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ABSTRACT

In this thesis we calculate the effect of small-scale

convection on the thickness and temperature structure of the

lithosphere for three cases where geophysical and geological

data may allow us to see these effects. The problems are: (1)
the cooling of the oceanic lithosphere; (2) the cooling of a

passive rift temperature structure; and (3) the rate of

thinning of lithosphere which has been thickened in a

continental convergence zone. In all these cases the

convection is driven by the temperature gradients at the base

of the lithosphere and the key to the interaction between the

lithosphere and the flow in the asthenosphere is the viscosity

relation we assume. It is very likely that the viscosity of
the mantle depends on temperature and we take that to be the
case. Viscosity which also depends on pressure and stress is

also considered in these calculations. We study all these

problems using finite difference numerical methods and, where

possible, we derive general relations between the model
parameters and predicted data.

For the problem of the cooling of the oceanic lithosphere

we find that a linear relation is predicted between the

subsidence of the ocean floor and (time) 11/ 2 , even after

small-scale convection has begun. The slope of this plot

depends on the viscosity structure of the convecting region,

and its magnitude is less than the corresponding subsidence for

purely conductive cooling. Small-scale convection can begin to

affect the subsidence age relation after only a few million

years of lithospheric cooling. Convection which begins under

lithosphere of this age can produce vertical deformations of



the surface of the sea floor, which should produce a detectible

gravity signal. Previous workers have shown that small-scale

convection beneath the moving oceanic plates should have the
orientation of two-dimensional rolls with axes aligned parallel

to the direction of plate motion. In that case the gravity
signals produced by the convection should be aligned in the
direction of plate motion and so may account for signals with
this orientation which have been observed over several areas of
the oceans in Seasat altimeter data. We suggest that the short
wavelength (<300 km) topography produced by the convection is
"frozen in" by the elastic lithosphere as the plate cools. For
convection to be sufficiently vigorous under the young
lithosphere to produce the topographic and gravity signals,
before the elastic lithosphere is so thick as to damp out these
signals, requires minimum asthenospheric viscosities less than
1018 Pa-s. Such values are consistent with estimates of
average mantle viscosity if a pressure dependence of viscosity
is included. Another body of data which may reflect the effects
of small-scale convection under the oceanic plates concerns the
offset of the geoid height across fracture zones. This data
reflects the difference in lithospheric thickness across
fracture zones. The convective models considered here can
account for the trend and most of the magnitude of the data.
Conductive thermal models cannot. Including lateral flow
across the fracture zone may account for the data variations
not matched here.

We are able to use theoretical relationships between the
heat flux out of a convecting region and the viscosity
parameters which describe the rheology of that region to study
the problem of the cooling of the oceanic lithosphere. This
allows us not only to elucidate the features of our models
which are important to the physics of the cooling of the
lithosphere, but also allows us to define general reltionships
between the predicted subsidence, geoid height and heat flow,
and the model parameters. We use the mathematical formulation
of the Stefan problem to describe the temperatures in the
lithosphere with time given the variations predicted for the
heat transport across the convecting region. We find that one
parameter (X) describes the changes in the temperatures and
thickness of the model lithosphere caused by small-scale
convection, which is driven by cooling from above. This
parameter can be related directly to the average viscosity of
the convecting asthenosphere and to the temperature and
pressure dependence of the viscosity. The parameter X varies
nearly linearly with the log of the average viscosity of the
convecting region. For a change in the average viscosity of a
factor of ten, X changes by about 20%. Several geophysically
interesting model predictions can be related to the parameter
X. The predicted subsidence varies linearly with X and the



isostatic geoid height varies approximately with X2 while, the
surface heat flux goes like 1/X. Subsidence variations for
different areas of the oceans can be related to the differences
in the asthenospheric viscosities and presumably temperatures
(through the temperature dependence of viscosity) using the
derived relationships. The asthenospheric temperatures can be
estimated using seismic methods, and then compared to the
estimates based on subsidence data using this model.

To deal with the problem of calulating the flow induced by
the large horizontal temperature gradients under a rift we
developed a simple finite difference method for approximating a
curved, no-slip boundary called the "repeated corner approach".
It is valid because the viscosities decrease rapidly going away
from a boundary in this problem, so the flow rates near the
boundary are much less than further away.

It is shown that the effects of convection induced by a
passive rift temperature structure can explain data on the
uplift of the flanks of rifts and details of the subsidence
history of rifted continental margins. Uplift of the flanks of
about 1 km is shown to be consistent with the lateral transfer
of heat beneath a rift, caused by a combination of conduction
and convection. The amount of uplift depends on the
viscosities assumed, but they must be low to match observed
uplifts (a minimum of about 1018 Pa-s is required for 1 km of
uplift). The stress dependence of viscosity also contributes
to the uplift of the flanks. Also, we find that the narrower
the rift, the greater the uplift.

Finally, we test the hypothesis that small-scale convection
under lithosphere, which has been thickened in a convergence
zone, can thin "normal" lithosphere in only a few tens of
millions of years. This is required to explain the high
surface heat flux in convergence zones if the lithosphere is
thickened along with the crust. If the visosity depends on
temperature through laboratory estimated parameters, we find
that the rate of thinning of the lithosphere is not
significantly increased by the instability of the thickened
boundary layer at the base of the lithosphere. In Tibet, the
crust was thickened within the past 40 m.y., but the surface
heat fluxes are presently higher than normal. This leads us to
suggest that the mantle lithosphere was not thickened along
with the crust in that region, but was subducted in a manner
similar to that observed for oceanic lithosphere.

Thesis Advisor: M. Nafi Toksoz

Professor of GeophysicsTitle:
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"The terrible fluidity of self-revelation".

-Henry James,"The Ambassadors."

CHAPTER 1

INTRODUCTION

Convection in the earth has long been associated with

plate tectonics, but only in about the last ten years has much

attention been paid to the possibility of a scale of mantle

convection smaller than the horizontal dimensions of the

lithospheric plates. It is this "small-scale" convection, and

particularly the effect of such convection on the thermal state

and thickness of the lithosphere, which is the subject of this

work. The subduction of material at oceanic trenches and the

upwelling at mid-ocean ridges requires some form of large-scale

mantle convection, but the form of that convection is hotly

debated. The existence of small-scale convection in the earth

is not so clearly required by one kind of data. However, there

is a growing body of data which is most easily explained as a

result of small-scale convection. This study focuses on

small-scale convection which is associated with the temperature

gradients at the base of the lithosphere. Since there are

several ways to measure the effects of variations in the

thickness of the lithosphere, we may be able to verify the

predictions of the calculations presented here.



Three specific problems of geologic interest which involve

the interaction of small-scale convection and the lithosphere

will be discussed. In all the problems we consider viscosity

to be a function of temperature and other parameters. It is

the difference in temperature and therefore viscosity which

defines the lithosphere in all these problems. The lithosphere

considered here is the thermal lithosphere and is defined in

terms of the mode of heat transfer in the mantle. The litho-

sphere is the area where the dominant mode of heat transfer is

conductive, while in the asthenosphere advection is the

dominant mode. The first problem we consider is that of the

cooling of the lithosphere including the effect of small-scale

convection directly below the lithosphere. Since the data on

the cooling of the oceanic lithosphere offer the best

opportunity of verifying the effects of small-scale convection

we will discuss the relation between geophysical data for the

oceans and our calculated estimates of those effects. The next

topic of consideration is convection induced by the strong

lateral temperature variations which result from rifting of the

lithosphere. The third geophysical problem is the role of

small-scale convection in thinning the lithosphere which has

been thickened in a continental convergence zone.

In studying these three problems we employ numerical

methods which are discussed in the Appendix. Our first goal is

to find out whether small-scale convection can account for data

in each of these cases and be consistent with other geophysical

data which constrains the range of physical parameters, most



importantly the rheology of the mantle. However, we do not

intend simply to construct numerical models which fit the data,

we try to understand and elucidate the parameters which control

the physics of these problems. Therefore, we vary the

parameters which affect our numerical models and where possible

derive general relationships between these parameters and the

predicted geophysical observables.

In Chapter 2 the problem of the cooling of the oceanic

lithosphere is described and numerical experiments on the effect

of small-scale convection on that process are described. The

data considered are (1) ocean floor subsidence rates, (2)

satellite-derived small-wavelength (< 500 km) gravity anomalies,

and (3) the offset of geoid anomalies across fracture zones.

Our numerical calculations differ from previous work in that we

consider not only fixed cells but the growth of convection cells

as the system evolves, and a wider range of viscosity parameters

than others have considered. In the interest of understanding a

simple problem well, we focus on the early evolution of the

lithosphere and neglect heat sources which will only have a

great effect later in the cooling history of the lithosphere.

The problem considered in Chapter 3 is the same as that of

Chapter 2, but it is treated using analytic and not numerical

methods. General relationships are derived between the

physical parameters which described cooling and convection and

predicted geophysical observables. To do this we use the

relationship between the heat flux transported by a convecting

region and the parameters which define that region which were



derived for simple constant viscosity systems. To describe the

temperatures and thickness of the model lithosphere we use

the mathematics of the Stefan problem. Using the general

relations derived here we can predict the effect of different

viscosity parameters on the model predictions without doing

costly and difficult numerical calculations.

In Chapter 4 we treat the problem of lithospheric rifting.

Simple conductive thermal models do not explain data on the

subsidence of rifted areas and do not explain the large uplift

observed for their flanks. The horizontal temperature

variations produced by rifting will cause convective flow which

will affect the cooling of that rift temperature structure. We

consider numerical models of this process for the simplest form

of rifting: passive rifting. The term "passive" refers to the

role of the asthenosphere. Thus in our models no special heat

flux or viscosity is assumed for the asthenosphere. We start

our calculations with a temperature structure assumed to be

derived from the tensional stretching of the lithosphere and

compare the simple conductive cooling of that temperature

structure and its cooling modified by convection.

It has been suggested that the thickening of the litho-

sphere might accompany the thickening of the crust in those

regions, and further that small-scale convection can rapidly

thin the lithosphere back to its original thickness. In

Chapter 5, "The Mechanisms of Lithospheric Deformation in

Convergence Zones," we first review the geologic and geo-

physical data on one major convergence zone (Tibet). These



data require that the lithospheric heat flow and therefore the

thickness of the mantle lithosphere must be close to normal

according to simple conductive thermal models of the crust.

We then describe numerical experiments which are similar in

formulation to those described in Chapter 2, except that the

initial horizontally averaged temperature profile is that

resulting from the thickening of a "normal" lithospheric

temperature profile by a factor of 2. The purpose of these

calculations is to see if small-scale convection which is

induced by the instability of the thickened thermal boundary

layer at the base of the lithosphere can thin the lithosphere

to 1/2 of its thickened value in less than 40 m.y., as is

required by the data for Tibet. A variety of viscosity

parameters is considered in these calculations. We also derive

a simple equation for the time required to thin doubly

thickened lithosphere to its original thickness if the original

thickness is in equilibrium with the average mantle heat flux.

Finally, we consider the possibility that the mantle

lithosphere in a convergence zone is not thickened along with

the crust, but is subducted as the crust is scraped off.

In the Appendix we discuss the numerical methods used here

and the reasons for not using other methods. Also the

parameters defined in the following chapters are tabulated for

quick reference.



"Castrol GTX showed no significant breakdown in viscosity even
after 5,000 miles."

-From the can.

CHAPTER 2

SMALL-SCALE CONVECTION AND THE COOLING

OF THE OCEANIC LITHOSPHERE

2.1 Introduction

Convection beneath the oceanic plates on a scale smaller

than the horizontal dimensions of the lithospheric plates has

been suggested to explain several geophysical observables.

This provides one possible explanation for the deviation of

seafloor subsidence with age from that predicted by simple

conductive cooling of the oceanic lithosphere (Parsons and

McKenzie, 1978). More recently, in their analysis of Seasat

altimeter data, Haxby and Weissel (1983) have noted linear

gravity anomalies which trend in the direction of plate motion.

They have suggested that these features may be the result of

small-scale convection. Based on theoretical considerations

Richter (1973) predicted that small-scale convection should

take the form of two-dimensional rolls with axes oriented in

the direction of plate motion, thus providing an explanation

for the form of the observed gravity anomalies. In this

chapter we describe numerical calculations aimed at

understanding small-scale flow which may occur under the



oceanic plates. The purpose of this work is to investigate

whether models which are consistent with subsidence-age data

for the oceans and other geophysical data can produce the

observed gravity features.

In this chapter first we describe previous work on

small-scale convection, next discuss the formulation of

approximate models of convection and describe how we calculate

several geophysical observables predicted by the models. A

range of models is considered based on laboratory measurements

of physical properties of mantle minerals and estimates of

mantle viscosity. The predictions of the models are compared

with data for subsidence of the ocean floor and gravity and

geoid data for the oceans.

A number of investigations have been carried out on the

effect of shearing flow on the form of thermal convective

instabilities, including experimental work by Graham (1933) and

theoretical stability studies by Ingersoll (1966) and Gage and

Reid (1968). Richter (1973) showed that finite amplitude

convective motions could be reoriented by shearing flow for an

infinite Prandtl number fluid, and suggested that large scale

mantle flow associated with plate motions could control the

form of small-scale flow beneath a plate. This was

corroborated by laboratory experiments performed by Richter and

Parsons (1975) and Curlet (1975). Theoretical work has been

carried out on the stability of the top thermal boundary layer

of the large scale mantle flow (Parsons and McKenzie, 1978;

Jaupart, 1981; Yuen et al., 1981; and Yuen and Fleitout, 1984).

Parsons and McKenzie (1978) treated a mantle of uniform



viscosity below a fixed boundary and found that a thermal

boundary layer could go unstable after 70 m.y. of cooling if

its viscosity were -1022 Pa-s. Yuen et al. (1981) considered a

viscosity structure resulting only from temperature dependent

viscosity. For viscosities which depend only on temperature

and which are consistent with post-glacial rebound estimates of

whole mantle viscosity, they conclude that no instabilities

develop in a cooling boundary layer for a time equal to the age

of the oldest oceanic plates (200 m.y.). Jaupart and Parsons

(1983) studied the linear stability problem for a depth

dependent viscosity structure and concluded that for the base

of the oceanic lithosphere to go unstable after 70 m.y. of

conductive cooling required average viscosities there on the

order of 1021 Pa-s. They also noted that the ratio of the

maximum to the minimum viscosity in the convecting region was

at most about a factor of 10. Yuen and Fleitout (1984)

concluded that viscosity which depends on pressure as well as

temperature is required to allow boundary layer average

viscosities to be low enough for small-scale convection to

occur under the ocean plates (i.e. a low viscosity zone) and

still match other constraints on mantle viscosity. Our finite

amplitude calculations, reported by Buck (1983), led to the

same conclusion. Two previous studies which have considered

the time evolution of convection are similar in formulation to

the present work (Houseman and McKenzie, 1982; and Fleitout and

Yuen, 1984). Both studies are concerned with the possibility

that small-scale convection can explain a decrease in the rate

of ocean subsidence which is indicated by the data to occur



after about 70 m.y. age of the lithosphere.

There are several important differences between these

studies and the present work. The formulation of Houseman and

McKenzie does not allow for the motion of the boundary between

the lithosphere and the convecting region below and we do allow

for this. This is necessary in their model because they treat

the convecting region to be constant viscosity and the

lithosphere to be rigid. Thus their model the boundary layers

could not go unstable until cooling had penetrated past this

boundary. In our formulation the boundary layers can go

unstable and convection can begin at a time which is only

determined by the viscosity parameters we choose. In our

problem the lithosphere and the convecting region are allowed

to interact and the thickness of the lithosphere changes with

time. We consider the viscosity to be temperature and pressure

dependent as do Fleitout and Yuen (1984). In that study the

wavelength and depth of penetration of the flow are proscribed,

unlike the present study. Also in our study we consider a wide

range of viscosity parameters and we try to constrain the

acceptible range of viscosties in terms of geophysical data.

2.2 Model Description

2.2.1 Simplifying Approximations

Small-scale convection in the form of rolls with axes

parallel to the direction of plate motion is illustrated in

Figure 2.1. As in previous studies (Houseman and McKenzie, 1982

and Fleitout and Yuen, 1984), we simplify the three dimensional

problem to consider only two-dimensional flow in a vertical
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plane parallel to a ridge crest. In doing this we ignore the

effect of vertical gradients in horizontal velocity

perpendicular to the ridge crest and both the thermal and

mechanical coupling between vertical planes parallel to the

ridge. These approximations reduce the problem to one of time

dependent two-dimensional convection. The plane of the

calculation is considered to move with the plate, so model time

is proportional to distance from the ridge crest. The thermal

effect of neglecting the third dimension of flow should not be

great when the vertical gradients in the velocities parallel to

the plate motion are small.

The depth of penetration of the small-scale cells into the

mantle depends in part on the structure of the large-scale flow

which is uncertain. Here, we consider no penetration deeper

than 400 km since we are mainly concerned with the effects of

small-scale convection soon after it has begun, when the cells

are of small vertical extent. For depths that are much greater

than this the interaction of the large and small-scale flow

will almost certainly be more complicated than we assume here.

Also the gravity anomalies described by Haxby and Weissel

(1983) generally have wavelengths less than 400 km. The depth

of penetration of convection cells should be of the same order

the wavelength of the gravity anomalies they produced, as will

be seen in the model results. In chapter 3 a parameterization

of the convective contribution to cooling and its scaling with

the size of the convecting region are discussed.

Vertical velocity gradients must exist in association with



plate motion. For our model results to apply to the cooling of

the oceanic lithosphere those gradients must be small. This

assumption does not violate the conclusions of Richter and

McKenzie(1978) who noted the lack of correlation of plate

velocity and subsidence with size of the plate. They argued

that these observations require that there be a low viscosity

region where vertical velocity gradients produced by the plate

motion can exist without producing large horizontal pressure

gradients. Their model requires either a thin region of very

low viscosity or a thicker one of higher viscosity. We assume

the latter case applies for viscosities used in our

calculations, causing the region of velocity gradients to be of

fairly broad depth extent. Seismic data analysed by Montager

and Jobert (1983) supports this assumption. They studied the

shear wave velocity structure of the upper mantle under the

Pacific using Rayleigh waves and found that velocities down to

at least 300 km increase steadily with increasing age of the

overlying plate. Small-scale convection extending to these

depths would produce this effect only if material at depth were

being transported at close to the plate velocity.

2.2.2 Equations

Given the assumptions just discussed our problem reduces

to studying thermal convection in a box of variable viscosity

fluid driven by cooling from above. A schematic of this box is

is given in Figure 2.2. We define a region of calculation (or

box) to be of width (Wb) and depth (Db). In that region we

solve the two-dimensional Navier-Stokes equations for mass,



momentum and energy conservation (Batchelor, 1967). They are

modified for the problem of flow in the earth's mantle by

dropping inertial terms and terms that depend on material

compressibility (Turcotte et al., 1972). The values of the

physical parameters which were used to non-dimensionalize the

equations is given in table 1. The governing equations were

solved using a finite difference scheme with centered

differences for the diffusion terms and upwind differences for

the advection terms. Forward time stepping was used for the

time derivatives. We used variable spacing of grid points

using a difference scheme developed by Parmentier (1975). This

allowed higher resolution in the regions of the largest

gradients of viscosity and flow, without an excessive number of

points overall. In the region of highest resolution the grid

spacing is uniform, so formal second-order accuracy in the

centered difference approximations is preserved (Roache, 1978).

The grid positions are shown in Figures 2.3 and 2.4 as tick

marks around the boxes.

Resolution of the solutions on the grids used here was

established in two ways. First, the numerical experiments were

done on successively refined grids until the same results were

achieved on two different grids. Second, the heat flux out of

the grid was compared to the average rate of change of

temperature of the box to ensure conservation of energy.

2.2.3 Viscosity Relation

We consider olivine to be the dominant mineral in the

upper mantle (Ringwood,1975) and adopt a relation for the



dynamic viscosity (p) from (Weertman and Weertman, 1975) given

by:

p(T,P) = A exp((E + PV*)/RT) (2.1)

where E is the activation energy; V* is the effective

activation volume which is defined below; A is a constant

varied to adjust the average visosity, and R is the Universal

gas constant. The value of the activation energy, which

controls the temperature dependence of the viscosity is

estimated from data from three different kinds of laboratory

measurements. Goetze (1978) summarizes measurements of creep

in olivine giving 520 ± 20 KJ/mol as the range of values for E.

Measurement of the oxygen self-diffusion rate for fosterite by

Reddy et al. (1980) gives E = 372 ± 13 KJ/mol. Finally, based

on analysis of the dislocation recovery during static

annealing Kohlstedt et al. (1980) find that E = 300 ± 20

KJ/mol. We define the effective activation volume (V*) as the

activation volume minus a value which corresponds to the

negative viscosity gradient resulting from an adiabatic

temperature gradient. An adiabatic gradient of .30K/km was

assumed. Sammis et al. (1981) show that estimates of the

activation volume based on experimental and theoretical

methods give about the same range for olivine of 10-20 x 10 - 5

m 3 /mol. The activation volume, V*, which controls the

pressure dependence of the viscosity, is critical to

reconciling different estimates of mantle viscosity based on

geophysical observations.

An average mantle value for viscosity of about 1021 Pa-s is



required by post glacial rebound rates (Cathles, 1975; Peltier

and Andrews, 1976). Several geophysical observations require

much lower viscosities at shallower depths in the mantle under

the oceanic lithosphere and under tectonically active regions

of the continents. Passey (1983) has analysed the rebound of

dried lakes in Utah and infers shallow mantle viscosities lower

than 1019 Pa-s. Richter and McKenzie (1978) and Weins and

Stein (1984) require asthenospheric viscosities beneath the

oceans in the range of 1018 -1019 Pa-s based on the

distribution of stresses in the oceanic plates. Viscosity must

increase with pressure and therefore depth to reconcile low

viscosities at shallow depths and high viscosities for the

average mantle. Figures 2.3 and 2.4 show viscosity calculated

with equation (2.1) plotted versus depth for the viscosity

parameters given in table 2.2.

2.2.4 Boundary and Initial Conditions

At the top of a cooling variable viscosity fluid,

temperatures are low and temperature gradients are high.

Therefore, viscosity, given by equation 2.1, in the top of the

box can be so large that flow is negligible in that region

compared to deeper in the box. In this lid heat transfer takes

place exclusively by conduction. The lid is analogous to the

thermal lithosphere. Below this region convection is active

and is the dominant mechanism of heat transport. Since we are

considering the transient cooling of a fluid and not a

steady-state condition, both the lid thickness and the vigor of

the convection in the interior will change with time through



the calculations. It is the interaction of the cooling lid with

the convecting region below which is of interest. The

convection is driven by the temperature gradients at the base

of the lid and in turn the rate of thickening of the lid (or

lithosphere) is affected by the convection. The study of

Houseman and McKenzie (1982) also considered a conducting

region overlying a convecting region. But the boundary between

the conductive and convective regions was kept fixed at one

depth in the model so the interaction could not be studied.

The boundary conditions for the flow on all sides of the

region of calculation are taken to be shear stress-,free.

However, it is computationally more efficient to place a

no-slip (fixed) boundary at the depth in the lid where

viscosity is three orders of magnitude above the minimum

viscosity in the flow region. Because viscosities are so high

in the cold lid, there is effectively no flow there.

Calculations with the boundary placed higher in the

lithosphere, where the viscosity is higher, give the same

results, but require more computer time. The boundary

conditions on the temperature are fixed (corresponding to

273 0 K) at the top and insulating on the sides and bottom. In

the study of Fleitout and Yuen (1984) the boundary conditions

are the same as used here except that a constant tempoerature

is prescribed at the bottom of the box. This condition is also

used in some of the cases considered by Houseman and McKenzie

(1982), but they also use an insulating bottom boundary for

cases where heat sources are distributed throughout the



convecting region. These conditions were used because both of

these studies are concerned with the approach of the

lithospheric thickness to a value which is in equilibrium with

background mantle heat flux. We are mainly concerned with the

early evolution of the oceanic lithosphere, when the effect of

heat sources in the mantle on the rate of cooling of the

lithosphere should be small.

Two types of initial conditions on the temperature are

used. For both, the initial horizontally uniform temperature

profile is that resulting from 5 m.y. of conductive cooling of

an initial box temperature (Tm) of 1573*K. Convection may

begin earlier than this for some of the viscosity structures we

examine, but temperature and viscosity gradients are so large

for smaller initial cooling times that they are difficult to

resolve even on relatively fine grids. Some of the results of

these calculations should apply at earlier times than 5 m.y.

Two types of initial temperature perturbations are superimposed

on the horizontally uniform temperature profile to induce

convective motion. In the first, a random pertubation of less

than 10K was introduced at each grid point. In the second, a

periodic temperature perturbation with a wavelength equal to

twice the width of the box and with a 10 K amplitude is used to

induce the growth of only one convective wavelength.

2.2.5 Description of Models Considered

A list of the model parameters which are common to all the

calculations is given in table 2.1. The parameters varied from

one calculation to another are the average viscosity (through



parameter A), the activation energy (E), the effective

activation volume (V*), the width (Wb) and depth (Db) of the

box. They are listed in table 2.2. A random initial

temperature perturbation was used in only one of the models.

