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ABSTRACT

In the present thesis we introduce a new method based on both boundary inte-

gral and Gaussian beam methods to compute full waveform synthetic seismograms

of SH waves propagating in two dimensional inhomogeneous media with irregularly

shaped boundaries. In dealing with such complex media, we use the so called "sin-

gle layer potential" integral representation of the scattered field, in which artificial

wave sources are regularly distributed along the boundaries. Green's function for

displacement and traction (acting on a plane of normal vector h) at an observa-

tion point due to each wave source are computed by superposition of Gaussian

beams. The total field is the sum of the incident wave and the field radiated

from all sources, each multiplied by an unknown complex constant representing

the strength and phase of its wave source. These constants are determined by im-

posing the appropriate boundary conditions in the least-squares sense. To test the

method, we have computed the scattering of plane SH-waves by a semicylindrical

canyon and a mountain of cosine shape; and the surface motion of a semicylindri-

cal alluvial valley in a half-space due to incident plane wave. Our results are in

excellent agreement with the available exact or other reliable numerical solutions,

for the same problems.



The first application of our method is a problem of some volcanological in-

terest, namely, the effect of hard and soft inclusions on the surface motion due to

vertically incident plane waves. Both time domain and frequency domain solutions

are needed to fully understand the contributions of transmission, reflection, diffrac-

tion and resonance phenomena in the whole system of inclusion and free-surface.

Interestingly, both low and high velocity inclusions reduce the amplitude of the

incident wave at the surface above the inclusion, suggesting a serious non-unique

inverse problems using amplitude data.

The second application is two problems of interest to strong motion seismol-

ogy. We found several important effects of linear increase of velocity with depth

on the surface motion of mountains as well as sedimentary basins due to incident

plane waves.

The third application is the deterministic study of seismic scattering in a

media containing many scatterers with scale lengths comparable to the wavelength.

The full waveform of multiply scattered SH waves by many cylindrical cavities in

two-dimensional homogeneous media is computed. We solve scattering problems

involving one, two, four, twelve and fifty cavities regularly distributed in a half-

space. The validity of our results is tested using the exact solution for the case of a

single cavity and using the physical interpretation in terms of ray paths associated

with multiple reflection, transmission and diffraction for other cases. Finally we

apply the method to compute the case of fifty cylindrical cavities, each of radius

a, randomly distributed in a region 80a wide by 30a deep in a half and full spaces.

The scattering loss of incident waves is estimated for wavelengths in the range

from 1.7a to 13.3a, using the synthetic seismograms calculated for the full-space

case. We found that the value of Q- 1 increases with kd (wavenumberx2a) in the

region where kd < 2, peaks at kd = 2, and decreases proportional to (kd) - 1 for

kd> 2.
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CHAPTER I

INTRODUCTION

1.1 Purpose

In this thesis we use the boundary integral method (BIM) and the

Gaussian method for obtaining solutions to problems involving scattering of

seismic waves incident upon complex subsurface structures. The examples

of problems that we solved here are mainly from two research areas in

Seismology, namely the so-called "site effect", or the amplification effect

of the near-surface on strong ground motion during earthquakes, and the

scattering and attenuation of short period (less than 1 sec.) seismic waves

in the heterogeneous lithosphere.

As a result of geological processes such as weathering, erosion and de-

position, the near surface structures may be composed of soft soil layers

and/or exhibit strong lateral and vertical variation of the seismic wave ve-

locities. These geological conditions cause complex wave phenomena such

as resonance of waves trapped in the soft layers, and interference of the

scattered waves generated by the irregularities. The accurate quantifica-

tion of the site effects has been the subject of extensive experimental and

theoretical work since Takahasi and Hirano (1941) observed the ground re-

sponse of sites with different geological conditions for the same earthquake

and interpreted observed response in terms of an explicit formula for the

amplification factor of a soft soil layer over a half-space with a flat interface

for incident plane S waves. Seismologists and earthquake engineers have

been developing methods that could reliably predict the ground displace-

ment, velocity, acceleration and their variation in space, time and frequency



domains, in terms of input wave fields and geological structures of the site.

The goal is to assess effects of the local site conditions on the strong ground

motion parameters for a large earthquake. Literatures on the state of the

art methods to evaluate site effects have recently been reviewed by Aki

(1988). While most of these methods consider the effect of complex geom-

etry of structures in 2-D, and sometimes in 3-D, they usually neglect the

effect of velocity and density gradients with depth. Other methods applica-

ble to the study of effects of these gradients usually neglect the effect of the

lateral variation of topography and interface by simplifying the problem to

1-D (e.g. Idriss and Seed 1968). The understanding of realistic situations

requires the combination of both effects. For instance, observations made

by Tucker et. al. (1984) at ridge sites that showed an amplification fac-

tor up to 8 could be predicted neither by inhomogeneous models with 1-D

geometry nor by homogeneous models with 2-D geometry, and it was con-

cluded that accurate predictions required a model that included both the

ridge topography and the near-surface velocity gradient (Bard and Tucker,

1985). Also, as pointed out by Bard and Gariel (1986-a), sediment-filled

basins present strong vertical variations of the seismic wave velocities with

depth, as a result of soil compaction.

