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ABSTRACT

The first part of this thesis is concerned with the
coupling of a seismic tool with the formation in a borehole.
Two resonance models are presented and the transfer function of
the coupling evaluated. The resonance frequency can be
controlled and shifted away from the VSP frequency bandwidth.
The key parameters are the tool's mass, the clamping and the
surface of contact of the tool with the formation.

In the second part, the generation of tube waves
due to the closure of a fluid-filled fracture intersecting
the borehole is investigated. This phenomenon occurs when an
incident P-wave impinges on the fracture. From the tube wave
amplitude normalized to the P-wave amplitude in the formation,
we can estimate the in-situ fracture width.
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Part I

SEISMIC TOOL-FORMATION COUPLING

IN BOREHOLES



List of symbols 7

W = Angular frequency

Vp, Vs= Compressional and shear wave velocity, respectively

k a = w/Vp Compressional wave number

ka = w/V s  Shear wave number

2

2 p 2 2S- = ka 2/k > 1

Vs

I(w) = Dynamic radiation compliance

T(w) = Coupling transfer function

M = Tool's mass

DD= 2d Length of contact of the tool in the z direction

6 = Width of contact surface of tool

w = Vertical displacement

X, i = Lame's elastic constants

v, p = Poisson's ratio and mean density, respectively

Hn(z) - Hn(1)(M) n-th order Hankel function of the first kind

Hn () and Hn (&) are the first and second derivatives with

respect to 5 of Hn(M).

I Is

w and w denotes the first and second derivatives, respectively

of the function w with respect to the time variable t.

E = axial (vertical) wave number

h = (ka 2 )1/2 horizontal P wave number (Axicylin)

k = (ka2 2 1/2 horizontal S wave number (Axicylin)

E means 'belongs to'

V means 'for any'

N is the set of natural numbers [0,1,2,...[

R is the set of real numbers ]-, +0[

Z is the set of integers ]...,-3,-2,-1,0,1,2,...[



I.1 Introduction

In vertical seismic profiling (VSP) and other borehole

seismic measurements, a cylindrical tool containing seismic

sensors (geophones) is lowered into the borehole and clamped to

the borehole's side. The coupling effect of this downhole tool

on the observed seismic signals is of interest. In this paper

we define the coupling as a filtering effect and determine the

properties of this filter. We consider a filter with transfer

function T, which has as input the seismic displacement and as

output the measured displacement (Fig. 1). The determination of

T depends upon the calculation of the dynamic radiation

compliance I of the tool.

The geophone-ground coupling on a semi-infinite half

space, for normal incidence of compressional waves, has been

treated by several authors. Among them, Lamer (1970)

represents the coupling by a damped oscillatory system which

is shown to be equivalent to a second order low-pass filter.

The resonance frequency of this filter depends essentially on

the density and on the shear wave velocity of the ground, on

the mass and on the contact surface of the geophone. Safar

(1978) shows that the mutual interaction of a geophone set,

resulting from the re-radiation of incident compressional

waves, can have a considerable effect on the response of each

geophone.

The calculation of circular footings and infinite-strip

compliances on a semi-infinite solid has been undertaken by

many authors, among whom Bycroft (1954), Gladwell (1968), Luco

and Westmann (1971), and Miller and Pursey (1954).



In this first part we attempt to model the observed low

frequency (15-30 Hz) oscillation encountered by a Schlumberger

seismic measurement in a borehole, when the tool (WST) was

clamped in a very soft formation. Analysis of VSP data is the

initial step in the study of this effect. We shall consider a

priori that the atypical signals might result from relatively

"poor" tool-borehole wall coupling. We will try to understand

the effect of different parameters. However, since both of our

theoretical models are simplified and far from the real geometry,

our results are qualitative. Other possible interpretations are

suggested for a future deeper investigation.



1.2 Observation & Data analysis

The VSP measurement consists of three main parts:

(i) The surface source.

The surface source is a Bolt DHS 1900 airgun, connected to a

compressor. A pressure hydrophone in the vicinity of the

source records the time and shape of the source signal.

(ii) The downhole tool. (Fig. 2)

The downhole seismic tool (WST) is cylindrical in shape. The

tool's weight is about 125 kg, its length and diameter are 5m and

15 cm, respectively. The tool is positioned against the borehole

wall by two arms activated by a hydraulic pump located at the top

of the tool. This device is controlled from the surface. The

tool is anchored by its own weight. Two 10cm-long rings, about

120 cm apart, are attached to the tool to prevent excessive

adherence to soft formations.

The signal is recorded by 4 vertical Geospace HS1 velocity

geophones (bandwidth 10-200 Hz at 3 dB). The downhole

amplifier has a gain of 60 dB with a bandwidth of 0-2 kHz at 3

dB.

(iii) Recording System.

The recording is made by a Cyber Service Unit (CSU) on the

surface. The vertical distance between two tool positions

corresponds to 8 ms (125 Hz) in vertical travel time

(approximately 20 m for compressional wave velocity Vp = 2500

m/s). Other characteristics of the surface recording are:



Low cut and anti-aliasing 0.5 - 250 Hz at 3 dB

Downhole signal sampled at 1 ms (1 kHz)

Surface sensor sampled at 0.5 ms (2 kHz)

About 3 seconds of signal is recorded for each shot.

Recordings with no offset shooting have been made in

Test well X (Fig. 3). Different depths, with known lithologies

were investigated. Representative data have been selected for

presentation in this section:

Fig. 4 contains 5 typical signals, and some of their

amplitude spectrums obtained in this well. Fig. 5 shows

signals recorded in uncased limestone (A) and shales (B and C).

Fig. 5 (B)&(C) shales are about 44 m deeper than the limestone

in (A). In Fig. 5 (B), the dominant phase is the tube waves.

Since the gain is adjusted on the basis of maximum amplitude,

the body wave arrivals that have small amplitudes cannot be

seen. To look at the body waves in detail we plotted

the interval 400-900 ms with much higher gain in Fig. 5 (C).

The P-wave signal is weak and the waveform is oscillatory. In

the Fourier amplitude spectra (Fig. 7 and 8 (B)) we can see the

effects of oscillations and an attenuation of frequencies above

50 Hz, compared to those in Fig. 5(A) and 7&8 (A). Similar

characteristics are seen in Fig. 4 (D) & (E).

Signals of Fig. 5 (A) and (C) when filtered with a 10-80 Hz

band-pass filter give Fig. 6 (A) and (B). The difference

between limestone and shale signals is further emphasized in

this figure 6.
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Properties of these atypical shale signals (Fig. 4 (D) and

(E), Fig. 5 (B) and (C)) and of their amplitude spectrums can be

summarized into 3 main characteristics:

- attenuation of high frequencies (> 50 Hz)

- large amplification of tube waves

- loss of signal in noise.

Since these odd signals exist only in a "soft" formation,

it is natural, a priori, to attribute this effect to the

tool-formation coupling. We shall therefore follow this path

to see if the models can explain 'the observed data.



1.3 Resonance Models

The aim of the models is to evaluate the transfer function T

of the coupling linear filter, for reasonable values of the

physical properties of both the formation and the tool. The first

model Axicylin (section 1.4) computes T from a vibrating rigid

cylinder. The second model Infistrip (section 1.5) which is

simpler (limiting case of Axicylin when the radius + w), computes T

from a vibrating rigid infinite strip.

