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ABSTRACT

The aeroelastic deformation, divergence and flutter behavior of
rectangular, graphite/epoxy, cantilevered plate type wings at zero sweep
and thirty degrees of forward sweep is investigated for incompressible
flow. Since the wings have varying amounts of bending stiffness, torsion
stiffness and bending-torsion stiffness coupling, they each have unique
aeroelastic properties. A five mode Rayleigh-Ritz formulation is used to
calculate the equation of motion. From this equation static deflection,
steady airload deflection, divergence velocities, natural frequencies and
flutter velocities are calculated. Experimental two dimensional lift and
drag curve data and approximations to three dimensional aerodynamics are
used to calculate the aerodynamic forces for the steady airload
analysis. The Weissinger L-Method for three dimensional aerodynamic
forces is used in the divergence analysis. The V-g method is used to
make flutter and natural frequency calculations. Tests on a static
loading apparatus gave static deflections, while wind tunnel tests gave
steady airload deflections for the wings at zero sweep, and divergence
and flutter behavior data for all wings at both zero sweep and thirty
degrees forward sweep. Wings were tested from zero to twenty degrees
angle of attack for airspeeds up to divergence, flutter or the thirty
meter per second limit of the tunnel.

Static deflection, natural frequencies, steady airload, divergence
and flutter for the straight wing were predicted reasonably well by the
theoretical calculations. For the swept forward wings, calculated
flutter speeds were beyond the wind tunnel capabilities, while calculated
divergence speeds were reasonable when divergence did occur. When swept
forward, before reaching predicted divergence speeds some lightly
bending-torsion stiffness coupled wings went into a torsional flutter,
characterized by a large average bend which caused a high wing tip angle
of attack. This flutter was not predicted by the theory used. The
different ' wings exhibited markedly different stall flutter
characteristics.

Thesis Supervisor: John Dugundji

Title: Professor of Aeronautics and Astronautics
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CHAPTER 1. INTRODUCTION

The use of composite materials in aircraft structures has added

another design dimension to the aircraft designer. Useful not only for

their high strength to weight ratio but by giving the designer the

ability to vary the force deflection behavior by varying the layup

scheme, they have made certain previously impractical design options

attractive. In particular, forward swept wings have gained renewed

interest because their major drawback, low wing divergence speeds, can be

significantly improved by using tailored composite material in wing

construction. A good discussion of this is contained in reference 1.

This project will draw on the work of four previous experimenters

at M.I.T.; Hollowell, Jensen, Selby and Dugundji (references 2,3,4 and

5). Those men worked with some of the same wings that were used in this

project. They made calculations and ran experiments to determine the

wing stiffness and bending-torsion stiffness coupling, the steady airload

deflection behavior and the flutter and divergence speeds at low and high

angles of attack. Using their work as a foundation, we will extend its

range by investigating several new ply angle layup patterns and by

investigating aeroelastic properties at 30 degrees forward sweep.

Primary interest is in the investigation of divergence and flutter speeds

and the wing shapes during those conditions at both low and high angle of

attack. Low angle of attack flutter is investigated both theoretically

and experimentally while high angle of attack flutter investigation is

experimental only. We also extend the work of Hollowell on steady

airload deflection analysis by including a realistic non-linear lift

curve, drag and approximations to three dimentional aerodynamics.



CHAPTER 2. THEORY

2.1 Rayleigh-Ritz Analysis

In this research both static and dynamic analysis are done using

the Rayleigh-Ritz analysis technique. We therefore need to formulate an

equation of motion for the dynamic analysis and then by setting the time

derivatives equal to zero, we can use the same equation for the static

analysis. Because of the complicated nature of anisotropic material,

exact analysis is difficult and often impossible. Therefore I chose an

approximate method of analysis, the assumed mode or so called

Rayleigh-Ritz method. This is the same method used by Hollowell, Jensen

and Selby (references 2, 3 and 4) who were mentioned in the introduction

and in fact, due to the amount of work already done on these wings with

this method I decided to use the same assumed modes im my analysis.

The analysis is linear and assumes all deflections are

perpendicular to the wing in the z direction as shown in figure 2.1.

G = PLY FIBER ANGLE

V.

Figure 2.1 Wing coordinate system.



Note that the ply fiber angle is measured in the opposite direction as

compared to the standard composite material direction.

The basic equation.for the assumed modes is:

n
w(x,y,t) = i Y (x,y) q (t)

i=1
(2.1)

Where Yi(x,y) are the modes. In our case we have five modes so n=5.

To get the equation of motion we start with Lagrange's equation.

d ST aT av
dt K 4 r qr -

3q
at

Where Q represents the applied loads.

Now we need expressions for the kinetic and potential energies.

For the kinetic energy of a plate we have:

T = ff m (w2 dA

Where m = mass/unit area.

Using equation (2.1) for w we get:

i j
S= f f m I iAi jyj dA
TJ

(2.3)

(2.4)

(2.2)



Moving summations and grouping terms:

i j
T = Mqq (2.5)

where M. =f f Y.my.dA (2.6)

The variational potential energy for a plate is:

6v = ff ( N Se + N 6 + N Y + M 6K + M 6K
x x y o xy xy x x y y

oo

+ M 6K ) dx dy (2.7)
xy xy

where using conventional displacement notation:

2
* au a2w

xo ax x ax 2

2
av aw= K

Yo ay y 2

au 9v - 2(2.8)

XY ay + x xy axay

To apply this to anisotropic plates we start with the modulus equations

for the general laminate.

{] i (2.9)
M B D K



N = Force/length vector

M = Moment/length vector

= strain vector

K = curvature strain vector

A,B,D are the appropiate modulus matrices

Since this is for a plate we assume no strain or shear in the z

direction. For a symmetric laminate, moments about x any y do not cause

strain, only bending so B = 0. In our analysis all loads are in the z

direction so N = 0, leaving us with, in expanded form:

Mx

Yyxy

D11 D12 D16

D2 1 D2 2 D 26

D6 1
D6 6

Kx

K y

xy

(2.10)

equation (2.10) for M, integrating with respect to the

and using equations (2.8) for the curvatures we get:

variational

V = 1/2 ff [-w,xx -w,yy -2w,xy

D1 1 D12 D16

D2 1 D2 2 D 2 6

D6 1 D6 2 D6 6

S-W, XX

yy

(2.11)

-2w,xy

Using

terms



where:
2
w

w, = , etc.
xx 2

expanding this equation and using D21Dx

expanding this equation and using D2 1=D1 2, D16=D61 and D2 6=D 62

V =1 f f{ D11w,
2

+ 2 D1 2w, x x , + D2 2 w, y1 xyy 22yy + 4D w,
66 xy

+ 4D w, w, + 4D w, w, j dA
16 xx xy 26 yy xy

(2.12)

We now substitute in equation (2.1) for w bring sumations and q's out of

the integral to get:

i j
V =I1 qq ff D Y Y ,

2 i j I 11 xx j xx
+ 2D Yxx Y.

12 1'xx j'yy

+ D y., Y., + 4D Y., y, + 4D , y.,
22 1 xx yy 66 1 xy j xy 16 i xx 3 xy

+ 4D Y., Y., } dA
26 1 yy ] xy

Finally it is rewritten in the compact form:

i j
1 =- Kij qq

(2.13)

(2.14)



where

K = ff D Yi, Y., + D Yi' y., +4D y, ,
11 xx ] xx 22 yy yy 66 i xy j xy

+ D1 2  i'xx' j' + xxj'yy

+ 2D Y.( y, Y., + y,. Y., )16 1 xx j xy j xxI xy

+ 2D26 ( Yi'yyj xy Yyyixy

Note that Kij is symmetric.

Now we can put our expressions for T and V in equation (2.2).

for kinetic energy:

Tq 2r
M.. i.

13 q qMij qr i

a4 q'- j

a .
+ rq

r i )r

using qi =
;q ir

;T 1 i
-r = - IM q.aqr 2 rj ir

and expanding

+ - Mir qi
2 ir i

since M is symmetric we can sum the two parts:

3T
- = IMr q.

aq rj ]

similarly for potential energy:

S Krjq.

(2.15)

First

(2.17)

(2.18)

(2.19)



finally

d3T 3T
dt q= Mrj qjr

We note that:

aT
and put these into Lagranges equation, using0

and put these into Lagranges equation, using r=i:

M q. + K.,. q. = Q.
1] J 13 J 1

( j = 1,2,...N) (2.21)

in matrix form:

M q+ Kq =Q
rre me r

(2.22)

This equation will be used to derive all the displacements and motion of

the wings. The five mode shapes used are listed on table (2.1) where

the variables have been separated in the form:

Yi(x,y) = 'i(x) *i(Y)



- a { sinh

Ex

2. cosh ( -)

EX Ex

- ) - sin ( - )

Ex

-cos ( -

- a sinh
2

Sx ex
( 2 2- sin ( 2

3. sin (-)

3ix
4. sin ( --

5x
A A

4y 1
2 3

c

El = 1.8785104

C2 = 4.694091

al = 0.734096

a2 = 1.018466

Table 2.1 Assumed modes used in the Rayleigh-Ritz analysis.

The first two are cantilever beam bending modes the second two are

beam torsion modes and the fifth is a chordwise bending mode. You may

notice that modes 3 & 4 do not meet the boundary conditions for a

cantilevered plate at the root where w, x is zero. But the error is

small away from the root and an aspect ratio correction for this is made

Mode i (x)

i. cosh ( - - cos ( -- )

where:



in the stiffness matrix terms. Jensen in reference 3 goes through in

detail the algebra for working out the mass and stiffness matrix terms

and he also derives the torsion stiffness correction factor. In this

report only the results are stated.