A usual approach to solve this problem is to simulate the gradient

with a stack of thin homogeneous layers whose velocity increases stepwise

with depth, and use an hybrid scheme that combines both Finite Element

and Boundary Element methods to treat layered basins (Fukuwa et. al.

1985). However, there is a difficulty arising from this procedure. The

velocity discontinuities at each interface of the stack of layers introduce

impedance contrast effects not present in the case of smooth increase of



velocity, leading to incorrect values of the resonant peaks of the overall

response of the inhomogenoeus structure, in particular for high frequencies.

Moreover, when the velocity gradient is strong the number of homogeneous

thin layers in the stack must be increased in order to reduce the interface

impedance contrast effects. This makes the procedure highly costly and

cumbersome.

The response of an inhomogeneous layer over a homogeneous half-

space to incident plane waves has resonant peaks at different frequencies

than the resonant peaks of the homogenoeus layer (Burridge et.al. 1980),

and the former peaks have slightly greater amplitudes, for any incidence

angle. Bard and Gariel (1986) was the first to study the effects of irregular

boundaries of a surface layer with velocity variation within the layer. They

computed the effects of linear velocity gradient on the response of 2-D

basins, by incorporating the analytical solution of the wave equation in

inhomogeneous unbounded media into the Aki-Larner (1970) technique.

They considered a velocity gradient of about 12 m/sec/m and frequencies

in the range of 0 to 15 Hz. Their method gave results in a good agreement

with those obtained for the model that replaces the gradient with a nine

homogeneous layers stacked in a 60 m depth range, for frequency 15 Hz.

However the agreement breaks down as the number of layers decreases to

five. They found that these velocity gradients do not alter much the general

qualitative behavior of the basin with respect to the homogeneous case. In

other words, 2-D resonance and local surface waves are still observed, but

the amplification factor obtained may be much larger than the one obtained

by neglecting either the 2-D heterogeneities or the velocity gradient. In

addition, it appears that the edges of the valley undergo larger differential



motions, in comparison to the basin with a homogeneous sedimentary layer.

The method developed in this thesis is intended to offer an alterna-

tive way to solve the above problem. It is essentially a boundary integral

formulation of the scattering problem, where the wave field is expressed as

the superposition of seismic sources distributed along the free surface arid

interface. The field due to each source, or Green's function, is calculated for

unbounded media and is approximated by the superposition of Gaussian

beams.

In the past, integral equation techniques to solve a particular differen-

tial equation under certain boundary conditions were considered analytical

rather than numerical. They were developed, for instance, to obtain closed

form solutions for Laplace's equation type problems (Kellog 1953), potential

problems (Smirnov 1964) and diffraction of acoustic waves problems, which

are governed by Helmholtz equation (Morse and Ingard 1968). In the pre-

computer era their applications were limited to some particular geometries

that conform to a suitable coordinate system (Morse and Feshbach 1953).

With the help of modern computers and by incorporating the variational

principle, these techniques were combined with other approximate meth-

ods such as the so-called "collocation" and least squares methods (Brebbia

1978), and gave rise to a new class of powerful hybrid methods applicable

to a wide variety of problems. The method proposed here belongs to this

class. Our assumption is that if the wave field of a single point (line) source

in inhomogeneous full-space can be well represented by a superposition of

Gaussian beams, then it can be used in a boundary integral method scheme,

which has been proved extensively to be effective in dealing with problems

involving boundaries with irregular geometry.