This is case 15 which is carried out in the widest box of any

of the calculations. This model is designed to examine changes

in the depth of penetration and wavelength of the convection

cells through the course of a calculation. In the other model

calculations only one convection cell is induced by the

periodic temperature perturbation. These smaller simpler cases

are used to study the effect of varying a wide variety of

parameters since both the size of a large box and the

variability of the flow caused by the random initial conditions

require large amounts of computer time. Another reason to

consider fixed width convection cells is to examine the effects

of different convective wavelengths.

Non-Newtonian viscosity calculations have been carried out,

but are not included in the detailed discussions here. Using

nearly the same parameters for stress dependence of viscosity

as were used in Fleitout and Yuen (1984) we found that this had

no effect on our calculations. In their formulation there is

effective cut-off in deviatoric stress of 10 bars, below which

the viscosity is Newtonian. The deviatoric stresses in our

calculations are generally less than this cut-off because the

wavelengths of our calculations is small compared to theirs.



2.3 Calculation of Model Geophysical Observables

Subsidence due to cooling of the lithosphere is estimated

in two ways. The first is based on the average temperature in

the lithosphere. To do this we define three regions: a

conductive lid, a flow boundary layer and a convecting region

(see Figure 2.2). The depth to the top of the convecting

region is defined as the level where there is a maximum in the

horizontally averaged advective heat flux (Qc) which is defined

as:

1 Wb
Qc(z) = Wb w(x,z)T(x,z) dx (2.2)

Wb 0

where w is the vertical component of the velocity. The

convecting region is considered to be all the area below this

depth. The average temperature of the region is defined as

Tcr. The base of the conductive lid (ZL) is defined as the

depth where the horizontally averaged temperature equals

.9 Tcr. We can then define a useful measure of the

temperatures in the conductive lid as :

ZL Wb
1 T(z)

TL = WbL f Tc  dxdz (2.3)
Wb L0 Tcr

Figure 2.5 shows values of TL for a number of the model cases.

The subsidence calculated using TL is given by:

S(t) = pm ( Tm-TL'Tcr) ZL (2.4)
Pm-Pw

implying that the conductive lid is in isostatic equlibrium.

The values of the depth ZL(t) are plotted as a function of t1 /2

in Figures 2.6 and 2.7 for two of the numerical models. These
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plots show that the convection has changed the slope of the

curves but that during most of the calculation they are linear

on such a plot. This suggests that the dependence of ZL on

time can be written as:

ZL(t) = 2 X (Kt) 1 / 2  . (2.5)

Where K is the thermal diffusivity. This relation is similar to

the standard description of the increase in the depth to a

given isotherm for the case of purely conductive cooling with X

given by erf - I (.9) (Carslaw and Jeager, 1959). For the cases

here the value of X will depend on the vigor of convection

beneath the lid. The relation between A and the viscosity and

other model parameters are given in chapter 3. The parameter X

can be related to the geophysical observables as discussed

below.

The second way to estimate the subsidence is to calculate

the change in the average temperature of the upper part of the

box to a depth of compensation (Zc). Here Zc is taken to be

150 km. The material above Zc is asssumed to be in isostatic

equilibrium. This is the same method used by Jarvis and

Peltier (1982) for calculation of subsidence associated with

large scale mantle flow and by Houseman and McKenzie (1982) and

Fleitout and Yuen (1984). An average temperature from the top

of the box to the depth (Zc) is defined as (Tc) and can be used

to calculate subsidence using equation (2.4) by replacing

TL'Tcr with (Tc) and replacing ZL with Zc. The subsidence

calculated using either method is nearly the same because the



temperature change with time below the boundary layer is small

compared to that in the conductive lid. The physical

parameters used in equation (2.4) are given in table 2.1.

Since the thermal expansion coefficient is temperature

dependent, the appropriate temperature range for the

temperature change should be used. For this problem the

average temperature drop in the conductive lid is about 600*K,

so the appropriate temperature for calculating the average

value of a is about 1573"C - 600/2. = 1273 0 K. For olivine

av(T=1273*K) is about 4.0 x 10- 5 'K (Skinner, 1966). Over the

pressure range in the lithosphere the effect of pressure on the

thermal expansion coefficient should be small. Figures 2.6(a)

and 2.7(b) shows the non-dimensional subsidence calculated

using equation 2.4 and part (b) of those figures show plots

which are proportional the non-dimensional subsidence using

(Z C ) equal to 150 km.

In the calculation of subsidence a depth of compensation

(Z C ) where isostacy is attained, is assumed. If the depth is

varied by about ±50 km from the value of 150 km used here, the

results do not change drastically. However, if the depth of

compensation is taken to be near the bottom of the box then the

subsidence relative to that for purely conductive cooling is

quite different. Whereas the subsidence at a given time

calculated for the models using a shallow depth of compensation

is less than that for the conductive case, it would be greater

than the conductive value if the depth of compensation were

taken to be much deeper. The justification for a shallow depth



of compensation is related to the viscosity structure we have

assumed. Horizontal pressure gradients in the direction

perpendicular to the plane of the calculations, which are not

explicitely calculated here, should arise due to temperature

variations in that direction. Flow will be driven by these

pressure gradients and this flow may affect subsidence. The

definition of the depth of compensation is the level where

horizontal pressure gradients cannot be maintained by the

strength of the materials. The level we have chosen for the

depth of compensation is the depth where the viscosity is low

over the duration of the numerical calculations. This amounts

to assuming that the flow at this level will not produce any

long wavelength topography. This kind of behavior is seen in

calculations of convection in fluids with depth dependent

viscosity. Such studies ( McKenzie, 1977; Parsons and Daly,

1983; Richards and Hager, 1984) show that the topography due to

convection in fluids with lower viscosities near the top of

convection cells than deeper down is much smaller than for

constant viscosity fluids.

The isostatic geoid anomaly (Haxby and Turcotte, 1978)

is given by :

ZL
-21G (Pm - Pw)(S(t))2

H(t) = { + a pm f (Tm-Th(z)) z dz}
g 2 (2.6)

where Th(z) is the horizontally averaged temperature at a depth

(z). This expression is valid only if the density variation

producing the anomaly is isostatically compensated and if its



vertical extent is small compared to horizontal distances over

which density variations occur. Thus, it should be valid as

long as variations in temperature and therefore density, below

ZL are small. This is the case for the offset of the geoid

across fracture zones.

The gravity anomaly at the top of the box is another

observable to calculate from our model results. There are

three components which contribute to an anomaly. One is due to

temperature and therefore density variations in the box. A

second is due to the deformation of the top surface of the box

as a result of convective stresses. Thirdly, hydrostatic

pressure variations due to horizontal temperature differences

within the conductive lid also contributes to the stresses and

deformation of the top boundary of the box. The first

component of the anomaly is calculated by numerically

integrating the following expression for the vertical component

of gravity (GT) due to distributed two-dimensional density

anomalies:

D +3Wb
2GpmaAT z

GT (X') = (Th(z) - T(x,z)) xx)+ d z

0 -2Wb (2.7)

where G = gravitational constant, and the other values have

been defined before. The temperature structure in the box is

assumed to be periodic with wavelength 2Wb. The range of

integration is over 2.5 wavelengths to get rid of any edge

effects.

To determine the component of the gravity anomaly due to



the flow we must calculate the normal stress (Ozz) on the flow

boundary of the conductive lid. Following McKenzie (1977), and

Parmentier and Turcotte (1978), the normal stress at any

boundary point is given by:

VK
o (x) = (-P(x) + TZ (x)) (2.8)

zz D2~ZZ
b

where v is the kinematic viscosity (p/pm) and Tzz and P are the

non-dimensional deviatoric stress and pressure, respectively.

zz(x) = 2q . (2.9)

where (w) is the vorticity and (n = v/v o ) is the

non-dimensional viscosity. The pressure is obtained by

integrating the horizontal pressure gradient on the boundary

x x

P(x) = dx = - n dx . (2.10)

0 0

The stress at the surface of 'the box must include the

effect of temperature variations in the conductive lid (OT),

given by

ZL

OT(x) = Pmavg f (Th(z)-T(x,z)) dz . (2.11)

0

Assuming free vertical motion in the lid, that the stress is

transmitted to the surface, the total normal stress at the

surface (ons) is:

0 ns = Ozz(x) + OT (x) (2.12)



The stress at the surface is adjusted such that the average is

zero. The gravitational effect of these stresses in our model

is determined by the resulting elevation (E(x)) of the surface.

To determine this we must assume a flexural rigidity (D) of the

elastic lithosphere. If we assume D to be zero resulting in a

point-wise isostatic response, hydrostatic stresses due to

elevation of the surface must match the normal stress at each

point giving:

ons ( x)
E(x) = Pw) g (2.13)

(PmPw) g

where g is the acceleration of gravity. But, if D is non-zero

the elevation will be reduced by an amount which depends on the

wavenumber (k)of each Fourrier component of the stress

distribution. For a given stress harmonic the observed

elevation (Ef) is:

E(x)
Ef(x) E(x) (2.14)

(1 + D k
Pmg

(McKenzie and Bowin,1976). The flexural rigidity is

proportional to the cube of the thickness of the the elastic

lithosphere. For an elastic layer thickness of 10 km, and

using values for elastic parameters from Watts and Steckler

(1980), the flexural rigidity (D) = 1023 kg-m 2 /s 2 . For this

flexural rigidity, a stress distribution with wavelengths less

than 200 km produces almost no surface elevation.

The gravity anomaly at a point due to this elevation

anomaly is calculated assuming that the extra mass due to the



surface elevation can be considered an infinite sheet. This is

a good approximation for features with a wavelength greater

than several tens of km, which is true of all the variations

discussed here. Then the gravity anomaly caused by elevation

is given by

GE(x) = 27r G(pm-pw)EF(X) = G O + GL (2.15)

where Go is the part of the signal due to the stresses produced

by flow and GL is the component due the the variation of the

lithospheric temperatures.

Finally, the average heat flux out of the top of the box

(Qs(t)) is given by the product of the average temperature

gradient at z=0. and the conductivity (K).

1 Wb dT
Qs(t) = K d (xo)dx (2.16)

bo dz(x,o)

where dT/dz is estimated using the centered finite difference

form given in the appendix.
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2.4 Results

2.4.1 Large Box Calculations

The results of a calculation within a box representing a

400 x 400 km region of the mantle are illustrated in Figure

2.3. The figure shows several quantities which describe the

flow at four times. The temperature contours give an idea of

the rate of movement of material as cold blobs are sinking and

hot plumes rising because advective heat transfer dominates the

conductive transfer in the region where isotherms are distorted

from horizontal. The streamlines show the number of convection

cells at a given time and the depth of penetration of the flow.

The cells are seen to grow larger during the early part of the

calculation. The initial wavelength of the flow is controlled

by the thickness of the thermal boundary layer which first

becomes unstable. Jaupart (1981) points out that the fastest

growing wavelength of the instability for a boundary layer in

which viscosity decreases exponentially with depth should be

between f and 2f times the boundary layer thickness. The

boundary layer defined here is the region where both the

advective and conductive heat flux vary rapidly with depth.

This region is located between the conductive lid and the

convecting region (see Figures 2.2, 2.3 and 2.4). After 2 m.y.

of the calculation the wavelength of the flow in Figure 2.3 is

about 60 km. This is consistent with an initial boundary layer

thickness of about 10 km. In just another 2 m.y. the wave-

length of the flow increases to nearly 120 km. The growth of

the cells is rapid early in the calculation then later slows



and finally stops when the box is filled. The slowing of the

growth of the cells depends on the pressure dependence of the

viscosity since this causes the viscosity to increase with

depth. In a model where viscosity did not depend on pressure

the cells filled the box more rapidly than for any of the other

cases.

The plots of the advective heat flux shown for different

times in Figure 2.3, exhibit some interesting features. For a

model time of 2 m.y. the convection is just starting to develop

and very little heat is being transported by the flow. At the

next two times, 4 and 5 m.y. into the calculation, the plots of

advective heat flux have an extra local maxima due to a large

amount of cold material from the original unstable boundary

layer moving down. The profiles of the advected heat flux for

the rest of the calculation look more like that for case 20

shown in Figure 2.4. There the largest advective heat flux

occurs at the base of the boundary layer, and it decreases

montonically with depth.

The horizontally averaged temperature profiles in Figure

2.3 show large gradients in the conductive lid but are

relatively uniform below the boundary layer. The difference

between the horizontally averaged temperature at a given depth

and the temperature which would result from purely conductive

cooling for the same amount of time is also shown. In the

convecting region the temperatures are lower than they would be

in the absence of convection, while in the conductive lid the

temperatures are higher than they would be for purely



conductive cooling.

The average temperature in the lid (TL), given by equation

3, is shown in Figure 2.5. For case 15, TL decreases from the

value for purely conductive cooling faster than the other cases

where only one convective wavelength is present in the box.

The small cells, present early in the run for case 15, are more

efficient in getting heat out of the convecting region than are

the longer wavelength cells. The local heat flux across the

boundary layer at a given horizontal distance (xc) from the

center of upwelling between two cells should vary approximately

as xc- 1/ 2 . Therefore the smaller the cell the higher the

horizontally averaged value of the heat flux across the

boundary layer. The higher the heat flux into the convecting

region the faster the average lid temperature decreases. The

small dip in the curve of TL centered on 40 m.y. is due to the

uncooled material at the bottom of the box moving up en masse

and is a result of the unrealistic boundary condition at the

bottom of the box on the stress (ie. free stress). During most

of the calculation the value of TL is remarkably constant.

The depth of the base of the conductive lid (ZL defined by

equation 2.5) is plotted versus t-1/ 2 in Figure 2.6. The plots

are nearly linear during time intervals when TL is constant,

but the slopes differ from the conductive solution. This means

that the subsidence (S(t)) which is proportional to the product

of TL and ZL will also be linear with t-1 / 2 . The non-

dimensional subsidence is shown for case 15 in Figure 2.6, and

the plot is indeed nearly linear with t-11 2 . The slope of



this line is proportional to the parameter X which is estimated

from the plot of ZL, also in Figure 2.6, and listed in table

2.2. Theory described in chapter 3 predicts that S(t) should

depend on XaTm(Kt) 11/2.

The isostatic geoid anomaly (H(t)) for case 15 as a function

of time, calculated using equation 2.6 is shown in Figure 2.8

along with plots for several other model cases. The slope of

these curves is proportional to X2 aTmK as shown in chapter 3.

The slope is more appropriate for comparing with the data for

the oceanic lithosphere. In Figure 2.9 the derivative of the

geoid height anomaly is shown as it varies with time. Data

from Cazenave (1984) on the offset of the geoid height across

fracture zones, where there is a change in the age of the

lithosphere across the zone and is also shown on Figure 2.9 .

The model results have a similar trend to this data, but the

full magnitude of the slope change is not predicted by case 15.

The total gravity anomaly associated with the small-scale

convective rolls is shown in Figure 2.3, assuming no flexural

damping of the signal. The amplitude of the anomalies

increases with time, especially after the cells cease to grow

very rapidly. This is true because the effect of temperature

variations in the lid lag the change in cell size. Clearly,

time is required for the lateral differences in advective heat

flux to be conducted into the lid. The components which make

up the total model gravity anomaly (Go , GL and GT) are shown in

Figure 10 for one time in calculation of case 15. Clearly,

most of the total anomaly arises due to the combination of



stresses at the base of the lithosphere (Go ) and pressure

variations through the lithosphere (GL), both of which will be

reduced in magnitude due to flexural damping of the elastic

lithosphere. In Figure 2.11 the magnitude of the maximum

difference in peak to trough amplitude for the three components

of the gravity signal are shown as a function of time for

several of the cases including case 15. Just as for the

isostatic geoid anomaly the gravity anomaly changes most

rapidly soon after the calculation is begun. Again, this is

due to the efficiency of the small cells in transporting

material and heat. The component of the signal due to the flow

induced stresses (Go ) grows very quickly at first, but later

maintains a nearly constant value. The component resulting

from lithospheric temperature variations (GL) grows more

slowly, but continues to grow through most of the calculation.

This is partly due to the increasing wavelength of the flow

with time, which leads to a larger contrast in the heat flux

locally flowing from the convection cell into the conductive

lid. It also increases with time after the cell width has

become constant, because, as the lid thickens, the temperature

variations resulting from the horizontal variation in heat flux

extend over a greater depth. The magnitude of the signal

arising from density contrasts throughout the box (GT) follows

the same trend as GL. The amplitude of GT is much smaller than

that of GL and is opposite in sign from Go and GL. The trend

of GT parallels GL because most of that signal originates

within the conductive lid.



A contour plot of the total model gravity signal, the sum

of GT, Go and GL, is shown in Figure 2.12 for case 15.

Distance is scaled with time through an assumed plate velocity

of 4 cm/yr. Some of the profiles used to construct this figure

are shown in Figure 2.3. No flexural damping was included. As

was seen before, the wavelengths of the signal increase with

time and the amplitude also increases somewhat. Over the range

of times shown the effects of the finite size of the box in

constraining cell size is not large.

2.4.2 Small Box Calculations

Numerical calculations with the same boundary conditions

as for the large box calculation (case 15), but with a periodic

initial temperature perturbation were carried out for a number

of cases which are listed in Table 2.2. The parameters varied

in this set of calculations are the average viscosity (through

parameter A in equation 2.1), the activation energy (E), the

effective activation volume (V*) and the width (Wb) and depth

(Db) of the box. The number of grid points for calculations

with the same physical parameters is also varied. This was

done to asses the accuracy of the numerical results. To

illustrate the one cell calculations the same quantities which

were shown in Figure 2.3 for the large box calculation are

shown in Figure 2.4 for case 20, which has the same viscosity

parameters as case 15. Only one time is illustrated. The

single convection cell starts out penetrating only part way

through the depth of the box and goes through the stage of cell
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growth noted for the large box calculation. Here there is no

increase in the width of the cell, only its depth extent

increases. One of these small box cases, case 17, did not go

through the stage of slow downward penetration of the cell.

For that case there was no pressure dependence of viscosity and

so no viscosity increase with depth.

In two of the cases (17 and 19) the initial single cell of

flow broke down into two cells. Case 19 has the same viscosity

parameters as case 20, but the width of the convecting region

is twice as great (see Table 2.2). Case 17 was for the same

width box as case 20. The reason for this cell breakdown is

that the initially preferred wavelength of the flow was much

smaller than the box width.

Several general relations between the geophysical

observables calculated for this set of models should be pointed

out. One of the most obvious is that the rate of change of the

temperature structure of the conductive lid is inversely

proportional to the average viscosity in the boundary layer and

also depends on the activation energy E. The convective heat

flux controls the variation of the average lid temperature (TL)

with time plotted in Figure 2.5. This figure shows that case

14, which has an average viscosity five times that of case 20,

is much slower to change from the conductive value of TL. This

same slow growth is clearly seen in the rate of decrease in

dH/dt shown in Figure 2.9 and in the slow increase in the

amplitudes of the gravity components in Figure 2.11. For case

18, which has nearly the same initial viscosity for the region



below the boundary layer, but a lower activation energy E,

growth is faster than for case 14. The decreased temperature

dependence for case 18 results in a larger temperature

difference across the boundary layer. As noted before, the

size of the convection cells also affects the rate of heat

transfer from the convecting to the conducting regions. Case

22, which has a box half the width of case 20, but with all

other parameters the same, showed a much faster change in TL in

the early part of the run. For cases 22 and 20, the average

advective heat flux for the smaller width box was greater by a

factor of about (2)1/2 when the viscosities were the same in

the boundary layer region.

The heat flux at the surface (Qs(t)) is slow to respond to

changes in the heat flux from below because this heat must be

conducted through the lid. Eventually, a difference in Qs(t)

from the conductive cooling values will result from the

convective enhancement of heat transfer below the lid. Figure

2.13 shows a plot of Qs(t) versus time for case 20 and that

this model can match data for average heat flow with sea floor

age from Sclater et al. (1980). We can also show how model

results which are more constant in time depend on the model

parameters. These comments apply to the time period when TL is

nearly constant. First, the average viscosity is inversely

proportional to the deviation of TL from the the conductive

value (see Figure 2.5). This results from the fact that the

rate of advective heat transfer is controlled by the average

viscosity in the convecting region. The lower the viscosity,



the higher the heat flux. Since the subsidence (S(t)) is

nearly linearly dependent on (1) and the isostatic geoid height

(H(t)) scales with X2 , it is necessary to consider only the

effect of variations in the model parameters on X. The effect

on the geophysical parameters follows, except for the gravity

anomalies.

Case 14, with the highest value of viscosity (table 2.2) of

all the cases has the highest value of X. It follows that this

case also has the highest value for TL, the highest rate of

subsidence and the largest average value of dH/dt. Decreasing

the temperature dependence of viscosity, by lowering the

activation energy (E) in case 18, decreases the value of X.

The average viscosity in the isothermal region is nearly the

same at the start of the calculation for both case 14 and 18;

but with E = 290 KJ/mol the change in the viscosity with

temperature is half as great as for the other cases which had

E = 410 KJ/mol. As the convecting region cools the viscosity

and therefore the advective heat transfer does not decrease as

rapidly as for case 14 .

Lowering the pressure dependence of viscosity by reducing

the effective activation volume (V*) has much the same effect

as lowering the temperature dependence of the viscosity. As

the depth to the base of the boundary layer increases with time

of cooling, the viscosity there will be increasing because

pressure is proportional to depth. The viscosity in the

boundary layer controls the advective heat flux. Thus for case

17 where the effective activation volume (V*) is zero the heat



flux decreases at a slower rate than it would if (V*) were

larger.

The effect of a smaller wavelength for the convection is

demonstrated by case 22. The width of the box is half that for

case 20, but other parameters are the same. The heat flux at

early times is much higher than for case 20, but later in the

calculation it becomes lower than for the wider box. Model 22

departs somewhat from the simple behavior of constant (X) and

TL in the later part of the run.

Reducing the depth extent of the convective cooling

increases the value of (X) as shown by case 23 for which the

depth of the box is 3/4 of that for the other cases. The cause

for this is simply that the rate of change of temperature in

the smaller convecting region is greater for a given advective

heat flux. As with case 22 the long term cooling departs from

constancy of TL.

The average lid temperature (TL) and the slope of the plot

of the lid thickness versus t1/ 2 remains constant for most of

the calculations after about 30 m.y. of model time. This is a

consequence of the negative feedback of the convecting system

(ie. the higher the advective heat flux the quicker the

convecting region cools and so the viscosity goes up and the

heat flux then goes down). Thus any system with strongly

temperature dependent viscosity should behave in this regular

fashion.

The model parameters control the time variation of the

conponents of the gravity signal produced by convection in a
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way that does not scale simply with the parameter (X). The

components (Go , GL, and GT ) are shown for several of the runs

in Figure 2.11. One result from these calculations is that the

component due to flow stresses (Go ) is fairly constant in

amplitude after an early period of change. The early rate of

change of this signal is greater for the cases with lower

viscosity in the convecting region. The magnitude of the

constant level of (Go ) does not vary much with average

viscosity in the boundary layer region, but it does inrease

with increasing wavelength of the flow and with smaller values

of the activation energy (E). The component of the gravity

anomaly which depends on the stresses produced by temperature

variations in the conductive lid (GL) increases continuously

with time for all the cases. The magnitude of the rate of

increase is greater for the longer wavelength cases. Finally,

the part of the gravity signal arising from density differences

throughout the lid and convecting region (GT) tends to parallel

(GL), but is lower in amplitude and opposite in sign at most

points from (GL).



2.5 Discussion

2.5.1 Gravity Anomalies

We will first discuss the implications of the model gravity

anomalies, then make general remarks about the other model

geophysical observables. The amplitudes and wavelengths of the

signals shown in Figure 10 for case 15 are in the range

observed by Haxby and Weissel (1984) in their analysis of

gravity features derived from SEASAT altimetry data for the

Central East Pacific. They observed anomalies with a

wavelength of 150-250 km and a peak-to-trough amplitude of 8-20

x 10- 5 (m/s 2 ) over ocean floor of greater than 6 m.y. age. The

highs and lows of these features make linear trends in the

direction of plate motion. The amplitude of the total gravity

anomalies for all the small box calculations were also in this

range for at least part of the time duration of the

calculations. Two important features of the model gravity

anomalies do not match the data. The first is that the

increase in the wavelength of the anomalies with age observed

by Haxby and Weissel is less than that predicted by the results

of case 15 (see Figure 2.12). Secondly, when flexural damping

of the components of the gravity signal, Go and GL, due to the

elastic lithosphere is included in the calculation of the model

signals, their amplitude for short wavelengths (<250 km) become

less than the observed signals. Figure 2.14 illustrates how

strongly elastic lithosphere will damp signals as a function of

their wavelength through a plot of the flexural filter (F(k)=

Ef(x)/E(x) as defined by equation 2.14. We convolve this
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filter with the model anomaly components G O and GL to

approximate the effect of the elastic lithosphere. The result

of doing this for different assumed values of the lithospheric

thickness at different times for case 15 is shown in Figure

2.15. Using the variation of the elastic lithospheric

thickness with age for the oceans estimated by Watts et al.

