CASE

by

Roy E. Marsten*
and

Thomas L. Morin**

OR 050-76

*Operations Research
M.I.T.
Cambridge, MA

**School of Industrial
Purdue University
West Lafayette, IN

March 1976

Center

Engineering

Supported in part by the U.S. Army Research Office (Durham) under

Contract DAHC04-73-C-0032.



Abstract

A family of integer programs is considered whose right-hand-sides lie

on a given line segment L. This family is called a parametric integer

program(PIP). Solving a (PIP) means finding an optimal solution for every

program in the family. It is shown how a simple generalization of the

conventional branch-and-bound approach to integer programming makes

it possible to solve such a (PIP). The usual bounding test is extended

from a comparison of two point values to a comparison of two functions

defined on the line segment L. The method is illustrated on a small example

and computational results for some larger problems are reported.

Acknowledgement

The computer implementation of the algorithm reported here was done

by Lee Aurich and Nancy Kaplan.



Table of Contents

1. Introduction ......................... 1

2. A Prototype Branch-and-Bound Algorithm . . . . . . . . . . . . . 2

3. The Optimal Return and Lower Bound Functions .. . . . . . . . 5

Figure 1. Typical g(6) and LB(e) functions . . . . . . . ... 6a

Figure 2. Typical UBq(8) and UBq(e;*) functions . . . . . ... 6a

4. The Upper Bound Functions .................. . 7

5. A Branch-and-Bound Algorithm for (PIP) . . . . . . . . . . . . . 9

6. Example . .................... 13

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

The optimal return function f(b')...

The parametric function g() . . . .

Branch-and-bound tree for the example

Bounding test for node 1 . . . . . .

Bounding test for node 2 . . . . . .

Bounding test for node 3 . . . . . .

Bounding test for node 6 . . . . . .

Bounding test for node 10 . . . . . .

Bounding test for node 11 . . . . . .

. . . . . . . . 17

... . . . . 17

. . . . . . . . 18

... . . . . . 19

... . . . . . 19

. . . . . . . . 20

. . . . . . . . 20

.. . . . . . .21

. . . . . . . . 21

7. Computational Results . . . . . . . . . . . . ....... 22

Table 1. Computational Results for Three Test

Table 2. The 5x30 Test Problem . . . . . . .

Table 3. The g(O) function for a 10% Increase
5x30 problem . . . . . . . . . . . .

Problems

in b;
* . * .

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 23

. . . . 24

. . . . 25

. . . . 26



1. Introduction

The purpose of this paper is to show how a simple generalization of

the conventional branch-and-bound approach to integer programming makes

it possible to solve a parametric integer program. Following Nauss [6]

we shall call the family of programs

n
(P0) max r.x.

j=l i

subject to

n
i aijx j < bi+Odi Loism
j=1

x. E 0,1 lj<n

for O<e<l a single parametric integer program (PIP). By "solving" (PIP)

we shall mean obtaining an optimal solution of (P0) for every 0<1 for which

(P ) is feasible. We assume that (P0) is feasible for at least one value of 0.

Parametric integer programming has only recently emerged as a topic

of research. The pioneering papers include Noltemeier [7], Roodman [10,11],

Piper and Zoltners [8,9], and Bowman [1]. Nauss [6] has reviewed this earlier

work and contributed many new results for parameterizations of the objective

function. The present paper, which has grown out of the authors' work on

synthesizing dynamic programming with branch-and-bound [3,4,5], is devoted

to the right-hand-side case.



-2-

In parametric linear programming, the first step is to solve (Po),

i.e. (P ) for 6-0. Then the direction vector d(dl, ..., dm) is specified

and the analysis is performed by driving 8 from 0 to 1. Critical values of

8 and new optimal solutions are identified one at a time as 8 increases.

In the procedure for parametric integer programming to be presented here,

the direction d must be specified in advance. The (PIP) is solved in one

branch-and-bound search. The usual bounding test is modified so that a

partial solution is eliminated only if none of its descendants is optimal

for any (Ps), 0<8<1. This means that some partial solutions must be

retained that could otherwise be eliminated if only (P0) were of interest.

The severity of the resulting computational burden depends on the magnitude

of d.

The organization of the paper is as follows. A prototype branch-

and-bound algorithm for (p0) is presented in Section 2.