Our assumptions are the following:

(1) The WST downhole tool is welded to the formation during dynamic

excitation (strong and debatable assumption, see Appendix A for

more details)(displacements, involved 10-8-10 - 7 m), (2) the medium

near the tool is homogeneous, isotropic and linear elastic, (3) the

tool is rigid, (4) time dependence is of the form exp (-iwt), (5)

there is no offset shooting, and (6) the tool is excited by a

vertical shear stress only.

Since we only have vertical geophones, we will limit our

interest to the vertical component w of the displacement vector

u = (u,v,w).

Parameter definitions:

The formation and the tool parameters that need to be used in

modelling are listed below along with typical values.

(i) Formation parameters:

Poisson's ratio v (< .40)

Compressional wave velocity Vp (-3000 m/s)



Mean density

Borehole radius

Spring elastic constant

Dashpot damping constant

(-2000 kg/m 3)

(-.15 m)

?

(ii) Tool parameters:

Total mass - M

Distance between the two rings L

Length of contact DD
tool-borehole wall

Width of contact 6
(circular for Axicylin)
(linear for Infistrip)

(-125 kg)

(~ 120 cm)

(~ 20 cm)

(< 6 cm)

We shall limit our study to the frequency range

10-200 Hz. In this range, the amplitude spectrum of the

geophones is nearly constant at unity.

Defining w s as the seismic displacement along z on the

contact surface, in the absence of the tool, and wt the

displacement along z on the contact surface due to the tool's

excitation (tool's Yibration considered as a source), the

seismometer output is then w = ws + wt (total displacement).

The transfer function T of the coupling (along z) is

defined as (Fig. 9)

ws + wt w
T - - - (3.1)

ws ws

N.B. If we have a perfect coupling, wt=0 and T=1.

Since we are considering only the vertical displacement,



T is the transfer function for the vertical component.

The shortest wavelength is '(for Vp - 3000 m/s)

3000 m/s
min 200 Hz = 15 m, and Xmin > > L. We will therefore

assume that on the surface of contact DD the shear stress arz

produced by the incoming wave does not vary (i.e. arz is

constant at fixed time on the tool's contact surface)

The tool-formation coupling can be well understood by

considering its equivalent oscillatory system (Appendix B),

where

T(w) = 1 . (3.2)
1 - Mw2 (K-iwn)-

Unfortunately, this method provides only a good physical.

support since we are unable to determine K and n. Hence the

following step is to compute T via the radiation of the tool

(Appendix C). If It(w) is the radiation compliance of the tool

for a given surface of contact 6-DD, we get

T(w) = 2 (3.3)
1-Mw It(w)(6-DD)-l

These two equations (3.2 and 3.3) are equivalent. In the

radiation case (3.3) we need to specify 6-DD and It(w) . In

the oscillation formula (3.2) we need to give K and n



1.4 Model AXICYLIN

In model Axicylin the tool is represented by a rigid

vibrating cylinder of finite length DD, excited along its

vertical axis (Fig. 10) . The cylinder is welded on the inner

surface of an infinite cylindrical hole of radius a, in a

linear-elastic, homogeneous and isotropic medium. Ic(w) of

the cylinder will be computed. .Approximate values of the

tool's compliance It(w) and the transfer function T of the

coupling will be derived.

The problem is axisymmetric. We shall consider

homogeneous boundary conditions in stress. Time dependence

e- i t will be omitted throughout the formulation.

Boundary conditions at r = a, are (see Fig. 11) in

cylindrical coordinates (r,z):

arz = s (constant) z ( Idl
(4.1)

= 0 z > Idl

rr = 0 V z

Solving the wave equation in cylindrical coordinates

(r,O,z), via the seismic potentials, and considering the

symmetry properties we get after some tedious manipulations,

the z component of the displacement vector ut = (ut,vt,wt)

(see Appendix D).



We compute wt(r=a,z) and take the mean value along DD,

= 2 f{ig Ao,() Ho(ha)+k 2 Co(E)

(4.2)

2is [k Ho (ka) - H1 (ka)/a I sin( d)

Ao() =
wr R(F)

and

s E2h Hl(ha)/a - (k 2-22 ) Ho(ha)] sin(Ed)
Co() =

ruk R()

where R( ) E Hl (ka) H,(ha) (2 2_kO 2)2 + H (ha) Ho(ka) 4hkE 2

- 2hkg2 H1 (ha)

Hence
<wt>

orz

HI (ka)/a.

<wt>
s

Ic(w) is the radiation compliance of the whole cylinder

having 2Ta.DD for contact surface, let Mc be its mass.

(C.4) gives

IC ( W)
2

M 2 na.DD)

<wt>

with

(4.3)

Use of

Tc(w) = (4.4)

H,(ka)} sin(Ed)/(Ed)



What we would like to evaluate is

T(w) = (4.5)
It( w)2

1 - Mu (6.DD)

where It(w) is the compliance of the tool having 6SDD as

contact surface.

Fortunately, we can compare Ic(w) and It(w). Ic(w)

applies to a contact surface S1 = 27a.DD wich is greater

than the contact surface S2 = 6.DD of It(w), and

where Orz is constant for Ic and It .
0rz

Applying the fundamental law of dynamics for Mc and M we get

Fl = arz.S1 = Mc <wl> and F 2 = arz.S2 = M <w2>.

In order to get Ic - It we must have <wl> <w2 >, or

Fl / F2 = Mc / M.

Since orz is constant, (4.6) reduces to

Sl / S2 = Mc / M.

Assuming that Mc = 2 ra
M, (4.7) is satisfied.

I c (W)

I =

(4.6)

(4.7)

It(u) ~Hence (4.8)
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Therefore the transfer function tool-formation given by (4.5)

is approximated by

T(w) ~ . (4.9)

1 - M2
6.DD

The tool's resonance frequency is

1 .DD 1/2

fR 2 M Ic(R) ) (4.10)

It is interesting to note that (4.4) can be directly

applicable to the problem of a casing not well cemented if

DD<<Xmin; since DD-10m then we must restrict our frequency

range to [10,100]Hz and Xmin~30m. Thus we will have at least

qualitative information from (4.4). The quality of cementing

can be specified by then fractional surface S coupled to the

formation. When we have good cementing S -2wa.DD. For poor

cementing S <2ra.DD.

Numerical details of the formulation are briefly exposed

in Appendix F.



1.5 Model INFISTRIP

This model approximates the borehole surface with a plane

surface and the tool as a portion of an infinitely long strip

(infinite in y) welded to the plane. The axis of the borehole

is parallel to the z direction of the plane (see Fig. 10).

The problem of an infinitely long strip of finite width

DD vibrating tangentially to the free surface of a medium and

normally to the axis of the strip has been studied by Miller

and Pursey (1954).