(1980), signals with wavelengths less than 250 km will be

damped by more than 90% for lithospheric ages greater than 15

m.y. Only when the small-scale convective wavelengths are

greater than 400 to 500 km will the effect of the elastic

lithosphere in damping the signals of G o and GT become small

for all lithospheric ages. There is some indication in the

data of coherent signals around 500 km wavelength which also

trend in the direction of plate motion (Haxby and Weissel,

1984). Figure 2.16 shows example gravity anomalies from Haxby

and Weissel, 1984 and Figure 2.17 gives the location of those

lines of data. Clearly, the amplitude of these anomalies are

in the range observed in our calculations.

The elastic lithosphere acts to support topography in the

same way that it suppresses the topographic expression of

convective stresses. This may explain how small-scale

convection can result in the observed pattern of short

wavelength gravity anomalies. Topographic variations produced

by convection when the elastic lithosphere is thin can be

"frozen" into the lithosphere as the thickness and therefore

the flexural rigidity of the lithosphere increases with age.

This topography and the associated gravity anomalies should not
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change greatly even as the convective pattern beneath the

lithosphere changes. These gravity anomalies would have a

linear trend in the direction of plate motion as on the

observations. If so, the stresses due to convection must be

well developed before the flexural rigidity of the lithosphere

is large enough to suppress their topographic expression. From

the model results we estimate that this requires that the

asthenopheric viscosities be less than about 1018 Pa-s under

young oceanic lithosphere. This seems like a very small value,

but when the increase in viscosity with depth is taken into

account, values become more like the ones estimated from other

measurements discussed before. Even with an activation volume

at the low end of the experimentally determined range of the

for olivine (Sammis et al., 1981), 10 cm3 /mol, the viscosity

reaches the estimated average mantle value of 1021 Pa-s at

between 300 and 400 km depth.

2.5.2 Isostatic Geoid Anomalies

The calculated plots of the derivative of the model

isostatic geoid height with time (shown in Figure 2.9)

reproduce the early trend in the data on the offset of the

geoid height across fracture zones. To match the magnitude of

the change in dH(t)/dt seen in the data of Cazenave (1984)

requires a lower viscosity than in any of the models considered

here. Since the value of dH(t)/dt should scale with X2 KaTm ,

it is possible to find a combination of these parameters which

match both the average rate of subsidence and the rate of

change of the isostatic geoid height. Another possibility is



that the low observed values of dH(t)/dt may be related to

convection induced by differences in lithospheric thickness

across fracture zones. This may cause faster homogenization of

the asthenospheric temperatures and lithospheric thicknesses in

the vicinity of the fracture zone. The calculations described

in chapter 4 illustrate some features of this problem.

2.5.3

Subsidence and Lateral Heterogeneity of Mantle Temperatures

The comparison of the model results to data on the

subsidence of the ocean basins is also interesting. For

small-scale convection to be associated with the gravity and

geoid features just discussed, it must develop in the first few

million years after the lithosphere starts to cool. This means

the onset of small-scale convection cannot produce the change

in slope of the subsidence-age relation at about 70 m.y. as

suggested by Parsons amd McKenzie (1978) and Houseman and

McKenzie (1982). A number of alternative explanations for this

feature of the subsidence data have been given (Forsyth, 1975;

Schubert et al. 1976, Heestand and Crough, 1981; Jarvis and

Peltier, 1982; Fleitout and Yuen, 1984), all involving a heat

flux from the mantle brought to the base of the lithosphere by

either convection or conduction.

Our main interest is the early evolution of the oceanic

lithosphere where the effect of a heat flux from deeper in the

mantle should be negligible. We have shown that the rate of

subsidence should depend on XaTm(Kt) 1 /2 for cooling of the



mantle in the absence of heat sources. The average subsidence

of the North Atlantic and the North Pacific ocean basins as

estimated by Parsons and Sclater (1977) can be fit by a model

with viscosities low enough to produce the gravity signals

discussed above. Here we assume the thermal expansion (a) to

be 3.8 x 105 OK- 1 This illustrated in Figure 2.18 which shows

the subsidence-t - 11 2 1lot for one of the models along with data

on the variation of the subsidence rate for several oceanic

plates or parts of those plates compiled by Hayes (1983) can be

explained by the effects of small scale convection. The cause

of these variations, in our view, is the difference in

asthenospheric temperatures (Tm) under different lithospheric

plates. A value of (Tm) which is 7% higher than a reference

value will produce a change viscosity there of a factor of ten

assuming an activation energy of 410 KJ/mol. Based on the

cases described here and on the parameterization derived in

chapter 3, we estimate that this change in viscosity will

result in a decrease in the cooling parameter (X) of about 18%.

Thus, the overall effect is to decrease the rate of subsidence

by around 12%. For conductive half-space cooling, with no

small-'scale convection, the rate would increase by 7% because

of the effect of the higher temperature.

One way to estimate the variation in temperatures in the

mantle is to consider differences in shear wave velocitites.

Models of upper mantle shear wave velocities, based on surface

waves, have been published by a number of workers (Woodhouse

and Dziewonski, 1984; Nakanishi and Anderson, 1982). If the



cause of the shear velocity differences is taken to be

differences in temperature, the magnitude of the required

temperature variations can be estimated using a value of the

derivative of the shear velocity of 3.4 x 10 - 4 km/s-*K

estimated from data on Simmons and Wang (1971). We have

compared the estimate of the relative temperature differences

in the mantle in one area where variations in subsidence rates

are large. The approximately 25% difference in subsidence rate

between the African and South American sides of the South

Atlantic in the latitude range from 35 to 45* South noted by

Hayes (1983) would require at least a 200*K difference in

temperature for our model. The shear wave model of Woodhouse

and Dziewonski (1984) requires about this temperature

difference and so requires that the area of inferred hotter

mantle underlie the lithospheric plate which is subsiding more

slowly.

The surface heat flux (Qs(t)) should vary like

(Tm/X)(Kcp/t)1 / 2 as described in chapter 3. Uncertainties in

our knowledge of the conductivity (K) and the specific heat

(cp) (Schatz and Simmons, 1972; Goranson ,1942) are

sufficiently large that average oceanic heat flow values can be

matched by a variety of models from purely conductive cases to

models with vigorous small-scale convection. It is the lateral

variations in heat flux which may allow us to put some

constraints on the vigour of small-scale convection under

different areas of the oceanic plates.



2.6 Conclusions

These calculations have shown that small-scale convection

can produce the magnitude of gravity anomaly for short

wavelengths observed for at least one area of the oceanic

lithosphere and also be consistent with seafloor subsidence

data. The linearity of a plot of subsidence versus t1 1/ 2 seen

in the data is also reproduced by model results, but the slope

of such a plot depends on the vigour of the small-scale

convection. The data on oceanic heat flow can also be fit with

a model which includes convection on a small-scale. Data on the

offset of the geoid height across fracture zones is more nearly

matched by our results than a model that includes only

conductive cooling. We feel that inclusion of the effect of

differences in lithospheric thickness across fracture zones on

small-scale convection may explain the geoid data more

completely.

The model proposed here to explain small wavelength gravity

anomalies over the oceans requires that small-scale convection

begin in the first few m.y. after formation of the lithosphere

at a mid-ocean ridge. The viscosities below such lithosphere

must have a minima around 1018 Pa-s for this to occur. We

suggest that topographic variations were produced when the

elastic lithosphere was so thin that it could be easily

deformed by the stresses associated with small-scale

convection. This topography, which gives rise to the observed

gravity anomalies, are supported by the strength of the

elastic lithosphere as it cools and thickens, or "frozen in".



Lateral variations in the temperature of the asthenosphere

should affect the vigour of convection and affect the rate of

subsidence, the surface heat flow, the geoid height across

fracture zones and the amplitude of the gravity anomalies

associated with small-scale convection. This relation will

hold if the viscosity of the mantle is strongly dependent on

temperature. We have shown that there are indications that

estimates of asthenospheric temperatures based on seismic date

are consistent with this model and the variations of rates of

seafloor subsidence. More work should be done on correlating

seismic estimates of mantle temperatures and the variations in

the other parameters just mentioned.



TABLE 2.1

Name

diffusivity

length scale

temperature
scale

thermal expansion
coefficient

viscosity

acceleration of
gravity

mantle density

water density

conductivity

specific heat

Symbol

1000

3.2

900

Units

m 2/s

meters

Value

10-6

4.0x10 5

1300

3.0x10 5

1. 0x10 2 1

9.8

3500

J/m- s- K

J/kg-oK

Table 2.1 Parameters used for non-dimensionalizing the

governing equations which are given in the appendix and

calculating the model results.

1/OK

Pa-s

m/s 2

kg/m 3

kg/m3

AT

a

Pm

K

Cp



TABLE 2.2

Table 2.2 The parameters which define the numerical cases are

listed here. The reference viscosity (Pref) is the value of

viscosity at the start of a calculation at 150 km depth in the

model box and it defines the value of A in equation 2.1. The

other parameters are described in the text.

Run Jref E V* Wb Zb

S 108 kcal cm3 X
Pa-s mole mole [km] [km

12 1.0 110 7.5 120 400 .80

14 5.0 110 7.5 120 400 .93

15 1.0 110 7.5 400 400 .87

17 102 0 120 400 .74

18 5.0 80 7.5 120 400 .78

19 1.0 110 7.5 240 400 .79

20 1.0 110 7.5 120 400 .81

21 102 0 120 400

22 1.0 110 7.5 60 400 .80

23 1.0 110 7.5 120 300 .84



Figure Captions

Figure 1. This schematic of the oceanic mantle shows the

orientation expected for small-scale convection beneath the

oceanic lithosphere. The end view which shows

cross-sections of the small-scale rolls is the plane in

which the calculations are done.

Figure 2. The set-up and boundary conditions for the numerical

experiments described in this paper are shown. The

conductive lid is the area where the advective heat flux is

negligible compared to the conductive heat flux. The

boundary layer is defined in the text as are the boundary

conditions.

Figure 3. The results of one numerical calculation of

small-scale convection are shown for a box which represents

a 400 x 400 km region of the mantle for the times of

cooling 2,4,5 and 10 m.y. after the convection calculation

was begun and these snapshots are labled (a),(b),(c) and

(d), respectively. Of course, an initial temperature

profile from 5 m.y. of conductive cooling was used. The

positions of the 10 grid points used are indicated by the

tick marks on the contour plots. A random temperature

perturbation was given to each point at the start of the

calculation. The dominant wavelength of flow has increased

from a value of about 80 km after 2 m.y. to 200 km after 10

m.y. The temperature contours identify 1473, 1523 and



1553*K, in order from the top, and the streamfunction

contours are evenly spaced between maximum and minimum

values which are given in the figures. The shaded regions

above the top contour of temperature indicates the region

of the conductive lid or lithosphere. Parameter A in

equation 2.1 is set to give a viscosity of 10 Pa-s at 150

km and 1573 *K. The horizontally averaged temperature and

the difference between that and the temperatures for purely

conductive cooling of a half-space for the same time of

cooling are shown plotted against depth next to the

temperature contour plots. The horizontal average of the

viscosity and the vertically advected heat flux are shown

next to the streamfunction. Above the temperature contours

is shown the model gravity anomaly which includes the

effect of temperature variations and the effect of vertical

deformations produced by the flow, given by equations 2.8 to

2.15. No flexural damping of the gravity signals is

included.

Figure 4. The same quantities which were displayed in figure 2.3

are shown for case 20 at a time 56 m.y. into the

calculation. Note that several of the scales have been

changed. The temperature contours are set at 1433, 1458,

1483 and 1508 *K in order from top to bottom. The minimum

of the streamfunction is -4.44 x 10 - 5 m2 /s and the maximum

is 0.



Figure 2.5. Values of the average lid temperature (TL) defined

by equation 2.3 are plotted against time for the cases

indicated. Table 1 gives the parameters used in each case.

Figure 5(a) gives these plots for cases 12, 14, 15, 17 and

18 while 5(b) is for 15, 19, 20 and 22. The cases

displayed in 5(b) all have the same viscosity parameters,

but different box widths (W) and case 15 had different

initial conditions than the others. A value of

non-dimensionalized temperature of .60 corresponds to the

conductive solution and a value of .50 indicates a linear

temperature profile. Note that for times greater than 50

m.y. the values of TL are nearly constant in time. This is

the period of "transient equilibrium" described in the text.

Figure 2.6. The values of six parameters calculated for model 15

are shown plotted versus t11/ 2 . Plot (a) shows the negative

non-dimensional subsidence (=S(t)*(pm - Pw)/apm) given by

equation 2.4. The average temperature in the lid is TL, the

depth to the bottom of the lid is zL and Tm is the initial

temperature in the box. Graph (b) gives the negative of the

average non-dimensional temperature drop in the top 150 km of

the box (Tc-Tm) which is can be used to calculate another

estimate of subsidence as escribed in the text. Plot (c)

gives zL and plot (d) shows the variation of log(D) where D

is the average value in the box of the second invariant of

the strain rate tensor (e2 ). In graph (e) the ratio of the
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integral of the average heat flux out the box with time (IHF)

and the average temperature drop within the box (TD) are

shown. The deviation of this plot from a horizontal line

indicates the degree of non-conservation of energy on the

numerical grid due to incomplete convergence of the vorticity

and stream function equations. The change in this quantity

is only about 0.2% after the first few time steps. Finally,

the log of the dissipation weighted viscosity (log(p)) is

shown in plot (f).

Figure 2.7. The same quantities as were plotted in figure 2.6

are shown for test 20. The time variation of these

quantities are smmother than for case 15 because there

was a more gradual increase in the cell size in the

narrower box used for this model case.

Figure 2.8. This shows the variation of the isostatic geoid

height (H) given by equation 2.6 relative to a zero value at

the ridge crest versus time for several of the cases and for

purely conductive cooling.

Figure 2.9. Shown are the values of the slope of the plots in

Figure 2.8 (dH/dt) versus time. The slope change can be

related to data on the offset of the geoid height across

fracture zones, and data from Cazenave (1984) is plotted on

the figure.



Figure 2.10. The components of the model gravity signal described

in the text are shown for at time 15 m.y. into the model 15

calculation. The conponent due to deviatoric stress and

pressure variations at the base of the conductive lid is G,,

that due to pressure variations in the lid is GL and GT is the

signal due to density variations throughout the box. No

flexureal damping of Go and GL was done here.

Figure 2.11. The maximum peak-to-trough amplitude of the three

components of the gravity signal, which are defined in the

text, are shown as they vary with time for four of the cases

considered. Go and GL are generally of the same sign at a

give point while GT is opposite in sign. The test cases are

labeled on each plot (a) to (d).

Figure 2.12. This is a contour map of the total model gravity for

case 15 for a range of model times from 4 to 25 m.y. Time is

related to distance by assuming a plate velocity of 4 x 10-2

m/yr. The contour interval is 2 x 10 - 5 m/s 2 (mgals). flexural

damping of the signals was included when calculating gravity.

Note that the wavelength increaces rapidly with time along

with a moderate increase in the amplitude of gravity.

Figure 2.13. The variation of the model surface heat flux (Qs(t))

described in the text is plotted against time for case 20.

The thermal conductivity (K) is assumed to be 3.3 x 10 5

ergs/cm 3 -s-OK (Schatz and Simmons, 1972). Also shown is data

for the average depth of the ocean basins and one standard

deviation from the compilation of Sclater et al. (1980).



Figure 2.14. The flexural filter F(k) defined in the text is

plotted against the wavenumber (k) and the wavelength (y) for

three values of the thickness of the elastic lithsphere (h).

The physical parameters assumed for the elastic lithosphere

are given in the text. This plot shows that the signals Go

and GL for wavelengths below a certain value will be largely

damped out. This wavelength cut-off depends strongly on the

thickness of the elastic lithosphere.

Figure 2.15. These plots show the effect on the total model

gravity signal (Go + GL + GT) of flexural damping due to

elastic lithospheres of different thicknesses for several

times in the calculation of case 15. Plots (a), (b), (c) and

(d) correspond to times 5, 10, 15 and 25 m.y. into the model

clculations. The thickness of the elastic lithosphere (h)

used to calculate the filter F(k) is given at the top of each

plot.

Figure 2.16. This is a comparison of Seasat-derived gravity

anomalies and shipboard gravity and bathymetry data for the

same area from Haxby and Weissel (1984). It shows that

there is good correspondence between the filtered shipboard

data and the Seasat signals. Also the wavelength and

amplitude range of these anomalies is similar to that seen

in the model reults presented here. The position of the

shipboard data is given in Figure 2.17.



Figure 2.17. Location of the data for the shipboard gravity

data shown in Figure 2.16.

Figure 2.18. The water loaded thermal subsidence for test 20,

calculated using equation using Tc asdescribed in the text

is shown versus (t)1/ 2 along with the conductive case. A

value of the thermal expansion coefficient (a) of

3.8 x 10- 5 *K-1 was used to calculate the subsidence. Also

shown are data for depth of the North Pacific from Sclater

et al. (1972). The top line labeled AF is the best fitting

straight line through data on the depth and age of the

ocean floor of the African plate side of the South Atlantic

at about 450 S latitude and the line marked SA is for the

South American side of the mid-ocean ridge at about the

same latitude, both from Hayes (1983). This shows the

large variation in subsidence rates for different oceanic

plates.
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"C'est brutal, mais 9a marchel"

-Rend Panhard (commenting on the car gearbox he'd invented).

CHAPTER 3

PARAMETERIZATION OF THE COOLING OF A VARIABLE VISCOSITY FLUID

WITH APPLICATION TO THE LITHOSPHERE

3.1 Introduction

We now give a mathematical description of the behavior seen

in numerical experiments on the cooling of variable viscosity

fluids from above. The aim of this work is to derive general

relationships between the physical properties which control the

strength of convection in a variable viscosity fluid and the

rate of cooling of the conductive lid which forms when the

viscosity is strongly temperature dependent. Next, the cooling

rate for the conductive lid will be related to the geophysical

observables for the oceanic lithosphere which depend on the

thickness and temperature structure of the lithosphere. The

rate of subsidence, the heat flux, the offset of geoid height at

fracture zones, and small wavelength gravity and topographic

signals should vary with the viscosity and temperature of the

asthenosphere. The uncertainty in estimates of the viscosity

and the pressure and temperature dependence of viscosity as well

as other physical parameters makes it imperative to understand

the relationship between these values and the rate of cooling of
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the lithosphere. The predictions of the equations derived here

will be compared to the results of two-dimensional numerical

calculations which are described in chapter 2.

For this discussion results of the numerical calculations

which led us to consider the mathematical approach used here are

briefly explained. The next section demonstrates why the

cooling of the conductive lid overlying a convecting variable

viscosity fluid should behave in a simple manner in time.

First, it is shown that convective heat varies in a simple way

with a suitably defined Rayleigh number (Ra) for a variable

viscosity fluid as is predicted by boundary-layer theory. Next,

theory is developed which predicts that the heat flux variation

should have the same functional dependence on time as for a

similarity solution describing a moving boundary in a cooling

problem. The dependence of the heat flux variation on the

parameters which determine the viscosity is shown as well as the

dependence of the parameter X on these quantities. Finally, the

relationships between X and the predicted geophysical

observables of water loaded subsidence of the lithosphere and

local geoid anomaly is derived for the similarity problem.

3.2 Numerical Calculation Results

The rate of cooling of a fluid with viscosity which depends

on temperature and pressure will be affected by the vigor of the

convection in that fluid. When a box of temperature dependent

fluid is cooled from above a region may develop at the top of

that box where viscosities are so high as to preclude any

significant convective flow there. It is the temperatures
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within such a conductive lid and the rate of growth of the lid

which has been studied using numerical methods which are

described in detail in chapter 2. The same terminology and

variables are used in this chapter as were used there. The

set-up for these calculations is shown in Figure 2.2. For boxes

of various widths and depths the two-dimensional Navier-Stokes

equations of energy, mass and momentum conservation in a

variable viscosity, infinite Prandtl number fluid are studied

using numerical methods. The viscosity is taken to depend on

temperature and pressure through equation 2.1. The activation

energy (E) is the parameter which controls the temperature

dependence of viscosity and the effective activation volume (V*)

controls the pressure dependence. In the numerical cases these

two parameters were varied as well as the average value of the

viscosity which is defined by a reference viscosity (ref)

described in chapter 2. Table 3.1 gives results of the

numerical models which will be compared with the theory

developed in this chapter.

For our system to behave like a similarity solution over

some period of time the average temperature in the conductive

lid should be constant over that time interval. The average

temperature of the conductive lid at a given time (TL(t)) is

defined by equation 2.3 as the average temperature down to the

depth zL(t) where the horizontally averaged temperature is equal

to 90% of the average temperature in the convecting region

(Tcr)* Tcr is calculated by averaging the temperature below the

bottom of the thermal boundary layer which is discussed in the

next section. Figure 2.5 shows the variation of TL with time
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for several of the computer runs which have been done. In all

cases there is a decrease in TL from an initial value, which

corresponds to the value for purely conductive cooling, to a

lower and nearly constant value which depends on the case

considered. It is the constancy of the value in time for the

numerical calculations which leads to the consideration of a

similarity solution which also exhibits this behavior of having

a constant value of the average temperature in a conductively

cooling region.

3.3 Parameterization of variable viscosity cooling

Knowing that the temperature structure of the conductive lid

overlying a convecting region behaves in a fairly simple manner

we will try to understand why this should occur. Then a

parameterization of the rate of cooling and thickening of the

lid will be developed.

3.3.1 Rayleigh-Nusselt Relations for Variable Viscosity Flow

Two standard parameters are calculated through time for the

convecting regions. They are the Rayleigh number (Ra) and the

Nusselt number (Nu). The physically meaningful definition of

the Rayleigh number for this problem is:

p ga AT A3
Ra = (3.1)

K L

where p (density), g (acceleration of gravity) and a (thermal

expansion) are the same for all calculations. Table 2.1 gives

the values of these constants. Because this problem is

transient and viscosities vary across the convecting region the
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values of AT (temperature drop), I (length scale) and - (average

viscosity) must be defined in a self-consistent and physically

reasonable way. These values change with time in the

calculations.

The temperature difference across the convecting region is

AT. To calculate it we must define the point which separates

the convecting and conducting regions. This is done in terms of

the horizontal average of the vertical advective heat flux

(Qc(Z)):

c(z) b Wb w(x,z) T(x,z) dx (3.2)
Wb 0

In the boundary layer at the top of the convecting regions this

function varies approximately linearly with depth. Figure 3.1

shows Qc(z) at one time for case 20 and the relation to the

temperatures in the conductive lid and convecting region. In

the figures we show the nondimensional advective heat flux which

can be dimensionalized using the factor kAT/L, where k is

conductivity and AT and L are defined in chapter 2. For these

cases the value of this factor is 10.4 mW/m 2 . A straight line

is fit through two points of this curve at .2 Qcmax and .8 Qmax

as illustrated in Figure 3.2. The depth at which the value of

this linear function is zero is considered to be the top of the

boundary layer (zt). The bottom of the boundary layer (zb) is

defined as the point where this line intersects Qcmax (also in

Figure 3.2). To define the temperature difference for the

convecting region (AT) the horizontally averaged temperature

(Th(z)) is used. The difference between the top and bottom of

the boundary layer is AT = Th(zb) -Th(zt). To define a length
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scale we also use the vertical advective heat flux. Since we

want the length over which the flow is vigorous we define it as:

z Qc(z) dz
S= f (3.3)

0 cmax

The viscosity to be used in the calculation of the Rayleigh

number is an average weighted by the second invariant of the

strain rate tension (e), which was suggested by Parmentier

(1978). This is expressed as:

IHA 4(x,z) e2 (x,z) dx dz
= . (3.4)

ffA e2(x,z) dx dz

Finally, the Nusselt number is defined as the maximum

horizontally averaged vertical heat flux (Qcmax) divided by the

steady state conductive heat flux over the convecting region.

Nu= Qcmax (3.5)K AT

where the prime denotes the dimensional advective heat flux.

This is a slight variation on the normal definition of the

Nusselt number, which is defined for a steady state condition as

the ratio of the total heat flux in the presence of convection

to the heat flux across the same region when there is only

conductive transport of heat (McKenzie et al.,1974). The

convection here is quasi steady state, that is the heat flux is

changing slowly with time, but at a given time the convection is

in equilibrium with the heat flux it is transporting. This wiil

be shown below. The use of the maximum convective heat flux

(Qcmax), instead of the total heat flux, in the definition of

the Nusselt number is justified because at the level where the

convective heat flux is a maximum the conductive heat transport
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is negligible. Values of Qcmax and the Rayleigh number defined

by equation 3.1 given in Tables 3.2 to 3.11 for different times

into the calculation for the models discussed in chapter 2. In

all these cases there is a decrease in Qcmax and Ra with time

except at a time about 20 m.y. into case 15 when the entire

bottom portion of the contents of the box moved upward.

Theory predicts that for steady state convection the

relation between Ra and Nu should be given by

Nu = a Rab (3.6)

where b is a constant between 1/5 and 1/3 (Roberts, 1979)

for convective flow with between fixed boundaries. Figure 3.3

shows the relation between log(Nu) and log(Ra) for several

cases. For a range of Rayleigh numbers for each case considered

there is a linear relation between these quantities. The slope

of this plot is about 0.30 (= b in equation 3.6). The points

which do not lie on this line are all for times early in the

calculation, when the average lid temperature (TL) was varying.

