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ABSTRACT

In precision geodesy, an accuracy of one centimeter in
the measurements of intercontinental distances requires that
the brightness distributions of the extragalactic radio
sources which are used in the VLBI technique be very well
known. Because there is resolution at the milliarcsecond *
level, a point source model which has been used so far has
become a coarse approximation. The purpose of the following
study is to show how these brightness distributions can be
determined from a VLBI "geodetic" schedule. On June 15,
1981 a large amount of data was collected for the radio
source 1641+399 (3C345); during the two following days of
the geodetic schedule regular observations were also made.
Thus, 3C345 is first studied in order to determine a more
systematic method of mapping other quasars. Subsequently,
other sources such as the double quasar 0923+392 (4C39.25)
and the extended quasar 1226+023 (3C273B) which have more
complex distributions were mapped from a smaller amount of
data. To perform this work, a "hybrid" mapping program was
used with the data collected at X-band (,- 8 GHz) at four
antennas located at Haystack and Westford, Massachusetts;
Fort Davis, Texas; and Owens Valley, California, on 15, 16
and 17 June 1981. The two maps of 3C345, one obtained from
the observations made only during the geodetic schedule and
the other obtained from all the observations show little
difference in the brightness distribution and indicate that
at least for some sources brightness distributions can be
determined adequately solely from observations made during a
geodetic VLBI experiment.

Thesis Supervisor : Irwin I. Shapiro
Title : Professor of Geophysics and Physics
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1. The hybrid mapping program

1.1 Introduction

Since the achievement of a few centimeters precision in

the measurement of intercontinental distances using the VLBI

technique, the determination of the structure of extragalac-

tic radio sources on a scale of one milliarcsecond, or even

less, has become crucial for further improvements in geode-

tic precision. The determination of source structure is

complicated by the loss of phase information at each element

of an array of very long baseline interferometers, which is

one of the problems inherent to such VLBI measurements.

This phase information is masked by the instability of

atomic clocks, whose behaviour is at present not fully

understood, and by fluctuations of the atmosphere over each

site. The other important problem is the poor coverage of

the (u-v) plane now obtained in VLBI observations.

The purpose of this work is to demonstrate the effec-

tiveness of a method of constructing the brightness distri-

bution of a source from data obtained with a small number of

interferometers. These data consist of fringe-amplitude and

closure-phase information with checks being made of closure

amplitude consistency.
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D.B. Shaffer's hybrid mapping program [1] uses this

fringe-amplitude and phase-closure information in addition

to an initial model. This program has been used to perform

the following work.

1.2 Description of the phase closure test

NOTE Mathematical expressions, indices and notations

are defined in Appendix 1.

For each baseline, we deduce the fringe phase, Tij , of

the incoming wave from data collected at the two sites i and

j. These data contain information about the local oscilla-

tor frequency, the clock readings, epoch and rate errors of

the clocks, and the phase shift caused by the propagation

medium. The phase j.. is the sum of the phase 0.. of the

complex visibility (a function of the source structure) and

the sum of all perturbations eij added to Oij (Equation 1).

These perturbations have different origins: propagation

effects in the medium between the source and each antenna,

clock drifts and any other experimental errors inherent to

only one site [2].

ij = ij + ij (1)

If we sum the fringe phases, Tij , for three baselines,



-9-

so as to form the so-called phase closure, Cijk , the eij

terms almost cancel. The derivation is given by Rogers et

al. [2].

ijk = "ij + Yjk- "ik = 0ij + "jk- "ik (2)

Thus, we are left with information only about the

structure of the source. This new observable can now be

used along with the fringe amplitudes in trying to recons-

truct the brightness distribution. To produce a map we need

to know 0... One step of the mapping process consists of

finding the least squares estimate for the phase oij of the

complex visibility function for every baseline. A simple

method of estimating this phase without altering the phase

closure is to estimate the station phases. To each Station

i is assigned a ei such that for the i-jth baseline

i = - 9i j (3)

These station phases contain no intrinsic information

because an arbitrary constant e0 can be added to all of them

and will not affect the fringe phases nor the closure

phases. If an iterative scheme is utilized, then the ad-

justment in the phase of the complex visibility of the i-jth

baseline for the nth iteration is:

n n n n
Aij = -Aeij = Ae - Ae(4)
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where Aen is the adjustment in the ith station phase. Since

by construction z A = 0 for any set of three stations,
ij

then

cn+l n
C = Cj k  (5)ijk ijk

i.e. the phase closure is always preserved. For each ite-

ration, the problem is to find the least squares station

nphase correction Aei for each station using the phase

closure information. For every baseline two phases are

calculated: a "model" phase is derived from a model

updated after each iteration and a phase called the

"observed" phase ot. is calculated from the fringe phase and
13

each station phase estimated during the previous iteration.

The fringe phase is obtained from cross correlation of the

signals received at the two antennas of an interferometer

[3]. Thus we have

00. = T.. + e. - e. (6)
13 13 3 1

We use superscripts "o" and "m" to stand for "observed" and

"model", respectively. The "model" phase is then subtracted

from the "observed" phase and their difference is stored in

the vector (yO_ ym) (see App.2). If the vector 6X is com-

posed of the corrections to the station phases, then we have

the following relationship between (YOYm) and 6X, the
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estimate of SX obtained by weighted least squares:

t -1 -1 -1 t p- (yO ym) (7)
6X = (A P A + A ) A P (Y - Y ) (7)

The number of elements in the vector aX is the number of

stations N whereas the number of elements in vector Y is the

number of interferometers N(N-1)/2. This problem is over-

determined and can be solved as per Equation (7). The

matrix A contains the a priori variance-covariance of 6X.x -
-lThe matrix P-1 is a weighting matrix. It is composed of the

squares of the signal to noise ratios of each observation.

The matrix A relates the vector of the station phases X and

Y through the relationship A = 9Y/aX (see App.2).

1.3 Description of the amplitude closure test

For the baseline (i-j) the normalized correlation coef-

ficient pij is related to the fringe visibility yij by [3]:

T .TaiTaj (8)
Pij Yij T

siTsj

where Tai is the antenna temperature (K) and Tsi is the

system temperature (K). For a given source and telescope,

the antenna gain G. and the antenna temperature Tai are

defined as [4]:

Gi = 4, Ag i Ai/)2 (9)

-~----11 - -~ 111811~
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and

Tai = , (10)
2 k

-2 -lwhere k is the Boltzmann constant (1.38 10 - 2 3 JK - I ) , S is theflux density of the radio source (Wm -2Hz ), n. is the effi-

ciency of the antenna, X is the wavelength (m) and Agi is the

geometric area of the antenna (m2). Combining Equations (8),

(9) and (10) we have for any baseline

G, G

Pij =ij S K ,ii (11)

s3
where x2

K = - (12)
8kw

S yij is called the correlated flux density for the baseline

i-j. Unfortunately, because antenna gains and system tem-

peratures are time dependent it is difficult to infer an

accurate value of the fringe visibility y when no precise

and regular radiometry measurements have been made. These

time variations in gains and temperatures are expressed in a

correction factor hi according to

G Gn  1
i 1S- - (13)

n
Tsi Tsi hi

where Gn is the constant nominal value of the gain and Tn1 si

the constant nominal system temperature. It allows us to

rewrite Equation (11) as
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Gn Gn
p KSy (14)ij = ij n h Tn • h.

si i s] j

However, for four stations an interesting relationship

between the correlation coefficients can be written so that

the gains and the system temperatures for each member of an

interferometer pair cancel out [5]. This gain-independent

relationship, called the amplitude closure, provides a new

piece of information about the source.

Let 1, 2, 3 and 4 be the stations and, for simplicity,

let us write yk = Pij and Yk = Yij. The index k is deter-

mined from the station labels as follows: Index 1 repre-

sents stations 1 and 2 , 2 represents stations 1 and 3 , 3

represents stations 2 and 3, 4 represents stations 1 and 4,

5 represents stations 2 and 4, 6 represents stations 3 and

4. We define the amplitude closure variable Rijkl to be

R ij j (15)ijkl
Yk Yl

For example, for i=l, j=6, k=2 and 1=5 we have

Yl Y6
R1625

Y2 Y5

Replacing the yi by their expression given in Equation (14)

yields:
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Gn Gn

h T h T1 si 2 s2

G G
1 3

KS
n n
1 sl 3 s3

n n

Y1 KS -3 4n
hT hT
3 s3 4 s4

G n  n
KS 2 4

2 hn n
h2 s2 h4 s4

(16)

After cancellation of the terms relative to the gains and

temperatures, we obtain

Yl Y6 Y1 Y6
1625

Y2 Y5 Y2 Y5

A model for the correlation coefficient yk can be derived

from Equation (14): let

= n x xj , (18)Yk whereYk i

where

x. =
1

and

n nn n n
S= KS Yij Gi/Tsi j/Tsj

k 1 J sj (19)

The coefficient yn corresponds to the theoretical value for

the correlation coefficient if gains and system temperatures

are at their nominal values. We want to find the least

squares estimate of the xi given the observed correlation

coefficient yk and the model (Equation 18). Expanding

Equation (18) to the first order about the a priori values

of xi and xj, xio and xjo respectively, we obtain:

y1 y6

Y2 Y5
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yo Yk ioxj ) + (ayk/axi) x. + (ay/ax (20)k io o k+ 1 (yk/aX) I Ax , (20)

where AXi = (Xi - xio). The partial derivatives with

respect to x. and x. evaluated at the a priori values are
1 3

calculated from Equation (18). If we let y = Yk(xioxjo)

then Equation (20) can be rewritten as:

o m n nY k k ) Xi + ( i Xio ) Aj (21)

We now have a linear relation of the form (yO -ym) = A SX.

The least squares formulation gives the same mathematical

formulation as seen in §1.2 for the phases. This time the

matrix A contains the different theoretical values for the

correlation coefficients (see App.3). The matrix P is a

weighting matrix. Ax is the a priori variance-covariance

matrix for the gains. The estimate of 6X is given by:

t -1 -1 -1 t -1 o m6X = (A P A + A) At (Y - Ym) (22)

Another possible formulation of the problem is the

logarithmic linearization. Taking the logarithm of both

terms in Equation (18) yields:

log y = log yn + log x. + log x (23)
Si j

__~__;_____~-~;-rri~rrruru~-.~ I.-^-L-*I~L"-"-1L ~-~.l*O.-LI1~-^~-i ~--~--Y
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which is the model for the logarithm of the correlation

coefficient. Expanding to the first order about the a

priori values of log x i and log xj we obtain similarly:

log yk - log yk Alog xi + Alog x. (24)

where log ym = log Yk(xio,xjo). The matrix formulation is

still of the form (Y _ ym) = A SX, but the elements of the

matrix A and the vectors Y and X are not the same as for the

linear approximation (see App.3).

1.4 Mapping procedure

The purpose of the mapping procedure is to find the

brightness distribution of a radio source given a set of

correlation data obtained at irregular values on the u-v

plane. The main reason for this incomplete and irregular

u-v coverage is the limited number of baselines which deter-

mine the number of ellipsoidal tracks. Moreover, the points

along each track for which data were obtained are often

separated by several tens of minutes in an irregular manner.

This separation can be due to several reasons. The princi-

pal reason is that the radio sources are scattered all over

the sky, and unless some of them happen to be in the beam at

the same time, they cannot be observed simultaneously.

Moreover, if many sources are widely scattered over the sky,

one tends to randomize the order of observation to avoid a
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possibility of a systematic error. Another reason is that

each observation requires an integration time between 100

seconds and 15 minutes depending on the type of experiment.

Yet another reason is that if one observes several compact

extragalactic radio sources, one must allow time for the

antennas to slew. Other reasons can be low declination of

the source that shortens the period of common visibility,

technical failures, weather and problems during correlation

procedures.