The boundary conditions at the free surface x=O, are

(see Fig. 12) in cartesian coordinates (x,z)

Oxz = s (constant) z < Id!
(5.1)

= 0 z > Idl

oxx = 0 V-z (DD=2d)

Since we are only interested on the tangential component

wt of the displacement vector ut=(ut,wt) when the tool

vibrates, we get for the mean value <wt> along DD, at x=0

(see Appendix E)

<wt> s DD f k2 ( 1/2 sin2(Ud) dF (5.2)

7u F(S ) ( d)2

where F(E) = (22-kg2)2 - 4E2 ( 2 ka 2 )1 2 (2 k 2 )1/2

It is shown in Appendix G that Infistrip is a particular

case of Axicylin when a + w.



<wt> <wt>
Hence I s  = = . (5.3)

orz s

IS(w) is the radiation compliance of the strip. Set S and

Ms the surface and the mass of the strip, respectively.

Use of (C.4) gives

TS(w) = 1 . (5.4)

1 - MSm
S

However, since the strip is infinite we have then to define

a strip surface density pS. Thus M s - S ps . (5.5)

Use of (5.5) in (5.4) gives

1 (5.6)
TS ( )

1 - pS 2 I s (w)

Again as in (4.5), what we are looking for is

T(w) = 1 , (4.5)
It(w)

1 - Mw (6.DD)

where It(w) is the compliance of the tool having 6-DD as

contact surface.

By the same token as in section 1.4, if we assume

pS = M/(6.DD) as surface density of the strip, we get



We therefore can approximate T(w) by

Ts (w) in (4.5),

(5.7)

Is( U)2
1 - Mo (6.DD)

The tool's resonance frequency is

fRt
S ( 6.DD
2 7 M Is(wR)

1/2

(5.8)

For the numerical details of the formulation see

Appendix F.

It( W) ~ IS( )
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1.6 Results and Discussion

We calculated a suite of models to determine the

transfer function T for different tools and formations,

and the sensitivity of the results to different model

parameters.

Consider reference models with initial values of

parameters (ex: Fig. 13 for Axicylin and Fig. 17 for

Infistrip). The sensitivity to each parameter, is determined

by varying the particular parameter while keeping all others

constant. These effects are studied in detail with the

computation of numerous models. The results are condensed in

Tables 1 and 2. The notation used in the tables are as

follows:

Let us define LFR as "lower resonance frequency"

4 as an increase (ex: M means M

increases)

Sas a decrease.

- as a an insignificant variation

Table 1.

Model Axicylin

Parameter Resonance Peak Halfwidth fl/2 Max amplitude

M r LFR \

v LFR \ -



Halfwidth fl/2 J Max amplitude

VP LFR

P LFR -

a LFR

LFR /

DD LFR

Table 2.

Model Infistrip

Parameter Resonance Peak Halfwidth f /2 Max amplitude

M LFR

v LFR

Vp \ LFR

P LFR

6 LFR

DD LFR

Parameter Resonance Peak



From the tables we can immediately deduce some

conclusions. The parameters that could be controlled in

designing a new tool are: M, 6, DD and L.

In order to have a good coupling and move the resonnance

peak away from the seismic frequency band of interest we

should decrease the mass of the tool M, increase its surface

of contact 6.DD and decrease the distance L between the two

rings. (increasing L will invalidate the approximation Xmin ~

10 L, wich is a necessary condition in our formulation.

Furthermore, interferences between the two rings may occur for

L > Xmin / 2 )

We calcuated the transfer functions for two types of

formations: A soft formation (shale) with v = .4, Vp = 3000

m/s, p = 2000 kg/m 3 and a hard formation (limestone) with v =

.25, Vp = 4500 m/s, p = 2500 kg/m . The tool is the WST with M

= 125 kg, DD = 20 cm and 1 cm ( 6 < 6 cm.

Amplitude spectrums of these two formations are plotted:

Axicylin model:

Fig. 13 corresponds to a soft formation with 6 = 2 cm, Fig. 14

with 6 = 4 cm and Fig. 15 with 6 = 6 cm.

Fig. 16 corresponds to a hard formation with 6 = 1 cm.

Infistrip model:

Fig. 17 represents the case of a soft formation with 6 = 2 cm,

Fig. 18 with 6 = 4 cm and Fig. 19 with 6 = 6 cm.

Fig. 20 corresponds to a hard formation with 6 = 2 cm.



The main difference between the two models Axicylin and

Infistrip is that the latter does not take into account the

curvature of the borehole. This results for Infistrip

(compared to Axicylin) in:

- a shift of the resonance frequency towards low

frequencies

- a larger half-width of the curve

- a lower maximum peak resonance

These differences are not surprising since Infistrip is a

limiting case of Axicylin when the radius of the borehole tends

to infinity. Therefore using the sensitivity analysis of

Axicylin for the radius a, by increasing it we deduce these same

differences between Infistrip and Axicylin. The model Axicylin

is therefore more appropriate to. consider since it includes

information about the borehole's curvature.

The resonance frequencies resulting from our model are

above 100 Hz. Therefore we are not able to fit the observed data

with our model for plausible physical values. From all our

assumptions, the one which is the most debatable is the welding

condition: the tool is welded to the wall of the borehole for

any formation during dynamic excitation. Dynamic slipping might

be present in soft formation when the tool is anchored by its

own weight (A.2 not satisfied). If slipping occurs (probably on

the opposite side of the arms), the seismometer will be

sensitive to the motion in the fluid. Hence, it will record

signals resulting from motions in the formation and in the



fluid. Since the vertical component of the tube wave in the

fluid is on the order of 10 times the one in the formation (Fig.

21, Cheng and Toksoz 1981), these tube waves can induce motion

in a poorly anchored borehole seismometer.

I have attempted to fit the observation on the basis of a

resonance effect of a well anchored tool. A similar model which

would include slipping of the tool and tube wave contribution

might satisfy the observations, and thus explain the cause of

these atypical signals.

Other additional effects can be the presence of noise in

the soft formation due to a low frequency permanent noise and/or

noise due to P and S waves converted into tube waves close to

the tool (Cheng and Toksoz 1981).



1.7 Conclusions

The conditions, for a better coupled tool with the

formation inferred from our models are:

Positive anchoring (A.2)

Rigid tool (assumption (3))

Minimize the tool's mass M '

Increase the contact surface tool-formation 6.DD /

Decrease the distance between the two rings L N

The two models were not able to explain the observed odd

signals for reasonable physical values. It seems probable

that the tool is sometimes not well anchored to the borehole

wall for soft formations. This results in an observed large

amplitude tube wave displacement, indicative of poor

anchoring. Other additional effects can be due to the presence

of low frequency pre-existing noise and/or generated tube

waves by body waves incident on the borehole in the vicinity

of the tool. A new model which would take into account the

slipping of the tool and the tube wave effect will be the next

step in studying the tool-formation coupling.



