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ABSTRACT

Ocean acoustic tomography was proposed in 1978 by Munk
and Wunsch as a possible technique for monitoring the
evolution of temperature, density, and current fields over
large regions. In 1981, the Ocean Tomography Group
deployed four 224 Hz acoustic sources and five receivers in
an array which fit within a box 300 km. on a side centered
on 260 N, 700 W (southwest of Bermuda). The experiment was
intended both to demonstrate the practicality of tomography
as an observation tool and to extend the understanding of
mesoscale evolution in the low-energy region far from the
strong Gulf Stream recirculation.

The propagation of 224 Hz sound energy in the ocean
can be described as a set of rays travelling from source to
receiver, with each ray taking a different path through the
ocean in a vertical plane connecting the source and
receiver. The sources transmitted a phase-coded signal
which was processed at the receiver to produce a pulse at
the time of arrival of the signal. Rays can be
distinguished by their different pulse travel times, and
these travel times change in response to variations in
sound speed and current in the ocean through which the rays
passed.

In order to reconstruct the ocean variations from the
observed travel time changes, it is necessary to specify
models for both the variations and their effect on the
travel times. The dependence of travel time on the oceanic
sound speed and current fields can be calculated using ray
paths traced by computer. The vertical structure of the
sound speed and current fields in the ocean were modelled
as a combination of Empirical Orthogonal Functions (EOFs)
from MODE. The horizontal structure was continuous, but
was constrained to have a gaussian covariance with a 100
km. e-folding scale. The resulting estimator closely
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resembles objective mapping as used in meteorology and
physical oceanography. The tomographic system has at
present only been used to estimate sound speed structure
for comparison with the traditional measurements,
especially the first two NOAA CTD surveys, but the method
provides means for estimating density, temperature or
velocity fields, and these will be produced in the future.

The sound speed estimates made using the tomographic
system match the traditional measurements to within the
associated arror bars, and there are several possibilities
for improving the signal to noise ratio of the data. Given
high-precision data, tomographic systems can resolve ocean
structures at small scales, such as in the Gulf Stream, or
at large scales, over entire ocean basins. Work is in
progress to evaluate the usefulness of tomography as an
observation tool in these applications.

Thesis Supervisor: Dr. Carl Wunsch
Cecil and Ida Green Professor of
Physical Oceanography, Massachusetts
Institute of Technology, Cambridge, MA.
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CHAPTER 1

INTRODUCTION AND HISTORICAL SKETCH

1.1 INTRODUCTION

One of the principle difficulties plaguing physical

oceanographers is the shortage of ocean data. The oceans

are large, and the important processes have scales of tens

to hundreds to thousands of kilometers (Richman, Wunsch,

and Hogg (1977)). The two major means of observation are

ship-borne measurement systems such as the

Conductivity-Temperature-Depth probe (CTD) which records

temperature (T) and salinity (S) as a function of depth

during lowerings from a stationary ship, and moored

instruments, such as current meters and

temperature-pressure (T-P) recorders which are deployed

along cables stretched between an anchor on the bottom and

buoyant floats at or below the sea surface. CTD lowerings

require upwards of 3 hours, but produce extremely detailed

records permitting small-scale resolution of the vertical T

and S structures. Moored instruments can sample rapidly in

time, and their vertical resolution is only limited by the

spacing between sensors, although usually no more than

about 10 instruments are placed on a 5000 meter mooring.

Each mooring or CTD cast samples at a single horizontal

(x,y) location, so that area coverage is limited by the

expense of moorings or by ship steaming time.



With the increasing sophistication of ocean models,

the need for data has become much greater than during the

early exploration period when the large-scale structures of

the oceans were being defined. The early exploration

cruises pictured the ocean as having steady, large-scale,

surface current systems with a rapid decrease in strength

with increasing depth. The deep ocean was thought to be

nearly at rest, with a few very large, slow currents. Once

the major current systems had been mapped, interest shifted

from exploration to understanding the mechanisms which

controlled the observed features. The more data

oceanographers took, the more complicated the pictures

became, and the simplicity of the large-scale steady

currents was replaced by a complex of interacting and

intermittent motions, no less varied than the weather in

the atmosphere.

When moorings carrying current meters became

available, much of the ocean kinetic energy was found to

reside in "mesoscale" motions, with horizontal scales of

order 100 km. (0(100 km.)), and time scales of 0(50 days)

(Richman, Wunsch, and Hogg, 1977). The dynamics of these

motions are analogous to those of weather in the

atmosphere. Oceanographers now face the same problems that

meteorologists have been struggling with--obtaining

adequate sampling in space and time to resolve the

mesoscale motions, i.e. a "synoptic" data set.



Meteorological data systems now include satellites in a

global network of pressure and radiosonde measurements, but

the oceanographic observation systems have not kept pace.

The oceans are opaque to electromagnetic radiation, so that

satellite measurements cannot observe beyond the sea

surface, and the open ocean is an extremely inhospitable

environment for instruments, so that mechanically

complicated systems present tremendous engineering

difficulties. Munk and Wunsch suggested a solution to the

data-acquisition problem (Munk and Wunsch, 1979) (called MW

in the following) with a proposal to monitor the oceans

using remote sensing by sound energy. They called the

technique "Ocean Acoustic Tomography" because of its

similarity to medical tomography (Swindell and Barrett

(1977)) which uses X-rays transmitted along many paths

through a patient to reconstruct a 2 or 3 dimensional

picture of the region through which they passed. Low

frequency sound transmitted from a source to a receiver

moored at depth in the ocean propagates along distinct ray

paths as well, and Munk and Wunsch proposed to use the

travel times for pulses following different ray paths to

infer the structure of the intervening ocean.



1.2 BRIEF HISTORY

The tomography proposal built on an existing body of

work on ocean acoustics, bringing together a number of

ideas and techniques which had been developed for other

applications. The possibility of long-range transmission

of low-frequency sound in the ocean had been known since

the 1940's, and a scheme for locating downed fliers by

triangulating on the sound from TNT charges had been

proposed (Ewing and Worzel 1948). Porter, Spindel, and

Jaffee (1973) developed a mooring tracking system which

used the travel times of acoustic transmissions to monitor

the motion of a mooring. By 1977, low-frequency sound

transmissions were being used to track neutrally bouyant

"SOFAR" floats over long distances (Webb (1977), Spindel,

Porter, and Webb (1977), or see Baker (1981)). Steinberg

and Birdsall (1966) transmitted continuous wave (CW) sound

across the Florida straits using a 406 Hz sound source, and

a later experiment transmitted CW sound over 1250 km.

(Clark and Kronengold, 1974). The early transmission

experiments were mounted to study the intensity of sound

transmitted over long distances, while the phase structure

was found to be very unstable, due in part to internal wave

variations.



Sound speed in the ocean is most sensitive to

temperature and pressure effects, and decreasing

temperature with depth produces a decrease of sound speed

with depth in the upper ocean (in most areas) while the

increasing pressure eventually more than balances this

effect, resulting in a sound speed minimum at about 1 km.

depth in the North Atlantic. (Figure 1.1). The acoustic

waveguide is called the SOFAR channel, which tends to

refract sound energy toward the axis. This waveguide,

coupled with the fact that mechanical absorbtion decreases

with decreasing frequency, permits long-range sound

transmissions using sources with finite energy. Sound

transmitted from a source to a receiver can be described

theoretically as a set of "rays" (by analogy with light

rays in optics) each of which follows a different path

(Figure 1.2). A single pulse leaving the transmitter will

be received as a set of "image" pulses, one for each

distinct ray (Figure 1.3). The travel time for a given

pulse depends on the length of the path it took and the

sound speed along that path. These travel times can be

computed, given the path and the sound speed profile, by

solving the so-called "forward problem". The solution of

the forward problem describes the dependence of the pulse

travel time along a particular path, ri , on the sound speed

field of the ocean, C(x,t).



o FIGURE 1.1 AVERAGED SOUND SPEED PROFILE FOR N. ATLANTIC SOUTHWEST OF BERMUDA
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FIGURE 1.2 TWO NUMERICALLY TRACED ACOUSTIC RAY PATHS FOR THE PROFILE SHOWN AS
FIGURE 1.1

S2 (AT -1.995

C

I

CD,

1i,

CDI o

CD~

CDo

KM.) TO R2 AT -1. 325

107.08 160.62

HORIZONTAL RANGE (KM.)

.00 3.SLA 14. 17 67.7

o



FIGURE 1.3 SCHEMATIC OF TRANSMITTED PULSE AND RECEIVED PULSE "IMAGES"
REPRESENTING THE ARRIVALS OF PULSES WHICH TRAVELLED ALONG
DIFFERENT RAY PATH. THE RECEIVED PULSE IMAGES ARE CALLED
"MULTIPATH ARRIVALS".
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The earliest experiments were mounted to gain

information on how sound propagated in the ocean. Once the

theory describing ocean acoustics ("the forward problem")

was understood and verified, investigators began to

consider the "inverse problem"--observing propagation and

inferring ocean structure. LaCasce and Beckerle (1975)

suggested (vaguely) that pulse transmissions might be used

to "monitor the periodicities of Rossby waves", on the

basis of a simple explosion-monitoring experiment southwest

of Bermuda. Porter and Spindel, in 1977, proposed a

specific way to monitor eddies using transmissions of 220

Hz pulses, based on their already considerable experience.

Munk and Worcester (1976) had also suggested that

oceanographic information might be obtained from acoustic

moorings, while an experiment by Peter Worcester (1977),

along with Munk and Birdsall, tested the practicality of

acoustic measurements of current over relatively short

range. Worcester transmitted sound between transceivers

suspended from two ships 25 km. apart, and used differences

in pulse travel times between reciprocal ray paths to infer

current velocity averaged along the ray paths, but

encountered problems, such as untracked source and receiver

motion. The currents produced arrival time shifts on the

order of milliseconds, while the drifting and heaving ships

introduced travel time changes two orders of magnitude



larger. The experiment used 2 kHz sources to achieve

enough bandwidth to transmit pulses, so that it would have

been difficult to work at longer range, and the "inverse

problem" of unscrambling the averaging along ray paths had

not been attacked.

Hugo Bezdek put Worcester, Munk, and Birdsall in touch

with Spindel and Porter, as a result of their experience

with mooring tracking, and the common interest of observing

the ocean acoustically. Spindel and Munk went to sea

together in 1978 to deploy the 2 kHz sources on a mooring

with tracking. Spindel also deployed the first source that

sent coded signals at 220 Hz--using signal processing

techniques to make long-range pulse arrival time

measurements possible. The success of this add-on test by

Spindel was the real beginning of the recognition that

long-range acoustic ocean monitoring was truly possible.

If the travel times for pulses following different

paths can be reliably distinguished, then slice

reconstruction, as in medical tomography, should be

possible, although the medical algorithms are not

applicable, due to the complicated geometry and incomplete

sampling. Theoretical calculations for the North Atlantic

(MW) predicted that many different rays should be

resolvable, providing a potentially large amount of

information, but it was not known whether the paths or the

pulse arrival patterns would be stable enough to reliably

observe any shifts in travel time along a particular path.



On the basis of Fermat's principle (that sound propagates

along paths which extremize the travel time for a given

sound speed field) and a careful analysis of internal wave

effects, MW predicted that the paths should be stable, so

that changes due to the evolution of the ocean mesoscale

would be resolvable.

The need to determine pulse arrival times requires a

narrow pulse, and therefore a wide bandwidth of the

transmitted signal. This is not a problem if explosives

are used as the source, but is difficult for a

low-frequency, low-power self-contained source such as

would be needed on a long-duration mooring. The early

low-frequency acoustic transmissions were CW, as mentioned

above, as phases (travel times) were regarded as too

unstable to be resolved, particularly given the limited

bandwidths. The 270 Hz sources developed by Doug Webb for

the SOFAR float program (Webb, 1977), were modified to send

CW signals at 220 Hz (Spindel, Porter, and Webb, 1977).

Later, digital signal processing techniques made possible

by burgeoning computer technology were employed to send

wider band, coded signals at 220 Hz (Spindel 1979) and 224

Hz (Spindel 1980). The source that Spindel deployed in

1978 which showed that accurate long-range arrival times

were attainable in principle was of this type. The sources

were derived from the SOFAR float program, but were

modified to be part of a mooring and were larger and

heavier than the original sources on the floats.



The 224 Hz sources used in the 1981 Tomography

experiment use piezoelectric transducers to drive 4 large

resonant tubes, resembling organ pipes, for efficient

coupling to the water, and have bandwidths of 20 Hz. They

transmitted a phase-coded digital signal which was

phase-matched filtered (Birdsall, 1976) at the receiver to

produce coherence peaks at lags where the received signal

closely matched a stored replica of the transmitted signal.

These peaks can be thought of as representing the arrivals

of short packets of energy from the source, simulating ray

arrivals from a broadband explosive pulse. The travel

times for these "pseudo pulses" can be measured accurately

enough to discriminate between different multipath

arrivals. It thus became possible to test the conjecture

that the arrivals would be stable enough to use as data in

an ocean observation program.

Two tests were mounted, one over a 900 km. path near

Bermuda (Spiesberger, Spindel, and Metzger, 1980), and

another over 300 km. paths (Spindel and Speisberger, 1981).

Both experiments confirmed MW's predictions, in fact

surpassing their expectations, showing clearly resolvable

paths which shifted in response to oceanic changes while

preserving a stable pattern of arrival times. It was also

learned that variations in arrival time for the final

cutoff of a set of acoustic pulses from underwater

explosions had been observed in the early 1960's (Hamilton,

1977).



Given the stability and resolvability of several

different paths, consider the "inverse problem" of

converting observed shifts in travel time for the different

rays into maps of sound speed changes in the intervening

ocean. In medical tomography, the X-rays pass directly

through the patient and are transmitted from a nearly

continuous set of points around the perimeter of the region

to be imaged, so that transform techniques may be used in

the reconstruction. Ocean acoustic tomography relies on a

relatively small set of complicated ray paths (Figure 1.2)

which imperfectly and inhomogeneously sample the ocean.

Reconstructions require geophysical inverse theory, one

form of which was developed by Backus and Gilbert (1967) to

treat imperfect and incomplete data.

In the paper which introduced tomography, Munk and

Wunsch presented a solution of the inverse problem for the

2 dimensional problem with several sources and receivers

distributed around a square region divided into boxes.

These preliminary simulations suggested that data from 4

sources and 4 receivers could provide 16 independent pieces

of information and adequately resolve a 1000 km. by 1000

km. region divided into 16 boxes. If more boxes were used,

the ability to resolve any given box declined, but given

the simplicity of the initial case, there were many

prospects for improvement.



1.3 THE 1981 EXPERIMENT BY THE OCEAN TOMOGRAPHY GROUP

On the basis of these calculations and the

transmission experiments mentioned above, the researchers

involved in the various aspects of the problems came

together as The Ocean Tomography Group and designed an

experiment to demonstrate tomography as a practical

observation technique (Ocean Tomography Group, 1982). This

experiment was carried out during the first half of 1981,

and much of the work described in this thesis was focussed

on the particular application of tomography embodied by the

1981 experiment.

The 1981 experiment was designed to emulate MODE,

(MODE Group, 1978), with interest focused on the dynamical

evolution of mesocale features in a region south west of

Bermuda. This location was chosen because a main purpose

of the experiment was to demonstrate the utility of

acoustic tomography as an oceanographic observation tool.

It was thought best to avoid unexplored regions, in order

to optimize the design of the array with archived data. In

any case, the description of apparently new phenomena by

the acoustics alone would have been regarded as

questionable. The region was chosen to be out of the

energetic Gulf Stream near field, so that the eddy energy

would be moderate to weak, in order to avoid problems with

important nonlinearities in the acoustics or dangerous

mooring movement.



The experiment has been described in the paper by the

Ocean Tomography Group (1982) but will be summarized here

to fix ideas. The experimental layout is shown in Figure

1.4. 4 224 Hz sources and 5 WHOI and SIO receivers were

moored in an array within a 300 km. by 300 km. box centered

on 26 N, 70 W. The experimental array also included 2

conventional oceanographic moorings with current meters and

temperature-pressure (T-P) recorders. During the course of

the experiment, 3 CTD and bottle hydrographic surveys were

made by NOAA ships in the region, and several AXBT flights

were made by the Navy, in order to have traditional

measurements in the region for comparison with the

tomography results.

A typical sound speed profile for this region is shown

as Figure 1.5, showing the strong waveguide with the axis

at about 1300 meters depth. The sources and receivers were

mounted on subsurface moorings to reduce leaning in

currents. Instrument depths were nominally 2000 meters,

well below the sound speed minimum. When both source and

receiver are located on the sound channel axis, pairs of

rays with equal, even numbers of turning points but

opposite launch angle sign have identical travel times if

the profile is range indepedent. The actual ocean is

range-dependent, but the degeneracy can still impede peak

resolution and identification. Off-axis geometry breaks

this degeneracy. Moving source and receiver off the sound

channel axis also decreased the number of rays received,

but did not greatly reduce the number of useful rays. Most



FIGURE 1.4 SKETCH OF THE lAYOUT OF THE 1981 OCEAN ACOUSTIC TOMOGRAPHY
EXPERIMENT. (TAKEN FROM NATURE 299 BY THE OCEAN ACOUSTIC
TOMOGRAPHY GROUP, 1982).
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FIGURE 1.5 TYPICAL SOUND SPEED PROFILE (FROM A NOAA CTD STATION NEAR 26 N 70 W.)

N-

O

LU Lo

C

tO

" .00 1. 08 2. 16 3.24 L. 32 5. l0

DEPTH (KM.)zV) L
DEPTH (KM. )



24

of the rays eliminated by this position shift stay close to

the channel axis, and have nearly identical travel times,

indistinguishable by the practical system. Each

source-receiver pair defines a vertical plane through the

box along which the rays which leave that source and reach

that receiver propagate. Figure 1.2 shows a typical

source-receiver path with a number of rays, while Figure

1.6 shows the time evolution of an arrival pattern for one

of the source-receiver pairs during the 1981 experiment.

Changes in the arrival pattern can be caused by several

mechanisms besides the variation of the ocean sound speed.

For the system to be useful, these other sources of

variance must be considered as noise, and must be reduced

to levels far below the mesoscale travel time changes. As

a basis on which to design the 1981 experiment, MW

estimated the sound speed variations for the mesoscale at

about 200 msec, requiring a noise level somewhere below 10

msec. After the experiment was in the water, comprehensive

calculations of rms expected variations based on the data

from the MODE experiment revised the original estimate

downward to about 40 msec, making the error requirements

far more stringent.



FIGURE 1.6 PLOT OF MULTIPATH ARRIVALS FOR RAYS TRANSMITTED FROM SOURCE 2 TO RECEIVER 2.
LINE IS LOCATED AT THE ARRIVAL TIME, AND IS PROPORTIONAL TO SIGNAL TO NOISE
RATIO FOR THE PARTICULAR TIME. ARRIVAL TIME SCALE IS 0 TO 8 SECONDS BECAUSE
THE RECEIVERS DID NOT TURN ON UNTIL THE TRANSMISSIONS WERE ABOUT TO ARRIVE.
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Because tomography is based on transmissions from

sources to receivers, the data are very sensitive to errors

in mooring position. Given a typical oceanic sound speed of

1500 m/sec, 15 meters of error in the length of a ray adds

10 msec. of travel time error. This is important when

compared with 40 msec., the expected level of travel time

changes due to the mesoscale field. Knowing the positions

of the moorings is thus much more critical than with a

conventional array of moorings. In addition, moorings can

move around, leaning in response to ocean currents, so that

horizontal position changes of 1000 meters are not

unexpected for the top of a standard mooring in 5000 meters

of water. The tomography moorings were subsurface, meaning

that the tops of the moorings were syntactic foam floats or

steel spheres at about 750 to 1000 meters depth, (see

Figure 1.4), and were moderately taut in order to reduce

the amplitude of the mooring motion. In spite of this

design, instrument position shifts of 500 meters in the

horizontal and 100 meters in the vertical were expected.

Tomography also requires a high degree of clock

precision and accuracy over a long (4 months in the 1981

experiment) underwater deployment. The sources and

receivers are autonomous, so it is possible for the clocks

in each instrument to drift independently, adding errors to

the travel time measurements. If these errors are to be



kept to 1 msec over the course of the experiment, that

means 1 millisecond in 4 months, or one part in 1010. The

quartz crystal oscillators available today cannot meet that

standard, especially if they are subjected to the rapid

temperature changes associated with mooring deployment.

Rubidium oscillators can attain this accuracy, but consume

far too much power, given the limitations to the battery

power available at present.

The problem of mooring motion was solved by using a

refined version of the mooring tracking system developed at

Woods Hole Oceanographic Instition by Spindel, Porter, and

Jaffee (1973). The system uses three transponders

installed on the ocean bottom in a triangle surrounding the

mooring, which are interrogated by another transponder on

the mooring. The travel times for the pulses sent between

these instruments can be converted to mooring position,

allowing continuous tracking of the transponder on the

mooring with an accuracy of about 1.5 meter. A model of

the mooring is then used to estimate the motion of the

source or receiver given the motion of the level at which

the transponder was located. For this system to operate

most accurately, the relative positions of the mooring and

the three transponders must be surveyed (to within a few

meters) relative to the mooring to be tracked. Tomography

adds another complication, because the direction of the



displacement relative to the other moorings is very

important. Once the mooring shifts from some arbitrary

initial position were known, the time base of the received

signal was shifted by AT = AR/C, where AR is the shift in

mooring position converted to extra horizontal range for

the source-receiver pair in question, and C is an averaged

sound speed at the level of the receiver.

The problem of clock drift was also solved by Spindel,

by using a rubidium clock as a frequency standard, checking

for drift of the quartz oscillators. The rubidium

standards were turned on daily, and after they had time to

stabilize, they were used to compute the relative frequency

shifts of the quartz with respect to the rubidium. These

shifts were recorded in the receiver. Using this record,

the time base of each instrument could be adjusted later,

bringing practical clock accuracy up to about 2 msec.

The need to measure these quantities, while not

particularly onerous, does add complication and expense to

both the acoustic instrumentation and mooring deployment.

It likewise multiplies the number of systems which may

fail. During the 1981 experiment, some of the mooring

motion transponders returned incomplete data sets, making

it impossible to apply mooring motion corrections to part

of the data. For these reasons, extensions to the inverse

techniques were developed to permit mapping using

uncorrected acoustic data. These procedures may perhaps

obviate complicated correction logging in future

experiments.
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1.4 PREVIEW OF THESIS CONTENTS AND GOALS

Given that the engineering problems of obtaining the

data for the mesoscale have been solved, the usefulness of

the tomographic system as an observing tool depends on how

much information can be extracted from the data. In this

thesis I will describe a complete system for treating the

acoustic data to construct estimates of the ocean

structure. The formalism I will present serves three

purposes: 1) To demonstrate and evaluate a specific

application of tomography: the 1981 experiment; 2) To

provide an analytical and numerical basis for understanding

and designing furture experiments, tomographic or

otherwise; and 3) To compare and contrast the common linear

inverse methods.

Chapter 2 contains a discussion of the ocean acoustics

necessary for understanding how the sources and receivers

sample the ocean. Chapter 3 covers the quasi-geostrophic

equations of geophysical fluid mechanics, which form the

basis for the models used in the acoustic forward problem

and the inverse solution. Chapter 4 is a general

discussion of inverse techniques, while Chapter 5 is an

intercomparison of many existing inverse methods. Chapter

6 is devoted to inverse techniques as applied to acoustic

tomography, and incorporates results from Chapters 2 and 3.
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Chapter 7 is concerned with the specific problems which

arise when the tomographic system includes moored

instruments, as in the 1981 experiment. Chapter 8

discusses the preliminary data reduction for the 1981

experiment,while Chapter 9 describes the details of the

inverse techniques applied to the 1981 data. Chapter 10

discusses the results of these inverse techniques and

examines the capabilities of tomography, both as applied in

1981 and in the future.

The reader who is not interested in the oceanographic

theory or inverse methods may wish to skip to chapters 9

and 10 for the results of the 1981 experiment. In any

case, the reader must recognize that the 1981 tomography

experiment produced a completely novel data set, so that

much time has been required for each stage of data

processing. For this reason, the maps and numbers

presented here are by no means final or optimal, but

represent a "first-iass" look at the capabilities of

tomography.



CHAPTER 2

ELEMENTARY OCEAN ACOUSTICS

2.1 THE GEOMETRICAL OPTICS APPROXIMATION: ACOUSTIC RAYS

The attenuation of sound in the ocean is proportional

to frequency so that sound with a frequency of about 200 Hz

can be transmitted usefully over several thousand

kilometers before being swamped by noise. The SOFAR floats

(Baker, 1981 in Warren & Wunsch) use this low-loss

frequency range coupled with the acoustic waveguide

typically found in the North Atlantic (See Figure 1.1) to

allow tracking of floats over long distances using

relatively low-energy, battery powered sources. The first

ocean acoustic tomography experiment used similar sources,

operating at a center frequency of 224 Hz and transmitting

a phase-coded signal suitable for travel time measurement

(The Ocean Tomography Group, 1982).

At 200 Hz, sound in the ocean has a wavelength of

about 7.5 meters, small when compared with typical scales

for the sound-speed structure of either the basic

climatological state or the mesoscale fluctuations (Figure

2.1), but large compared to vertical microstructure and

most fine structure (see Gregg (1977) for spectra). The



FIGURE 2.1 A: SOUND SPEED ANOMALY AT 700 METERS DEPTH RELATIVE TO
THE AVERAGED SOUND SPEED PROFILE SHOWN IN FIGURE 1. 1
CALCULATED FROM THE FIRST NOAA CTD SURVEY DURING 1981
YEARDAY 66 TO 85. CONTOURS ARE SOUND SPEED IN METERS
PER SECOND, CONTOUR INTERVAL IS 1.0 M/SEC.
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FIGURE 2.1 B: SOUND SPEED ANOMALY AT 700 METERS DEPTH, AS IN FIGURE 2.1 A,
FROM SECOND NOAA CTD SURVEY DURING 1981 YEARDAY 120 TO 139.
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slow variation of the interesting structures when compared

with the sound wavelengths allows a simplification of the

acoustic wave equation called the geometrical optics

approximation, using the concept of acoustic rays. Other

and better approximations may be used to derive different

physical pictures, most notably the physical optics

extensions to the acoustic ray theory or the use of modes

as an alternate description of the propagation of sound.

The geometrical optics approximation is simple, but

adequate for many needs, including the analysis for the

1981 tomography experiment, so it will be described in

greatest detail, although it is not always sufficiently

accurate for many applications. The development here will

follow Officer (1958).
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Let p(x,t) be sound pressure in a resting ocean (or

sea bottom). The wave equation for sound is:

V2€ = 1 32 (1)

C(x) 25-z

C(x) is

constant with

sound energy.

frequency w,

the sound speed, and is considered

respect to the time of propagation of the

Suppose that there is a source of angular

then let

4(x,t) = 4oexp(i[S(x) - wt]) (2)

S(x) is phase as a function of distance. Constraining

S to be real, so that amplitude variations are ignored,

substitution of (2) into (1) yields

(3S)2 4 (3S)2 + (3S)2
(ax) (ay) (az)

Sx + Sy 2
4 Sz 2 = W2 /C(x)2

2
E n (x) (3)

(aS),(aS),(aS) are
(ax) (3y) (az)

oexp(i [S x

foexp(i [VS .x

the local wavenumbers:

+ Sy*y

- wt])

4 SzZ - wt])

(5)

and vary slowly over the scale of a wavelength in the same

way that C(x) does.