The irregular u-v coverage is responsible for unde-

sirable sidelobes in the synthesized beam which can add

features to the synthesis map, making it difficult or some-

times impossible to interpret. The synthesis map (or dirty

map) M which is obtained by taking the Fourier transform of

the weighted measurements (§2.4.4) is by definition the

convolution product of the synthesized beam (or dirty beam)

D with the brightness distribution of the source seen by the

antennas [6]:

M(x,y) f I$ V(u,v) g(u,v) exp(2ri(ux+vy)) du dv (25)

M(x,y) = B(x,y) * D(x,y) (26)

where x,y are sky coordinates (directional cosines with res-

pect to the u and v axes, respectively). The components of

the baseline vector are u along the east-west direction and

v along the north-south direction. V is the complex visibi-

lity function and g is the u-v plane weighting function.
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The dirty beam D(x,y) is proportional to the transform of

the weighting function. In other words D(x,y) is the dirty

map of a point source as seen by the synthesized beam

(interferometer array):

D(x,y) " I$ g(u,v) exp(2ri(ux+vy)) du dv (27)

The Fourier integral (Equation 25) can be calculated only if

we know the product of V by g for all u and v. But, as al-

ready stated, V(u,v) is only available for a limited set of

points. At points for which no data are available the

weighting function is taken to be zero, then the continuous

sum can be replaced by a discrete sum.

M(x,y) = C 7 g(u,v) V(u,v) exp(2,i(ux+vy)) (28)

This approximation has been discussed by J.A Hogbom (1974)

from the standpoint of Information Theory [6] and J.G Ables

(1974) from the standpoint of Maximum Entropy [7].

So far we have determined the dirty map M(x,y). In

order to clean it we use an iterative procedure which uses

the shape of the dirty beam to recover the brightness

B(x,y). The purpose of this cleaning is to separate the

real structure of the source from sidelobe disturbances.

The center of the dirty beam is set on the peak value of the

dirty map and some fraction of its value is subtracted. The

process is iterated until the peak remaining value is



-19-

thought to be purely noise. When finished, we are left with

a set of clean components that are presumed to be represen-

tative of the source brightness distribution. The final map

is produced by convolution of these clean components with a

clean beam taken to be similar to the main lobe of the dirty

beam. The shape and the size of this restoring beam depend

on the interferometers, the length of the experiment, and

the frequency.

1.5.1 Description of the program MAPA

The method used in D.B. Shaffer's program to produce

maps of radio sources has features common with the two

mapping procedures described by Cotton [8] and Readhead &

Wilkinson [9]. The three important characteristics of this

program are:

i) the use of an initial model to determine the

fringe phases,

ii) the interpolation of the data to a grid in the

(u,v) plane, and

iii) the use of a two-dimensional fast Fourier

transform (see App. 4)

The brightness distribution is calculated as follows.

Inspecting the maxima and the minima of the visibility in

the (u,v) plane, one guesses at an initial model from which

- ---- ilV ----- ~l~r~1IW-.-i. I~CIIIIPII~-P~~
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one derives the model phases for every baseline. The sub-

routine MAP uses these phases and the correlated flux den-

sities to calculate the complex visibility function at the

u-v points where observations exist:

V(u,v) = Amp(u,v) exp(io(u,v)) (29)

where Amp is the correlated flux density and o a model

phase. The following step consists in gridding the u-v

plane because the fast Fourier transform used in MAP to

compute the dirty map requires that the observations are

gridded: to each (u,v) point for which data exist there will

correspond a grid point (Uo,Vo). These grid points are

equally spaced in the u-v plane. The first step of the

gridding is to define the visibility function at the grid

points. Let V(u,v) be the visibility at points where data

were collected and V'(uo,vo) the interpolated visibility.

The relationship between V and V' is:

N
z V(uj,vj) c(uo-uj,vo-vj)

V'(u 0 v°) _ j=l
V'(uo' o N (30)

z c(u -u ,v -vj)
j=l J

where N is the number of observations and (uj,vj) are the

coordinates of the point where an observation was taken. In

the subroutine MAP, the average of the visibility data is

taken for each grid cell, each of which has the dimensions
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Au,Av. This is equivalent to taking c(u,v) as follows:

c(u,v)=l if Iul<Au/2 and IvI<Av/2

=0 otherwise

Then, the two-dimensional complex fast Fourier transform

inverts the "interpolated" visibility function.

Note that the choice of Au,Av is important because,

since the visibility function is sampled at intervals Au,Av,

there will be aliasing if the brightness distribution is

nonzero for Ixl>1/Au and lyl>l/Av. There will be emission

outside the field of mapping which will be reflected within

the field of view (sampling theorem [10]). The influence of

the spacing Au,Av will be studied in §2.4.8.

The second part of the subroutine MAP computes the

dirty beam. The weighting function is nonzero only at the

grid points. At these points,

g(u ,v0 ) = 1 if there is an observation

= 0 if there is no observation

This type of weighting is called "uniform" weighting. The

second type of weighting which is available is defined by

g(u ,v ) = n

where n is the number of observations in the cell.

The subroutine CLEAN, called right after MAP, decon-

volves the dirty beam from the dirty map. Firstly, it

locates the maximum value of the brightness in the (x,y)

plane, centers the beam at that location, and removes a

fraction of the peak value. This fraction is called the

loop gain and its influence on the final map is studied in
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§2.4.3. This iterative procedure is repeated until the peak

remaining value is greater than some fraction of the orig-

inal peak value (see §2.4.4). In its present configuration

the program can only restore the map using a circular beam

roughly 2 times smaller than the main lobe of the dirty

beam. This clean beam is defined by:

D(x,y) = exp(-k(x2+y2)) (31)

In the subroutine PCLOS, the corrections to the station

phases are computed from the model phases and the "observed"

phases as defined in §1.2. The model phases are deduced

from the clean components of the previous iteration. A

least squares estimation method is used to derive these

corrections. Moreover, the method assumes equally likely

errors in the fringe-phase for any baseline.

In the subroutine ACLOS, the gains at each station are

assumed to be known with an equal accuracy. The least

squares technique is either of the two different methods

already discussed to determine the estimates for the gains :

logarithmic or linear methods. Once the corrections for

station phases and gains are computed, they are used to

adjust the initial values of the "observed" phases and the

correlated flux densities. During the following iterations

these new values are used to produce a new map and are

tested in PCLOS and ACLOS to find a new estimate of phases

and gains. Phase residuals, gain residuals, adjustments to
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1.5.2 Flow chart of the hybrid mapping program

Initial Model

Compute all baseline phases
from model

Use computed phases & obs. ampl. <
to yield dirty map
Subroutine MAP

I
Deconvolve with dirty beam to give

set of clean components
Subroutine CLEAN

Ask for convergence

NO

Compute model phases from clean components
Compare with "observed" phases in Phase closure
Deduce station phases and new "observed" phases

(least squares estimate technique)
Subroutine PCLOS

Apply Gain corrections?

YES

compute model ampl. - compare with obs. ampl thru
amplitude closure test. deduce correction for

stations gains to correct the observed amplitudes
subroutine ACLOS

Convolve with clean beam

NO

Final map

YES

.-...; ~..er-. .-lr ---il lil.-jrr~al~ ycLL- ~-IIPL~--
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phases and adjustments to gains are calculated each time the

program goes into the loop. The flow chart of the hybrid

mapping program (Figure 1.5.2) shows how the different

subroutines are connected to each other.

1.6 Description of the programs CLNFL and PLOT

The program CLNFL treats the output of the program

MAPA. Its purpose is to plot the clean maps and display

graphically the clean components which have been determined

in the subroutine CLEAN of MAPA. In the cleaning process

it often happens that several clean components are removed

from the same grid point. The clean components for each

grid point are therefore summed and displayed as a matrix:

the largest value is normalized to 100% and the others are

expressed as some fractions of it. Then to get a clean map,

the clean components are convolved with a clean beam defined

by its two full widths at half maximum (FWHM) along the

major and minor axes. The orientation of the X-axis (the

first listed) is given with respect to the north. The clean

map can be convolved with different sizes of beam and can

also be shown on different scales: an X-band map can be

shown at S-band scale or an X-band set of components convol-

ved with an S-band beam. However, because of a storage

limitation the contours may appear coarse if the plotting

cell size is of the same dimension as the FWHMs of the clean
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beam.

The program PLOT is used to show how well a map agrees

with the phase and amplitude closures and the individual

correlated flux densities from each baseline. The RMS fits

are computed for the two types of closures constraints. The

user can also edit (downweight or upweight some points) a

data file. All the plots can be shown on different scales.

1.7 Importance of the cleaning procedure, or influence

of a small component on the group delay correction.

One of the purposes of this study is to estimate the

effect of source structure on the measurement of the group

delay, since this is the quantity which usually determines

the accuracy with which baseline vectors can be estimated.

At X-band (8 GHz) 0.1 ns accuracy on the group delay corre-

sponds to 3cm accuracy on the length of the baseline. For

instance, when the radio source is almost a point source,

one can show that neglecting a component equal to 1% of the

peak value whose position is 4 mas north of the main compo-

nent and 4 mas east may change the group delay by 3 ps and

thus may cause an error of the order of 0.1 cm in the mea-

surement of baseline length. In this case the error is

negligible, but it can be shown that the contribution of the

source structure on the group delay can be significant (see

App.5).

__1IY( _IIXI~_IY~~^L-- IIII-



-26-

2. X- and S-band maps of 1641+399 (3C345) for June 1981

2.1 Introduction

The second part of this thesis will try to justify the

different assumptions used by the hybrid mapping program.

Usually the initial model consists of circularly symmetric

Gaussian components. This initial guess is indeed subjec-

tive and may be a critical step in the computation of the

brightness distribution. It is advisable to check whether

different models converge to the same hybrid map. Gain

corrections may or may not be evaluated through the sub-

routine ACLOS. It is useful to study the manner in which

gain corrections influence and modify the map. A comparison

between the logarithmic and the linear procedure appears

interesting because they use two different types of linea-

rization. Gridding the u-v plane before convolution intro-

duces modifications in the determination of the brightness

distribution. These modifications can be studied by exa-

mining the influence of the number of cells and their sizes.

The purpose of these studies is the elaboration of a method

and the formulation of a set of criteria to produce well-

defined radio source maps which are reliable enough to allow

the possibility of a study of their evolution as a function

of time and their utilization in performing precise geodetic

measurements. Because 3C345 was observed quite intensively

during 15, 16 and 17 June 1981, it was chosen to determine a
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systematic method of mapping.

2.1.1 Notation

In June 1981 the data were collected at X-band (P8.3

GHz) and at S-band (P2.3 GHz) at four different stations

during three days. The observations on the first day, June

15, 1981, is referred to as the "special" experiment and

those of the two following days are called the geodetic

experiment. The stations are located at Haystack and

Westford in Massachusetts, Fort Davis in Texas and Owens

Valley in California. For reason of simplicity, a certain

number of abbreviations are used in the following para-

graphs: PC stands for phase closure, AC stands for amplitude

closure, HA for Haystack, WE

Davis, OV for Owens Valley.

sures are numbered and the c

Phase closure 1

Phase closure 2

Phase closure 3

Phase closure 4

Amplitude closure

Amplitude closure

Amplitude closure

for Westford, HR for Fort

The phase and amplitude clo-

orrespondance is given below:

Haystack-Westford-Fort Davis

Haystack-Westford-Owens Valley

Haystack-Fort Davis-Owens Valley

Westford-Fort Davis-Owens Valley

HA-WE,WE-OV,OV-HR, HR-HA

HA-WE,WE-HR, HR-OV, OV-HA

HA-OV, OV-WE, WE-HR, HR-HA

PC1

PC2

PC3

PC4

AC 1

AC2

AC 3

~ly-C.---I-.---n~LII~i
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2.2 Theoretical uncertainties of the closures

a) Phase closure

For the usual case where p << 1, the uncertainty of the

fringe-phase estimate is a(1) = 1/SNR, where the SNR is the

signal-to-noise ratio, defined as p 2BT [3]. The B refers

to the bandwidth and T to the duration of the observation.