Mass Coefficients

M =mctI

M = mc£I
22 2

mct
M I33 12 3

mc£
M 12
44 12 4

4mc£
M I55 45 I5

M.. =0 i j13

Stiffness Coefficients

D c
11

K =-I11 3 I6£

K =012

2D
16

13 2 2 7

D c
11

K = I
22 3 10

2D
26

K =-I
23 2 11

2D
16

24 2 122.

K3 4
= 0

4D 16D16 26
K - I + I
35 2 16 2 17

32 c

4D k
66 2T 2

44 c£ 19 37/2

2D 8D
16 16

K =- I K =- I
14 2 8 25 ci 13

4D16

45 32 20
32.

8D
12

15 ct I9

4D c
11

K =
55 3452.

4D
66

33 c2 15

k
1T 2

iw/2

64D 22 64D66
+ I + I

22 3 5 3ck 23
c

16D 2 6

2 21



Where the original values for K33 and K44 were changed using the aspect

ratio correction worked out by Crawley and Dugundji (contained in

reference 4).

where:

2
D11c

8 = 2
48D 66

And the values of knT ( n = 1,2 ) are plotted vs. 8 in figure 2.2.

The integrals and their values are listed in table 2.1.

For our particular wings, values of Dij were calculated using the

material constants listed below.

EL = 98 x 109 N/m2

ET = 7.9 x 109 N/m2

VLT = 0.28

GLT = 5.6 x 109 N/m 2

wing thickness = .804 mm

density of wing = 1520 kg/m 3

The engineering constants are for Hercules ASI/3501-6 graphite/epoxy for

out-of-plane loading (see reference 5 for an explanation on the

differences in the engineering constants for in plane and out of plane

loading).
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Figure 2.2 Graph of knT vs.8.
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2.2 Static Deflection Analysis

For static loading, all inertia terms in equation (2.22) are zero

so we have left:

(2.23)Kq = Q

Q is the modal force where:

Qr =ff py rdAQr r dA

where p is a distributed load per unit area.

For our tests the load was applied at x = £ so we have:

c/2 £

Qr = f  I p(x,y) 6 (x-£) Yr(x,y) dA

-c/2 0

c/2

= f P(£,y) Y r(£,y) dy

-c/2

(2.24)

(2.25)

where P is the load per unit length.

For the bending load the apparatus used was assumed to apply a



load constant in the y direction so we can take P out of the integral.

c/2

Q = P f Y (a,y) dy
r r

-c/2

(2.26)

Now we need only insert the five modes to get the five values of Qr.

They are listed below.

Q1 = 2Pc

Q2 = -2Pc

Q3 = Q4 = Q5 = 0

For the torsional load the test apparatus was assumed to apply load

linear to y such that:

p = ay

where a is a constant.

Our equation becomes:

c/2

Q = af y y (,y) dy
r r-c/2

-c/2

(2.27)



Again, putting in the five modes we get:

Q1 = Q2 = Q5 = 0

2
ac

Q3 12

2
ac

4 12

The values for Q were calculated and put into equation (2.23) which was

solved for the column vector q. The values of q were then put into

equation (2.1) to get the analytical deflection. The results are shown

together with the experimental data on figure B.1 to B7.

2.3 Steady Airload Analysis.

When put in an airstream at a given angle of attack a wing

generates airforces, indeed this is its purpose. These airforces not

only support the weight of the airplane but they also bend and twist the

wing itself. This deformation of the wing, in return, by changing the

angle of attack, changes the airforces on the wing. The result, shown in

figure (2.3) is a simple feedback system.

dynamic force(a) wing
a c curve ressure stiffness0 fopressure stiffness

Figure 2.3 Flexible wing twist feedback system diagram.



When the loop converges to a certain value we have the final

deflection. In certain linear theory analysis when the airspeed is

increased beyond a critical value the loop does not converge and

airforces and deflection increase without limit. This is called

divergence. In the real world there are limits to the actual increase in

deflection and airforces. They come about due to distruction of the

wing, non-linear stiffness of the wing or non-linear increase of airload

with increases in the angle of attack. With our wings the most important

non-linearity, especially at airspeeds at and below the divergence

airspeed, is the non-linear increase of airload with angle of attack.

For the steady airload analysis we put in this non-linearity by

using the lift and drag curves for a flat plate from reference 10 shown

in figure 2.4.

reference 10 data

0.8 C

0.6

CD
, CL

0.4

CD

0.2

0 4 8 12 16 20

angle of attack

Figure 2.4 Lift ands drag curves for a flat plate.



The force that deflects the wing is the force perpendicular to the

wing (in the z direction). This force has a component from lift and drag

dependent on angle of attack as shown in figure 2.5.

Lift

Vs

Resultant
Force

Drag

Figure 2.5 Components of force for a wing at angle of attack a.

From figure 2.5 we get:

(2.28)Cf = CY cosa + Cd sin a

For the lift component of force, I made a Cf(lift) vs. a curve. This

curve was approximated by a polynomial of the form:

n

Cf(lift) A [  ai=1
(2.29)



For our purposes n = 4 gave a sufficiently accurate curve. Both the

coefficient of force curve and the polynomial approximation are shown in

figure 2.6.

4 3 2
C = -37.7072a + 42.472a - 23.167a + 6.6746a {a in radians}

f(2.30)

(2.30)

0.6r

Cf(lift)

0.2

reference 10 data

- approximation

U I
0 4 8 12 16 20

angle of attack

Figure 2.6 Approximation for the

This gives the section coefficient of force from lift as a

function of angle of attack but we also need to know the dependance on x

and y, or in other words, force distribution on the wing. In reference 4

Selby showed the lift distribution of a rigid wing. This.was used as a

guide for modeling the force distribution on our wing. Again a

polynomial approximation was used. The distribution in the chordwise y

Cf curve.



direction and the approximation are shown in figure 2.7 as coefficients

of pressure versus chord.

Approximation equation for force distribution in the chordwise y

direction:

C = C
p p avg

0 3( 0.5 - y 2 (2.31)

reference 4 data

approximation

0 0.2 0.4 0.6 0.8 1.0

(y + 0.5)/cord

Figure 2.7 Approximation for the Cp curve.

Both the approximation and the theory give 25% chord as the center of

pressure in the y direction. Reference 10 shows the coefficient of moment

about the quarter chord vs. angle of attack. From this we can calculate

the center of pressure movement with changing angle of attack by using:

(2.32)C =(py -y C
m cp .25c it

where ycp is the center of pressure location.



To approximate this, a modification was made to equation (2.31). The

center of pressure movement and its approximation are shown in figure

2.8.

Approximation equation for force distribution in the chordwise y

direction with a correction for cp movement:

C = C ( 3.5 - 5.71a )*( 0.5 - y 2.5
p p avg

+ 1.63a (2.33)

reference 10 data

0.4 - - approximation

8 12 16 20

angle of attack

Figure 2.8 Center of pressure movement with changes in angle of attack.

In the spanwise x direction, the lift distribution was calculated

using lifting line theory. I used the matrix equation given in reference

7.

1+F rsinro sinro l c IS 81 sin i
N

(2.34)



where: a = 2w
0

c = chord

£ = semi-span

x

= cos ( m
m -

r = ( 2n - 1 )

n = column number

m = row number

The lift distribution was calculated for three cases, a rigid wing

at 2 degrees angle of attack, a wing with positive twist of 4 degrees

with the root angle of attack at 2 degrees and a wing with negative twist

of 4 degrees with the root angle of attack at 6 degrees. These three

cases span a good part of the low angle of attack deformation conditions

for our wings. The three cases along with the approximation used are

plotted in figure 2.9. The same approximation was used in all cases.

Note that C£a(root) = C/a(root)

Approximation equation for force distribution in the spanwise x

direction:

x 9(2.35)
C = C 1.111 1 -( ) } (2.35)

f f avg R



8

C (root)

4

0

C (root)

C t(root)

( = 2 deg. constant
lifting line

- - - approximation

0 0.2 0.4 0.6 0.8 1.0

x/length

S = 6 deg. root to 2 deg. tip
lifting line
approximation

0.2 0.4 0.6 0.8 1.0

x/length

0 0.2 0.4 0.6 0.8 1.0

x/length

Figure 2.9 Spanwise lift distribution for various twist conditions for a

straight wing (A = 0).



Finally, for drag I used the curve from reference 10 shown in

figure 2.10 with its approximation. Drag was assumed to be a function of

angle of attack only and not of x and y .

Approximation equation for force due to drag:

Cf. (drag)

0.20

0.15

Cf (drag)

0.10

0.05

0

Cd sina = 3.5a
d

3 (2.36)

reference 10 data

approximation

4 8 12

angle of attack

16 20

Figure 2.10 Change in force due to drag with changes in angle of attack

Putting all the approximations together we get a two dimentional force

distribution on the wing where:

p=Cp .Axy
p p Z'c



4 3 2
C = A + A 3a + A 2a + A1 a

* 1.11[ 1 - ( ] { (3.5 - 5.71a [ 0.5 - ( 25 + 1.63a }

3
+ 3.5a (2.37)

For a, the vast majority of the twist () is from the first assumed

torsion mode so I used equation (2.38) for a = aO + 0 *

q3
a(x) = a + sin- ( - ) sin( ' ) (2.38)

This completes the distributed force coefficient term. Multiply this by

dynamic pressure and we get the distributed force per unit area. This

was put in the Rayleigh-Ritz analysis to get the modal force Q.

X c/2

Qr =f f f(x,y) y(x,y) dx dy (2.40)

0 -c/2

The equation was solved on a digital computer by numerical integration.