4(x,t)

(x,t)

(4)
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The gradient of phase, VS = (Sx,Sy,Sz), is normal to

the acoustic phase fronts, and in the resting ocean, this

is the direction of the local tangent to the ray path,

defining

dx
ds

dy
ds

dz
ds

the ray path.

Sx
n(x)

n(x)

= Sz
n(x)

= Sx-C(x)/

For s E arc length along a ray,

(6a)

(6b)

(6c)

the local wavenumber vector:

4(x,t) = 4oexp(i[k(x).x - wt]

Taking d/ds of [6(a,b,c)] yields (Officer,

d (n(x(s))dx)
ds ds

d (n(x(s))dy)
ds ds

d (n(x(s))dz)
ds ds

Call VS E k(x),

1958):

(7a)

(7b)

(7c)

an
ax

an
ay

an
az
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These are the equations that are integrated by most

ray-tracing programs to determine ri = x(s), the ith

ray path, given an initial location, launch angle, and

direction. Normally, the sources are assumed to radiate

with spherical symmetry, so that we only consider

propagation in the vertical plane between source and

receiver, so that instead of x(s), we use (r(s),z(s)),

where r is horizontal range.

If n = n(z) only, which is approximately true for the

ocean, then an/ar = 0 and so (7a,b,c) become:

d (n(x(s))dr) =
ds ds

d (n(x(s))dz) =
ds ds

an
ar

an
az

= 0 (8a)

= dn
dz

(8b)

8(a) is a statement of Snell's law: that the

horizontal component of the wavenumber is conserved when

the sound speed varies only as a function of z, or

(n(x(s))dr) =
ds

constant.

If 6 is the angle that the ray makes with the

with the horizontal, then dr/ds = cos(6), and we get

cos ( )
C(z)

= constant along a ray path. (10)

(9)



Cos(6)/C(z) is sometimes called P, the "ray

parameter", so that (9) becomes:

dP/ds=0O along r i ,  (11)

expressing the conservation of ray parameter along ray

paths. Ray-tracing programs may be range-independent

(C = C(z)), or range-dependent in two or three dimensions

(C = C(x,z) or C = C(x,y,z)). The ray tracing code used

for the calculations in this thesis was originally written

to be range-independent, but was modified to trace rays in

a succession of locally range independent sound speed

profiles, making it crudely range-dependent in two

dimensions (r,z). The ray is assumed to travel in a

vertical plane oriented along a line between source and

receiver, ignoring any bending due to horizontal sound

speed gradients.

For most mesoscale features these gradients are small

compared to the vertical gradients and so the horizontal

ray bending has been ignored, although Munk (1980) has

treated horizontal ray bending in detail for simulated

mesoscale eddies and Gulf Stream rings in two dimensions

(horizontal plane). He finds that the maximum deflection

angle is proportional to v, the fractional change in sound

speed (v = C'/Co):

Maximum deflection angle = 2 6max = .664-v

for a circularly symmetric eddy. If the feature is
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equidistant from source and receiver, then the ray geometry

can be approximated by an isosceles triangle (Figure 2.2).

The extra ray arc length is thus

AR = R/cos(6) - R = R(1/cos(6) - 1)

For a 15 m/sec eddy amplitude,

v = 1. x 10-2

AR/R = 5.5 x 10 - 6

This would cause an error of 1 msec at 300 km range, but

most eddies would not have the proper configuration, and

the expected rms error is much smaller.
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FIGURE 2.2 SCHEMATIC OF HORIZONTAL RAY PATH DEFLECTION FOR A CIRCULAR EDDY
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2.2 ACOUSTIC RAY TRACING: THE EIGENRAY PROBLEM

Although the rays have been assumed to travel in a

vertical plane between source and receiver, only a few of

the many possible launch angles from a given source will

yield a ray which intersects the receiver (Figure 1.2).

The rays that hit the receiver are called eigenrays and are

solutions of an eigenvalue problem, as demonstrated for a

simple case by Munk and Wunsch (1982). In the case of a

complicated or range dependent sound speed profile,

analytical solutions to this eigenvalue problem become

impossible, and numerical techniques for determining

eigenrays must be sought. The most obvious, and perhaps

least efficient method merely searchs through a range of

launch angles, repeatedly tracing rays out to the range of

the receiver and converging on and saving as solutions

those rays which pass close enough to be considered as

having hit the receiver (Figure 2.3). This technique works

whether the code is range dependent or independent, for any

sound speed profile or bottom topography which can be

treated by the program.
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FIGURE 2. 3 DEPTH OF ACOUSTIC RAY AT THE RANGE OF THE RECEIVER AS A FUNCTION
OF LAUNCH ANGLE FROM THE SOURCE. THE LINE MARKS THE RECEIVER
DEPTH. EIGENRAYS ARE FOUND AT ANGLES WHERE THE RAY DEPTH CURVE

INTERSECTS THE DEPTH OF THE RECEIVER.
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Efficient techniques for determining the sound field

at the receiver exist in the seismic literature, and have

been successfully applied to the oceanic problem (Brown,

1982). These methods involve keeping more terms in the WKB

approximation applied to the propagation equation, and

producing "synthetic seismograms" which predict both the

amplitude and phase (arrival time) of the sound waves

reaching the receiver. These techniques have the advantage

that they predict "diffracted arrivals", sound energy

leaking from rays which do not intersect the receiver, in

the geometric optics sense, but which have turning points

at the range of the receiver. The amplitude of

the sound pressue field is large at the turning point (w is

predicted by the geometrical optics approximation) and if

the receiver is within a few hundred meters, the

exponentially decaying leakage field may remain large

enough to be detected as a ray arrival. This is analogous

to tunelling in quantum mechanics.

Purely refracted rays are usually labelled by the

number of turning points and the sign of the launch angle,

thus a 411 RR ray has 11 turning points, a positive launch

angle, and is refracted both above and below. Rays which

hit the sea surface or bottom are reflected by the

discontinuity in sound speed at the boundary, and may still
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be received. These are also identified by the number of

turning points, including the surface and bottom bounces,

and the sign of the launch angle, as in 412 SRBR (both

surface and bottom reflected) or -9 RSR (reflected from the

surface, refracted at the lower turning point).



2.3 THE FORWARD PROBLEM: TRAVEL TIMES IN THE OCEAN

Once the path of a ray, call it ray i, has been traced

from the source to the receiver, it is possible to

calculate the travel time, Ti, by integrating along the ray

path, ri:

Ti = f ds (12)

r C(x(s),t) 4 u(x,t)-T
i

s is arclength along the ray, T is a unit vector

tangent to the ray, and the ocean is assumed to change

negligibly during the time the ray is propagating. Each

eigenray has a unique launch angle, and, therefore, a

unique path through the ocean, sampling the sound speed

field differently from other eigenrays. Because the sound

speed profile changes strongly with depth, the total travel

time for a ray which has much of its arclength in

high-speed regions will be smaller than for a ray with the

same path length but in low-speed regions. Different rays

can usually be distinguished at the receiver by differing

travel times, (see Figure 1.3). The pattern of ray

arrivals is dependent on the sound speed profile.



The velocity term in the denominator of the

integrand,

u(x,t) or , (13)

accounts for changes in the apparent speed of sound

due to current, provided local shear can be ignored

(Hamilton, et al., 1980). Currents have been ignored

in the ray tracing because the magnitude of the current

shear in the ocean is typically

10 cm/sec = 0(10-4)
1000 meters

the typical sound speed gradient is stronger:

3C = 4 m/sec = 0(10-2).
az 100 meters

Sound speed gradients thus dominate ray bending,

except perhaps when the rays pass parallel to frontal zones

such as the Gulf Stream.

Internal waves produce both sound speed gradients and

current shear at scales on the order of meters. These

features are comparable in scale to an acoustic wavelength,

and tend to scatter the sound, blurring the simple ray

paths calculated for the large-scale refraction into

ensembles of micro-multipaths which change with the



internal waves. These shifting paths interfere with one

another, producing variations in overall travel time for

the path and significant changes in the intensity of the

received sound. There is a rich literature on the physics

of these interactions (see, for example Flatte, et. al.,

1979), and much information on the statistics of the

internal wave field can be gained from examining the

short-time changes in amplitude and phase. It would be very

interesting to extend the tomographic inverse techniques to

use the many crossing paths to resolve spatial structure of

the internal wave field in the same way that they are now

used to observe the mesoscale. Unfortunately, the

approximations used above do not apply to the internal wave

scales, so a separate development is required, and is

outside the scope of this thesis. The shifts produced by

the internal waves have been treated as noise in the

inversions for the mesoscale field, so adding the physics

of internal wave scattering to the inversion would improve

the estimates of the mesoscale, even if the information

about the internal waves was not directly useful.
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Equation (12) describes the dependence of travel time

on the sound speed and current fields in the region through

which the ith ray travels, and is referred to as the

solution to the "forward problem", a general term for

describing the dependence of the observed data on the

unknown. Solving the forward problem for amplitude

presents more of a difficulty, because the geometrical

optics approximation ignores amplitudes. Heuristic

amplitude estimates may be made by considering two rays

differing by a small amount in launch angle. The area

between the two rays forms a "ray tube" (Figure 2.4). The

acoustic energy propagates along the rays and therefore

does not pass through the sides of the tube, so energy flux

is conserved along the tube. The intensity is then

inversely proportional to the area of the tube. For a

radially symmetric source, neglecting dissipation, let Io

be the initial intensity, do the initial vertical

seperation of the two rays, and ro the range at which these

two were specified. At some greater range, r, the

seperation will be d, and the intensity will be I, but the

energy flux will be conserved:

Fo = Io*do*2Tro = I.d.27r = F (14)



FIGURE 2.4 SKETCH OF "RAY TUBE" (NOT SHOWING CYLINDRICAL SYMMETRY.)
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The intensity at this range must then be

I = Io*do-2r o  = lo*do*r o  (15)
d*2irr der

The low-order character of the oceanic sound speed

profile is that of a waveguide (see Figure 1.1), so two

rays initially differing by a small angle will follow

similar paths, and the vertical separation between the

walls of the ray tube will generally increase relatively

slowly. The intensity loss is therefore due almost

entirely to the range increase in equation (15), which

corresponds to cylindrical spreading. This is one of the

reasons that long range acoustic transmissions are possible

at reasonable power.

This crude amplitude estimate has little to recommend

it besides simplicity. It becomes infinite at caustics

(the points where rays cross, such as at turning points, so

that the ray tube height goes to 0) and ignores the often

dominant effect of multipath interference due to changes in

the sound speed induced by internal waves (Flatte, et al.,

1978). The amplitude fluctuations produced by internal

waves can dominate those produced by the mesoscale physics,

but averaging over many internal wave periods can eliminate

much of the variation.



Mike Brown has considered techniques for estimating

sound speed field structure using amplitude data, (Brown,

1982), and concluded that the amplitude data was not

particularly useful for the 1981 experiment. Amplitude

data require a more rigorous treatment of the acoustic

propagation than geometric optics, and this thesis will not

treat amplitude explicitly. Given an adequate solution to

the forward problem, the inverse techniques presented below

can be adapted to the use of amplitude data, although they

may no longer be the most convenient forms.
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2.4 LINEARIZATION OF THE FORWARD PROBLEM

The forward problem for travel time (equation (12)) is

nonlinear in the sound speed field, and although methods

exist to invert non-linear problems, solutions can be found

efficiently if the forward problem can be linearized.

Suppose we pick a reference state, Co(x,t), with

u(x,t) = 0, and express the observed ocean sound speed as a

perturbation to this basic state:

C(x,t) = C'(x,t) 4 Co(x,t) (16)

For the ocean, Co(x,t) is large, 0(1500 m/sec), and

(17)

so that the integrand of (12) may be expanded:

Ti = f ds
r C(x(s)
i

,t) 4 u(x,t)-T

= f ds
P Co(x(s),t)
i

= f ds
r Co(x(s),t)
i

4 C'(x(s),t)

- f[C'(x(s)
r Co(x(s)
1

4 u(x,t).T

,t) 4 u(x,t) T]ds
,t)L

4 terms O(C'2 /Co 3 )

IC'(x,t)l << ICo(x,t) l

(18)



For the oceanic mesoscale, C'/C o = 0.01 usually, so the

linearization in (18) should be good to one part in 104.

Unfortunately, the path of the integral is also dependent

on the sound speed profile, and the effect of sound speed

changes on the ray path and thus on the travel time are not

easy to parameterize. Hamilton et al. (1980) have made

calculations that show that these changes are exactly zero

for small perturbation, as a result of Fermat's principle,

so that the changes in path due to small changes in the

sound speed do not affect the calculation of travel time.

Internal waves induce small-scale fluctuations in the

sound speed field through their often large vertical

velocities, stretching and compressing the smooth profile.

These changes, on scales comparable to the wavelength of

sound, cause the acoustic energy to scatter into

micro-multipaths, bundles of paths following the "main"

path calculated for the mesoscale variations, but blurring

its outlines. The sound ray averages the positive and

negative perturbations from any given wave, but each

micro-multipath will have a slightly different travel time,

introducing the possibilty of phase cancellation when the

many small paths re-combine. For this reason,

internal-wave induced fluctuations affect the amplitude of

the sound arrivals more strongly than the travel time,



making travel time a robust datum. Note that Hamilton, et.

al. did not prove that the path remains the same, but that

the contributions to the travel time from ray path

deformation tend to cancel out.

The integral used to calculate travel time for the

perturbed ocean can therefore be taken over the unperturbed

ray paths, roi, computed for Co(x,t), provided

ICo(x,t)I >> IC'(x,t)I (19)

In this case, the linearized forward problem is:

Ti  f ds - f[C'(x(s),t) + u(x,t)jT]ds (20)
r Co(x(s),t) r.Co(x(s),t) 2

o01 01

or

Ti = Toi + T i . (21)

Mercer and Booker (1982) have done calculations which

produced examples of this relation for Gulf Stream rings of

varying energies, and point out that perturbations to the

paths affect the sampling of the sound speed field by the

ray. In examining their plots of ray travel times vs. ring

strength, one is struck by the linearity of the

relationship over a large range, although the extremes of

the curves are clearly bent. Rings are among the most

intense sound speed features encountered in the N.

Atlantic, and the experimental region was chosen to reduce

the probability of encountering rings, with their attendent

complications, in the demonstration experiment.



2.5 THE TRAVEL TIME EFFECTS OF OCEAN CURRENTS

Equation (20) takes into account travel time

perturbations that result from both sound speed and ocean

currents. This means that, in principle, a tomographic

system can produce sound speed, density, and velocity maps

without ambiguities due to the "reference level" problem or

uncertainty in the T-S relation. In practice, high quality

travel time data is necessary in order to distinguish

current velocity from sound speed anomalies since the two

are averaged together along each ray. The area coverage

and error levels must be such that the inverse procedure

can identify and separate the two fields. The effects of

currents on ray travel times are weaker than those due to

sound speed, as can be seen simply by calculating the

magnitudes:

IC'I - 0(10 m/sec); lul ~ 0(10 cm/sec)

The perturbations due to velocity are thus only a few

percent of the total travel time signal. Peter Worcester

has pioneered a technique called "reciprocal shooting"

(Worcester, 1977), which can greatly improve the current

resolving power of the acoustic data by taking advantage of

the relative weakness of the effect of current on the sound



56

rays. If two transceivers transmit to each other in an

area with typical currents the ray paths are approximately

independent of the direction of travel. For a given ray

path, ri , transmitted from Transceiver A to Transciever B,

for example, there will exist an oppositely directed path,

rj, (from TrB to TrA), that is identical in all other

respects. The linearized forward problem for travel time

perturbations can then be written as:

T' i  = f[C'(x(s),t)
r Co(x(s),
oi

T' = f[C'(x(s),t)
r Co(x(s),
oj

S f[C'(x(s),t)
r.Co(x(s),t)L
01

4 u(x,t)*T]ds
t)

4 u(x,t)*T]ds
t) Z

- u(x,t).T]ds

Taking the difference, T'i - T'j:

2-f[u(x,t) . ]ds
r Co(x(s),t)L

and the sum:

T'i 4 T'j = 2.f[C'(x(s),t)]ds
r Co(x(s),t)L
01

T'i - T'j (23)

(24)



This shows analytically how the use of transceivers

instead of single sources or receivers will greatly improve

the current resolving power of the acoustic data without

adding extra moorings. For a more comprehensive

discussion, see Worcester and Cornuelle, (1982), which

evaluates the utility of tomography as a current

measurement tool. Reciprocal transmissions do not present

any special problems in the data processing or inverse

techniques outlined below.



58

2.6 NON-LINEARITY

If the perturbation field calculated by the inverse,

C'(x,t), is large, then (20) may no longer hold

accurately, and it is necessary to iterate by choosing a

new reference state,

Cl(x,t) = Co(x,t) 4 C'(x,t) (25)

presumably closer to the true field, C(x,t), than Co(x,t)

was. Such iteration is necessary when the assumptions

which led to (20) become invalid. The travel time

calculations are not as sensitive to the size of C'(x,t) as

the detailed ray path is, since the path deformation has

little effect on the travel time calculation (Hamilton, et.

al. (1980)). This means that an important criterion for

deciding when iteration is required comes from the

inversion, not the forward problem. Difficulties will

occur when the ray paths are deformed by amounts

significant on the scale of the oceanic structures under

study.

One can estimate, for the mesoscale experiment

described in detail below, that problems will begin to be

felt when the perturbed (true) ray path Fi and the



unperturbed path, roi, differ by more than 0(100 m)

vertically or 0(5 km) horizontally for a significant

fraction [O0(10%)] of the range. This estimate is not

rigorous, and is given purely to fix ideas; the

perturbations observed in the MODE experiment and the 1981

OAT experiment were not sufficient to perturb the ray paths

appreciably (see Figure 2.5), so careful numerical

calculations of sensitivity have not been made. Since Fi

is unknown, linearity can be checked by tracing rays in the

sound speed field estimated by the inverse, and comparing

those paths to the original paths, roi. If these paths

differ significantly from the ray paths used in the

inversion, then iteration is probably necessary. The

convergence of these iteration methods depends on the error

and resolving power of the inversion and the linearity of

the forward problem, but given adequate resolving power,

the robust linearity of the forward problem should lead to

rapid convergence.
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2.7 RAY IDENTIFICATION

The identification of the rays may present the most

difficult problem when strong perturbations are introduced.

In order to use the acoustic data in an inversion, the

travel times observed in the data must be matched to ray

paths traced by the computer and used in the construction

of the inverse operator. For example, the latest peak in

an arrival pattern may be found to correspond to a 412 RR

ray, the next-to-last arrival may be the -11 RR ray, and so

on. The ray identifier labels a ray path stored in the

computer, which determines how the ray samples the ocean,

and is therefore necessary for the calculation of the

inverse operator. The process of arriving at the proper

match-ups is called "ray identification".

Both the "pulse" arrivals observed in the data and the

travel times calculated numerically form patterns (see

Figure 2.6), and, provided the differences between the

sound speed fields in the two cases are small enough, the

two patterns will be comparable. One can then select out

observed arrivals which correspond to numerically traced

rays. The arrival times for individual rays change nearly

linearly with increasing strength of the perturbation but

at different rates, so that the overall arrival pattern

deforms. The structure of these patterns is an important

part of the criteria used to match each observed ray
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arrival with the correct ray path, a process called "ray

identification". The most stringent bound on the size of

the perturbations allowed without iteration could, then,

come from the ability to make correct identification.

Vertical arrays of hydrophones, such as employed in the

receivers constructed by Peter Worcester at Scripps

(Worcester 1981) add arrival angle information to the

travel time data, improving both the resolution of the

receiver and the reliability of the identification. Once

again, for the 1981 tomography experiment, pattern shifts

were never extreme enough to require re-identification,

particularly given the continuity of the arrival pattern

over the 3-day sampling interval, which was short compared

to the 30 day mesoscale evolution timescale (Figure 1.6).

It was this continuity of ray travel time patterns

between a fixed source and receiver over weeks and months

that first demonstrated the practicality of acoustic

tomography. "Traditional" ocean acoustics had until the

late 1960's concentrated on intensity measurements

("propagation loss") for continuous wave sources. The

travel time measurements, corresponding to phase

information in the CW case, were thought to be too unstable

to hold useful information. Landmark experiments using
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equipment and techniques developed by Spindel and Webb

demonstrated the stability of the pulse arrival pattern

over long periods, as predicted by MW. As a result of the

original tomography proposal, Spindel, T. Birdsall, and K.

Metzger developed sophisticated signal processing to filter

out the rapid shifts due to internal waves, leaving the

slower changes due to the mesoscale.



2.8 EXTENSIONS OF RAY THEORY: NORMAL MODES

While the ray formulation is simple and useful, it is

by no means perfect, and an alternate description of sound

propagation involving modes of acoustic pressure has

several advantages, and is analytically simple for regions

of weak range dependence.

Re-writing (1) for cylindrical coordinates, assuming

radial symmetry, and C = C(z) only, yields a separable

equation:

2 1 22

C(z) at

4 rr _ 1* r 4 lzz 1= tt (26)
r C(z)

Let p(r,z,t) = 4o*R(r).P(z).exp(iwt) (27)

Then (16) becomes

2
R''(r) 4 R'(r) + k h 2R(r) = 0 (28)

r

and

P''(z) 4 [(w 2 /C(z) 2 ) - kh 2 ].P(z) = 0 (29)

2
here -kh = separation constant.
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Solving (28) with a radiation condition--outgoing

waves only (Tolstoy and Clay, 1960):

Rt ) = Ho(1)(kh-r) (30)

In the far field, where kher >> 1,

Ho(1)(kh.r) = (.kh.r/2)- 1 /2 2.exp(i[kh.r 4 7/4]) (31)

kh may be interpreted as the horizontal wavenumber for

the propagation of the modes.

Equation (29) determines the vertical structure of

each mode, showing "turning points" at

zT: C(zT) = w/kh (32)

by analogy with the quantum mechanical problem (Bender

and Orszag, 1979).

It may be solved using WKB approximations within each

region, or a uniformly valid solution can be obtained using

Langer's method (Munk and Wunsch, 1983). Using 2 turning

point WKB analysis (Bender and Orszag, 1979) the turning

points must satisfy:

zT 4

f [(w 2 /C(z) 2 ) - kh2]l/2 dz = (n 4 1/2) (33)
zT-
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From (32) kh = w/C(zTT), so (33) becomes

ZT4

W.f [(1/C(z) 2 ) - 1/C(zTT)2 1/2 dz = (n 4 1/2)w (34)

zT-

For fixed n, this yields a dispersion relation, W(kh),

because the turning points, ZTT, are functions of kh.

Equation (34) allows the calculation of horizontal group

velocity for mode n:

Cg = aw (35)
3kh

From the expression for group velocity, one can calculate

the arrival time of a given mode n with frequency w as a

functional of the C(z) field, providing an alternate form

of the forward problem for the modes. Although modes and

rays are theoretically interchangeable expressions for the

acoustic pressure field, there are cases where mode

arrivals may be resolved while ray arrivals cluster too

closely, so that a complete extraction of information could

use both ray and mode arrival data (Munk and Wunsch,

1982a). At present, only ray arrivals have been used, but

modes are to be investigated further in later experiments.
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CHAPTER 3

THE QUASI-GEOSTROPHIC APPROXIMATION

3.1 BASIC ASSUMPTIONS

The oceans support motions with a rich range of space and

time scales, from acoustic waves at the small scales to the

thermohaline circulation, which extends over all the oceans,

and evolves on time scales of years to centuries. A large

share of the observed energy belongs to a band of motion

between these extremes, the "mesoscale". Most of the kinetic

energy observed by current meters results from these motions,

and they have therefore been of great interest to

oceanographers during the past decade.

The theory describing these motions is now quite

well-developed, and there are several datasets which give

specific realizations of the ocean on adequate space and time

scales. Mesoscale features have length scales of order 100 km

(0(100 km): meaning between 10 km and 1000 km) current speeds

of 0(10 cm/sec), and time scales of 0(50 days).

Non-dimensionalizing the Navier-Stokes equation based on these

scales and dropping small terms leads to the quasigeostrophic

equations, which are used here in a form based on several

other assumptions:



1) The area being modelled is small enough so that the

spherical earth can be described locally by cartesian

coordinates, leaving the meridional variation of the Coriolis

parameter as the only remaining effect of sphericity:

f = fo - Boy (1)

where 00 = latitude at which the coordinate system is centered

= earth's rotation rate, fo = 2Qsin6o, and Bo = 2 Qcoseo/Re.

2) The dynamics of interest are perturbations to a

motionless rest state in which the ocean is locally in

hydrostatic equilibrium. Thus, if p(x,t) = pressure at a

point, and p(x,t) is potential density, then

p(x,t) = ps(z) 4 Pm(x,t) (2)

and

p(x,t) = PS(Z) 4 pm(x,t) (3)

where

Eps(z) = -p 5 (Z)*g (4)
3z



3) Pm and Pm are pressure and potential density

perturbations due to the presence of mesoscale motion with

current velocities (u,v,w) = u, and these are nearly in

geostrophic and hydrostatic equilibrium:

=m(x,t) = -pm(x,t) g (5)
az

fo.u(x,t) = -1 * apm(X,t) (6)
Ps(z) ay

fo*v(x,t) = 1 Em(x,t) (7)
Ps(z) ax

This final assumption has been examined empirically using

some of the datasets mentioned above, notably by the MODE

Group (1976), and seems to hold to within experimental error.

Using this basis, Pedlosky (1979) develops the

quasigeostrophic approximation rigorously, and I will use the

result of his analyses to build theoretical relationships

between many of the variables which may be considered as part

of the forward or inverse problem.



3.2 DESCRIPTION OF THE (MESOSCALE) PERTURBATION FIELDS

Define a streamfunction:

'(x,t) = pm(X,t)/Ps(z) (8)

as the basic quantity from which other quantities may be

derived on the basis of the theory. For instance,

Pm = -Ps( z) * a
g az

fo*v = ~a
ax

fo.u = -aY
ay

2
= -1 * 3a2

NZ(z) ataz

Here N(z) is buoyancy frequency.