The lower bound and upper bound functions are developed in Sections 3 and

4, respectively. The modified branch-and-bound algorithm for (PIP) is

given in Section 5 and applied to a sample problem in Section 6. Computational

experience with the algorithm is reported in Section 7.

2. A prototype branch-and-bound algorithm

We shall draw upon the framework and terminology of Geoffrion and

Marsten [2] to describe a simple linear programming based branch-and-bound

algorithm for (P0). Problem (P 0) is separated, by fixing variables at zero



-3-

and one, into smaller candidate problems (CPq ). Each candidate problem

has an associated set of fixed variables Fq c J{l, ..., n} and partial

solution x . That is, (CPq) is defined by the conditions x = for e Fq .

The current set of candidate problems is called the candidate list. If

any feasible solutions of (P0) are known, the best of these is called the

incumbent and its value denoted by LB. If we let Jq= J-Fq be the set of

"free" variables and

j Fq j

where A is the jth column of A, then a typical candidate problem may be

written as

(CPq rjx + max I q rjxj

subject to E aijx j. bi-q lifm
jj q 1

xj E{0,1} jJq

An upper bound on the value of (CPq) is obtained by solving its LP

relaxation (CPq ). It is also helpful to compute a lower bound on the value of

(CPq ). This can be done by using a heuristic to find a feasible solution

of (CPq ). This feasible solution, if it is better than the incumbent,

becomes the new incumbent. A prototype branch-and-bound algorithm may now

be described as follows.



-4-

Step 1. Place (P) in the candidate list and set LB = - .

Step 2. If the candidate list is empty, stop. If there is an
incumbent, it is optimal for (P0). Otherwise (P0) is infeasible.

Step 3. Select a candidate problem and remove it from the candidate
list. Call it (CPq).

Step 4. Solve the linear program (CPq ). Let UBq denote its optimal
value.

Step 5. If UBq < LB, go to Step 2.

Step 6. If the optimal solution of (CPq ) is all integer, make this

solution the new incumbent; set LB = and go to Step 2;

Step 7. Use a heuristic to find a feasible solution of (CPq ) . Let

Hq denote its value. If Hq > LB, then make this solution

the new incumbent and set LB = Hq

Step 8. Separate (CPq) into two new candidate problems (CPq ) and (CPq ')

qq= q - p xq= 0 xq ' =1.
by choosing pJq and setting F Fq = F u{p}, = 

p p

Place (CPq ) and (CPq ) in the candidate list and return to

Step 2.

A great many variations on this pattern are described in [2], but this

prototype will suffice for our purposes. Step 5 is the bounding test. If

this test is satisfied, then no descendant of xq is better than the incumbent.

Notice that the bounding test includes the case where (CPq ), and hence

(CPq), is infeasible since then UBq = - . If (CPq) does not have to be

separated at Step 8, then we say that it has been fathomed. This occurs

if (CPq) passes the bounding test or if (CPq ) has an all integer solution.

Step 7, the heuristic, is optional. Its purpose is to strengthen the bounding

test by improving the incumbent and increasing LB.



-5-

The modifications that must be made to this prototype algorithm to

solve (PIP) are confined to Steps 5, 6, and 7. The notion of the incumbent

must be generalized from a single value LB to a function LB(8) defined on

0 <e<1. The upper bound must also be expressed as a function of 8: UBq(8).

The bounding test then becomes a comparison of two functions on the

interval 0<<1 rather than just a point comparison for 8=0.

3. The optimal return and lower bound functions.

In this section we shall investigate the behavior of the optimal

value of an integer program as a function of its right-hand-side. Let

the optimal return function

f(b') = max rx subject to Ax < b

x E {0,1}

be defined for b' E Rm. It is apparent that f(b') is nondecreasing in each

component of b'. Let {xk I k KI be the set of all feasible solutions of

(PIP), i.e. of all (P6) for 0<8<1. For each k E K, define the step function

En r xk if bo In A xkk = -~ j~l k
f (b') 1 j=l j

- otherwise

for all b' E Rm.

The optimal return function f(b') is the pointwise maximum of this finite

collection of nondecreasing step functions

f(b') = max {f (b') I k E K}



-6-

and is therefore itself a nondecreasing step function.

Now suppose that the olutions {xk I k e K} are known, where K c K.

A lower approximation of f(b') may be constructed from these known solutions,

namely

f(b') = max {f (b') I k E K}.