14



A Gaussian beam is a high-frequency approximate solution of the

wave equation, introduced into Seismology by Cerveny et. al. (1982) and

Cerven' and Pencik (1983 a,b). A method that uses a superposition of

Gaussian beams has been developed to evaluate the seismic field in smooth

media, i.e. media for which its material properties and geometrical fea-

tures vary slowly in space within a wavelength; or equivalently, that the

wavelengths considered are much shorter than the scale length of hetero-

geneities. Within the limits imposed by these restrictions, the method has

been tested and succesfully applied to a variety of geophysically interesting

cases, by Nowack and Aki (1984), Cerven' and Psencik (1984), Madariaga

(1984) and Madariaga and Papadimitriou (1985), Yomogida (1985), and

more recently by George (1987). In all these works, when the medium con-

tains planar or curved interfaces, boundary conditions are satisfied locally,

for each beam, at the point where its ray hits the interface. New initial

conditions are set for the reflected and transmitted beams, and again these

are propagated individually towards the next boundary. At the end, direct,

transmitted and reflected beams that pass close to the receiver are super-

imposed. A difficulty of this approach is that the results are very sensitive

to the smoothness of the media and to the choice of the initial value (at

the source) of each beam parameter. The application of this approach to

compute the response of subsurface structures with strong lateral hetero-

geneities and large impedance contrasts may be cumbersome and lead to

incorrect results. In particular, the correct description of the resonance phe-

nomena in a soft layer would require many accurately calculated reflected

and transmitted rays.

The above problem is eliminated in our approach by representing the



reflected and transmitted fields by seismic wave sources located at both

sides of an interface and determining their strengths to satisfy the bound-

ary conditions at the interface. From each source Gaussian beams having

the same beam width are radiated at angle increments, to synthesize the

wavefield in each medium. The boundary conditions are then matched

globally along the interface, in the least-squares sense. The smoothness

of the medium is required to guarantee that each point along a given in-

terface is densely illuminated with the beams radiated from the sources

distributed along the interface. The choice of the initial beam width does

not affect seriously the overall results because its effects are smoothed by

the least-squares procedure to find the multiplicative complex constant that

represents the strength of each source interacting with all other sources and

with the input motion. In this thesis, our method is applied only to an-

tiplane, or SH, waves in a layer with a simple 2-D shape having velocity

which varies linearly with depth, but it is straightforward to extend it to

P and SV waves in multiple layers with irregular boundaries with more

general variation in velocity. All we need is to establish the appropiate

source distribution to represent the elastic wave scattering from the irregu-

lar boundaries and implement a one-point ray tracing to construct Green's

function for each source. The rest of our algorithm remains the same for

any case.

Regarding the second class of problems mentioned at the beginning

of the present Chapter, namely seismic scattering and attenuation in the

lithosphere, we have used the boundary integral method to solve deter-

ministically multiple scattering problems involving SH waves in media with

many inclusions. Our solution for the total field includes all scattered waves



all inclusions, and is computed for incident wavelengths comparable with

the size of the inclusion. The wavefield is again represented by the dis-

tribution of artificial wave sources along the surface of all inclusions, and

the boundary conditions are satisfied in the least squares sense. For the

solution of this problem we used exact Green's function for homogeneous

unbounded media. Our purpose was to compute the attenuation factor of

the primary wave in media where the inclusions are distributed randomly.

This problem has been addressed e.g by Varadan et. al. (1978) who studied

SH waves scattered by cylinders of arbitrary cross-section, using T-matrix

representation of the wavefield (Waterman 1969) and statistical approach

based on an average procedure, and by Matsunami (1988, 1990), who stud-

ied scattering attenuation in duralumin plates with randomly distributed

holes, using ultrasonic techniques. The relevance of the problem to the

study of seismic scattering and attenuation in the lithosphere is well known

as reviewed in Wu and Aki (1988, parts I, II, III), Toks6z and Johnston

(1981), and Herraiz and Espinosa (1987).

Although the particular model studied in this thesis, namely, cavities

of circular shape in a homogeneous medium, is not directly applicable to the

lithosphere, we believe that by solving the wave scattering problem deter-

ministically including all multiple scattering effects, we are able to assess

the applicability of various approximate methods developed to compute

scattering and attenuation for more realistic earth models. For example,

analytical solutions have been obtained for random media characterized by

spatial autocorrelation of various forms such as the exponential and Gaus-

sian, using the first Born approximation (Chernov 1960). The same random

media characterization was used by Frankel and Clayton (1984, 1986) in



their finite difference simulation of scattering. Their results on scattering

loss of incident wave per unit distance of propagation showed disagreement

with the results obtained under the Born approximation. In the present

thesis we shall compare the frequency dependency of the scattering loss of

incident waves obtained by various approximate methods with our solution.

1.2 Scope and Chapter Contents.

The basic formulation of our method is described in Chapter II, giv-

ing first a brief summary of both the boundary integral formulation of the

wave scattering problem and the Gaussian beam solution for an SH wave.