Then equation (2.23) was solved for q. Solutions were calculated for

three airspeeds 5, 11.5 and 16 meters per second at angles of attack from

2 to 20 degrees at 2 degree increments. If 16 m/s was higher than the

wing divergence speed, I omitted the calculation at that speed. For 5

m/s three iterations were sufficient, for 11.5 m/s five iterations were

sufficient and for 16 m/s up to seven iterations were used. The results

for a straight wing (A = 0) are plotted along with experimental data in

figures C.1 through C.13.

2.4 Wing Divergence Analysis.

Basically a wing diverges when the aerodynamic forces from

increased angle of attack due to twist are stronger than the resisting



forces from the wing's torsional stiffness. When wings are swept,

bending also causes changes in angle of attack while bending stiffness

resists these changes.

To calculate divergence, therefore we need to relate the stiffness

forces to the aerodynamic forces. In matrix form the torsional stiffness

equation is :

{ 0 = [ c zE  ( I [ C M (2.41)

If the forces and moments can be combined to make a force at a specific

chordwise point we get:

S) = [C ( F ) (2.42)

The aerodynamic forces for a station along the span are:

a = cC ,q q = dynamic pressure ) (2.43)

In matrix form we have:

L } =q cC } (2.44)

Where [ W ] is a weighting matrix for the stations chosen and contains

the appropiate amount of spanwise length to make the running lift .the

lift for the area covered by the station. In this case lift is the force

in equation (2.42) so we have:



So } = [ c ] q [ ] cC }

By use of an aerodynamic scheme we will get:

a =A(cC )

Where A is the aerodynamic operator. In matrix form:

Sa = [ A ] cC

or:

(2.48)
C,}=[A] a

putting this into equation (2.45) we get:

-1
) = q[c[ [ [A] {a

We note that a a + 0

Where a0  is the rigid or root angle of attack.

To calculate divergence, we set a0 = 0, so we get:

(2.49)

(2.45)

(2.46)

(2.47)

Sa = { e } (2.50)



and

-11 -1
-{ o }=[ C [ [ ] {}A (2.51)q

This we recognize as a characteristic value equation where for the first

characteristic value, say X, we have:

= -- (2.52)
(divergence)

This is the form of the solution to the divergence problem. We need

only determine the three matricies [ C ], [ W ] and [ A ]. Because the

compliance matrix will be made to match the aerodynamic matrix we will

determine the aerodynamic matrix first.

To derive the aerodynamic matrix I used the Weissinger L-Method.

This method and its theoretical foundation are outlined in reference 7.

The final matrix form for lift symmetric about the fuselage is:

a{ = [ A ] { cCS } (2.53)

DeYoung and Harper is reference 11 write this equation in the form:

(m-1)/2
a = a G (2.54)

v vn n
n=1

The avn terms are the terms of the aerodynamic matrix and Gn is a

form of the chord times the lift coefficient. They have graphed values



for the aerodynamic matrix terms versus wing geometry giving a 4 x 4

aerodynamic matrix. Although the swept wing was of primary interest in

the divergence analysis, I constructed an aerodynamic matrix for both the

straight wing and a 30 degree swept forward wing ( A = 0, -30 ). With the

aerodynamic matrix and known angle of attack, a simple simultaneous

solution of the four equations gives the section coefficient of lift.

The results are shown for constant angle of attack for both straight and

sweep forward wings in figure 2.11. The lifting line results for the

straight wing are coplotted for comparison.

The four stations used by Harper and DeYoung are the four so

called Multhopp stations and are at:

x
= .9239, .7071, .3827, 0.0

for the stations 1, 2, 3 and 4 respectively. This method puts the bound

vortex at the quarter chord while meeting boundary conditions at the

three quarter chord. This is equivalent to saying the force is at the

quarter chord while the angle of attack is measured at the three quarter

chord position. This gives us the necessary information to match the

compliance matrix to the aerodynamic matrix.

Also reference 7 gives the terms in [E] when using the Multhopp

stations.

To calculate the compliance matrix we will use the coordinate

system in figure 2.12.



x (root)

0.2 0.4 0.6 0.8

x/length

= constant

m(root)

i/length

Figure 2.11 Lift distribution in the spanwise x direction using the

Weissinqer L-method



V,
A ---

y y

Figure 2.12 Swept forward wing coordinate system.

In our case all loads can be considered point loads applied at

quarter chord in the y-axis and at the Multhopp stations in the x-axis.

This reduces equation (2.24) to:

4
(2.55)

j=1 F.x.,y.

expanding this:



1(x , 1(x2 2 ). Y1( x4' 4)

2 x2' 2 "") 2( x4 4)

75(Yx2 2 .. 5 x4'y 4

Let's call the matrix that premultiplies {F}, [R], so

{ Q} =[R] F

in short form:

(2.57)

Now putting that aside for the moment, let's get a relation for twist

angle 0. Using small twist angle assumptions we can say:

e = - - (2.58)

(2.59)= - cosA - a sinA

For w we substitute in equation (2.1)

5 ai (x,y) yi (x,y)
0=- a( - cosA + sinA ) qi

i-=1
(2.60)

To get the twist at the four Multhopp stations we use the x-axis position

of the station for 3j and three quarter chord for j where j is the

index for the Multhopp station. This gives us:

1 \

Q2

5

F

F2

F
4



5 ay x.,y yi (x.,y
e = - +cosA + - sinA)q.
j i=i=1

in expanded form

a1(Xl, I )

ay1 x 1 )

1xy 4)

ay2( x 1

ay2 (x 2 f 2 )
ay x2

a2(x4 4 ....

ay 5 (x 2 ,y 2 )

ay

a5 (x4,y 4 )

ay

a5s(x11Y)

a

ax

Dy5(x4 4)
93F

a.a7 1 (x2'Y 2 )

ay 1 (x 4 'y 4 )

a 3E

a 2(x IYl ....
ax

ay 2 (x 2 ,' 2) ....

ay 2 (x4'Y 4 ) ....
37'

ql

92
sinA

q5

Calling the matrix that premultiplies {q} in equation

have in short form:

S) =[ s] {q}

(2.62), [S], we

(2.63)

(2.61)

01

2

e4

cosA



Now using equation (2.23) where we premultiply by the inverse of [K].

SKq}= [K Q } (2.64)

putting this in equation (2.63) we have:

{ }= [s]] K {Q (2.65)

putting equation (2.57) into equation (2.65)

{ }=[s][K] [R ]{F (2.66)

We can now see that our compliance matrix is of the form:

[c] =[s][K] [R]

Finally, we put equation (2.67) in equation (2.51) giving us:

-1 -1
1 ){ [s][K] [R][W][A] {}
q

(2.67)

(2.68)

This equation was solved in a digital computer and the first

characteristic value gives the divergence velocity. With some of the

wings with negative bending torsion coupling, for the straight wing case,

the divergence velocity was imaginary. This indicates that according to

linear theory .the wing will not diverge. The results of the analysis are

shown together with experimental data in table 4.1.



2.5 Flutter Analysis.

For flutter analysis, I used the well known V - g method. In

this method, structural damping (g) is introduced into the equation of

motion. since solutions of the equation of motion represent the neutral

stability condition solution, when g is negative the wing is stable.

When g is positive we see that damping is required for neutral

stability. Flutter occurs when g is equal to the actual damping of the

structure.

Assuming harmonic motion q(t) = q eiLt ), the equation of

motion is:

2 ist
SK - M ) itQ (2.69)

First we need to derive the unsteady aerodynamic forces in terms

of Q in equation (2.22). We will do this by deriving the variational

work (W) and put that in terms of Q by using equation (2.70).

5
6W = I Q q (2.70)

n-1 r r

The general form for 6W is:

1 c/2

6w = f f p 6w dydx (2.71)

0 -c/2

The term p6w can be separated into three components and their

respective displacements; lift, moment and camber force about the



midchord (L6h, M60 and N6).

where:

c/2

L = f p dy

-c/2

c/2

M = - f yp dy

-c/2

c/2

N = I 5 p dy (2.72)

-c/2
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Figure 2.13

convention.

Swept wing coordinate system and the displacement sign

~PI



Using figure 2.12 (reproduced here) for the swept wing geometry and

figure 2.13 for the displacement sign convention, then relating the

assumed modes to the different displacements we can write:

h = (x) q1 + 2 (x) q2  (2.73)

1 dh
=- 3(x)3 +  4 ( ) q4 cosA + d sinA } (2.74)

55 (x) q 5  
(2.75)

Using equation (2.73) we can write equation (2.74) as:

8 e - { [ 03(x) q3 + 4 (x) q4  cosA

1+ - q + - q 2  sinA } (2.76)

Putting equation (2.72) in equation (2.71) we get:

W = f L Sh dx + f M 6e dx + f N 6~ dx (2.77)

0 0 0

Now putting equation (2.73), (2,75), and (2.76) into equation (2.77) and

rearranging terms we get:



d1(x)

6W = { fL 1 (X) dx - sinA fM d dx 6qi
1 f d 1

0

sd# 2(x)

+ f L 2 (x) dx - sinAI M d dx } 6q2

0

cosA
f M 43(x) dx 6q3
0

C f M 4 (x) dx Sq4
0

(2.78)+ f N t5 (x) dx 6q5
0

Now, taking the relations worked out by Spielberg for 2-D incompressible

aerodynamic theory in reference 12, and adapting them to our swept wing

case, we get equations for lift, moment and camber force.