Clearly f(b') is also a nondecreasing step function and is a lower bound

function for f(b'), i.e. f(b') f(b) for all b eR. The approximation

can be improved as new feasible solutions are discovered.

We are interested in a particular "slice" of f(b') and f(b'): the

line segment {b+OdlO<l} where b is the right-hand-side of (P0) and d is

the given direction vector. Define g()=f(b+Od) and LB(6)=f(b+Od) for

0<8<1. Then g(e) and LB(e) are both step functions and LB(e) g(e) for all

O<e<1. If d, then g(e) and LB(O) are both nondecreasing. (See Figure 1).

There is at least one optimal solution of (PIP) associated with each step

of g(e). Solving (PIP) is equivalent to constructing g(e) by finding at

least one x solution for each of its steps.

The procedure for constructing LB(8) from the known feasible solutions

is as follows. For each k K define

k n k
e =min { Ajxk. b + d} (3.1)

j=l J

e = max {8 Ax < b + Ed (3.2)
2 j=l 

where =k 8 = + - if the indicated set is empty. Then
1 2

n k k
LB () = , rjxj if 810<8 2 (3.3)

- otherwise



-6a-

0 1

Figure 1. Typical g(e) and LB(e) functions.

/ UBq(e;*)

0 1

Figure 2. Typical UBq(8) and UBq(0 ;*) functions.

0

0



-7-

and

LB(e) = max{LBk(e) k E i. (3.4)

The solutions which determine LB(8) will be called the incumbents. Each one

is incumbent for a particular interval of 8.

4. The upper bound functions.

Consider a given partial solution xq. In order to demonstrate

that no descendant of xq could be optimal for any (Pi), we need an upper bound

on the return achieved by any descendant and this upper bound must depend

on e. Such an upper bound can be obtained by introducing (d) into the

relaxed candidate problem (CPq ). Define

UBq(e) - rjx q + max I rjx

subject to

Iq aijxj < bi+ di -q lim

j E Jq
0<xjl

so that UBq(0) = UBq. It is well known that UBq(e) is concave and piecewise

linear on 01. The function UBq(e) could be obtained explicitly by

ordinary parametric linear programming. The computational burden involved

in doing this for every candidate problem could be quite substantial, however.

Fortunately any dual feasible solution of (CP ) can be used to construct

a linear upper bound function for UBq() .o An optimal dual solution of

(C q ), barring degeneracy, yields the first linear segment of UB(e).R brigdgnrcyed h is iersgeto



-8-

By linear programming duality we know that;

m n
UBq() I r.xq + min I u (b +6d0 q) + v.

jEF q i i-1i j=l J

m

subject to uiaij v. r i;j J 

u. 2 0 l im
1

v. 2 0 l<j<n

For notational convenience we have included all of the v variables,

even though v.=O for jeF qin any optimal solution. Let Dq denote the

dual feasible region

m
Dq = {(u,v)>O | I uiaij + vj>rj for jJq.

Since the primal variables are all bounded and at least one (Ps) is

feasible, we may conclude that Dq is non-empty. Let {(ut, vt)ltETq } and

{(y, zs)IseSq} denote the sets of extreme points and extreme rays,

respectively, of Dq . Taking e=(l, ..., 1) we have

UBq() < I r.xq + ut (b+6d- q ) + v e
jEFq

for all tT q, with equality if (ut, vt) is optimal for the objective

function u(b+ed- q) + ve. As a function of then, the return achieved by

any descendant of xq is bounded above by:

uBq(e;t) = (utd)0 + [ I rjx q + t(b- q) + vte]

jEF

for any tT q. This is a linear function of and,since ut 2, it is

nondecreasing if d>O.



-9-

In the modified branch-and-bound algorithm for (PIP), linear

programming is applied to (CPq ) as usual. The functions UB q(;t) are

obtained at no extra cost. The function obtained from an optimal dual

solution will be denoted UBq(e;*) . Barring degeneracy, UBq(e;*) coincides

with the first linear segment of UBq(e). (See Figure 2). As in conventional

branch-and-bound, if the dual simplex method is used, then suboptimal dual

solutions can be used to perform additional weaker tests.

If (CP ) is infeasible, then the simplex method will terminate

with an extreme point (u t , vt) > 0 and an extreme ray (ys, zs) > 0,

such that

yS(b-$ q) + z e < 0.