The correlation coefficient p can be approximated by

FA A A2 where the Aci are the antenna sensitivity con-

stants. For some sources the flux density F of the source

taking into account it is resolved on the baseline is

expressed reasonably well by [11]:

F = So exp(-abp) (32)

where bp is the length of the baseline as projected on a

plane perpendicular to the direction to the source,

bp= u+V 2 , So (WHz -lm- 2 ) is the estimated flux density for

zero baseline length and a is a constant derived from

previous observations. Recalling Equation (2), we define

the theoretical uncertainty in the phase closure to be the

standard deviation in the phase closure which is given by:

o(Cijk) = 2 (Tij) (33)

From Equation (32) one can estimate the correlation coeffi-
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cient and compute the standard deviations. For 3C345, these

standard deviations a(Cijk) are of the order of a few tenths

of a degree compared to the experimental RMS scatter of a

few degrees. At S-band for instance, the phase closure

HA-WE-HR is inconsistent: it should be flat and of zero

value (see Figure 2.1). The structure contribution is the

same on WE-HR and HA-HR since the HA-WE interferometer

cannot resolve the source. This situation is certainly the

result of a systematic error that cannot be explained by

random noise.

b) Amplitude closure

Recalling the amplitude closure (Equation 15) and

assuming that the standard errors of the yi are zero mean

and independent, the variance of the error in the amplitude

closures can be defined as

2 2
R _ yi (34)

R Yi

where a2is the variance of the error in R and 2yi is the

variance of the error in y i . The theoretical uncertainty in

2
the amplitude closure can be taken as ao. Note that the

a yi/y i are by definition the inverse of the signal-to-noise

ratios. For 3C345 they are above 200, and consequently the

theoretical standard error is 0.01.
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2.3 The point source approximation and the so-called

"bad" points

If we consider the quasar as an unresolved source then

the phase closure should be exactly zero and the amplitude

closure should be unity. It is interesting to see how in-

correct this assumption is. For this purpose, "equivalent"

phase closure and amplitude closure RMS residuals have been

defined (see §2.4.1 ).

When we first display the closure phases and the

observed amplitudes, some of them have large deviations from

their neighboring points for no apparent reason: the kinds

of deviations that were encountered were rapid variations in

amplitudes and jumps in phases. Since no realistic model

will match such observations, it appears reasonable to

delete them and see how this deletation changes the maps.

For the point-source model, equivalent RMS on the different

phase closures and amplitude closures have been computed in

both cases (see Table 1). At X-band for 3C345, 20 points

out of 513 were deleted to produce the final map.
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Table 1

all data 20 "bad" points deleted

PCl 2.10 2.10
PC2 2.60 2.60
PC3 8.370 8.300
PC4 8.700 8.240
ACl 0.501 0.505
AC2 0.484 0.487
AC3 0.028 0.028

In this case, the "bad" points have very little influ-

ence on the different RMS fits because of the number of

data. However, one will see that significant changes may

occur in the RMS fits and in the brightness distribution of

the small components if the amount of data is smaller (see

§3.1 for instance). The deletion of a point implies the

deletion of its amplitude and its phase at the same time.

2.4 Determination of a map at X-band

2.4.1 Elaboration of a set of criteria for convergence

Since the hybrid mapping is an iterative process, one

needs to know when to stop iterating. For our purpose, we

decide to terminate iteration when two statistics, defined

below, remain constant within the precision of the computer

from iteration to iteration. The first statistic is given

by [1]

R1 = (1/N) o m 2 (35)
S13 ij

iilY_ ^ m______s~l~~O~
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where i-j is the label of a baseline where we have a measure

of correlation coefficient, N is the number of measurements,

m o
ij is the phase predicted by the model and Pij is defined

in Equation (6). It can be seen that Equation (35) is a

measure of the quality of the fit in the phase. The second

statistic is given by [1]

1 (y m)2
R2= - (36)m 2

N ij (yk

where the yk are the correlated flux densities. Equation

(36) is a measure of the quality of the fit in the ampli-

tude. Because of the quality of the data, the simultaneous

minimization of Rl and R2 may not always be possible and the

adjustments in phase and in gain which are applied in the

subroutine PCLOS and ACLOS between each iteration never

become zero (i.e. these adjustments add and subtract small

components of flux density). Thus, a measure of the conver-

gence and reliability of the map is based on the magnitude

of the amplitude and phase fit residuals and the magnitude

of the gain and phase adjustments. The smaller these ad-

justments and residuals are, the more certain the conver-

gence is because one cannot expect any improvement from

further iterations.

After several iterations (usually around 10), the

quality of the fits are similar for maps obtained from

different initial models. Moreover, the adjustments between
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iterations are of comparable magnitudes. At this stage it

appears necessary to define other criteria to determine if a

given map can be considered as the final map which will be

used to correct geodetic measurements for source structure.

To do so, we have two tests at our disposal. The first one

tells how well the model satisfies the phase closure test,

and the other one concerns the amplitude closure test. For

the phase closure test we compute the observed phase clo-

sures. Each phase closure involves three stations which

were observing a given source at the same GST (Greenwich

Sidereal Time). This phase closure is compared with the one

predicted by the model by means of the following formula:

(1/N) z (C (  (GST) - m (GST))2 (37)
GST ijk ijk

where N is still the number of closures for a given set of

three stations. Thus, for four stations Equation (37) gives

four similar quantities. There are four different ways of

choosing 3 stations out of 4. A given map will be said

"good" when the RMS residuals on the phase closure are the

same as the theoretical uncertainty (see §2.2). In reality

the RMS is always greater than the theoretical uncertainty

and thus, a map which minimizes the RMS is called the "best"

map. A map is all the more reliable if the RMS residuals

are close to the theoretical uncertainty. The second

statistic gives a measure of the residual amplitude closure.

For four stations we have six ways of combining four ampli-

-.~-L--~--i rrurr---r-~~- ---- L --II*X 1~L1 -
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tudes out of six, to form a closure. Recalling Equation

-1
(15), it is easy to see that R..ijk = R kij Thus, we haveijkl klij

only three independent closures (6 divided by 2). Every

conjugate pair of amplitude closures Rijkl and Rklij is

calculated with the same observed amplitudes and gives the

same intrinsic information. For every independent config-

uration of closure we compute

(Ro - Rm  2
1 ijk1 ijklS2 = f(R ijkl), (38)

GST N (R )2 ijk

where N is the number of closures obtained for the configu-

ration (ij-jk-kl-li). The summation is done over the GST's

of common observations. As for the phase closures, the

"best" map is a map which gives RMS residuals on the ampli-

tude closures closest to the theoretical uncertainty (see

§2.2 b). However, for reasons stated earlier, it may happen

that the RMS residuals on the phase closures and the ampli-

tude closures are not at their minimum values simultane-

ously.

If one takes the point-source approximation, Cmjk 0

and Rijkl = 1, Equations (37) and (38) become respectively:

(1/N) (C 2 (39)
GST ijk

and

S1/N) (R.-1)2 (40)
GST ijkl
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It is important to keep in mind that the following maps

have been made using these four criteria. The ones which

are presented minimize the 4 statistics, when possible.

When it was not possible to satisfy the 4 minimizations

simultaneously, the minimization of the statistics relative

to the phase were the criteria. A good phase closure is

more important than a good amplitude closure because, as

discussed in §1.2, the phase closure is the only existing

phase information, whereas there is other amplitude infor-

mation available which are contained in the correlated flux

densities from every baseline. For the correlated flux

densities, agreements between the model and the observations

are easily obtained when gain corrections are calculated in

the subroutine ACLOS (see Table 10).

2.4.2 Remarks about the mapping of 3C345 from June 1981

data

a) Relative location of the antennas

The relative locations of the four radio-telescopes

have a remarkable characteristic: two stations are very

close to each other. Haystack and Westford are separated by

only 1.2 kilometers. As a consequence the minimum fringe

spacing is o 6 arcseconds at X-band and thus, the Haystack-

Westford interferometer is sensitive only to large scale

-; -c.n- r_~. i-- --or*- ~-*(Y~~ ~-Y-~~-.
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structures which cannot appear on our map. However, if

there is a large scale structure which appears on the clo-

sures, no model made at the milliarcsecond level will be

able to fit the closures. The hybrid mapping program cannot

distinguish between the two baselines Westford - Owens

Valley and Haystack - Owens Valley. Also the two baselines

Haystack - Fort Davis and Westford - Fort Davis cannot be

distinguished from each other (see geometry of the sta-

tions). Thus, we cannot expect any milliarcsecond scale

source structure contribution to the closure phase for the

two triplets WE-HA-HR and WE-HA-OV : the phase closures #1

and #2 will exhibit only noise. For the same reason the

amplitude closure #3 will always be close to unity and will

exhibit only noise. Source structure will be seen only on

the two remaining phase closures and two remaining amplitude

closures. Moreover, because Haystack and Westford are very

close to each other, the two PC and AC should differ only in

the contribution of noise from Haystack and Westford.

Tables 1 to 12 show that the phase closure fits on HA-HR-OV

are constantly better than the phase closure fits on

WE-HR-OV. This can be an indication that Haystack has a

more sensitive system at X-band than does Westford.



-37-

Geometry of the amplitude closures

HA
SWE

HR

Not to scale

AC 1 AC 2 AC 3

b) Characteristics of the data

Theflux densities (Jy) are given as an approximation:

calibration of the data requires that the measurements of

the antenna and system temperatures are taken regularly

(once each hour at each of the antennas for instance) and

accurately. For the June experiment only approximations of

the system temperatures and the gains were taken to compute

the correlated flux density of each baseline. However, the

amplitudes can be made self-consistent by adjusting each

antenna gain at each station (see §1.3). This procedure has

been used to produce the following maps.

2.4.3 Influence of the loop gain on the maps

As seen in §1.5.1 the fraction of flux density which is

subtracted from the peak value for each iteration of the

subroutine CLEAN is called the loop gain. This gain can be

chosen to be any value between 0 and 1, but a value near 0.5

I._ .~------ -- ~-r~- r.. r-. -~srpw)lrr-x-- srgla~ *i-.
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gives better results (i.e. better phase and amplitude agree-

ment).

If the gain is greater than 0.5, then the cleaning

procedure seems to pick up more flux components located on

the edges of the map. Moreover, because more flux density

is subtracted at each iteration, the list of the clean

components contains a greater number of strong components,

but the total number of components is less for the same

cleaning limit (see §2.4.4). The result is that the oscil-

lations are larger in amplitude and in frequency for the

phase closure.

If the loop gain is smaller than 0.5, the cleaning

process is less sensitive to the sidelobes of the dirty beam

and small clean components are smoothly distributed around

strong ones. Thus, it would seem much better to have an

infinitesimal loop gain. However, the total number of clean

components is limited by the size of the computer, and if

the number of iterations necessary to reach the cleaning

level (see §2.4.4) is greater than 100 (this number is fixed

by storage limitation) we lose information about components

and flux density. In these conditions, it seems optimal to

take the loop gain as small as possible to obtain a number

of clean components as close to 100 as possible. However,

the PC is not improved by taking a loop gain much smaller

than 0.5 (see Table 2). It is also interesting to note that

the absolute values of the adjustments in phases after each

iteration are much greater for a loop gain of 1 (0.40) than
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for a loop gain of 0.50 (0.10). In other words, for a loop

gain of 1, the program does not seem to be able to make the

map converge uniformly to the solution according to the cri-

teria which have been set in §2.4.1. This instability may

be a consequence of subtracting the whole dirty beam from

the dirty map, since the sidelobes have an adverse effect on

the convergence.

In the following Tables, all quantities relative to the

phases (PC) are in degrees, and the quantities relative to

the amplitudes (AC) or gains are in fractions of unity.

Table 2

Results for loop gains of 0.25, 0.5 and 1

loop gain
# of cells
cell size
# of iterations
flux density(Jy)
# of components
phase fit
phase adjustments
PC 3 fit

4
AC 1 fit

2
3

0.25
64x64
0.25 mas
10
17.

100
1.6
0.1
3.3
4.2
0.208
0.196
0.028

0.50
64x64
0.25 mas
10
18.
65
1.6
0.1
3.2
4.2
0.142
0.133
0.028

1.00
64x64
0.25 mas
10
19.
30
1.8
0.4
3.9
4.5
0.110
0.110
0.028

The phase fit is the statistic given by Equation (35), and

the phase adjustments indicate the absolute value of the

adjustments for the station phases after the 10th iteration.

,-.I c.luurxu~-^--r; --u~*IT*YIYLI1Xllsll~-
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The fraction of flux density subtracted from the dirty beam

and located at a grid point is called clean component. The

number of clean components refers to number of times the

dirty map was cleaned by the dirty beam. The effective

number of clean components is smaller for a reason already

discussed in §1.6.