The quasigeostrophic theory yields a dynamic equation for

predicting the evolution of these fields which expresses

conservation of potential vorticity along fluid trajectories

in the absence of viscosity or heating:

[ a 4 u*3 4 v*a ]'[ V2  9 - a (f * a)1 + 8sa = 0 (13)
t x y az N (z) az ax

With boundary conditions

w = 0 at z = -D

w = 1 * aY at z =
g at

(flat bottom)

0 (free surface)

(9)

(10)

(11)

(12)

(14)

(15)
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For the scaling we have used,.the equation (13) is

non-linear to lowest order, but it is useful to linearize it

to obtain a set of formal relations between variables. For

the linearization, the advective terms are dropped, leaving

[ a ] * [ v 2' + a 2+ a'] + 8,*ao ] = 0
at 3z N (z) az ax

which is separable. Let

'(x,t) = #(x,y,t)*G(z)

(16)

(17)

and split (16) in two parts using a2 as the separation

constant

a [v22 - 2 ] + '_ =
at ax

d [ 1 dG(z)] + a2.fo 2 .G(z) = 0
d-z N-r(z) dz

Let G'(z) - dG/dz, and the boundary conditions are

G'(z) = 0 at z = -D

G'(z) + N2 (z).G(z) = 0 at z = 0

(18)

(19)

(20)

(21)
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The system (19), (20), (21) can be transformed by letting

d Gz)2 2 G'(z)/N

and GC(z) - G'(z)/N2(z)

(22)

(23)

The G (z) modes

displacement of

will later be seen to correspond to vertical

water. The system then becomes:

G''C (z) = -X-N 2 (z).G (z)

G (z) = 0 z= -D

GC(z) - 1 G'C(z) = 0 z
gX

Equation (26) makes use of the relation

G(z) = -1 G'C(z)
T

The eigenvalue problem (24),

numerically for any N 2(z) profile,

basis functions, GCi(z), each with

be derived from GCi(z) using (27),

variables using this combination o

vertical modes. Equations (9)-(12

(25), (26), may be solved

yielding a complete set of

eigenvalue Xi. Gi(z) may

and we can now express many

f horizontal structure and

) become:

(24)

(25)

(26)= 0

(27)



pm(X,t) -ps(z)N (z
g

M
-ps' (z)' G

i=1

M
)*I Gc i ( z ) *¢ i ( x , y , t )

i=l

ri(z)'i(x,y,t) (28)

v(x,t) =

u(x,t) =

w(x,t) =

M
1 1 Gi(z)
fo i=0

M
-1 Gi(z). iy(x,y,t)

fo i=O

M

i Gli(z)*"it(x,y,t)
i=1

The set {GCi(z)} corresponds to vertical displacement of

water by the mesoscale motions, while the set {Gi(z)} is a

basis for the pressure, velocity, and streamfunction. In the

transformation from equations (19,20,21) to equations

(24,25,26), one solution of the original set became trivial

and was discarded. If the free surface boundary condition is

exchanged for that of a rigid lid (w=0 at z=0), or if a mixed

layer exists at the surface (N=0 at z=0), then the boundary

condition (21) becomes:

G'(z) = 0

(29)

(30)

(31)

-ix(xYt)

at z = 0 (21')



The set (19,20,21') has a solution Go(z) = constant, X=O,

which is a trivial solution of (24,25,26) and cannot be used

in equation (27). This mode, Go(z)=B, is often referred to as

the "barotropic" velocity mode, because it is depth

independent. Thus, for every i > 1, Gij(z) corresponds to

some Gi(z), but Go(z) corresponds to Go(z)=O, so the

"velocity" or "streamfunction" modes are summed on i=0 to M,

while the displacement modes need only be summed on i=l1 to M.

This means that the density field provides no information

about the amplitude of the "barotropic" velocity mode, which

has been a source of painful indeterminacy for generations of

oceanographers.

Other quantities of interest may be derived in the same

manner. For example, eastward transport through the

meridional rectangular region defined horizontally by (xl,yl)

to (xl,Y2) and vertically between z 1 and z2 is

(X Y2) z
U(xll,Y2,zl,z 2 ,t) =u(x,t) dy dz (32)

(xl,Y
1 ) Z1

M
= 1 * -1 ( i(xl,Y2,t) - pi(xl,Yl,t) )(Gi(z2) - GCi(z1))

fo i=1 Xi

+ 1 .[ o(x1,Y2,t) - 4o(x1,1,t)].B.(z2-z 1 ) (33)
fo



The interrelations greatly simplify the inverse

procedure. Instead of estimating p, u, v, w, transport, or

streamfunction separately, the problem can be divided into

estimating , 4x, y, and t, greatly reducing the amount of

work. Naturally, adopting this framework is most useful if

the analytical modes Gi(z) and GCi(z) form an efficient basis,

so that only a small number of modes are needed to describe

most of the features observed in the ocean. On the other

hand, the assumptions involved are no stricter than those

normally employed by dynamic oceanography, and should not

result in inconsistencies within the inversions. In addition,

the modes do not need to be orthogonal to be used in the

inversion - the only complication introduced by

non-orthogonality comes in computing expected energies.



3.3 NON-DYNAMICAL MODE BASES

It is sometimes desireable to use some other set of modes

as a vertical basis in place of the analytical modes. In this

case, the analysis described above would still hold, except

for the analytical transformation between the velocity modes

and the displacement modes. Since an arbitrary set of modes

will not be a solution set for the vertical structure equation

(19) or (24), equation (27) will no longer apply.

Suppose, for example, that a set of basis functionS for

the vertical structure of the density field have been

obtained: {FPi(z)}. These may be empirical orthogonal

functions (E.O.F.s) derived from data, or may be completely

arbitrary, describing layers or some other pre-defined

vertical structures.

The density perturbations, pm(x,t) are still assumed to

be in quasi-geostrophic equilibrium with the other fields, and

the linearity of the equations makes superposition hold,

so let ni(x,y,t) be the horizontal structure of mode i,

M
Pm(xt) = C FPi(z)'ni(x,y,t) (34)

i=l

The density perturbations are produced by the vertical

motions of water acting on the adiabatic density gradient, so

displacement modes are given by

Fi(z) = (Ps (z))-l 1 FPi(z) = FPi(z)/(dps/dz) (35)



or

FCi(z) = - g FPi(z) (36)
ps(Z)N (Z)

The two forms (35) and (36) are not necessarily

equivalent when numerically calculated because the derivative

in (35) must be the local adiabatic gradient of potential

density, not just the simple derivative, particularly if p is

potential density relative to the surface. Calculations of N 2

must also take this derivative properly, in order to avoid

false regions of apparent instability, so the form (36) is

often easier to implement. In general, whenever vertical

derivatives appear, it is important that they locally remove

pressure effects, to avoid bias from non-linearities. These

considerations are necessary when converting to and from

temperature, potential temperature, and sound speed.

Sound speed modes must always be computed from an

empirical relation like (35), where Cs(z) is the basic state

sound speed:

FC i (z) = (dCs(z)) * F'i(z) (37)
dz potential

Similar relations hold for temperature, potential temperature,

salinity, and the tracers, whether the set of F(z)'s are

analytical, empirical, or arbitrary.



Equation (27) relates displacement modes to velocity

modes without resorting to a reference level assumption,

because the indeterminacy of barotropic velocity given density

measurements showed up as the lack of constraints on

4o(x,y,t), the amplitude of Go(z), the vertically uniform

analytical mode of horizontal velocity.

The indeterminacy thus has a clear dynamic meaning as the

amplitude of the barotropic mode. Analytical or numerical

estimates of energy missed in this way can be made. When

non-analytic modes are used, the "reference level" problem is

more complex. In order to convert from displacement to

velocity, we must use equation (23) and then integrate

vertically to find Fi(z), the ith empirical velocity mode.

Fi(z) = 1 N2 (z')FCi(z')dz' + Fi(zo) (38)
zo

Fi(zo) is unknown, and corresponds to the "reference

level" velocity (with the reference level at zo). Any set of

displacement modes F~i(z), i = 1 to M, can be used with

equation (38) to generate a set of velocity modes Fi(z).

Fo(z) is a uniform velocity, as before, but the energy in this

mode depends largely on the reference levels z o picked for

each mode.



The description of velocity still has the simple form:

M
u(x,t) = -1 * 1 Fi(z)*niy(x,y,t) (39)

fo i=O

M
v(x,t) = 1 I* Fi(z)oniy(x,y,t) (40)

fo i=0

The empirical functions Fi(z) can generally be picked to

be a more efficient basis for the perturbation field than the

analytic function, Gi(z), but they require more prior

information than the analytical modes, and suffer from the

reference level problem. Using the analytical modes as a

basis also allows the use of the equivalent barotropic

equation (Flierl, 1978) to add linear or nonlinear dynamics

into the models, and eventually, into the inversions. The

EOFs, on the other hand, do not provide an efficient "state

vector" for the quasi-geostrophic dynamical equations, so the

models based on EOFs are practically limited to employ

diagnostic constraints only, while models based on analytical

modes may use the prognostic equations, such as vorticity

conservation.



CHAPTER 4

PROBABILISTIC ESTIMATION

4.1 GENERAL DISCUSSION

Consider a general estimation problem, where N data,

{di : i=1,N} are taken, and an estimate of some field

(x,t) is desired. The data are only useful if they depend

on ("sample") T in some way, which may or may not be

deterministic. In vector notation, this is written:

d = a '(x,t),x,t) (1)

The problem posed in this chapter is how best to

invert this relation (1) in order to obtain the best

possible estimate of Y(x,t), given the data d = {di}. The

full inversion problem for tomography requires this

generality, since the data may consist of many types, and

the desired output field may not appear explicitly in the

forward problem. For example, in the 1981 Tomography

experiment, the full data set consists of travel times,

travel time differences between rays in an arrival pattern

(called "ray differentials"), temperature, pressure, and

current records from moored instruments, and CTD stations

taken during 3 surveys. The desired output fields also

encompass a wide range, including sound speed, velocity,

temperature, density, transport, heat content, and perhaps

vorticity.



In a standard moored experiment of the past, the

instruments directly measured one quantity, such as

horizontal velocity, at several points in space. The

results were Fourier transformed in time to yield an

estimate of the time scales important in the motions, and

covariances between instruments were calculated to yield

estimates of spatial scales, and, with lagged covariances,

propagation velocities. More recently, optimal estimation

techniques were employed to yield continuous maps of the

quantities measured only at points (Bretherton, et al.

1973), and, much more recently, to yield estimates of a

quantity, vorticity, (McWilliams, 1976), (Hua and Owens,

1982) not directly measured.

It is a small (and logical) step to generalize

entirely, so that a wide variety of measurements made at

different space and time locations could be combined by

one, as yet unspecified, estimation procedure, to yield the

estimates of desired output quantities at any space and

time locations which can be shown to be the "best", given

the criteria necessary to define "best". The objective

analysis mentioned earlier is thus a special case of one

estimation scheme where the criteria for "best" consist of

linearity and minimum expected squared difference between

the true field and the mapping field, given an assumption

of a statistical ensemble.



The ingredients of any estimation method will

generally be:

1) A constraint on the estimator, such as linearity in

the data.

2) Criteria to define a figure of merit for the

estimator, such as the weighted sum of absolute values of

the results and/or the residuals. These criteria generally

will require choosing the framework in which the

calculations take place, such as a choice between

deterministic and statistical calculations.

3) A set of assumptions about the various quantities

involved in the estimation procedure. These assumptions

include the "forward problem," which relates the data taken

to the quantities which may affect it; as well as error

estimates and models for the unknown fields.

In this chapter, I will consider a number of methods

for arriving at estimates of the output fields, and discuss

their features in a framework that is not specific to the

tomography experiment, but applies generally to problems of

inferences from data within a physical framework. Readers

primarily interested in the results of the inverses applied

to the 1981 tomography experiment may wish to skip to

chapter (8) or (9).



4.2 ESTIMATION BASED ON PROBABILITY DISTRIBUTIONS

One very general framework of estimation theory is

well discussed in the electrical engineering literature.

It uses the concept of information pioneered by Shannon

(1948), and many specific estimators are special cases of

this approach. One standard text is Van Trees (1968), but

the subject has recently been broached in the geophysical

literature (Tarantola and Valette, 19820. The theory is

too complex to make it worthwhile to carry it completely

through in an example, but a brief discussion is worthwhile

as the theory provides an organized background out of which

various specific estimators may be derived. I will use the

notation of Tarantola and Valette (19824.

Let d = vector of data values, and p = vector of

parameter values. These may be countably infinite in

length, which means they can represent continuous systems,

given the discretization due to computers and minimum

scales of interest. These vectors are combined into one

vector, x, of length m, where every element of x has a

probability distribution, fi(xi), describing the likelihood

with which it can take on any given value. In the case of

the data, this probability describes the possible deviation

of the true value from the recorded value. Thus, when an

experimenter records only a data value, do and a standard

deviation due to error, ao , but no other error moments,



this is consistent with the assumption that the probability

distribution function for the true value, d, of the

quantity measured is

f(d) = (2.w 2 )- 1/2.exp[-(d-do)2/ 2 ao 2 ]  (2)

Before the experiment takes place, there is a joint

probability distribution for the model parameters, the a

priori distribution, which contains all information about

the parameter values independent of the data taken. If

these a priori expectations are combined with the data

probability density function (p.d.f.'s), then we can write

p(x) = p(p,d)

the m-dimensional a priori p.d.f., which is input to the

inverse procedure. The other essential ingredient of this

general framework is the relation between the data and the

model. This can be expressed within the theory as a joint

p.d.f.; O(p,d), where d and p are not independent. If d

and p are independent, so that

6(p,d) = 6p(p).Od(d), (3)

then it can be shown that it did no good to collect the

particular set of data, d. In a practical application, the

model and data will be related, so the distribution will

not be separable.



For example, a deterministic relation between model

parameters and data can be written in non-linear functional

form:

d = G(p) (4)

This can be expressed in probability form:

0(p,d) = 6(d - G(p))- (p)

where u(x) is a p.d.f. which reflects the state of null

information about p and 6( ) is the Dirac delta function.

The state of null information, which has been called

p(x) after Tarantola, is a concept used to streamline the

construction of the conditional probability density

functions necessary for the estimation procedure. P(x) is

a p.d.f. for the data and model parameters which can be

constructed without any knowledge. The simplest example of

u(x) would be jointly independent uniform distributions

between ±, although other forms may be possible or

preferable (see Tarantola and Valette, 1982b).

If the theoretical information, 6(x), is independent

of the a priori model and data, p(x), then they can be

combined simply to obtain the a posteriori state of

information:

a(x) = p(x).O(x))/(x) . (6)



This a posteriori set of p.d.f.'s may then be operated on

in a variety of ways to obtain the results desired. For

A
example, the estimated parameter values, p, may be picked

such that

A
ap(p) = maximum at p = p,

This is the maximum likelihood estimator, and is frequently

used, primarily for its simplicity, although the

statistically rigorous estimator for an arbitrary p.d.f.

would be the center of mass,

A
= <p> = fp-op(p)dp (8)

It is possible to show (Tarantola and Valette, 1982a,

this thesis), that when the assumed probability density

functions are Gaussian, then the maximum likelihood

estimator is linear, and corresponds to the least-square

error estimator. In fact, for Gaussian distributions, the

maximum likelihood estimate is the same as the expected

value, so that it is statistically rigorous. If the

distributions are not Gaussian, then the computations may

be more difficult, but the formulation still applies,

although the maximum likelihood estimator no longer

necessarily even has simplicity to recommend it.



This theory can be generalized to allow cases where

the constraints and data are not conveniently expressible

as probability distributions. The quantity called

'Information', defined by Shannon (1948) is, for a

probability distribution function f(x),

I(x) = log[1/f(x)] (9)

I(x) represents the amount of information that we

gain from an observation of the random process X = x, and

the expected value of information defined with e as a base

is equal to the entropy, as defined in statistical

physics,

<I> = E = -ff(x)ln[f(x)] dx (10)

Maximum expected information thus corresponds to maximum

entropy, and is the state where the probability function is

as smooth as is consistent with the constraints of a priori

knowledge and the data.

For example, if a random scalar variable x has an

unknown p.d.f. f(x), but is known to be non-negative and to

have mean u, then the maximum entropy f(x) is (Papoulis,

1981)

f(x) = (1/p) exp(-x/p) (11)



On the other hand, if only the mean p and variance a of x

is known, then the maximum entropy distribution is

f(x) =(2n7 2 ) - '/2.exp [ - (x - ) 2/2 0 2] (12)

(Shannon, 1948). The Gaussian probability assumption

is thus somewhat justifiable from a maximum entropy

standpoint, given no higher moments or extra constraints.

Unfortunately, there is a present paucity of

oceanographic data, precluding accurate statistics, not

to mention specification of probability distribution. In

the absence of such data, assuming the unknowns to be the

result of a Gaussian random process would seem to have some

basis, if only as an heuristic consequence of the central

limit theorem. Thus, the least-square estimators may be

used without committing gross errors by assumption, and

they are convenient as well.
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4.3 OPTIMAL ESTIMATES FOR GAUSSIAN DISTRIBUTIONS

The probabilistic discussion given above may seem

abstract, but it is instructive to apply it to an example

which has often been treated by standard inverse methods.

Suppose that we wish to estimate an unknown field, p(x,t),

'"T # ov
given a data set d = (d1 , d2,.**,dN) containing random

observation error, e, normally distributed with known

covariance, so that the true value d = d - e. Assume, in

addition, that p(x,t) is normally distributed around an

independently derived value, '(x,t). Then we can form the

prior probability density p(X),

p(X) = y.exp[-1/2(X-)TC-1( ) (1)
-a

where XT ={p(x,t),dT}, and y is a normalization factor to

make p(X) a probability density function, and Ca reflects

the uncertainty of both the model and data,

a 0 0

Ca = 0 (2)
O <E:T>
0

a-' 0 0 0

C-1 = 0 (3)
a 0 <E T>-1

0

a is the expected variance of p(x,t) around 0(x,t),

and C, = <_FT> is the error covariance matrix.



Note that the error is uncorrelated with the a priori

estimate of p(x,t). If a+w, then we have no starting

information about the value of p(x,t).

We also require the existence of a theoretical or

statistical relation between d and p(x,t),

O(X) =y'exp{-1/2(X-X)TC-l( -X)} (4)

TT ={p(x,t), d, 1 2,*..,N} = an estimate of the

expected value (mean) of X, and CT is the estimated or

assumed theoretical or statistical covariance for X around

X. CT can be safely assumed to be invertible in principle,

since the problem is underdetermined. A covariance

matrix is positive definite, but some of the eigenvalues

may be very small, making the matrix numerically singular.

This covariance matrix expresses the expected variation of

the true value around the estimate of the mean.

If X is unknown, or poorly known, this ignorance can be

expressed heuristically by increasing the variance around

X. Bretherton, Davis, and Fandry (1973) used this

technique, setting the variance of p(x,t) around 5(x,t),

<[p(x,t)-(x,t)]2> to o to allow for an unknown mean

(Liebelt (1967) discusses this too).



92

In real applications something is usually known about

the mean, so that a finite variance may be used, but the

resulting estimator will be biased if the true mean is

different from the P(x,t) assumed (Liebelt, 1967).

A
<p(x,t)> * <p(x,t)> if <p(x,t)> * p(x,t)

The biased estimator tends to remain closer to the mean

specified in advance than an unbiased estimator, so if this

technique is to be used to produce an estimate of a mean

over the entire length of a data time series, it is

preferable (for economic as well as statistical reasons) to

average the data before using the estimator, and then

revise the estimation procedure to estimate the mean by

modifying the covariances. On the other hand, the biased

estimator will yield a lower variance of p(x,t), the

estimate of p(x,t), than an unbiased estimator, so a

resolution/bias trade-off needs to be examined for each

specific problem. For the present, I will retain the means

in the expressions as if they were known, although it must

be understood that their significance can be adjusted by

the variance weighting.

The cross-covariances between p(x,t) and the data, d,

provide the essential information needed to complete the

problem. If p(x,t) and d are independent, then the



cross-correlation terms vanish, and d does not constrain

p(x,t). This "forward problem" may be expressed

analytically or statistically, and will be discussed later,

but for now, just assume that we have estimates of the

model-data covariance,

Cpd = <[p(x,t)-p(x,t)][d-d]T>, (5)

the model covariance,

Cp = <[p(x,t)-p(x,t)][p(x,t)-C(x,t)]>, (6)

and the data-data covariance, which includes expected

modelling error, but not measurement error,

C d = <[d-d][d-d]T> (7)

Given these covariance matrices, the total covariance

matrix can be written as a partitioned combination of

(5),(6), and (7);

Cp Cpd
T = ( ) (8)

TpdT Cd

Note that there have been no explicit assumptions

about the linearity or non-linearity of the model-data

relation. The covariance form cannot rigorously represent

a nonlinear forward problem, but it can express the robust

quasi-linearization as used in non-linear control theory.

(See Figure 4.1)
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FIGURE 4. 1 SKETCH TO ILLUSTRATE THE DISTINCTION BETWEEN LINEARIZATION,
QUASI-LINEARIZATION, AND COVARIANCE (OR CORRELATION).

QUASI-LINEARIZATION: LI

Y

LINEARIZAT

A)), (A',f(A'))

Y = f(X)

X

: TANGENT TO CURVE AT (0,0)

Y = f(X)

PICK N POINTS xi, USING

PROBABILITY DISTRIBUTION

P(X=x i ), THEN yi = f(xi )

A.COVARIANCE: LEAST-SQUARES BEST-FIT LINE

THROUGH THE CLOUD OF POINTS GENERATED BY THE

FUNCTION GIVEN EXPECTED PROBABILITIES OF POINTS IN DOMAIN.



If the prior information (X and Ca ) is independent of

the forward problem (X and CT), then the posterior

probability distribution, a(X) may be written as the

product of the other two distributions:

a(x) =y *p(X)*(X) (9)

where y'' is another normalization factor.

Using (1) and (4), and letting y" '='y.y'"', to keep

the normalization consistent, we obtain an expression for

the a posteriori probability density function for both the

data and the unknowns:

a(x) =y'*exp{-1/2[(X-)TCl(-X )4 (X-)TC-1(A-)]} (10)
T =a

If a(X) had the form:

a(_) = exp[-1/2(X-*)TC-l1(-)] (11)

then X would be the maximum likelihood, minimum variance

estimate of X, and C would be the estimate of its

covariance matrix. We can complete the square in (10) to

obtain the form (11). Begin by expanding out (10)

completely:

o(X) a exp[-1/2(XTC-l1 - XTC-1 - -TC c-1 4 Tc-1
- -T - -T - - "T -

4TC - 1  - XTC-1'_ -TC - 1 4 AOTC-I" )] (12)
a a -a - a
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Because the quadratic forms are symmetric:

'Tc-1x = 'TC-1"
a a -

and X and X are constants, this can be re-written:

a(X) c exp(-1/2.[XT(C-1 4 C-1 )X- 2XTC-1 (13)
a T a

- 2XTC-I-])
"T

or,

a(X) c exp(-1/2[XT(C-1 4 C-1) (14)
-a -T

- 2XT(C-1 4 C-1)] )
a - T

A
This can be solved for X and C using matrix

algebra to write (14) in the perfect square form:

A
C-1 = C- 1 4 C-1 (15)

=a =T

A ^A
CX = C- 4l c-1 (16)
- - a -T -

so,

= (C - 1 4 C-)-1 (C-' 4 -lX) (17)
a T -a - =T -

This form could be used for estimation, but it is

informative to break the expression down, particularly

A
since X is primarily an estimate of the true value of the

data:

XT (p(x,t),dl,...,dN).
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In addition, as mentioned above, CT may have several

small eigenvalues, so the inverse may be difficult to

obtain numerically. Fortunately, it is possible to

modify the expression in (17). Consider the form:

_ = (A-1 + B-1) A-1 (18)

Q, A, and B are positive definite (non-singular matrices.

Q-1 = A(A-14B-1) = I 4 AB - 1 = (B+A)B - 1 (19)

so

Applying

t = B(B+A)-1

this to (17), we obtain

(20)

(21)S= CT(a - CT ) _a- a( a CT)-1_

This expression can be simplified further by using the

partitioning of Ca and CT as shown above:

a  =
0

C 
CP

-T CT
- pd

(2)

Cpd

Cgd (8)
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In order to invert these matrices, we need to take

advantage of the partitioning (Liebelt, 1967). If

A B

2= (22)
tT C

then

(A - BC-1BT)-1

-C-lBT(A - BC-1BT)-1

_A-1B(C - BTA-1B)- 1

(C - BTA-1B)-l

(23)

Using this formula, (Ca 4 CT)- 1 becomes

a 4 Cp Ipd

CTpd d -

)-i (

(8 - CpdC o - 1 CTpdY)-

Co-1 C T,pd - cpdgo-ITpd)-1

B C.pd

CTpd CO

-- 1 Cpd(o - cTpda- 1Cpd ) - I

(Co - CTpd-Cpd)-l

(24)

- B- 1Cpd(Cn) -

(25)

-C O -1CT d(C 1 )-1

This formidable expression must be substituted into

(21) and multiplied out (see Appendix). To calculate only

the a posteriori estimates of the true values of the
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unknown field, we need consider only the top row term

multiplying the data:

p(x,t) = aSB- CpdCn-l(d - d)

4 [(C 1-a)p(x,t) 4 ap(x,t)]C1-1 (26)

8, Co , C 1 , and Cn have been implicitly defined above:

S cta Cp (27)

C o  d 4 Cc (28)

C 1  - CpdC o - 1CTpd (29)

.n o - CTpd -1 pd (30)

If a+ (no a priori information about p(x,t)):

p(x,t) = CpdCo-1 (d - d) 4 p(x,t) (31)

This form will be obtained later using the Gauss-Markov

theorem, but the result here proves this form to be the

minimum variance non-linear estimator, provided the

probability density functions are gaussian.

The optimal estimate of the data values may not seem

directly useful, but it is important in calculating the

validity of the assumptions built into the inverse. Using

the algebra in the Appendix, the a posteriori estimates of

the data values can be obtained directly, or the noise in

the data can be estimated using equation (21) of the
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Appendix. The estimates must then be compared with the

prior expectations on which the estimator was built, as a

check on consistency within the inverse framework. The

estimates of data errors are called "residuals", and should

be examined for clues to improper energy levels or missing

physics.
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4.4 PUTTING ERROR BARS ON THE ESTIMATES

Because the probabilistic estimation method calculates

A
a distribution for the true value, X, around X, it provides

A
the error covariance, C, for the estimate (see Appendix).

Again, at present consider only the scalar term describing

the variance of p(x,t) around p(x,t):

2 A 2
Ep <[p(x,t) -(x,t)] > (32)

= a*(Cp - Cpdo-1CTpd)'(Cp + a - 2pd o - 1CT pd)-1
(33)

If a + 0, so that p(x,t) is known perfectly in

advance, then Ep2 + 0 as well. If a + w, so that nothing

is known a priori about the true value of p(x,t), then (33)

becomes

Ep2 p - CpdC o - lCTpd (34)=-1 c

Cp - Cpd(C
d  C)-1CT pd (35)

The estimate of expected error is based on the

expected variance, so any scaling of Cp will scale Ep 2 in

the same way. To better understand the meaning of the

Ep 2 (x,t), or "error map", consider an ensemble of oceans,

constructed to obey the prior expectations. For each ocean

in the ensemble, there is a data set, d, and the estimator

can produce p(x,t) using d. The squared difference between
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this estimate and the true field for this location in this

element of the ensemble is [p(x,t) - p(x,t)] 2 . If this is

calculated for every element of the ensemble and averaged,

then Ep 2 (x,t) is obtained.

The error estimates obtained this way include both

error due to the error in the data, s, and the so-called

"resolution" error, due to inadequate sampling by the data.

For example, if C is large, so that data error dominates

Cd , the signal, then the error tends toward Cp, the

expected variance of the model. The same thing happens if

Cpd, the model-data covariance, goes to zero, for then the

data taken contain no information about the model. In

inverse theory jargon, resolution refers to the the ability

of the total observation system, meaning both the data

taking and the inverse, to reproduce any given true state.