If y d<0, then we may conclude that UBq(8) = - X for all 081. If yd>O,

then UB q() = - for 0<8<* and UBq(8) < UBq(e;t) for *<8<1, where

0* = _yS(baq) - zSe

y d

5. A branch-and-bound algorithm for (PIP).

Now that the upper and lower bound functions have been derived,

the generalized bounding test may be stated. The partial solution xq does

not have a descendant that is better than an incumbent if



-10-

UBq(e) < LB(0) for all 0<0<1

or if

UBq(8;t) LB(8) for all 0<8<1

for some tT q . This test is the basis for a modified branch-and-bound

algorithm that can solve (PIP).

Step 1. Place (P0) in the candidate list and set LB(e) = - X for 0<8<1.

Step 2. If the candidate list is empty, stop.
LB(e) = g(e) for 0<e<1.

Step 3. Select a candidate problem and remove it from the candidate
list. Call it (CPq ).

Step 4. Solve (CPq ). If it is infeasible, obtain the appropriate
dual extreme point (u*, v*) and extreme ray (y*, z*).
Otherwise obtain an optimal dual solution (u*, v*).

Step 5. I. (CPq ) infeasible.

(a) y*d < O0. Go to Step 2.

(b) y*d > 0. Set * = [-y*(b-sq)-z*e] / y*d.

If UBq(e;*) < LB(8) for all 80*<<1, go to Step 2.

II. (CP ) feasible.

If UBq(e;*) < LB(0) for all 0<e<1, go to Step 2.

Step 6. If the optimal primal solution of (CPq ) is all integer,
use it to update LB(8). R

Step 7. Use a heuristic to find feasible solutions of (CPq) with
right-hand-side (b+ed) for several values of . Use these
feasible solutions to update LB(e).

Step 8. Separate (CPq) into two new candidate problems (CPq ) and

(CPq ) by choosing pJq and setting F Fq = Fq u {p}

xq -=0, xq =1. Place (CP ) and (CP ) in the candidate
P p

list and return to Step 2.



-11-

The validity of the generalized bounding test insures that an

optimal solution for every (Ps), 0<8<1, will be found by the search. At

worst, an optimal solution may not be discovered until the bottom of the

branch-and-bound tree is reached (Fq=J). This guarantees that LB(6) will

coincide with g(e) by the time the algorithm is finished. It remains only

to show how the optimal solutions are identified.

Let {xkIkeK} be the set of incumbents when the algorithm

terminates. Let 0E[0,1] and suppose that (PS) is feasible, g(8) >- .

From the construction of LB(o), (3.1) - (3.4), we know that there is some

kcK such that

g(e) = LB(e)

=LBk(0)

n k

kkk k
Furthermore, LB k(e) > - means that ek <e0 02 , or equivalently that

k I Ajx X :b+ed.Since xk is feasible for (Ps) and its return is equal to g(0), it follows

that xk is optimal for (P0). Tb summarize, if kEK and 0E[0,1], then xk is

optimal for (P0) if and only if

n k
i) E A.xk < b+Od

j=l 3

n k
and ii) = g

r.jx = g() .j=l 



-12-

At Step 6, in contrast to the prototype algorithm, xq is not fathomed

when the optimal primal solution of (CPq ) is all integer. This is because

xq may have other descendants which are optimal for 8>0. The use of heuristics

at Step 7, while in principle optional, is an important part of the algorithm

since integer solutions of (CPR ) can only yield LB(8) = LB(O) for 0<e81.

The heuristics are needed to produce stronger values of LB(8) for 8 > 0.

As with the prototype algorithm, the above procedure will admit

considerable variation and refinement. If the dual simplex method is

used, then suboptimal dual solutions can be used to perform additional

bounding tests. Cutting planes can be generated for any candidate

problem to give stronger upper bound functions. Parametric linear programming

can be used to generate more than the first segment of UBq(e). If a

candidate problem with an all -integer LP solution has to be separated at

Step 8, then the same LP solution is optimal for one of the two new

candidates and does not have to be recomputed. Extensive experimentation

will be required to determine the most effective computational tactics.



-13-

6. Example

In this section the algorithm will be applied to a simple example.