2.4.4 Influence of the cleaning process

a) The cleaning limit

When one deconvolves the dirty map with the dirty beam,

one progressively cleans the map as previously discussed

until the peak value reaches a certain fraction of the

original peak value, called the cleaning limit. The conse-

quences of this limit on the closure fits are the following:

the 0.3% limit gives a better AC fit (f(Rijkl) in Equation

(38) is reduced by 1.5) than 1% . The 1% limit gives half

the number of clean components obtained for the 0.3% limit,

the stronger of which retain the same relative position.

The consequences on the PC are negligible (Table 3): in both

cases it remains just as well satisfied but the AC, as

already stated, is remarkably changed. This points out the

importance of small components on the amplitude closure.

Following this remark, it seems interesting to see what

happens to the different closures when we intentionally
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neglect the smaller components (§2.4.4 b)). Table 3 shows

how well the model agrees with the data for two cleaning

limits: 1% and 0.3% .

Table 3

Results obtained with a cleaning limit of 1% and 0.3%

# of cells 64x64 64x64
cell size 0.25 mas 0.25 mas
# of iterations 10 10
loop gain 0.50 0.50
cleaning limit 0.3% 1%
# of components 65 36
RMS phase fit 1.6 1.6
PC 3 fit 3.2 3.3

4 4.2 4.2
AC 1 fit 0.142 0.220

2 0.133 0.208

b) Influence of small components on the closures

The strongest components are responsible for the

overall shape of the PC. On the other hand, Table 4 shows

that the smaller components have a significant effect on the

AC. This difference can be related to the fact that the

convergence occurs faster for the phases than for the ampli-

tudes. It was noticed that the RMS residuals of the PC

decreased rapidly during the first few iterations, which

recover the strongest components, and that thereafter the PC

improved very little whereas the AC residuals were still

decreasing. The following table shows the different fits

when some of the clean components are neglected.

_ .u-rrrrrr~-~-- ^ Y-~C~^-"CXL-* I--~ Iyp~*I L CIIYIIIIIIIU
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Table 4

Variation of the AC and PC fits
with the number of clean components

# of iterations 10 10 10
# of cells 64x64 64x64 64x64
cell size 0.25 mas 0.25 mas 0.25 mas
# of components 65(all) first 30 first 15
flux density(Jy) 18. 16. 15.
PC 3 fit 3.2 3.4 4.2

4 4.2 4.3 4.8
AC 1 fit 0.142 0.231 0.322

2 0.133 0.218 0.308

c) The weighting function and the dirty beam

The dirty beam can be defined many different ways de-

pending on the choice of the weighting function. The

program allows two choices. The first one utilizes the

uniform weighting: the weighting function g(uo,v o ) is either

equal to unity if there is at least one observation at

(u ,v o ) or zero if none. In this case downweighting some

points will change the dirty map and may not change the

dirty beam at all. The second way proposed is a non-uniform

weighting: the weighting function g(u ,vo) is equal to the

number of observations at (uo,vo). As shown in Figure 2.2,

the dirty beam obtained from non-uniform weighting has more

irregular contours than the uniformly weighted one.

For a given value of the cell size, field of view, loop

gain and cleaning limit, the two weighting functions have

been tested. The results are displayed in Table 5.
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Table 5

Influence of the uniform and the non-uniform
weighting on the different fits

uniform weighting

more components 65
less flux 18.0 Jy
fits phases and
phase closures better
P.C 1 2.1

2 2.6
3 3.2
4 4.2

A.C 1 0.142
2 0.133
3 0.028

non-uniform weighting

less components 31
more flux 18.5 Jy
fits amplitude closures
better

2.1
2.6
4.0
4.8
0.113
0.107
0.028

It can be concluded that, since the uniform weighting

gives better agreement in phase closures, it will be used

henceforth.

2.4.5 Number of iterations

The hybrid mapping program is a fast convergent process

in the sense that after about 10 iterations the RMS fits on

the phase and on the amplitude closures do not change sig-

nificantly. They seem to reach a state of equilibrium

wherein the adjusted model oscillates around a mean model:

adjustments are less than 0.1 degree in absolute value for

the phases and less than 0.01 in absolute value for the gain

at each iteration. Table 6 shows the difference in fits

.inr^- 1----I. ~-m__rr~ i--- llll~pSlt ----- *rl-x-
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after 10 and 25 iterations.

Table 6

Influence of the number of iterations
on the quality of the fits

# of cells
cell size
# of iterations
flux density(Jy)
# of components
phase adjustment
gain adjustment
phase fit
PC 3 fit

4
AC 1 fit

2

64x64
0.25 mas
10
18.
65
0.1
0.008
1.6
3.2
4.2
0.142
0.133

64x64
0.25 mas

25
18.
70
0.1
0.008
1.6
3.3
4.2
0.138
0.130

2.4.6 Initial model

One of the checks which were performed on the conver-

gence ability of the program was to test the sensitivity of

the final model to changes in the initial model in the hope

that the answer would be as independent as possible of the

initial model. Different brightnesses, shapes and positions

of the components have been tried successively.

From these tests, it can be concluded that the absolute

brightness of the various components does not affect the

phase closures and the amplitude closures. What matters

only is the relative flux density between the components.

The phases predicted by the initial model are calcu-
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lated in the program MODX. They are used only during the

first iteration in addition to the observed amplitudes to

compute the complex visibility. Any symmetric model (point

source, circular, elliptical) at the center of the map will

give zero phase for any (u,v) point. Consequently, the

program does not make any distinction between these differ-

ent models. The shapes of the components affect the solu-

tion when they are not at the center of the map since the

visibility is expressed as [1]:

V(u,v) = Z F(j) exp{-kS 2 [(usin +vcos )2+R2(ucos 2
J J J j-vsi )

exp(2ri d (usinaj+vcosaj))

(41)

where d. is the distance of the jth component from the
3

center of the map, Sj is the FWHM of the component along the

major axis and R is the ratio of the length of minor axis to

that of the major axis. The angles j and aj are defined in

the figure below: +

During the mapping of 3C345, a small component of

brightness appears 2 mas west of the main component even

rx-- rr c r-ir*r~--i---rP-.~ylyi~^-~ 1-----91
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using several different initial models. It seems inter-

esting to see how well an initial model which is close to

the final result would converge towards the presumed solu-

tion. The result is disappointing in the case of 3C345: no

major improvements are noticed in the different RMS fits.

However, the results tend to be much better for 4C39.25 when

a double point model is given instead of the point source

model at the first iteration (see 53.1).

In the a priori model if the main component is not put

at the center of the map but no more than a few cells away

(thus displacing artificially the center of brightness from

the physical center of the map) the final map has many other

"noisy" components which do not appear in other maps (see

Figure 2.3). This situation gets worse when the component

is displaced from the center by more than two or three

cells.

Having mapped 3C345, a model (see Figure 2.4) which

does not correspond to the model for the final map which was

previously obtained was given as initial guess: the process

did not converge. One cannot distinguish the true features

from the other imaginary features which have been picked up.

The ACs and PCs do not agree any more. The phases are badly

predicted (Equation 35): they agree to 7.60 after 10 itera-

tions compared to the 1.40 obtained for the "final" map,

7.50 after 20 iterations and 10.90 after 30 iterations. The

fits do not improve beyond the 3 0 th iteration (see Figures

2.4).
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It can be concluded that it seems critical to choose a

good model since the program has trouble translating compo-

nents when they are not at the correct location with respect

to each other and when the center of brightness does not

correspond to the physical center of the map. Choosing the

simple point-source model has the advantage of highlighting

the basic overall structure of the source, and then, one can

redo the solution with a more precise initial model whose

center of brightness is at the center of the map.

Table 7

Differences in the maps obtained
from different initial models

initial
model

any symmetrical
model

# of cells 64x64
cell size 0.25 mas
# of iterations 10
flux density(Jy) 18.
# of components 65
RMS phase fit 1.6
PC3 fit 3.2
PC4 4.2
AC1 0.142
AC2 0.133

2pt-model

64x64
0.25 mas
10
18.
71
1.7
3.5
4.4
0.133
0.125

July 80
model

64x64
0.25 mas
10
17.
55
1.7
3.9
4.5 ,
0.067,
0.061

main comp.
offset

by 0.5 mas

64x64
0.25 mas
10
18.
53
1.7
3.6
4.4 .
0.073,
0.075

* linear gain corrections were applied from the first itera-

tion in the subroutine ACLOS.
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2.4.7 Gain correction

a) Linear gain correction

As stated earlier, the antenna gains are not constant

during a single experiment because they are functions of the

antenna efficiency, n, which depends on the source eleva-

tion. At X-band for the HA-WE interferometer, although the

correlated flux density should be constant, we notice an

obvious decreasing trend with time (see Figure 2.5) which

will affect the dirty map. One way to solve this problem is

to introduce gain adjustments to the initial antenna gain.

These adjustments can be calculated by two similar but dif-

ferent methods: linear and logarithmic (see § 1.3 and

App.3).

If we apply these corrections the RMS residuals on the

AC are improved by a factor of two and the fit on the corre-

lated flux density between the model and the observations

given in Equation (36) improves (see Table 8 first and

second column). Roughly ten iterations after application of

gain correction, the PC and AC residuals converge because

these corrections are done independently of the convergence

on the phases (see Table 8 columns 3 and 4). Still, better

RMS residuals are not obtained by further iterations (see

Table 8 columns 2 and 3). When one applies gain correc-

tions, the corrections are done for each GST of observation.

When no AC is available for a given time, it is possible to
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make the observed amplitudes match the model amplitudes by

arbitrarily increasing or decreasing the gains because there

is no constraint on the gain adjustments. Thus, the adjust-

ments can introduce unrealistic wiggles in the correlated

flux density.

Table 8

Results obtained from a point source initial
model with a cellsize of 0.25 mas and 64x64 cells

10 it
No gain cor

RMS phase fit
amplitude fit
PC 3 fit
PC 4
AC 1
AC 2

1.6
0.075
3.2
4.2
0.142
0.133

10 it
Gain cor
from 1 it

1.6
0.022
3.7
4.5
0.082
0.075

25 it
Gain cor
from 1 it

1.7
0.021
4.2
4.8
0.064
0.063

25 it
Gain cor
after 10 it

1.7
0.022
4.2
4.9
0.064
0.062

b) Logarithmic and linear correction

The two methods of logarithmic and linear correction

give nearly the same results (see below Table 9). They give

comparable phase and amplitude agreements and consequently

one map can not be considered better than the other one.
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Table 9

Results obtained from a point source initial
model with a cellsize of 0.25 mas and 64x64 cells

linear logarithmic logarithmic

# iterations 10 10 20
flux density 16.6 16.6 16.7
RMS phase fit 1.6 1.6 1.6
PC 1 fit 3.7 3.7 4.1
PC 2 4.5 4.5 4.8
AC 1 0.082 0.086 0.064
AC 2 0.075 0.079 0.062

2.4.8 Over- and Underresolution

a) Problems caused by the dimensions of the mapping

field

In the model file one must give twice the dimensions of

the largest source structure to be mapped. These dimensions

determine the size of the cells used to grid the u-v plane.

All maps were done with square cells. A Au of 483 km corre-

sponds to a field of view of 8 mas but Au's of 967 km, 1208

km, 1611 km and 2417 km have been tried to study the influ-

ence of the field of mapping on the phase closures and the

amplitude closures. For Au=967 km there is evidence of flux

density coming from a region 2 mas west of the main compo-

nent. The following results have been derived when we res-

trict our field of view to 4 mas, 3.2 mas, 2.24 mas and 1.6

mas.



-51-

For a width of 4 mas the map shows a component just on

the border of the map (Figure 2.6b). When the width is 3.2

mas the component cannot theoretically appear on the map

since it is too small to contain both the main and the small

component. One still gets a map which looks like the pre-

vious ones done at 8 and 4 mas ( see Figure 2.6c). The

small component appears on the edge and its flux density

relative to the main component has increased from 0.09 to

0.12. The more one reduces the width of the mapping field,

the worse the closures become (see Figures 2.7a, b, c, d and

e and Table 10). However the divergence is not monotonic,

as we can see in the second column of Table 10. For the

extreme case where the width is 1.6 mas we are looking at

the source through a window which is smaller than the geo-

metric resolution of the longest baseline interferometer (-

2 mas). After 10 iterations the map still looks like it

contains only one strong component. From this study it

appears that one should be suspicious when contours are

systematically found greater than 5% along the border. This

appearance can be an indication of components outside the

field of mapping.