The observation system acts as a filter, blind to some

structures of the true state while amplifying or distorting

others. The ideal forward problem-inverse system would

A
produce a p(x,t) equal to the true state, p(x,t), for all

x,t. The inverse system could then be characterized as a

6-function operator:

A
p(x,t) = f 6(x-x',t-t')p(x',t') dx' dt' (36)
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A practical inverse system will never obtain this

ideal, but, for linear forward problem and inverse, the

functional form of (36) can still be used, so that

A
p(x,t) = f K(x,x',t,t')p(x',t') dx' dt' (37)

Note that the kernel, K(x,x',t,t') is not homogeneous,

in general. If the kernel is homogeneous, so that

A
p(x,t) = f K(x-x',t-t')p(x',t') dx' dt' (38)

then the inverse system can be represented as a

transfer function in spectral space by Fourier transforming

in x and t to obtain k and s:

A
P(k,s) = K(k,s).P(k,s) (39)

This particularly simple form allows the resolution of

the system to be expressed using terms from signal

processing, specifying the points in spectral space at

which the transfer function, K(k,s), reduces the energy in

the true field by half. For example, a system of moorings

might be characterized by having a "half power" point at 24

hours and at 50 km., meaning that motions with periodicity

of 1 cycle per day are halved in power by the observing

system, as are structures with a spatial scale of 50 km.

Of course, if the system was characterizable in this way,

then the filtering could be reversed by dividing by K(k,s),

provided that K(k,s) is not zero at any point.
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In practical problems, the simple form will not apply,

since an efficient inverse procedure will compensate for

simple attenuation, and the resolution is limited by

non-homogeneous spatial averaging. In the probability

estimation framework, the inverse does not lend itself to a

form like (39), but it does return an estimate of the

variance of the estimated result, p(x,t).

In the case where no a priori information about the

exact value of the unknown field is available (a+=), the

covariance of the result, C4, is

Cc= Cpd(d +C,) cT d (40)

If, instead of mapping to only one point in the

volume, the estimator is constructed to map to many points,

the entire discussion above carries over, but with p as a

vector instead of a scalar. The covariance functions are

still continuous in x and t, but equation (40) becomes

C = Cpd(d + Cc) = pd (40')

We have thus produced an estimate of the covariance of

the estimated field for the set of points that were mapped.

This will presumably be broader than the covariance, Cp,

assumed originally, and the broadening could reasonably be

used to define an approximate but simple figure of merit

for the inverse. If the two covariances are both averaged,
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so that they are homogeneous in space and time lags, then

they both could be transformed, and the transfer function

representation, (39) could be used to define "resolution

lengths". This is quite an involved procedure,

particularly when the result is of questionable value, so

the expected error map and test cases will be used

instead.

One other important feature of the probabilistic

inverse framework is that it provides a means for checking

the validity of the a priori assumptions made in

A
constructing the inverse. Once X has been obtained (Eq.

(21), or see appendix), it may be substituted into the

prior probability density p(X), Eq. (1):

p(X) = yexp[-1/2( X-)TC-1(X-X)] (41)
a

We thus have a quantitative check of consistency

between the model and the data. Eq. (41) is most effective

in quantifying how well the data fit the forward problem

and error covariance matrices specified for the inverse,

particularly if there is no a priori value for p(x,t). In

a practical procedure, the estimated p(x,t) can be checked

against the expected variances specified as part of the

model-data relations. This quantifies the often informal

examination of residuals that occurs in applications, but

does not provide or justify a specific technique for

revising the initial model in response to a misfit in the

initial inverse calculation. For information on adaptive

techniques, see Bretherton and McWilliams, (1980).
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CHAPTER 5

INVERSE TECHNIQUES = PROBABILISTIC ESTIMATION

5.1 THE STOCHASTIC INVERSE (GAUSS-MARKOV THEOREM)

The fundamental assumption made in constructing the

stochastic inverse is that of a statistical space in which

both the data, d, and the unknown field p(x,t), are random

variables. Note that the data are represented as a set of N

discrete values, while the desired field is a continuous

function of 4 variables. The estimation problem is that of

estimating p(x,t) for all x,t, but the method of solution we

will use simplifies this global problem to that of

estimating p(x,t) point by point. Consider an ensemble

average, <>, defined on the space of random variables

consisting of d and p(xo,to) (the value of the unknown field

at a given point.) The linear least square error estimator,

p, must then satisfy the following condition:

(1) Linearity:

A
p(xoto) ai(xo,to)(di - di) 4 p(xo,to) (1)

where d, p(xo,to) are estimates of the means.

(2) Minimum squared error:

E 2 = <(p(o,to) - (xo,to))2> = minimum. (2)

The weights, ai(xo,to) are chosen to satisfy (2).
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This procedure is elementary, and appears in many texts

such as Aki and Richards, (1980), but a brief exposition

will be given here for completeness. Write

p' (xo, to) - P(Xovto)t and d' - d, where d',

p'(xo,to) are perturbations around the estimated means.

condition (2) can be written as an extremum principle:

= 0 i=1 to N (3)

Substituting in the form of the estimator from

3 <(p'(xo,to)-jaid'
aai

Taking the derivative,

2<(p'(xo,to)

Z aj<d'jd'i

- C ajd'j)*d'i> = 0

= <p'(xo,to)d'i>

This is a set of N equations

ai (x o , to)

(5)

(6)

in N unknowns,

(<d'd'T>-l)ji

In vector form:

aT(xo,to) = <p'(xoto)d'T>(<d'dtT> - 1 )

so that

+ <p'(xoto)d'T><d'd'T>- 1 d' (9)

The

i)2>

(1):

= 0 (4)

(7)

(8)

= P(Xoto)

= <p'(xoto)d'j>

p(xopto) = p(xopt,)
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If we wish to estimate p(x,t) at more than one space-time

location, then we only need to add a row of aT(xi,ti) for

each new point (xi,ti) at which an estimate is required.

p'(x i ,t 1 ) aT(x 1 ,tI)

A' = . = . <d'diT>_1 d' (10)

p'(AM,tM) aT(xM,tM)

Ad' = A(d - d)

The complete estimation operator can then be written as:

A = <p'd'T> (<d'd'T>)- (11)

This result is commonly called the Gauss-Markov theorem.

Noise has not been explicitly mentioned in this

derivation, but is implicitly included as part of the data.

The expected errors for this estimator (11) are easy to

calculate by substituting (8) into (2):

E 2  = <p'p'> - <p'd'T>.(<d'd'T>-l).<d'p'> (12)

For estimates at more than one point in space-time, the

noise estimate can be converted using the vector notation

introduced above. The single point variance generalizes to

a total estimation error covariance matrix, C E:

C E = <pp'> - <p'd'T>.(<d'd'T>-l).<dp'> (13)
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The error estimates, E 2 or CE, contain variance due

both to data error and incomplete resolution of the unknown

field by the data-inverse system. For some purposes, it is

interesting to separate out the error due only to data,

although the error estimate made this way is not really

statistically rigorous. If the data error is E, with

covariance C, then the covariance of the solution due only

to the noise in the data is:

C N = A.CE - AT (14)

For most applications, only the diagonal elements of CN

or CE are usually of interest.

The least-square estimator can also be used to do

spectral estimation. Since p' = Ad', estimating the unknown

at several points, the covariance for the unknown can be

estimated as

<p'p'T> = <Ad'(Ad')T> = A<d'diT>AT (15)

Where <d'd'T> is the observed data-data covariance

computed throughout the experiment. The covariance matrix

will usually consist of an irregular distribution of space

and time lags, corresponding to all the separations between

mapping points, and is not necessarily isotropic or
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stationary. This quick and dirty estimate of the model

covariance can be compared to the a priori assumptions, or

can be averaged by lags into a stationary (covariance is a

function only of lag) form, interpolated to a regular,

4-dimensional grid, and Fourier transformed to obtain a

rough approximation to the 4-dimensional spectrum of the

unknown field. Multi-dimensional, "beam-forming" algorithms

could perhaps also be applied, to avoid the interpolation

step, but it might be simpler just to map to a dense,

regular grid.

In the special case where the inverse operator is time

independent, it is easier to compute a frequency spectrum,

point-by-point, for the unknown field. The obvious approach

would be to convert the time series of data into a time

series of estimates, and transform the new time series. If

frequency bin averaging is to be used, then it is more

efficient to take advantage of the linearity of the

estimation operator and the Fourier transform by commuting

the operations, and compute the spectrum of the data first.

If the time series of data is d'(t), with the Fourier

transform operator denoted as F(.), so that the Fourier

transform of the data time series is D(s) = F(d'(t)), then

the transform of the unknown field is P(s) = F(p'(t)), and

the two are related by

P(s) = F(p'(t)) = F(Ad'(t)) = AF(d'(t)) = AD(s). (16)



The power spectrum for the unknown field

A A
P(s) *P(s)T = AD(s)*D(s)TAT

where * is the complex conjugate.
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is then

(17)
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5.2 COMPARISON OF INVERSE METHODS

At first, it may seem odd that the Gauss-Markov

theorem, which says nothing about probability distribution

functions, gives the same result as the

information-theoretical derivation of Chapter 4 for the case

where there is no a priori information about the specific

value of the unknown field. Liebelt (1967) and others have

called Gauss-Markov estimation "distribution-independent"

because it makes no explicit assumptions about the forms of

the probability distributions for the unknowns. One only

requires the first and second moment matrices to produce a

minimum-variance estimator, although it is not explicitly

guaranteed to be the optimal non-linear estimator.

In fact, the two problems can be seen to be equivalent

if we recall (from Chapter 3) that the gaussian distribution

is the smoothest (maximum entropy) distribution that

satisfies the constraints of having a given mean and

variance. When only mean and variance are given, as in the

Gauss-Markov theorem, the state of information corresponds

to that of a given Gaussian probability density. The

Gauss-Markov estimator/"stochastic inverse" is the minimum

variance, maximum likelihood estimator out of the set of all

estimators, both linear and non-linear, which require a

priori estimates of only the first and second moments. The

two derivations may thus be reconciled, although the

probabilistic derivation is somewhat more general.
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Note that the changes to the output of the estimator

affect only the rows of the model-data covariance matrix.

The data-data covariance matrix is fixed by the data

available in the experiment, and therefore does not change

when a new output is desired. When any particular field or

distribution of mapping points is desired, one needs only to

compute the appropriate model-data covariance matrix and

then multiply it by the inverse of the data-data covariance

matrix, which has been computed once and saved.

The estimator is continuous, capable of producing

estimates at all x,t, and it is general within the linearity

constraint on the form of the estimator, because it only

uses statistical data. No mention has been made of error

levels or of an explicit relationship between di and p(x,t),

linear or otherwise. The framework within which the result

was derived assumes the availability of ensemble averages,

but in a given application, limited assumptions and model

physics may be used to construct the necessary covariance

matrices. In these cases, the stochastic inverse can be

shown to be equivalent to other traditional inverse forms.

To show how the various methods compare, the estimator

in the form of equation (11) will be used. This inverse can

estimate the unknown field at arbitrarily many points in the

space, preserving the continuity of p(x,t) in p(x,t).
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Regardless of the degree of nonlinearity of the relation

between di and p, for small perturbations it may be

linearized around the "mean" state d' = p' = 0 (the mean has

been removed earlier, and quotation marks are used because

approximations may have been made.) Let G be an N x

matrix representing the N linear functionals relating d to

p: then the ith "row" of G is a linear functional

operator,

fgi(x,t)( )dxdt , (18)

since each datum, d i, is given by:

di = gi(x,t)p (x,t)dxdt 4 ei (19)

Equation (19) can be written more compactly by using an

operator form, representing p (x,t) as a vector, with an

infinite number of components:

d' = G p' (20)

E is a random error vector containing errors due to both

model errors and observation errors. The second modelling

step needed is to specify a continuous function for the

covariance of the unknown field, <p'(xl,tl)P'(x2,t2)>, which

can be represented as a matrix in the form we have adopted:

Cp = <ppT>. The final modelling step is as important as

the previous two, and consists of specifying the error

covariance matrix: C = <seT>



115

Now, substitute the statement of the forward problem,

(20), into the estimation framework, eq. (11):

A = <p'(Gp' 4 _)T> <(2p' 4 )(_p' 4 )T> - l (21)

(<'p' pTG*>4<pfIT>)( <GtpiTG*>4 <GpeT>4 <_p tTG*>4<ET>)-l

(22)

where G* denotes the adjoint of the linear functional

operator (see Tarantola and Valette, 1982a). If the

structure of the variable part of the field, p is

uncorrelated with the noise (an assumption violated if some

of the model error is due to linearization or missing linear

physics), then <p'ET> = 0 = <EpT>, and, since G is an

operator, not a random variable, it may be taken outside the

ensemble averages, and (22) becomes

A = <p''T>G* [G<pipT>G* 4 <_ET>]-1 (23)

This is the form in which the inverse is applied to

practical problems, and is identical to the form of "total

inversion" (Tarantola and Valette 1982a). Suppose p' and G

are made finite dimensional by a truncated decomposition in

M orthogonal functions, hj(x,t);

p'j = f hj(x,t)p'(x,t) dx dt j=1,..,M (24)
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Then, the operator, G becomes

(G)i j = f hj(x,t)gi(x,t)dxdt i=1

a simple matrix as well:

to N, j=1 to M. (25)

If <p'P'T> - W and <ceT> = E, then (23)

A = W GT(G W G T 4 E

which is the standard geophysical

(Aki and Richards,

inverse with weighting

1980).

If these forms are all retained, but some manipulations

are performed

identity matrix, I

involving a strange-looking form of the

( (Q)1/2SE/2*E - 1/2 is defined so

(Q) /2(Q)'/2 = Q ),

A= W GT(E 1 /2

then (26) becomes:

*E-1/2[G W GTI]E 1 /2*E'/2

or,

A = W GT(Ei/2*[E

Because the matrix

-1/2G W GTE-1/2

to be inverted

+ I .E 1 /2)-

is non-singular,

a true inverse exists, and the factors of E 1 /2 can be pulled

outside the inverse:

A = W GTE - 1 /2. [ (E-'/2G W GTE - 1 /2 4 I)-1]*E- /2 (29)

becomes

(26)

E )-
1

(27)

(28)
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Equation (29) is identical to (26), but can be thought

of as corresponding to a case where the forward problem has

been weighted by the inverse square root of the error

covariance matrix:

E- /2d' = E-1/2G *p' 4 E-1/2.e (30)

As mentioned above, if the matrix to be inverted is

nonsingular then this transformation is a vector identity

and cannot affect the estimator, but the form (29) is well

known in the literature as the "tapered least-squares"

estimator. The eigenvectors of (E- 1 /2GWGTE-1/2 4 I) are the

same as the eigenvectors of (E- 1/2GWGTE-1/2) , and the

eigenvalues differ only by the additive 1 due to the

presence of the identity matrix. GWGT is the estimated data

covariance matrix based on the linearized forward problem,

G, and the estimated covariance matrix for the unknowns (W).

This matrix is non-negative definite, but may have small (or

zero) eigenvalues.

In most practical cases, the process of observation

will introduce errors into the data, and adding the

covariance of these errors, E, to the ideal, model-derived

data-data covariance stabilizes the singularities to the

extent required by the level of errors in the data. In some

applications where the covariance matrix justification may
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not be convenient the addition of a scalar multiple of the

identity matrix is an ad hoc way to obtain a stable inverse

that retains the same eigenvectors as the original

(singular) matrix. Because this procedure "tapers" the

singularity by adding "noise" to the diagonal to reduce the

amplification of noise by the reciprocals of the small

eigenvalues, it is called "tapered least-squares". This

technique can only be justified in terms of least-squares

methods if the matrices are weighted so as to have the form

(29).

The Singular Value Decomposition (SVD) is a method for

inverting non-square matrices (Lanczos, 1961). It is only

applicable to cases where both the data and the unknown are

discrete vectors. For concreteness, consider the following

weighted linear forward problem,

E-1/2d ' = (E-1/2G W1 /2)(W- 1 /2.p') + E- /2. (31)

Where the symbols are as defined above.

E is (NxN) square, and W is (MxM) square, and are the

data measurement error and model covariances, respectively.

(E- 1 /2G W/ 2) is (NxM), and does not posess an inverse in

the standard sense.
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A practical inverse can be constructed, following

Lanczos, by recognizing (E-1/2G W1/2) as a linear

transformation between the model space and the data space,

and solving the coupled eigenvalue problems for the bases of

the two spaces:

(E - 1 / 2
G W/2) .V i = i . u i  (32)

(E-1/2G Wl/2)T.ui = Xivi (33)

Let (E-1 /2G W1/2) be called G', and the sets of

eigenvectors be called U = {ui}, (NxN), and V = {vi , (MxM),

with A the associated (NxM) matrix with the eigenvalues on

its diagonal:

G'V = UA (34)

G'TU = VAT (35)

(Lanczos (1961) gives a full discussion of the analysis

here.) These eigenvalues are usually obtained as the

positive square roots (no loss of generality) of the

singular values, Xi 2, obtained from solving the simple

eigenvalue problem for the square matrix;

(E-1/2G W1/2)o(E-1/2G W 1/2)T = G'G'T (NxN) (36)
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or

(E-1 /2G W1 /2)T*(E-"/2G W'/2) = G'TG' (MxM) (37)

solving whichever problem is smaller. If the problem is

underdetermined (M>N), then (36) is used, so that we solve

G'G'T u = X *ui  (38)

or

G'G'T.U = U.ATA (39)

This problem has N eigenvectors, U, (a complete set), but

some of the associated eigenvalues will be zero. The

decomposition of G' into eigenvectors and eigenvalues is

G' = U.A-VT (40)

This suggests that a "pseudo inverse" (Lanczos, (1961))

could be defined as

T')-1 = V (AT)-1.UT (41)

( (AT) - 1 is an (MxN) matrix with 1/X i as the ith diagonal

element, i=1 to N)

since

(G')-I = V*.(AT)-1T.UT.u.A.VT (42)

= V. (AT) -1A.VT (43)

N

= i(1/Xi)Xi v iT (44)
i=1
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Unfortunately, the factor of (1/Xi) can be

troublesome if (G')N - 1 is to be applied to data. The

inverse can be stabilized by removing the negligible

eigenvalues, leaving R significantly non-zero eigenvalues,

{Ii: i=1,R}. Then G' can be written in terms of these

"activated" eigenvectors and eigenvalues only:

G' = U,*A.V T G' (45)

Ar is (RxR) with the non-zero eigenvalues on its

diagonal. Ur is (NxR) and Vr is (MxR), and they contain the

associated "activated" eigenvectors and are the basis sets

for the range and domain, respectively, of the

transformation G'. The pseudo inverse of G' can then be

written as

(G')-1 1rhr-l.UrT (46)

- G'T.(G'G'T - 1  (47)
r

= (E- 1 /2G W 1/2)T*(E- 1 /2GWGTE-1/2) -1 (48)
r

The pseudo inverse solution to the weighted forward

problem is then:

_W/2A ' = (E-1/2G W1 /2)T.(E- 1 /2GWGTE-1/2)-I.(E-1/2d ' )  (49)

r
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or

A' = W1 /2.(E-1/2G WI/2)T (E-1/2GWGTE-1/2)-1.(E-1/2d ' )  (50)
r

The singular value decomposition enables matrix

inversion by ignoring the unstable eigenvalues. The matrix

will have the same eigenvectors as the tapered least-squares

inverse, provided the weighted forms in (29) and (31) are

used. Recall that weighting the forward problem has no

effect on the estimator when the noise covariances are

included to make the matrix non-singular. Weighting is

necessary when noise is not added, for otherwise, when the

pseudo inverse is computed using only the R largest

eigenvalues, the size of each row is important, and a change

of units may change the estimator. The weighting using the

error covariance matrix begs the question of why to weight

at all--why not add the covariance in directly and save the

trouble (and computer time) of computing the eigenvalues and

eigenvectors explicitly?

The principle reason for using a truncated set of

eigenvalues instead of tapering is that it yields an

unbiased estimator for components of the model along the

eigenvectors which are preserved in the inverse. This is

discussed in Zlotnicki, Parsons, and Wunsch (1982), and will

be briefly summarized here. Recall the SVD form of the

forward and inverse problems:

E-1/2d' = (E-'/ZG WI/2)-(W-/2.p ' ) 4 E-1/2.E (51)
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or

d' = G'p' 4 E

and

S(G')-ld'
r -

= r Ar -1 U Td'-r -rr

R

= vi(1/
i=l

(53)

(54)

(55)Xi )uiTd'

If we then substitute in

put d' in terms of 2', we

R

p' vi(
i=l

the forward problem (51) to

obtain

1/Xi)uiT.(U*.A*VT)p '

( 1/ Xi) XiiT.p'

R

i=l

Thus, if P' is a linear combination of the R basis

then <'> = <p'> and the estimator is unbiased.

R

vi
i=1

(56)

(57)

(58)

(52)

vectors, Vr,
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Suppose that we examine the same form when errors have

been added before inversion. Under the imposed weighting,

the error covariance is the identity, so the tapered form of

the estimator is:

N
p' = , i(1/[i41])XliT. '  

(59)
i=1

Now <p'> f <p'> for all p'. The bias of the

probabilistic estimator results (in this simple form) from

the noise "tapering" of the eigenvalues in the ideal

data-data covariance matrix. The choice of which estimator

to use seems to be at least partly dependent on the

psychology of the investigator; for a more detailed (and

philosophical) discussion see Zlotnicki (1983). The

inversions to be presented in this thesis use the biased but

minimum variance estimator.

If the model is instead left as a continuous field,

p'(x,t), and the covariance function is assumed to be a

Dirac delta function, 6(x1-x2,t1-t2), then this corresponds

to imposing no a priori constraints on the variation of

p(x,t), and the Backus-Gilbert (1967) result is reproduced

(Tarantola and Valette (1982a)). The Backus-Gilbert

formalism requires sophisticated mathematical analysis

beyond the matrix algebra presented above, and will not be

described here. Eisler, New, and Calderone (1983) have

discussed this method of inversion in detail as applied

specifically to ocean acoustic tomography.



125

A main feature of this method is that it produces an

unbiased estimator. This is heuristically consistent with

the earlier analysis, since the 6() covariance function for

the unknown has infinite energy, the limiting case of

uncertainty in the mean value. In practical terms, allowing

the expected energy in the unknown field to go to w produces

infinite signal to noise ratios, negating the biasing by the

eigenvalue tapering. The statistical implications for an

estimator generated by assuming (incorrectly) an infinite

signal to noise ratio are that the error must be controlled

in another way, like the truncation in the SVD inverse.

Given certain assumptions, the stochastic inversion

framework can thus be compared to more familiar forms. The

simplifications in form allowed by truncation/discretization

assumptions such as (24) restrict the generality of the

stochastic inverse or the "total inverse" of (23), but each

simplification can speed computations. Projecting p(x,t) on

a finite set of basis functions may sometimes be necessary

from an economic standpoint, particularly when the kernels,

gi(x,t) are small-scale and complicated, or when

non-linearities force frequent recomputation of the inverse

operator.
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5.3 NON-LINEARITY AND ITERATION

The pure stochastic inverse as written in (9), (10), or

(11) was derived on a basis of statistics, without regard to

the order of the systems generating the p(x,t) or di. If,

as was done for tomography, the covariances are calculated

from a model for <p'(xl,tl)P'(x2,t2)> and from a functional

expression for the forward problem, the functional must be

linear to obtain the simple form in (23). For many

applications, the functionals, gi(x,t), linearized around a

reference state po(x,t), do, may be valid only for small

perturbations. For compactness, let us return to the

"vector" notation for p(x,t). If the estimated perturbation,

p' is large, then the functionals must be recomputed around

the new state

P1 = Po p' (60)

The obvious solution would be to re-linearize around the

estimated state PI:

d = G(P) 5 G(E1) 4 3G - 1) (61)

= G(p 1 ) 4 A1 .(p - p1) (62)

The inversion would then have the form:

E2 = p1 4 A1-1.(d - G(pl)) (63)

where A-1 is the inverse of the "matrix" of partial

derivatives which represents the linearized operator.
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This type of iteration has several problems when one

considers the form of the stochastic inversion. The

fundamental assumptions are that we have some information

about the first and second moments of p and d. If the

reference state is shifted as a result of iteration, then

these assumptions are no longer applicable. Even if one

argues that they were poor to begin with, the new estimator

will require re-computation of the covariance function, as

well as the matrices.

To avoid these problems, it is desirable to keep the

original reference state and covariance functions, while

re-linearizing the forward problem around a new state closer

to the true state:

= () = G(o) 4 Ao'( - ) (original) (64)

= (Ek) 4 Ak'( - Pk) (kth iter.) (65)

S(pk) 4 Ak' ( - Po) (Eo - 2k)] (66)

The forward problem can be re-written to reflect

variations around the original reference state, as required

by the statistics:

d - G(Ek) 4 Ak(k - Po) = k (P - Pb) (67)

and the inversion:

Ek41 =Po 4 Ak-1 [d - G(pk) 4 Ak(pk - Po)6] (68)
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where Ak-1 is the inverse operator for the matrix of partial

derivatives at the k-th iteration.

Tarantola and Valette (1982a) discuss this iteration

technique, calling it "fixed-point iteration", but they do

not mention the statistical reason for retaining the

original reference state, or the importance of the fixed

point for consistency in the covariance functions and with

any dynamic model. These latter are the primary reasons for

using the fixed point iteration in the tomographic

framework. Note that the success of iteration depends on

the relative weakness of the non-linearities in the forward

problem. If the linearization produces a result of opposite

sign to the true value, then iteration cannot be expected to

converge. For the acoustics, the linearization is generally

robust: even if a strong ring or the wall of the Gulf

Stream changes the sound speed by amounts far outside the

boundaries of the linearization, the observed travel times

will have the correct sign.
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5.4 ITERATION SPECIFIC TO THE APPLICATION TO TOMOGRAPHY

To fix ideas, it is useful to consider fixed-,point

iteration as applied to the tomographic inverse problem,

assuming only travel time data. Let Co(x,t) be the

reference state, C(x,t) be the true state, and C'(x,t) the

difference (perturbations relative to Co(x,t)). The forward

problem, linearized around the reference state, is:

di = f ds - f C'(x(s),t) ds (69)
r Co(x(s),t) r Co(x(s ) ,t )oi oi

roi is the path of the ith ray in the Co(x,t) state.

The true ray path, propagating in the C(x,t) sound speed

field, will be called Fi, and will generally differ from the

unperturbed ray path, roi.

The linearized functionals for the acoustic ray inverse

problem can be written in operator form, for ease of

comparison with the discussion above, replacing p by C.

di = Gi(C2) - aGi(C - Co) (70)
aC

d = G(C o ) 4 Ao(C - Co ) (71)

so, inverting as before,

C 1 = C 4 Ao - 1 [d - G(Co)] (72)

The subscript "o" denotes that the ray paths used in

the inverse were traced in the unperturbed Co(x,t) state.
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(Ci(x,t) has been written as Ci, but may be continuous.)