For all these points the Nusselt number is lower than it would

be if it fell on the linear trend. This suggests that in this

period the lid temperature structure is changing in response to

the changing input of heat from the convecting region. Something

about the system is causing the variation of the convective heat

flux to vary with time in a way which does not allow an

equilibrium temperature structure to be established early in

most of the calculations. At any rate we will concentrate on the

region where TL is constant, which shall be referred to as the

interval of "transient equilibrium" of the lid with the



99

convecting region.

The heat flux out of the convecting region affects the rate

of cooling of the lid and the value of TL. The Nusselt number

describes that heat flux and we will investigate how it varies

with time during cooling. Since the Nusselt number depends on

the Rayleigh number (via equation 3.6) it is necessary to find

the parameter which is causing the variation of the Rayleigh

number with time. The area where the viscosity is minimum is

the area where the strain rate is greatest and therefore e is

highest as illustrated in Figure 3.4. Therefore, the average

viscosity (p) is weighted most heavily toward the minimum

viscosity. The minimum viscosity occurs at the base of the

thermal boundary layer where z = zb because this is the

shallowest depth at which the temperature of the convecting

region, which is nearly isothermal, is found. The viscosities

deeper than this are higher if the effective pressure dependence

of viscosity (V* in equation 2.1) is greater than zero. When

V* = 0 the convecting region is nearly isoviscous, except in the

narrow boundary layer. Figure 3.5 shows a plot of the ratio of

the average viscosity (-) defined by equation (3.4) versus the

viscosity at the base of the boundary layer ('(zb)) for two

numerical cooling calculations through time. In case 20

V* = 7.5 cm3/mole and in case 17 V* = 0. In both cases L was

linearly related to (zb), but the ratio of the relation is

different. The ratio was nearly 1.0 for case 17 (no pressure

dependence on viscosity) and about 5.0 for V* = 7.5 cm3/mole in

case 20. The values of these two quantities and their ratio is

also given in Tables 3.2 to 3.11 for all the numerical models
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and the ratio is always nearly constant for a given model. Thus

throughout a calculation the effective average viscosity (-) can

be related to i(zb) as:

p = clp(zb) (3.7)

where c I is a constant that is greater than one and depends on

V*. Three factors affect the value of the minimum viscosity

(p(zb)). One is the average viscosity determined by A in

equation (2.1). The other two factors are more interesting

because they change with time. One is the average temperature

of the convecting region (Tcr) which affects viscosity in

proportion to the magnitude of the activation energy (E) in

equation (2.1). The other is the depth to the bottom of the

thermal boundary layer (zb), since pressure (P) in equation

(2.1) depends on depth. The effect of variations in the average

temperature (Tcr) and in the depth (zb) on the Nusselt number

will be considered. Further, it will be shown that both effects

are consistent with the Nusselt number being proportional to

t - 1/ 2 over a significant range of time.

3.3.2 Cooling of a Fluid with Temperature Dependent Viscosity

If only the temperature dependence of the viscosity is

considered, then equation (2.1) reduces to:

(T) = A exp () (3.8)

where

E ' = E + PoV

where Po is a reference value of pressure.

Combining (3.8) with equations (3.6) and (3.7) gives a



101

relation between the Nusselt number and temperature:

Nu(T) = Al exp (- RT

where (3.9)

Al = a ( cp g A T13 ~
KClA

To approximate the dependence of Nu on temperature T can be

expanded around To in terms of T to give:

Nu ( T ) = Al [exp ( bRT )][exp (bERT) ]  (3.10)

The second exponential in equation (3.10) can be expanded around

a reference temperature of the convecting region (To ) to give:

Nu(T) = Nu(T o ) [1 + (T-To) bE'] (3.11)

where

Nu(T o ) = Al exp [RTbE]

This suggests that the heat flux out of the convecting region

varies approximately linearly with temperature. To illustrate

how good this approximation is, Figure 3.6 shows the variation

of Nu with T for equation (3.11) compared to equation (3.9).

Figure 3.7 shows that this relation is also linear for the

numerical calculations. The temperature of the convecting region

(Tcr) is simply related to the heat flux out of the region or Nu

by:

BTcrr- - c Nu (3.12)
3t 2

where c2 = kAT/(~pCpAZ). The depth extent of the convecting

region is defined as AZ . It is not the same as (1) defined by
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equation (3.3), but extends to the bottom of the box.

Differentiating (3.11) with T = Tcr and combining with (3.12)

gives:

8Nu ( t )
bt) - c 2 c 3Nu(t) (3.13)

bE'
where c3  = ( -bE Nu(To)

Integrating equation (3.13), assuming t = 0 when Nu(T) = Nu(To),

gives:

Nu ( t) = Nu(T o ) exp(-c 2c 3t) (3.14)

Expanding t around to in terms of t-1 / 2 gives:

Nu (t) = Nu(T,) [exp(-3c 2 c 3 t o )][exp(2c 2 c 3 t 3 /
2 tl/ 2 )] (3.15)

Then by expanding the exponential term which depends on t - 1 / 2

around to-1 /2 gives:

Nu ( t) = Nu(to) [1 + (t- 1 / 2 - to- 1 / 2 )to 3 / 2 2c 2 c 3] (3.16)

where
Nu(to) = Nu(To)e-c2c3tO

To show that equation (3.16) is a good approximation to equation

(3.14) for the range of parameters considered here values of

Nu(t)/Nu(to) were calculated using both formulas. Using b = 0.3

E' =4.18 x 105 J/mole, pcp = 3 x 10-6 J/m 3 oK, Nu(To) = 20,

AZ = 300 km, I = 150 km, AT = 100 *K, k = 3.2 J/m-s-OK and

T o = 1550 0 K it is found that the average error due to the

approximation was less than 2% over a period of 50 m.y. centered

on to = 50 m.y (see Figure 3.8). The heat flux into the

lithosphere at to with these parameters is about 1 HFU or

41 ergs/cm 2-s. Also, by choosing to = 50 m.y., the value of
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2c 2 c 3 t o is 1 so that the constant terms in equation (3.16) drop

out. Therefore, for a cooling convecting fluid with temperature

dependent viscosity given by equation (2.1) the Nusselt number can

be shown to vary with t - 1 / 2 .

3.3.3 Effect of Pressure Dependence of Viscosity

A similar analysis can be applied to the variation of the

Nusselt number with the depth to the isothermal convecting region.

The analysis is somewhat different because it will be assumed that

zb varies as t1/ 2 , which is the case for the numerical results,

and then it will be shown that this causes the Nusselt number to

vary as t - 1 / 2 .

Holding temperature constant so that viscosity at (z=zb)

only varies with zb equation (2.1) can be rewritten:

p(zb ) = A2 exp (
z b V ) (3.17)
R Tcr

where V' = V*pg and A2 = Aexp(E/RTcr). Since the Nusselt

number (Nu) depends on the average viscosity through equations

(3.1), (3.6) and (3.7) it will depend on Zb as:

Nu = a(Raoo)b [A2 c1 exp ( zbV) ]-b (3.18)
R Tcr

where Rao is the Rayleigh number defined with 4o replacing p in

equation (3.1). The boundary layer thickness changes little during

the numerical calculations compared to zL and it is small compared

to zL so zb can be nearly equal to zL. The dependence of zL on

time is assumed to be proportional to 2X(Kt)1/ 2 . Thus (3.18) can

be changed to give Nusselt number as a function of time:

Nu(t) = Nu(t=0) e-C4t 1 / 2
(3.19)
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with:
2bV*pgX (1) 1 / 2

c 4  RT14 " R To

because we have replaced zb with 2X(Kt)1/ 2. Expanding t1/ 2 around

to in terms of t-1 / 2 gives:

Nu(t) = Nu(t=O)[exp(-2c t 1/ 2 )][exp(cqtot-1/ 2 )]. (3.20)

Again expanding the second exponential in (3.20) around to gives:

Nu(t) = Nu(to)[l + (t - 1 / 2 - to-1/ 2 )C t o ] (3.21)

where 1/2
Nu(to) = Nu(t=0)e-4tl/2

As with the variation of Nusselt number with Tcr the variations

due to changes in zb are linear with t-1 / 2 .

3.3.4 Similarity solution for lid temperatures

It will now be shown that when the Nusselt number varies

linearly with t - 1 / 2 , as it does for this problem, then the

cooling of the conductive lid can be described by a similarity

solution. The treatment of this solution follows Carslaw and

Jaeger (1959) and the problem is similar to a moving boundary

problem where there is a change of phase which was first

treated by Stefan (1891). The heat flux at a depth zp(t), the

base of the lid, is taken to be the maximum convective heat

flux:

aT *K t Qcmax (3.22)

Zp

where K is the thermal conductivity. The position of the phase

boundary (zp) is assumed to move with time at a rate given by:
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Zp = 2 X (Kt)1/ 2  (3.23)

where K is the thermal diffusivity and X is a constant which

depends on the Nusselt number of the system at a given time. Xc

is the value of the constant which gives the rate of thickening

of the lid for the purely conductive case - with no convection.

The temperatures in the lid must satisfy the conductive heat

transport equation. Such a solution is:

T(z,t) = B erf(z/2(Kt)1/2)) (3.24)

Since at depth zp the temperature is Tp the constant B is

given by:
B = Tp/erf(k) (3.25)

Recall that the temperature at the base of the lid (Tp) is given

by Tcr - AT, where Tcr is the average temperature of the

convecting region and AT is the temperature drop across the

boundary layer. Tcr is nearly equal to the temperature at the

base of the boundary layer (T(zb)) so Tp is approximately equal

to the temperature at the top of the boundary layer (T(zt)).

Since Tcr varied slowly in the numerical cases considered here

and AT was nearly constant, we take Tp to be constant for this

problem. For the conductive case B equals Tcr and the value of

X which describes the motion of point zp can be calculated using

equation (2.25).

Combining equations 3.22 to 3.25 we find that the

convective heat flux indeed must vary linearly with t-1 /2 for

equation 3.23 to hold. This gives:

Qcmax = [ K T t-1/2 (3.26)max (n)1/2 erf ]
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Using the relationship between the Rayleigh number and the

Nusselt number (equation 3.6) we can relate the average

viscosity ( ) to the parameter X. This is:

p 1 T e-h2o = Rao [ 2 e -/b (3.27)
Po aAT(Kt)11 2 erfX

where Rao is the Rayleigh number give by equation (3.1) with

po replacing i . Figure 3.9 shows how changes in the average

viscosity will affect X. The parameter X is approximately

linearly related to the log of the average viscosity.

Next, we can show that for this problem the average

temperature of the lid is constant in time and depends on X.

The lid similarity temperature (Ts ) is defined as the

average temperature down to the change of phase (z = zp). It

is gotten by integrating down to Zp

z (t)
1 zp(t) Tp z

Ts = Z (erf erf - dz (3.28)
zp(t) 0 erf X 2(it)1 / 2

Equation (3.28) can be evaluated to give:

Ts = Tp [1 - ] (3.29)
X erf X (n) 1 /2

Thus Ts is a function only of X and Tp and does not vary with

time. This quantity is analogous to the average lid temperature

(TL) which was shown to be nearly constant for the numerical

calculations already described. In Figure 3.10 Ts defined by

equation (3.29) is plotted against X. This shows that Ts is a

nearly linear function of k.
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3.3.5 Comparisons between Theory and Numerical Results

The combined effect of variations in Tcr and zb is simple

to get since it is proper to multiply equations (3.16) and

(3.21) to give:

Nu(t) = [1 +(t-1/2-to'/ 2 )2c 2 c 3 to 3 /2 [1+(t-/ 2 to- /2 )c4 t

1 + (t-1/ 2 -t0
1 / 2 )(2c 2 c 3 to3/

2 +c 4 to) (3.30)

with
Nu(t o ) = Nu(t=0) e-(c2c3t0+c4t01/

2 )

By choosing to such that

S-C4 + C 4 
4

2 -8C 2 c 3
to = 4 c2 c3 )2 (3.31)

the terms in equation (3.30) which do not depend on t- 1 / 2 drop ,

out. It is interesting to note that for Qcmax assumed to be 2 HFU

at to = 36.7 m.y. the term 2c 2 c 3 to 3 / 2 is just over twice c to for

for V' = 7.5. In that case the change of Tcr is twice as

important as that of Zb in determining the dependence of Nu on

time. Figure 3.11 shows plots of Qcmax versus t - 1 / 2 for several

of the runs and it is clear that the trend is linear in the region

of "transient equilibrium". Also the plots show that a line can

be fit to the points which have slopes which are equal to the

product of Qcmax(t) x t - 1 / 2 . This is required for equation (3.26)

to hold.

To compare the predictions of this theory against the results

of the numerical calculations we must calculate the parameters c2,

c 3 and cq and be able to relate some combination of them to some

features of the model results. One way to do this is to combine

equations (3.15) and (3.20) and assume that the ratio of the

Nusselt number (Nu) to Qcmax is constant through a given numerical
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calculation. This gives us:

Qcmax(t) exp(-C4to1/2 c + C4to1/2)t (3.32)
Qcmax(t=0) exp( 2  (c2c3 + 2 (3.32)

where to is the time around which we make the expansions.

On a plot of In(Qcmax) versus time the slope should be given

by -(c 2 c 3 + c 4 /2to1/ 2 ) and the y-intercept will be In(Qcmax(t=0))-

c 4 /2to 1 / 2 . Over the range of the "transient equilibrium" there

is a range of times we could choose for to, but this affects the

slope of the In(Qcmax) plot for equation (3.35) by only about 10%.

Figure 3.12 shows that the plots of In(Qcmax) versus time is

indeed linear over a large range of time. Table 3.1 gives the

values of the slopes from these plots along with the predicted

values of the slope based on the calculated values of c2, c3 and

c 4 . In the estimation of these parameters no effort was made to

adjust for the differences in the depth extent of the efficient

cooling by convection (AZ) , which would affect the value of c 2,

nor was the value of to allowed to vary from case to case. Still

for only runs 17 and 23 were the predicted slopes more than 10%

different than the measured values. For case 17 this error could

be due in part to the difficulty in calculating Qcmax since the

flow broke into two cells for that run. In test 23 either the

length scale for cooling (AZ) is smaller than estimated or the

Rayleigh number is so low near the end of the run that the log

linear Rayleigh-Nusselt relation was no longer valid.

To determine X in terms of the coefficients of viscosity -A,

E and V*, equation (3.30) can be combined with equation (3.27) to

give: ge k T e-X2

Qcmax(to) (2c2c3 3/2+ct) = () (3.33)
(nK)1/2 erfx
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with to given by equation (3.31). This relation shows that X does

not depend on time for our theoretical development, but only on

the physical parameters of the system. It is more difficult to

use this relation to compare predictions to the numerical results,

because of the large number of terms, than it is using equation

(3.32). However, in the numerical calculations the variation of X

with A, E and V* agrees well with the predictions of equation

(3.33). The value of X for these calculations is estimated by

calculating TL using equation (2.3) and relating it to X through

equation (3.29) (assuming TL = Ts). The effect on X of the change

in the average viscosity is large compared to the effect of the

parameters which depend on the temperature and pressure dependence

of viscosity. Therefore, the most useful relation is the one

between X and [ which is implied by equation (3.33) but also given

by equation (3.27).

We did not explicitly consider a parameterization of the

effects of non-Newtonian viscosity. This was omitted for two

reasons. First, stress dependence added to temperature dependence

should affect the long term evolution of the convecting system in

a relatively simple way. As shown by our studies of stress

dependent viscosity and also shown by the more extensive study of

this subject by Christensen (1983) the effect is to increase the

thickness and temperature drop (AT) across the boundary layer.

This effect will change the parameter (X) by increasing the

Rayleigh number given by equation (3.1). This effect will scale

like a change in the average viscosity (p). If the size of the

increase in AT is known then equation (3.33) and Figure 3.9 can

be used to estimate the effect on X. The second reason for
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neglecting stress dependent rheology is that the stresses depend

on the wavelength and Rayleigh number of the convective flow.

For the small wavelengths and moderate Rayleigh numbers used in

our model calculation the effect of stress should not be large if

it is appropriate to use a cut-off stress below which the rheology

in stress independent as is done in Fleitout and Yuen (1984).

3.4 Dependence of Observables on the Stefan Parameter (X)

In the preceding sections a mathematical description of the

temperatures in a cooling lid over a variable viscosity

convecting region was developed. The dependence of the only

parameter needed to describe the system (X) on average viscosity

(which depends on parameter A), the temperature dependence of

viscosity (E) and the pressure dependence of viscosity (V*) was

shown. Now, the variation of the geophysical observables of

lithospheric subsidence, local isostatic geoid height

variations, and heat flow will be discussed in terms of their

variation with %.

A word should be said about the assumptions used to relate

the simple one dimensional mathematical model presented here to

the case of the three-dimensional mantle of the Earth. As has

been shown the one-dimensional model matches the horizontally

averaged temperature of the two-dimensional numerical

calculations quite well. Thus, this theory should be good when

there is no other convection than that driven by cooling from

above. Even if that flow is three-dimensional in nature this

should be true since the same kind of Rayleigh number-Nusselt
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number relations (equation 3.6) should hold for a simple

three-dimensional flow driven by cooling from above. There are

special problems in applying these results to the cooling of the

oceanic lithosphere. The main problem is that there is a large

scale of flow associated with the motion of the lithospheric

plates. This flow should be perpendicular to the flow

calculated in the numerical runs considered here. Therefore,

these results are applicable to the cooling of the oceanic

lithosphere only to the extent that there are no vertical

gradients of velocity in the direction of the large scale flow

(i.e., out of the page in Figure 2.2). The depth range for

which this is a good assumption depends on the form of the large

scale flow.

To the extent that the subsidence of the lithosphere is a

result of its cooling and not of the cooling of the astheno-

sphere there is a relationship between X and subsidence. The

cooling of the asthenosphere, or the changes in Tcr, should not

affect the subsidence because the viscosities in the

asthenosphere are so low that significant horizontal gradients

of pressure cannot be maintained there. With this assumption in

mind the subsidence with time (s(t)) is given by:

s(t) = I [Tm - (P) erf ( z )]dz (3.34)
0 erfX 2(Kt)1/2

which reduces to

2X(Kt)1/ 2 apm (1-e' 2
s(t) = {Tm-Tp[ /2erf]} (3.35)

Pm w h(s)/2rfh
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where Pm and pw are the densities of mantle and water,

respectively To first order s(t) varies linearly with X. Figure

(3.13) is a plot of non-dimensional subsidence versus X for

equation (3.35). The plot is nearly linear with a slope of

about 0.7. Thus a decrease in X of 10% should cause a decrease

in subsidence at a given time by 7%. Therefore we can

approximate the dependence of subsidence on physical parameters

as XaTm(Kt)1/2.

For estimation of "local" isostatic geoid height anomalies

(H(t)) as a function of time and of X it will also be assumed

that only temperature variations in the conductive lid affect

this value. The anomaly is termed local because the primary

interest is in offset of geoid height across oceanic fracture

zones. These are short wavelength features where the above

assumption should be valid. Following the definition of

the isostatic geoid height in Haxby ahd Turcotte (1978) the

relationship between X, Tp and H(t) can be written as:

0
H(t) = 2fG { j z (Pm-Pw) dz

-s(t)

2X(Kt)1/ 2  T z
+ f pmaz[Tm- erf )erf2(t )]dz } (3.36)

The integrals can be evaluated to give:

-2nG apm Tp(1-e
H(t) _ -2,G (2X2 apmKt) (PmP [Tm + T- T] 2

g (w) )1/ 2erfX

1 e - 1 2

+ Tm + Tp[ - 1 - ]} (3.37)
2X2 X(1)1/ 2 erfX
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The local isostatic geoid height is seen to vary nearly linearly

with X2 and linearly with time (t). Figure 3.14 is a plot of

H(t) given by equation (3.37) versus X2 . For a change in X2 of

20% the change in AN(t) is about 16% for the range of values of

X seen in the numerical calculations. Thus, H(t) is

approximately proportional to X2aTmKt.

The relationship between the heat flux at the surface of the

lithosphere (Qs(t)) and the physical parameters of the cooling

system is easy to derive for the time period when the equations

of the Stefan problem apply. Differentiating equation (3.24) and

setting z = 0. gives:

erf( c )  K p c
Qs(t) = Tm ( erf(X) K t )1/2 (3.38)

where Xc is the value of X for the purely conductive case and

we have used the fact that Tm = Tp/erf(Xc). Since erf(X) is

nearly linearly related to X for the range of variations in the

Stefan parameter considered here we may state that Qs(t) is

approximately proportional to (Tm/X)(K p cp/t)1/2.

3.5 Conclusions

In this chapter we have given derivations which give some

theoretical understanding to the process of the cooling of a

variable viscosity fluid. Such a cooling process, where the

lower viscosity portions of the fluid is driven to convect by the

cooling from above, may occur in the Earth. The cooling fluid is

seperated into two regions which behave differently: the

conductive lid where heat is transported completely by conduction

and a convecting region where the dominant mode of heat transfer
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is by convection. The two regions are coupled because there must

be a balance between the heat flux out of the convecting region

and that which is conductively transported at the base of the

lid. The rate of convective transport of heat controls the rate

of thickening of the lid as the system cools. Because the rate

of reduction in the convective heat transfer with time behaves in

a simple way, the conductive lid thickness and its temperature

structure can behave in a simple regular fashion in time. When

this occurs we say that there is a "transient equilibrium"

between the lid and the convecting region

A simple mathmatical description was given for the regular

features seen in numerical experiments on cooling fluids with

different viscosity parameters including the terms in a viscosity

relation which control the temperature and pressure dependence of

viscosity. Several approximations were used to show that simple

equations can be used to describe the lid temperatures with time

for this problem. Only one parameter was needed to describe the

cooling of the lid and it was explicitly shown how to relate the

viscosity and other parameters of the convecting system to that

parameter (X). The predictions of the theory developed here were

shown to be in good agreement with the numerical results.

Finally, the relationship between several geophysical observables

which depend on the thermal structure of the lithosphere and the

parameter (X) is derived. In chapter 2 the data on subsidence of

the oceans and the offset of geoid anomalies at fracture zones is

discussed in relation to the possible values of (X).

The parameterization derived here allows one to estimate the

effect of changes in model parameters on the geophysically
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relavent results of the models without doing costly computer

models. The results of this chapter can be used to relate the

values of one parameter (X) to estimates of viscosity or of

viscosity variations between different areas. This is then used

to describe the change in lithospheric subsidence, isostatic

geoid anomalies and heat flow produced by small-scale

convection.



12 110 7.5 300 .69 .80 1.85 2.46x10 - 3  3.12x10- 31 -7.90 -7.67 -2.9

14 110 7.5 300 .80 .93 1.12 2.46 3.63 -6.62 -6.39 -3.5

15 110 7.5 300 .75 .87 1.35 2.46 3.44 I-6.10 -6.76 +10.8

17 102 0 300 .64 .74 2.11 2.28 0 -6.99 -4.81 -31.2

18 80 7.5 300 .67 .78 1.95 1.93 3.04 I-6.21 -6.80 +9.6

19 110 7.5 300 .68 .79

20 110 7.5 300 .70 .81 1.85 2.46 3.16 -8.48 -7.71 -9.1

21 102 0 300

22 110 7.5 300 .69 .80 1.95 2.46 3.12

23 I 110 7.5 200 .72 .84 1.25 3.68 3.28 -12.1 -7.88 -34.3
I I I I I I I I I I I I I

Table 3.1 The first four columns give the model case numbers and the parameters which define them. Next, the
ratio of the parameter X defined by equation 3.23 for the nodel case and the same parameter for the conductive
case which is 1.16 for the way we define it. Qcmax is the value of the maximum horizontally averaged heat flux
at 64 m.y. nodel time. The values of c2, c 3 and c4 are defined in the text and are calculated useing the model
parameters given in the table. The cxmbinations of these parameters are those that go into equation 3.32 and are
used to get the predicted value of dln(Qc)/dt. The graphical value of dln(Qc)/dt is gotten from figure 3.12.



Table 3.2

TEST 12

TIME a Azb ATb TL P(zb)
Qcmax Ra

(m.y.) (km) (km) (oK) (oK) (Pa-s) (Pa-s) P(zb)

10.0 2.32 3.30 x10 s  169.3 19.1 88.2 675.0 0.314x1018 0.129x1019 4.12

25.9 2.20 2.38 x10 s  191.5 20.9 106.1 657.1 0.593x1018 0.313x1019 5.29

35.9 2.17 1.71 x105 190.9 23.5 109.5 651.6 0.782x1018 0.445x1019 5.69

63.8 1.74 4.91 x104 170.8 24.5 98.0 644.7 0.183x1019 0.995x1019 5.44

83.8 1.48 2.37 x104 160.5 28.0 99.7 646.0 0.324x1019 0.174x1020 5.36

103.9 1.27 1.20 x104 154.6 29.4 91.5 647.5 0.547x1019 0.281x10 20  5.15

Table 3.2 -3.11 Calculated values of model parameters defined in the text at given times after

the start of the numerical runs (TIME in m.y.). The maximum horizontally averagerd advective

heat flux is Qcmax; the Rayleigh number is Ra; the convective length scale is X; the thickness of

the boundary layer is (Azb); the temperature difference acros the boundary layer is ATb; the

average temperature in the condictive lid is TL; the horizontally averaged viscosity

at the base of the boundary layer is p(zb); the effective average viscosity is (-i).