- -^rC- ~YI- --."sl-r--~Y-;a*rl~ -
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Table 10

Influence of the field of mapping
on the quality of the fits

width(mas) 8.00 4.00 3.20 2.24 1.60
# of cells 64x64 64x64 64x64 64x64 64x64
flux density 18.0 16.2 16.2 15.0 14.6
# of iterations 10 10 10 10 10
# of components 65 46 44 30 25
RMS phase fit 1.6 1.8 2.2 2.4 2.5
PC 3 fit 3.2 4.4 6.2 7.1 8.0
PC 4 4.2 5.0 6.7 7.6 8.3
AC 1 0.142 0.280 0.147 0.169 0.322
AC 2 0.133 0.267 0.139 0.156 0.304

b) determination of the optimum field of view

Because the array dimensions are at most 64 by 64, when

one increases the resolution by taking a smaller cell size,

the mapping area is reduced. This reduction causes a dete-

rioration of the results of the closure tests. When one

enlarges the field of the map, one tends to reduce the

different RMS residuals of the closures. However, there

seems to be an optimum size of the cells for a given number

of cells (see Table 11). This size is between 0.3 and 0.4

mas for the present case. One of the reasons for this pos-

sible optimization is that, as we have seen in the previous

paragraph, taking too small a cell size makes the RMS fits

on phase and amplitude closures increase. A good way to

avoid this problem, if we do not know beforehand what the

positions of the components are, is to map a larger field.

However, if we increase the map size by too large an amount,

we tend to lose our resolution ability by putting in the
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middle of one cell two components that would be separated

otherwise. Moreover, one cannot increase indefinitely the

cell size because the corresponding gridding interval de-

creases in the u-v plane and may force some data to be left

out: this limitation is called underresolution. The optimum

cell size in our case seems to be about 0.35 mas (see Table

11).

At X-band for June 1981 the two principal axes of the

elliptical beam are 1.6 mas and 1.1 mas. The major axis is

oriented at a position angle of -250. The Figures 2.8a, b

and c show the different phase closures and amplitude clo-

sures as well as the correlated flux density on the 6 base-

lines for the "final" map obtained with a cell size of 0.35

mas.

Table 11

Determination of the optimal cell size

# of cells 64x64 64x64 64x64 64x64 64x64
cell size 0.25 0.30 0.35 0.40 1.00
flux density 16.6 16.8 16.7 16.6 16.8
# of iterations 10 10 10 10 10
# of components 44 52 42 49 54
RMS phase fit 1.6 1.7 1.5 1.5 1.7
RMS amplitude fit 0.022 0.019 0.015 0.015 0.020
PC 3 3.7 3.8 2.9 3.8 3.9
PC 4 4.5 4.6 2.8 3.7 4.5
AC 1 0.082 0.072 0.067 0.063 0.072
AC 2 0.075 0.066 0.060 0.058 0.071
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2.4.9 Map obtained from two days of geodetic data

A map of 3C345 can be deduced from the two days of geo-

detic observations obtained in June 1981: the time coverage

is the same as for the previous maps but the data are more

widely spaced. The purpose of making such a map is to

compare the map with that obtained from the previous obser-

vations. The comparison is of interest for several reasons.

Firstly, one would like to know if it is posible to recover

the brightness distribution from fewer data obtained during

a VLBI geodetic experiment. Secondly, one would see how

different from each other the brightness distributions are.

Indeed, one can expect some differences in the calculated

brightness distribution since we are now using 23 phase

closures instead of 98 and 117 correlated flux densities in

the u-v plane instead of 493.
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Table 12

Differences in the results between the 3-day
experiment data and the geodetic experiment data

98 phase closures 23 phase closures

# of iterations
# of cells
cell size
flux density(Jy)
# of components
RMS phase fit
amplitude fit
PC 1 fit
PC 2
PC 3
PC 4
AC 1
AC 2
AC 3

20
64x64
0.35 mas

16.8
39
1.4
0.012
2.1
2.0
2.5
2.7
0.048
0.044
0.024

20
64x64

0.35 mas
16.8
45
1.0
0.012
2.4
1.3
1.9
2.7
0.040
0.037
0.024

Figures 2.9a and b show the respective brightness

distributions. The clean maps are shown in Figures 2.9c and

2.9d. The restoring beam is overresolved by 1.8 to enhance

the differences between the two maps. The phase and ampli-

tude closures for the geodetic experiment are shown in

Figures 2.10a and b. The results show that the fits are of

the same quality in both cases. The map obtained from 98

closures cannot be considered better than the other one.

This study proves that for a duration close to 10 hours one

can recover a reliable brightness distribution of a radio

source with less data, provided that the u-v samples are

taken at regular intervals. This kind of geodetic exper-

iment allows a good brightness reconstruction.
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2.4.10 Diffences between the July 1980 and the June

1981 maps

The map obtained from 3.6 cm MARK III VLBI observations

[12] in July of 1980 is different from the one obtained in

June 1981 in several respects. It seems certain that the

flux density of the source increased because the standard

errors for the phases and group delays obtained with the

same interferometers were reduced severalfold from July 1980

to June 1981. If the June experiment had been done with

same interferometers, the small component which appeared

above the 10% contour in July 1980 (see Figure 2.11) would

now, if unchanged, appear as a 5% contour. The resolution

of the map was much better in July 1980 than in June 1981

because of the use in the earlier experiment of intercon-

tinental baselines of 8000 km length. The longest baseline

used in June 1981 was 4000 km. The FWHMs of the major and

minor axes of the clean beam were respectively 1.6 mas and

1.1 mas for the June 1981 experiment compared to the cor-

responding FWHMs of 1.10 mas and 0.48 mas for the July 1980

experiment. The smaller baselines used in June 1981 and the

change in flux density of the core tends to make the source

appear more like a point-source.
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2.5 S-band Map: Comparison with the X-band map

In July 1980 and in June 1981 the total flux density at

S-band (P2.3 GHz) was nearly the same - about 6 Jy - while

at the same time there was an increase at X-band. The data

at S-band are less numerous than at X-band: 386 correlated

flux densities in the u-v plane instead of 493 and 75 phase

closures compared to 98. Moreover, the data are not so good

as at X-band: the closure test (HA-WE-HR) is not flat as

expected (see Figure 2.1): we can conclude that a systematic

error must have been introduced. Because of the quality of

the data (inconsistency in the phases) it is much more dif-

ficult for any model to fit such data and as a consequence

we obtain RMS fits less satisfying.

After taking out the "bad" points, approximately ten in

number, we obtained the following results after 10 iter-

ations. we found fast convergence as at X-band: the phase

and amplitude RMS fits remain practically constant after 10

iterations and the phase and gain adjustments stay under a

certain absolute value 0.10 and 0.006 respectively (see

Table 13). Gain corrections were needed to fit the cor-

related flux densities on the individual baselines. The

dirty beam and dirty map are shown in Figures 2.12a and b.

The two FWHM's of the principal axes of the main lobe of the

dirty beam are 5.4 mas and 3.6 mas. The major axis is

oriented at a position angle of -250. The matrix of the

clean components and the clean map are shown in Figures
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2.13a and 2.13b. The phase closures and amplitude closures

are displayed in Figures 2.14a and 2.14b.

Table 13

Final results at S-band

# of cells
cell size
loop gain
cleaning limit
# of iterations
flux density(Jy)
RMS phase fit

amplitude fit
PC 1
PC 2
PC 3
PC 4
AC 1
AC 2
AC 3

64x64
1.15 mas
0.5
0.3%
10

6.
11.6
0.047
8.0
4.1
4.7
4.5
0.157
0.093
0.151

point source

8.0
4.1

15.3
15.4

1.368
1.339
0.151

The map produced for the June experiment at X-band

shows a very strong central component which contains more

than 90% of the total flux density and thus, tends to wash

out the other features. The X-band map appears more compact

than the S-band. At S-band, the map is more extended and

the main component contains only 50% of the total flux

density. Figure 2.15 shows two maps made from the compo-

nents determined at S-band and at X-band respectively. They

are convolved with the same beam 1.60 mas by 1.10 mas

oriented at a position angle of -250. This beam corresponds

to the X-band beam. For the S-band map it corresponds to a

beam overresolved by 3.5 .
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3. X-band maps of other radio sources for the June 1981

experiment

3.1 The double source 0923+392 (4C39.25)

As seen in Chapter 2, it was possible to determine ade-

quately the brightness distribution of 3C345 from data ob-

tained only during a geodetic VLBI experiment. For 4C39.25

the data obtained during the geodetic experiment in 16, 17

June 1981 are spread over 10 hours. They consist of 115

correlation flux density data and 30 phase closures. Unfor-

tunately there are some gaps in the data, one as long as two

hours. The correlated flux density varies greatly for the

baselines HA-HR, HA-OV, WE-HR and WE-OV : the ratio of the

largest value to the smallest is of the order of six.

Moreover, at different times, the amplitudes come close to

zero. A model consisting of two components of comparable

brightness can explain this behaviour.

The procedure used to map 4C39.25 was to start from a

point source model. The dirty map obtained after 10 iter-

ations confirms this double structure, but it does not give

a satisfying answer according to the criteria defined in

§2.4.1: the map shows two components among many other noisy

components. The term noisy components refers to components

which do not retain the same location and the same strength

from iteration to iteration. These noisy components tend to

disappear and the RMS fits improve when the initial model is

..~u~iru-~Y1 ~--U~" L1--LC ~i*Za*,I-Wli
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changed to a double component model defined as follows:

distance position relative
from the center angle brightness

1st component 1 mas 900 1.0

2nd component 1 mas -900 0.8

The same kind of problem had been encountered during the

mapping of 3C345 when trying to offset the center of the

brightness from the physical center of the map (see §2.4.6).

When one starts with a point source model at the center, the

program makes it coincide with the stronger component of

4C39.25; since there is another component of comparable

brightness, the center of brightness is not at the center of

the map and it was noticed that convergence does not occur.

Based on the fits between the observed phase closures and

the phase closures predicted by the model and between the

observed correlation coefficients and the correlation coef-

ficients predicted by the model, the optimal cell size was

determined after several tries as 0.35 mas. As for 3C345,

taking a bigger cell size introduces higher frequency oscil-

lations in the phase and amplitude closures which do not

exist in the data. On the other hand, if the cell size is

too small the higher frequencies of the observed closures

cannot be recovered. The map shown in Figure 3.1.1 has many

components: its cleanness is limited by the gaps in the u-v

coverage.

For comparison some simulated data were computed, then
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several points were deleted to better match the conditions

of the experiment. The fake data were obtained from a of a

double point-source model and no noise was added. The

mapping of this source was made from an initial model which

was the the same double point-source model. The two maps

are shown together in Figure 3.1.1 and one can notice their

similarities. However, the simulated map predicts the phase

closure better than the map made from the real data. The

poor quality of the closures can partly explained this bad

phase prediction: on the triplet HA-WE-HR, the PC predicted

by the model gives an RMS scatter of 7.250 about the pre-

dicted phase whereas one would expect, based on the SNR's of

the different measurements, an RMS on the phases of 10. On

the other hand the phase closure for the triplet HA-WE-OV

gives an RMS of 2.00. From this test, it appears that

reliability of the determination of the brightness distri-

bution is limited by the amount of data. It was also

noticed that even when no data are available the oscilla-

tions that appear in the amplitude closures and phase closu-

res can be recovered.

The results are shown in Figure 3.1.2. The matrix of

the clean components (Figure 3.1.3) shows that 4C39.25 is

mainly composed of two components whose brightness ratio is

4:3 . From the brightness contours of the clean map one can

also estimate the separation of the two components to be 1.8

+ 0.2 mas along a position angle of -850 + 100.