Once C 1 has been obtained, the fixed point re-linearization

is carried out as before:

d = G(C1) + AI(C - C 1 )

di = f ds
r Cl(x(s),t)
li

This must again be

[C(x(s),t)
C1(x(s) ,t

- f
r
ii

re-arranged

- Cj(x(s),t)]

(74)

to have the form of

fixed-point iteration:

- f ds
r Cl(x(s),t)
ii

+ f[Co(x(s),t)
r C 1 (x(s),t
li

- Cl(x(s),t)]ds

S -f[C(x(s),t) - Co(x(s),t)]ds
r C1 (x(s),t)
li

(76)

The left hand side can be simplified using the

expansion as originally used in the linearization:

f ds
r Co(x(s),t)
ii

= -f[C(x(s),t) -
r C1 (x(s),t)
li

(77)

(78)

(73)

(75)

. -9

Cn(x(s),t)]ds
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Thus, for the acoustics, the fixed-point inverse problem

is stated as:

di - f ds
r Co(x(s),t)
lii

- f[C(x(s),t) - Co(x(s),t)]ds
r C 1 (x(s),t)

(79)

Each sucessive iteration changes the data fed into the

inverse only if the ray path changes;

c2 o 4 A1-

Both the data

d l  - f ds
r Co(x(s),t)
11

di - f ds
r Co(x(s),t)
ii

dN - f ds
r Co(x(s),t)
1N

fed into the inverse and the inverse

operator, Al-1 , are calculated for the modified ray paths.

Aj-1 inverts the perturbed operator,

f[C(x(s),t) - Co(x(s),t)]ds
r C 1 (x(s),t)L
lii

(81)

although the statistical assumptions are referred to the

original reference state.

(80)
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CHAPTER 6

THE STOCHASTIC INVERSE APPLIED TO THE OCEANIC MESOSCALE

6.1 ADOPTING THE VERTICAL MODE BASIS

Given the results of quasi-geostrophic theory (Chapter

3), one wishes to construct the inverse framework to take

advantage of any simplifications suggested analytically.

By building a body of theory into the inverse, constraints

such as non-divergence and geostrophic balance are applied

during construction of the inverse operator, reducing

indeterminacy and increasing resolution. For the mesoscale

tomography experiment, the unknown fields were required to

have the forms of solutions to the linearized

quasi-geostrophic equations. This structure permits both

the parameterization of vertical structure using modes

instead of layers, and the calculation of velocities as

part of the inverse procedure without any direct velocity

measurement, although the indeterminacy of reference level

velocity remains (and is explicit in the equations for the

velocity associated with the Oth mode). Because of the

flexibility and generality of the stochastic inverse

framework, I will first treat the application of

quasigeostrophic theory to the stochastic inverse, from

which the step to other inverse methods should be clear.
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The major simplification obtained from the linear

quasigeostrophic theory is the separation between the

vertical and horizontal variation. The vertical structure

equation for streamfunction, T(x,t), can be solved

independently of the horizontal evolution equation,

yielding solutions of the form:

n
_(xt) = I 4i(x,y,t)*Gi(z) (1)

i=0

Chapter 3 describes the conversion from one set of

vertical basis functions to another, so that, for example,

displacement can be written as

n
i(x,t) = #i(x,y,t)*Gi(z) (2)

i=l

Gi(z) and Gi(z) are related analytically as shown in

Chapter 3.

This procedure may be extended to tracer-like

quantities, such as T, S, sound speed, or oxygen, which do

not play direct roles in the evolution equations. The

extension is based on distinguishing between perturbations

induced by the vertical motion of water due to the

mesoscale fluctuations and those which result from the

presence and interleaving of different water masses.
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Let primed variables denote perturbation quantities,

while barred quantities denote practical estimates of true

(ensemble) means. The true salinity field, S(x,t),

can then be expressed as:

S(x,t) = S(x,t) 4 S'(x,t) (3)

<S'(x,t)> = 0. (4)

The fundamental averaged quantities are T, 6r, and S.

Or = O(T,S,p,pr) = potential temperature referenced to Pr,

from which several important quantities may be derived.

ar = o(8r,S,pr) potential density anomaly (5)
(referenced to Pr)

C = C(T,S,p) sound speed (6)

N = N(T,S,p) bouyancy frequency (7)

Potential density is the significant quantity for the

dynamics, and its "barred" state represents the basic state

around which the dynamical equation were linearized. The

rest density profile is determined from the averaged

temperature and salinity fields:

ar = a(9(T,S,Ps,Pr),S,Pr) (8)

For any other tracers, simple averages may be

computed.
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Given these reference states, the perturbations due to

the dynamical evolution of the field may be calculated:

n
S'(x,t) = [ i(x,y,t).Gi(z)].S z + Rs(x,t) (9)

i=l

n s
- ~ i(x,y,t)*Gi(z) + Rs(x,t) (10)

i=1l

s r
Gi(z) E Gi(z) - Sz are the modes of salinity

variation due to the mesoscale fluctuations, and Rs(x',t)

is the residual salinity anomaly not fundamentally

connected with the dynamics. The analysis here assumes

that the displacements (and perturbation) are small enough

to justify the linearization used throughout. Similarly,

the potential temperature variation may be written:

n e
O'(x,t) = [ i(x,y,t)*Gi(z)] + Re(x,t) (11)

i=1

R6(x,t) is the potential temperature perturbation

independent of the dynamics, and

6C
Gi(z) - Gi(z)*(G)z (12)

are the potential temperature modes resulting from the

displacement field. The vertical derivatives of potential

temperature, (or in-situ temperature, density, or sound

speed) must be calculated locally, assuming adiabatic

motions.
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Similar relations hold for sound speed and passive tracers,

while a has no residuals by definition. The residuals may

be divided into vertical and horizontal modes of variation,

using EOF analysis, for example, so that

k s k s
Rs(x,t) = i(x,y,t).Ai(z) 4 . ?(x,t).i(x,y,t).dAi(z)

i=1 i=l dz
(13)

k 6 k o
Re(x,t) = i(x,y,t)*Ai(z) 4 5(x,t)*i(x,y,t)*dAi(z)

i=1 i=l dz
(14)

and so forth. The "tracer modes", A(z), (x,y,t), evolve

with the physics of passive advection/diffusion, at least

partially independent of the mesoscale evolution.

The {Gi(z) } and {Ai(z)} form a basis for the vertical

structure of each quantity, and observations indicate that

this basis is an efficient representation of the observed

structure. For potential density anomaly computed from the

65 casts of the first CTD survey of the tomography

experiment (D. Behringer) the first, second and third

flat-bottom modes fit 85% of the variance below the upper

200 meters. Only a few vertical modes are usually needed

to account for most of the variation over the >5 km depth

range, a simplification over the number of layers required

for a similarly realistic description.
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6.2 CONSTRUCTING COVARIANCES USING QUASI-GEOSTROPHY

The covariance calculations are similarly simplified

by this decomposition into vertical modes. Let the

displacement anomaly, r'(x,t) ( - 0), be represented by

the basis of dynamically-derived vertical functions

described above;

n
C'(x,t) = L 1i(x,y,t)*Gi(z) (15)

i=l

Then the covariance, <C'(_x1 ,t 1 )'(x 2 ,t 2 )> is given by

< '(_xlt1W(_x2,t2)>

- < i(xl,Y l ,tl) j(x2,Y2,t2)>*Gi(zl)*Gj(z2) (16)

since the vertical modes are not random variables and may

be taken outside of the ensemble average. This expression

(16) may be further simplified if the horizontal structure

functions are assumed to be uncorrelated between modes:

<ci(xl,l,tl)j(x2,Y2,t2)> =

sij <i(x1,Y , t1) i(x2,Y2,t2) >  (17)

This assumption is consistent with linear dynamics,

but is also useful in the general case, since robust

correlations between modes are not yet known accurately

enough to use as data.
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Given assumption (17), (16) becomes

< '(xl,t1) '(x2,t2)>

<= i(xl,Yl,tl)i(x2,Y2,t2)>*Gi(zl).Gi(z2) (18)

It is often useful to normalize the vertical and

horizontal structures so that the expected variance for the

ith mode is expressed by a scalar, Yi. Under this simple

transformation, introduced purely for flexibility later in

the inverse procedure, (18) becomes:

< '(xl,tl '(x2,t2)> =

C Yi*Hi(xl,Yltl,x2,Y2,t2)G)Gi(Zl)Gi(z2) (19)

The functions Hi are not necessarily stationary or

isotropic, so that energy gradients within the region are

allowed, and yi merely sets the overall energy level

expected for mode i.

By Mercer's theorem, (Van Trees, 1968), a symmetric

function, such as the covariance, may be expanded as a

product, so

m
Hi(xl,Yl,t1,x2,Y2,t2) = . aij'Fij(xl,Yl,tl) Fij(x2,Y2,t2)

j=1
(20)
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If the covariance is derived directly from data, then one

possible set of Fij's is the set of empirical orthogonal

functions, where aij is the jth eigenvalue of Hi, and

Fij(x,y,t) is the corresponding eigenvector. This

expansion converts the stochastic inverse back to a

weighted deterministic linear inverse, by supplying a

finite set of basis functions. The expansion (20) directly

expresses the trade-off between the deterministic and the

stochastic inversions. If (n.m) is allowed to go to o,

then the continuity of the solution is recovered, but if

the expansion is well-defined and truncates for finite

(nem), then a deterministic inversion using the expansion

n m

'(x,t) = ( aij.Fij(x,y,t)).Gi(z) (21)
i=1 j=1

is possible, and may be preferable for reasons of

computational efficiency. If (n.m) is too large for

economic summation of the series or if the basis functions

Fij are not easily definable in advance, then the

stochastic inverse is more useful because the detailed

physical structure of the horizontal variation does not

need to be rigidly specified in the model. It is usually

possible to specify vertical structures a priori for the

mesoscale. This has been done, in order to streamline

processing, for all the inversions to be discussed below.
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6.3 ESTIMATION

The simplification and efficiency gained by the use of

the modal basis becomes clear if the form of the stochastic

inverse operator is calculated. Because the set of modes

describes the vertical structure, only their amplitude need

be calculated by the inverse. We no longer need to

estimate '(x,t), a'(x,t), C'(x,t), and other quantities

separately. Instead, calculate i(x,y,t) once, and

then construct the desired fields by multiplying by the

appropriate vertical mode functions.

A
i(x,y,t) = <i(x,y,t)dT>.(<ddT>-l).d (22)

This formula (22) does not require the vertical modes to be

orthogonal. Non-orthogonal basis sets complicate

the calculation of expected energies because the

projections on specific modes become ambiguous.

Once the set of 4i(x,y,t) has been obtained, the

fundamental structures have been established, so all

related quantities may be calculated by summing the

appropriate expansion.
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(xt)

A n
o'(x,t) = i(x,Y

n .

'(x,t) = i(x

... and so on.

(23)

a
,t) *Gi(z) (24)

C
,y,t)*Gi(z)

(25)

(If no measurements which constrain i are available,

it is set

estimate

to 0). If u(x,t) is desired, then one

Mi (x,y,t)
ay

= <3i(x,y,t)dT> (<ddT>- 1 ) d
ay

This only requires re-computation of the model-data

covariance matrix:

<_i (x,y,t)dT>
ay

The data-data covariance matrix (and its inverse)

change only if a different data set is

then

must

(26)

n A
= i(x,y,t)*G i ( z )

A C
Sj(x,y,t)*Aj(z)

used.
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6.4 USING ANALYTICAL RELATIONS BETWEEN THE COVARIANCES

The vertical modes corresponding to the various

physically interesting quantities may be calculated from

one another, and equations (22) and (26) suggest similar

properties for the horizontal covariances. Let i(x,y,t),

the horizontal structure of the ith streamfunction mode, be

the fundamental quantity for which the covariance is

specified. This is consistent with the form of the

quasigeostrophic theory, where a streamfunction is used as

the basis from which the other fields of interest may be

derived. Denote the covariance of the horizontal structure

of the ith displacement mode with itself by

<i(x1,Yl,tl)i(x2,2,t2)> = yi.Hi(x1,Yl,tl,x2,Y2,t2) (27)

The normalized covariance Hi, has not been assumed

homogeneous or isotropic. The covariance of the horizontal

structure of u(x,t) with the horizontal structure of

displacement is then given by

<__i(x1,Yl ,tl)i(x2,Y2,t2)> = Yi.3Hi(x1,Yl ,t1,x2,Y2,t2)
aYl aYl1

(28)

This covariance, in conjunction with the linear

functionals supplied by the forward problem, is used to

calculate the model-data covariance matrix in (26) above.

Note that once a function, H, has been chosen for the

displacement/streamfunction horizontal structure, the

covariances of related fields may be obtained by operating

on H.
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In general, suppose we are interested in

n
Fj(x,t) = Lj[ C fi(x,y,t) Gi(z) ]

i=1

Fj(x,t) is a linear function of

(displacement) field, so that it com

and averaging. Then

<Fj(xl,tl)Fk(x2,t2)>

(29)

the basic

mutes with summation

n n
<Lj[ fi(xl,Yl,tl)*Gi(zl)]*Lk[1 m(x2,Y2,t2)-Gm(z2)]

i=l m=l

(30)

< > is a linear operation, and Lj and Lk are unaffected by

the averaging. In addition, Lj operates only on the first

(xl,tl) coordinate system, while Lk operates only on the

(x2 ,t2 ) system, so the operators may be taken outside the

ensemble average.

<Fj(xl,tl)Fk(2,t2)> =

Lj(Lkl[ <pi(xl,Yl,tl)i(x2,Y2,t2)>* Gi(zl) Gi(z2)]) (31)

<Fj(xl,tl)Fk(X2,t2)>

Lj(Lkl Yi*Hi(xl,Y ,t l,2,Y2,t2)*Gi(zl)*Gi(z2)])

<Fj(x l , t l ) F k ( x 2 , t 2 ) >

lYi*Lj(Lk[Hi(x l, tl, x2, 2, t2)"Gi(zl)*Gi(z2)])

(32)

(33)

This

where the

Fj(xl,

is a general result, and encompasses the case

operators produce the data:

tl) = dj, Fk(x2,t2) = dk (34)
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In this case, Lj, and Lk represent linear functionals as

derived in the forward problem. For example, suppose that

(35)

Tl1 (tl) is the travel time anomaly for the ith ray

(arbitrary indexing) at time tl, and the mth ray has the

same path but travels in the opposite direction from ray R.

Suppose as well that

Fk(x2,t2) = Tq'(t2) 4 Tr'(t2)

which has

of the j,

similar structure. Then (33) is a representation

kth element of the data-data covariance matrix Q:

(Q)jk =

2.1 I f { <ci[(xy,t)(sl)l i[(xy,t)(s2)]>l
rq C(x(sl),t) C(x(s2),t)/

c c
Gi(z(s l ))*Gi(z(s2))*dslds2 I

(37)

c c
21Yif f Hi[(x,y,t)(sl),(x,y,t)(s2)]Gi(z(sl))Gi(z(s2))dslds2

rlrq C(x(sl),t)4 C(x(s2 ),t)

(38)

(36)

Fj(xl,tl) = Tl'(tl) 4 T,'(tl)
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Similarly, if dj(t) = T'(xj,t), the temperature anomaly at

(xj,t), and dk = u(xk,t), the eastward velocity anomaly at

(xk,t), then the corresponding element of the data-data

covariance matrix is:
T u

(Q)jk = C Yi'3[Hi(xj,Yj,t,xk,Yk,t)]*Gi(zj)*Gi(zk) (39)

1 3yk

These forms suggest that generality in mode weighting

may be obtained easily by retaining the sum over vertical

modes, so that

_ = C Yi'Qi (40)

Qi is the data-data covariance matrix calculated for

just one mode. The assumption that there is no correlation

between modes has been necessary for the simplification

used in this chapter, but that assumption represents a

state of restricted information relative to the state where

the correlation coefficients between the modes are known.

If reliable correlations between modes did exist, these

could be incorporated into this framework by adding the

cross-terms. In general, to allow maximum generality, it

is worthwhile to keep separate matrices for distinct modes

or different physics, because the expense of evaluating

multiple integrals over ray paths, such as (38), can be

major. The matrices may then be linearly combined with

coefficients proportional to expected energies, to produce

a data-data or model-data covariance matrix for a given

estimation attempt without re-computing.
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6.5 CONSTRAINTS

When one wishes to apply constraints as part of the

estimation framework, each constraint should merely be

treated as another datum, with weighting appropriate to its

degree of certainty. If, for example, conservation of mass

in a box, r, with boundary ar, is to be enforced, then one

can write the constraint as a forward problem for the

datum, d:

0 = d = f p-u.n ds ± e (41)
ar

u is the velocity vector, p is density, e is the error

limit, n is the unit normal to the surface of the box, and

ds is an element of area of the boundary, ar, of the box,

r.

The integral has the standard form of a datum, and

must be linearized to be used in the estimation framework

presented in this thesis. Recall from chapter 3 that the

basic state, to which the inverses are referenced, has no

velocities, and density p = p. Equation (41) can then be

linearized:

0 = d = p . n ds ± e (42)
ar
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This constraint (42) asserts 0 mass creation or

destruction within the box, within uncertainty c, as a

linear functional of the unknown velocity field. As

another example, a no-flow condition could be enforced on

the bottom, B, again with normal n and area ds:

0 = d = f u.n ds + e (43)
B

Note that no linearization is needed for this type of

constraint. Given the constraint in the form (43), the

model-data and data-data covariance matrices can be

contructed by applying the functionals to the basic

covariance functions. Suppose, for example, that the

bottom boundary condition, (43), is to be used as a datum.

The diagonal element of the data-data covariance matrix is

the autocovariance of the datum, d:

<dd> = ff <(u(xl,tl)-n(sl))(u(x2,t2)*n(s2))dsldS2> <E>
BB

= ff <(u(xl,tl)Tn(sl))(u(x 2 ,t 2 )Tn(s 2 ))>dslds 2 ± <EE
BB

= ff n(sl)T<u(xjtl)u(x 2 ,t 2 )T>n(s 2 ))dslds 2  ± <EE
BB

(44)

The 3x3 matrix of covariance functions can be

evaluated by calculating the covariances as outlined above,

using the quasi-geostrophic operators. The estimator would
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attempt to satisfy (43) to within 6, using the

probabilistic weighting. The residuals would then provide

a quantitative consistency check on the constraint, just as

they do for other data.

The integral constraints are perhaps the most obvious,

but differential constraints can be used as well, again

treating the constraint as a datum with some a priori error

limit. One could apply the basic thermal wind balances

from Chapter 3, but these are trivially satisfied because

the covariance functions have been defined to be consistent

with quasi-geostrophic structure, and thus satisfy the

diagnostic relations identically. For example, consider

the non-divergence condition,

3u 4 av = 0 (45)
3x ay

If this condition is imposed as a constraint, then one

can write (45) as a datum for each point within the volume

of interest:

0 = d = au av ± (46)
ax ay

The operations in (46) are linear, so the elements of

the data-data covariance can be calculated using the

procedure outlined above.



149

In order to fix ideas, consider one element of the

data-data covariance, <dD>. Suppose, for simplicity, that

the other datum, D, is a measurement of streamfunction, by

some miracle, so that

<dD> = a(u(xl,tl)P(x2,t2)> 4+ 3v(xl,tl)(x2,t2)> (47)

3x1 ay

= Yi'( -_ <ai(xl,yl,tl)¢i(x2,Y2,t2)>Gi(zl) i(z2 )

3xi ayl

a <8_i(xl,Y1 ,tl) i(x2,Y2, t2)>Gi(zl) Gi(z2) )

= 0 (48)

The other elements in this row/column of the data

covariance vanish as well, as do the corresponding elements

of the model-data covariance.

The diagnostic relations from the quasi-geostrophic

approximation were imposed on the covariances because they

are generally thought to hold nearly everywhere in the

ocean, at least to lowest order. If (45) was to be

explicit, with finite error, then an infinite number of

"data" could be constructed, one for each point in the

volume. The covariance functions for velocity, density,

streamfunction, and so on would be independent, so the

cross-covariances would be zero, but the relative energy

levels and scales would still be adjusted to fit

expectations, and would thus resemble the auto-covariances

calculated using the quasi-geostrophic framework.
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Applying the diagnostic constraints to the model means

that they are specified without uncertainty, but they are

applied to all points in the volume without

over-complicating the estimator. The choice of which

constraints to use in the model, and which to apply

explicitly in the construction of the estimator must be

based on a trade-off between these two considerations. If

the uncertainty of the constraint is non-negligable for the

purposes of the mapping, then it should be applied

explicitly. For integral constraints, such as (43) above,

this is convenient, but for a differential constraint, such

as conservation of potential vorticity, one may choose

either to build it into the model and add an appropriate

amount of error to the covariances, to write explicit

equations for a spaced set of points in the volume, or to

use an integrated version of the constraint on blocks

within the volume.

Perhaps the most important advantage of specifying the

constraint as an additional datum is the consistency check

that the residuals provide. When the model is built to

conform to a set of a priori constraints, errors in the

constraints will be distributed over all data, and may be

difficult to dignose. When the constraint provides a

datum, the misfit of that datum with the other data and

constraints clearly and quantitatively evaluates the

consistency and effectiveness of the constraint.
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The inverse procedure combines consistency checks with

constraints in a natural way. As one adds constraints to

the model, one reduces the indeterminacy of the unknown

field, thus reducing the number of degrees of freedom

available to fit the data. The addition of constraints

therefore both (1) reduces the effective noise power by

restricting the "bandwidth" of the signal to which the

estimator is sensitive, and (2) reduces the ability of the

original model to fit the data, possibly driving up the

residuals.

The addition of the constraints increases the

resolution of the estimator, but if the fit to the data

declines badly, so that the estimates of the data errors

(residuals) are larger than allowed in advance, then the

validity of the constraint (or the prior estimate of the

noise level) must be re-examined. "Residual watching" has

been an art, but it can be quantified under the formalism

of the probabilistic inverse. In any case, the inverse

techniques enable one to simultaneously check the validity

of a conjecture and benefit from the increased information

available if the conjecture was true.

The fact that the model proposed for the ocean

variations incorporates the quasi-geostrophic diagnostic

relations greatly increases the resolving power of the

tomographic system. Consider the case where the analytical

modes are used as a basis. The density data or the
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acoustic data can then resolve all but the 0 th mode, so the

indeterminacy of velocity reduces to indeterminacy of one

mode amplitude. This should be relatively easy to

estimate, using reciprocal travel times or a few current

meters, particularly given the large scales expected for

the barotropic mode.

This enhanced resolving power has been questioned on

the basis that it is blind to contradictions in the basic

assumptions. This is untrue, because the residuals from

the estimators give a direct and quantitative measure of

how well the model accounts for the data. The choice of

whether to test or incorporate theoretical results must be

made on a scientific basis. If, for example, the problem

of acoustic propagation was not well-understood, then the

data from the 1981 experiment could only be used to check

consistency with the predictions of the theory, by

comparing the ray arrivals measured at the receiver with

those predicted by the theory, given a hydrographic survey

of the area. By assuming that the acoustics are known, we

can instead map the hydrography independently. In the same

vein, it is to our advantage to incorporate any theoretical

results which are not under test. Given that dynamic

height maps have been used for many years, the inversion

procedure presented above should be no more controversial,

particularly since it does not assume a reference level.
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CHAPTER 7

CLOCK ERRORS, MOORING MOTION, AND ANCHOR POSITION

7.1 INTRODUCTION

Ocean tomography as realized in the 1981 experiment

depended on autonomous sources and receivers moored at

mid-depth in a 300 x 300 km. array. Each instrument had an

independent clock, and could sway in any direction as the

mooring leaned in response to currents. Both mooring lean and

clock drift can produce measured travel time changes which

swamp the 40 msec. expected from mesoscale variation, so it is

imperative that x,y,z offsets of a mooring from its assumed

position and offsets of the instrument's clock from the true

time can either be removed directly or compensated for. The

1981 tomography experiment was designed with systems to

measure these errors so that they could be removed when the

acoustic data was processed. The WHOI mooring tracking system

was used with each acoustic mooring, recording position to

within a few meters, and the frequency shifts of the quartz

oscillators used as clocks were logged daily (see Chapter I).

These correction systems were not invulnerable to

failure, and mooring motion corrections were not available at

least part of the time on all instruments, while two

instruments were completely without mooring motion

corrections. The corrections were subject to errors, as well.
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For example, the clock drift measurements showed large,

transient shifts (R. Spindel, personal communication) when the

moorings were deployed, and the treatment of these transients

is not necessarily obvious.

It is important to note that the mooring motion

corrections only supply shifts with respect to an unknown

reference position. Adding the uncertainty of LORAN

navigation in the area in which the moorings were set to the

possible horizontal motion of the mooring while it sinks

during deployment means that the position estimates provided

by the ship navigation at the time of setting were only good

to about ± 2 km. in both the x and y directions. The depths

of the instruments were also uncertain, due to possible errors

in the lengths of the cables used to construct the moorings

and in the bottom depths. Pressure recorders can lessen this

uncertainty if they are available, but the instrument depths

used in the 1981 experiment were uncertain to within 2 to 200

meters. Errors in position, if uncorrected, would prevent the

use of numerical travel times as a reference state, because

the differences between the observed travel times and the

numerical travel times would be dominated by the position

differences between those used for the ray trace and those

which actually occurred.
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Peter Worcester (1977) had to deal with the problems of

uncorrected mooring motion when he transmitted between

independently drifting and heaving ships, and portions of the

discussion below follow his lead. Robert Spindel, at WHOI, is

responsible for most of the procedures for tracking the

moorings, calibrating the clocks, and applying the recorded

corrections to the data.

Finally, even when mooring motion corrections are

available, they are lacking in two respects: 1) The

instrument moves vertically as well as horizontally, and these

vertical shifts can distort the ray arrival pattern, even

invalidating the ray identification if the mooring shifts by

an extreme amount. 2) The simple corrections, AT = AR/C,

described above for the horizontal position shifts are not

completely accurate descriptions of the effects of changing

instrument position on travel time, and the differences can

easily be order 4 msec.
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7.2 DAY-DIFFERENTIAL AND RAY-DIFFERENTIAL TRAVEL TIMES

A relatively simple solution to the problem of unknown

mooring reference position is to abandon the numerical travel

times, (and thus, the a priori reference state) and look

instead at the travel time changes between day pairs during

the experiment. If the ocean structure was known for one or

more days of the experiment, as a result of a CTD survey, for

example, then all differences could be taken relative to this

day. Perturbations inferred from the travel time differences

could then be added to the known state of the ocean on the

reference day to produce an estimate of the total ocean

structure. This type of travel time information will be

called "day-differential", and was the type of data used to

construct the maps shown in the preliminary discussion

published shortly after the experiment (The Ocean Tomography

Group, 1982). In a longer experiment, the travel times could

be averaged over the length of the deployment, and the

differences with respect to this mean travel time would

produce perturbations relative to the mean ocean, provided the

experiment was sufficiently long to adequately estimate the

mean. Day-differentials have several good features: they are

immune to all constant shifts in time base for each

source-receiver pair, not just those arising from the unknown

reference positions, and also minimize the effects of errors

due to mis-identification of rays.
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Day differentials do not solve the problem of uncorrected

mooring motion, and in fact exacerbate it, because the errors

on the two days add together. The need for a survey of the

ocean to use as a reference state is problematic, since on the

one hand, one of the goals of mesoscale tomography is to

provide an alternative to expensive and slow ship surveys,

and, on the other hand, the survey requires a finite amount of

time, about three weeks in the case of the tomography

experiment, so that the picture of the ocean obtained by the

CTD is somewhat incompatible with the tomographic picture

obtained in 200 seconds. It is possible to partially correct

for this time problem by applying mesoscale dynamics to the

CTD field, using Rossby wave propagation to estimate a

snapshot of the ocean, although this approach requires many

extra assumptions with unpredictable errors. In any case, day

differentials throw away the absolute travel time information

which is available from the tomography instrumentation, and,

since the set of mooring motion corrections is incomplete, are

only useful for about 5 days of the experiment.