Table 3.3

TEST 14

TIME a Azb ATb TL  P(zb)

(m.y.) Qcmax Ra (km) (km) (OK) (oK) (Pa-s) (Pa-s) itZbf

15.0 1.24 0.619x104 73.6 28.4 77.8 694.6 0.206x1019 0.500x1019 2.42

25.0 1.16 0.154x10 s  129.7 23.4 71.1 684.3 0.266x1019 0.101x1020 3.78

35.0 1.25 0.126x105 139.0 22.3 71.2 675.5 0.369x1019 0.151x1020 4.10

45.0 1.24 0.124x105 147.8 26.3 84.1 669.0 0.504x1019 0.218x1020 4.33

55.0 1.16 0.106x105 152.1 29.4 88.8 665.6 0.668x1019 0.295x1020 4.42

65.0 1.10 0.828x104 153.0 30.5 88.3 663.7 0.869x1019 0.382x1020 4.39

75.1 1.04 0.664x104 152.2 33.1 89.5 662.8 0.112x1020 0.476x1020 4.26

85.0 0.98 0.516x104 151.2 33.7 86.4 662.5 0.141x1020 0.579x1020 4.11

95.1 0.90 0.403x104 149.0 34.4 84.6 662.8 0.177x1020 0.694x1020 3.92

105.0 0.84 0.311x104 145.7 35.1 82.4 662.5 0.220x1020 0.819x1020 3.72



Table 3.4

TEST 15

1 (zb)

(Pa-s)

TIME

(m.y.) (Pa-s)
Qcnax

0.07

7.43

4.84

2.05

2.24

2.00

6.08

2.90

1.94

2.85

1.49

2.02

1.56

1.30

1.27

1.20

1.16

1.11

S(Zb)

2.0

4.0

5.0

10.0

15.0

17.0

20.0

23.0

25.1

30.1

35.1

40.1

5.01

60.1

70.1

80.1

90.1

100.1

Ra

~4x103

i76x05

P93x106

85x106

.77x0 6

182x106

726x106

)34xl06

70x106

83xl05

09x106

!28xl06

54x106

00xl06

53xl05

34xl05

116x05

.35xl05

0.523x1018

0.586xl018

0. 788xl018

0.121x10 1 9

0.172x1019

0.206x101 9

0.295x101 9

0.263x1019

0.297x019

0.296x1019

0. 378x10 1 9

0.469xl019

0.598x1019

0.778x1019

0.103x1020

0.132x1020

0.168x1020

0.211x1020

£

(km)

17.0

69.3

85.7

135.7

169.3

208.2

166.4

206.0

177.7

143.2

201.3

200.1

186.6

183.9

173.7

173.4

166.7

166.4

Azb

(km)

10.0

24.1

149.9

16.7

21.1

23.6

157.9

32.3

18.1

23.5

18.1

33.8

36.0

31.1

35.9

35.6

36.7

37.0

0.5

0.5

0.7

0.1

0.2

0.4

0.7

0.3

0.1

0.8

0.2

0.2

0.1

0.1

0.4

0.3

0.2
0.

ATb

(*K)

62.7

101.7

993.7

89.2

98.4

109.8

465.3

100.5

90.2

89.0

97.2

133.6

141.7

125.7

128.4

122.6

114.9

107.4

TL
(OK)

701.9

679.5

671.8

668.6

665.5

665.1

664.7

661.5

660.4

655.8

652.9

655.8

656.1

656.4

656.9

656.8

656.2

655.9

1.68

1.97

0.49

3.74

4.15

4.55

0.79

5.32

5.23

4.44

3.79

5.01

4.87

4.63

4.78

4.86

4.98

5.10

0.310x1018

0.298x1018

0.160x1019

0.323x1018

0.415x1018

0.452x1018

0.375x1019

0.494x1018

0.569x1018

0.667x1018

0.999x1018

0.936x1018

0.123x1019

0.168xl01 9

0.216x1019

0.272xl019

0. 338x101 9

0.413x1019



Table 3.5

TEST 17

TIME k Azb ATb TL P(zb)

(m.y.) Qcmax Ra (km) (km) (OK) (OK) (Pa-s) (Pa-s) ITZb)

15.0 1.36 0.890x106 199.2 22.2 74.0 682.5 0.671x1018 0.657x1018 0.98

25.0 1.38 0.152x107 191.7 37.5 158.0 672.4 0.716x1018 0.734x1018 1.02

35.0 2.13 0.304x106 149.9 17.4 82.2 652.4 0.104x10 19  0.910x1018 0.87

45.1 2.22 0.423x106 190.1 14.2 64.9 644.1 0.136x1019 0.105x10 19  0.77

55.0 2.13 0.318x106 177.4 15.6 71.6 638.5 0.168x1019 0.126x1019 0.75

65.1 2.05 0.338x106 178.8 19.8 89.2 635.9 0.196x1019 0.151x1019 0.77

75.1 1.90 0.284x106 175.8 21.9 93.4 635.1 0.229x1019 0.178x1019 0.78

85.1 1.76 0.218x106 171.7 23.2 90.7 635.7 0.265x1019 0.210x1019 0.79

95.1 1.63 0.176x106 169.9 24.0 88.1 637.3 0.305x1019 0.245x1019 0.80



Table 3.6

TEST 18

TIME x Azb ATb TL  P(zb)--
Qcmax Ra 111

(m.y.) (km) (km) (oK) (OK) (Pa-s) (Pa-s) TFZb)

10.0 1.90 0.438x10 s  128.7 22.7 100.0 678.5 0.133x1019 0.486x1019 3.65

20.0 2.25 0.326x10 s  138.8 21.8 110.3 666.5 0.197x1019 0.906x1019 4.60

30.0 2.11 0.302x105 152.8 22.7 116.9 656.7 0.269x1019 0.138x1020 5.12

40.0 2.10 0.233x10 s  155.0 24.4 119.2 652.4 0.361x1019 0.190x1020 5.27

50.1 2.02 0.174x10 s  158.1 25.0 114.9 649.0 0.480x1019 0.260x1020 5.42

60.1 1.93 0.134x10 s  159.7 25.8 112.7 646.1 0.632x1019 0.342x1020 5.42

70.1 1.82 0.112x105 160.5 28.1 118.8 644.5 0.816x1019 0.349x1020 5.37

80.1 1.72 0.890x104 159.6 29.7 119.8 644.3 0.104x1020 0.547x1020 5.25

90.1 1.60 0.690x 104 157.3 31.0 118.7 644.7 0.133x1020 0.669x1020 5.05

100.1 1.48 0.527x104 153.6 32.2 117.1 645.8 0.168x1020 0.804x1020 4.80



Table 3.7

TEST 19

TIME a Azb ATb TL "(zb)

(m.y.) Qcmax Ra (km) (km) (OK) (OK) (Pa-s) (Pa-s) TTZb

5.0 3.18 0.462x106 164.2 35.6 112.2 683.4 0.332x1018 0.107x1019 3.23

10.0 1.71 0.339x106 171.1 19.0 91.2 673.6 0.331x1018 0.135x1019 4.07

20.0 1.94 0.217x106 173.6 19.3 77.1 667.3 0.468x1018 0.186x1019 3.97

30.0 1.84 0.140x106 163.7 20.5 81.1 661.6 0.644x1018 0.253x1019 3.93

40.0 1.94 0.848x105 158.0 18.9 77.0 655.6 0.880x1018 0.358x1019 4.07

50.1 1.90 0.799x105 162.1 24.1 97.7 649.8 0.122x1019 0.521x1019 4.26

70.1 1.76 0.592x105 175.9 29.8 120.0 644.0 0.230x1019 0.110x1020 4.80

80.1 1.66 0.430x105 177.7 30.5 114.3 643.7 0.299x1019 0.149x1020 4.99

90.1 1.55 0.300x10 s  174.8 30.7 107.2 643.8 0.378x1019 0.191x1020 5.04

100.1 1.41 0.199x10 s 167.1 31.0 101.6 644.6 0.475x1019 0.238x1020 5.01



Table 3.8

TEST 20

TIME x Azb ATb TL P(zb)
(m.y.) Qcmax Ra (km) (km) (oK) (oK) (Pa-s) (Pa-s) u b)

7.1 7.33 0.513x105 59.0 53.8 144.9 697.4 0.402x1018 0.580x1018 1.44

10.1 2.04 0.252x106 142.4 16.5 73.0 683.0 0.238x1018 0.834x1018 3.51

14.2 2.24 0.323x106 163.6 17.9 85.8 674.7 0.293x1018 0.116x1019 3.97

15.1 2.21 0.329x106 166.4 18.1 88.8 672.5 0.305x1018 0.124x1019 4.08

25.1 2.34 0.270x106 179.5 20.4 105.3 660.6 0.461x1018 0.226x1019 4.89

35.1 2.24 0.219x106 189.7 21.8 110.4 653.8 0.651x1018 0.344x1019 5.28

45.1 2.14 0.151x 106 189.4 22.8 107.2 649.4 0.867x1018 0.481x1019 5.55

61.5 1.88 0.701x105 179.0 22.7 97.2 645.9 0.143x1019 0.795x1019 5.57

71.5 1.71 0.459x10s  170.6 24.2 96.4 645.8 0.189x1019 0.104x1020 5.52

81.5 1.57 0.308x105 163.8 25.5 94.2 645.9 0.247x1019 0.134x1020 5.43

91.5 1.45 0.222x105 158.7 27.3 95.2 646.7 0.322x1019 0.171x1020 5.32

101.5 1.33 0.150x105 153.7 27.4 89.6 647.5 0.421x1019 0.217x1020 5.15



Table 3.9

TEST 21

TIME a Azb ATb TL M(zb)

(m.y.) Qcmax Ra (km) (km) (oK) (oK) (Pa-s) (Pa-s) VTbTZ

6.0 0.21 0.206x108 263.9 158.2 675.0 585.0 0.551x1018 0.603x1018 1.09

11.8 1.18 0.551x106 169.8 20.7 69.3 692.6 0.605x1018 0.616x1018 1.02

16.4 1.31 0.119x107 226.7 19.9 67.2 686.3 0.648x1018 0.655x1018 1.01

17.8 1.46 0.119x107 224.0 22.9 70.2 684.6 0.647x1018 0.661x1018 1.02

31.2 5.45 0.526x105 77.2 37.6 105.2 668.6 0.821x1018 0.921x1018 1.12

41.3 2.73 0.525x107 172.7 238.0 917.7 587.2 0.842x1018 0.900x1018 1.07



Table 3.10

TEST 22

TIME Azb  ATb TL P(zb) -
Qcmax Ra 1

(m.y.) (km) (km) (oK) (OK) (Pa-s) (Pa-s) (Zb)

20.0 2.77 0.125x106 133.4 14.5 82.7 656.1 0.444x1018 0.157x1019 3.54

30.0 2.57 0.913x10 s  141.6 15.6 83.8 650.1 0.717x1018 0.260x1019 3.63

40.0 2.31 0.683x10 s  148.2 16.3 82.1 647.0 0.110x1019 0.391x1019 3.55

50.0 2.15 0.469x105 147.0 17.6 81.6 645.8 0.157x1019 0.553x1019 3.52

60.0 2.00 0.317x10 s  144.4 18.3 79.2 645.0 0.223x1019 0.754x1019 3.38

70.0 1.83 0.235x10 s  141.1 20.4 84.2 644.1 0.316x1019 0.101x10 20  3.19

80.0 1.64 0.171x10 s  137.2 22.7 86.8 644.8 0.437x1019 0.131x1020 3.00

90.0 1.45 0.119x10 s  132.6 24.1 84.9 646.4 0.599x1019 0.166x1020 2.77

100.0 1.26 0.812x104 127.4 25.3 81.2 648.7 0.816x1019 0.207x1020 2.53

110.0 1.08 0.559x104 121.9 26.4 78.1 651.3 0.110x1020 0.253x1020 2.30

120.0 0.91 0.390x104 116.9 27.7 75.5 654.3 0.147x1020 0.306x1020 2.08



Table 3.11

TEST 23

TIME . Azb ATb TL P(zb) -
Qcmax Ra 1 p

(m.y.) (km) (km) (oK) (oK) (Pa-s) (Pa-s) (Zb)

15.0 1.77 0.188x106 143.0 15.7 76.0 669.1 0.322x1018 0.118x10 19  3.66

34.6 1.47 0.620x105 129.1 17.8 86.0 654.8 0.816x1018 0.299x1019 3.66

44.7 1.38 0.377x105 127.4 18.4 79.4 652.5 0.118x1018 0.435x1019 3.67

54.7 1.33 0.211x105 125.1 16.2 68.2 649.7 0.180x1019 0.633x1019 3.51

64.7 1.20 0.163x105 122.2 20.6 81.9 647.5 0.261x1019 0.917x1019 3.52

74.7 1.06 0.106x105 116.9 23.2 85.0 647.6 0.376x1019 0.128x1020 3.41

84.7 0.93 0.708x104 111.8 26.3 87.9 648.8 0.525x1019 0.174x1020 3.31

94.7 0.83 0.471x104 107.7 27.6 86.6 651.0 0.736x1019 0.230x1020 3.12

104.7 0.73 0.297x104 103.6 27.7 79.1 652.8 0.102x1020 0.297x1020 2.91

114.7 0.64 0.204x104 100.0 28.6 77.1 654.7 0.139x1020 0.377x1020 2.72

124.7 0.56 0.145x104 96.5 31.1 77.1 657.6 0.187x1020 0.471x1020 2.51
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FIGURE CAPTIONS

Figure 3.1 An example of the variation of the convective heat

flux, (Qc) defined by equation (3.2), as it varies with

depth is shown for a time 20 m.y. into the calculation for

Test 20 along with the horizontally averaged temperature

and the difference betwen that temperature (Th) and the

temperature profile resulting from purely conductive

cooling (Td)-

Figure 3.2 This is an illustration of the method of estimation

of the boundary layer thickness (Az) and the position of

the top (zt) and bottom (zb) of the boundary layer form the

variation of the convective heat flux (Qc). Since the Qc is

nearly a linear function of depth in the range where it

chances most rapidly a straight line can be fit through

that region. The two points which are somewhat arbritrarily

chosen to define that line are the points where Qc equals

20% and 80% of Qcmax. Varying those arbitrary values does

not greatly alter the resulting estimate of the boundary

layer position, but a consistent way of doing the estimate

must be chosen. The depth at which this line has a value of

zero for Qc is defined as zt and where it equals Qcmax is

the bottom (zb).

Figure 3.3 A plot of log(Nu) versus log(Ra) where the nusselt

number (Nu) is given by equation 3.5 and the Rayleigh

number (Ra) is given by equation 3.1 and other definitions

in the text is shown for several cases. The values of Ra
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and Nu are listed for all cases in tables 2-11. All of the

cases can be fit with straight lines with slopes, which

equals b in equation 3.6, between about 0.2 and 0.3. The

offset of the points for Test 18 relative to the other

cases indicate that Nu and Ra may not be perfectly defined

for all different possible viscosity parameters, but given

the large variation in parameters used in the calculations

the correspondence of the results is remarkable.

Figure 3.4 Plots of the log of the horizontal averages of the

viscosity (ph) and the second invariant of the strain rate

tensor (e2h) are shown against depth. Two cases are

illustrated. For case 20, where V* = 7.5 cm3/mole, the

minimum in viscosity is at the same depth as the maximum in

the strain rate. But, for case 17, where V* = 0.0, both the

viscosity and the strain rate were nearly constant with

depth.

Figure 3.5 The time variation of the ratio of the average

viscosity, ( i) as defined by equation 3.4 and the

horizontally averaged viscosity at the base of the boundary

layer (P(zb)) is shown for the two cases illustrated in

figure 3.8. Over the time of the calculations the ratio is

nearly constant.

Figure 3.6 The solid line is a plot of Nu/A 1 versus

temperature (T) given by equation 3.20. Here E' = 100

kcal/mole, b = 0.25 and To = 1523 *K. There is a change in

T of 100 OK for this plot. The dashed line is the best
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fitting straight line approximation to this relation over

the same range and is given by equation (3.22).

Figure 3.7 The variation of Nu with changing temperature of

the convecting region (Tcr) is shown for two of the

numerical cases considered here by plotting Nu against

(Tcr-To). The trends are clearly linear.

Figure 3.8 This shows the dependence of Nu(t)/Nu(to ) for

equation 3.14 and the linear approximation to that relation

given by equation 3.16 on (t)- 1/ 2 . The two plots were made

to coincide at time (t = 50 m.y.), which correspondes to

(t) - 1 / 2 = 0.141. The time range for the plots is 50 m.y.

Figure 3.9. The variation of (X/Xc) is plotted versus (i/ 0)'=

R 1 1 1 Tp 1i/b for equation 3.22.
1Lo Rao aAT(nKt) 1 /2

A decrease in /po by a factor of 10 leads to decrease in

X/Xc of about 0.15 in the center range of the values

plotted.

Figure 3.10 The variation of Ts , the average lid temperature

for the similarity solution given by equation (3.27),

versus the parameter (X) is shown. The relationship is

nearly linear.

Figure 3.11 For two cases the variations of the Qcmax is

plotted versus (time)- 1 /2 . The relation is linear in

the same time interval when TL is relatively constant
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(see Figure 2.5). Test 20 has an average viscosity which

is a factor of 5 lower than case 14.

Figure 3.12 The natural log of Qcmax is shown plotted against

time for several of the numerical calculations of chapter

2. Table 3.1 gives values of the slope of the plots which

can be related to the model parameters by equation 3.32.

Part (a) shows this plot for cases 12,15,19,22 and 23 while

(b) shows cases 14,17,18 and 20.

Figure 3.13 The plots show subsidence variation with (X/Xc)

for two values of Xc. S'(t) is defined as

S(t)(pm-pw)/2(Kt)1 /2apm, where S(t) is given by equation

3.35.

Figure 3.14 The variation of the local isostatic geoid anomaly

with (X/Xc)2 is shown. H'(t) is defined as H(t)g/2nGapmKt

where H(t) is given by equation 3.37.
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"The little rift between the sexes is astonishingly widened by
simply teaching one set of catch words to the girls and one to
the boys."

- Robert Louis Stevenson,"Virginbus Puerisques."

CHAPTER 4

EFFECTS OF CONVECTION INDUCED BY LATERAL TEMPERATURE VARIATIONS

ON PASSIVE RIFTS

4.1 Introduction

Rifting is the pulling apart of the crust and lithosphere.

Sleep (1971) showed that conductive cooling of the thinned

lithosphere at a continental margin was consistent with the

long term subsidence of the Atlantic margin. The possibility

that the thinning of the lithosphere is caused by stresses

transmitted horizontally, or passively rifted, has been

suggested by Salveson (1978) and McKenzie (1978). A thermal

model based on passive rifting, called the uniform stretching

or the extension model has been suggested by McKenzie (1978) to

explain the subsidence of rifts. Analysis of data from

intracratonal basins (Sclater et al., 1980) and deep well holes

on the Atlantic margin (Royden and Keen, 1980; Keen and

Barrett, 1981) has shown that large corrections need to be made

to the uniform extension model in many cases where the data on

subsidence is complete to the earliest stages of sedimentation.

There are also data that indicate that uplift of the flanks of

rifts accompanies rifting and that this uplift extends well

beyond the area where rifting has thinned the crust (Hellinger
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and Sclater,1984). Uplift of the areas adjacent to rifted

crust is not predicted by the stretching model. Convection

which is induced by the large horizontal temperature gradients

in the mantle where the lithosphere has been thinned by rifting

may explain some of these features.

The convection calculations described in this chapter are

conceptually the simplest of those considered in this thesis,

but the execution of this set of numerical experiments is the

most complicated. The purpose of this study is to determine if

convection beneath rifts can affect the rate of subsidence as a

function of position in the rift and if the uplift of the rift

flanks can be related to this. The technical difficulties

inherent in this study include determination of a reasonable

rift temperature structure and setting up a meaningful way to

compare the results of these calculations to previous models.

The numerical methods used are an extension of the methods used

in chapter 2 to a case where the boundary between the

convecting region and the conductive lid is not flat. This

required a new method to handle curved boundaries. A major

difference between this problem and those considered in the

chapers 2,3 and 5 is that convective flow will occur regardless

of the viscosity parameters assumed, since the flow is driven

by the assumed temperature structure of the rift. The rate of

flow, and its effect on the cooling of the rift and the uplift

of the flanks, does depend on the viscosity parameters and on

whether the viscosity is assumed to be Newtonian or stress

dependent.
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In this chapter data on the subsidence of rifts and the

uplift of their flanks will be reviewed. Next, we will discuss

the justification for a mechanically simple model of rifting

caused by tectonic stresses, outline the simple thermal model,

called the extensional or stretching model (McKenzie, 1978),

which is based on it. We will review the subsidence data for

several areas which indicates limitations to the model. Then we

describe numerical calculations on the effect of mantle flow

induced by large horizontal temperature gradients in the mantle

produced by passive rifting. The initial temperature structure

assumed in this work is similar to that used in the stretching

model. Finally, we will discuss how the convective flow

modifies the thickness and subsidence of the lithosphere as a

function of time.

4.2 Models of Rifting

4.2.1 Passive vs. Active Rifting

In our calculations we assume that rifting is passive

rifting. Here passive refers to the role of the asthenosphere

in the rifting. Passive rifting is driven by stress

transmitted by the mechanically strong lithosphere. Active

rifting is produced by upwelling of anomalously hot

asthenosphere which thins and causes uplift of the lithosphere.

Active rifting results in volcanism and doming preceeding

rifting while for passive rifting rifts form first and then

doming may follow (Segnor and Burke, 1978). Areas which are

clearly associated in space and time with stresses manifest in

continental convergence such as the Rhinegraben (Illies and
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Greiner, 1978) and the Baikal Rift (Zoneshain and Saugtin, 1981;

Zorin, 1981) are thought to be passive examples (Turcotte,

1981). The great length of continental margins argues for for a

passive origin for at least some of the length of these rifted

areas, since it is likely that anomalous upwelling of

asthenosphere should be concentrated in individual hotspots.

The two rifting mechanisms are not mutually exclusive. As

shown by Neuguebauer and Temme (1981) the uplift of continental

lithosphere by active asthenospheric processes can lead to

large, gravitational stresses within the lithosphere due to

gravity. These stresses then produce rifting in the same way

that stresses transmitted from a distance through the

lithosphere will do this in passive rifting. Other ways for

active mantle processes to result in thinner crust have been

proposed. A change in the density of the lower crust due to

phase changes there (Falvey, 1974; Haxby et al., 1976) has been

suggested. The phase change hypothesis as well as other active

models are difficult to quantify and thus they cannot be used

to predict subsidence or heat flow of a rift. It is the

simplicity and relative ease of applying the passive stretching

model which make it attractive. In a sense the model of

asthenospheric convection considered here is a case of a

quantifiable active process which is induced by passive

rifting.

4.2.2 The Uniform Extension Model

A mechanical model of passive rifting was put forward by

Salveson (1978). Figure 1 shows his conception of the sequence
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of rifting. The thermal consequences of this model have been

discussed in terms of a simple thermal model by McKenzie

(1978). He considered the instantaneous extension of each

vertical column of the lithosphere and crust by equal amounts,

8 and assumed that asthenosphere upwells passively to maintain

isostatic equilibrium. When a vertical column of the

lithosphere is stretched by a factor 8, then it thins to 1/8

times its original thickness. The subsidence has two

components. There is an initial component due to the thinning

of the crust and a long-term component due to the cooling of

the lithosphere back to an assumed equilibrium thickness. The

initial subsidence or uplift depends on the original crustal

thickness and the amount of stretching. The modeling of

subsidence and heat flow are done with constant temperature

boundary conditions at 125 km analogous to the plate model for

the oceanic lithosphere (Mckenzie,1967). The initial thermal

structure is derived from the simple movement of temperatures,

along with material, vertically up in the lithosphere according

to the amount of thinning. The geometry of this is shown in

Figure 2 for the case of equal thinning of the crust and

lithosphere. For the simple model of extension, the thermal

gradient is assumed to be linear with 273 *K at the surface and

1573 "K at the base of the lithosphere.

4.3 Geologic Data on Rifts

The subsidence of passive margins estimated using well

corings of sediments, as described by Sclater and Christie

(1980), has been used to test the stretching model. Using
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gravity and seismic data the thickness of the continental crust

beneath sediments is estimated at a well site. The ratio of

the average crustal thickness on shore to the well site crustal

thickness gives the stretching factor for the crust there (Sc).

It is then assumed that the mantle was thinned by the same

amount. Using this method the subsidence of rifted continental

margins and intracratonic basins has been shown to be

consistent with the uniform extensional model (Watts and Ryan,

1976; Steckler and Watts, 1978; Sclater and Christie, 1980;

Watts and Steckler, 1979; Royden et al., 1980; Royden and Keen,

1980; Keen and Barrett, 1981; Le Pichon and Sibuet, 1981;

Sawyer et al., 1982). In the areas where the agreement between

the subsidence data and model predictions is good there is

little data on the earliest subsidence of the basin.

Subsidence data for the early period of subsidence of a

rifted areas (i.e. the first 25 m.y.) has been shown to require

some modification to the uniform extension model. Royden and

Keen (1980) showed that the simple stretching model would not

fit the data for wells on the margin of the Labrador Sea. They

had to modify it to allow for greater thinning of the mantle

lithosphere than for the crust. Other workers considering

intracratonal rifting (Sclater et al.,1980; Hellinger and

Sclater,1984) have found this same need to modify the model to

include two layers of stretching, with the amount of mantle

thinning (Bsc) depending on the site.