Part II

TUBE WAVE GENERATION FROM

A FLUID-FILLED FRACTURE



List of Symbols

c = Tube wave phase velocity

f = frequency

Ii (z), Ki(z) = modified Bessel -functions of the ith order

K = permeability

k = w/c vertical wavenumber

L(t) = Fracture width

Lo = Maximum fracture width

X= k(1-c2 /2 1/2 radial wavenumber from P wave contribution

m = k(l - 2/ )1/2 radial wavenumber from S wave contribution2 2 1/2

2
n = k(l - c /af) radial wavenumber from fluid P wave

contribution

R = borehole radius

u a = vertical displacement of the compressional (P) wave in
z

the formation

uT = Tube wave vertical displacement in the formation
z

ufzT = Tube wave vertical displacement in the borehole fluid

Vs = shear (S) wave velocity in the formation

a = compressional (P) wave velocity in the formation

af = compressional (P) wave velocity in the borehole fluid

1 avS( av fluid compressibilityv 3P T
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E(t) = fracture wall displacement

ii = volumetric strain of tube waves in the borehole fluid

Co = Maximum fracture wall displacement

n = dynamic viscosity

p = formation density

Pf = fluid density

w = 2nf angular frequency



II.1 Introduction

In part I we discussed seismic noise due to the

oscillation of the tool. In this section we will present a

source of noise which is independent of the tool. A

compressional body wave impinging on a fractured zone

penetrated by an uncased borehole would generate tube

waves. This concept of localizing permeable zones from the

tube wave analysis in VSP data has been proposed by Huang

and Hunter (1981). The closure of a fluid filled fracture

due to an incident compressional wave would inject an

amount of fluid in the borehole. This fluid movement is

the source of excitation of tube waves. At this location,

two tube waves will propagate, one up the borehole and one

downwards. Such an observation in a VSP section would lead

to the determination of a high permeable zone intersecting

the borehole.

For a first consideration of this fluid mechanism

mathematically, some idealized geometry must be adopted.

The geometry we have chosen is that of a parallel-walled

fracture which intersects the borehole normal to the

borehole axis, with a compressional sinusoidal plane

wave impinging normally on the fracture. We will first

calculate the volume of fluid ejected from the fracture

during the first one-fourth period of the incident wave.

Then, we evaluate the tube wave displacement generated by

the squirting of the fluid. The in-situ fracture width can

be estimated from the ratio of the tube wave amplitude to

the P wave amplitude.



11.2 Fracture model

Consider the specific example of a parallel-walled

fluid-filled fracture (with low aspect (thickness to

length) ratio <<10- 3). The fracture is penetrated normally

by an uncased borehole. The fluid in the fracture is in

hydrostatic equilibrium with the fluid in the borehole when

there exists no perturbation.

An incident P wave impinges normally on the fracture,

exciting it sinusoidally. The wavelength of the

disturbance is assumed to be much greater than the

thickness of the cavity .

For very small strains, the fracture width L(t) is

assumed to oscillate about the static shape Lo as

L(t) = Zo - E(t) (2.1)

where c(t) = co sinwt and co << Lo,

Co is the maximum fracture displacement (Fig. 22).

Other assumptions are: we are in the low frequency

approximation therefore in the presence of laminar flow and

use of Darcy's law is then valid. The flow is essentially

one dimensional. The medium is rigid compared to the fluid.

The fluid squirted into the borehole does not perturb

significantly the borehole pressure P0 = p gh (h is the

height of fluid in the borehole at the point of measure,

g is the gravitational acceleration).

From classical fluid mechanics (ex: Landau and



Lifshitz, 1959) we can derive the permeability of two

parallel planes separated by L and enclosing the fluid.

We obtain
2

K -
12

Since we assumed the wavelength of the oscillation to

be much greater than the width of the cavity and co<<Lo ,

the quasi-static approximation may be employed to represent

the time dependent permeability
2

L (t)
K(t) - L (t)

12

For convenience we shall take the time average of K(t)

in the first one-fourth period of the incident wave (T/4),

i.e.

T/4- 4 2
K = I L (t)dt

Lo  2 oLo

K - 12 1 (2.2)

The rate at which fluid flows in the presence of a

pressure gradient aiP/ax is related by Darcy's Law to the

cross sectional area L(t), the fluid viscosity n and the

permeability K

q L(t) p (2.3)n ax

During a time increment dt, a differential volume

element dx-L(t) stores a certain amount of fluid.



The elementary volume entering at x = 5 - dx is

(Fig. 23)

q, dt K L(t) -
P dt (2.4)

The elementary volume exiting at x = 5 is

q 2 dt = - {K L (t) + L(t)a)dx} dt (2.5)2 0 ax ax n ax

The net storage of fluid in dx.L(t) is due to the

fluid ejected from the fracture's closure and the

compressibility of the fluid. During a time increment dt

this total storage is

d(t) dxdt + L(t)a ( 3)dxdt (2.6)dt

The net storage given by (2.6) must equal the net

volume (ql- q 2 )dt. Use of (2.4) and (2.5) with (2.6)

gives

S(K L(t)) = L(t)B ap

d(t)
where (t) = dt- = W cosWt.

2 K -(t)
Setting a =- and q(t) = -7t we get

2 p Lp E

a2  2 = q(t), (2.7)
ax



with the boundary condition in pressure

p(x,t=o) = Po vx>o

p(x=o,t) = Po t>o

ap
I = 0.

ax x=-

The last condition states that there is no fluid flow

in the fracture far from the borehole intersection.

Equation (2.7) is a one-dimensional inhomogeneous

diffusion equation. The heat conduction analogy

corresponds to a semi-infinite half-space (x>o) having a2

as thermal diffusivity and a time varying heat source q(t).

The solution to this partial differential equation (2.7) is

(Appendix H),

t
p(x,t) = Po - f.,q(t-T)erf( x  )d (2.8)

o 2a/T

where erf(z) 2 e - t 2 d t is the Error function.
VT o

Note that for large x, p(o,t) = Po + n L(t)
a Lo

The pressure gradient 3p/ax is then from (2.8)

t
-p (xt 1 f q(t-T)exp(-x 2 /4a 2 T) 1/2d (2.9)
ax a/7o

The rate at which fluid flows is from (2.3)

q(x,t) = - p(xt)

*3



We wish to calculate the volume ejected from the

fracture for the maximum fracture displacement. This would

lead to a maximum volume ejected in a finite amount of time

which characterizes the dynamics and the tube wave

displacement. Thus, we have to minimize (2.1). This

maximum volume occurs for t = T/4 = 8i/w which gives L(T/4)

= Lo-C o . Therefore the volume of fluid forced into the

borehole from the fracture is

T/4
AV = f q(x=o,t)dt (2.10)

0

or explicitly,

1 1/2
AV = soLo 2 1) F(w,,eo/Lo) (2.11)

T/4 t 1- co/L o sinwt dTdt
where F(w, o/L O ) = I cosT dTdt

1- Ce/L O sinWT (t-T)1/2

Computation shows that for increasing frequency,

F(w,co/Lo) decreases. This is consistent with the fact

that as the frequency increases more fluid is compressed

and therefore the ejected fluid volume decreases.

For Eo<<<L o we can use an asymptotic expression for

F(w,eo/L O ) .

T/4 1/2
F(w,o) = 2w f (T/4-t) coswtdt

0



The volume obtained in (2.11) is in two dimensions.

Since in the real case we are in a 3D configuration and the

3D complete solution is beyond the scope of this study, two

approximate 3D extrapolations will be considered.

(1) A fracture with the geometry of a strip having

about 2R as horizontal length (Figure 24.) intersects the

borehole. Neglecting the edge effects during the flow, the

3D volume is approximately equal to

AV3D = 4R AV, (2.12)

R being the radius of the borehole. AV3D is a lower bound

of a fracture which extends around the borehole.