Then, we describe the procedure to combine them in compliance with the

boundary conditions of the problem. An important step in this procedure

is to represent the traction as superposition of Gaussian beams of the same

type as those used to represent displacement. Instead of developing a new

asymptotic expansion for stress, we differentiate the Gaussian beam for

displacement with respect to the vector normal to the boundary and super-

impose them in a similar manner as for displacement. This approximation

appears to be accurate as long as the number of beams used to represent

displacement is increased for traction. In this Chapter II we also test the

method by solving problems with known exact solutions and those obtained

by other reliable approximate methods. We have chosen examples involv-

ing only homogeneous media for this purpose. First we deduce an explicit

expression for the Gaussian beam representation of displacement and trac-

tion in homogeneous media, using a geographical coordinate system. We

compute the wavefield (Green's function) due to a line source in unbounded

medium using superposition of these Gaussian beams, for various choices of

the initial beam width, radiation angle range and total number of beams in



a synthesis. Their effects are studied by comparing displacement and stress

fields with the corresponding exact solutions given by the Hankel func-

tions of first and second kind, (order zero), respectively. Those values are

adjusted in order to best fit both solutions (beam superposition and exact

formula) in the spatial range considered in the testing examples. We choose

as testing examples the scattering by ridge, canyon and alluvial valley, all of

which have the cylindrical shape with a semi-circular cross-section. Results

are given in frequency domain.

In Chapter III we have applied the boundary integral-Gaussian beam

method to calculate the effects of a cylindrical inclusion on the surface

ground motion of a homogeneous half-space. The inclusion is considered

either "hard" or "soft" when its velocity is larger or smaller than, respec-

tively, that of the half-space. Our results are given in frequency and time

domains. We found a surprising result that both soft and hard inclusions

cause deamplification of surface motion above the inclusion. The effect is

attributed to scattering and trapping of energy in the case of soft inclusion,

and to scattering and defocusing in the case of hard inclusion.

In Chapter IV we apply the method to the scattering of SH waves in

inhomogeneous media with irregular topography and interface. We describe

the algorithm to find Green's function in media with linear velocity gradient

by superposition of Gaussian beams. The computation of radiation angles

for given source-receiver positions, the ray-centered coordinates without

involving ray tracing, and the summation of Gaussian beams is performed

by a computer program subroutine called INGREEN. Amplitude and phase

of Green's function for displacement and traction are shown for various

choices of the velocity gradient. The scattering problem is solved for a



ridge in the inhomogeneous half-space and for an inhomogeneous cylindrical

alluvial basin embedded in a homogeneous half-space, for various values of

velovity gradient and frequency.

Chapter V is devoted to application of the boundary integral method

to compute synthetic seismograms in media with many inclusions. For sim-

plicity we consider cylindrical cavities in full and half spaces for the incident

SH plane wave or point(line) source. The seismograms are computed for

wavelengths ranging from 30a to a, where a is the radius of the cavities.

The validity of our solution was tested succesfully against known analyt-

ical solution for the case of a single cavity, and by measuring normalized

residual tractions along cavity boundaries for many cavities. We analyzed

the scattering due to cavities distributed at regular spatial intervals, and

identified various phases associated with ray paths for multiply reflected

and diffracted waves. Finally, we compute synthetic seismograms for scat-

tered wave field generated by many cavities randomly distributed in full

and half spaces. We used the seismograms obtained for the full space case

to compute the attenuation factor Q-1 of the direct wave due to scattering

loss. The resulting scattering Q- 1 as a function of incident wave number

k times the diameter d = 2a showed a peak around kd = 2, and Q-

decreased proportionally to k - 1 for kd > 2, in agreement with the result

based on the Born approximation as well as the simple argument based on

ray theory.



CHAPTER II

DESCRIPTION AND TESTING OF THE METHOD

2.1 Introducction

This Chapter has two main purposes. The first is to give the theoret-

ical formulation of our method starting with some basic concepts of both

the boundary integral and Gaussian beam methods that are relevant to

the problems addressed in this work. The second is to test the method by

solving some problems with known analytical solutions, or with available

solutions by other reliable numerical methods. In section 2.2 we introduce

the so-called "single layer potential" of the wavefield for scattering prob-

lems, based on wave source distribution (Ursell, 1973). Briefly explained,

the boundary conditions of the problem are imposed on the integral rep-

resentation of the wavefield, leading to an integral equation in which the

kernel, or Green's function, incorporates the values of the wavefield at the

boundaries into the solution for the total wavefield. In general, the integral

equation is solved numerically by means of discretization of the boundary.

This and other boundary methods have emerged from the integral repre-

sentation of the wavefield in heterogeneous media (see for instance Mow

and Pao, 1971), where the heterogeneities are homogeneous region of dif-

ferent elastic properties enclosed by boundaries. They have been succesfully

applied to solve various types of wave propagation problems in Engineer-

ing and Seismology (Brebbia 1978, Dravinsky 1982, Kawase 1988). From

the computational point of view, the use of boundary integral is for most

cases more convenient than Finite Element and Finite Differences methods

since we do not have to discretize the whole body but only the boundaries.