A related set of data on the uplift of the flanks of rifts

does not easily fit into the uniform extensional model. As
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noted by Morgan (1983), a broad regional uplift is usually

associated with rifting. The shoulders of the Rhinegraben rift

have been uplifted 1000 m since the time of rifting (Illies and

Greiner, 1978). The Rio Grande rift (Golombek et al., 1983)

and the Baikal Rift (Zorin, 1971) also show uplifted flanks.

The flanks of the Red Sea and the Gulf of Suez rifts show up to

1 km uplift which post-dates rifting (Steckler, personal

communication; Baker et al., 1983). One can argue that all

these cases are examples of passive rifting, but the uniform

extension model cannot fit this data. The small-scale

convection studied here will be shown to have effects which can

match this data.

4.4 Formulation of Rifting Calculations

4.4.1 Rift Temperature Structure

To study the effects of convection on the cooling of a

rift we must first define the initial temperatures in the rift

after passive rifting, but before convection and conduction has

altered the temperatures. As in McKenzie (1978) we consider

the instantaneous thinning of an assumed pre-rift horizontally

uniform temperature structure for the lithosphere and constant

temperatures in the asthenosphere. We choose an initial

temperature profile resulting from either half-space cooling

for a set length of time (here 100 m.y.) or from the results of

the similarity solution to the problem of the cooling of the

oceanic lithosphere described in Chapter 3. The initial rift

temperature structure is derived from the profile by stretching

by 8 = 1 to 5 (Figure 4.3). Both kinds of temperature profiles
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used are similarity solutions in terms of the depth variable.

That is, the shape of the profiles does not change with the

time of cooling, only its vertical extent increases.

Therefore, the thinned profiles at any point in the initial

rift temperature structure has equivalent temperatures to model

oceanic lithosphere which has cooled for an amount of time less

than the unthinned profile. Figure 4.3 also shows the

equivalent cooling times for several points in the rift.

The subsidence or uplift of a point in the rift is

calculated in the same way that the surface deformations due to

pressure variations at the base of the lithosphere and

temperature variations within the lithosphere defined by

equation 2.13 were calculated in Chapter 2. There deformations

were used to calculate gravity anomalies. Here the vertical

displacement of a point is defined as the difference in the

surface deformation at a given time and the deformation due to

the initial temperature structure.

Our main interest is in the effect of convection on

subsidence and uplift of the surface in the area of a rift. We

must compare the vertical subsidence or uplift at each point

with an estimate of the surface deformation in the absence of

convection driven by the rift temperature structure. This is

done in two ways. The simplest way involves using the same

initial temperature structure as for the convective calcula-

tion, but considering only conductive heat transport. The

other way uses the results of Chapter 2 for subsidence of

cooling lithosphere in the presence of small-scale convection.
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To do this we use the fact that the temperature profile at each

point in the rift corresponds to an age of cooling. Each point

can be related to a point on a subsidence versus t1 / 2 plot

determined for cooling of oceanic lithosphere with the same

rheology. The vertical displacement as a function of time can

be plotted along with that curve to give an idea of the

difference which the rift temperature structure makes.

4.4.2 Numerical Methods

Just as in Chapter 2, we study the effects of finite

amplitude convection by numerically solving the Navier-Stokes

equations of mass, momentum and energy conservation in two

dimensions. The method we use is similar to the method

discussed in Chapter 2 and in the Appendix, but involves curved

flow boundaries. This is necessary because the thickness of

the lithosphere in this problem varies by up to a factor of 5

for the initial temperature and viscosity structure. In the

Appendix an approximate method for solving for the flow

adjacent to a curved boundary is described.

4.4.3 Viscosity Relation

We consider viscosity to be a function of temperature,

pressure and, in some cases, stress. For viscosity that

depends only on temperature and pressure, we use equation 2.1

to define the viscosity at a point. In several cases we take

the viscosity to depend on deviatoric stress, or strain rate

(e), as well as temperature and pressure. We then define

viscosity as:
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S(TP)p(TP( (TP)e Z/3  (4.1)

where u(T,P) is defined by equation 2.1 and the power 2/3 comes

from assuming a power-law rheology (Goetze, 1978) with n = 3

and Ae determines the strength of the strain rate dependence.

The factor of 1 added to the denominator insures that

viscosities do not become infinite where the strain rates

approach zero and is analogous to the cutoff in deviatoric

stress used in a similar viscosity relation by Fleitout and

Yuen (1984).

4.4.4 Models Considered

Several parameters of these models are varied in an effort

to understand what affects the cooling of a rift. The

viscosity is changed in two ways. First, the average viscosity

is changed through the reference viscosity defined in

Chapter 2. Second, the viscosity is taken to be Newtonian in

some cases and non-Newtonian in others. The temperature and

pressure dependence of viscosity are held constant, since

variations in these parameters should have about the same

effect as changes in the stress dependence and the average

viscosity. Christensen (1983) has shown that the effect of

including stress dependence in a viscosity relation for

steady-state convection cells has the same effect as a decrease

in the activation energy (E). The activation energy controls

the temperature dependence of viscosity. The width of the

initial rift temperature structure (Wr) is also varied between

50 and 100 km. Finally, as noted before, the temperature
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profile used to set up the initial temperatures in the rift is

either that resulting from 100 m.y. conductive cooling or the

same time of cooling for the Stefan problem. Table 4.1 lists

the parameters used to defined the numerical calculations done

here.

4.5 Results

Several of the model parameters which were varied in this

study had a large effect on the geologically relevant results.

We consider the effect of variations in the average viscosity,

inclusion of stress-dependent viscosity, different initial

temperature profiles and different widths of the rift zone.

There is considerable uplift produced by combination of the

lateral conduction of heat and the increase in the general

advective-heat flux in all these calculations. The deformation

of the surface for several of the convective cases is

illustrated in Figures 4.4 to 4.6. In Figures 4.4 and 4.5

contours of the temperature field are shown which illustrate

how the flow changes the temperatures under a rift. Figure 4.6

shows that dynamical effects on the surface deformation are

much smaller than the lateral temperature variations. It is

important to estimate the amount of uplift which would have

occurred without convective heat transfer. The surface

deformation with only conduction acting on the initial

temperatures of case 104 is shown in Figure 4.7, compared to

the results from that convective calculation. The uplift is

restricted to a narrower region and is of smaller amplitude

than the uplift for the corresponding times for model 104. The
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total uplift integrated over area is about 2.5 times greater

for this particular convective case.

The surface deformation is compared with that predicted if

the effects of rift induced convection are ignored. We compare

the elevation or subsidence of points in the rift for case 105

to the subsidence predicted by a one-dimensional cooling model

in Figure 4.8. This shows that although the flanks of a rift

are elevated, the center of the rift cools more rapidly than

predicted by a one-dimensional calculation.

In case 101 much of the uplift relative to the initial

surface elevation is not centered over the unthinned flanks of

the model rift but is closer to its center. This is due to the

large width of the rift and to the two-cell pattern of

convection which developed in this case. The effect of the

concentrated downwelling due to this pattern is illustrated in

Figure 4.6 which shows the components of the surface

deformation for a time 25 m.y. into case 101. The part of the

deformation which is due to the flow induced stresses at the

base of the lithosphere is negative over the downwelling, but,

as in all the cases, this component is small compared to the

effect of temperature and thickness variations in the

lithosphere. The uplift in the cases which did not break into

two cells (ie. cases 104 and 105) is centered on the rift

flanks. Case 103 was defined with the same parameters as case

101 but the average viscosity was higher by a factor of 4.

This resulted in a similar pattern of surface deformation while

the amplitude of the deformation was reduced by about 40%

compared to case 101.
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Inclusion of non-Newtonian rheology increases the uplift

produced by convection. Case 102 and case 101 had the same

amount of uplift on the rift flanks even though case 102 had a

higher reference Newtonian viscosity than case 101 by a factor

of 4. Simply increasing the reference viscosity acts to

decrease the uplift. This is shown by case 103 which had the

same reference viscosity as cases 102 but had no stress

dependence included in calculating the viscosity.

The effect of considering a thinner and more linear initial

temperature profile for the unrifted lithosphere is considered

in cases 104 and 105. The more linear temperature profile is

probably more applicable to most rifts. Case 101 only differs

from case 105 in the initial temperature structure. Since the

lithosphere is thicker in case 101 there is a thinner low

viscosity asthenosphere and the initial single convection cell

breaks into two early in the calculation. The uplift of the

basin flanks is greater for case 101 because there is a thicker

region at the base of the lithosphere which can flow down away

from the rest of the lithosphere and thus results in a rapid

thinning of the lithosphere.

We were forced to consider model rifts which are wider than

many rifts on earth, because of the numerical difficulties in

dealing with very narrow zones where temperature gradients and

physical parameters vary rapidly. Since we do consider

two different model widths (50 and 100 km widths of the

half-rift), we have learned something about the importance of

the width in changing the effect of convection beneath the
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rift. One case was done for a narrower model rift. In case

104 the width of the half-rift (Wr) was taken to be 50 km,

which is half the value used in the other cases. The viscosity

parameters were the same as those used in case 105. The uplift

of the flanks was greater than for that case by a factor of 2

and occurred relatively farther from the center of the rift

than for the other cases. The two-dimensional conductive

calculation for this narrow model rift also showed higher

predicted uplift than for the wider cases, but less average

uplift than for the convective case 104. Figure 4.7 shows a

comparison of the uplift for case 104 with the corresponding

conductive case.

To show that the results of these calculations are

consistent with uplift data for continental rift zones we

consider the uplift of the flanks of the Rhinegraben. Figure

4.9 shows a map view of the Rhinegraben from Illies and

Greiner (1978) and the position of a cross-section across the

rift which is shown in Figure 4.10(a). In Figure 4.10(b) the

relative uplift of the east side of the cross-section is

plotted along with the model results for case 104 and the

curves are very similar. The width of the model rift in case

104 and the amount of thinning in the center of the model rift

may not exactly match these quantities for the Rhinegraben, but

this exercise shows that simple convective effects can produce

uplifts which are of the same magnitude and have the same

spatial distribution as those observed. Conductive transport

of heat cannot do this.
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4.6 Conclusions

These results show that the effects of convection induced

by a passive rift temperature structure can explain data on the

uplift of the flanks of rifts. We have shown that the

predicted uplift is greater for narrower rifts and for lower

average viscosities. The stress dependence of viscosity can

also add to the effects of uplift since this tends to reduce

the viscosity in the high stress areas at the edge of the rift

compared to the areas of lower stress. The small-scale

convection beneath a passive rift can also account for the

apparent need for two levels of thinning of the lithosphere in

conductive models of the subsidence of rifts.
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Table 4.1

Case Number Wr X/Xc pref Ae
(km) (x 1018 Pa-s)

101 100 1.0 1.0 0

102 100 1.0 4.0 1.00 x 10 - 3

103 100 1.0 4.0 0

104 50 1.0 1.0 0

105 100 0.9 1.0 0

Table 4.1 The parameters which define the cases

considered in this chapter are shown. The parameter X/Xc

determines the temperature profile using equation 3.4 which is

used to construct the initial rift temperature structure, as

discussed in the text. For X/Xc=l, the profile is that

resulting for conductive cooling of a half space for 100 m.y.

with the physical parameters given in Table 2.1. The width of

the rift is Wr. The viscosity is defined by Vref, which is the

initial viscosity at 150 km in the model, and the value of Ae

defines the non-Newtonian rheology described by equation 4.1.

For all cases the activation energy (E) was taken to be

100 kcal/mole and the activation volume (V) was 10- 5 m3 /mole.
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Figure Captions

Figure 4.1. The hypothetical sequence of events in passive

rifting as envisaged by Salveson (1978) is shown. Our

calculations start with stage 4.

Figure 4.2. This illustrates the thermal model of McKenzie

(1978) for one point in a rift. The cross-section shows an

area of the lithosphere (L) which initially (t=0) is of

equal width and depth (a). The temperature profile is

linear with depth to the base of the lithosphere. The

crust (c) and lithosphere are instantaneously stretched by

a factor (8) and so is thinned by a factor (1/8). The area

where the lithosphere was thinned is replaced by isothermal

asthenosphere (A). Thermal subsidence occurs as the

temperature profile returns to the original profile as time

goes to infinity.

Figure 4.3. The geometry of the initial rift temperature

structure for a flow calculation is shown. The width of

the rifted region (Wr) is varied in the models considered,

but for all of them the lithosphere is thinned by a maximum

factor of 5.

Figure 4.4. Contours of constant values of temperature and

stream function are shown for the indicated times for case

105 as defined in table 4.1. The temperature contours are

for every 50 *K between 273 and 1573 "K and the stream

function contours are evenly spaced between zero and the
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maximum value in the box. The grid point positions are

indicated by tick marks on the left and bottom sides of the

box.

Figure 4.5. Temperature contours and the surface deformation

are shown for the four times through the calculation of

case 104. Temperature contours are the same as in Figure

4.4. The calculation of the surface deformation is

described in the text.

Figure 4.6. The two components of the surface deformation

along with the combined effect for a time 25 m.y. into the

calculation of case 101. These components are defined in

text. As for other cases the component due to the

convective stresses is small compared to that due to the

temperature variations.

Figure 4.7. The elevation for a conductive case with the same

initial temperature structure as for case 104 is compared

to the results of case 104 at a model time of 20 m.y. in

each case. Here elevation is defined in the same way as

water loaded surface deformation, but we consider this to

be sub-aerial, so the magnitude of deformation is reduced

by 30%. The uplift averaged over area is about 40% of that

for case 101 and the subsidence of the center of the rift

is greater than for the convective case.

Figure 4.8. The average temperature in the top 150 km of the

box is shown as a function of time for 5 points in case
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105. This quantity can be directly related to subsidence

or uplift. The initial temperature profiles correspond to

profiles for cooling for the times where they are plotted,

as described in the text. The straight solid line shows

the average temperatures in the top of the box for the

similarity solution used to define case 105. The dashed

line is the same plot for a one-dimensional conductive

cooling case.

Figure 4.9. This map view of the Rhinegraben area, taken from

Illies and Greiner (1978), shows the amounts of uplift of

the flanks of this rift. Profile A - A' is plotted in

Figure 4.10.

Figure 4.10. Plot (a) shows the estimated uplift along the

profile A - A' shown in Figure 4.9. in part (b) we show

the elevation of the rift flanks predicted by case 104 at

20 m.y. Also shown as a dashed line is the uplift along

the left side of profile A - A' plotted now as relative

uplift. The vertical and horizontal scale of (a) and (b)

are the same.



165

DIAGRAMMATIC EVOLUTION OF
RIFT BASINS AND PASSIVE MARGINS

PRE-RIFT
,PRE-RIFT SEDIMENTS

2 '~:- , CRUST - 'RITTLE)2
MONO

50 _50
SUBCRUSTAL LITHOSPHERE

UPPER MANTLE -UCTILE).

100 10m
AST IENOSPHERE (FLOW) ......

2.5km GRABEN FORMATION (5km EXTENSION)
1 RIFT SEDIMENTS

100

25km RIFT BASIN (50 km EXTENSION)
- 1 ERODEDN-

25 25

5050

75 75

00km
IO0km

SSOkm RIFT BASIN (ookmEXTENSION)

0 OCEANIC CRUST\ POST-RIFT SEDIMENTS
50

25 - -2o

10000km

MATURE CONTINENTAL MARGIN
PRE-RIFT RIFT POST-RIFT SEDIMFNTS neralulP' rRItT

100 kmI m _J

Figure 4.1



T 'C
< a

t=o

L va
A

A

t-.*o

Figure 4.2

166

v

I t



CONTINENTAL

LITHOSPHERE

HALF RIFT

I -- _ I

Figure 4.3

167

I~ W



168

TEMPERATURE STREAMFUNCTION

2 MYS

TEMPERATURE STREAMFUNCTION

300.
WIDTH (km) WIDTH (km)

300.

20MYS

Figure 4.4

0.

E

I-
a.
w

400.

E

I-

w
0

400.



oD SURFACE

DEPTH (kin) DEFORMATION (km)

o I

I i ' i T,

03

...i .1 ....'...... ............

it

69l -I iliiii I 1 ~

3n

0\ :i !



S
U

R
F

A
C

E
 

D
E

F
O

R
M

A
T

IO
N

 
(k

m
)

_L

T
E

M
P

E
R

A
T

U
R

E
S

T
R

E
S

S

0
o

-I 3 %
bo

C
O

0 0

L

C
O

M
B

IN
E

D



171

1.

104
E

z

I--

> COND

_1

-1 . 150.

WIDTH (km)

Figure 4.7



172

5
CL 0.9

0O 4

0

m\2

I-

w 0.7

w1

I IW

10 20 40 80 160

TIME (MYS)

Figure 4.8



173

--- 25

Contours of the crust-

mantle boundary

(depth in km)

Major fault zone

Border of the

ALpine fold belt

Miocene volcano of

the Kaiserstuht

Inner trough of the

Rhinegraben

isoboses of post-MiddLe-

Eocene upLift

Amount of uplift:

< 1000 -1500 -2000

-2500 > 2500m

0 10 20 30 40 50 60 70 90km

Figure 4.9



174

(a)

E

z 2.0
0
I-

> 1.0

A A'

(b)

E 1.0

z
0

- 0.0 - --

uw -1.0
0. 150.

WIDTH (km)

Figure 4.10



175

"Deep in the human unconscious is a pervasive need for a
logical universe that makes sense. But the real universe is
always one step beyond logic."

-From "The sayings of Muad'Dib" by Princess Irulan.

CHAPTER 5

MECHANISMS OF DEFORMATION IN CONTINENTAL CONVERGENCE ZONES

5.1 Introduction

The growth of continents occurs primarily by the

collisions and suturing of continental fragments. Subduction

of the lithosphere under a continent may eventually lead to

the convergence of two continents. Unlike the oceanic crust

and lithosphere, a continental plate cannot be subducted

easily because of the lower density of the continental crust

and the resulting bouyancy forces. If the convergence

continues after the initial collision of continents, this

leads to faulting and mountain ranges (Dewey, 1980; Dewey and

Bird, 1970; Bird et al., 1975). A consequence of such a

collision is a thickening of the crust, not only in the

collision zone, but also under elevated plateaus (such as

Tibet and the Iranian Plateau) that may develop behind the

mountain ranges.

As in the preceeding three chapters the main focus of this

chapter is a study of the interaction of convection in the

asthenosphere and the thermal lithosphere. In this chapter
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we consider the hypothesis that convective thinning of thermal

boundary layers which have been thickened by processes of

continental convergence can be rapid enough to explain

geologic data on the thermal evolution of such regions. High

surface heat fluxes are measured in Tibet, which we take to be

the archtypical convergence zone, less than 40 m.y. after the

crust there was thickened by a major continental collision.

Thickening of the crust acts to reduce the temperature

gradients and so the surface heat flux in proportion to the

amount of thickening. Simple thermal modelling requires that

the temperature gradients in the mantle lithosphere must have

been near normal or higher during most of the time since the

thickening of the crust in order to supply sufficient heat to

the base of the crust to match the heat flow data. If the

mantle lithosphere were thickened along with the crust then it

would have to be thinned by some prosess in 10-20 m.y. to

match the constraints of the simple thermal models. This is

the scenario suggested by Houseman et al. (1982) and is the

possibility we test using numerical calculations which are

similar to those described in earlier chapters. One

difference between this and previous chapters is that the

results of these numerical experiments indicate that

convective effects cannot explain the geologic data under

consideration. Therefore, we explain a model for the

thickening of the crust in Tibet which explains the geologic

data because it does not involve lithospheric thickening.

In this chapter we will first review previous studies on
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the convective thinning of the lithosphere due to instability

of the thermal boundary layer at the base of the lithosphere.

The data on crustal thickness and present thermal state of

Tibet are reviewed as are calculations which indicate the

amount of mantle heat flux required for crustal melting (from

Toksoz et al., 1981). Numerical calculations on the rate of

convective thinning of a lithosphere with viscosity which is a

strong function of temperature are presented and the results

are discused in relation to the data. Finally, a model of

crustal thickening in Tibet is presented which does not

involve thickening of the mantle lithosphere.

5.2 Previous Work

A schematic of homogeneous lithospheric thickening, which

is discussed here, is shown in Figure 5.1. The question of

the stability of thickened lithosphere has been treated for

the case of a lithosphere made of several constant viscosity

layers by Fleitout and Froidevaux (1982). They found that such

a thickened lithosphere is unstable and can be convectively

removed in a relatively short time. Houseman et al. (1981)

looked at the long term evolution of a unstable thickened

lithosphere. They modeled the lower lithosphere and

asthenosphere as having the same constant value of viscosity.

They found that a lithosphere which was in equilibrium with a

background mantle heat flux and then thickened to twice it

original thickness could be convectively thinned to its

original thickness in only a few m.y. We feel that this
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conclusion is a result of the very simple treatment of the

boundary between the constant viscosity convecting region and

the conductive lid above. The position of the boundary

between the asthenosphere, where heat is primarily transfered

by convection, and the rigid lithosphere, where the heat

transfer is all by conduction, is critical to this problem. In

the Houseman et al.(1981) treatment this boundary was set at a

given depth and does not depend on the temperature there. When

the lithosphere was thickened this depth was not changed,

although the temperature at that depth decreased by nearly a

factor of 2. Figure 5.2 shows the effect of thickening the

lithosphere on a temperature and a viscosity profile of the

mantle. That the viscosity of the mantle depends strongly on

temperature has long been accepted (eg. Stocker and

Ashby,1972; Weertman and Weertman, 1975). For lithospheric

boundary layers to go unstable at all the viscosity in the

region must be lower than the average mantle value of about

1021 Pa-s determined from post glacial rebound (Cathles,1975).

Considering a temperature dependent viscosity, but neglecting

the effect of pressure on viscosity Yuen, Peltier and Schubert

(1981). They find that boundary layers with a minimum

viscosity of 1021 Pa-s should not be unstable even if they are

as thick as those considered by Houseman et al. (1981) or in

the present study. As noted in Buck (1983) the dependence of

viscosity on pressure allows the viscosity at the bottom of

the boundary layer to be much lower than the value at greater

depth. Thus low viscosities in the thermal boundary layer can
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be consistent with the average viscosity of the mantle being

much higher.

5.3 Data and Models of the Effects of Crustal Thickening

Among the mountain ranges which have clearly resulted

from continental collisions are the Zagros, the Himalayas,

the Alps, the Urals and the Southern Appalachians

(Bird,1978a). Thrusting and folding in the crust caused

thickening of the crust in all these ranges and may have been

accompanied by thickening of the lithosphere through internal

deformation. The Himalayas are associated with a large region,

the Tibetan plateau, where the crustal and lithospheric

deformation is apparently of this type. Geological and

geophysical data indicate that the crust there is abnormally

hot today. Since Tibet is the only mature example of such a

plateau it is discussed in detail.

Tibet is an area where t a crust has been thickened over

700,000 km2 . The crustal thickness over most of the plateau

is about 70 km, nearly twice as great as normal continental

crust. This has been determined by surface wave studies (Bird

and Toksoz,1977; Feng and Teng,1983) and refraction lines

reported by Teng et al.(1981) and Hirn et al. (1984a) in the

plateau and by Hirn et al. (1984b) in the northern Himalayas.

This is consistent with the average elevation of five

kilometers being isostatically compensated (Bird,1978).

Figure 5.3 show the topography and crustal thickness for a

profile across Tibet. The crust of Tibet was accreted onto
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Asia in several sections over about 150 million years as

estimated from the ages of syntectonic granites in regions

taken to be the suture zones between these sections (Gansser,

1980; Zhou,1981; Allegre et al., 1984). The timing of the

crustal uplift and thinning is disputed, but paleobotanical

evidence indicates that the uplift post-dates the collision of

India and Asia (Xu, 1980). The Indian collision occured about

40 myrs ago (Gansser, 1966; Powell and Conaghan, 1973; Molnar

and Tapponnier, 1975). The northern part of the plateau has

widespread calc-alkaline volcanics of Cenozoic age, presumably

derived from melting of the lower crust (Dewey and

Burke,1973). There are also numerous hot springs indicating

higher than normal crustal temperatures (Tong and Zhang,

1981). Heat flow measurements in Southern Tibet described in

Francheteau et al. (1984) are greater than average values for

the continental crust. There are also large spatial

variations in the heat flow values which they associate with

recent emplacement of magma bodies. Furthermore, the

attenuation of certain periods of surface waves may be an

indication of partial melting of the lower crust (Bird and

Toksoz,1977).

In previous work (Toksoz et al.,1981) the thermal effects

of the thickening of the crust have been considered. In that

work the mantle heat flux was varied and only the temperatures

in the crust were monitored. The same assumption was used in

that work and the present one as to the way the crust

deformed. The deformation was taken to be by internal strain
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rather than by crustal scale underthrusting suggested by

Powell and Conaghan (1973). The formulation of numerical

calculations of conductive heat transport through crust which

is thickening is illustrated in Figure 5.4. The one

dimensional heat flow equation (simplified from equation A.1)

is solved at sucessive time steps on a Lagrangian finite

difference grid. Figure 5.5 shows positions of isotherms in

the crust as a function of time after the initiation of

crustal thickening for different amounts of shear heating in

the crust, crustal radioactive content and mantle heat fluxes.