~x. l_.~C~- m~~41*b-L-UI-LL~ P *Pj*r
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3.2 0851+202 (0J287)

0J287 was observed during 3 days in June 1981. The

corresponding time coverage spanned 10 hours. For each

baseline, the correlated flux density varies only between

0.85 and 1.15 of its mean value. The final map shows that

0J287 is composed of one strong component whose flux density

contains 80% of the total flux density. The data consist of

37 phase closures and 152 correlated flux density data. A

cell size of 0.40 mas was taken to make the final map. The

field of the map is a square box of width 12.8 mas. Besides

the main component, the matrix of clean components (see

Figure 3.2.1) shows small components which make the source

appear elongated along the southwest direction. The dimen-

sion of the beam is 2.2 mas by 1.1 mas with a position angle

of -150. The reliability of the map is still limited by the

amount and the quality of the data: the RMS fits on the

phase closures involving HA and WE are around 40 whereas one

would expect a random scatter of less than 20 . The con-

tours below 5% of the peak brightness are unreliable since

their positions did not remain constant when other cell

sizes were tried . Figure 3.2.2 shows how the amplitude and

phase closures are satisfied. The following table summa-

rizes the different fits concerning 0J287 at X-band.
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final map point source
model

# of cells
cell size
# of iterations
# of clean components
flux density
PCl fit
PC2
PC3
PC4
AC1 fit
AC2
AC3

64x64
0.40 mas
20
28

4
4.4
4.3
4.2
4.4
0.131
0.096
0.081

Here and in the following tables, the quantities rela-

tive to the phases are given in degrees and the quantities

relative to the gains or the amplitudes are given in frac-

tions of unity. As for 3C345, the flux densities (Jy) are

given as an approximation.

The contours above 10% remain at the same location

independently of the cell size whereas the contours below

depend on it. Since the shape of the dirty beam is a

function of the grid spacing, the location of the contours

below 5% is a artifact of the dirty beam and thus, the

contours below 5% of the peak brightness are likely un-

reliable.

4.4
4.3
7.6
7.1
0.553
0.479
0.081
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3.3 0355+508 (NRAO 150)

On June 16, 1981 during the geodetic experiment, NRAO

150 was observed for 10 hours with a 3-hour interruption.

Seventy three correlated flux densities and 15 phase clo-

sures were used to produce a map. A point source was taken

as the initial model. As for 4C39.25 the reliability of the

map can be questioned because of the very small amount of

data: only 9 amplitude closures are available for a period

of 10 hours (Figure 3.3.1) The radio source appears almost

as a square: the components are confined in a box 2.5 mas

wide along the north south direction and 3.0 mas wide along

the east-west direction (Figure 3.3.2). Wittels et al.

described NRAO 150 as a source composed of two components.

For the June 1981 experiment the matrix of the clean com-

ponents still indicates the presence of two internal sources

of flux density: the main component which contains 70% of

the total flux density and a component whose brightness

ratio is approximately 7:2 . One can estimate its sepa-

ration from the main one as 0.8 mas along a position angle

of approximately 650. This graphical determination does not

give a more precise determination because the source is

barely resolved. The following table summarizes the RMS

fits for the phase closures and the amplitudes closures.
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final map point source
model

# of cells 64x64
cell size 0.30 mas
# of iterations 10
# of clean components 39
flux density 10
PCl fit 2.2 2.2
PC2 2.5 2.5
PC3 3.5 12.7
PC4 3.6 15.0
AC1 0.126 1.440
AC2 0.117 1.414
AC3 0.028 0.028

3.4 The extended radio source 1226+023 (3C273B)

The structure of the radio source 3C273 as determined

by Hazard, Mackey and Shimmins in 1963 consists of two

components separated by 20 seconds of arc [4]. The compo-

nent A is much more extended than the component B and is

resolved on baselines as short as a few kilometers for

frequencies above 2 GHz. The scale of the component B is of

the order of several milliarcseconds and is often used for

geodetic measurements.

It was observed quite regularly during the 3 days of

the experiment in June 1981. The following map was produced

from 255 correlated flux densities and 49 phase closures

(see Figure 3.4.1). After 10 iterations, the structure of

3C273B appears to be extended linearly and the components

are distributed along a position angle of approximately 600.

Compared to the radio sources mapped so far, this one is

..i.ll .-1.---_4 ----1 -- "~-I~~--~
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much more elongated and consequently the field of mapping

had to be extended to 16 mas. Because of the array dimen-

sions a cell size of 0.50 mas had to be used. The total

flux density of 3C273B is about 26 Jy.

The restoring beam is very elliptical: the axis ratio

is 4. The reason for that is the very low declination of

the quasar which makes the u-v elliptical track very elon-

gated along the east west direction. Moreover, a low decli-

nation reduces a lot the period of common visibility between

the antennas used in this experiment. The UT coverage is 7

hours long but quite regularly sampled.

However, the prediction of the phases (Equation 35) is

no better than 6.60. Short baseline interferometers like

HA-WE are sensitive to large scale structures: in the

present case, the baseline HA-WE is sensitive to both compo-

nents A and B. The phase closures involving HA-WE no longer

have zero values because the phases of the visibility is no

longer zero on HA-WE. Figures 3.4.2 show how well the model

can predict the phase and amplitude closures. The following

table summarizes the results obtained for the mapping of

3C273B.
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final map point source
model

# of cells 64x64
cell size 0.5 mas
# of iterations 10
# of clean components 51
flux density 26
PCl fit 17.18 17.18
PC2 17.61 17.61
PC3 4.86 28.11
PC4 7.85 30.25
AC1 fit 0.051 2.65
AC2 0.078 2.58
AC3 0.047 0.047

3.5 0552+398

The source 0552+398 was observed on two consecutive

days during the geodetic experiment of June 1981: 108 cor-

related flux densities and 23 phase closures spread over 9

hours were taken. The map shown in Figure 3.5.1 was made

from an initial point source model. A cell size of 0.30 mas

and a window width of 9.60 mas were chosen to map this radio

source because they produce a map which minimizes the RMS

fits. This radio source is composed of one strong component

which contains almost 70% of the total flux density of about

5 Jy (see Figure 3.5.1). There were some apparent inconsis-

tencies in the amplitude data: jumps of 50% in less than 1

hour. As for other radio sources, it was noticed that

changing the cell size made the contours below 5% of the

peak brightness move: they are likely unreliable. The

following table shows the different RMS fits. Figure 3.5.2
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shows how well the model can predict the phase and amplitude

closures.

final map point source
model

# of cells 64x64
cell size 0.30 mas
# of iterations 10
# of clean components 22
flux density 5
PCl fit 3.6 3.6
PC2 4.8 4.8
PC3 3.7 6.8
PC4 4.7 7.9
AC1 fit 0.097 0.695
AC2 0.030 0.557
AC3 0.071 0.072

3.6 2200+420 (VRO 42.22.01)

This source was observed very irregularly on June 16,

1981. The data contain 71 correlated flux density data and

16 phase closures spread over 10 hours with one of the gaps

being longer than two hours. The initial model is a point

source and the cell size is 0.35 mas. The main component

contains almost 50% of the total flux density of about 6 Jy.

The components are distributed along an axis oriented at a

position angle of 00. This distribution gives to the source

its north south elongation (see Figure 3.6.1). This map

confirms the assertion of Clark et al. (13] who suggested

that although VRO 42.22.01 is highly variable, it maintains

an elongation at a position angle of 00. Once again the u-v

coverage is sparse and sometimes the data are of poor
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quality: for the triplet HA-WE-HR the phase closure exists

only for two hours out of ten and the RMS scatter is 5.20

although it should be less than 20 according to the signal-

to-noise ratios of the observations. Changing the cell size

also makes the contours below 5% move on the map: they are

unreliable. The following table summarizes the RMS fits.

Figure 3.6.2 shows how well the model can predict the phase

and amplitude closures.

final map point source
model

# of cells 64x64
cell size 0.35 mas
# of iterations 20
# of clean components 31
flux density 6
PCl fit 5.2 5.2,
PC2 2.2 2.2

PC3 4.8 13.5
PC4 5.1 10.4
AC1 fit 0.055 1.985,,
AC2 0.060 0.305
AC3 0.050 0.075

Theoretically one should get the same number on both

phase closures, but since all stations did not always ob-

serve the same radio source at the same time, simultaneous

measurements of the phase closure on both baselines are not

always available; some phase closures which appear on one

plot do not appear on the other and thus, give different

statistics.

Same reasoning as above but the statistics concern

the amplitudes.

~rxrr
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4. Conclusion

The maps which have been presented are the "best"

according to previously discussed minimization criteria.

The indications of a "good" map are the minimization of the

phase closure and amplitude closure RMS fits. Unfortu-

nately, the periods of time when closure data had been

collected were as short as two or three hours for some radio

sources. A method used to map other radio sources was

derived from the mapping of 3C345 for which we had a large

amount of data. The purpose of this study was to determine

a systematic method to find these minimizations by changing

cell size, the number of cells and the initial model.

For 3C345 the iterated map converged uniformly. The

convergence is said to be uniform when gain and phase ad-

justments become monotonically smaller with iteration.

Otherwise, when the absolute values of the phase adjustments

did not tend to 0.50 or less and when the ratio of the

absolute values of the gain adjustments over the gain did

not tend to 1% or less, good agreement in phase closure and

amplitude closure could never be obtained at the same time

for a given iterated map.

Several other points should be stressed. The first one

concerns the calibration of the data. Because system tem-

peratures and gains at X-band are rarely constant during an

experiment, estimates of their values need to be refined in

order to calculate the correlated flux density accurately.
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However, when one does not have precise amplitude calibra-

tion, one can still make these amplitudes self-consistent by

adjusting the antenna gain at each station with checks

provided by the amplitude closures.

As studied in §2.4.6 the initial model can be a criti-

cal step in the mapping procedure. The "best" approach is

to start with a point source model: after several iterations

the overall structure of the radio source can be inferred

from the map and the initial model can be changed to improve

and accelerate the convergence. The point source model is a

good start for sources like 0J287 and 3C345 because they are

composed of a very strong component which contains more than

80% of the total flux density. Troubles occur when the

source has two or more components of almost equal bright-

ness; it was noticed that the convergence is more difficult

when the center of brightness is not situated at the center

of the map. This problem was especially acute for the

mapping of 4C39.25.

"Bad" points, as defined in §2.3, were deleted to

produce different maps. Some components that appeared

before deletion were no longer seen after. This "quick"

mapping procedure does not take into account nor does it

explain the reason for these points to be labelled "bad".

The deletion of a point implies the deletion of both its

amplitude and its phase although one or both of them might

be correct: this causes the loss of useful information.

Finally, the most interesting results were

I^LIL
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obtained for 3C345. The comparative study of this radio

source made from data collected at X-band during the 3-day

experiment and the geodetic experiment shows that a reliable

determination of the brightness distribution of a radio

source can be made solely from observations made during a

geodetic VLBI experiment.

The cleaning procedure could be done in several steps

to improve the convergence: initially, a small number of

components could be determined. Then, when a convergence to

a map using these components is obtained their number could

be increased. This method would be interesting to test

especially if it were noticed that the convergence was not

obtained easily because the data were poor either in quality

or in quantity. Better fits could be obtained if the sizes

of the different arrays which store the position and the

strength of the clean components were bigger. These sizes

were, however, limited by the available memory. Also, there

is no reason for the clean components to be located precise-

ly at an integer number of cells from the center of the map.

There are two methods with which one could alleviate this

integerization. The first one is simply to reduce the cell

size although there is a relationship between the smallest

cell size and a given field of mapping. The second method

is to use the values adjacent to the peak value located at a

grid point to compute an interpolation of the new peak value

of the map.
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The next logical step is to correct the group delay for

the effects of source structure and to study the resulting

improvement, if any, in the accuracy on the estimates of the

baseline vectors.