While the boundary methods share a common foundation, they differ on

their discretization scheme and the way in which Green's function is eval-

uated. We use a discretization based on distribution of point (line) sources

along the boundary of two different media for homogeneous and inhomoge-

neous media. Our Green's function can be exact for homogeneous media, or

computed by superposition of Gaussian beams for inhomogeneous media,

and the boundary conditions are imposed in the least-squares sense. Crite-

ria to select the source distribution for optimal compliance of the boundary

conditions are given. We use first the simple case of an irregular free-

surface topography to introduce the boundary integral method, and extend

it to more complicated structures involving different media and irregular

interfaces.

In section 2.3 we formulate the Gaussian beam solution in a way that is

more appealing to geometrical intuition, instead of presenting the involved

mathematical procedure to obtain the asymptotic expansion of the ansatz

solution of the Elastodynamic equation, which has been extensively de-

scribed earlier (see for instance Cerven 1982). Here we follow the approach

developed by Madariaga (1984) for Gaussian beams in vertically heteroge-

neous media, which is suitable for the later formulation of our method.

The final expression for the Gaussian beam, however, corresponds to the

paraxial ray solution given by Cervenr et.al. (1982). We give in addition

some differentiation formulas to compute the shear stress field in terms of

the same Gaussian beams that represent displacement field. All formulas

are given in terms of the ray-centered coordinates (s,n). The wavefield pro-

duced by a point(line) source in 2-D vertically inhomogeneous media is then

constructed by superposition of Gaussian beams, departing from the source
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point with regular take off angle intervals. In section 2.4 we develop an ex-

pression for the Gaussian beam solution of both displacement and stress

fields in homogeneous media in terms of cartesian coordinates (X, z), and

confirm the validity of the superposition to represent a point(line) source

using an analytical solution given by Hankel function.

Our second purpose in this chapter is to check the accuracy of the

method when Green's function is computed by superposition of Gaussian

beams. This is done in section 2.5. We have selected three examples of

wave propagation in media with strong lateral heterogeneities, which have

already been solved analytically (closed form) or by using other well tested

numerical methods. In subsection 2.5.1 we calculate the response of a

semicylindrical canyon of radius a to incident SH waves for various fre-

quencies, and compare it with the closed form solution given by Trifunac

(1973). In 2.5.2 this example is used to study the effect introduced in the

solution by selecting different values of the initial beam width, number of

sources, number of beams and the range of their radiation angle. In 2.5.3

we calculate the response of a half-space whose free-surface topography is

a cosine shaped mountain. The solution is compared with that obtained

by Bouchon (1973) using the Aki-Larner technique (Aki and Larner 1970),

which has been proved to be accurate for the cases studied. Additionally

the values of traction residual at the free surface are used, as a measure

of the accuracy of the solution. In subsection 2.5.4 we solve the case of

a semicylindrical alluvial valley in a half-space bedrock, for different val-

ues of impedance contrast and frequency. Results are compared with the

corresponding Boundary Element solution (Kawase 1988).

2.2 The Boundary Integral method
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Let us consider the medium to be a homogeneous full-space with a two-

dimensional inclusion of an arbitrary cross-sectional shape C (see Figure

2.1). Referring to a cartesian coordinate system x-z (z-positive down),

a plane SH wave v0 is incident from below. Also, let us start for the

sake of simplicity, with the case in which the inclusion is a cavity. The

total wavefield v at an observation point P (position vector Fp) will be

v('Fp) = vo(rp) + vs(r'p), where vs is the wavefield scattered by the cavity.

As mentioned in the introduction, the scattered field can be written as

v(Fp) - o(FQ)G(Fp IQ)ds (2.1)
C

where o-('Q) is the strength of the source located at 'Q on the boundary,

C is the curve representing the boundary of the cavity, ds is an element of

arc of C and G(r'p 7'Q) is Green's function. This integral representation of

the wavefield is called single layer potential by some authors (Copley 1967,

Burton and Miller 1971, Ursell 1973) corresponding to the role of potential

density cr('Q) at the boundary points. Similarly, a "double layer potential"

j Q ay~4 G(r'p Kr' )ds

will represent a dipole distribution, where (F'Q) is the strength of the dipole

at the point Q on the boundary, and h is the outward unit vector normal to

C. The word "potential" is taken from the potential theory developed by

Kupradze (1979) to deal with elliptic partial differential equations of second

order. In the general formulation of boundary integral equation methods

developed to solve wave propagation problems, equation (2.1) is classified

as "indirect" integral representation because the scattered wavefield v, is

given in terms of the unknown values of the distribution density or (or 7-y for
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Cz /P
Z vo