It was found that neither shear heating nor redistribution of

radioactive rich layers in the crust could lead to crustal

melting without greater than normal heat flux from the mantle.

An average of at least 0.8 HFU from the mantle was required.

Three mechanisms to give a thin lithosphere and thus a

large mantle heat flux have been proposed. (1) The entire

lithosphere could be removed by "delamination" or peeling away

from the crust (Bird and Baumgardner,1981); This hypothesis is

not advocated because because seismic data for old continental

cratons indicates that the lithosphere there is very thick

(Leveque, 1981; Grand and Helmberger, 1982). The lithosphere

could not be so thick if it were subjected to frequent

removal. (2) An extremely large amount of the lithosphere

could be convectively removed (McKenzie, 1978; Chen and

Molnar, 1981; Houseman et al., 1981). This is critically

examined using the numerical experiments which are described

in this chapter. (3) The lithosphere could have been thin at
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the time of the collision of India (Dewey and Burke,1973;

Toksoz and Bird,1976; Toksoz et al.,1981; Buck and Toksoz,

1982). This third possibility is consistent with the

observation that only tectonically young areas of lithosphere

(which should be hot and thin) were deformed by the collision

of India with Asia (Molnar and Tapponnier, 1981).

5.4 Numerical Model Description

The philosophy behind the approach used here is to

consider the simplest possible set up for the calculations

which retains the basic physics of the problem. In the

treatment used in this chapter the boundary between the rigid

and flowing regions was not specified, but came out of the

calculation. This was a result of the temperature dependence

of viscosity. In low temperature regions the viscosity

increases to values so high as to preclude significant flow.

Heat had to be conducted into these areas to allow them to

flow. As cooling or heating of a region occured the boundary

moved. It should be emphasized that the most important result

presented here does not depend on particular values of the

viscosity parameters. It results from a moderate level of

dependence of the viscosity of the mantle on temperature. The

non-dimensional equations of energy, mass and momentun

conservation for the variable viscosity case are given in the

appendix. They are solved explicitely on a finite difference

grid with time stepping in the energy equation. The areas

considered correspond in the study to a 700 x 700 kilometer
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region of the mantle when dimensionalized according to the

parameters given in table 2.1, but with the length scale set

at 700 km. This size allows for three or more convective rolls

to develop in all cases. The relation between temperature,

pressure and viscosity is a standard one applicable to creep,

taken from Weertman and Weertman (1975) and is given in the

appendix.

The variations in viscosity define the flow boundary for

this problem, as was found in the linear stability analysis of

variable viscosity boundary layers by Jaupart(1981), and no

arbitrary boundary need be used. The boundary for the flow is

the top of the lithosphere, but it is computationally more

efficient to place a no slip boundary at the depth in the

lithosphere where the viscosity is 1022 poise. This is between

2 and 3 orders of magnitude above the minimum viscosity in the

flow region. Runs with the boundary placed higher in the

lithosphere, where the viscosity was 1023, poise gave the same

results, but required at least twice the computer time. The

side boundary conditions on the flow were stress free, except

in the case of one model with periodic conditions (case 1).

The bottom boundary is always taken to be stress free. The

boundary conditions on the energy equation are fixed

temperature (corresponding to 273 °K) at the top and

insulating on the sides and bottom. Case 1 had periodic

conditions on the side temperatures.

The initial temperature profile for cases 1-7 was derived

from purely conductive half-space cooling of an initially

isothermal material, with diffusivity given in table 1, for a
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given length of time. This temperature profile was then

stretched in depth by a factor of two to simulate lithospheric

thickening. Figure 5.2 shows an initial and thickened

temperature profile along with the corresponding viscosity

profile. Next, a random temperature perturbation (between 0O

and 1* K) is given to each grid point. Without perturbations

the instabilities would not be initiated in the calculations.

The initial flow velocities are zero. In the periodic test a

periodic perturbation was given to excite a particular

wavelength of flow. This thickening of a conductive

temperature profile is not the same procedure used by Houseman

et al.(1981), where the temperature structure resulting from a

convection calculation was stretched vertically for the

initial condition. This procedure of achieving a steady state

is costly in terms of computer time for the variable viscosity

calculations, where runs take 20-50 times the computer time

for the comparable constant viscosity calculations. Thus, only

in cases 8 and 9 were the initial conditions gotten by

thickening a steady state temperature structure in the region

of calculation. After steady state had been reached the top

quarter of the box was doubled in thickness while the rest of

the box was thinned so the depth extent of the box was not

changed.

In the first cases no heat sources were incorperated and

only the falloff of the unstable boundary layer was followed.

Later internal heat generation which would result in smaller

equilibrium lithospheric thicknesses than existed at the start
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of the calculation were used. This was done to see how quickly

equilibrium thicknesses would be approached. The runs were

generally carried out to times that correspond to at least 40

million years, since this is the time since the lithospheric

thickening commenced in Tibet.

Resolution of the solutions on the grids used here were

guaranteed in two ways. First, the numerical experiments were

done on successively refined grids until the same results were

achieved on two different grids. Second, the heat flux out of

the grid and the internal heat generation were compared to the

rate of change of the average temperature of the region to

ensure conservation of energy. The grids used were at least

56x56 points with even spacing in the horizontal direction and

varible mesh spacing in the vertical. The variable spacing of

points allowed the needed resolution in the regions of the

largest gradients of viscosity and flow, without an excessive

number of points overall. The grid positions are shown in

Figure 5.6 as tick marks around the boxes.

5.5 Results

The cases considered here are sumarized in table 5.1. The

parameters varied were the bondary conditions, the reference

viscosity, the heat sources, the effective activation volume

(V*), defined in chapter 2, the activation energy (E) and the

time of the initial conductive cooling (which effectively

changes the initial lithospheric thickness). The heat sources

are up to 3 times values estimated for the average mantle
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(Ringwood,1975), but are meant to include the effect of both

internal heat production and heating from below. The

activation volume, V*, was varied within the range of

experimentally determined values for olivine as was done for

the activation energy E*. The range of activation volume is

10-20 cm3 /mole (Kohlstedt et al.,1980; Sammis et al.,1981) and

for activation energy is 70-125 kcal/mole (Goetze, 1978). The

reference viscosity was set so as to give viscosity mimina in

the asthenosphere under young lithosphere close to the

estimates of the viscosity there (Passey,1981; Richter and

McKenzie,1978). Each case required between 3 and 9 hours of

c.p.u. on a Vax 11/780 computer.

Case 4 resulted in the greatest convective thinning of the

lithosphere for the cases with a conductive initial condition,

so it will be discussed in detail and be used as a reference

when discussing the other models. Figure 5.6 shows snapshots

at 10 million year intervals of the isotherms and streamlines

of the flow for this case. The boundary layer can be seen

flowing down in a droplet-like fashion. The horizontally

averaged temperature profile shows that the thermal litho-

sphere is not greatly thinned over the 40 my period. Figure

5.4 is a more quantative picture of the variation in the

thickness of the lithosphere through the duration of the run.

It shows the variation to the depth where the horizontally

averaged viscosity equals a constant value (either 1020 or

1019 Pa-s). The base of the lithosphere could be defined as

the place where the viscosity reaches such a value. Figure 5.7
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shows that the depth to the 1020 Pa-s level has changed

neglibly during the calculation. The 1019 Pa-s level has

changed about 20 percent in this time.

To quantify the vigor of the flow at different times, the

average dissipation for the flowing region was calculated.

Figure 5.8 shows that the maximum horizontally averaged rate

of dissipation (e2 ) in case 4 occurs at a depth just below the

lithosphere, at about 150 kilometers. It also indicates that

there is a depth range over which the flow is much more

vigorous than above and below. This is due to the viscosity

structure having a minimum in that region. The reason for the

low between two highs is that the vertical flow occurs only

in narrow zones. The horizontal averaging emphasises the top

and bottom of the convection cells where the flow is

horizontal. The average dissipation (D) is proportional to

the integral of the strain rate squared (e)2 over the area(A):

D = ff e2 dA (5.1)

Figure 5.9 shows the average dissipation through time for all

cases except number 5 which was not on scale and 8 and 9 where

the average dissapation was nearly constant. In all cases the

maximum dissipation was associated with the first convective

removal of the conductive boundary layer. This maximum took

over 20 mys to develop in runs 1-7. In the cases with internal

heat sources the high rate of flow is maintained through the

rest of the run. But, as shown in Figure 5.7, the bulk of the
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convective thinning is associated with this boundary layer

removal and not with ablation due to the heat sources and

rapid flow rates.

Another measure of the difference between the results is

the dissipation weighted viscosity of the flow region. This

average viscosity is defined following Parmentier (1978) in

equation 3.10. This quantity was calculated for all the cases

and it is tabulated along with other output information in

table 5.2. The average viscosity was fairly constant over the

time of the calculations, but is tabulated a time 20 million

years into the runs. This parameter is useful in calculating

an average Rayleigh number for the varible viscosity flow

region. The average Rayleigh number is defined in equation

3.7. Parmentier (1978) has shown that this parameter bears

the same relationship to the heat flux across a region

convecting in steady state as does the Rayleigh number in a

constant viscosity case. There is ambiguity in the

calculation of this parameter since the length scale of the

flow is not clearly defined. One way to estimate this scale is

to take the depth extent of the region where dissipation is

within a factor of ten of the maximum horizontally averaged

value. For case 4 it gives a value of 250 kilometers for the

length scale and 1.x10 5 for the Rayleigh number. Unlike the

calculations discussed in chapters 2 and 3 there is little

time in the calculation when the convective flow and the

boundary layer are in equilibrium (i.e. with a boundary layer

thickness which scales with the Rayleigh number). During most
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of the calculation the very thick boundary layer is falling

off and the convective pattern is changing. Once this period

is over and transient equilibruim is established it is a

simple matter to estimate the rate of thinning of the

lithosphere due to the convective supply of heat to the base

of the lithosphere, as will be described in the discussion

section.

Case 1 shows that the higher the reference viscosity the

lower the maximum dissipation rate for the flow. The high rate

of dissipation early in the run was due to the periodic

initial conditions which forced coherent flow quickly. This is

the only case where the 1020 Pa-s level moved down through the

calculation. This was due to the high effective viscosity and

lack of heat sources for the model. Case 2 indicates that the

removal of the lower lithosphere can result in a thinner

lithosphere even without heat sources. Case 3 shows that the

inclusion of small heat sources does not greatly affect the

thinning of the lithosphere over 40 mys. In case 5 the

doubling of the pressure dependence of viscosity (V*) raised

the effective viscosity and narrowed the depth range of

vigorous flow. The boundary layer was still unstable in this

case but was not removed over the time of the calculation.

Case 6 demonstrates that the thicker the lithosphere the

slower the flow in response to boundary layer instablities.

The effective viscosity and maximum dissipation were low in

this case. Case 7 shows that increasing the temperature

dependence of viscosity (E*) by 20 percent had a small effect
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on the maximum dissipation, but that the lower lithosphere was

made more resistent to convective thinning.

The two runs which started with thickened steady state

profiles (8 and 9) showed that the rate of thinning of the

lithosphere is not greatly increased relative to the cases

with simpler initial conditions. This is due to two offsetting

differences between these cases and the others. The fact that

the most rapid change in the lithospheric thickness is due to

the removal of the thickened boundary layer and that layer was

thicker for the other cases. But, the convective pattern and

temperature variations were already established at the

beginning of the calculation for cases 8 and 9 there was no

period of slow increase of the vigor of the flow. Case 8 had

the same viscosity parameters as case 4 and showed a slightly

greater decrease in the depth to the 1020 Pa-s level (table

5.2)during the calculation while the depth to the 1019 Pa-s

level changed by about the same amount in the two cases. Case

9 shows that decreasing the temperature dependence of the

viscosity could be offset by an increase in reference

viscosity.

5.6 Discussion of Numerical Results

In all of the cases considered of the effect of the

instability of thickened varible viscosity lithosphere on the

rate of thinning of the lithosphere was not sufficient to

bring it to equilibrium thickness in 40 mys when the

lithosphere was initially (before thickening) about 100 km
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thick. This was true over a wide range of experimentally

determined parameters controlling the viscosity of the

lithosphere and asthenosphere. The difference between these

results and those of Houseman et al.(1981) are due to the

inclusion of viscosity which depends on temperature and

pressure, which we consider to be more consistent with

laboratory data on the materials thought to constitute the

mantle. The effect of temperature dependent viscosity is to

limit the temperature range over which convective heat

transfer dominates that by conduction. This has been noted in

the calculations of Jaupart (1981), Christenson (1983),

Fleitout and Yuen (1984a, 1984b) as well as in the results of

the preceeding chapters. The temperature difference across a

convecting region depends on the rheology assumed for that

region and so may be termed the rheological temperature scale

(ATr). This temperature scale also depends on the Rayleigh

number of the flow, but as shown in chaper 3 this dependence

is generally not as important as the temperature dependence of

viscosity. As noted by Christenson (1983) the effect of

stress dependent viscosity is to reduce the effective

temperature dependence of viscosity by an amount which depends

on the Rayleigh number, but for the Rayleigh numbers

considered here this effect should not be great. The value of

ATr in the calculations described here seldom exceed 100 *K.

Thus, the temperature drop across the thickened thermal

boundary layers, whose removal accounts for the relatively

rapid thinning of the lithosphere, is about this value. The
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slower stage of thinning of the lithosphere shown in Figure

5.7, must involve conduction of heat into the conductive lid

and ablation of the material which has been heated and

softened.

Inclusion of large internal heat sources in the model

mantles for cases 3 to 9 maintained a higher level of vigor in

the flow than for cases 1 and 2, but still did not result in

rapid thinning of the lithosphere through ablation. For the

cases which had heat sources the lithosphere would eventually

return to an equilibrium thickness, but on a time scale of

much greater than 40 m.y. The calculations of chapters 2 and 3

show that the heat flux out of the convecting region depends

on its temperature. If the rate of heat generation within the

region is less than the heat flux out of it then it cools and

the heat flux goes down. Once we estimate the amount of

material which can be quickly removed we can calculate the

time required to thin the lithosphere due to heat sources in

the mantle.

A simple calculation, based on the formulation of Crough

and Thompson (1976), can be used to do this. This is

illustrated in Figure 5.10 which shows an initial lithospheric

thickness (Zi ) with a linear temperature gradient (Ti(z)). We

calculate the time required to thin the lithosphere to a final

thickness (Zf), which is half the initial thickness, due to a

uniform heat flux from below. By considering the heat flux

out of the surface to be constant and equal to its initial

value (KdTi/dz) we can calculate the time required to input
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sufficient heat to change the temperature profile to the

linear gradient (Tf(z)) on the figure). The heat flux into

the lithosphere from the constant temperature region below is

taken to be constant and equal to the equilibrium flux through

a lithosphere of thickness Zf (i.e. KdTf/dz). The time (t)

required to do this is shown on Figure 5.10 as :

2
zi

t =  (5.2)
4 K

where K is the thermal diffusivity. Taking K to be 10- 6

(m2 /s) and Zi equal to 200 km, the time given by equation 5.2

is 320 m.y. This corresponds to a lithosphere that was only

100 km before hypothetical thickening of the lithosphere by a

factor of two. Inclusion of the radioactive heat sources in

the crust will decrease this estimate a small amount. To thin

the lithosphere on a time scale appropriate for Tibet requires

much higher than normal mantle heat fluxes. In a study of the

effect of mantle plumes Spohn and Schubert (1982) find that

300 km thick lithosphere could be locally thinned to half this

thickness in 50 mys, but this required 5 times the normal

mantle heat flux.

A reasonable value of the pre-collisional thickness of the

lithosphere in Tibet comes from using the tectonic age of the

lithosphere (age since the last tectonic and thermal

disturbance). This has been estimated for the different parts

of Tibet by Molnar and Tapponier (1981). This age should
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correlate with lithospheric thickness in much the same way that

the thickness of the oceanic lithosphere correlates with its

age. At the time of the collision of India with Asia Northern

Tibet had a tectonic age of about 150 m.y. while southernmost

Tibet might be said to have had an age of zero. An average

value of lithospheric thickness at the time of the collision is

about 100 km. Thus, homogeneous thickening of the lithosphere

would produce a 200 km thick lithosphere while thickening the

crust to 70 km. Values of heat flux which would be required to

thin a 200 km thick lithosphere by one half in 20 m.y., as is

required by the thermal models of the crust, would be about 15

times greater than that required to maintain. the lithosphere at

a thickness of 100 km. Such fluxes are unlikely to exist over

the entire region of the Tibetan plateau.

5.7 Speculative Model for Convergence Zone Crustal Thickening

To get around the problem of the present-day high heat

flow, without requiring that the lithosphere be unusually thin

before the collision, we suggest that the mantle lithosphere

was not thickened in the process of horizontal compression

after the collision. In this model horizontal shortening of

the lithosphere is accomplished by mantle lithospheric

subduction in a number of locations through the plateau. At

each area of intracontinental subduction, the process of

scraping off of the crust should be similar to the process

which is now believed to occur under the Himalayas based on the

gravity model of Lyon-Caen and Molnar (1983), illustrated in
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Figure 5.11. In this model the lithosphere must have some

elastic strength to transmit stresses over hundreds of

kilometers. The oceanic lithosphere is assumed to transmit

stresses over long distances (Richardson et al., 1979). Though

the continental lithosphere may be weaker than the oceanic

(England, 1983) it should do the same. It has been noted before

that a large fraction of the convergence in several areas of

continental collision (McKenzie, 1972; Molnar and Tapponier,

1976) seems to be concentrated along large strike slip faults.

In this model of deformation the continents behave in an

intermediate manner between rigid plates and a continuum with

uniform properties as used by Molnar and Tapponier (1976). For

a continental convergence zone the weakest places are expected

to break first. These might be the former sutures between the

fragments such as those which make up Tibet. The localized

nature of subduction zones is consistent with relative weakness

of those regions. The nature of this weakness is uncertain,

but non-linear rheology for the lithosphere can contribute to

the continued weakness of an area where strain rates are high

(Kopitze, 1979; Jacoby and Schmeling, 1982). Intracontinental

mantle lithospheric subduction should lead to the build-up of

thicker crust in these areas. The stresses necessary to

maintain the local elevation of the thickened crust may exceed

a critical value required to initiate lithospheric subduction

in an adjacent area. The form of local crustal thickening and

viscous flow of the crust in response to its elevation are

discussed below. Figure 5.12 shows an idealized possible
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sequence of events for the crustal thickening in Tibet, which

may apply to other convergence zones. The multiple sites of

mantle lithospheric subduction shown there may not have been

active at the same time.

Recent field work in Southern Tibet has shown that the

crust north of the Yarlung Zangbo suture is not uniformly

deformed, but is largely free of folding and faulting (Allegre

et al., 1984). Large-scale thrust faulting seems to occur in

narrow regions. This argues against the mechanism of fairly

homogeneous thickening of the crust and lithosphere in Tibet

since the collision of India (see Figure 5.1). Paleobotanical

evidence that the entire plateau was uplifted fairly uniformly

(Xu, 1981) and that the Himalayas were uplifted later than the

plateau are consistent with this model. In this model the

reason for the late formation of the Himalayas is that the cold

craton of India could only be fractured when sufficient

elevation had been built up on the plateau that kilobar

stresses were needed to maintain it. Another mechanism for

crustal thickening is that of underthrusting of India at the

suture with Tibet, with crustal material being scraped off

(Powell and Conaghan, 1973), but this would lead to an uplift

of Southern Tibet before the rest of the plateau.

A new question is raised by this model which makes us

consider temperature-dependent mechanisms of crustal thickening

(Buck, 1984). Why is the topographic relief so different for

the Himalayas than for Tibet, if we propose a similar process

for crustal thickening? If the crustal temperature profiles
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were 20-30 percent higher in Tibet, then the lower (ductile)

crust could be thicker and lower in viscosity as shown in

Figure 5.13. This would allow only a relatively small amount

of topographic relief to be maintained. The equation for the

average velocity (u) of material with a constant viscosity

(P)in a horizontal channel (Turcotte and Schubert, 1982) is:

H1  dP
u = 5.3

12 j dx

where H1 is the thickness of the lower crustal channel and

dP/dx is the horizontal pressure gradient due to topographic

variations We find that 1 km of elevation difference spread

over 100 km lateral extent would drive lower crustal flow at

3 cm/year average velocity if the average viscosity of the

lower crust were 1019 Pa-s and it was 20 km thick. If average

lower crustal temperature were 100*C higher given estimates of

the rheology of the lower crustal materials (Caristan, 1982;

Brace and Kohlstedt, 1980) then flow would be ten times slower.

Thus, with convergence "pumping" material into a deforming

region at several cm/year, only small amounts of relief could

be supported if crustal temperatures are high as we suppose

them to be in Tibet. On the other hand, the Himalayas are

thought to be formed by breaking of what was part of the stable

and cold Indian craton with a much greater tectonic age than

Tibet. The much cooler temperatures for a craton (Sclater et

al. 1980) would allow the build-up of considerably topographic

relief without significant viscous flow of the lower crust.
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5.8 Conclusions

We first considered thermal models for the crust which has

been thickened in convergence zones and found that mantle heat

fluxes of at least 0.8 HFU were needed to account for the

partial melting of the thickened crust. There is evidence that

the crust in Tibet is partially melted and that this is related

to the thickening of the crust which began 40 m.y. ago. Finite

amplitude numerical calculations showed that convection in

fluids with temperature dependent viscosity would not be

sufficient to thin the lithosphere at the same rate that it

thickened if it were homogeneously thickened at the same rate

as the crust in Tibet. Therefore the mantle heat flux would go

down during thickening. If the lithosphere were 100 km thick

before being homogeneously thickened then the mantle heat flux

would the not return to its initial value for several hundred

million years. A simple mechanical model is suggested to get

around the difficulty of maintaining a constant moderate mantle

heat flux in an area of crustal thickening.



TABLE 5.1

Case Reference
viscosity
(x10 1 8 Pa-s)

Side boundary
condition

Heat sources
(ergs/cm3 )

V* (cm2 /mole) E* (kcal/mole) Initial cooling
time (myrs)

2.5

2 1.0

3 1.0

4 1.0

1.0

1.0

1.0

1.0

periodic

free

free

free

free

free

free

free

free9 10.0

2.14x10 - 7

6.42x10- 7

6.42x10 - 7

6.42x10- 7

6.42x10- 7

6.42x10- 7

6.42x10-7

10.

10.

10.

10.

20.

10.

10.

10.

10.

100.

100.

100.

100.

100.

100.

120.

100.

50.

40.

40.

40.

40.

40.

80.

40.

steady state

steady state

Table 5.1. Descriptions of the cases considered for the numerical calculations.



TABLE 5.2

Case Effective viscosity Max. Average Dissipation Change in depth(km) of viscosity level

(Pa-s) (dimensionless) (1020 Pa-s) (1019 Pa-s)

6.5x10 1 9

3.0x10 1 9

2.8xl0 1 9

2.5x10 1 9

1.4xl0 2 0

8.6x10 1 9

2.3x10 1 9

2.4xlO11 9

3.6x10 2 0

-1.9

2.4

3.9

7.0

2.8x10 6

1.8xl0 7

2.3x10 7

3.5xlO7

6. Ox101

5.Ox10 5

2.2xl0 7

4.4

1.3

3.5

* 12.1

1.0x10 6 8.0

48.4

49.1

36.4

45.3

*

Table 5.2. Results of numerical experiments described in Table 1. See text for methods of

calculating the parameters. The character * indicates the viscosity level was not present

for that case.
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FIGURE CAPTIONS

Figure 5.1 A scematic illustrating stages of homogeneous

lithospheric thickening (a to b) and then thinning of part

of the mantle lithosphere by convection (c).

Figure 5.2 The effect of doubling the thickness of the

lithosphere on the temperature and viscosity profiles.

Solid lines show the original thickness of the bottom of

the crust and lithosphere as well as the temperature and

viscosity profiles. Dashed lines show the thickness and

profiles after thickening. The temperature profile is for

conductive cooling for 40 million years of an isothermal

crust and mantle using using the diffusivity and

temperature scale of table 1. The viscosity profile

results from the viscosity parameters used for case 2 in

table 2.

Figure 5.3 Vertically exaggerated crustal depth and

topographic profile across Tibet approximately Southwest

to Northeast going throught Lasa from Luo et al. (1981).

The vertical exagggeration of the topographic profile is

five tims greater than for the depth profile.

Figure 5.4 A schematic of the formulation of the thermal

problem of crustal thickening which is described in Toksoz

et al. (1981). The thickness of the crust (H) at a time

(t) can be varied by changing the grid spacing (AZ). The

mantle lithospheric thickness is not changed, which



202

results in an nearly constant mantle heat flux into the

crust with time.

Figure 5.5 Results of crustal thermal calculations in Toksoz,

Buck and Hsui, 1981. Dashed lines are isotherms against

time since the beginning of crustal thickening. The solid

line is the crust nantle boundary position. All cases have

the doubling of the crust taking 20 million years except

case B which is for twice that time. Case A is for a

uniform radioactive distribution in the crust and 1

kilobar shear stress during deformation. Case B differs

only in that the shear stress is 2 kb. Case C shows that

when the concentration of crustal radioactive sources is

twice as large in the upper crust than the lower that

temperatures remain lower in the crust. Case D has one

third more mantle heat flux than the others.