~1~ .I .~..-~ -. --L - u..~l- -p--l- r i*a~)l~rsr;r~-y ,
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Appendix 1

Mathematical expressions, notations and

indices

Tij fringe phase on baseline i-j

Qij phase of the complex visibility function

on baseline i-j

ei phase at station i

Yij fringe visibility

Pij correlation coefficient

Cijk phase closure variable for the three

stations i,j,k

Rijkl amplitude closure variable for the four

stations i,j,k,l

X estimate of vector X

At matrix transpose of A
-I
P 1  matrix inverse of P

Yo vector containing observed data

ym vector containing variables derived from

a model

SNR signal-to-noise ratio

proportional to

mas milliarcsecond

§ paragraph

FWHM Full width at half maximum

# number
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UT Universal Time

GST Greenwich Sidereal Time

convolution product
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Appendix 2

Model for the phases of the fringe

visibility used in PCLOS [1]

A model for the phase of the complex visibility on

baseline i-j can be written by

ij = ij +  
9 - Ei (Al)

where e. and e.i are the phases at each station. The purpose

of the phase closure method, as discussed in §1.2, is to

find the least squares correction aei to the station phases.

Let the vector Y be composed of the ij. To each ij cor-

responds a yk whose index k is defined by

k= index(i,j)= min(i,j)+(max(i,j)-l) (max(i,j)-2)/2 (A2)

This function establishes an unequivocal correspondance bet-

ween every pair of baseline indices i-j and the index k.

Let the elements of the vector X be the station phases (ei).

If we define the matrix A = aY/aX then it follows from

Equation (Al) that A has the configuration given below in

the case of three stations:



-79-

-1 1 0

A -1 0 1 (A3)

0 -1 1

If Ax is the variance-covariance matrix of the stations

phases based on a priori knowledge and if P-i is a matrix

which weights the observations, then the Bayes least-squares

estimation technique yields for 6X:

6X = (A P A + A ) (A P 6Y + A m ) (A4)
x - x -x

where 6Y is composed of the yk  (yk m), where yk is the

"observed" phase on baseline i-j, yk is the model phase on

the same baseline. m6x is the expectation value of 6X. In

our case, it is zero because we assume that the adjustments

on the station phases are of zero mean.

In Equation (A4) there is the implicit assumption that

t -1 -1
the matrix (A P A + A ) is non-singular. This situation

can be insured by properly choosing A .x In practice what is

done is to assume that the errors in the phases are uncorre-

lated, thus making Ax diagonal. This kind of matrix insures

that (At P A + A -1) is non-singular. Moreover, the same a
x

priori uncertainty is taken for every station phase. An a

priori uncertainty on the fringe-phase of 40 corresponds to

a mean value of the fringe-phase uncertainty which lies

between 90 and 10

Similarly, the weighting matrix P-i is also taken to be
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diagonal. The values chosen to weight the observations are

just the squares of the SNR's:

SNR 0 0

p-= 0 SNR 2  0 (A5)
2

0 0 SNR2
3)
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Appendix 3

Model for the amplitudes used in ACLOS [1]

a) Linearization by differentiation

The model adopted for the correlation coefficient is

k xi xj (A6)

where xi= l/rfi as defined in Equation (19) and yk is the

theoretical correlation coefficient if gains and system

temperatures are at their nominal values. The index k is

the integer number corresponding to the baseline i-j

(Equation A2). The purpose of the amplitude closure method

is to find the least squares estimates of the xi. Recalling

Equation (20) of §1.3

o m n n
Yk- Yk (Yk io) xj + (yk xjo) Axi  (A7)

Taking the a priori estimates of the xi to be unity, we

obtain:

Yk - k = Yk AXj + Yk Ax (A8)

Let the elements of X be (X) = x.i and the elements of Y be

(Y)k = Yk . The matrix formulation of Equation (A8) is

- ----- .- U--.~-WYU ~ *".. IIIIYIY I ~ WWA-L
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YO - ym = A 6X (A9)

where the matrix A is defined similarly to the coefficient

matrix A of Appendix 2 and (WX) = Axj. In the case of 4

stations

y

y

A = y

0

0

0

we obtain:

n
Yl 0 0

0 yn 0

n

y 4  Y4 0
n n

Y5 O Y5
n n

0 y6 6

The Bayes least squares estimation

t -1 -1 -1 t -l
6X =(A P A + A ) (A t P

x

-I
where P 1 is a weighting matrix.

diagonal.

b) Logarithmic linearization

technique yields for 6X

-1
Y+ Ax m )x

It is taken

Taking the logarithm of Equation (A6) gives

log yk = log yn + log x i + log xj
log Y = lo Yxj

(A10)

(All)

to be

(A12)
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This time we want to find the least squares estimate of the

o
log x i given the model in Equation (A12) and the log k

To the first order we have:

o mlog yk - log yk = Alog x + Alog xj (A13)

Let (X)i = log x i and (Y)k = log yk . Again we can define a

coefficient matrix as before and express Equation (A13) as

yo _ ym = A 6X (Al4)

where A is the following matrix in the case of 4 stations

1

1

A = 1

0

0

0

1 0 0

o 1 0

0 0 1

1 1 0

1 0 1

0 1 1

(Al5)

.--- -- -- -----
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Appendix 4

The two-dimensional approximation of the

three-dimensional Fourier transform [81

When calculating the Fourier transform, it is critical

to remember that the problem is initially three-dimen-

sional. The complex visibility V is a function of the

baseline vector 6 and the brightness distribution B is the

Fourier transform of the complex visibility function. Thus,

B(') -f II g(8) V(8) exp(27i 6. ) d8 (A16)

where g(S) is a weighting function. The frame of reference

is defined by the unit vector source which is in the direc-

tion of the radio source and the east-west and the north-

south directions perpendicular to it. In this coordinate

system the components of 6 are u along the east-west direc-

tion, v along the north-south direction, and w. The nota-

tion d means du dv dw. s is taken as a unit vector and its

three directional cosines are (x,y,z) with respect to the u,

v and w axes, respectively. For the approximation of a

point source s =(0,0,1). In reality, because we are mapping

around a point the x and y components of s are no longer

zero but always satisfy

x2+y 2 <<1
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but since z= 1-1/2(x2 +y 2 ) we can rewrite the exponential

term of Equation (A16)

exp(2i 6.s) - exp(2iw) exp(2i[(ux+vy)-w (x 2 +y2 )]) (A17)
2

The two-dimensional approximation consists of neglecting the

2w (x 2+y) term which must always always be small compared

to unity. For example, using wx2=0.01 and taking w around

-5
6000 km/3.75 cm gives x i1. 10 rd - 2 seconds of arc

That means that the procedure CLEAN is inadequate for

mapping region bigger than 2 seconds of arc around the

center of the source. For our purpose, the two-dimensional

approach is a good approximation. The term exp(2iw) can be

taken into account in g(6).
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Appendix 5

a) Influence of the source structure on the

group delay correction (15]

In the general case the visibility V can be written

V(u,v) = Re[V(u,v)] + i Im(V(u,v)] (A18)

Let * be the phase of V(u,v), we have the relationship

F= tamn = Im[V(u,v)]
Re [V(u,v)

(Al9)

where u is the east-west component and v the north-south

component of the baseline vector as viewed from the source.

The contribution of the source structure to the group delay

at (u o, ) is

1 a 1 a dF
2 af (u ov o ) 2R aF df (U oV o)

(A20)

where f is the frequency. Differentiating 0 with respect to

F, and F with respect to f, we obtain respectively

aF _ 1

aF 1+F
(A21)

and
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dF Re[V(u,v)] d(Im[V(uv)]) - Im[V(u,v)] d(Re[V(uv)])
df df

df Re[V(u,v)] 2

From this last equation it can be seen that at the points

where Re[V(u,v)] is near zero (i.e. where the correlated

flux density goes to zero), the group delay correction will

be significant [15]. This situation will happen for a radio

source like 4C39.25 which is made of two components of

almost equal brightness.

b) Influence of a small component of flux density on

the group delay correction

Given a brightness distribution, we can derive the complex

visibility function. Assuming a two-dimensional problem we

have the following relationship

V(u,v) = i B(x,y) exp2ri(xu+yv) (A22)

Let us now consider the problem of a source having a

main component and a small component. The brightnesses are

in the ratio of R:l as indicated in the figure below.

------- ~II
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In this example, since B(0,0) = R and B(xo,Yo) = 1 ,the

visibility function has the following expression

V(u,v)= R+cos2i(x U+YoV)+ i sin2(xou+Yov) (A23)

where u and v are given by (3]

u= (bf/c) cosab sin(ab-as ) = h f

v= (-bf/c) [sin6 s cosab cos(ab-as)-sinab cos6s] = k f

(A24)

and x0 and yo are the coordinates of the small component.

6s and a are declination and right ascension of the source,

6b is the baseline declination , ab is the baseline right

ascension and b is the length of the baseline.

For 3C345, 6s-=39?90 and the baseline declination 6b is cons-

tant during the time of an experiment but ab=abo+nt where a

is the rotation rate of the Earth and t the GST. For

simplicity, let

F= tan # = sinA/(R+cosA) (A25)

with

A= 2 (xou+y v) (A26)

Differentiating with respect to the frequency gives

-1
__ - a(tanF) aF _ 1 aF du + aF dv (A27)

2[ + (A27)

af aF af 1+F au df av df

then, we determine aF/au from Equations (A25) and (A26)
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aF 2rxo

2 [cosA (R+cosA) + sinA sinA] (A28)
au (R+cosA)

In the same way, we can determine aF/av and substituting for

aF/af in Equation (A27)

a _ 1 2 w (RcosA+l) (x h+yok) (A29)
2 2

af l+tan (R+cosA)

For a brightness ratio R=100, a baseline length b=5000 km, a

frequency f=8 GHz and a component whose coordinates are x =4

mas and Yo =4 mas, we can approximate the formula as

1 a 1 -12
T 2= f - (x h+y k) 3 10 s (A30)2x a.f - f - R 0 0
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Figure 2.1:

Phase closure on HA-WE-HR at S-band (- 2.3 GHz) obtained
during the 3-day experiment of June 1981. The P's represent
the observed phase closure and the M's represent the phase
closure given by the point source model.
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Figure 2.2:

Dirty beams of the 3C345 X-band experiment for June 1981
obtained with uniform (above)and non-uniform (below) weigh-
ting. The horizontal and the vertical scales are the same.
The width of the boxes are 11.2 mas. The contours are drawn
at 5, 10, 20, 30, 40 and 50% of the peak value. The negative
contours are symbolized by dashed lines: they are drawn at
-30, -20, -10, -5 % of the peak value. The inner contour of
the main lobe is at 50% of the peak value.
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Figure 2.3: 3C345 X-band 15,16,17 June 1981

Map after 10 iterations when the point source initial model is
offset from the center by 0.50 mas at a position angle of
1350. The width of the box is 8 mas. The restoring beam is
circular with a FWHM of 0.55 mas.
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Figure 2.4a:

.". '--2---T "

Figure 2.4a:

Initial model composed of 2 components. The smaller one is

2.5 mas from the main one at a position angle of 75
. 

Its

relative brightness is 0.5. The contour are drawn every 10%
of the peak brightness.

Figure 2.4b:

Map after 30 iterations. The scale is the same as for the
model. The width of the box is 8 mas. The circular restoring
beam has a FWHM of 0.55 mas. The negative contours are in
dashed lines. The positive contours are shown at 1, 2.5, 5,
10, 20, 30, 40, 50, 60, 70, 80, 90% of the peak brightness.
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$81JUNI5X HA-WE * HR-OV / HA-HR * WE-OV

Figure 2.4c:

-1 .0
UNIVERSAL TIME

HAYSTACK HRAS 085 OVRO 130

Figure 2.4d:

UNIVERSAL TIME

Figure 2.4c: 3C345 X-band 15,16,17 June 1981 experiment

Amplitude closure for HA-WE, HR-OV, HA-HR and WE-OV on a
logarithm scale. The *Us show the amplitude closure given by
the model after the 3 0  iteration. The A's show the observed
amplitude closure

Figure 2.4d:

Phase closure is expressed in fraction of 3600. The *'s
represent the phase closure given by the model, the P's are
the observed phase closure and the M's show the phase closure
obtained from the initial model.