(2) The 2D and 3D problems beeing solved for a

stationary process, we can use the results for this

study with the low frequency approximation. This gives

(Appendix I) for the fracture with a circular geometry

around the borehole

AV3D 2 2iR X AV (2.13)

X is the geometrical factor depending on the effective

length d of the fracture and on the borehole radius R.

x = d/R
In R + dj

R
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11.3 Tube wave amplitude

Tube waves in VSP are low frequency Stoneley waves.

These are interface or guided waves with the largest

amplitude confined to the neighborhood of the solid-fluid

boundary and decaying exponentially away from it. The

dominant phase in a seismic signal recorded by a hanging

tool in a borehole are the tube waves. The fluid pulse

AV3D forced from the fracture into the borehole (during a

time interval of T/4) would then generate mainly tube

waves.

Considering the plane z=o as the plane of symmetry of

the fracture (Fig. 22), the integration of the tube wave

volumetric strain cii in the borehole (at z=o) over the

radial distance and in T/4 must equal the fluid volume

ejected from the fracture AV3D. In axisymmetric cylindrical

coordinates we have

R T/4
AV3D = 2nc f I Eii(r,t,z=o) rdrdt (3.1)

O O

Using the seismic potentials for tube waves given by

Cheng and Toksoz (1981) (Appendix J) we can calculate cii

and evaluate the tube wave displacement in the borehole

fluid. We are interested in the amplitude of the vertical

component of displacement juT I,
fz

we get luT I = C k Io(nr) r 4 R- (3.2)
fz

2 2 1/2(l-c /af )where C = 2 /2 AV3D (3.3)
27R(2-c /af)Ii(nR)



From the tube wave amplitude (displacement) in the

fluid luT I we can derive the tube wave amplitude in the
fz

formation luzTI (Appendix J). We get

luzTI = A[kKo(Zr)+mGKo(mr)] r > R+ (3.4)

2 Vs 2K 1 ( R)

where G = (3.5)
k(c2-2V2)Kl(mR)

n(2Vs -c )and A = n(2Vs c Il(nR) C (3.6)
c2 K 1(R)

Consider now the inverse problem. Given the tube wave

amplitude normalized to the direct P wave amplitude in the

formation, the frequency of excitation, and the borehole

and formation parameters, we can estimate the in-situ

fracture width. The magnitude of the P wave displacement

luza is, in a first approximation, representative of eo

(the maximum fracture displacement). In fact luza l<J o

since the medium is not rigid and therefore the

displacement close to the fracture is greater than the

displacement far away from it. The ratio eo/luZl is

representative of the fracture length and the stiffness of

the formation. However in our formulation we shall assume

luzal - co which is equivalent in considering a lower bound

of the fracture width Lo.



11.4 Results

We shall choose the frequency f to be 25 Hz, and the

following values for the parameters:

Fluid incompressibility 8- 1 = 2 xl10 9 Pa

Dynamic viscosity n = 10 - 3 Poiseuille

Maximum fracture displacement Eo - luzUI Eo<<L o

Radius of borehole R = 0.1m

P-wave velocity of fluid af = 1500 m/s

Fluid density pf = 1.2 g/cm 3

Since we assumed the medium to be rigid compared to

the fluid, AV3D for the strip fracture (2.12) can be

calculated for any formation:

F(w,eo/Lo) - 0.156

and AV3D = 14'2 x10 3 EOL O

We shall consider two types of formation:

(i) "Hard" with a = 4500 m/s, vs = 2400 m/s and

p = 2.3 g/cm 3

(ii) "Sediment" with a = 2700 m/s, vs = 1200 m/s and

p = 2.1 g/cm 3 .

The tube wave phase velocity c is calculated solving the

period equation (Appendix J) for the given frequency and

the formation and borehole parameters.

Results for the two formations are listed in Table 3. The

ratio luT I/luzTI is evaluated at r=R. If we are given
fz

luzl/Iuzal- I~zTI/co, the last column of Table 3 gives the

value of the maximum fracture width Lo .



Table 4 gives some numerical values for Lo and the

corresponding ratios luzTI/eo evaluated at r = R+.

For a same amount of volume ejected from the fracture

a "hard" formation would give a higher value of tube wave

amplitude normalized to the direct P-wave amplitude. Two

effects contribute to this increase:(l) the tube wave

displacement in the fluid is greater in a "hard" formation

than in a "sediment" (column 2 in Table 3) and (2) the

ratio of tube wave amplitude in the fluid to that in the

formation at r=R is larger in a "hard" formation (column 3

in Table 3).

The normalized tube wave amplitude decreases with

decreasing frequency as shown for a "sediment" in Table 5.

The volume forced into the borehole and the tube wave

amplitude in the borehole fluid both increase with

decreasing frequency. But the ratio of the tube wave

amplitude in the fluid to that in the formation is so large

for very low frequencies (10 Hz) that luzTI/Eo varies in

the same sense as the frequency.

See Appendix I for the results of the circular

fracture in 3D (2.13). The normalized tube wave amplitudes

are directly obtained by multiplying the values given by

the strip fracture by nX/2.

Mavko and Nur (1979) give a limiting value for Lo,

beyond which turbulent flow occurs. This maximum width

is on the order of the millimeter for exploration

frequencies. The fracture model is then qualitative

for larger width.



Table 3.

(25 Hz)

Formation

"Hard "

"Sediment"

juT I/EoLO
fz

39 x10

31 x10

juT I/luzTI
fz

2380

2218

luzTl / cQL o  -
at r=R C

165

140

Table 4.

(25 Hz)

"Hard"
IuzT I /Eo

0.02

0.08

0.17

0.83

1.7

"Sediment"
luzTI/c,

0.01

0.07

0.14

0.7

1.4

Table 5.

("Sediment")

IuT I/coLOfzAV3D /cOLo
(m)

5.1 xl03

7.2 xl0 3

10.1 x103

14.4 x103

luT I/luzTI
fz

11 x10

15 xl0

22 x10

31 xl0

60

195

644

2218

IuzTI/c L m
at r=R

1816

790

337

140

10 22.7 x10

L o
(mm)

0.1

0.5

1

5

10

f
(Hz)

200

100

50

25

49 x10 11 110 44
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11.5 Conclusions

The fracture model estimated the in-situ width of a

fluid-filled fracture given the ratio tube wave amplitude

to P wave amplitude. The results seem to be consistent

with the very scarce data in existence (Figure 25. Huang

and Hunter, 1981). The values obtained are sensitive to

frequency. For very low frequencies (less than about 15 Hz)

and for a fracture width on the order of 1 mm the tube wave

amplitude normalized to the P-wave amplitude is negligible

in the formation.

The constraint that the formation is rigid compared

to the fluid can be relaxed. The maximum fracture

displacement eo would then depend on the formation

parameters, the P wave displacement and on the extent of

the fracture away from the borehole. A complete three

dimensional approach, including axisymmetry seems

possible.



Appendix A

ANCHORING CONDITION

Consider two bodies having a plane surface of contact.