The horizontal mooring motions can be partially removed

from the inverse by referencing the travel times for each

source receiver pair to one of the rays in the pattern. Thus,

if there were 5 resolved arrivals for a given source-receiver

pair, one of the arrivals would be chosen as a reference and

subtracted from the other 4, yielding 4 "ray-differential"
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travel times which contain only distortions of the arrival

pattern (Worcester, 1977). Horizontal mooring motions just

displace the arrival pattern, to lowest order, so

ray-differentials provide a certain amount of immunity to

uncorrected horizontal mooring motion. If only ray

differentials were used, the day differentals would not be

necessary, since the pattern distortions could be referenced

to the numerical arrivals.

Unfortunately, the expected variations of the ray

differentials are very small, order 10 msec RMS for the

mesocale tomography experiment, so that the error levels

become very critical. An error in ray identification will,

when the ray differentials are calculated, swamp the ocean

variation. Shifts in instrument depth strongly distort the

pattern of ray arrivals, and can be important sources of ray

differential variance. Horizontal mooring position shifts do

distort the pattern weakly, and this source of error can be

order 5 msec if the ray pattern contains rays with widely

differing angles. The random measurement noise is doubled for

ray differentials, as a result of the subtraction, so that if

the random errors are 5 msec or larger the ray differentials

will exert little influence on the maps.
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When inversion calculations were attempted for the 1981

tomography data using ray differentials, the various noise

sources were found to render pure ray differentials nearly

useless. The Ocean Tomography Group paper used day

differential travel time data for all paths, and used both day

and ray differentials for two instruments, S4 and R5, for

which mooring motion corrections were unavailable, and the

results were still limited to the few days where nearly all

instruments had complete corrections.
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7.3 THE STRUCTURE OF MOORING MOTION AND TRAVEL TIME "NOISE"

Because of the limitations of "differential" travel

times, a more sophisticated approach to combatting the noise

from clock drift and mooring motion is required. The key

concept is that these sources of variance in travel time are

not white, but have identifiable physics and finite cross

covariances. The ocean variations have characteristic

patterns of effects on the acoustic travel times. These are

calculated when constructing the data-data covariance matrix

for the sound speed perturbations, Qc. The eigenvectors of Qc

are the expected modes of variation of the data vector, d, due

to the evolution of the mesoscale features, and the associated

eigenvalues are the expected powers of these modes.

In the same way, the measurement noise has a particular

covariance structure, the clock shifts another, the mooring

motion another, and so on. The measurement noise in travel

time determination is due to oceanic noise and the finite

bandwidth of the transmissions. These errors are random and

uncorrelated between paths, so the covariance function for

this physics is a 6-function, and this parameterization cannot

be improved on. Source or receiver clock shifts, on the other

hand, have exactly the same effect on each ray in a given

source receiver arrival pattern.
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The source clock shift will be the same for all rays

which leave that source, and the receiver clock shift will

likewise be constant for all rays which hit the same receiver.

Clock errors can thus be parameterized in terms of only one

number (time dependent) for each mooring, and the effect on a

given ray will depend only on which source-receiver pair it

belongs to. For a ray k from source i to receiver j, the

contribution to the measured travel time from clock errors ei

and ej will be

ATk = j - Ei (1)

The clock shifts, ei, are independent between

instruments, so the cross covariances of this state vector

representation should be zero, and no further parameterization

is necessary. Instead of a white noise variance added to all

data, the clock noise can be expressed by Nm = Ns 4 Nr

parameters, reducing the effect of unknown clock error. The

correlations of the clock shifts between rays allows this

parameterization and the resultant gain in resolution over the

white noise assumption.

The mooring motion noise is also correlated, as can be

seen by examining its physical basis. In a perturbation

framework, the travel time anomaly due to mooring motion or
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anchor position offset for ray k can be written as a linear

function of the x,y, and z shifts of both moorings, Axi, Axj:

ATk= aTk-AX a 3Tk*Ay i 4 aTk*Azi 4 3Tk.Axj 4 aTk.Ayj 4 aTk.Azj
axi  ayi azi axj ayj azj

(2)

The partial derivatives in (2) can be estimated by ray

tracing for different coordinates, but a simple perturbation

approach allows analytical calculation of these quantities.

First, decompose the horizontal terms into two parts: the

dependence of travel time on horizontal range, Rk; and the

dependence of horizontal range on the individual x or y

coordinate:

aTk*Axi = aTkaRk*Axi (3a)
3xi 3Rk ax i

3Tk*Ay i = aTkaRkAy i  (3b)
ayi aRk ayi

aTkAxj = aTk.aRkoAxj (3c)
axj 3Rk 3xj

aTkAyj = Tk'Rk*Ayj (3d)
ayj 3Rk 3Yj

The aR/ax,y terms can be calculated from the simple

geometry, see figure (7.1), while the 3T/3R and aT/az terms

can be approximated by assuming that the ray has a finite

width, with the phase fronts normal to the ray path, so that

the extra travel time resulting from the perturbed instrument
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RANGE ON SOURCE AND RECEIVER (X,Y) COORDINATES.
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R = yL - x
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position will be the time it takes for the phase front to

reach it (C. Spofford, personal communication). If the ray

path is assumed to be locally straight, at an angle 61 to the

horizontal, (positive for an upward-heading ray), and the

local sound speed is C1 , (see Figures 7.2 and 7.3), then, at

the receiver:

aT = -sin 1  (4)
az Cl

aT = cosel = P (see Chapter 2.) (5)
aR Cl

These are calculated at both source and receiver

locations, and (4) has opposite sign at the source. The

partial of travel time with respect to horizontal range is P,

the ray parameter, so it is conserved along a given ray if the

range dependence can be neglected. This means that the simple

approximation that travel time is a function only of

horizontal separation is correct, but that P, and not C1 , is

the constant of proportionality. The travel time changes for

vertical position offsets are different for source and

receiver because sinG 1 /C1 is not conserved.

Note that these expressions require the rays to be

identified, so that the angles at both source and reciever are

known. The converse is also true, however, as the mooring

moves, the behavior of each peak in the arrival pattern will

depend on the angle with which it arrives. In this way,

mooring motion allows a single receiving instrument to be used
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as a beam-former, adding angular information useful in ray

identification. Vertical motion is most effective at

distinguishing between angle, because of the sin(Ol)

dependence, but horizontal motions can contribute, provided

that the noise level is small enough.

Parameterization reduces the mooring motion errors to 3

unknowns per mooring. These are presumed to be independent,

although, if the moorings were rigid, there would be only two

unknowns per mooring, lean angle and lean direction, (figure

7.4), so the number of parameters could be reduced.

Unfortunately, the moorings were by no means rigid, but

significant correlation between horizontal displacement and

depth exists. For maximum generality and simplicity, I will

leave the expression for mooring motion travel time in the

form (2). Expected correlations between the parameters could

be calculated using numerical mooring models, and then input

into the inversions.
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FIGURE 7.4 INSTRUMENT POSITION CHANGES AS A RESULT OF MOORING LEAN.
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7.4 INCLUDING INSTRUMENT OFFSETS IN THE ESTIMATION PROCEDURE

Once the mooring motion and clock error dependences have

been calculated for each ray, a data-data covariance matrix

can be constructed. Let M be the matrix of partial

derivatives converting mooring motion and clock error to

travel time for each ray, and AS be the vector of x,y,z and

time offsets for all the moorings, so that, if AT is the

vector of travel time anomalies,

AT = M-AS (6)

By assumption, each element of AS is independent of the

others, so the covariance matrix for AS, C s = <ASAST>, will be

diagonal, with each diagonal element reflecting the expected

variance of that component on the day under consideration.

These expected errors are estimated on the basis of the

quality of the corrections available on that day, and change

day to day. This covariance matrix for the mooring shifts can

be used as the column weighting in a singular value inversion.

If the stochastic inverse is used, then C s is needed to

construct the data-data covariance matrix for the mooring

shifts;

m = M'Cs MT (7)
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The total covariance matrix for the travel time

has 3 components: variation due to the ocean sound speed

changes, Qc, the mooring shifts, _Qm, and the remaining random

error which is uncorrelated between rays, C, (diagonal);

= Qc R m 4 C (8)

Since the mooring shifts are now included in the

inversion in parameterized form, they can be estimated by

constructing the complete stochastic inverse operator;

A
AS = Cs.MT.( Q - 1 )*.d (9)

A
C'(x,t) = <C'(x,t).dT> (Q-1)*.d (10)

Some of the data used in the inverse may not be travel

times, but, in any case, each row of M will express the

dependence of that datum on the mooring shifts. For example,

a pressure measurement on one of the moorings would provide

constraints on the motion of that mooring. In fact, the

records obtained from the mooring tracking transponders could

be used directly as data in the inverse, short-circuiting any

need for seperate calculations in advance. In the limit, the

mooring lean angle and direction would be the unknowns, and

the motion of the water as observed by the acoustics and the

current meters would have to be consistent with the mooring
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motions. These perhaps complex interconnections could be

exploited to increase resolution, since the indeterminacy

would be reduced by each addition of physical relations, but

at some point, the resolution gain would not be worth the

extra effort required to add the extra physics to the

inverse.

This point of diminishing returns determined the decision

to leave mooring motion as Ax,Ay, and Az instead of lean,

because of the non-linearity of the dependence of Ax,Ay, and

Az on the angular displacements (see Figure 7.4). The

cartesian coordinates also make the system more robust, in

that it is not necessary to assume that the mooring leans as a

rigid rod.

Retaining three degrees of freedom is necessary to treat

non-moored applications of tomography. For example, it allows

one to consider outfitting SOFAR floats with the more

sophisticated transmitters, and using tomographic techniques

instead of the simple position calculations now used. At the

very least, one could expect to gain accuracy in the position

fix, and perhaps some simple information about the location

of the wall of the Gulf Stream. The "ultimate" inversions for

the 1981 experiment may include the more efficient

parameterization of mooring motion.
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When the inversions produce position estimates as well as

ocean maps, it becomes much easier to address the problem of

mooring reference position. Given that the mooring anchor

locations are uncertain to within about 2 kilometers, the

travel time anomalies (with respect to rays traced

numerically) due to anchor position dominate the observed

anomalies, but must be constant throughout the experiment,

(see Figure 7.5), so that the anchor positions may be

estimated to within about 50 meters by averaging position

estimates.

The inversions could then proceed with the variance due

to the remaining uncertainty in anchor position added to the

mooring motion variance, so that the inversions would be

completely independent of any ocean survey. If on the other

hand, the goal is not to compare the acoustics against the

ocean survey, but to obtain the best estimate of the ocean

given all data, then the CTD data can just be included as part

of the data for the inverse, increasing the resolution of both

the ocean and the mooring anchor positions. Because the

anchor positions are constant, resolution can be improved by

parameterizing the inverse both in terms of the constant

anchor positions, with large variances, and the mooring

motions, with generally smaller variances, but changing day to

day. This separation will also be part of the "ultimate"

inverse, but has not been carried out here.
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FIGURE 7.5 SKETCH OF REST DEPTH OF INSTRUMENT AND OF MOORING MOTION
COMPARED TO ANCHOR POSITION UNCERTAINTY.
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If the covariances used in the inverse include time, then

the mooring anchor positions should be parameterized as

constants, with perfect coherence over all time separations,

while the offsets due to mooring motion would have coherences

which decay on a time scale of a few hours to days.

Finally, it is now easy to see how to treat the case

where absolute travel times are not available. In this case,

there is an additional (constant) unknown for each

source-receiver pair, which would be estimated using data

throughout the experiment. The case where the sources and

receivers are suspended from ships is also tractable now, even

without high-accuracy navigation, since the tomographic system

can have useful resolution in the absence of accurate position

information. The engineering trade-offs for large-scale

tomography can also be more flexible, since the need for

periodic clock checks, mooring tracking, or ocean surveys may

be eliminated by sufficient travel time precision and enough

source-receiver pairs.
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7.5 DISCUSSION

If the mooring motion and anchor position offsets are

lumped together, then there are 4 undetermined parameters

per mooring. For N S sources and NR receivers (= Nm

instruments), instrument offsets would then constitute Nm.4

unknown parameters. Of these, it is easy to see that a

uniform clock shift among all instruments does not affect the

data. Likewise, a uniform translation (in x or y), or a solid

body rotation of the array cannot affect travel time. There

are thus (Nm-l)*4 parameters which affect the data, but in a

given case, degeneracy may reduce the number further. If the

rays of a single source-receiver pair do not give range

information (a worst-case assumption), and k vertical modes

can describe the ocean, then there are k.NS.NR independent

pieces of information which may be gathered for the inverse

problem for the ocean. This means that we should expect that

about (N,-1). 4 + k.NS.NR independent rays could be used. For

a 4 source, 5 receiver array in a region where the ocean

appears to have energy in only 3 modes, we expect that about

92 rays would be independent in a noise-p ree experiment.

When white measurement noise is present, all rays add at

least a small amount of independent information (about the

noise), but the resolution of the ocean will degrade, even

when more rays are added. If, for example, the noise variance
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is greater than the travel time variance due to the 3 rd mode,

then there are really only 2 resolved modes, so about 72 rays

would be expected to be independent. In a practical case,

more than this minimum number of rays would be required,

because some rays would be only weakly independent, but this

calculation gives a good rule of thumb. If one calculates the

expected variance due to horizontal feature position for a

single source-receiver pair (range information), then one can

estimate the error level at which the range information

becomes accessible. This would allow, for example, a

back-of-the-envelope evaluation of the possibility of

2-dimensional vertical (x-z) slice reconstruction from a

single source-receiver pair.

For the mesoscale geometry and present equipment, about 8

to 10 arrivals are distinguishable at the receivers. If we

conservatively estimate 5 independent rays per source-receiver

pair, then an array of NS sources and NR receivers would

produce 5*NS.NR data, as opposed to (NR 4 NS - 1).4 mooring

offset parameters, in the worst case. It is clear that, as

the number of instruments grows, lack of position information

becomes very easy to compensate for, even with an inefficient

parameterization. On the other hand, as the range of the

transmissions grows, the number of rays per source-receiver

pair grows as well. Once again, undetermined offsets become

less of a problem, provided the precision of the system is

sufficient to distinguish the available arrivals.
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CHAPTER 8

DATA TREATMENT IN THE 1981 EXPERIMENT

8. 1 DATA RETURN

In this chapter, I will describe the complete data

processing procedures for the 1981 ocean acoustic

tomography experiment, from the instrument processing to

inversion procedures. For additional details about the

experiment, see Chapters 1, 7, or the description in the

paper by the Ocean Tomography Group (1982).

The 1981 ocean acoustic tomography experiment used 4

acoustic sources and 5 receivers, arranged in an array as

shown in Figure (1.4). The array was centered on about

26 N, 70 W, nearly coinciding with the region where the

MODE experiment was carried out (MODE Group, 1976). During

the course of the experiment, 3 CTD and bottle hydrographic

surveys were made by NOAA ships in the region, and several

AXBT flights were made by the Navy, in order to have

traditional measurements in the region for comparison with

the tomography results.

The moorings were deployed in February 1981, with

an expected duration of 4 months, and the three

hydrographic surveys were spaced through this interval.

Unfortunately, battery problems shut down most of the Woods

Hole receivers by about day 120, so the full array was

operating for only about 70 days, although the SIO

receivers recorded data out to day 172 (see table (8.1)).
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TABLE 8.1 MOORING DATA RETURN

FROM A MEMO FROM R.SPINDEL 9/28/81

A: CLOCKS

START DAY

21

61

36

30

47

46

43

43

48

TOTAL DAYS

219

178

203

208

66

150

134

155

135

B: MULTIPATH DATA

START DAY TOTAL DAYS

49 120

46 69

49 87

63

120

NOTE: R2,3,4 FAILED EARLY DUE TO BATTERY PROBLEMS

MOORING

S1

S2

S3

S4

R1

R2

R3

R4

R5

MOORING

R1

R2

R3

R4

R5
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TABLE 8.1 CONTINUED

C: MOORING MOTION

START DAY

32

34

35

36

47

46

45

38

48

TOTAL DAYS

160

185

185

NONE

175

185

185

185

FRAGMENTARY

ABOVE CONTAIN GAPS)

MOORING

S1

S2

S3

S4

R1

R2

R3

R4

R5

(NOTE: SOME OF THE RECORDS
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The sources and receivers were equipped with the Woods

Hole mooring tracking systems, as mentioned above,

supplying data on mooring motion for many of the

instruments during much of the experiment. This great time

variability in the quality of the data requires that the

inverse framework and the data reduction programs must be

flexible enough to handle data with gaps and

inhomogeneities.

The acoustics operated one day in three, transmitting

each hour for 24 hours and then shutting down for 48. The

WHOI receivers recorded each transmission, but the SIO

receivers listened only every other hour. To avoid

interference and reverberation, the sources transmitted at

15-minute intervals, with source 1 transmitting on the

hour, source 2 on the quarter hour, and so on. The sources

transmitted on a carrier of 224 Hz with a bandwidth of 20

Hz, sending 24 repetitions of a 127-digit phase-coded shift

register sequence. The complete sequence lasts for 7.9375

seconds. The receivers were set to turn on at a specific

amount of time after each source began to transmit, and

recorded for long enough to receive 22 repetitions of the

code. The receiver turn-on delay was calculated on the

basis of the planned mooring locations so that the

receivers would ideally record the middle 22 transmissions

of the code. As a result, 8 seconds of variation in either

direction, due to uncertain mooring positions, was allowed.
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The receivers recorded 2 samples per digit (= 254), and the

22 repetitions of the code "wrapped around", so that sample

255 was added to the sample 1 already in bin 1, and the 22

transmissions of the code were summed. This worked to

increase signal to noise ratio within the stringent power

limitations. The wrap around means that the first bin of

the receiver corresponds to a travel time equal to the

receiver delay, plus or minus 7.9375 seconds. This

indeterminacy does not cause any ambiguity in absolute

travel time because 8 seconds of travel time means about 12

km. of range, and the mooring locations were known to

within ±2 km.

The averaged received code was correlated with a

stored record of the code as transmitted, a process called

phase-matched filtering (Birdsall, 1976), which produced a

set of correlation peaks (Figure 8.1). The largest peaks

each correspond to the arrival of a distinct acoustic ray,

or, in some cases, a set of rays whose travel times are

seperated by less than the resolution width of the system.

Some of the receivers stored these 254 complex numbers

directly, while the others stored only the 11 highest

peaks. The length of each digit is 62.5 msec, so the

system can resolve peaks separated by more than 62.5 msec.
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co FIGURE 8.1 B ARRIVALS FOR SOURCE 2 - RECEIVER 2: FROM THE 2ND
CD TRANSMISSION ON DAY 100.
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FIGURE 8.1 C ARRIVALS FOR SOURCE 2 - RECEIVER 2: FROM THE 3RD

TRANSMISSION ON DAY 100.
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FIGURE 8.1 E ARRIVALS FOR SOURCE 2 - RECEIVER 2: AVERAGED OVER 24
HOURLY TRANSMISSIONS DURING DAY 100.
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Neglecting the effects of micro-multipaths, the rms

uncertainty for resolved peaks is less than 2 msec. To

maintain this precision, the 254 points must be

interpolated by at least 16 times, using band limited

interpolation. During the preliminary data processing for

the experiment, cubic splines were used to interpolate by

16 times. This reduced the sample spacing to 1.95 msec,

limiting quantization errors to the level of the

precision.

Each hour, each receiver stores 4 sets of correlation

peaks, one for each source. Each set of peaks will be

called an "arrival pattern". Figures (8.1 A-D) show the

changes in these arrival patterns over 4 sucessive hours.

The hourly returns show significant variations in

amplitude, at least partly as a result of the

micro-multipath interference described above. The arrival

times in the pattern also change in response to the

internal waves and tidal currents as well as the mesoscale

field. Although the inverse problem could in principle

include both internal waves and tides, it is easier, at

least for the purposes of this thesis, to average the

arrival patterns over a day to eliminate much of the rapid

variation. The simplest way to perform the average is to

add up all returns for a given day, producing a smoother

pattern (Figure 8.1 (E)) which makes it somewhat easier to

pick out arrival peaks.



188

8.2 PEAK FINDING AND TRACKING

The next step in processing is "peak finding", in

which the peaks of the interpolated arrival pattern are

located and stored. Peak location (arrival time) and

signal to noise ratio are saved for all peaks above a

cut-off signal to noise ratio which is set in order to

screen out most of the peaks due to acoustic noise. The

signal to noise ratio is saved because the uncertainty of

the peak time depends on the S/N ratio. The sets of stored

peaks form a time series, one for each source-receiver

pair, which can be displayed to show the evolution of the

acoustic ray arrival times over the course of the

experiment (Figures (1.6) or (8.2)). The continuity of the

pattern of distinct ray arrivals is clear over the entire

experiment in this figure.

The arrival patterns in figure (8.2 A) have been

corrected for mooring motion and clock drift by using the

measurements made by the acoustic mooring tracking and the

rubidium-referenced measurements of the frequency shifts of

the quartz oscillators in each instrument. In the case of

clock drift, the arrival pattern for each source-receiver

pair was shifted in the wrap-around 7.9375 second window to

compensate for the clock errors of the two instruments

involved. The mooring motion corrections were made by

computing the changes to the horizontal range between the
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FIGURE 8.2 B TIME SERIES OF RAY ARRIVALS FOR SOURCE 4 - RECEIVER 2
ARRIVAL TIMES HAVE NOT BEEN CORRECTED FOR MOORING
MOTION, BUT CLOCK DRIFT HAS BEEN REMOVED.
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two instruments due to their motion and dividing by an

averaged sound speed to obtain a travel time correction

which was also used to shift the return pattern in the

window. The effect of the corrections is clear if an

uncorrected time series (Figure (8.2 B)) is examined. Note

that the continuity of the arrival pattern is conserved, in

spite of the large travel time changes due primarily to the

motion of the mooring.

The next step in the data reduction attempts to

quantify the continuity of the arrival pattern. Each

important peak in the pattern is selected and tracked over

the entire time series, producing a time series of arrival

times associated with that particular peak. The process of

peak tracking is nearly completely dependent on the

robustness of the arrival pattern as the criterion for

following a particular peak as the pattern moves around in

response to the ocean. Figure (8.3) shows the results of

the tracking step for two time series, the corrected series

from figure (8.2 A) and the uncorrected peaks from figure

(8.2 B). With many of the intermittent and noisy peaks

removed, the pattern becomes easier to follow, even without

mooring motion corrections.
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If the arrival of one of the peaks in a pattern is

subtracted from the others in the pattern for each day of

the record, the resultant "ray differential" times show

only the distortions of the arival pattern (Figure (8.4)).

Ray differentials are thus immune to instrument clock

shifts, which just displace the arrival pattern. Because

much of the mooring displacement causes the arrival pattern

to translate with minor distortions, the ray differentials

also screen out much of the noise due to mooring motion.

Although both the ocean and the movement of the mooring

both translate and deform the pattern of ray arrivals for a

given source-receiver pair, the modes of change can be at

least partially distinguished, and this is the key factor

in allowing useful inversions in the presence of large,

uncorrected mooring motions.

Each tracked peak presumably corresponds to a distinct

ray path through the ocean, and the next step in the data

reduction is to determine the ray paths for the arrivals

observed in the data. This procedure, called "ray

identification", also depends on the pattern of the ray

arrivals. Rays are traced numerically using a typical

sound speed state for the area, range dependent or

independent, and the pattern of numerical ray arrivals is

compared with the tracked peak pattern on a given day or

series of days (Figure (2.6)). The identification can be

done manually or automatically, provided that the pattern

contains enough information to make an unambiguous match.
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If the pattern is not detailed enough to make ray

identification certain, then several alternatives are

available. The Scripps receivers used a vertical array of

4 hydrophones, allowing beam forming to estimate arrival

angles of the rays corresponding to the peaks in the

pattern. If this information is not available, an

approximation to beam forming can still be done using the

motion of the mooring. The travel time shifts for a given

ray due to mooring motion are sensitive to the angle that

the ray makes with the horizontal at the instrument which

is moving. If the mooring moves on a short time scale, as

a result of inertial waves or tides, for example, then the

shifts of the tracked paths provide a consistency check on

a tentative ray identification, provided mooring motion

tracking is available. In the future, a generalized

beam-forming routine could be used to resolve the angles in

an optimal way, capitalizing on the motion of the mooring.

If mooring tracking is not available, then the

inversion will provide the check on ray identification

through an examination of residuals. Different modes of

variation of the travel times in a pattern correspond to

different physics, and the residual noise level can be

robustly identified. Systematic errors above this level

will show up in the "residuals" calculated by removing the

effects of mooring motion and clock offsets from the travel
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time data. If the rays have been incorrectly identified

for a particular source-receiver pair, the residuals for

that pair will reveal the mismatch. This technique was

used to correct some of the preliminary identifications in

the first stage of processing the tomography data.
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8.3 PLANNED IMPROVEMENTS

Some of the techniques described above are by no means

final, and will be improved for the "ultimate" inverse or

for future experiments. The interpolation and peak finding

steps could be replaced by a maximum entropy algorithm,

treating the 254-point arrival pattern as a spectrum.

Fourier transforming the pattern yields 254 "lagged

covariances", which are then fed into a maximum entropy

algorithm to produce the poles of the "spectrum", which

correspond to the peaks of the arrival pattern, with

resolution equivalent to an infinite number of interpolated

points (J. Catipovic, personal communication, 1982).

At the same time, the simple averaging scheme employed

in the first pass processing will be discontinued, so that

peak finding is done for the hourly returns. This is

necessary to allow the mooring motion beamforming mentioned

above, and avoids possible problems with a rapidly shifting

peak, which may appear as two peaks if the simple summation

is used. An hourly time series of peaks could be tracked

in the same way that the daily peaks were, and then the

averaging to remove tides and internal waves would take

place path by path, weighted by the uncertainty of each

peak. The un-averaged time series would be useful if the

inversion was to be extended to the shorter time scales.
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CHAPTER 9

ESTIMATORS USED FOR THE 1981 TOMOGRAPHY EXPERIMENT

9.1 THE MODEL

Most of the discussion of inverse methods presented so

far has been general, in an attempt to show the

interconnections and justifications of methods which often

seem quite distinct. I will now discuss in detail the

inversion techniques used with the data from the 1981

tomography experiment, after data processing as described

in Chapter 8. The formalism of the stochastic inverse will

be used throughout the following since it allows

considerable flexibility, including a continuous

representation of the unknown field. In any case, it was

shown (in Chapter 5) that the stochastic inverse is

equivalent to several other forms of linear least-squares

inversion, so there is no reason to use a different form.

At this stage, only travel time data have been used in

the inverse, to allow independent comparison with the

conventional measurements taken during the experiment, but

any and all of the other data types can be included, and

will be used in the future. The transmissions in the 1981

experiment were one way only, so that the travel time

changes due to ocean currents were not specially resolved,
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and have so far been neglected in comparison with the

travel times due to sound speed changes. The travel time

errors incurred by this assumption should be order 2 msec,

comparable to the other error sources. As the processing

of the data improves, currents will be incorporated as

part of the inverse, although the resolution will not be

great.