FIGURE 2.1 A cavity enclosed by the boundary C in an elastic full-space. The incident wave vo

is plane wave or point(line) source. Point Q on the boundary corresponds to the location of a wave

source representing waves scattered by the boundary. The total field, i.e. incident and scattered

waves, are observed at point P.
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dipole) at the boundary. Applying the boundary condition

8v I
S=0

NA Ic

to (2.1), it is found that a(F'Q) satisfies the integral equation (Smirnov 1964)

/ 0 8vo(Fp)
r Q a) - G-G (r Q )ds = 0-

On the contrary, the "direct" integral representation gives v8 in terms of

the known values of the displacement and traction fields at the boundary

(Brebbia 1978). To evaluate the integral in (2.1) we resort to the following

discretization scheme. Let us assume that instead of the continuous wave

source distribution we select N points along the boundary of the inclusion

and assign a line source at each point. The strength o is thus written as

o(r-) = A8j(Q -C, )
j=1

where rQ1, is the vector position of the j - th source.

v(FpV) = vo(FP) + AS( Q
C.

j=1

N

v(Fp) = vo(iFP) N A j (K79
j= 1

v(iFp) = vo(7 7P) + A
j=1

Aj is a complex constant that represents the

at the j - th point on the boundary. Since

given w, it should be written as

(2.2)

Inserting (2.2) in (2.1)

- rQ, I)G(FI'Q )ds

- rQj )G(Fp 'Q )ds

G(Fp I Q, ) (2.3)

strength of the source located

equation (2.3) is derived for a

N

v('Fp; w) = vo(F~p,w) + E Aj(w)GQ(p I-Q, ; w)
j=1
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In general, the appropiate number of sources assigned to the cavity may

vary according to the shape of its cross-section and to its size relative to

the input wavelength.

The problem has been reduced to determine the constants Aj(w).

This is done by imposing the boundary conditions in the least-squares

sense (Sanchez-Sesma and Rosenblueth 1979), i.e. by minimizing the total

quadratic error of the values of shear traction [4- along the boundary:

P O vy 12
L = -I ds (2.5)

C 86i I

where p is the shear modulus and ii the outward normal vector to C at P.

The minimum value of L is found from 9 = 0, which leads to the linearDAj

system:
N

Eri A = bi (2.6)
j=1

where
OG* OGj

i j = - ds

and

bi J G* Ovo

fc aO a A

(*) stands for complex conjugate, i,j = 1,2,...,N and G, = G('p |ojo). In

(2.6) ij represents the mutual interaction of all sources and bi represents

the interaction of each source with the incident wave.

This formulation can be extended to include other type of hetero-

geneities. For example, let us take the media shown in Figure 2.2 (a)

for a buried inclusion, (b) for valley and (c) for layer, which are refered as

"interior" regions in a half-space. In this case the heterogeneities are the

interface C 2 separating two different media of shear rigidities pI and [ 2 and



shear velocities i1 and /32 respectively, and the free-surface topography C 1 .

Using (2.1), the fields inside and outside the interior regions in Figure 2.2

are represented by

M
v2 (rp;w) = AmG 2 (pP Qm;) (2.7)

m=1

N

vi r-p w vo (rp) + E B. G, (rp rQ,,; w)= + i= 1

respectively, where M is the number of sources corresponding to the interior

region and N the number of sources corresponding to the half-space. The

coefficients Am and Bn are obtained following the least-squares procedure

described before; that is by minimizing the quadratic error corresponding

to mismatch of boundary conditions. In the present case these are free-

traction along C, and continuity of displacements and tractions along C 2 :

Ovi
#1 c =0

V 1 = V2C 2
1C2

Ov Ov 2  I[zLi =f2 I
0/ 0L I c2

The errors in displacement and tractions corresponding to mismatch of the

boundary conditions are

89v1 Iar101=1 I2

Ic,
02 - V 2 - 2

IC2

Ov l 0"v2  I
03 = IL Ia it aff, 1C2
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G 02

(a)

C
1

C
2

(b)

C

C
2

(c)

FIGURE 2.2 (a,b,c,) show examples of structures with lateral heterogeneities for which the

method introduced in this thesis can be applied to compute the scattering in the case of incident

SH waves. C1 defines the free surface topography and C2 defines either the depth of the interface

or the shape of the inclusion.
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where p = Il, / 2 , is the ratio of the rigidities of media 1 and 2; and the

functional to be minimized

L = d + j )2 + s2  (2.8)
C1 C2

The weight (w/01 )2 for 02 is used to equalize the units and degree of vari-

ability of each term in L (Sanchez-Sesma and Esquivel, 1979, (Brebbia and

Dominguez 1989). It is important to point out here that whenever an in-

terface between two different media is present, the selected points along the

boundary represent the locations of two different sources; one for radiation

into each medium. Thus, if we selected M points along 02 , the corre-

sponding number of unknowns is 2M, and the total number of unknowns

is N + 2AM.