Ab B Cb

M = wp2 be ( M h + MB + M C ) cosA

2 3 it h
N = wrp be (N + N + N ) cosA

Ab B Cb
(2.79)

Where p is the air density, a is the oscillating frequency, b is the



non-dimentional complex functions of reduced frequency k = Wb/V, given

by:

L =1
A

i
L
B k

2C (k)
-i k

SC(k) 2C(k)
+ i X +

k 2k

1
L =
C 12

C(k) 2C(k)
-i

3k 2
k

C(k)
k

1 i
M =---
B 8 2k

C(k) C(k)
+i +2k 2

k

i C(k) 1
M -1 +
C 2k 6k 2

k

C(k)

k

1 C(k)
N =----
NA 1 2 3k

i C(k) C(k)
N =-+i +B 3k 6k 23k

1 j C(k) 1 C(k)
N =--i +
C 36 1 8k 2 2

2k 3k

where C(k) is the Theodorsen function.

49

(2.80)

and the functionssemichord LA, LB , LC , MA ,
etc are



These equations assume harmonic motion such that:

iwt
h(x,y,t) = h(x,y) e , etc. (2.81)

Putting equations (2.79), (2.73), (2.76) and (2.75) in equation (2.78),

using equation (2.70) and rearranging terms we get for Qi:

Q = pw2b3 iwt

LA 2 dx (x)
I [ cosA - f ( (X) ) dx - cosa sinA LB 1(x) d dx

d (x)
- cosA sinA M d

A d x

L
+ [ cosA f 1 ((X) #2(x)

0

2 dO (x) 2
l (x) dx + b cosA sin A M ( ) i q1

0

d#2 (x)
dx - cosA sinA LB f 1 (x) d dx

0

da 1 (x)
- cosA sinA M d 1 ( 2(x) dx

0

2+ b cosA sin A M
B

Sd (x)

0

d2 (x)

d dx ] q2dx 2

*



cos 2 A (x) (x) b cos A sinA d (x)
c LB f 1 x) 3 (x) dx - c B dx 3 (x) dx ] q3

2 2 d1 (x)
cos ALB I ) 4 (x) dx -bcos A sinA 1 f(x) d

c L 1 4 c B dx 4

L d (x)
+ [ cosA - f (x) (x) dx - cosA sinA Mc I d) dx ] q

b 5 C dx 05 5

2 3 iwt
Q2 

= wpw b e

LA
{ cosA - f 2(x)

- cosA sinA MA /
0

d (x)

W1(X) dx - cosA sinA LB I 2 (x) dx dx

d2(x)d 02 Wd

dx 1(x) dx

d 2 (x) d 1 (x)

+ b cosA sin 2A M d(x) d x ] q
B dx d rx d 1

L 2 d2 (x)
+ [ cosA - 2 (x) dx - cosA sinA LB / 2 x  dx dx

b 2 LB J 2 dx

- cosA sinA MA f dx 0 (x) dx + bcosA sin 2A % ( d 2 (dx) ] q2



2 2 d(x)
A L B  (x) b cos A sinA f 2)LB x) (x) dx MB 3(x) dx .q

cos L A 2(b cos A sinAM f 2

0 0

d 2 (x)
+ [ cosA do 2 W

+ LC f 2(x) 5(X) dx - cosA sinA MC f di 5 (x) dx ] q5

2 3 iwt
Q3 - wPW b e

2 2
c s A (x) dx- b cos A sinAS[ A 3 x) c1 x)x MBE 1

£

f 4)3(X)

dl (x)
d dx ] q1

+ cos A M 3 (x)
c A

0

b cos A sinA
2 (x) dx- M B2 c B

d (x)
X 2 )

f )3 x) d2 dx ] q2
0

_ [ b cosA A
- 2 M f 03(x) dx ] q3

0

£
- b MB f  3 

(x) 4(x ) dx ] q4
c 0



cos A

+ c M f 3 (x) (x) dx ] q5
0

Q4= p2 3 iwt
Q4=-- Wpbe *

2cos A
A MA f4 (x

2
+ cos A

+ MA f t4(X)
0

2 a (x)
1BJ 4  dx ]

0

2, d (
b cos A sinA _ 2(x)

2 (x) dx c MB f 4 (x) d dx ] q2

0

3
b cos A

-2 B f *4() 03(x) dx ] q3
c

3 2
b cos A

--2 MB f  ( ) dx ] q4
c

+ cos 2A

S MC f 4 () 5(x)dx q 5
0

2 3 iwt

5 = WpW b e

d x

S cosA NA 5 x) 1() dx - cosA sin N 5 x  d r i
I x dx]q



Sd2~(x)

+ [ sA A f 5 (x) 42 (x) dx - cosA sinA NB f 5) d dx ] q 2

0 0

2
- [oL NB 5 (x) 3(x) dx] q3

0 (2.82)

2
[ cos A B 5 x)

0

*4(x) dx ] q4

+ Nc f 5(x) dx] q5
0

Inorder to integrate with respect to the variable

substitution;

x = E cosA

x we use the

(2.83)

This makes the limits of integration: 0 to X/cosA or 0 to 1, which is the

original distance in the unswept case. Now we write Q in the form:

5

q = wp2b3e i t I Aij q
j=1

(2.84)



where the terms of [A] are:

2
cos A 2 2

A11 - b LA I - cos A sinA L I - cos A sinA M I
11 b A 1 B 24 A 24

2 2 1
+ b cos A sin A M I

Bt 25

A = 2 2A = - cos AsinA L I - cos AsinA M I +
12 B 26 A 27

2 2
b cos A sin A

a MB 28

3
cos A

13 c B  2

3
cosA 

14 c LB 31

2
cos A

15 b C 33

3
b cos A sinA+ M

-9 c B

3
b cos A sinA

2
- cos A sinA M 134C 34

2 2A2 1 = - cos A sinA L I -cos sinAM I +
21B 27 A 26

2 2
b cos A sin A

X MB 28

2
cos A 2 2

A22 b LA I - cos A sinA L I - cos sinA M I
22 b A 2 B 35 A 35

2 2+ b cos A sin2 A

3
cos A

= -- LB L I375 B 37

cos A
A = -A L I

24 c B 39

1
M - I

B 36

3
b cos A sinA

MB

3
b cos A sinA+ M

c B

30

32

A2 3 138

140
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2
cos A 2

A5 2 = b N I - cos A sinA N 4 I2
52 b A 41 B 42

cos A

5 3  c B 43

cos 3 A
A N 14I
54 c B 44

2
cos A

A5 5  bos NC I 1 (2.85)
55 b C 5

The integrals and their values are listed in table A.1.

From this point on, the flutter analysis for the swept wing is the

same as the analysis for the straight wing as give by Hollowell and

Dugundji in reference 5.

Equation (2.84) is put in equation (2.69) and both sides are devided by

eiwt.

2 2 3
K q - w M q = wpw b A q (2.86)

In the normal fashion for the V - g flutter analysis, structural

damping (g) is introduced by multipling K by (1 + ig). We define a

complex eigenvalue Z as:

1 + ig (2.87)
2 2.7



we define a new matrix B as:

3
B = M + rpb A (2.88)

Finally putting equations (2.87) and (2.88) in equation (2.86) we have, a

standard form, complex eigenvalue problem:

{ -Z K I q = 0 (2.89)

This equation was solved on a digital computer. Selected values

of reduced frequency k were used to calculate the aerodynamic matrix.

The eigenvalues Z were used to get the oscillating frequency w, the

structural damping required g, and the velocity V, according to equations

(2.90).

1
W Re(Z)

Im(Z)
g - (Z)Re(Z)

(2.90)

The flutter velocity was chosen as the velocity at which the structural

damping required to maintain neutral stability became zero on any of the

five modes. The associated value of w is the flutter frequency. To

simplify calculation of the Theodorsen function C(k), I used the R. T.

Jones approximation given in equation (2.91).

2
C 0.5 p + 0.2808 p + 0.01365

p + 0.3455 p + 0.01365
( p = ik } (2.91)



Note that by using large values of k the output frequency will be

the natural vibration frequency of the wing in an atmosphere of density

p. This technique was used to get the theoretical natural frequencies.

This analysis was done for all thirteen wings. The results are

plotted in figure D.9 through D.34.



CHAPTER 3. EXPERIMENTS

3.1 Test Wing Selection

The criteria defining desireable characteristics of the test wings

are the same criteria used by Hollowell in reference 2. they are:

a) The wings should have a wide range of bending-torsion stiffness

coupling.

b) The wings should have constant chord, thickness, sweep and zero

camber.

c)The wings should flutter or diverge within the 0-30 m/s speed

range of the available wind tunnel.

d) The wings should be small enough to be made with the available

equipment for manufacturing graphite/epoxy plates at M.I.T..

e) The wings should not sustain any damage under repeated large

static and dynamic deflections.

To give a good cross section of the range of

bending-torsion coupling and stiffness, both balanced and unbalanced

laminates were made at three different ply angles. In table 3.1 we can

see the range covered.

[+15 2 /0]s

[+302/0]s

[+452/01s

increased

[±15/0]s

[±30/0]s

[±45/0]s

negative

[T15/0]s

[T30/0]s

[T45/0]s

[-152/0]

[-302 /0 s

(-452 /01s

increased positive

bending-torsion coupling

Table 3.1 Different laminate layups used for the test wings.

bending-torsion coupling

[ 02/90] s



The [02/90]s serves as the only uncoupled example. Positive

bending-torsion coupling means when the wing is bent in the positive z

direction the wing will twist in the positive twist direction. The

positive twist direction is the same direction as positive angle of

attack. Because of the layup convention shown in figure 2.1, +0 fibers

on the outside plies result in negative bending-torsion stiffness

coupling and vice versa.

3.2 Static Deflection Tests

The goal for the static deflection tests was to test the

wings under static loads of pure force and pure moment. Also the loads

should be large enough to cause large deformations, inorder to identify

any non-linearities in the stress-strain relations and thus identify the

limitations of our linear analysis.