In order to illustrate all of the different cases that can arise, the

parameterization will be done over a relatively large interval. The test

problem is

max lOx 1 + 15x 2 + x3 + 5x4

subject to

2x1 3x2 + 5x3 + lx 4 < 4 + 84

4x1 + 2x2 + x3 + lx4 < 4 + 84

xj E {0,1} 1<j<4

Thus b=(4,4), d=(4,4) and increasing from zero to one amounts to doubling

the right-hand-side. A picture of the optimal return function f(b') is

given in Figure 3. The dashed line indicates the line segment of interest:

{b+6d 0<}. It is clear from this picture that three optimal solutions

must be found, with values of 20, 25, and 30. These solutions are (0,1,0,1),

(1,1,0,0), and (1,1,0,1) respectively. The g(8) function, shown in Figure 4, is

20 for 0 < 8 < 1/2

g(8) = e25 for 1/2 < < 3/4

30 for 3/4 < e8 1.

The optimal LP solution of (P0) is x(1/2,1,0,0), u=(5,O), v=(O)

with value UB =20. The rounded down solution has value 15 and is feasible

for 0>0; the rounded up solution has value 25 and is feasible for 081/2.



-14-

This provides an initial lower bound function:

LB(9) = 15 for 0 < e < 1/2

25 for 1/2 < 8 < 1.

The complete branch-and-bound tree is displayed in Figure 5. The nodes

will be discussed in the order in which they were created.

1 1
Node 1. LP solution: x(0,1,0,1), u(5,0), v(0), UB =20. UB (;*)=206+20.

The LP solution is all integer and is feasible for 0. Therefore the lower

bound function may be improved:

LB(e) = 20 for 0 < 8 < 1/2

125 for 1/2 < 8 1.

The bounding test for node 1 is shown in Figure 6. Node 1 is not fathomed.

Node 2. LP solution: x=(,0,0,0), u(0,10), v(0), UB =10. UB (;*)=400+10.

The bounding test, shown in Figure 7, is not successful. Notice that if we

were only interested in solving (P0) we would be finished. Node 1 has an

2
all integer solution with value 20 and node 2 has upper bound UB =10<20=LB(0).

3
Node 3. LP solution: x(0,0,3/5,1), u(2,0), v(0,0,0,3), UB =11.

UB3(8;*)=88+11. The bounding test, shown in Figure 8, is successful and

node 3 is fathomed.

Node 4. Same as node 1, since optimal LP solution at node 1 has x2 = 1.

Node 5. Same as node 2, since optimal LP solution at node 2 has x2 = 0.



-15-

Node 6. LP is infeasible. The dual extreme point is u=(0,10), v=(0) and

the extreme ray is y=(O,l), z=(O). The critical value of is (-y(b-66)-ze)/yd=1/2 .

Thus UB6(8)= - for 0<0<1/2 and UB6 (;*)=400+5 for 1/2<801. The bounding

test is shown in Figure 9.

Node 7. Same as nodes 1 and 4, since optimal LP solution for node 4 has x 3=0

Node 8. LP is infeasible. The dual extreme point is u=(5,0), v-(O) and

the extreme ray is y=(1,0), z=(0). The critical value of is (-y(b-8)-ze)/yd=l,

so UB () = - on O0<81 and node 8 is fathomed.

Node 9. Same as nodes 2 and 5, since optimal LP solution for node 5 has x3=0.

Node 10. LP is infeasible. The dual extreme point is u=(5,0), v=(0) and

the extreme ray is y=(1,0), z=(O). The critical value of is (-y(b- 10)-ze)/yd=3/4.

Thus UB10(e)= - for 0<8<3/4 and UB10 (;*)=206+5 for 3/4s801. Node 10 is

therefore fathomed. See Figure 10.

Node 11. LP is infeasible. The dual extreme point is u=(0,5), v=(O) and

the extreme ray is y=(0,1), z=(0). The critical value of is (-y(b- 11)-ze)/yd=1/2.

Thus UBll(8) = - for 0<8<1/2 and UBll (;*)=208+15 for 1/2<8<1. Node 11 is

not fathomed. See Figure 11.

Node 12. LP is infeasible. The dual extreme point is u=(5,0), v=(0) and

the extreme ray is y-(1,0), z=(O). The critical value of 8 is (-y(b- 12)-ze)/yd=l

Therefore UB12 () = - - for 0<8<1 and node 12 is fathomed.