2.3 SH Gaussian beam in vertically inhomogeneous media

In this section we first describe the approach of Madariaga (1984) to

construct a Gaussian beam in 2-D media in which seimic wave velocity

Svaries only with depth. We use this formlulation to represent Green's

function to be used in the boundary integral scheme. The line source is

constructed by superposition of beams of the same initial width, which

are shot from the source point at regular take-off angle intervals, with a

sufficient number of beams to densely illuminate the observation point. In

the second part of this section we develop a Gaussian beam representation

of shear stress by taking appropiate spatial derivatives of the corresponding

Gaussian beam displacement field.

2.3.1 Gaussian beam theory

As illustrated in Figure 2.3, a central ray is defined as having origin at x=0,

and z=0 and horizontal slowness Po = (O To construct a Gaussian
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paraxial ray

central ray

front

FIGURE 2.3 Geometry of the pararaxial ray corresponding to a central ray deparing from O

with take-off angle Oo used in the text to develop the Gaussian beam solution. The paraxial ray is

obtained by perturbation of origin and slowness of the central ray (from Madariaga 1984).
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beam attached to this ray we consider a paraxial ray, i.e., a ray originated

from point A with a small perturbation of position and slowness of the

central ray. The perturbation in slowness is given by p, perpendicular to

the unit vector t tangent to the central ray at O. Therefore, the slowness

of the paraxial ray at A is = fo + p . After a certain time of propagation

the slowness / of the paraxial ray has components p, and pn at a point

whose coordinates in the so-called ray-centered coordinate system (s,n)

attached to the central ray, where s is the distance measured along the

central ray and n = n(s) is the lateral displacement of the paraxial ray,

measured along normal to the central ray at s (Cerveny 1982). To the first

order Taylor expansion, we have ps = - Po n). Since pn = 0 at the

central ray, it is assumed that on the first order approximation pn = C(s)n

at the paraxial ray, where C(s) is proportional to the curvature of the wave

front. Let -(s, 0) be the travel time over a length s along the central ray;

then the corresponding travel time along the paraxial ray will be delayed

by fo"' pn dn. Putting Pn = C(s)n into the integral

1 2 (2.9)01
r(s,n) = r(s, 0) + -C(s)n2 (2.9)

2

where -(s,0) = fds/lp(s) The values of n(s) and p,(s) can be found by

solving the dynamic ray tracing equations (DRT)

dnd = Opn (2.10)
ds

dpn n d2 3

ds 32 dn 2

(Cerven' and Pienaik, 1979). The initial conditions are Pno = C(0)no,

where no = n(0) is the initial displacement of the paraxial ray (see Figure
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2.3). Once the DRT equations are solved for n(s) and pn(s) the asymptotic

ray amplitude, or geometrical solution, for the paraxial ray in the case of

an SH wave is given by

v(s,n; ) p(O)f(O)n(O) 1 1/2 iLWr(s,n) S

p(s)#(s)n(s) s > 0 (2.11)

where p is density (C(erven' and Psencik, 1979).

In vertically inhomogeneous media the DRT equations can be trans-

formed into simple 1-D form by inserting d/ds = cos¢(d/dz) and d/dn =

sin ¢(d/dz) into equation (2.10), i.e.

dn /3d- - pn (2.12)
dz cos 0

dp, p2 d 2f3

dz cos 0 dz 2

where p = sin q// is the ray parameter. In this particular case we can

obtain closed form solutions for n and pn by eliminating p = - -from

equations 2.12

d cosq4 dr p2 d2 /3d( ) = d n (2.13)
dz 3 dz cos dz 2

A trial solution na = cos q satisfies equation 2.13, since c os t we
dz cos 0 dz w

have

d cos ) dna d p d d 2 d 2

-( - dz2)dz dz dz / dz dz2

which is identical to the right hand side term, if n, = cos . Since all

parameters vary only with z, a second solution can be found from nb -

cos Of(z). After inserting it into 2.13, it is found that

f(z) = o 3  dz (2.14)

o os33
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Complete solutions for n(s) and pn(s), where s = s(z) are then

n(s) = A cos q + B cos f (z) (2.15)

dS B 2 d13
pn(s) = -Ap2d ± [1 - p - cos f(z)]

dz cos q dz

A and B are real unknowns, to be found from the initial conditions. The

corresponding expression for C(s) (from Pn = C(s)n ) is:

p2 dfl B
C(s) = + (2.16)

cos q dz cos 2  [A + Bf(z)]