The static deflection setup is shown in fig 3.1. It is

Figure 3.1 Static deflection test apparatus.
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constructed of sturdy wood beams with metal rulers attached to the

insides of the top horizontal beams. These rulers were used to measure

horizontal deflection while a carpenters square was used to measure

vertical deflection. To minimize measuring error we extended pins from a

balsa wood clamp at the wing tip. threads ran from two eyelets on the

balsa wood clamp around pulleys clamped to the side of the test apparatus

Figure 3.2 Static test stand with a moment being applied.

and down to weight holders. One eyelet was at the wing leading edge

while the other was at the trailing edge. To apply a force the pulleys

and weights were put on the same side of the test apparatus while to

apply a moment the pulleys and weights for the leading edge were put on

one side and those for the trailing edge were put on the other side. (see

figure 3.2)

I



We applied force in increments of approximately 0.2 N up to 1.0 N

then in double increments till a bending deflection of approximately 12

cm. Moment was applied in a similar manner with initial increments of

.0075 NM till approximately 0.2 NM. This caused a twist of from 8 to 22

degrees depending upon the torsional stiffness of the wing.

3.3 Wind Tunnel Test Setup.

We did the wind tunnel tests in the M.I.T. acoustic wind tunnel.

This tunnel has continuous flow with a 1.5 by 2.3 meter free-jet test

Figure 3.2 M.I.T. wind tunnel test setup.

section 2.3 meter long, located inside a large anechoic chamber. The

tunnel speed range is continuously variable up to approximately 30 m/s.

Velocity was sensed by a pitot tube in the throat immediately before the

test section and registered on a electrical baratron.

The test setup is shown in figure 3.2. The wing mount consists of



a turntable machined from alluminum and mounted on a rigid pedestal. The

mount for the wing is attached to the top of the turntable. The

turntable allows rotation of the wing to angles of attack from -4 to 20

degrees while the top of the wing mount allows wing sweep in increments

of 15 degrees from -45 to +45 degrees of sweep. The photo shows the wing

in -30 degrees of sweep. In our testing only the -30 and 0 degrees of

sweep positions were used. Slightly below the base of the wing we

Figure 3.4 Looking down on a test wing by using a mirror.

mounted a flat disk to provide smooth airflow past the model, a good

background for the vertical photos, a place to mount the angle of attack

control rod and also a place to mount a terminal for the strain gauge

wires. The disk was also labeled for each test to identify the still and

video pictures. A typical photo taken during a test is shown in



figure 3.4. We hung a mirror over the wing to get the pictures looking

down on the wing. Figure 3.5 shows the location of the video camera,

still camera, strobe and floodlight. When it was necessary to "slow

down" the motion during a flutter test we used a strobe, otherwise

floodlights were used. By checking the strobe frequency we could

determine the wing flutter frequency.

The scale on the disk was used to measure wing tip bending and

twisting. It is graduated in 1 cm increments. Since viewing angle and

position affect the picture you see when looking at the test wing through

the mirror, tests and calculations were made to adjust the apparent

displacement to the actual displacement. These adjustments were then

applied to the data readings off the pictures.

Fig.3.5 Equipment used to illuminate and record test wing movement.
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3.4 Natural Frequency Tests.

Hollowell, Jensen, and Selby (references 2,3 and 4), already

tested many of these wings for their natural frequencies. Also they have

shown that the theoretical analysis using the five Rayleigh-Ritz modes

gives accurate results for the first and second bending and first

torsional natural frequencies. Therefore instead of doing extensive

natural frequency tests we did a simple initial deflection vibration

test. With the wing mounted for the wind tunnel test we gave it an

initial deflection in twist and bending, released the wing and recorded

the oscillations on the strip chart recorder. The resulting oscillations

contained strong first bending with weak second bending and first torsion

oscillations.

3.5 Steady Airload Test.

The steady airload tests were to be run at zero sweep and wind

speeds of 5, 10 and 15 m/s. However after investigating the results and

repeating selected tests we determined that the baratron on the original

tests was indicating a lower airspeed than the actual tunnel airspeed.

Using a different and accurately calibrated baratron during the repeat

tests we determined that the actual tunnel airspeeds on the original

tests were 5, 11.5 and 16 m/s within a tolerance of 0.5 m/s.

To run the test, first we set the tunnel speed, then using the

strain gauge readings we zeroed the angle of attack by setting it so that

the average bending and torsion gauge readings were zero. (The tunnel,

especially at higher speeds has enough turbulence to cause small

irregular deflections in the wing causing temporary non zero readings

even at zero degrees angle of attack.) The wing was then run through

angles of attack from 0 to 20 degrees at two degree increments. We made

records of each incremental stop by strip chart records of the strain

gauge readings, still photos and video recordings. Following the

completion of tests at one airspeed we repeated the procedure at the next

higher airspeed. Once a wing showed moderate flutter, angle of attack



was not increased at that speed. Some of the wings will flutter at 16

m/s at any angle of attack so that portion of the test for those wings

was omitted.

3.6 Flutter Boundary Tests.

A flutter boundary is a curve plotted on a airspeed vs. angle of

attack graph for a particular wing where one side of the graph,

invariably the lower airspeed side, is a flutter free area while the

other is a flutter area. Previous experimenters had found the flutter

boundaries of many of the wings in our tests. Our goal was to complete

these tests for all the wings at both no sweep and 30 degrees forward

sweep. Our procedure was to set the airspeed, zero the angle of attack

and then run through the different angles of attack checking for

flutter. When we encountered any flutter, either bending or torsion, we

made strip chart recordings and checked the frequency with the strobe.

After finishing tests at that airspeed the angle of attack was reduced,

the airspeed was increased by 1 m/s and the test procedure was repeated.

When airspeed is increased to the point where the wing flutters at all

angles of attack or the maximum tunnel speed is reached final readings

are taken and the test for that wing is complete.

3.7 Flutter Test.

Our goal was to observe the actual shapes of the wing during both

low and high angle of attack flutter. In particular we wanted to

concentrate on observing the wing tip, getting not only qualitative data

but actual measurements of the bending and twisting seen at the tip. We

chose 1 degrees AOA for the low angle of attack flutter and 10 degrees

AOA for the high angle of attack flutter. Using data from the previously

run flutter boundary tests, we set the airspeed at the flutter speed and

then set the angle of attack. If the flutter was intermittent or of very

small amplitude we increased the airspeed by as much as one meter per

second inorder to get a flutter motion visible on the video pictures. Of



all the flutter cases with the various wings, the wings fell into two

main categories; ones that had flutter dominated by torsion oscillations

and ones that had flutter dominated by bending oscillations. The torsion

flutter frequencies were in the area of 30 to 60 hz. This is much to

fast to see clearly with the eye and even using a video camera the motion

will come out blurred on each frame. However since the motion is steady

in a periodic sense it can be captured by use of a strobe. The strobe

flash frequency is set near the flutter frequency by visual observation,

resulting in flutter motion that can be viewed at apparent slow motion.

The images also record relatively well on a video camera. The strobe has

a very fast flash during which the wing moves very little, giving a sharp

but brief image. the video camera elements, however, have a certain

amount of persistency, holding the image after the flash has stopped. So

when the video camera scans it has an image nearly all the time even

though the flash lasts less than 1/1000th of a second. For this reason

the video pictures made using the strobe provided all the quantitative

data on the high frequency flutter. When the flutter-frequency was low,

as in bending flutter, we took video pictures using alternately strobe

and floodlight. Under floodlighting the video picture was clear but

still to fast to take measurements. While recording under the strobe the

video recording was blank with an occational brief picture. However,

when individual frames were viewed in still motion, the floodlight video

pictures were easy to interpret. The strobe lighted video pictures were

another matter. When the strobe had flashed a single video frame was

clear, otherwise it was blank. With the strobe flashing at about 5 hz

and the video camera scanning at 30 hz there is one clear frame followed

by approximately 6 blank frames. This large spacing between good video

frames along with the slow flash rate in relation to random turbulence

induced motion in the tunnel made it difficult to know when we had a

picture of the wing at maximum deflection. Therefore the floodlight

video pictures provided the bulk of the data for the bending flutter

cases.



In all cases, we took video pictures from the side and looking

down of the wing under both strobe and floodlight. By properly

positioning the mirror we could change from the side view of the wing to
the top view by merely changing the camera viewing angle. The side views

are used for qualitative evaluation of the flutter motion. The side view

can identify nodes in the vibration shapes and is especially helpfull to

identify the presence of any second mode bending. The top view clearly

showed the motion of the wingtip relative to the root. Using the scale

on the background we were able to measure the deflection in both bending

and torsion of both extremes of the flutter motion. With the strobe

frequency set at approximately twice the flutter frequency the two

extremes of the flutter motion could be captured on the same picture.

Similarly by using a double exposure on the still camera the two extremes

are caught on the same picture. This is shown in figure 3.6.

Figure 3.6 Double exposure showing extremes of flutter motion.



CHAPTER 4. RESULTS

4.1 Static Deflection

Perhaps the best way to examine the results of the static

deflection Rayleigh-Ritz analysis and experiment is by looking at two

typical examples. Picking the [02/90]s and the [+152/0]s layup wings

results as shown in figures B.1 and B.2, we can compare the deflections

produced under similar loading. The most striking thing we see is the

effect of bending-torsion coupling. While the [02/90]s layup wing only

bends under a force and only twists under a moment load, the [+152/0]s

layup wing both bends and twists under either a force load or a moment

load. It is this property that gives the wings their interesting

aeroelastic properties.