Nodes 13-18 are all at the bottom level of the search tree. The

solution for node 18, (1,1,0,1), has value 30 and is feasible for 0>3/4.

The lower bound function may be improved by redefining LB(6)=30 for 3/401.

LB(6) now coincides with g(e) on 0<e<1. The algorithm terminates since the

candidate list is empty.

The amount of extra computation required to solve (PIP), as compared

to (P0), depends on the length of the interval of parameterization. When

this interval is small, the burden imposed by parameterization may be

slight or even negligible. When it is large, however, as illustrated in

this example, the burden can be quite substantial.



-17-

25!

1 2 3 4 5 6 7 8 b11

The optimal return function f(b').

g(e)

1/2 3/4 1

The parametric function g(e).

b2'
8

7.

6.

5'

4.

3.

2.

1.

0 

30/

/

25 xi
10

0

00/ //
/

/

20
k i

15

5 10
- n i

0

Figure 3.

30

25

20

15

10.

0 1/4

__
- J

I
I~~~~~~~~~~

-

·

I

I

I

I

Figure 4.



-18-

=1

1x2=1 x2=O

X3=l

x4=1 x4=0

x3=0 x3=l

x2=1

x3=0

x4=0 x 4=

Figure 5. Branch-and-bound tree for the example.

xZFO

x3 03 X3=1

x4=0



-19-

1/4 1/2 3/4 1

Figure 6. Bounding test for node 1.

1/4 1/2 3/4 1

Bounding test for node 2.

30

25

20

15

10

5

30

25

20

15

10

5

U

Figure 7.



-20-

1/4

Figure 8.

1/2 3/4 1

Bounding test for node 3.

40e+5, 021/2

1/4 1/2 3/4 1

Bounding test for node 6.

30

25

20

15

10

5

30

25

20

15

10

5

0

LB ()

8el

Figure 9.



LB (e)

208+5, 0>3/4

3/4

Figure 10. Bounding test for node 10.

1/4 1/2 3/4 1

Bounding test for node 11.

-21-

30

25

20

15

10

5

1/4 1/2 1

30

25

20

15

10

5

0

I
-

Figure 11.



-22-

7. Computational Results

The ideas presented above were tested by incorporating them into a

branch-and-bound computer code [3]. The results for four. test problems are

presented in Table 1. In each run the direction vector d was taken as some

percentage of the right-hand-side b. For example, if d=5%b, then (PIP) has

right-hand-sides b+8(.05)b for 0<<1. The column headed "solutions" gives

the number of optimal solutions found, or equivalently the number of steps

of the g(e) function. "Heuristic" is the number of (evenly spaced) values

for which the heuristic is applied at Step 7. The problems are of the capital

budgeting type and the heuristic employed is that of Toyoda [12]. "Pivots"

is the total number of linear programming pivots and "time" is the total

solution time in seconds on an IBM 370/168.

These results illustrate quite clearly how the computational burden

increases as the interval of parameterization is lengthened. In order to

facilitate comparison with our results by other researchers we have included

the data for the 5x30 problem as Table 2 and the corresponding g(8) function

for a 15% increase in b as Table 3.



- 23 -

Table 1. Computation Results for four test problems.

solutions

1

4

5

7

8

10

16

heuristic

1

10

10

10

10

10

20

pivots

39

62

91

124

130

171

315

time

.239

.541

.815

1.044

1.170

1.534

3.162

0 1 1 153 1.605

.05b 11 10 529 8.114

.l0b 28 20 1173 18.005

.15b 37 20 2606 43.304

0 1 1 66 1.155

.05b 16 10 173 4.469

.10b 29 20 645 13.129

.15b 42 20 1621 30.888

0 1 1 180 3.242

.025b 6 5 400 9.486

.05b 12 10 1350 32.185

d

0

.05b

.15b

.20b

.25b

.50b

m n

5 15

5 30

10 28

20 30

-



-24-

Table 2. The 5x30 test problem.

j a2j a3j a4j a5j j

188 91 20 86 164
92 179 99 97 98

6 146 95 42 2
80 155 95 90 165
91 102 84 101 140
44 112 136 3 106

108 126 166 101 88
166 21 13 34 68
171 39 20 25 84

64 67 124 72 131
97 29 42 96 55
35 55 58 36 11
51 72 43 3 17
98 17 43 88 4
36 0 44 97 47
70 42 2 77 45
27 15 88 50 11
94 64 55 14 77
68 53 68 77 36
13 30 22 88 49