If we press them together by a force F (amplitude F) normal

to the plane of contact, then the shear force P (amplitude P)

parallel to the surface of contact, necessary to initiate

sliding on it is given by Amonton's Law: (see fig. below)

P = c F

c being the static coefficient of' friction.

The condition of no gravitational slipping is therefore

F c > P = Mg . (A.1)

M being the mass of the tool.

For soft formations, c - .25

To achieve (A.1) we must therefore have

F - 5P = 5 Mg - 50 M (Newtons)

This is not necessarily satisfied by the WST since it is

anchored by its own weight. We however have no gravitational

(A.2)

P = MC
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slipping because on the extremity of the arms c is increased

(presence of cleats). F here results from the weight of the

tool (no positive anchoring force). If we have a positive

anchoring force (i.e. (A.2) satisfied), we can foresee a

better "welding" tool, in dynamic excitation, to formation

than with no positive anchoring force (greater elimination of

the mud-cake ) .



Appendix B

COUPLING OSCILLATORY SYSTEM

w = w s + w t

K is the spring elastic
constant of the formation

n is the damping constant
of the formation

Rigid tool

All motion is restricted to the z-direction. The

equation of motion of the following system is (see fig. above)

M w + n wt + K wt = 0 .

With e- iwt time dependence for ws and wt we obtain from

2-w w - iw n/M (w - w s ) + K/M (w-w s ) =0

(B.1)

(B.1),

(B.2)

For T = w / ws we have from (B.2) the oscillatory T

T(w) = (B.3)
1 - Mw 2 (K-iwn)-1

N.B. For perfect coupling K + m (rigid medium) and ITI = 1.

0

ws

ws+wt

z
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Appendix C

RADIATION SYSTEM

Set F magnitude of force (generated by the incoming seismic
wave and M) acting upon the formation from the tool
(F = orz. 6 .DD) F acts at the base of the tool.

w E wt + ws total displacement measured

wt
It(w) - dynamic radiation compliance of the contact0rz

surface of the tool.
w--4 .

N.B. arz = 6DD

Rigid tool

1>
Formation

Applying the fundamental law of dynamics on the rigid

tool with e- iwt time dependence, we get (see fig. above)

2-F = -Mw w

We have

(C.l)

w = w + FI(w)

6 DD
(C.2)

(C.3)
F'I(w)(C.2) + T(w) - = 1 + FI(w)

wS 6DDw s
w

and (C.2) in (C.1) gives F which in (A3.3) gives the

radiation T

1-MT2I(w)(6-DD)-1
T(w) = (C.4)
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Appendix D

Formulation of AXICYLIN

In the elastic homogeneous medium, external to the

borehole, the displacement field u can be given in terms of

scalar potentials 4,T and X representing P-,SV- and SH- waves,

respectively

We have u = VO + VxVx(0,O,0T,) + Vx(O,O,X) (D.1)

The first term gives the part which is free from rotation,

and the second and third part are free from divergence.

The potentials satisfie the wave equation. Time dependance

being e- i wt, and in the absence of body force in the medium,

these equations reduce to

V2D = -ka2 (

V2Y = -k2

(D.2)

2 2V X=-ks X

In cylindrical coordinates (r, 8,z) we have u=(u,v,w) and

V2 =  2/a2 + I/r.3/3r(rl/r) + 1/r2. 2/a82 (D.3)

From (D.1) we have

u = uP + usv + ush (D.3)

where

uP = (o/a9r , 1/r.0/e , a/z)

usV = (3 2 T/3rBz, 1/r. 2'/ zaQ6,-l/r.3/r(rY/ar)-l/r2 . 2 y/9 2 )

ush = (1/r.ax/a8 ,-ax/ar ,0) (A4.4)



Expressing u in terms of its components, we have

u = ur + v + w z

where

u = aD/ar + a27/araz + 1/r ax/a6

v = 1/r ao/a3 + 1/r 3a /aza8 - ax/ar

(D.5)

w = a/az+ + ka'/ (using wave equ. for z-comp. of
usv)

Looking for general solutions of the wave equations (D.2)

that satisfy radiation conditions in the medium (i.e. wave must

attenuate no slower than inverse distance far away from source,

and wave must propagate outward to infinity), it follows that by

the method of separation of variables they can be obtained by a

superposition of the basic solutions (satisfying Bessel's

equation) :

#m( r, ,z, )

Xm(r,6,z,#)

mE Z, and

= Am(S) eigz Hm(hr)

= Cm(E) eitz Hm(kr)

= Bm(E) eitz Hm(kr)

Im(h) >o, Im(k) >o

We have the same vertical wave number & for P and S waves from

the phase matching conditions at the interface r=a.

eime

eim8

eim8 (D.6)



The gerneral solutions are obtained by super-imposing

the basic solutions (D.6) :

4(r, 6,z) = E for P waves

mEZ R

Y(r, 6,z) = E for SV waves

meZ R

X(r,9,z) = E f Xm(r,,z, )dE for SH waves.

meZ R

The stress-displacement relations that we shall use are

the following:

au
aOrr = X div u + 2pu

3r

aw auTrz = [-L + 3]ar 3z

Let us show that the seismic potentials in this problem

reduce to :

(r,z, E) = Ao( ) eig z Ho(hr)

*(r,z, ) = C , (E) eitz Ho(kr)

X(rz,5) = 0 (D.9)

(i.e. only one modal contribution m=0 in (D.6) and no SH waves)

(D.7)

I #m(r,6,z,E)d

I m(r, 6,z, )d

(D.8)



We can generalize the axial symmetry problem to a case

with symmetry with respect to a vertical plane. Then, rotating

the plane about a vertical axis, the axisymmetric case can be

derived.

1- Symmetry with respect to a vertical plane (xOz) and

vertical excitation. The components of the displacement vector

u satisfy (see fig. below)
v(e)

u(6)

u(8) = u(-e)

v(6) = -v(-O) Source x
o 

w(e) = w(-6) . (D.10)

u(-O)
v(-e)

Recalling that H.m(U) = (- 1)m Hm( ), and expressing (u,v,w)"

in terms of the seismic potentials (D.7), and using (D.10)

lead to a 6 dependence of the following form

u(0) ~ cos me

v(8) ~ sin me

w(9) ~ cos me meZ . (D.11)

(D.11) is equivalent to a new definition of the seismic

potentials:

m = Am*( ) e i z Hm(hr) cos me

Wm = Cm*(E) ei z Hm(kr) cos me

Xm = Bm*(E) e i z Hm(kr) sin me (D.12)

where m 6 N (and not Z anymore) .
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2- Axial symmetry with respect to the z axis. Vertical excitation.

We get for u

u(8) = u(6 + xr)

v(e) = 0

w(6) = w(Q + x-)

or equivalently,

u independant of 6

v = 0

w independant of 8

L x ER

(D.13)

For a no 0 dependance and v=O, the solution for the seismic

potentials (D.12) is m=0, wich gives directly (D.9), with

AO(E) r Ao*(E)

Co(M) Co*(E)

The two unknowns of our problem to be determined are

A o (E) and Co(m).

N.B. If our boundary conditions were plane symmetric, we can

show that only m=l would contribute in the seismic potentials

(D.12). Ex: case of a disc vibrating tangentially on a semi-

infinite solid.