Some of the noteworthy properties of all the wings are:

1) Bending-torsion. coupling increases with increased

absolute value of the fiber angle of the outer plies for both the

balanced and unbalanced layups (balanced means that for every +0 ply in

the wing there is a -8 ply).

2) The bending-torsion coupling for a [+0/O]s layup is

opposite in sign from a [-0/Os layup, but equal in magnitude.

3) Bending stiffness decreases as ply fiber angle is

increased.

4) Torsion stiffness increases with increases in ply fiber

angle up to 30 degrees. The 45 degree ply fiber angle layup reverses the

trend and has a slightly lower torsional stiffness than the 30 degree ply

fiber angle layup.

With a few exceptions all wings deformed in close agreement with

linear theory in the so called small deflection range. For these wings

the linear range was bending up to 5 centimeters and twist up to 6

degrees. At larger deflections the wings show a general tendency to

become stiffer than linear theory predicts. This was an expected result

due to the increasing influence of non-linear factors in the wing and in

the test procedure. For example, loads were always applied perpendicular



to the wing undeflected position (force in the z direction and moments

about the x axis). But with large deflections the loads were no longer

at right angles to the wings new position. Therefore the amount of

effective load was somewhat less that the actual applied load.

The coupling deflections, that is, the twist due to applied force

and the bending due to applied moment, held close to linear theory on the

wings that had a large amount of coupling. The exceptions were the

coupling deflections of bending due to moment for some of the lightly

coupled wings. In particular, the two balanced layup wings with the

lowest bending-torsion coupling, the [-+15/0]s and [±30/0]s layup wings.

Both of these wings had large deviations from linear theory with bending

due to moment in one direction. Moments of opposite sign produced

expected bending results in the other direction. In particular,

examining the [±15/ 0 ]s layup wing test results, shown in figure 4.1, we
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figure 4.1 static deflection test results for [±15/0]s layup wing.



see that when a positive moment was applied the wing bent slightly in the

direction opposite of the one predicted by theory. Yet , for a negative

moment the wing bent as predicted. Upon close examination of the wing we

found that in its unloaded state it had a slight chordwise camber,

negative looking down the wing from the wingtip, as shown in figure 4.2.

According to plate theory, a certain minimum load must be applied in the

wing

Figure 4.2 Initial camber (exagerated) in the [(15/0]s layup wing.

negative direction to buckle the plate in order to get any deflection in

the negative direction. Since the coupling force is weak (at 0.2 Nm of

moment the expected bending is equivalent to that produced by a force of

only 0.3N) it apparently is unable to "pop out" the camber in the wing

and therefore .the wing does not deflect in the positive direction. The

[±30/0]s wing had a similar problem although somewhat less severe.

The initial camber in the wings was probably caused by not

orienting the plies exactly at the proper angle during layup, causing

them to be cured slightly out of alignment. This is not an easy problem

to avoid, and very small deviations will produce significant warping.

Nearly all wings had some inadvertent warp but the large coupling present



in most wings could develop enough force to overcome the problem. It was

only in the lightly coupled wings that initial camber caused significant

deviation from linear theory.

One point to note is that if we bent the wing enough to pop out

the camber and then applied the moment, coupling behavior was normal.

When airloads are applied in the wind tunnel the lift is strong enough to

pop out the camber so the wing could still be expected to act according

to the linear analysis.

4.2 Steady Airload Deflection

Qualitatively, both the analysis and the test results were what

one would logically expect. The wings with negative bending-torsion

coupling (positive bending produces negative twist) deflected much less

than their counterparts with positive bending-torsion coupling. This

indicates that the negative coupled wing did reduce and redistribute the

airload by decreasing the angle of attack of the wing sections. The

video pictures confirmed the decreased angle of attack.of the wing tip.

However, if we compare the [+152/01s layup wing with the [+30 2 /0]s layup

wing, we see that the wing with the more negative bending-torsion

coupling deflects more than the one with the less negative coupling. The

reason is that as we increase the ply fiber angle we not only increase

bending-torsion coupling but we also decrease the bending stiffness.

Therefore, although the [+302/0]s layup wing may twist more and therefore

lower the airload more than the [+15 2 /0]s layup wing the difference in

bending stiffness offsets the difference in coupling.

We can see the interplay between bending stiffness and

bending-torsion coupling if we examine the steady airload deflection at

one airspeed and no sweep (A = 0) for the four wing layups that use a

particular degree ply fiber angle. Figure 4.3 shows the theoretical

calculations results for the four 15 degree fiber angle layup wings at

11.5 meters per second airspeed. The twist angles follow directly the

amount of bending-torsion coupling. The bending deflection (w) however,

depends on the combined effects of bending stiffness and bending-torsion



coupling. The (115/0]s layup wing bends the least because of its
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Figure 4.3 Steady airload analysis on the four wings with a 15 degree

ply fiber angle at 11.5 m/s and A = 0.

higher bending stiffness and slight negative twist. The [+152/0]s bends

just slightly more. Apparently its negative coupling could not completely

compensate for the decreased bending stiffness. The following two wings

follow in order of bending-torsion coupling at low angles of attack.

Then at higher angles of attack the [T15/0]s layup wing bends a little

less than the [+15 2 /0]s layup wing. At a root angle of attack of 20

degrees the slightly higher angle of attack of the [T15/0]s layup wing

results in only a very minor increase in the coefficient of force.

Therefore, the higher wing stiffness dominates. In general we can say

that when at a fixed root angle of attack negative bending-torsion

coupling will cause a wing to both lessen the total airload and also

redistribute the airload toward the root, while positive bending-torsion

coupling will cause a wing to increase the total load and redistribute it

toward the wing tip.

. One point worth noting concerning the [+15/0]s layup wing is the



fact that under airload it had very little twist. In this case the

coupling force was approximately just strong enough to cancel the

twisting force generated by the airload. In twisting this particular

wing acted much like a rigid wing. It is easy to imagine a case where

this could be an advantage in a wing design.

At the higher airspeeds used in the test the highly positive

coupled wings showed a tendency even at low root angles of attack to

continue twisting until the wing sections near the tip reached angles

that produce a coefficient of force near the maximum coefficient of

force. For example. the [-452/0]s layup wing at 11.5 m/s at 4 degrees

root angle of attack had twisted an additional 6 degrees and reached a

deflection of 6 cm. This put the tip at 84 percent of maximum

coefficient of force. In a practical sense we can say the wing has

diverged. Unlike classical divergence there are limits to the twist

because we have used a realistic coefficient of force that has a maximum

value.

Comparing the analytical and experimental data quantitatively (see

figures C.1 through C.13) the agreement is satisfactory considering

atainable accuracy in measurement except for a few areas. In particular

at higher angle of attack the [02/90]s layup wing at 11.5 and 16 m/s and

the [±15/0]s layup wing at 16 m/s had experimental values much higher

than those predicted by the analysis. The high experimental readings

were coincidental with the appearance of torsional flutter of the wings.

In other words once the wing started to flutter in torsion it also bent

more than predicted by the analysis. This is a preliminary indication

that when in torsional flutter, the wings have a higher average

coefficient of force at a certain airspeed and angle of attack than they

would without the flutter. This means that either the lift or drag or

both increase or are redistributed toward the tip when the wing

flutters. Clearly the wings are taking more energy out of the air

inorder to sustain the vibrations. Also it seems logical that the

vibrations cause some additional disturbance to the airstream thus

increasing the drag. These reasons for the increased deflection are



speculation, however, the one conclusion we can draw is: Once a wing

starts to flutter it does not vibrate about the steady state position it

would have were it not fluttering. Therefore we also conclude that any

steady airload analysis that does not include the average of forces

generated by the unsteady airloads in flutter will underestimate the

average airload and therefore underpredict the average deflection.

4.3 Divergence Velocities

The divergence investigation can be considered the limit of the

steady airload investigation. We are looking for the static stability

limit, the point where the linear feedback system mentioned in chapter

two no longer converges.

The investigation pointed out the extreme differences between the

wings due solely to different ply fiber angle layup patterns. By

examining table 4.1 we see that for a straight wing divergence ranges

from a low of 12.4 m/s to a high of infinity. For a straight wing (A=O)

the rule is simple: With a sufficient amount of negative bending-torsion

coupling the wing will not diverge. The actual value of the crtitical

amount is somewhere below that of the [-+15/0]s layup wing, our most

lightly coupled wing. On the other hand, positive bending-torsion

coupling lowers the divergence speed in relation to its magnitude.

For the 30 degree swept forward wing (A=-30) the investigation

showed there is an optimum fiber angle layup pattern for increasing

divergence speed. Because bending causes increases in angle of attack

due to geometry, all the wings have a finite divergence speed. However,

by using the optimum layup pattern the divergence speed can be more than

doubled over that of the uncoupled layup wing. The optimum layup pattern

among those we used was the [+152/0]s pattern. By examining the [02/90]s

and the [+302/0]s layup wing results we can speculate that around a

[+20 2 /0]s layup wing would have the highest divergence speed.

Of all the analysis done in this project the divergence analysis

gave results that best agreed with experimental results. This can
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Table 4.1 Wing divergence speeds.

probably be attributed to the use of three dimensional aerodynamics. For

the experiments, the wings were said to have diverged when at near zero

degrees root angle of attack, the wing bent to a large deflection. Many

times this deflection was oscillatory at a low frequency below first

bending frequency. This oscillation was due to non linear effects and

was beyond the scope of our analysis. For a few wings, like the [02/90]s

layup wing, the divergence velocity was within the wind tunnel speed

range but before reaching that speed in the experiment the wing

fluttered. Therefore those divergence speeds, along with the ones higher

WING

24.7

14.2



than maximum tunnel speed, were not verified by experiment.