Figure 5.6 Streamlines, isotherms and horizontally averaged

temperature at ten million year intervals for case 4. The

boxes represent 700x700 km of mantle. The tick marks

around the boxes show the grid point positions. The eight

contours for the streamfunction have the following

non-dimensional ranges: -4.3 to 11.3 for case A; -58.2 to

59.6 for case B; -33.4 to 25.9 in case C ; and -40.2 to

24.4 for case D. The contour intervals for the temperature

are 500 C. The range of the horizontally averaged

temperatures is 1300 *K.
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Figure 5.7 The depth to the level where the horizontally

averaged viscosity equals the indicated value for case 4.

Figure 5.8 The variation of the horizontally averaged

dissipation with depth for case 4 at the indicated times

into the runs.

Figure 5.9 The average dissapation (D) given by equation 5.1

versus time into the run for the cases indicated.

Dissipation for case 5 was too low to be on scale.

Figure 5.10 This is a sketch of the simplified model of

lithospheric thinning due to mantle heat flow which is

disucced in the text. The initial thickness of te

lithosphere is Zi and the final thickness is Zf is half of

the initial value. The initial and final temperature

profiles are considered to be linear. In the intermediate

stages (b) the surface heat flux is considered to be

constant an equal to its initial value.

Figure 5.11 A schematic is shown of the subduction of the

mantle lithosphere with the crust being scrapped off as

has been suggested for the Himalaya by Lyon-Caen and

Molnar (1983). Within the crust the primary difference

between the upper and lower crust is that the upper crust

is brittle and the lower crust deforms through ductile

flow.
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Figure 5.12 This is a scematic of the possible evolution of of

Tibet with crustal thickening centered on several sites

of mantle lithospheric subduction. The several sites of

subduction may not have been contemporaneous. In this

model the elevation of the Himalaya are considered to

have occured after most of Tibet had been uplifted

because of the thicker and colder lithosphere in the area

of the Himalaya (the left side of the figure).

Figure 5.13 Profiles of the log of the non-dimensionalized

viscosity for a hypothetical lower crust and mantle

lithosphere are shown. The parameters for the crust

(feldspar) and manlte lithosphere(olivine) are taken from

Caristan (1982) and Brace and Kohlstedt (1980) assuming

power law rheology with a strain rate of 10-13 s-1. The

temperature profile is varied by ±100 *K around an

approximately equilibrium profile for a temperature of

1500 °K at 100 km depth.
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MANTLE HEAT BUDGET CALCULATION
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"Sometimes I just wish I were happening on a larger scale."

-Wm. Hamilton in a New Yorker cartoon.

CHAPTER 6

CONCLUSIONS

Three geophysical problems in which small-scale convection

in a variable viscosity mantle may play an important role have

been studied in this work. For two of those problems - the

cooling of the oceanic lithosphere and the cooling of passive

rifts - we have shown that the effects of small-scale

convection can explain data which no other single mechanism

can. The third problem concerns the effect of small-scale

convection on lithosphere which has been thickened in a

hypothetical convergence zone. As expected, when a temperature

dependence in the viscosity relation is included we find that

small-scale convection cannot lead to the extremely rapid

thinning of the lithosphere which has been predicted in models

which only consider constant viscosities. We have suggested a

mechanism for deformation in convergence zones which does not

involve thickening of the mantle lithosphere and so does not

violate data from such regions.

Several kinds of data are matched by the results of these

calculations. Certain short wavelength gravity anomalies
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derived from Seasat altimeter data may be produced by

small-scale convection which begins under oceanic lithosphere

of only a few m.y. age. The data on the offset of the geoid

height across fracture zones is very difficult to explain by

any other mechanisn than that of small-scale convection. The

variations in the rate of subsidence for the oceanic

lithosphere from one area to another may be explained by the

large effect that variations in asthenospheric temperature have

on the vigor of small-scale convection. Data on the uplift of

the flanks of passive rifts and details of the subsidence of

rifted continental margins can be matched by the predictions of

models which include small-scale convection.

We were successful in deriving parameterizations of the

effects of small-scale convection on the cooling of the oceanic

lithosphere. These are useful to anyone who would like to

estimate the effect of considering different viscosity

parameters other than those which were used in the numerical

calculations described here. The relationships describe the

effect of convection on the rate of cooling, subsidence, geoid

height anomalies and heat flow out of the lithosphere. The

parameterization is general and should apply even outside of

the range of the numerical models which have been carried out.

Future work that might be done as an outgrowth this thesis

include all aspects of the work considered here. It may be

possible to do simple calculations aimed at estimating the

effect of three-dimensional flow on the growth in size of
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small-scale convective rolls. This could be useful as more

gravity data on the approximately linear short wavelength

gravity features over the oceans is collected and analysed.

Data on the variation of the rate of subsidence of the ocean

floor can be analysed in terms of the parameterized model we

have developed. Estimates of the corresponding asthenospheric

temperature variations can be compared to seismic estimates of

those temperatures. Models of oceanic fracture zones should be

considered which include lateral transport of material and heat

with an eye toward a more complete explanation of the offset of

the geoid height anomalies across such areas. For the problem

of lithospheric rifting we need to consider the details of the

growing data set on that topic and also try to develop a simple

parameterized model of the effects of small-scale convection in

that case.
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"There is something to be said for every error, but whatever
may be said for it, the most important thing to be said about
it is that it is erroneous."

-G.K. Chesterton,"All is grist."

Appendix: Governing Equations and Numerical Methods

A.1 Introduction

This appendix is a discussion of the equations and

numerical techniques used for this study. The governing

partial differential equations are given. These equations are

highly nonlinear, therefore numerical methods must be used to

solve them. Various numerical methods are briefly reviwed and

the basic form of the finite difference approximations to the

governing differential equations are given. Next, a method to

deal with curved solid no-slip boundaries, called the "repeated

corner" method, is developed. A comparison between the use of

Jacobi iteration formulas to solve the difference equations for

a range of viscosity profiles and a more recently developed

direct technique (Sweet, 1975) is described.

A.2 Governing Partial Differential Equations

For this study we solve the Navier-Stokes equations in two

dimensions for mass, momentum and energy conservation

(Batchelor, 1967). They are modified for the problem of flow

in the earth's mantle by dropping inertial terms and terms that

depend on material compressibility (Turcotte et al., 1972).

They are written in terms of a stream function (*) and a

vorticity (w) as:
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ao aO (l30 u * 3 + w * + V2 0 + H (A.1)
at 3x az

T 32u 32 32U 32* 321 ;2
V2 (pm) = Ra + 2 2 -( (A.2)

ax ax2 az2  az2 ax2  axaz axaz

V2 p = : 2 + (A.3)
3x2  az 2

where the non-dimensional variables are: 0 = (T-To)/AT where

T = temperature, To = temperature at top of box, AT =

temperature difference initially across box; t = time ; p =

viscosity ; x is the horizontal coordinate and z the depth

u,w = x and z velocities ; u = 6 /6z, w = -(6*/px) , H = (h

L2 )/pcp, with h in joules/sec, is the heat production rate; L

is a length scale, usually the height of the box, and

Ra = gaATL 3 /pK is the Rayleigh number. Horizontal distance is

measured by x and z is depth as shown in figure 1.

A.3 Numerical Methods

A.3.1 Review of Methods

Many kinds of numerical methods have been used to solve

equations (1)-(3) to study finite amplitude thermal convection

since they cannot be solved analytically. We will briefly

describe the different methods which are used and explain why

the finite difference scheme we use was chosen. Torrance

(1979) has reviewed three major types of numerical methods used

to study solid-state convection: finite differences, the

finite element method and spectral methods. He notes that

finite differences have reasonably well understood accuracy,

stability and convergence characteristics. The coding for

finite differences is simple and computer storage is modest.

For finite elements stability and accuracy are not well
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understood, but some comparisons wtih finite difference results

have been carred out for complex rheologies (Christensen,

1982). The greatest drawback to the finite element method is

the large amount of computer space and time required for

calculations with even modest resolution. Finally, spectral

methods have not been extended to complex rheologies, such as

are considered here. It is the very large computer storage

which have caused us to choose finite differences in solving

equations A.1 to A.3. Finite element studies have recently been

successfully used with complex rheologies (Kopitze, 1982;

Christensen, 1982, 1984; Fleitout and Yuen, 1984), but the

meshes considered have been considerably coarser than those used

here, and large computers were used in their calculations.

A variety of finite difference schemes exist to solve

problems in thermal convection. A common features of these

schemes is that the governing partial differential equations

(1-3) are approximated by finite difference equations. The

values of field variables are defined at discrete points in the

solution domain (grid points) and the partial derivatives of

these variables appearing in the governing equations are

approximated by finite difference derivatives, as noted by

Parmentier (1975). Roache (1982) discusses the general

application of finite difference methods to problems in fluid

mechanics. Problems of thermal convection with variable

viscosity using finite differences have been carried out by

Torrance and Turcotte (1972), Andrews (1972), Houston and

DeBraemaker (1974), Parmentier et al. (1976), Toksoz and Hsui

(1978). The stream function can be computed either by solving
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two second-order equations (2) and (3) as is done by Torrance

and Turcotte (1972), Parmentier et al. (1976), and Toksoz and

Hsui (1978) on a single fourth-order equation as is done by

Andrews (1972) or Houston and DeBraemaker (1974). The energy

equation (eqn. A.1) can be solved using an explicit method as is

done by Turcotte et al. (1973), Parmentier et al. (1976),

Parmentier and Turcotte (1978) and others or by using the

alternating direction implicit method as in Houston and

DeBraemaker (1972). Other implicit methods (Sweet, 1975) will

be evaluated here for the solution for the stream function.

A.3.2 Basic Finite Difference Forms

The basic forms of the finite difference approximations

which we will use for solving the Navier-Stokes equations A.1

to A.3 are taken from Turcotte et al. (1973). They are valid

only for grids with uniform spacing between grid points. They

are included as background to the development of a method to

treat irregular boundaries. Also, we will use a general form of

the finite difference equations, described by Parmentier (1975),

so that irregular mesh spacings may be used. The spacial

derivatives in equations A.1 to A.3 are approximated using three

point central differences:

Si+l,j - 0 i-l,j
(2) ij - (6x)ij 2x

32 2 i+lj - 20i,j + i-l,j (A.4)

a2®= 0 i+l j+l- 0 i+l j-l-i-1, j+l+i-1, j-i
S = (6x)z)ij -

axaz i,j 4AxAz
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where the subscripts (i,j) denote the ith grid point in the

x-direction and the jth point in the z direction. The

expressions are accurate to 0(Ax 2 ).

The advective terms of equation A.1 are approximated using

the upwind difference form discussed by Torrance (1968):

(u * ~]) i (6x[UT])i-j = 2 (x - IUT l)i+lj

+ (UTi j + IUTi,j - UTi-l, j + IUTi-l,j l)0i,j

- (UTlj + IUTij)0Ei-l,j} (A.5)

where:

UTij 2 (Ui+l,j + Ui,j)

(A.6)

UTil,j 2 (Ui,j + Ui-1,j)

This is a conserving form of upwind differencing. This one-sided

difference form has the advantage over central differences of

numerical stability but it introduces an O(At,Ax) truncation error.

All space derivatives are evaluated at a time tn. The time

derivative is given by the forward difference:

n+l n
(, n 0 i - ij (A.7)
at i,j At

We then have an explicit marching difference form for the

temperature equation:

0n+l _ n

i,j i,j n n n
- (x* [UT]) - (6z*[WT]) + (6x20 + 6z 2 0) + Hi,j

At i,j i,j i,j

(A.8)



241

H L 2

Hi, Cp AT K

The representation of the vorticity and stream function equations

(A.2 and A.3) are

6 x 2nw] + 6 z [nw])i,j = 2(6x n2 YZK - n 6 x (A.9)
(A. 9)

+ 6 x6zn[,zw-6xu])i,j + Ra(6x0)i,j

and:

Wi,j = (6x 2 f)i,j + (6z 2 )i,j (A.10)

The given finite difference equations conserve heat and vorticity

in transport between grid points. A scheme of difference equations

which is conserving as well as allowing for non-uniform grid

spacing was developed by Parmentier (1975). This was used in the

present study to allow fine meshes in the regions of rapidly

varying viscosity, temperature and stream function, while not

having an inordinate number of grid points overall.

The boundary conditions on the temperature stream function and

vorticity must be written in a suitable difference form. The

temperature boundary conditions are either constant temperature or

constant heat flux. For a zero heat flux boundary condition an

extra row of grid points is added outside the boundary with the

temperatures set equal to the first internal row of points.

Equation 8 is used to advance the temperatures along the boundary.

The stream function is set to be zero along all the

boundaries. This ensures that the velocity normal to the boundary

is zero.

The vorticity boundary condition is different for a zero
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stress than for a no-slip condition. For zero stress the boundary

value of the vorticity (wb) is set to zero. For fixed boundaries

a one-sided difference approximation of the vorticity equation

is used. We advance the boundary vorticity using:

2n4i, 1 (A.1I)
i(A) 2  (A.11)

The numerical stability of the individual equations can be

guaranteed. The stream function and vorticity equations (A.9

and A.10) may be rewritten as Jacobi iteration formulas for *i

and wi,j, respectively. Stability on the interior of the mesh

is assured for the equations alone, but at a solid boundary

where the viscosity decreases away from the boundary Parmentier

(1975) has a linear instability. He combines a one-dimensional

stability analysis with experience with two-dimensional

calculations to find that the condition on the Jacobi iteration

factor (8) which insures stability of the vorticity-stream

function equations is:

S <  (V2,j] J(A. 12)
< , j minimum

Here pl,j is the viscosity at the jth boundary point and P2,j

at the one grid space away from the boundary, the minimum

subscript refers to the minimum value over the fixed boundary.

The time step used to advance the temperature equation

must be restricted to ensure stability as described by Lax and

Richtemyer (1956). Their definition of stability is that the

numerical solutions will converge to the exact solution of the

differential equations as AX, AZ and AG tend to zero. The
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required condition on the time step is:

At 4 [1 (IUTi.j I + IUTi l) + 2 (Ir + UTi I2Axj i-,j

+ 2 + 2 ]- (A.13)
(AX) 2  (Az) 2

Again the minimum (At) over the grid is used as the time step.

The stability of each of the equations A.8 to A.10 is

insured with the foregoing restrictions on the boundary

vorticity Jacobi factor and time step, but the stability of the

coupled system of equations is not. As a practical way to damp

instabilities in the system the Jacobi factor for the vorticity

and the stream function equations was set to be the same one

used for the boundary vorticity equation (A.11).

A.3.3 Repeated Corner Approach to Curved Boundaries

In dealing with the problem of cooling of fluid with

strongly temperature-dependent viscosity, which we do here, it

is found to be computationally advantageous to make the fixed

flow boundary approximate an isoviscous line. The method

described here is applicable to the case when the viscosity

decreases away from the boundary and the exact motions in the

vicinity do not need to be accurately modelled. This is true

because we can choose a viscosity value for the boundary line

which is high enough that the flow near the boundary is

negligible compared to the flow in regions of lower viscosity.

The problems considered here are transient and the position of

an isoviscous line changes with time through the course of a
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calculation. Therefore, we want a method of approximating the

position of the no-slip boundary which uses the grid point

positions initially chosen for the problem and can easily be

adjusted at each time step.

The method we use to calculate the boundary vorticity on

an irregular boundary is illustrated in Figure la. The smooth

isoviscous line is approximated by the jagged one which goes

through the grid points closest to that line. Where the

boundary through the grid points is horizontal or vertical on

both sides of a boundary grid point the standard expression

(equation A.11) is used to update the boundary vorticity. At

corners of the boundary a special treatment using discontinuous

values of the boundary vorticity is employed, shown in Figure

lb. The use of discontinuous values in specifying the boundary

conditions was suggested by Richardson (1910). Its use for

evaluation of the boundary vorticity was suggested by Thornm and

Apelt (1961), Roache and Mueller (1970) and Kacker and Whitlaw

(1970). Roache and Mueller (1970) evaluated several methods of

dealing with the vorticity at a sharp corner and concluded that

allowing dual values at the corner point is the best method.

The two values of vorticity at the corner grid point correspond

to second derivatives of the stream function in the x and z

directions, respectively. The corner vorticities can be

thought of as place holders of the value of the vorticity for

the two directions defined by the grid lines. There is no

reason for these values to be equal at a corner. Calculations,
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such as those described in Chapter 2, were done with both the

method of "repeated corners" and with the fixed boundary taken

to be straight and horizontal give the same results, but the

"repeated corner" approach was more efficient. The

calculations described in Chapter 4 where the geometry of the

temperature structure is more extreme would have been too

costly to do without this method.

The sequence used in doing the calculations was as

follows:

(1) Set up a system of grid points which gives fine

spacing in the areas where quantities vary rapidly.

(2) Give initial temperatures to all grid points.

(3) Check for minimum time step At using equation A.13.

(4) Advance the temperatures in time with equation A.8.

(5) Select the flow boundary according to the viscosity,

which is calculated from the temperatures using an

equation for viscosity which will differ for the case

considered. The boundary points will lie below a

prescribed viscosity cutoff value. The advancement factor

8 is determined by applying equation A.12 to the rigid

boundary points.

(6) Advance the vorticity w at the grid points interior to

a boundary using equation A.9.

(7) Using equation A.10 the stream function * is brought up

to date with the new vorticity values by applying it to

the interior points and iterating until a satisfactory
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level of convergence is achieved. The convergence

criterion used here is that the maximum change in * from

one iteration to the next at a given grid point divided

by the maximum value of 9 must be less than 0.0001.

(8) The vorticity on the rigid boundaries is determined from

the most recent values of the ' and w fields using

equation A.11 once if the boundary is flat and twice if

it is a corner.

(9) The vorticity field is iterated to convergence by

repeating steps (6) through (8) until a convergence

criterion, defined the same way as for *, of 0.0001 is

achieved.

(10) Calculate the velocity field from the stream function

values using centered differences and continue to step

(3), unless the model time computed by summing the time

steps is greater than a value set for the run to end.

A.3.4 Test of Alternative Numerical Method

A comparison was made between the method just outlined and

another method of solving the finite difference system of

equations (A.8 to A.11). The new scheme uses a recently

developed numerical technique to solve the Poisson equation for

the vorticity on the interior mesh (equation A.9) and the

stream function equation A.10, while everything else is

calculated as listed above. The individual Poisson equations

are solved simultaneously for the values of the function (w or

' ) for all grid points using a cyclic reduction algorithm

developed by Sweet (1974). The advantage to this method is
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that no iteration is required on the individual vorticity or

stream function equations to get the field values which

satisfy the equations. The problem is that the two equations

(A.9 and A.10) are coupled by the terms in the vorticity

equation which depend on second derivatives of the viscosity

field multiplied by derivatives of the stream function. Thus

for cases of constant viscosity or where there are only linear

viscosity gradients use of the cyclic reduction algorithm to

solve the equations for w and p require just one iteration each

and is much faster than the Jacobi iterative technique (see

Table A.1). This is not the case for viscosity which changes in

a more complicated manner. A series of calculations was done

in a square box with an even mesh of 16 x 16 grid points for

both methods. The viscosity was taken to be depth dependent

only and is given by:

P (z,x) = e-Y z  (A.14)

Where y is varied from 0 to 20. With a reference viscosity of

1.0 the Rayleigh number was 8.3 x 104. Damping is used for

vorticity values in the method using the fast Poisson equation

solver. This is done in a similar fashion to damping using hte

relaxation method (Roache, 1982). After each iteration the new

vorticity value at each point (N+1) is given by:
1,

WN+1 N + Zrel * wpois (A.15)
i,j i,j i,j

where wPois is the vorticity value resulting from solving the
1,]
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vorticity equation with a matrix method such as cycling

reduction and zrel is the damping factor.

The results of the comparison are summarized in Table A.1.

For the method using Jacobi iteration or the equations the

number of iterations and amount of computer time to achieve

convergence of the solution, so that the vorticity and stream

function fields are in equilibrium with the given temperature

field, initially goes down with increasing value of y then goes

up again. This is due to the two factors which control the

rate of iterative convergence of the coupled equations. One is

the average viscosity over the region of the calculation and

the other is the size of the coupling terms in the vorticity

equation. The average viscosity goes down with increasing

value of y, but the size of the second derivative of viscosity

with respect to depth i-creases with increasing y. For the

case of using the matrix methods to solve the vorticity and

stream function equations it was found that the damping factor

(zrel) had to be reduced for increasing y to achieve stability

of the system. Also the number of iterations required for

convergence went up with increasing values of y. The constant

viscosity case (y = 0) required only one iteration of the

vorticity equation to achieve convergence. Experience with the

matrix method applied to these equations for the cases given in

Table A.1 and for more general cases of variable viscosity it

was found that the damping factor required to achieve stability

is given by:
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zrel = Ra 2 _ 2 (A.16)
2s2-.62* - 62Tg2 - 2(6x6zn*6x6z1 )]

x I min

which is the minimum ratio of the linear term to the coupling

term in the vorticity Poisson equation over the grid. For

viscosity fields which depend strongly on temperature and

pressure, as is the case for the models considered in this

study, the value of zrel given by equation (A.16) often becomes

very small (< 10-6 ). This was found to slow the convergence to

an iterative solution to the system so that it was impractical

to use this method. Thus, in all the discussions which follow

the Jacobi iteration method is used to solve the vorticity and

stream function equations.
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TABLE A.1

Y zrel itz cpu zrel itz cpu

I I I I I I I
0 1.0 58 14.3 1.00 1 2.6

1 1.0 54 14.1 .98 4 3.3 I

5 1.0 31 9.2 .60 9 4.4

10 1.0 24 7.04 .18 30 9.0

20 1.0 53 11.03 .01 80 24.3

Table A.1. This is a comparison of the program using relaxation on

the vorticity and streamfunction equations and a program where

those equations are solved using the a direct method (cyclic

reduction using the POIS subroutine of Sweet, 1974). For the

optimal value of the damping factor (zrel), as determined by trial

and error, the number of iterations of the vorticity equation (itz)

required for convergence and the total c.p.u. time to do the

calculation on a Honeywell Multics systen is shown in seconds. The

calculation was for a square box with 16 x 16 evenly spaced grid

points with a viscosity which only varied with depth accorinding to

the formula M = exp[-yz], where z is the non-dimensional depth in

the box. The temperature variation was linear with depth through

the box with a cosine variation in the x-direction. The Rayleigh

number was 8.3 x 104.
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Table A.2

Table of Defined Parameters

S - Dynamic viscosity

E - Pre-exponential in viscosity relation

V* - Effective activation volume; takes into account the
effect of an adiabatic temperature gradient

Sref - Initial viscosity at 150 km depth in the model

R - Universal gas constant

Tm - Initial temperature inside box

Wb - Width of numerical box

Db - Depth of numerical box

Qc(z) - Horizontally averaged advective heat flux

w - Vertical component of velocity

Tcm - Average temperature of the convecting region

TL - Average non-dimensional temperature of conductive lid

s - Subsidence defined using TL

ZL - Depth of the base of conductive lid (or lithosphere)

- Parameter which defines the rate of movement of the
base of the lithosphere; depends on convective vigor

Zc - Depth of compensation

H - Isostatic geoid anomaly

Th(z) - Horizontally average temperature

GT - Gravity anomaly due to two-dimensional density
anomalies

v - Kinematic viscostiy (p/p)

P - Pressure

Szz - Total normal stress

TZZ - Deviatoric normal stress
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n - Non-dimensional viscosity

aT - Surface normal stress due to lid temperature
variations

aws - Total surface normal stress

E(x) - Vertical deformation of the surface assuming
point-wise isostatic response to the surface normal
stress

Ef(x) - Vertical deformation given an elastic plate flexure
reducing the effect of the normal stress

D - Flexural rigidity estimated for the oceanic elasitic
lithosphere

GE - Gravity anomnaly due to Ef

Go  - Component of GE due to convective stresses

GL - Component of GE due to lid temperature variations

Qs - Average surface heat flux

Zp - Position of phase boundary in classic Stefan problem

L - Latent heat of fusion

Tp - Temperature of the phase change for the Stefan

problem

T, - Temperature at a depth and time for the solid region
in the Stefan problem

Tsc - Average temperature in the solid region for the Stefan
problem

Qcmax - Maximum horizontally averaged heat flux; equated to
the steady state Nusselt number

- Length scale for the flow weighted by advective heat
flux

- Dissipation averaged viscosity

Nu - Nusselt number

Ra - Rayleigh number
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FIGURE CAPTIONS

Figure A.la. Schematic shows the way a curved boundary of a

isoviscous line is approximated by a boundary with corners for

the numerical approximations described in the text.

Figure A.1b. Blow-up of a portion of figure la showing one

sharp corner and the way in which the boundary vortiity is set

at that corner. The two expressions for the boundary vorticity

for the vertical and horizontal directions are given.
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CURVED BOUNDARY APPROXIMATION

x

ISOVISCOUS LINE

NUMERICAL BOUNDARY

Figure A.1 (a)

zI

I|
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VORTICITY AT CORNERS

WA( i, j) = -2 (i+l,j)/(dz) 2

OB(ij) = 2 ,'(i,j+1) /(dx) 2

Figure A.1 (b)
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