With these potentials (D.9) we can now express explicitly

orz and Orr in function of Ao(M) and Co(), using (D.8), (D.5)

(D.7) and (D.9):

orz = f F(E) ei z dE

(D.14)

orr = f G( ) e i z d&
R



where

F(C) = u {2hiC Ho (ha) Ao,() + (kg2-2 2)k Ho'(ka) Co,()}

G(E) = AO(E) [2h 2 HO "(ha) - Xk Ho(ha) ]+2pitk 2 Ho"(ka) Co(C)

Use of the boundary conditions (4.1) with (D.14) leads

to the following system :

I F(&) e i tz dE = s
R

= 0

I G(C) ei z dE = 0

z ( Idl

z > Idl

V- z (D.15)

From the properties of Fourier transforms, we will have

an equivalent system

F(E) = s . sin~d
I 5

(D.16)

G( ) = 0

Solving (D.16) for Ao,() and Co (M), and rearranging the

results for computational purposes, we get

2is [k Ho(ka)- Hl(ka)/a ] sin(Ed)

Ao() =
nu R( )



s [2h Hl(ha)/a -(k2 -2 2) Ho(ha) ] sin(&d)

Co( ) =
7rijk R(E)

(D.17)

where R(C) - H (ka) Ho(ha) (2 2-k 2 )2 + H1 (ha) Ho(ka) 4hkE2

- 2hk 2 Hl (ha) H1 (ka)/a.

(n.b. when a+= we see Rayleigh function appearing multiplied

by the factor -2 eia(k+h)

i ah

Therefore from (D.5) and (D.9) and (D.7)

w(r,z) = I {i& AO(&) Ho(hr)
R

Since Ao(&) = -Ao(-E)

+ an Co()

and Co ( ) =

we get,

Ho(kr)} eiz dE

we get,

w(r,z) = 2 I{it AO(M)
0

H,(hr) +k Co(M) Ho(kr)} cos(5z)d&

(D.18)

Taking the mean value of w along DD at r=a we get,

<wt (r=a)>
:1 d

f wt(a,z) dz
DD -d

(D.19)

CO(-E)



Appendix E

Formulation of INFISTRIP

For the given boundary conditions (5.1), Miller and

Pursey's paper gives the following final result for the Fourier

transform of the z component of the displacement u=(u,w)

(cartesian coordinates, see Fig.

2s (E2_2k ) 1/2 sin( Ed)
f (k 2-2 E)

pE F(0I
-X(E2-k 2 ) 1/2

2 -x(2-k 2) /2
+ 25 e a

where F(U) = (22 -k8 2 )2 - 4 2
( 2-k 2 1/2 (E2-k2) 1/2

We recover the displacement w(x,z) inverting the Fourier

transform (E.1),

w(x,z) 1/(2i) f w
R F

Since w (x,-)
F

= w (x, )
F

we get in (E.3),

1/ f w (x, )
0 F

cos(Ez) dE.

We compute w(x=O,z)

<w> = 1/DD f

and take the mean value along DD

d
w(O,z) dz

-d

12)

WF(X, 5)

(E.1)

(E.2)

w(x, z)

(E.3)

(E.4)

(E.5)

(x, ) e i t z d .



Appendix F

NUMERICAL DETAILS

To compute the two integrals (4.2) and (5.2), an adequate

change of variable is done; set 5 = ka C , and from

2 = kg2 / ka we get k = ka (y72 -2 ) and h = ka (1-C )1/2

This transformation is useful in locating and bounding

the singular points of the integrand for different values of

the Poisson's ratio v.

We limit our interest in the following values of v:

0 < v < 0.475

this interval gives for y:

since y2 = 2(1- v)/(1-2v).

AXICYLIN:

Computation of the Hankel functions Hn is done using

the following relation (n=0,1) xER

Hn(x) = Jn(x) + Yn(x) for real arguments (ex: i < 1)

H0 (ix) = -2i/w KO(x) for pure imaginary arguments

H l (ix) = -2/w K l (x) (ex: c > y).

where Jn and Yn are the usual Bessel functions of order n,

Kn the modified Bessel function of order n computed using

IMSL mathematical library in single precision.

Singularities occurs in the calculation of (4.2) for h=O or

k=0 (i.e. when the argument of the Hankel function vanishes).

It can be shown analitically, that for the range of cylinder

radius (a < Im) and for the frequency upper limit 300 Hz,



the contribution in the integral due to the limiting value of the

integrand when h=0 ( =1) or when k=0 (c=y) is either continuous

with its surrounding values (when k or h close to zero) or else

the area concerned with the singularity is negligible (case =1l

for wt). Numerical computation has been undertaken to check

carefully the analytical results of these singularities. We shall

therefore voluntarily skip them in the calculation.

An asymptotic expansion for large arguments of Hn is

implemented. The convergence test has been checked and shown

to be satisfactory.

Computation of (4.2) done with an IBM 370/168 for a

frequency sampling of 4Hz (limit 300Hz) takes about one minute

of CPU time.

INFISTRIP:

The presence of the Rayleigh function

F(C) = (2( -y )2 - 4 (2_12)1/2 ( -y 2 )1 2 in the denominator

of (5.2) leads us to consider a complex modulus of rigidity

U = 0 (l+iE). By doing so, the Rayleigh pole is shifted upwards

from the real axis in the complex plane, and the integration can

be performed. The contribution due to the pole is considered

when e is close to zero. A satisfactory value is E=0.01.

The pole 0O is bounded: y < c0 < 1.2 y . In this interval the

integrand is much more closely sampled.

An asymptotic expansion for large values of C is

implemented. The convergence test is similar to Axicylin's.

Computation of (5.2) with the same frequency spacing and

on the same computer takes about 26 seconds of CPU time.



Appendix G

Infistrip, particular case of Axicylin

Let us first see that -ik = (2-k2 1/2

and that the Rayleigh function ,

F( ) = (22-k 2 )2 - 4E2 (2_k 2 1/2 2_ 2 1/2

= (22_ -k2)2 + 4&2 hk

Furthermore HO(ha) HO(ka) ~ -2i eia(k+h)

(G.1)

(G.2)

(G.2)

(G.3)

a lhk-

Let us show that when a + w, Axicylin would be equivalent

to Infistrip:

-2 eia(k+h) ° F(E) (see below D.17) (G.4)

Sra Vhk

2is k Ho(ka) sin(Ed)

wU R( )

s(2 2 - k 2 ) Ho(ha) sin(Ed)

iuk R(E)

R( ) ~



Hence (4.2) reduces to

wt _ 2s O<wt> = 2
.n0

HO (ha) H O (ka)

R(E)

sin 2 ( Ed)

2d

{-25 2 +k(2 2-k2 ) d2 f

and using the relations (G.2), (G.3) and

)= 2s<wt> = 2s

7r 1

2

f -ik k2

F( E)

(G.4) we get

sin 2 (Ed) dE

(2 d

and with (G.1) and DD=2d,

<wt>= s DD f0
0

IT

2 2 2 1/2
k (~ -k )

F(C)

sin 2 (Ed)

(Ed)

which is exactly (5.2).



Appendix H

Solution of the Inhomogeneous Diffusion equation (2.7)

Let us take the Laplace transform of (2.7).