4.4 Natural Frequencies

Ascertaining the natural frequencies from the initial deflection

tests is a skill that requires some fine discrimination. Due to the

nature of composite material, vibrations are damped in relation to their

frequency. For some of the wings the second bending and first torsion

vibrations were detectable on the strip chart for only a fraction of a

second. The fact that all three frequencies are present on the same

chart and for some wings the second bending and the first torsion

frequencies are not very different and are highly coupled also

complicated the problem. As a result for two wings we could not

ascertain the second bending frequency and for all wings the measured

second bending and first torsion frequencies are no more accurate than

within about 2 hertz.
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The results of the test along with the analytic results are shown

in table 4.2. As expected, since all wings have the same mass, the

bending and torsion frequencies are directly related to the bending and

torsion stiffness. Comparing the calculated to the measured frequencies,

we have generally good agreement. For the three highly coupled wings, the

[+152/0]s, [+302 /0]s and [+452/0]s, the measured first bending frequency

was higher than calculated, while the measured first torsion frequency of

the [+45 2 /0]s was lower than calculated. These differences are probably

due to the bending-torsion coupling in the wings) since both modes of

vibration were present at the same time in the test.

4.5 Flutter Velocities

The data from the flutter boundary tests is plotted in Appendix

D. Because of the way the boundaries are graphed we can see how the root

angle of attack changes the flutter speed. The results of the flutter

tests are shown in table D.1. From this table we can see the twist of

the wing tip during flutter and therefore can calculate the tip angle of

attack as well.

For those wings that at zero degrees angle of attack flutter

before they diverge, a few general statements can be made concerning the

change in flutter characteristics with root angle of attack. The type of

flutter changes from a bending-torsion to more of a pure torsion flutter

as angle of attack is increased. This can be seen by the flutter

frequency increasing toward the first torsion frequency and a smaller

amount of bending in the flutter. Also, the flutter airspeed decreases.

For example, the [02/90]s layup wing unswept went from 33 hz to 40 hz,

from a Aw of 0.7 cm to 0 cm, and from an airspeed of 26 m/s to 13 m/s at

10 degrees angle of attack. These same trends were noted by Rainey in

previous stall flutter work in reference 14. However as the wings become

coupled in bending and torsion these trends are changed. In the case of

the [+302/0]s layup wing there is no frequency change and the airspeed is

nearly the same for both 0 and 12 degrees angle of attack flutter. If we



examine the wing conditions we see that at 0 degrees angle of attack the

average twist is +2.4 degrees, while at 12 degrees angle of attack the

average twist is -4.8 degrees. Thus the tip is at an increased angle of

attack of only about 4.8 degrees versus 12 degrees for the root. This

could account for the similarity in flutter behavior at the two different

root angles of attack.

The wings that diverged at 0 degrees root angle of attack before

they would flutter all exhibited similar bending flutter behavior as

angle of attack was increased. Generally the flutter speed would

decrease, the frequency would increase and the flutter would become more

mild, making it more like a bending flutter and less like divergence.

The wings that resisted flutter the best at low angle of attack

were the [+30/0]s and the [±45/0]s layup wings. In fact, their flutter

speeds were beyond the maximum speed of the wind tunnel. However, as

angle of attack was increased their flutter speeds dropped below that of

their unbalanced counterparts, the [+302/0]s and the [+452/0]s layup

wings. Due to the light bending-torsion coupling of the balanced layup

wings they exhibited the normal flutter trends talked about earlier

including the decrease in flutter speed as root angle of attack is

increased. Among the wings with an unbalanced laminate layup pattern a

ply fiber angle of 30 degrees seems to give the highest flutter speed.

When the wings were swept forward the addition to angle of attack

made by bending had a strong effect on flutter. Tfe [02/90]s layup wing

at 0 degrees angle of attack fluttered at a lower airspeed than when

unswept, while at higher than about 8 degrees angle of attack it changed

from a bending torsion flutter to a bending flutter. The [+152/01s and

[+302/0]s layup wings' bending-torsion coupling could not offset the

increase in tip angle of attack due to bending so they also showed a

decrease in flutter speed with an increase in root angle of attack. The

[+452/0]s layup wing, being weak in bending, now diverged at all angles

of attack. The frequency shown in table D.2 is a post divergence

oscillation. Note that the average bending is nearly 17 cm! The wings



that had diverged at 0 degrees sweep also diverged at -30 degrees sweep,

the speeds were just slightly lower.

The differences in the low angle of attack behavior of the various

wings was also evident in the theoretical analysis. In order to examine

a typical cross section of the wings I have taken the graphs for the four

wings with 15 degree fiber ply angles from appendix D and reproduced them

here in figure 4.4. Looking at the [+152/0]s layup wing first, the V-g

method predicts the torsional branch will go unstable at 24 m/s at a

frequency around 27 hz. The experimental values were 25 m/s and 32 hz.

Note that as flutter velocity is approached the torsional branch has a

large change in frequency. Looking at the other wing with negative

bending-torsion flutter, the [±15/0]s layup wing, we see behavior very

similar to the [+152/0]s layup wing. The [+15/0]s layup wing also goes

unstable in the torsional branch, just at a slightly higher airspeed.

The next two wings, the [P15/0]s and the [-152/0]s layup wings both go

unstable in the first bending branch. The branch is initially very

stable but then at the critical velocity it rapidly goes to neutral

stability while the frequency goes to zero. This shows classical

divergence. The main difference between the two wings is that the

[-15 2 /0]s layup wing has a slightly lower divergence speed. The

divergence speeds indicated here are lower than the experimental values

because this analysis does not consider finite span effects in the

aerodynamics.

For 0 degrees angle of attack the results of the divergence and

V-g flutter analysis along with experimental data points are shown in

figure 4.5. The unbalanced and balanced laminate wings are shown on

separate graphs. The [02/901s layup wing is plotted on both graphs. For

completeness the V-g flutter analysis for the wings at 30 degrees swept

back is included. There is no experimental data for 30 degrees swept

back.

Let's look at the unbalanced laminate wings first. For the

unswept wing if the fiber angle is below about -5 degrees divergence is

the limiting factor otherwise the wing will flutter first. Despite the
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large variations in stiffness and bending-torsion coupling from the

[0 2 /901s to the [+452 /0]s layup wings, flutter speeds were all within 5

m/s for the four wings. A ply fiber angle of +30 degrees seems to give

the highest flutter speed both theoretically and experimentally. For 30

degrees swept forward, due to the effect of bending on angle of attack,

divergence dominates for all ply fiber angles except in the region of

from about +5 to +30 degrees. In particular, we could not get the

[15 2 /0]s and [+302/0]s layup wings to flutter or diverge at low angle of

attack in the available speed range of the wind tunnel. It is worthwhile

to note that the limiting speed (either flutter or divergence) for 30

degrees swept forward is higher than for the unswept wing for fiber

angles from -5 to +35 degrees according to the theoretical calculations

and experimentally it was true for fiber angles of +15 and +30 degrees.

The (0 2 /90]s layup wing went into torsional flutter with a large

average bend at an airspeed below its calculated divergence speed. This

was not predicted by the V-g analysis. Because of the large average

bending deflection the wing was actually in a high angle of attack

flutter despite the root angle of attack being only 1 degree. As we have

seen previously, high angle of attack flutter for the [02/90]s layup wing

is lower than when at low angle of attack. Also this type of flutter is

not covered by our analysis. Looking back at the steady airload analysis

we see that when a wing is close to, yet still below divergence speed, it

has large deflection even at low angle of attack. In the swept forward

case bending causes increases in angle of attack so we can see how when

nearing divergence speed even with a low root angle of attack we can get

a high tip angle of attack bringing with it the possibility of flutter.

Switching now to the balanced laminate wings, for the unswept case

we have divergence for outer layer fiber angles below -10 degrees and

flutter elsewhere. These wings had the highest predicted flutter speed

at a outer ply fiber angle of +45 degrees. This speed was higher than

the tunnel maximum speed so we could not determine its accuracy.

Experimental data was reasonable except for the [P15/01s layup wing which

will be discussed in the next paragraph.
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For 30 degrees forward sweep for the balanced laminate wings,

divergence was the limiting instability throughout the fiber angle

range. We see a calculated best outer fiber angle of about +20 degrees.

Experimental data was close to calculated with the following exceptions;

the [02/90]s, [±15/0]s, [±30/0]s at 30 degrees forward sweep and the

[;15/0]s layup wing from the unswept wing case. The [02/90]s layup wing

was discussed previously and in fact what was said for the [02/90]s layup

wing also applies to all these wings. Their cases are all torsional

flutter characterized by high average bending and speeds below predicted

divergence speed, suggesting a high angle of attack flutter at the wing

tip. By checking the average bending deflection (wavg) in table D.2

for the [+30/0]s layup wing (19.8 cm), one could argue that in fact the

wing has diverged and the calculated divergence speed is just too high.

However I present the argument that before the wing diverged it bent

enough to allow for high angle of attack flutter. Once the wing is

fluttering, the increase in average force caused by flutter caused the

wing to bend even more (see discussion section 4.2), thus the high

average bend. Whatever your point of view, one thing for sure is that we

have reached a stability limit and it is at a airspeed lower than the

airspeed predicted by the theoretical analysis.



CHAPTER 5. CONCLUSIONS AND RECOMENDATIONS

Having now investigated some of the many varied and interresting

properties demonstrated by the graphite/epoxy composite material wings I

will finish by pointing out a few of the conclusions we can make and

offer some recomendations for follow up work.