In order to use the stochastic formalism, it is

necessary to define a mean state for the sound speed and

the expected covariance around this basic state. Because

we are interested in deriving reliable snapshots of the

evolution of the sound speed anomalies due to mesoscale

dynamics, we are more interested in the minimum variance

properties of the estimator than in its possible bias. For

this reason, the basic state need only be specified near

enough to the true state to avoid problems with

linearization. This means that most any archived estimate

of the local mean sound speed is adequate for use as a mean

state, although the closer the assumed mean state is to the

true mean the smaller the variance around the mean will be,

increasing the effectiveness of the estimator.

For the initial estimates from the 1981 experiment, a

simple average of the CTD casts during the first NOAA

survey of the area was chosen to be the basic state,
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(Figure 1.1), more for convenience in coordinating between

institutions than any other reason. The basic state was

taken to be stationary and horizontally homogeneous,

Co(x,t) = Co(z), both for simplicity and because the data

available to date are inadequate to support any assumptions

to the contrary.

The estimate of covariance for the sound speed anomaly

is also derived from archived data, and is then used with

the forward problem to calculate the expected data-data

covariance matrix. The decomposition into vertical modes

with horizontally varying amplitudes has been discussed

above, and this model will be used throughout the

inversions to follow:

M c
C'(x,t) = C(x,t) - Co(z) = C F i(z).ni(x,y,t) (1)

i=l

The modes chosen as a basis are the empirical

orthogonal functions of sound speed variation for the MODE

experiment (Figure 9.1). This basis was chosen before the

data from the experiment were available, so that the model

for vertical structure would be independent of the

traditional measurements made during the experiment.

Because the MODE EOFs were calculated relative to the

average sound speed profile from the MODE experiment, it

would have been more logical to use the MODE averaged sound

speed profile as a reference, rather than the average of
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the first NOAA CTD survey. In future inverse calculations,

the MODE Co(z) profile will be used with the MODE EOFs, or

else analytical modes will be used, relative to an

appropriate basic state.

The "analytical" modes (solutions of the vertical

structure equation discussed in Chapter 3) should be

calculated using an estimated climatological mean buoyancy

frequency profile. Given a basis set of displacement

modes, conversion to density modes or sound speed modes is

possible, given mean temperature and salinity profiles

(Chapter 6 L bove). The EOFs allow variance in the upper

layers of the ocean, presumably due to seasonal effects,

(see Figure 9.1), while the analytic modes have nodes at

the surface by construction CFigures 9.2 A-D). If an

analytical mode basis is used, then surface-intensified

modes must be added to those calculated using

quasi-geostrophy. These may either be specified in some ad

hoc way, such as layers, or modes derived from mixed layer

or climate models might be incorporated.

The expected variances of the modes as derived from

MODE CTD data are listed in Table (9.1), and were used to

construct the total data-data covariance matrix. The

overall energy level is arbitrary, so the weighting by

expected variances need only yield a correct signal to
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TABLE 9.1: EOF VARIANCES

Mode I 3 Total

Variance of
Particular mode (m/sec) 2

MODE CTD data .421

Inverse

.057

.1

.025

.1

TRAVEL TIME

The numbers in the table are the expected standard
deviations of the travel time anomalies (in msec) given for
5 different rays and divided into individual mode
contributions.

Mode

ray (arb. index)
1

21

3 Total

32.

40.1

46.5

25.0

1.3

2. 1

3. 1

1.4

3.9 32.4

12.2 42.3

16.7 49.5

8.2 26.4

17.0 3.4 4.1 18.
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noise ratios. The inverse operat.ors (estimators) derived

in the course of playing with the data were not sensitive

to these weightings, but order of magnitude increases in

the estimated error variances can significantly decrease

the resolution of the corresponding estimator.

Although the vertical structure has been parameterized

by a finite number of modes, the horizontal structure has

been left continuous, so that only the horizontal

covariance function for the amplitude of each mode has been

specified in advance (Figure (9.3 A)). The covariance was

specified analytically, as a time-independent gaussian with

an e-folding range of 100 km., and is homogeneous and

isotropic, so the covariance between two points depends

only on the magnitude of their horizontal separation.

<C'(x l ,tl)C'(x 2 ,t 2 )>

M c M c
< F i(zl)-Yi.ni(xlYltl) I L F j(z2).Yj.nj(x2,Y2,t2) >

i=l j=1
(2)

M 2 c c

Yi *<ni(xl,Yltl)ni(x2,Y2,t2)>*Fi(zl)*Fi(z2) (3)
i=l

M 2 C C
Yi *Hi(xl,Yltl,x2,Y2,t2)Fi(zl) Fi(z2) (4)

i=1
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FIGURE 9.3 A GAUSSIAN COVARIANCE USED TO MAP ESTIMATED SOUND SPEED
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M 2 C C
= Yi  *Hi(R12)*Fi(zl)*Fi(z2)*6(tl-t2) (5)

i=l1

where R 1 2 = [ (xl - x2) 2 4 (Y1 - Y2) 2 ]1/2 (6)

and Hi(R12) = H(R 12 ) = exp[-R12 2/(100 km.) ] (7)

In this case, the same covariance function was used

for all of the vertical modes, although the inverse

framework allows independent functions for each mode. At

present the sound speed structure is the desired output of

the estimator, so the "barotropic" mode, which does not

displace the isopycnals, and thus cannot produce sound

speed changes, has been removed from the inverse. If

current meter data were used, then it would be necessary to

include the barotropic mode in the model, and the

covariance function for the horizontal structure of this

mode would be significantly different from that used for

the baroclinic modes, due to the much larger radius of

deformation for the lowest mode (Hua and Owens, 1982).

Covariance shape becomes most important when

estimating quantities like velocity or vorticity, which

require differentiation of the fields (and, therefore, the

covariance function). It is perhaps easier to understand

this by considering spectral space--looking at the

transform of the covariance. Taking the derivative
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multiplies the energy in each wavenumber by the wavenumber

itself, amplifying the energy at the small scales. Two

covariances which look roughly similar may have differing

amounts of small-scale energy, and each differentiation

will enhance the difference. The most obvious effect of

this "cascade" is in the error estimator returned by the

estimation procedure.

The acoustic observations are averages, so that the

data-inverse system tends to lack resolution at small

scales. Thus, if two covariances have the same total

energy but one has half its energy in scales too small to

resolve, then at best that estimator will resolve 1/2 the

expected energy as defined by the covariance function.

When comparing inverse methods, the mutability of the error

maps must be considered, since the sizes of the calculated

error bars depends directly on the models used and the

expected noise power. The error bars calculated using only

data error are not as sensitive to the covariance shape,

but do of course depend on the assumed error levels.

The covariance function does not need to be analytic,

isotropic or homogeneous, but there is no reason to add

complications not required by the archived data, in this

case the MODE experiment. The energy field is certainly

non-homogeneous, but it was modelled as uniform, again

because of the lack of a reliable alternative model. The
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temperature covariance derived from the data from MODE

shows a zero crossing, indicating a wavelike character

(McWilliams and Owens, 1976), Figure 9.3 B, but it is not

clear that this is a robust feature. Care must be taken to

choose a covariance function which corresponds to a real

spectrum with positive energy, because the matrix algebra

requires the covariance matrices to be positive definite.

The gaussian corresponds to a gaussian spectrum, and is

clearly positive definite besides being satisfyingly red.
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9.2 BUILDING THE ESTIMATORS

Once the model covariance (desribing the unknown

field, in this case the sound speed anomaly) has been

obtained, the model-data covariance and data-data

covariance matrices can be constructed as described in

chapter 6. The model-data covariances were constructed for

mapping to 65 points in the horizontal, at the station

locations of the 65 casts in the first CTD survey. This

was done to ease comparisons between the estimates of the

sound speed from acoustic data and those calculated from

the CTD stations. The travel times used in the inverse are

selected from the set of all resolved, identified rays

which are available on the day for which the inverse is to

be calculated. The inverse is at present time-independent,

so that the maps are assumed to have no coherence between

them, and each uses only data on a single day. The number

of rays available changes day by day, so each map is made

from a different set of rays, weighted using the error

estimates for that day.

The model-data covariance matrix is calculated for all

data and then saved, so that columns are selected to match

the data available on any given day. In the same way,

data-data covariance matrices for each of the vertical

modes and the mooring motion are saved, and a properly
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weighted combination is constructed for each day to match

the expected noise, mooring motion variances, and to

conform to the available data. The inverse operator is

thus specific to a single day, even though the basic

covariances were specified without time dependence. Time

dependent covariance functions were not used in the

demonstration inverses on the 1981 data because they

require assumptions which can be controversial, and might

render the resulting maps suspect, in spite of (or because

of) the increased resolution and data error immunity that

such assumptions foster. The assumption that sucessive

maps are independent snapshots is certainly robust, but it

is clear that the mesoscale ocean changes little on that

time scale, and future work will explore the use of

time-dependent covariances for improving the inversions.

The travel-time data has so far been used in two

forms; as differences between "corrected" travel times

observed for the same path on different days (called "day

differentials"), (corrected for all available recorded

mooring motion and clock drift), and as uncorrected (for

mooring motion) travel times referenced to numerically

calculated travel times for the basic state. The day

differentials were used in the initial inversions presented

by the Ocean Tomography Group (1982) since they are simple

and robust, and could be quickly fed to inverse operators

calculated before the 1981 moorings were recovered.
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Because day differential travel times are referenced

to the observed travel times on a given day of the

experiment, they are not affected by the uncertainties of

the mooring anchor positions. In fact, the true positions

of the moorings do not need to be known, provided that the

relative motions have been tracked and removed from the

travel time data set. The model used to produce the

expected data-data covariances for day differential travel

times can thus be made very simple since the times depend

only on mesoscale sound speed changes plus measurement

errors. The original plan for the tomographic inversions

was to use only these data, counting on the availability of

mooring motion data to correct the travel times before

invoking the inverse operator.
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9.3 THE DAY DIFFERENTIAL ESTIMATOR

Day differentials are insensitive to errors in the ray

identification, and to uniform clock offsets or other

systematic errors in the data, so there is less worry in

using a preliminary data set. On the minus side, because

day differentials require mooring motion data, maps can

only be made for the days when enough of the transponders

were in operation to give a reliable set of corrections.

There are random errors present on all days, but day

differentials have twice the expected error variance of the

original times. The day differentials produce maps of the

sound speed anomalies relative to the reference day of the

travel time differences. In the OTG paper, this was

overcome by picking a reference day during the first NOAA

CTD survey, so that the computed sound speed anomalies were

added to the field calculated from the CTD survey to

produce total maps. (Figure 9.4). The day differential

travel times were used to calculate estimated sound speed

mode amplitudes at the 65 CTD station locations. The mode

amplitudes were used to linearly combine the vertical modes

to produce an updated survey, which could be objectively

mapped for plotting in the same way that the original

stations had been.
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FIGURE 9.4 A,B,C,D: MAPS OF SOUND SPEED ANOMALY GENERATED USING
DAY-DIFFERENTIAL TRAVEL TIMES REFERENCED TO DAY

73, DURING THE FIRST NOAA CTD SURVEY. CONTOURS
ARE OF SOUND SPEED ANOMALY RELATIVE TO THE

REFERENCE C(Z). CONTOUR INTERVAL IS 1 M/SEC.
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The same techniques can be used with any inhomogeneous

basic state, and so iteration is simple. The initial

estimate of the true sound speed field is mapped to produce

a "continuous" ocean in which numerical rays are traced.

The inverse is re-computed following the scheme in Chapter

6 and the data are adjusted to conform to the iteration

scheme outlined there. Each inverse result is mapped to

update the previous ocean estimate, so the cycle can be

repeated endlessly, if desired. During the 1981 experiment

the ocean perturbations were far too weak to deform the

paths enough to require iteration (See Figure 2.5).

This was fortunate, because while the iterative

procedure is simple, calculation of the travel time data

covariance matrices can require significant computer time,

since the double integration over two ray paths can require

the computation of the covariance estimate upwards of 104

times per matrix element. This is not a problem on a large

computer, but for a megameter array, with 500 to 1000

computed points per ray, 10 covariance computations per

matrix element may raise issues of computational

efficiency, forcing compromises in the generality of the

inverse form.
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9.4 DATA ERROR AND INFORMATION

The maps shown are made for those days on which enough

corrected data were available to give adequate resolution.

If too few rays are used, then the inverse maps do not have

much detail. On the other hand, adding rays to the inverse

beyond a certain point will not greatly increase the

resolving power of the estimator, because no additional

independent information is being added. This break-even

point is dependent on the amount of random error in the

measured travel times. If the random error is large, then

similar rays may be indistinguishable within the limits

imposed by the error, so that a supplemental ray is less

"valuable" than if the error level was smaller (Figure

(9.5)).

Figure 9.5 A is a plot of information content vs. the

number of rays used in the inverse. The slope of each

curve is the marginal gain in information per additional

ray datum, given a particular level of random error and no

expected mooring offsets. The dotted curve represents an

ideal case where there are absolutely no errors in the

data, so that each additional ray datum adds independent

information. In a real case, with finite errors, the

curves deviate from this ideal line when the newest ray

added to the inverse samples the ocean very much like some
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combination of rays already included, with the differences

swamped by the random errors. The curves in Figure 9.5 A

are not smooth because the rays are added haphazardly, so

that several rays from a given source-receiver pair may be

added at once. In all cases, the slopes decrease for large

numbers of rays, showing the lessening benefit from added

data at a constant error level. This type of curve can be

used to analyse the amount of range information available

in the rays of a single source-receiver pair.

Figure 9.5 B shows the decrease in independent

information available to the estimator as the random error

in the data is increased. At the low error extremes, the

curves end at the number of rays used, while for large

errors they tend toward zero. Figures 9.5 A and B can be

used to bound the performance of the inverse as the number

of rays used is increased beyond the 73 used for the maps

in this thesis. If the random errors in the data cannot be

reduced below 5 msec, no dramatic improvements in the

results can be expected, while if an error level of 1 msec

can be attained, the maps shown herein should improve

significantly.

The use of figures of this type during array design

simplifies the tasks of choosing engineering parameters and

estimating the eventual performance bounds on the system.
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Note that logarithmic decreases in the error level are

required to maintain constant increases in the amount of

independent information. Adding dependent rays increases

the error immunity of the inverses somewhat, but does not

produce the same improvements in resolution that

independent rays yield. For the preliminary maps, about 73

rays were used, less than half of the number seen as stable

arrivals at the receivers.

For the OTG paper, some uncorrected data were included

as ray differentials (see chapter 7), referencing all the

rays in the arrival pattern for a source-receiver pair to

one of the rays in the pattern. The subtraction doubles

the noise variance, so a travel time constructed as both

day and ray differential has about 4 times the expected

error variance as a single travel time. The process of

forming ray differentials reduces the expected level of

mesoscale-induced travel time changes, from order 40 msec

to order 5 msec, so that the signal to noise ratio for ray

differentials is less favorable. About 30% of the data

used in the OTG maps were these "day, ray differentials",

and these had very little effect on the maps.
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9.5 THE ESTIMATOR FOR UNCORRECTED DATA

In order to more fully use the data set, it was

necessary to abandon the simple day differential framework,

and deal with the uncertainties in anchor position and

mooring motion directly, as described in chapter 7.

Parameterization of the mooring offsets is useful even if

full mooring positions are available. The initial data

corrections were done before the ray pattern was separated

into arrivals and identified, so the entire pattern was

shifted uniformly. The horizontal mooring motions were

converted to line-of-sight range changes and divided by an

estimated local sound speed to obtain an approximate travel

time, which was then used to shift the time base of the

arrivals. The true travel time effects of mooring position

change depend on ray angle and, more critically, on depth

changes, so that quasi-random errors are generated in this

correction process. The errors introduced in this way can

easily be order 5 msecs. The initial corrections must

therefore be removed once ray geometry is known.

The maps shown as Figures 9.6 (A-DD) were made using

data with the initial mooring motion corrections removed,

and the inverse estimated mooring position in addition to

constructing sound speed maps. Clock errors were also



234

FIGURE 9.6 A-Z,AA-DD: MAPS OF SOUND SPEED ANOMALY AT 700 METERS DEPTH
REFERENCED TO THE AVERAGE C(Z) PROFILE. CALCULATED FROM
UNCORRECTED DATA, WITHOUT USE OF THE NOAA CTD SURVEYS. MAPS
ARE PLOTTED FOR EVERY THIRD DAY. C.I. - 1 M/SEC.
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parameterized in the inversions, but clock corrections

obviously do not depend on ray geometry, and faulty

corrections do not add random errors, so the clock

corrections were not uniformly removed from the data.

The mooring offset data-data covariance was then

constructed as in Chapter 7, using the forward problem for

mooring parameters with a diagonal "model" covariance

matrix made up of the expected variances of the mooring

offset parameters. Typical values of expected mooring

offset parameters variances as used in the inverses are

shown in Table 9.2. These rough estimates were based on

previous experience and on records from

Temperature-Pressure (T-P) sensors mounted at various

depths on the moorings, and were intended to be generous

for maximum immunity to errors and freak events. Because

the inverses were time independent, the uncertainties in

mooring anchor location were lumped with the expected

motions even though the anchor positions are constant

throughout the experiment.

A significant reduction in the horizontal motion

variances can be achieved by separating mooring motion from

anchor offset and assigning them appropriate temporal

covariance matrices, but that will be covered in later

work. An approximation to this procedure was used for
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TABLE 9.2: EXPECTED MOORING OFFSETS

Source #

800

(meters)
y

800

(seconds)
t

0.01

2 800

3 800

4 1100

Receiver #

500

500

500

500

500

These numbers were
order to bound the

input to the estimation framework in
uncertainties of these parameters

800

800

1100

y

500

500

500

500

500

80

30

140

z

10

50

30

30

40

0.01

0.01

0.40

t

0.10

0.01

0.01

0.01

0.10
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these maps, in which the travel times for each path were

averaged throughout the experiment and then fed to the

inverse operator to give rough estimates of the mooring

anchor positions (Table 9.3). Numerical rays corresponding

to those found in the data were then traced

for these positions, so that some of the initial

uncertainty was removed from the data.

T-P recorders on some of the moorings gave useful

estimates of instrument depth offsets, but the inverses

were calculated without using this information, except in

adjusting the offset parameter variances, as mentioned

above. The vertical position uncertainties, like the

horizontal offsets, have 2 components. The "rest" depth of

an instrument is its depth when the mooring is vertical and

straight, and should ideally be the depth that was

specified when the mooring was designed. The actual depth

is estimated from the local bottom depths, the cable

lengths as specified in the mooring plan, and any T-P

information available from the mooring. If the T-P

recorder was attached at the hydrophone then the

uncertainty in "rest" depth would be only about 1 meter,



267

TABLE 9.3: ORIGINAL AND ESTIMATED MOORING POSITION

TOP = ORIGINAL POSITION

Source #
(KM)

x
(KM)

y

1 17.336 284.287
19.047 283.623

2 16.216 207.377
16.843 207.139

3 17.964
17.649

4 18.014
17.657

Receiver #

(KM)
x

91.735
91.618

16.122
16.084

(KM)

y

1 281.490 286.696
281.068 286.537

2 283.357 189.957
282.494 189.887

3 284.155 114.344
283.271 115.425

4 281.607 19.273
281.285 20.509

5 146.190 281.693
147.013 280.661

BOTTOM = ESTIMATED POSITION

(M)
z

2150.
2150.

1995.
1980.

2120.
2117.

2143.
2123.

(M)
z

1694.
1698.

1325.
1370.

1708.
1675.

1744.
1700.

1695.
1616.

(MSEC)
t

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

(MSEC)
t

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

The estimated positions were calculated using an average of
travel time throughout the experiment and so may not truly
represent the anchor positions.
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fixed by the level of calibration and the least significant

bit. The rest depth is the minimum depth observed by the

T-P sensor, since as the mooring leans, the instrument

depth can only increase. If the rest depth were known,

then the positivity of the depth perturbations would allow

the use of maximum-entropy inversion algorithms, but in the

1981 experiment, the errors were generally greater than the

T-P error alone. Most moorings had an uncertain length of

cable between the T-P recorder and the hydrophones, and

the mooring R2 had no T-P data at all. These uncertainties

provide much of the variances listed for the receivers in

Table 3 because the receivers tended not to have large

vertical excursions.

The other source of variance is, naturally, mooring

motion, which acounts for much of the variance listed for

the sources. On moorings with working T-P recorders near

the instrument, most of the depth changes could be

corrected for, down to the level of T-P and cable length

errors, but this was not done for the maps in Figure 9.6.

The inverse thus produced time series of sound speed in the

300 km X 300 km box, instrument x,y and z coordinate, and

clock offset.



269

The final instrument-related source of travel time

variance is the drift of the quartz oscillator. The

low-power clocks were compared daily against a rubidium

frequency standard, and the measured frequency shifts were

recorded on tape and integrated to estimate clock offsets,

which are then removed by shifting the time base. Clock

corrections were retained for rays to receivers 2,3, and 4

in the data set used for the maps in Figure 9.4, and if the

corrections were perfect then no clock error would be

expected, and no variance would be needed in the inverse.

The variances entered in Table 9.2 are insurance against

unexpected problems and/or dropped cycles in the clocks.

The clock offsets calculated by the inverse on a given day

can be checked against these a priori expectations, and a

large mis-match is an indication that re-computation using

different limits may be necessary (See Chapter 4).
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CHAPTER 10

DISCUSSION AND CONCLUSIONS

10.1 COMPARISONS OF ACOUSTIC AND TRADITIONAL MAPS

In this chapter, I will present a comparison of

initial results from the acoustic data taken during the

1981 ocean acoustic tomography experiment with more

traditional measurements made more or less concurrently.

The inverse produced an independent estimate of the sound

speed field for the entire ocean volume within the 300 by

300 km box every 3 days between yearday 52 to 139 of 1981.

Data for two of the receivers, numbers 1 and 5, continue

until day 172, (Table 8.1), but the time series of maps has

not yet been extended completely. NOAA ships made 3 CTD

surveys in the area during the time that the moorings were

in the water, but only the first two overlap with the

acoustic data. There were two environmental moorings

deployed as part of the array (Figure 1.4), with current

meters and T-P recorders, and the acoustic moorings carried

T-P recorders as well. Each observation method, acoustic,

CTD, or moored instrument, has particular strengths and

weaknesses, which must be taken into account when making

the comparison. For example, the CTD surveys observed

vertical profiles at about 65 points during a period of

nearly 3 weeks, while the acoustics partially sample and

average the volume during a single day.
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At present, the inverse procedure has been kept simple,

estimating sound speed instead of temperature or density;

these will be covered in a later paper. The CTD survey has

thus been used to calculate sound speed, while the

temperature time series from the moorings have been left as

temperature. Comparison with sound speed time series can

be made on the basis of the curve shapes, using the

approximately linear dependence of sound speed on

temperature at any given depth.

Figures 2.1 and 10.1 are maps of sound speed anomaly

(with respect to the reference Co(z)) calculated from the

first 2 NOAA CTD surveys of the region and from one Navy

AXBT flight. Unless specified otherwise, all maps of sound

speed have been referenced to the basic state. The

"traditional" data has been mapped at 700, 350, 1500, and

2000 meters depth, in order to provide a wide range of

depths at which to compare the various observation

techniques. 700 meters has the maximum energy, and

provides the best test of resolution, while the deeper

levels are quieter, and the shallow level was picked

because it was the deepest the AXBT's could penetrate.

Figure (9.4) shows maps made from corrected, day

differential times, while figure (9.6) shows maps made from

uncorrected data, with mooring motion, anchor position, and

clock offset as part of the unknowns. The day differential
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FIGURE 10.1 A SOUND SPEED ANOMALY FIELD AT 350 METERS DEPTH.
CALCULATED FROM FIRST NOAA CTD SURVEY, 1981 DAYS 66-85.
COUNTOURS ARE M/SEC DIFFERENCE FROM THE AVERAGE SOUND
SPEED PROFILE. CONTOUR INTERVAL IS 1 M/SEC.
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FIGURE 10.1 B SOUND SPEED ANOMALY FIELD AT 350 METERS DEPTH.
CALCULATED FROM NAVY AXBT SURVEY, 1981 DAYS 106-7.
COUNTOURS ARE M/SEC DIFFERENCE FROM THE AVERAGE SOUND
SPEED PROFILE. CONTOUR INTERVAL IS 1 M/SEC.
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FIGURE 10.1 C SOUND SPEED ANOMALY FIELD AT 350 METERS DEPTH.
CALCULATED FROM 2ND NOAA CTD SURVEY, 1981 DAYS 120-139.
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FIGURE 10.1 D SOUND SPEED ANOMALY FIELD AT 700 METERS DEPTH.
CALCULATED FROM FIRST NOAA CTD SURVEY, 1981 DAYS 66-85.COUNTOURS ARE M/SEC DIFFERENCE FROM THE AVERAGE SOUNDSPEED PROFILE. CONTOUR INTERVAL IS 1 M/SEC.
(DUPLICATE OF FIGURE 2.1)
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FIGURE 10. 1 E SOUND SPEED ANOMALY AT 700 M. 2ND NOAA CTD SURVEY.
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FIGURE 10.1 F SOUND SPEED ANOMALY AT 1500 M. 1ST NOAA CTD SURVEY.
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FIGURE 10.1 G SOUND SPEED ANOMALY AT 1500 M. 2ND NOAA CTD SURVEY.
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FIGURE 10.1 H SOUND SPE

NORR CTD SURVEY

:ED ANOMALY AT 2000 M. 1ST NOAA CTD SURVEY.
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FIGURE 10.1 I SOUND SPEED ANOMALY AT 2000 M. 2ND NOAA CTD SURVEY.
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inversions require the first CTD survey as an

initialization, and have not been used beyond day 106, so

they cannot be directly compared with either CTD survey.

The corrections are only complete on a few days, and so the

maps cannot be displayed as a time series. Because of the

heightened error level in the day differential data

resulting from the subtractions, the resolution of these

maps is low, and the initialization using the CTD survey

tends to dominate the map. Finally, the simple corrections

for line-of-sight range changes introduce errors of order 5

msec. For these reasons, it is better to compare the

traditional data with the estimates of sound speed made

using uncorrected data.