3C345
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Figure 2.5:

Correlated flux density on HA-WE at X-band during the special
and the geodetic experiment. Whereas one would expect a
constant flux density on such a short baseline, notice the
decreasing trend with time. The data show two amplitudes
referred as "bad" points in §2.3
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Figure 2.6b
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Figure 2 .6c

II

RESTORING BEAM

HALF POWER LEVEL

Figures 2.6:

X-band maps of 3C345 obtained when the linear dimensions of
the field of mapping are successively reduced 8 mas(a), 4
mas(b), 3.2 mas(c), 2.24 mas(d), 1.6 mas(e). The restoring
beam (overresolved by 1.8) is 0.90 mas by 0.60 mas at a
position angle of -250. The + represents the center of
brightness.
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Figure 2.6d
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Figure 2.6e
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Figure 2.7a
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Figure 2.7b
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Figure 2.7c
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Figures 2.7:

Deterioration of the phase closure when reducing successively
the linear dimensions of field of mapping 8 mas(a), 4 mas (b),
3.2 mas(c), 2.24 mas (d) and 1.6 mas (e). The P's are the
observed phase closure and the *'s are the closures given by
the model.
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Figure 2.8a: 3C345 X-band 15,16,17 June 1981

Amplitude closure obtained by the final map and plotted on a
linear scale. The A's represent the observed amplitude
closure and the *'s represent the amplitude closure given by
the model.
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Figure 2.8b: 3C345 X-band 15,16,17 June 1981

Phase closures expressed in fractions of 3600. The P's
represent the observed phase closure, the *'s are the phase
closure given by the final model and the M's are the phase
closure given by the initial model (point source). Note that
the model gives the same phase closure on HA-HR-OV and
WE-HR-OV. The *'s have the same locations on both plots.
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Figures 2.8c: 3C345 X-band 15,16,17 June 1981

show the correlated flux density on the six different
baselines with gain correction applied for the final map. The
lower case letter, a, means downweighted point. The A's are
the observed amplitudes and the *'s are the amplitudes
predicted by the model.
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CLEAN COMPONENTS 3C345 X-band

The clean components obtained from the "special" experiment
and the geodetic experiment are calculated with a grid spacing
of 0.35 mas. The flux densities are expressed as fractions of
the peak value which is normalized to 10000.
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CLEAN COMPONENTS 3C345 X-Band

The clean components obtained from the geodetic experiment
only are calculated with a grid spacing of 0.35 mas. The flux
densities are expressed as fractions of the peak values which
is normalized to 10000.
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Figure 2.9 c:

RESTORING BEAM

HALF POWER LEVEL

3C345 X-band June 1981

Map obtained from data collected during the 3 days of
experiment (Figure 2.9 c ) and map obtained from data
collected during the geodetic experiment only (Figure 2.9 d).
Contours are shown at 1, 2.5, 5, 10, 20, 35, 50, 70 and 90% of
the peak value. The restoring beam (FWHM) is 0.90 mas by 0.60
mas at a position angle of -25 (overresolved by 1.8). The +
shows the center of brightness. Tickmarks are every mas.
shows the center of brightness. Tickmarks are every mas.
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Figure 2.10a:

Phase closures HA-HR-OV and WE-HR-OV expressed as fractions of
3600. The P's represent the observed phase closure, the *'s
are the phase closure given by the map obtained from the
geodetic experiment.
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Figure 2.10b:

Linear amplitude closures. The A's are the observed amplitude
closure and the *'s represent the amplitude closure predicted
by the map obtained from the geodetic experiment.
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RESTORING BEAM

HALF POWER LEVEL

Figure 2.11:

3C345 at X-band (8341 MHz) in July 1980. The first reliable
contour is at 4% of the peak brightness. The others are at
10, 25, 50, 75 and 95%. The total flux density is 6.37 Jy.
The restoring beam is 1.10 mas by 0.48 mas at a position angle
of -320. The tickmarks are every 0.9 mas.
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/ -Figure 2.12a:
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experiment. The width of the box is 36.80 mas. Contours areFigure 2.12a:Dirty map of the "special" experiment at S-band obtained from the "special"

experiment. The width of the box 73.6is 36.80 mas. Contours are drawn at 5, 10, 20, 30, 40

and 50% of the peak value. Negative contours are drawn at
-30, -20, -10, -5% of the peak value.
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Figure 2.13a:

Matrix of the clean components at S-band. The grid spacing is
1.15 mas. Each flux density is expressed as a fraction of the
peak value which is normalized to 1000.

Figure 2.13b:

Map of 3C345 at S-band after 10 iterations. The contours are
shown at 1, 2.5, 5; 10, 20, 35, 50, 70 and 90% of the peak
value. The tickmarks are every 3 milliarcseconds. The
restoring beam is 5.40 mas by 3.60 mas at a position angle of
-250. The + indicates the center of brightness.
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Figure 2.14a: 3C345 S-band June 1981

Amplitude closure HA-HR-OV plotted on a linear scale. The A's
are the observed amplitude closure, the *'s are the amplitude
closure predicted by the model.
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Figure 2.14b: 3C345 S-band June 1981

Phase closures HA-HR-OV and WE-HR-OV expressed as fractions of
3600. The P's are the observed phase closure, and the *'s are

the phase closure given by the model. The *'s retain the same
position on both plots although the phase closure are not
exactly the same on both phase closures.
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X-band map

RESTORING BEAM

HALF POWER LEVEL

S-band map

Figure 2.15:

X-band map (e 8.3 GHz) and S-band map (, 2.3 GHz) of 3C345
obtained from data collected during the 3-day experiment in
June 1981. Contours are shown at 1, 2.5, 5, 10, 20, 35, 50,
70 and 90% of the peak brigthness. Contours below 5% are
likely unreliable. Tickmarks are every mas. The restoring
beam is 1.60 mas by 1.10 mas at a position angle of -25O. The
+ indicates the center of brightness.
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Figure 3.1.1: 4C39.25 X-band June 1981

Maps obtained from fake data and real data. Contours are

shown at 1, 2.5, 5, 10, 20, 35, 50, 70 and 90% of the peak
value. The reconstructing beam (FWHM) is 1.64 mas by 1.00 mas
at zero position angle. the + shows the center of brightness.
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Figure 3.1.2ai:

Figure 3.1.2a: 4C39.25 X-band June 1981

Comparison on a logarithmic scale of the amplitude closure

obtained from the real data (al) and the fake data (a2). The
A's are the observed amplitude closures and the *'s are the
amplitude closures predicted by the model.
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Figure 3.1.2bl:

Figure 3.1.2b: 4C39.25 X-band June 1981

Phase closure HA-HR-OV for the real data (bl) and fake data
(b2). The phase closures are expressed as fractions of 3600.
The P's are the closures given by the observations or fake
observations and the *'s are the closures predicted by the
model.
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Figure 3.1.2cl:
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Figure 3 .1.2c2:
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Figure 3.1.2c:

Correlated flux density on HA-OV at for the June 1981
experiment. Figure cl corresponds to the fake data and Figure
c2 to the real data. The A's are the observed amplitudes, *'s
the amplitudes predicted by the model.
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Figure 3.1.3: 4C39.25 X-band June 1981

The clean components are calculated with a grid spacing of
0.35 mas. The flux densities are expressed as fractions of
the peak value which is normalized to 1000.



-125-

X-band June 1981

Figure 3.2.1: OJ287 CLEAN COMPONENTS- CLEAN MAP

The clean components are calculated using a grid spacing of
0.40 mas. Flux densities are expressed as fractions of the
peak value which is normalized to 1000. The restoring beam
(FWHM) is 2.20 mas by 1.10 mas at a position angle of -15 .
The contours are shown at 1, 2.5, 5, 10, 20, 35, 50, 70 and
90% of the peak value. Tickmarks are every milliarcsecond.
the + represents the center of brightness.
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Figure 3.2.2: OJ287 X-band June 1981

Linear amplitude closure HA-HR, HR-OV, OV-WE, WE-HA and phase
closure WE-HR-OV. The *'s give the closure predicted by the
model, the A's are the observed amplitude closure and the P's
are the observed phase closure. The phase closures are
expressed as fractions of 3600.
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Figure 3.3.1: NRAO 150 X-band June 1981

Closure amplitude HA-HR, HR-OV, OV-WE, WE-HA on a logarithmic
scale and phase closure WE-HR-OV. The A's are the observed
amplitude closure, the P's are the observed phase closure and
the *'s are the closures (amplitude or phase) predicted by the
model. The phase closures are expressed as fractions of 3600
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X-band June 1981

Figure 3.3.2: NRAO 150 CLEAN COMPONENTS- CLEAN MAP

The clean components are calculated using a grid spacing of
0.30 mas. Flux densities are expressed as fractions of the
peak value which is normalized to 1000. The restoring beam
(FWHM) is 2.25 mas by 1.00 mas at a position angle of -350
The contours are shown at 1, 2.5, 5, 10, 20, 35, 50, 70 and
90% of the peak value. Tickmarks are every milliarcsecond.
The + shows the center of brightness.
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X-band June 1981

Figure 3.4.1: 3C273B CLEAN COMPONENTS- CLEAN MAP

The clean components are calculated using a grid spacing of
0.50 mas. Flux densities are expressed as fractions of the
peak value which is normalized to 1000. The restoring beam
(FWHM) is 4.00 mas by 1.00 mas at a position angle of -15 ° .
The contours are shown at 1, 2.5, 5, 10, 20, 35, 50, 70 and
90% of the peak value. Tickmarks are every milliarcsecond.
The + shows the center of brightness.



RESTORING BEAM

HALF POWER LEVEL

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 45 0 0 0 0 7 0

0 0
0 0

0 51

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

9 0

19 0

0 0

0 0

0 0

0 0

0 2

0 0

0 0

3 0

0 0

0 0

0 0

0 0

-132-

i i

O 0
0 0

0 0

0 0

0 0

0 0

n 0

0 0

0 0

0 0

0 0

0 0

0 92

0 43

19 0
0 17

0 0

0 0

S0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

106 170

0 999

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
0 0

0 0

0 174

0 0

17 129

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
S0

0 0

0 0

0 0

-LLL __



-133-

3C273B $81JUL1SX HAYSTACK HRAS 085 OVPRO 130

C
L .Z5E-i1"

E P r'
P P

S-.50E-01- WT

T P

N -.12

i -1- ----- --
. 2. 4. . 8. 10 12 1 1 8 1 2 0 22 24

UNIVERSFAL TIME

C r 2p3D $81JUN 1S': HA -hiE * HR-OV H-HP sIE -OV

L

q 11 .
"

R

C r
L
0 n

E

D

0 " 2 ' 0 -' 2 4 '18 0 22 2 2 
4

UNIVERS-AL TIME

Figure 3.4.2: 3C273B X-band June 1981

Closure amplitude IA-HR, HR-OV, OV-WE, WE-HA on a linear scale
and phase closure HA-HR-OV. The A's are the observed
amplitude closure, the P's are the observed phase closure and
the *'s are the closures (amplitude or phase) predicted by the
model. The phase closures ae closures are expressed as fractions of 360



-134-

X-band June 1981

Figure 3.5.1: 0552+398 CLEAN COMPONENTS- CLEAN MAP

The clean components are calculated using a grid spacing of
0.30 mas. Flux densities are expressed as fractions of the
peak value which is normalized to 1000. The restoring beam
(FWHM) is 1.15 mas by 1.00 mas at a position angle of -100.
The contours are shown at 1, 2.5, 5, 10, 20, 35, 50, 70 and
90% of the peak value. Tickmarks are every milliarcsecond.
The + shows the center of brightness.
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the *'s are the closures (amplitude or phase) predicted by the
model. The phase closures are expressed as fractions of 3600
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X-band June 1981

Figure 3.6.1: VRO 42.22.01 CLEAN COMPONENTS- CLEAN MAP

The clean components are calculated using a grid spacing of
0.35 mas. Flux densities are expressed as fractions of the
peak value which is normalized to 1000. The restoring beam
(FWHM) is 1.15 mas by 1.05 mas at a position angle of 00. The
contours are shown at 1, 2.5, 5, 10, 20, 35, 50, 70 and 90% of
the peak value. Tickmarks are every milliarcsecond. The +
shows the center of brightness.
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Figure 3.6.2: VRO 42.22.01 X-band June 1981

Closure amplitude HA-HR, HR-OV, OV-WE, WE-HA on a linear scale
and phase closure HA-HR-OV. The A's are the observed
amplitude closure, the P's are the observed phase closure and
the *'s are the closures (amplitude or phase) predicted by the
model. The phase closures are expressed as fractions of 3600.