The wings showed very near linear bending and twisting behavior up

to large deflections in the static tests. This gives a large useful

range in which we can apply our linear theory. However, on lightly

bending-torsion coupled wings small imperfections in the wings such as

warp can cause large deviations from linear theory concerning the

bending-torsion stiffness coupling reaction.

The steady airload analysis gave good results up to 20 degrees

angle of attack as long as the wing did not flutter. Certainly the use

of a realistic lift curve, rather than a linear one, contributed to the

accuracy of the results. Once the wings did flutter they had an average

deflection greater than the steady airload theory predicted. This

limited the useful range of the steady airload analysis and suggests the

usefulness of investigation into the resultant average forces present

during flutter, both lift and drag.

The initial deflection frequency tests were a quick easy way to

get approximate values for the natural frequencies.

The divergence and flutter investigation once again showed the

large variation in wing aeroelastic properties caused by changes in ply

fiber angle. Straight wings can be made divergence free, while by proper

selection of fiber angle, even a swept forward wing can have a divergence

speed higher than a similar wing without bending-torsion coupling at no

sweep. By using three dimensional aerodynamics the divergence speeds of

the wings were closly predicted for both straight and forward swept

wings. The flutter calculations for the straight wings were resonably

accurate. We were unable to check the accuracy of the flutter

calculations for the forward swept wings because of the wind tunnel's low

maximum speed. However, by extrapolating to low angles of attack the



experimental data we were able to obtain at high and moderate angles of

attack, we can predict a flutter speed close to the theoretically

calculated flutter speed. We did discover that the lightly coupled wings

had a tendency to go into a torsional flutter, characterized by a high

average bend and therefore a high angle of attack at the wing tip, when

approaching but still below predicted divergence speed. This phenomenon

deserves further investigation. A stall or high angle of attack, flutter

analysis might give some insight here.

Finally, a good follow on investigation would be to make and test

some built-up wings versus the cantilevered plates used here. A built-up

wing with a typical box-beam or honeycomb construction would smooth out

any initial warp or twist in the laminate skin, thus eliminating one of

the problems we had. That type wing would be closer to a pratical

airfoil and is the next logical step toward building a functional

graphite/epoxy composite material wing.
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Table D.1

FLUTTER DATA UNSWEPT WING (A = 0) (w and 0 are at the wing tip)

WING V a w Aw 0 AG w
r avg avg

(m/s) (deg) (cm) (cm) (deg) (deg) (hz)

[02/90] s

[+152/0]s

[+ 15/0]s

26 1

13 10

25 1

24 10

28 3

16 10

[U15/01]s 21

[-152/0]s

10 10

18 1

13 10

0.5

2.4

0.2

5.1

4.0

3.8

4.3

2.2

4.7

3.3

0.7

0

0.2

0.2

0.8

0

0.5

0.1

9.4

11.7

1.0

3.5

0.7

-4.0

-0.7

0.4

4.8

2.8

10.1

7.9

10.3

9.8

8.1

19.3

8.5

5.0

14

7.0

17.4

28.4

5.8

7.6

[+302/0]s 29 0 -0.6

28 12 7.9

[±30/0]s 27 10 11.7

[F30/0]s 24 1 13.5

15 10 8.4

2.41.7

4.0

1.2

1.3

0.2

-4.8

-3.7

.13.5

5.6

8.8

6.7
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Table D.1 (continued)

FLUTTER DATA UNSWEPT WING (A = 0) (w and 0 are at the wing tip)

WING V a w Aw 0 AO w
r avg avg

(m/s) (deg) (cm) (cm) (deg) (deg) (hz)

15 1

8 10

27 1

23 10

5.1

3.0

2.1

9.9

25 8 13.1

18 10 10.8

22 1 16.0

14 10 12.2

14 1

9 10

10.9

5.2

[-302/0]s

[+45 2 /01s

[±45/0]s

[F45/0]s

5.8

2.6

4.9

17.2

4.5

3.6

2.7

0.4

0.6

0.9

0.1

12

10.3

3.9

4.9

2.2

-2.7

-2.4

-4.2

9.0

6.3

10

5.2

[-452/0 ]s

20

3.2

6.8

1.5

6.3

14

9.1

26

44

49

40

55 -

3.5

4.2
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Table D.2

FLUTTER DATA FORWARD SWEPT WING (A = -30) (w and 0 are at the wing tip)

WING v a w Aw AO
r avg avg

(m/s) (deg) (cm) (cm) (deg) (deg) (hz)

[02/90] s.

[+15 2 /0]s

20 1

18 10

21 10 12.2

[±15/0]s 25 1

18 10

[15/0]s

[-152/0] s

[+30 2 /0]s

[+30/0]1s

19 1

15 10

15 1

12 10

21 10 14.5

22 1

20 10 21.5

[ 30/0] s 17 1

13 10

8.8

8.3

1.5

3.0

7.8

8

6.2

5.2

3.2

3.9

0

11.0

1.1

0

0

11.9

12.8

15

12.9

0.8

0.7

1

19.7

9.5

6.1

1.5

-10.7

-1.6

-0.4

4.8

4.7

8.3

7.7

-1 8

-6

-7

4.0

2.5

16.7

27

14.3

9.5

9.3

23.4

18.1

12

44

42

12

5

40

44

50

4.7

7.5

4.0

6.8

59

33

31

3

5.6

19.8

6.9

7.5
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Table D.2 (continued)

FLUTTER DATA FORWARD SWEPT WING (A = -30) (w and 0 are at the wing tip)

WING V a w Aw AO
r avg avg

(m/s) (deg) (cm) (cm) (deg) (deg) (hz)

[-30/0]s 11 1 4.1. 18.1 7.0 22 2.7

8 10

[+45 2 /0]s

3.7 10.9

16.9

15 10 16.9

[±45/01s 20 1 19.5

14 10 12.9

[F45/0]s 14 2

11 10

[-4520]s 10 1

8 10

9.5

9

7.1

0.2

0.7

3.0

6.3

19

14

8.6

6.9 11.6

3.5

6.9

14.5

-10.5

3.5

5.5

1.5

8.4

7.5

4.6

19.1

5.7

4.8

2.8

4.3

14.7

3.5
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Figure D.1 A=0, crossection of test wings, flutter boundary curves.
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Figure D.2 A=0, 15 degree ply fiber angle layup wings, flutter boundary curves.
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Figure D.3 A=O, 30 degree ply fiber angle layup wings, flutter boundary curves.
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Figure D.4 A=0, 45 degree ply fiber angle layup wings, flutter boundary curves.



59hz
A = -30 DEGREES

[ +ls,/O]s

20

[+302/
42 59

U 4.0 44

00 [+452/0]s

2.7

0 6.8 [-1520]s ls

2.0
3.5

4.6

0 4 8 12

AN CI.E o1I ATTACK (DEC)

O]s

8

[02/90]s

[-45,/0ls

[-302/01s

lh 20

Figure D.5 A = -30, crossection of test wings, flutter boundary curves.
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Figure D.6 A = -30, 15 degree ply fiber angle layup wings, flutter boundary curves.
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Figure D.7 A= -30, 30 degree ply fiber angle layup wings, flutter boundary curves.
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Figure D.8 A= -30, 45 degree ply fiber angle layup wings, flutter boundary curves.
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Figure D. 9 A= 0O [02/90]s layup wing, V-g diagram.
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Figure D.10 A= O, [+15 2 /0]s layup wing, V-g diagram.
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Figure D.11 A= 0, [±15/0]s layup wing, V-g diagram.
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Figure D.12 A= 0, [:15/0]s layup wing, V-g diagram.
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Figure D.13 A= 0, [-15 2/0]s layup wing, V-g diagram.
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Figure D.14 A= 0, [+302/0]s layup wing, V-g diagram.
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Figure D.15 A= 0, [-30/0]s layup wing, V-g diagram.

138



60

1T

z

= 20
c,

1B

0
0 20 40 60

VELOCITY ( M/S )

0.4 -

IT

0.2

0 0

S20 60

z

A -0.2

2B

3 -0.4

1B

-0.6

Figure D.16 = 0, [F30/0]s layup wing, V-g diagram.
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Figure D.17 A = 0, [-302/0]s layup wing, V-g diagram.
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Figure D.18 A= 0, [+452/0]s layup wing, V-g diagram.
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Figure D.19 A= 0, [±45/0]s layup wing, V-g diagram.
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Figure D.20 A= 0, [:45/0]s layup wing, V-g diagram.
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Figure D.21 A= 0, [-45 2/0]s layup wing, V-g diagram.
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Figure D.22 A= -30, [02/90]s layup wing, V-g diagram.
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Figure D.23 A= -30, [+152/0]s layup wing, V-g diagram.
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Figure D.24 A = -30, [±15/0]s layup wing, V-g diagram.
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Figure D.25 A= -30, [f15/0]s layup wing, V-g diagram.
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Figure D.26 A= -30, [-152/0s layup wing, V-g diagram.

149

0.2

0

-0.2

-0.4

-0.6



z

20

00

0.4

0.2

0

-0.2

-0.4

20 40

VELOCITY ( M/S )

-0.6 1

Figure D.27 A= -30, [+302/0]s layup wing, V-g diagram.
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Figure D.28 A= -30, [±30/0]s layup wing, V-g diagram.
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,Figure D.29 = -30, [F30/0]s layup wing, V-g diagram.
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Figure D.30 A= -30, [-30 2/0]s layup wing, V-g diagram.
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Figure D.31 fA= -30, [+45 2/0]s layup wing, V-g diagram.
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Figure D.32 A= -30, [±45/0]s layup wing, V-g diagram.
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Figure D.33 A= -30, ['-45/0]s layup wing, V-g diagram.
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Figure D.34 A= -30, [-452/0]s layup wing, V-g diagram.
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