13.2 2.8 6.8 11.3 2.9
15.1 15.0 8.3 13.8 11.7
3.3 2.6 8.9 4.5 19.2
7.4 3.5 3.1 17.1 18.1
7.0 17.0 16.5 11.8 3.8
1.2 3.5 2.2 17.1 18.0
7.0 5.1 9.7 19.1 8.8

17.0 16.2 4.7 5.0 3.9
13.8 13.2 1.8 10.2 16.9

9.4 13.9 11.0 3.6 13.8

800 800 700 700 800

936
695
390

1152
980

1000
815
109
807
156
548
335
316
528

36
573

38
3

800
392

92
4

29
81

2
40
17
16
30

118

1 i
---



- 25 -

Table 3. The g () function for a 15% increase in b; 5 x 30 problem.

0

0.0

.01833

.05524

.10286

.11250

.11416

.13583

.20952

.25238

.30666

.32750

.34952

.39333

g(e)

7515

7578

7607

7612

7633

7696

7725

7777

7806

7807

7822

7836

7839

8

.41523

.42000

.43714

.45667

.45809

.47833

.49428

.49809

.51809

.54190

.56095

.56285

.59416

g(e)

7846

7869

7891

7913

7931

7942

7947

7957

7994

8009

8023

8049

8060

0

.60166

.62333

.71083

.73333

.75809

.77500

.79333

.82083

.87916

.93583

.99416

g(0)

8112

8141

8161

8171

8181

8204

8224

8253

8270

8283

8300

III I I IIII III I _ -

__ ___ __ __ _ _



-26-

REFERENCES

1. Bowman, V.J., "The Structure of Integer Programs under the Hermitian
Normal Form," Operations Research, Vol. 22 No. 5 (Sept-Oct), 1974,
pp. 1067-1080.

2. Geoffrion, A.M. and Marsten, R.E., "Integer Programming Algorithms: A
Framework and State-of-the-Art-Survey," Management Science,
Vol. 18 (1972), pp. 465-491.

3. Marsten, R.E. and Morin, T.L., "A Hybrid Approach to Discrete Mathematical
Programming," Sloan School of Management, MIT, Cambridge, Mass.
July, 1975.

4. Morin, T.L. and Marsten, R.E., "An Algorithm for Nonlinear Knapsack
Problems," Technical Report No. 95, Operations Research Center,
Massachusetts Institute of Technology, Cambridge, Mass., May, 1974.

5. Morin, T.L. and Marsten, R.E., "Branch and Bound Strategies for
Dynamic Programming," WP750-74, Sloan School of Management,
MIT, Cambridge, Mass., November, 1974.

6. Nauss, R.M., "Parametric Integer Programming," Ph.D Dissertation.
University of California, Los Angeles, January, 1975.

7. Noltemeier, H., "Sensitivitalsanalyse bei disketen linearen
Optimierungsproblemen," in M. Beckman and H.P. Kunzi (eds),
Lecture Notes in Operations Research and Mathematical Systems,
#30, Sprinter-Verlag, New York, 1970.

8. Piper, C.J. and Zoltners, A.A., "Implicit Enumeration Based Algorithms
for Postoptimizing Zero-One Problems," Management Sciences Research
Report, No. 313, Graduate School of Industrial Administration,
Carnegie-Mellon University, March, 1973.

9. Piper, C.J. and Zoltners, A.A., "Some Easy Postoptimality Analysis
for Zero-One Programming", Graduate School of Industrial Administra-
tion, Carnegie-Mellon University, Pittsburgh, Pa., 1975 (forthcoming
in Management Science).

10. Roodman, G.M., "Postoptimality Analysis in Zero-One Programming by
Implicit Enumeration," Naval Research Logistics Quarterly, Vol. 19,
1972, pp. 435-447.

11. Roodman, G.M., "Postoptimality Analysis in Integer Programming by
Implicit Enumeration: The Mixed Integer Case," The Amos Tuck School
of Business Administration, Dartmouth College, October, 1973.

12. Toyoda, Y., "A Simplified Algorithm for Obtaining Approximate Solutions
to Zero-One Programming Problems," Management Science, Vol. 21, 1975
pp. 1417-1427.