P(x,s) = I e-Stp(x,t)dt
0

Set

Q(s) = f e- st q(t)dt
o0-

we obtain

a2d P(x,s)
2  - s P(x,s) = Q(s)-P odx

(H-l)

since p(x,o) = P ,.

The general solution to the homogeneous equation of

(H-1) is

pH(x,s) = A(S)exp(--s x) + B(s)exp(/s x
a a

A particular solution of (H-1) is found by searching

for a solution of the form Pps (s) only, this results in

Po -Q(s)
Pps(s) = s

The general solution of (H-1) is then

P(x,s) = pH(x,s) + Pps(s) (H-2)

the boundary condition ap I = 0 gives
ax x=-

-- = o + B(s) = 0.
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p(o,t) = PO + P(o,s) = Po/s so that A(s) Q(s)

The general solution of,(H-l) satisfying the boundary

condition is then

P(x,s) = Q
s

Inverting in the time domain

l-exp( -k/ s) .
s

Q(s) .G(s)

1-exp(-~ ) x

s
Po

+ -
s

(H-3)

(H-3) and recalling that

k
+ erf ( ),

2 t

+/ q(T)g(t-T)dT = I q(t-T)g(T)dr,

we get

t
p(x,t) = Po - I

o
q(t-T)erf( x )dT

2a--T
(H-4).
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Appendix I

3D Extrapolation

The stationary solution for an incompressible viscous

fluid enclosed between two parallel planes distant of L is

for the following boundary conditions: at x=R p=Po and

at x=R+d p=Pf

P2D Pf - Po (x - R) + Po. (I.1)
d

Consider the 3D problem of two discs distant of L with

radial flow into the center..,-, The outer radius is r=R+d and

the inner radius r=R. The boundary conditions are at r=R

p=Po and at r=R+d p=Pf. The stationary solution for the

pressure distribution is:

P3D = Pf - In (r/R) + Po . (1.2)
In R + d i

R

_. ...

e SR1Jp
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The rate of flow for these two problems is

q = KL/n dp2D /dx

q3D KL/n 2nr dp3D /dr

or explicitly at r=R

q = KL/n (Pf - Po)/d (1.3)
2D

q3D = KL/n (Pf - Po) 2 (1.4)
In R + d

R

Combining these two results we obtain:

q3D = 2nR X q2D (I.5)

where X = d/R
n ( R + d)

R

X is defined as the geometrical factor. For d << R we

have X-1. The equation for the volumes is similar to (1.5)

AV3D = 2TR X AV2D * (1.6)

Extending this result to our problem is consistent,

since we are in the low frequency approximation. d would

be the effective distance defined as the maximum distance

that a fluid particle would travel to reach the borehole in

T/4. Since the particle velocity in the fluid is lower

than the sound velocity in the fluid af (subsonic flow)



we therefore have a relation between d and the period T.

d = vel. x T/4 = E af T/4 where E < 1.

We obtain d= 375 ET (m). We shall choose a reasonable

value for A to be 0.1 so that d=37.5 T (m).

All the numbers in table 3, 4 and 5 can be adapted

to the present 3D extrapolation of a circular fracture by

multiplying them by the factor rX/2. Table 6. gives some

results for a "sediment".

Table 6.

("Sediment")

f d X luzTI/oLo (P -')
(Hz) (m) at r=R+

200 0.187 1.8 5116

100 0.375 2.4 2981

50 0.75 3.5 1852

25 1.5 5.4 1188

10 3.75 10.3 711



Appendix J

Tube Wave Formulation

The tube wave displacement field uT in the fluid

borehole and in the elastic homogeneous medium external to

the borehole can be given in terms of the scalar potentials

4 and representing P and SV waves respectively. No

SH-waves exist if we assume axisymmetry. We have

uT = 74 + Vx(o,4 ,o) (J.1)

Cheng and Toksoz (1981) give the following potentials

for guided or interface waves.

(i) In the fluid:

Qf = C Io(nr)sin k(z-ct) r<R- (J.2)

f = 0 ,

2
2 1/2

where n = k(l - c /af)

luT I = k C I,(nr) (J.3)
fz

(ii) In the formation:

4 = A Ko(Xr)sin k(z-ct) r>R+

S= B Kl(mr)sin k(z-ct)

where X = k(l-c2 /a2 1/2

2 2 1/2
m = k(l - c / 1/2

A and B are related by the boundary condition that the

shear stress vanishes at the borehole boundary r=R.
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luzTl = A[kKo(£r)+mGKo(mr)] (J.4)

2V s 2 K1 (£R)
where G =

k(c -2Vs2)Kl(mR)

Applying the continuity of radial displacement and

stress at r=R, we obtain the period equation that governs

the dispersion characteristics of the guided waves.

We have

zc2K1 (£R)
C = * A

n(2V 2 -2 ) 1 (nR)

The volumetric strain in the fluid is given by

Eii = V.ufT = V24f

integrated over the borehole radius and during T/4 gives at

Z=o:

R T/42
AV3D = 2c f f V cf rdrdt (J.5)0 0

From (J.2), use of the Laplacian in cylindrical

coordinates gives

V f = k 2 ( c 2 2) Io(nr)sin k(z-ct)
af

R RRecalling that f Io(nr)rdr - Il(nR), we get from (J.5)
o n

2nR(2-c 2/a 2f)
AV3D = C 2/ 2 1/2 Il(nR).

(1-c /af )
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Figure Captions

Fig. 1 General definition of the coupling

Fig. 2 Tool WST

Fig. 3 Test well X profile

Fig. 4 Selected signals from test well X

Fig. 5 Representative signals in a shale and in a limestone

Fig. 6 Signals of Fig. 5 filtered 10-80 Hz

Fig. 7 Amplitude spectrums of signals of Fig. 5

Fig. 8 Amplitude spectrum in the range 0-120Hz of signals
of Fig. 5

Fig. 9 Detailed definition of the coupling

Fig. 10 Approximations concerned with the models
Axicylin and Infistrip

Fig. 11 Model Axicylin

Fig. 12 Model Infistrip

Fig. 13 Amplitude spectrum of T for a soft formation
(Axicylin) with 6 -2 cm and the WST

Fig. 14 Same as Fig. 13 with 6 = 4 cm

Fig. 15 Same as Fig. 13 with 6 = 6 cm

Fig. 16 Amplitude spectrum of T for a hard formation
(Axicylin) with 6 = 1 cm and the WST

Fig. 17 Amplitude spectrum of T for a soft formation
(Infistrip) with 6 = 2 cm and the WST

Fig. 18 Same as Fig. 17 with 6 = 4 cm

Fig. 19 Same as Fig. 17 with 6 = 6 cm

Fig. 20 Amplitude spectrum of T for a hard formation
(Infistrip) with 6 = 2 cm

Fig. 21 Tube wave displacement in a borehole

Fig. 22 2D Fracture model

Fig. 23 Storage of Fluid in fracture

Fig. 24 3D model of strip fracture

Fig. 25 Observation of tube wave generation
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Formation

u = (u,v,w) in cylindrical
coordinates

u = (u,w) since v=O
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2-D problem : w(r,z)

Figure 11.
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