Figure 9.6 shows time series of sound speed anomaly

field estimates at 700 meters depth, Figures 10.2, 10.3,

and 10.4 show maps for 350, 1500, and 2000 meters,

respectively. The continuous nature of the inverse means

that maps could be produced for any level, but that might

become somewhat tedious. Only a few of the rays used at

present penetrate to within 300 meters of the surface, so

the resolving power of the estimator decreases with

decreasing depth (see Figure 10.5). The perturbations due

to mesoscale dynamics presumably have structures similar to

the calculated first and second baroclinic modes, (see
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FIGURE 10.2 A-t7 MAPS OF SOUND SPEED ANOMALY AT 350 METERS ESTIMATED
BY THE ACOUSTIC INVERSE.
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SND SPD RNOMALT REL. TO 1521.7304 M/SEC
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FIGURE 10.3 A-V MAPS OF SOUND SPEED ANOMALY AT 1500 METERS ESTIMATED
BY THE ACOUSTIC INVERSE. C.I. = 0.5 M/SEC.
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SND SPD ANOMRLY REL. TO 1492.7746 M/SEC
INVERSE DRY 106 1981, DEPTH =1500.0
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FIGURE 10.4 A-6 MAPS OF SOUND SPEED ANOMALY AT 2000 METERS
BY THE ACOUSTIC INVERSE. C.I. = 0.2 M/SEC.
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FIGURE 10.5 C: MAP OF EXPECTED ERROR VARIANCE EXPRESSED AS PERCENTAGE
OF TOTAL VARIANCE. AT THIS LEVEL (350 METERS DEEP)
THE MODEL PREDICTS 0.66 M/SEC STANDARD DEVIATION FOR
THE SOUND SPEED FIELD.
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THE SOUND SPEED FIELD.
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Figure 9.2), so that data at one depth can be used to

estimate the amplitude of the mode at another depth where

the rays do not sample. An important component of the

perturbations is surface intensified, (Figure 9.1B), and is

difficult to resolve without using many rays which pass

close to the surface.
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The ability of the inverse to resolve a given mode is

related to the strength of the travel time anomalies that

the mode is expected to produce. For example, Table 9.1

lists the expected travel time anomaly variances for

several typical rays, broken down by modes. These

calculations are produced as part of the data-data

covariance matrix construction. The first EOF closely

resembles the first baroclinic mode, and is expected to

generate strong travel time signals, above the 5 msec noise

level. The third EOF somewhat resembles the second

baroclinic mode, and is more marginal compared to the noise

level, while the second EOF, which accounts for much of the

expected variation near the surface, produces a travel time

signal which may be lost in the observation noise, so that

more near-surface rays are needed before the upper layers

can be mapped precisely.
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The error maps displayed for the layers (Figure 10.5)

summarize the ability of the inverse to resolve the

expected variance at each level. Chapters 5 and 6

discussed how the the inverse procedure calculates the

expected variance of its estimates of sound speed anomalies

everywhere throughout the volume of interest. The error

variance is due both to noise in the data and to poor

sampling (as when no rays penetrate to the surface). The

expected error variance can be expressed as a percentage of

the total expected variance, which masks the dependence on

the absolute energy level chosen by the parameters listed

in Table 9.1. These maps are meant to resemble the error

maps which have been included with objective analyses used

in oceanography (Bretherton, Davis, and Fandry, 1976).
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At locations outside the array of instruments, where

no data are available, the stochastic inverse tends to

leave the a priori mean undisturbed, producing zero as an

anomaly estimate, while the error map shows 100 % of the

variance to be unresolved. Because the field is spatially

correlated, the resolution does not immediately drop to

zero, but the maps are not very reliable around the edges.

This impairs comparisons with the southernmost

environmental mooring (Figure 1.4), and so time series

comparisons have only been made for the central

environmental mooring and three of the acoustic moorings.

The error maps can also be displayed as error bars, if

desired (Figure 10.5), where the numbers are now the

expected standard deviations of the estimates in m/sec.

Some of the maps have also been made showing the standard

deviation of the error, to facilitate quantitative

comparisons with the traditional data. These error bars

can also be used to quantify the point-by-roint time series

comparisons presented in Figure 10.6.
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The agreement between the acoustics and the CTD survey

is generally good, to within the error levels as specified

by the maps, except for a few days late in the record,

where a strong negative anomaly appears to emanate from

source 4, and for a few days near day 100, where a positive

anomaly appears near the center of the array. One possible

explanation for these "anomalous anomalies" is extreme

mooring motion.

The inverse has mooring motion and clock offsets

parameterized as part of the forward problem, but the

dependences are linearized, just as the dependence of

travel time on the sound speed anomalies is linearized

around a basic state. For clock error, the linearity is

exact, but both horizontal and vertical mooring position

changes have been treated by assuming a straight ray

(locally) and a constant sound speed. The horizontal
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FIGURES 10.6 A,B,C:

THESE FIGURES SHOW THREE COMPARISONS BETWEEN TIME SERIES OF

SOUND SPEED CALCULATED FROM THE TOMOGRAPHY SYSTEM (PLOTTED

AS SQUARES) AND TIME SERIES OF SOUND SPEED FROM

TEMPERATURE-PRESSURE RECORDERS LOCATED ON MOORINGS IN THE

ARRAY (PLOTTED AS TRIANGLES). THE TWO CURVES HAVE BEEN

OFFSET SLIGHTLY TO AVOID CONFUSING ERRORS ASSOCIATED WITH

TEMP-SOUND SPEED CONVERSION, AND SO ONLY THE SHAPES (SLOPES

AND EXCURSIONS) OF THE CURVES SHOULD BE COMPARED.
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linearization holds for displacements of up to 2 km., but

the vertical displacements are considerably less robust. I

estimate that depth changes of more than about 50 meters

will produce significant (Order 5 msec) errors in the

linearization, both through local inaccuracies and through

changes in the overall ray path.

The inverse procedure returns estimated locations of

the instruments as well as the sound speed maps, so large

estimated displacements signal that the linearization may

be questionable. At this point, it is also possible to

take advantage of the physical structure of the mooring,

since the x, y,and z displacements were originally assumed

to be independent. A large horizontal displacement of the

mooring should be accompanied by a deepening of the

instrument, while the instrument should never go shallower

than the "rest" depth defined above for the undisturbed

mooring. These two constraints may perhaps be included in

later inversions, but at the present they permit

consistency checks on the estimates. A simpler check of

consistency is to compare the acoustic estimates of

instrument displacements with T-P records.

Figure 10.8 is the depth variation of source 2

calculated from the acoustics and Figure 10.7 is pressure

from a T-P recorder on the mooring near the source. The
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two time series compare quite well, and both show the

extreme depth excursion of source 2 beginning on about day

122. The receivers move only weakly (0(10 m.), but sources

2 and 4 are particularly active. Source 2 (S2) is about 40

m. below its "rest" position during the days 67-77, and is

about 140 m. deeper beginning on about day 122. Source 4

is 120 to 170 meters deeper between day 60 and day 77, and

goes completely off scale (deeper than 170 meters) after

day 136. The inverse results during these periods is thus

suspect. Once again, in later inversions these T-P data

should be included as part of the total data set, but in

the present "proof" stage they provide another point of

comparison for evaluating the inverse system.

The system could be re-linearized around the new

positions, but that was not done for these simple

demonstrations, nor were the data weighted variably for

error and expected mooring offsets. The inversions

presented here represent very little "tweaking" or tuning

of parameters, in the hope that the relatively simple.

procedure would increase credibility. No mooring motion

corrections were used in the data set, and the positions

and depths of the instruments were determined by the

inversions themselves. The weighting parameters were based

at least partly on the residual uncertainties from anchor
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position and "rest" depth determinations, although sources

2 and 4 were given large variances on the basis of the T-P

records. In the next version of the data processing, the

data from the mooring tracking will be used, where it

exists, providing both an a priori estimate of instrument

location and an estimate of the remaining uncertainty day

by day. At the very least, the large variances for the

instrument depths can be reduced, and the linearization can

be re-done on each day, using the a priori position

estimates.
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10.2 IMPROVEMENTS TO THE 1981 MAPS

One of the most striking features of the maps from the

inverse system (Figures 9.6, 10.2, 10.3, 10.4) is the

continuity from day to day. This is expected on the basis

of the time scales (0(50 days)) of the mesoscale motions,

and it is very tempting to incorporate these expectations

into the inverse methods. At present, the maps on a given

day are independent of all the other days, even though the

mesoscale features change very little over three days, so

the similarity between successive maps provides a

consistency check on the inversions. These consistency

checks can of course be converted to constraints on the

inversions to improve the performance of the system. The

simplest modification would be to average the travel time

data over a period of 6 to 12 days, reducing the random

errors but complicating the mooring position problem

somewhat.

Simple averaging is only a stopgap measure, and it is

preferable to impose short-term continuity as a constraint,

either explicitly, producing additional "data", or

implicitly, by requiring the model to satisfy the

constraint directly. The implicit approach is more

elegant, and is frequently far simpler. Throughout the

discussion in Chapters 4-7, the covariances were allowed to
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be time-dependent, but the covariances used in the

processing to date have been time-independent. A

persistence constraint could be enforced by specifying a

covariance which decayed only slowly over time, while

schematic mesoscale dynamics could be introduced by

incorporating a "group velocity" into the covariance, so

that features would be expected to drift westward at a few

km./day. The latter approach has been used for the

POLYMODE XBT maps (Carter and Robinson, 1983), to

compensate for gaps in a spotty data set. The application

to the 1981 tomography maps would be far less critical, due

to the relatively short (3 day) time between measurements,

so that even the short-term persistence hypothesis would be

expected to yield increased resolution without introducing

much error due to the assumptions.

The mesoscale dynamics could be enforced more

rigorously by requiring the unknown sound speed field to be

made up of a superposition of solutions to the linearized

potential vorticity equation (Chapter 3). A planetary wave

expansion limits the results of the inverse to have

specific forms, and so abandons much of the generality

originally introduced by adopting the stochastic inverse

form. If data exist which allow these forms to be
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specified in advance, great improvements in the resolution

of the inverse can be expected. For example, in the 1981

experiment, the 3 CTD surveys could be used to build a

basis set of waves for the observed anomalies, so that the

acoustic data would only be required to establish

magnitudes and phases. As always, the increased resolution

comes at the cost of becoming blind to phenomena which

violate the a priori constraints, although residual levels

could be monitored as a check on the consistency of the

model.

Including the hydrographic, current meter, and T-P

data directly into the inverse is also straightforward, and

continues the theme of converting consistency checks into

increased resolving power. Once the concept of tomography

is legitimized, the data from the experiment should be used

to produce the best possible description of the physical

oceanography of the region. It would certainly be

illogical, given this goal, to exclude any part of the data

from the estimation process. The only complication

incurred in combining disparate data is that absolute error

levels must be established for each of the data sources to

control relative weighting.

Many more sophisticated improvements for the inverse

are also possible, and several have been mentioned earlier

in this thesis. The ocean currents produce travel time
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anomalies, but these have been neglected in the maps

produced to date. This simplified the calculations of the

estimators but also introduced 0(2 msec) of quasi-random

error, which distorts the results and lowers the resolution

limits. The unknown "barotropic" velocity mode should be

about as well resolved as the second EOF in the examples

presented in Table 9.1, based on comparing the expected

travel time anomalies due to velocities to the truly random

error level. The inverses may not produce detailed current

maps, but it is important to parameterize all sources of

variance, to avoid having to add to the basic random error

incurred by the limits of the pulse arrival time

precision.

As suggested by Figure 9.5, it is this level of

irreducible random error which provides the ultimate limits

on resolution, since the inverse cannot be allowed to be

sensitive to anomalies at or below the level of the error.

For example, if the random error standard deviation is 10

msec, then it does little good to add in rays which have

expected travel time anomalies less than this amount, or

which seem identical to similar rays when looked at subject

to this blurring. The addition of constraints to the

inverse can improve the resolution by effectively narrowing

the "bandwidth" of interest, i.e. restricting the possible
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forms of the solution. The total noise power in the

restricted range of forms will be less than for the

unrestricted range, so that the inverse gains some

noise-immunity, and so can be allowed to be sensitive to

smaller travel time anomalies, and thus gain resolution.

All of the improvements discussed above work in this way,

and are designed to combat the relatively large (5 msec)

basic random error inherent in the data from processing and

transmission channel noise. When the travel time anomalies

were expected to be 0(200 msec), 5 or 10 msec of error was

not a problem, but when the expected "signal" is 40 msec,

then a 5 msec noise level greatly restricts the

possibilities of even the "ultimate" inversions. For this

reason, the modifications to the original data processing

outlined in Chapter 8 are of critical importance. Every

millisecond reduction in the random error will pay large

returns in increased resolving power.

This can be seen graphically in Figures 10.10 and

10.12, which show results produced by the present inverse

when fed simulated travel time data for an ocean filled up

with planetary waves (Figures 10.9 and 10.11). With no

modifications to the inverse except for reduced random

error, the resolution of the 1981 tomographic array can be

increased radically, and the maps become relatively immune
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to unknown mooring position. Mesoscale tomography is

limited only by the precision of the travel time

determination, and not by complicated mooring hardware.

The sources and receivers have no exposed moving parts, and

the precision is limited by the available level of digital

electronic technology, which is increasing at a rapid rate.

The present inverse framework is designed to include

rigorous self-evaluation, in the forms of both error maps

and results from simulated data, so that it is possible to

juggle the engineering trade-offs in a very rational

manner, much as objective mapping provided a means for

evaluating array layouts for current meters.
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10.3 FUTURE APPLICATIONS OF TOMOGRAPHY

The methods discussed in this thesis suggest a basis

for designing all oceanography experiments, and they are

being used at present to explore possibilities for future

applications of the tomographic techniques. Because

tomography is a form of remote sensing, the most obvious

uses are in cases where it is inconvenient to directly

sample the region of study. In the 1981 application, the

acoustics represented a way to gather a synoptic data set

over an extensive region, without instrumenting the volume

at the required spacing. This same argument applies, with

greater force, to the problem of observing an entire ocean

basin (Munk and Wunsch, 1982). In some high-current areas,

such as the Gulf Stream, it is difficult to moor

instruments directly in the current, so that the capability

to study the current using instruments moored out of harm's

way is important.

Munk and Wunsch (1982) proposed a scheme for

monitoring a basin-sized region using equipment similar to

the 1981 experiment, but transmitting reciprocally to

heighten the resolution of current velocity. They point

out that, because acoustic tomography uses ray travel time

data which average the ocean over long distances,

tomography should be most effective in estimating averaged
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quantities, and may in fact be the most practical way to

obtain such averages for a large basin. They propose a

simple "array" of 5 instruments to measure large-scale heat

content and other climatological quantities. This array

of transceivers can in fact estimate large-scale averaged

vorticity by measuring circulation around regions enclosed

by sets of three instruments. The engineering requirements

for the large scale experiment are not unreasonable, given

the knowledge acquired during the 1981 experiment. Peter

Worcester (1977) has already demonstrated reciprocal

transmission in one instance, and the Tomography Group is

currently engaged in developing the capability to transmit

reciprocally over long ranges using moored instruments.

The basin scale experiment is planned for several

years in the future, and simulations have not yet been

done, but Gulf Stream monitoring is also an engineering

possibility, and has been examined in some detail. The

strong currents of the Gulf Stream make it more difficult

to instrument than the relatively quiet mid-gyre areas, and

it is attractive to consider placing acoustic moorings near

the bottom under the Stream and/or outside the

high-velocity regions.



339

One possible arrangement is shown in Figure 10.13.

Each instrument is a transceiver, so that all paths are

reciprocal, and the surface bounces ensure that the rays

gather data at all depths. Figure 10.14 shows an averaged

sound speed profile from archived stations, Figure 10.15

shows an actual Gulf Stream section expressed as sound

speed anomalies relative to this averaged profile, while

Figure 10.16 is the estimate of the section using travel

times from the rays shown in Figure 10.13.

The steep angles of the rays from bottom-mounted

instruments minimize path changes, so that re-linearization

is not necessary, even in the presence of strong, 0(40

m/sec) perturbations. These estimates are based on a model

of the Gulf Stream built up of vertical modes (Figure

10.17), and a horizontal covariance (Figure 10.18), just as

in the mesoscale case. The mode amplitude estimates can be

used to estimate density, velocity, or transport as well,

while the reciprocal paths should provide good resolution

of cross-stream velocities. Although no vertical rays are

shown in Figure 10.13, they can be timed extremely

accurately, and, since the sound speed structure is

determined by the side-looking rays, the inverted echo

soundings can be converted accurately to surface height,

providing another version of altimeter for monitoring

variability in the total flow field.



FI
G

U
R

E
 

1
0
.1

3
 

PA
R

T
IA

L
 

PL
O

T 
O

F 
RA

Y
S 

FO
R

 
A

 
SE

T
 

O
F 

7 
B

O
TT

O
M

-M
O

U
N

TE
D

T
R
A
N
S
C
I
E
V
E
R
S
 
M
O
U
N
T
E
D
 
O
N
 
A
 
S
E
C
T
I
O
N
 
U
N
D
E
R
 
T
H
E
 
G
U
L
F
 
S
T
R
E
A
M
.

DE
PT

H 
(KM

.)
.0

0 
-3

.2
0 

-2
.4

0 
-1

.6
0 

-0
.8
0 

0.
00

3
4
0

3D I-
'" c) 1 
p .I
'C w
a



3
4
1

F
I
G
U
R
E
 
1
0
.
1
4
 
A
V
E
R
A
G
E
D
 
S
O
U
N
D
 
S
P
E
E
D
 
P
R
O
F
I
L
E
 
F
O
R
 
T
H
E
 
S
E
C
T
I
O
N
 
S
H
O
W
N
 
I
N

F
I
G
U
R
E
 
1
0
.
1
3
.
 

B
A
S
E
D
 
O
N
 
A
R
C
H
I
V
E
D
 
H
Y
D
R
O
G
R
A
P
H
I
C
 
S
E
C
T
I
O
N
S
.

SO
UN

D 
SP
EE
D 

(M
/S
EC
)

cU
85

.0
0 

 
11

95
.0

0 
15

05
.0

0 
15
15
.0
0 

15
25

.0
0 

15
35

.0

-n
0 

C I

lu
U

m
E

D
I 

0 -F
l

1-
4

U
)

t



34
2

FI
G

U
R

E
 

1
0
.1

5
 

PL
O

T 
O

F 
SE

C
T

IO
N

 
A

C
R

O
SS

 
G

U
LF

 
ST

R
EA

M
 

SH
OW

N 
IN

 
FI

G
U

R
E

1
0

.1
3

. 
C

O
N

TO
U

R
S 

A
R

E 
SO

U
N

D
 

SP
E

E
D

 
A

N
O

M
A

LY
 

R
E

L
A

T
IV

E
 

TO
 
T
H
E
 

A
V

ER
A

G
E

PR
O

FI
L

E
 
S
H
O
W
N
 
I
N
 
F
I
G
U
R
E
 

1
0
.1

4
. 

C
O
N
T
O
U
R
 
I
N
T
E
R
V
A
L
 
IS

 
8
 M
/
S
E
C
.

DE
PT

H 
(KM

.)
Q0

 
-1

.8
0

I
-1

.2
0

-0
.6

0 
0.

00
I 

I
-3

.6
0

o 8

-3
.0

0
I

-2
.

I

o 0
0 rr cn cl Z n
U

)l

U
 ) )

L



3
4
3

F
I
G
U
R
E
 
1
0
.
1
6
 
A
C
O
U
S
T
I
C
 
I
N
V
E
R
S
E
 
E
S
T
I
M
A
T
E
 
F
O
R
 
S
E
C
T
I
O
N
 
S
H
O
W
N
 
I
N
 
F
I
G
U
R
E

1
0
.
1
5
.
 
C
O
N
T
O
U
R
S
 
A
R
E
 
T
H
E
 
S
A
M
E
 
A
S
 
IN

 
F
I
G
U
R
E
 
1
0
.
1
5
.

DE
PT

H 
(KM

. 
]

-3
.6

0 
-3

.0
0 

-2
.4

0 
-1

.8
0 

-1
.2

0 
-0

.6
0 

0.
00

0 C

n
E

c
.

o
r z X

 
a

Cl/ -.
.



3
4
4

FI
G

U
R

E
 

1
0

.1
7

 
A

,B
,C

: 
F

IR
S

T
 

3 
M

O
DE

S 
FO

R
 

TH
E 

G
U

LF
 

ST
RE

A
M

 
SE

C
T

IO
N

.
C

A
LC

U
LA

TE
D

 
FR

O
M

 
TH

E 
A

R
C

H
IV

ED
 

H
Y

D
R

O
G

R
A

PH
IC

 
DA

TA
.

MO
DE
 
AM

PL
 
(M
/S
EC
)

0 
OO
 

0.
51

 
1.
01
 

1.
52

 
2.

03
 

2.
53

0
C

)
0
1

-T
i

0 rl1

""
 

Z

Sc co
 

0
1U

0i
oD

 
I 

O In



C C (Z) EOF 2., EIGENVRLUE = 3.703

ECD

Qc-

L1
c1.o

r-n

0. 00 0 . 72 1.JL 2. 16 21. 88 3. 60
DEPTH CKM.)



S C (Z) EOF 3., EIGENVALUE = 0.658
cA r

0.72 1. UJI 2-. 16
DEPTH (KM.)

3. 60

CI)

(.) CZ

L- Ln

cr-

LU

Or .

!

0.

0.00 2. 88



FIGURE 10.18 HORIZONTAL COVARIANCE FUNCTION USED IN MAPPING THE GULF
STREAM SECTIONS SHOWN ABOVE.

O

o.oo 18.97 3e7.9L
HOR. DIST. (KM.)

.91 75.88

Ln

E-- 0

C-)

I-o
CJ

C=)C



346

These simulations were constructed using archived

data, but test cases have also been run using a channel

model to simulate the Gulf Stream (Rizzoli, Cornuelle, and

Haidvogel, 1982). At present, the model has only been used

to construct synthetic oceans for raytracing and evalution

of the estimators. For the future, however, combining

oceanographic measurements with analytical or numerical

models is potentially powerful. One example has already

been discussed--using a planetary wave basis for the

inversions, so that the acoustic data are used only to

update the amplitudes and phases of the waves. The more

general case, combining a dynamic model (which evolves in

time) with data taken periodically, has been considered, in

a simple form, by Ghil, et. al. (1982) for the

meteorological case.

Ghil used the Kalman filter, which is a technique from

control theory in which an estimate of the unknown field,

made by a linearized model, for a given time is optimally

combined with the data taken at that time, and the

resulting field is then used as the basis of the next

estimate. The Kalman filter is designed to minimize the

squared error between the estimate and the true field, just

as in the stochastic inverse, and the time-dependent



347

stochastic inverse with the proper constraints should

reproduce the Kalman filter. The Kalman filter is simple

to implement, and is well-understood, but the length of the

state vector for a primitive equation or quasi-geostrophic

ocean model is perhaps too large to reasonably apply the

Kalman filter blindly.

The field of stochastic and deterministic control

theory is growing rapidly, and there are many

error-minimization algorithms available, depending on the

assumptions that are reasonable to make. Future

observations of the oceans or atmosphere should be made

with these techniques in mind, deciding on the goal of the

measurements and choosing a mix of instruments to maximize

the resolution of the field or balance under study, subject

to economic constraints. If a body of theory is well

understood and accepted, it can be used as a substitute for

much data if it is incorporated in the estimation

procedure.
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APPENDIX

DETAILS OF THE PROBABILISTIC ESTIMATION

From completing the square in equation (10), chapter 4

obtained expressions for the covariance matrix of the

result of the estimation:

C- CC- -1 4 C-1
"a "T

A A A

C - 1 X = C 4 -1
a - T -

(1)

(2)

(3)= (-1 4 C-1)- (C-l 4 C-1X)
a "T a "T

we also have

(A-1 4 B-1) A-1 = B(_B A)- (4)

Applying this to (3), we obtain

X = CT( a 4 CT)-11 C Ca( a 4 2T)- (5)

Using the partitioned inverse, (.9a 4 T) -1 becomes

( - CpdCo-1CTpd-1l

-Co-ICTpd - CpdCo-1CTpd)-1

(C1)-1

-Co-1CTpd(CI)- 1

-- 1Cpd(C o - CTpd-1 CpdY)-

(Co - CTpdB-1Cpd)-1

(7)
(Cn) - 1

(6)
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Equation (7) defines 8, Co , C 1 , and Cn ,

(8)

(9)

B a. + Cp

Co Cd 4 _C

C 1  ,3 - Cpdo-1CTpd

n Co - CTpd,-lCpd

(10)

(11)

Recall that (5) has two parts:

A CT(C CT) (C
X C T(-9a 4 CT)-'I -a(,-a C (5)

The first part multiplies X;

T(C a 4 CT)-1 =

CpC1-1 - 2pdgo-1CpdC1-

T T
pdC1-1 - d o - CpdC 1

(Cl - a)C1-1

T -I
CECo-1CpdC1-

-Cp B-1pd n - 1

T
-Cpd -1Cpd n - 1

(a-1)CpdCn- 1

(n - G) n -

The second part, multiplying X, is:

aC i-1

Ca(C a * ET) - 1 =

T
-C Co- 1C pdC 1-1

4 CpdC n - 1
(12)

(13)

(14)
C C -1= sn
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Thus,

p = (C 1 - a)C1-P 4 ( - ln )C-d d 4 aC1-p P- B-1p dn-1d

[(Cl - a)p 4 ap]Cl - 4 - 1 C dCn- (d - d) (15)

T - T
CeCo-CpdC1-Ip (2n - sc)Cn-ld - Ceo -pdC1-P 4 C n

T
d 4 C n-1(d - d) + Cco-1C dC1( - p) (16)

In the case where no a priori information about a

particular value of p is available, (a+=) then

C1 + + a + w and Cn + C o , so that

Sp 4 CpdC n - (d - d)

d d 4 C ff(d

= d 4 C(Cd 4 C)-l(d -d)

SA
=d -

A
Where s is the optimal estimate of the error

data:

A
S =

c is often

in discussions of

4 CC)-1(d - d) (21)

referred to as the vector of "residuals"

inverse methods, and is usually

calculated by substituting the estimated field into the

(17)

(18)

(19)

(20)

in the
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the forward problem, and subtracting the data calculated in

this way from the measured data. When the model is

continuous, this simple-minded calculation can become quite

expensive, and the direct estimate is certainly more

rigorous.

The a posteriori probability density function for both

the data and the unknowns defines the expected variance of

A
the true value, X, around the estimate, X:

a(X) a exp{-1/2[(X-X)TC-1(X-) 4 (-)T1(-)]} (22)
-T -a

This can be put in the form:

A A A
a(X) = exp[-1/2(X-X)TC-I(X-X)] (23)

A
where X is the maximum likelihood, minimum variance

estimate of X, and C is the estimated covariance around the

true value. We are most interested in the expected

variance of p(x,t) around p(x,t),

2 A 2
= <[p(x,t) - p(x,t)] >, (24)

but it is informative to sketch out the complete C.

The expression for C- 1 has already been derived;

-1 = C-1 4 C-1, (25)
a "T

A
but we need C directly:

(26)
C= (C- 1  C-1) - 1

-a =T
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It is possible to take advantage of the partitioning to

calculate (26) out as written, but it is more efficient to

re-use the identity (4).

C-C-1
-a

(C-1 C1)
a T a

(27)

(28)= CT(Ca 4 ET) - 1

so that

A
C = CT( C a 4 C T ) - 1C a (29)

CP

CTpdCpd

Cp= (C

CTpd

Cpd

Cpd

Pd

)*(

)*(

(C,) - 1

-C o -1T pd 1)-1_ pa (Cn)- 1

a 0
) (

0 CE

(30)

-aCo - 1 CTpd(Cl)-1

The product requires much space to write out, but we

are most interested in the top left element of C, which

is the variance of the estimated value of p around the true

value:

Ep 2 a= Cp(C1 ) -1 - aCpdCo- _CTpdQ(1) (31)

a*(Cp -pdo-1CTpd )(Cp 4 a - cpdo -1CTpd )-

(32)
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For completeness, I will write out the bottom

A
right-hand element of C, which describes the variance of

the estimated data values around the true values:

Ed 2 = Cd ( n ) _-1 C  - CTpd 8-1Cpd(Cn) 19C,

S(Cd - CTpd -1Cpd)(Cn)- 1CE

= (C n - Ce)*(Cn)-1c

= C - C9 (Cn)-1c

(33)

(34)

(35)

(36)

Note the exact symmetry with the estimate of the

model field uncertainty.
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