The initial conditions in the vertically inhomogeneous medium are chosen

in such a way that (2.15) may represent either a plane wave or a point

source at the origin (Cerven ' et. al. 1982). For a plane wave, n(0) = 1

and p,, (0) = 0, i.e. the paraxial ray shifts its origin in the direction n with

respect to the central ray, and takes off with the same initial angle as the

central ray. In this case A = 1/ cos 0 , B = p2 dz I and
dz I z=O0

cos + 2 d3n (S)= -+ p I cos (2.17)
cos 0 dz I z=0

P 2 do 1 2 do3 2Pn() = p - p -f(z)]
dz Iz=o cosq dz cos o0 dz

where the upperscript P stands for "plane wave". For a point(line) source

n(0) = 0 and Pn (0) = 1//3o. The paraxial ray takes off from the origin of

the central ray but with different initial take-off angles. In this case A = 0,

B = Cos 0o and
00

nL(s) = cos0 cos f(z) (2.18)P0

cos€0[r 1 , dp ]
p (s) = Cpos 1 f(z)so LcosO - dz



where the upperscript L stands for line source.

A Gaussian beam is defined as the paraxial ray (defined by equation

2.11) where n and p,, are obtained by a linear combination of the corre-

sponding solutions for plane wave and point(line) source, through a complex

parameter E, i.e.

n(s) = cnp (s) + nL (s) (2.19)

Pn (s) ep (s) + nL (S)

In this case the quantities C(s) and p(0)(0)n(0) defined in equations (2.9)

and (2.11) respectively, become complex. The asymptotic wave function

corresponding to an SH Gaussian beam is written as

1
v(s, n; w) = eir(sn); S> 0 (2.20)

j1/ 2

where

- p(s)f(s)n(s)]J =
P(0)0(0)n(0)

is called "spreading" in ray theory.

In a media with more general inhomogeneity the Gaussian beam may

be constructed in a similar way as described above, i.e. through a linear

combination of solutions of the DRT equations for initial conditions corre-

sponding to plane wave and point(line) sources.

The SH wavefield observed at a point P due to a source located at Q in

a 2-D vertically inhomogeneous media, can be constructed by superposition

of Gaussian beams of the type (2.20), i.e.

vSH(Fp; w) = A(1Q) e iwr(s,n) do (2.21)v (7'p;w) - 1(')"j1/2

where i'p and i'Q are the vector positions of points P and Q respectively,

A(i-Q) is the strength or excitation function at the source point Q, Q is
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the radiation angle range, and (s,n) represent the ray centered coordinates

of point P with respect to each ray. This expression shall be used to

compute displacement Green's function in our boundary integral scheme

for scattering problem.

2.3.2 Gaussian beam representation of traction

To satisfy continuity conditions for the displacement and traction in

problems where boundaries are present, we need to calculate the shear

stress acting at a point P on a plane with normal h = (n,,nz) due to a

source at Q. In order to use equation (2.21) as the wavefield due to the

source at Q, we have to find a representation of shear stress in terms of

the same Gaussian beams used to represent displacement. We shall do this

by taking the space derivative 0/0 of v in (2.20), where we will take h

as the outward vector normal to the boundary. However we must keep in

mind that the asymptotic procedure that leads to the expression of v in

equation(2.20) may have to be modified for its derivative. For instance,

any of the spatial derivatives may introduce an additional factor of O(w).

The effect of boundaries in Gaussian beam propagation has been studied by

Cerven' and Pgencik (1984) by modifying the solution at the interface to

locally satisfy the boundary conditions. Their method is similar to the one

first proposed by Popov and Pgendik (1978) to calculate ray amplitudes in

media with curved interfaces. Basically they establish a set of differential

equations in the neighborhood of the point where the ray intersects the

interface, to calculate new initial conditions for the reflected/transmitted

beam. An important assumption is that the irregularity of the interface

must be smooth, that is, its radius of curvature must be greater than the

wavelength of the incident field.
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Madariaga and Papadimitriou (1985) used the complex travel time

r(s,n) at the interface to calculate the geometrical spreading of the re-

flected/transmitted beam in terms of the spreading of the incident beam.

The amplitudes are then multiplied by the corresponding plane wave re-

flection/ transmission coefficients. Recently George (1987) derived explicit

expressions for the reflection and transmission coefficients for an incident

SH-Gaussian beam in terms of both interface and (parabolic) wavefront

curvatures. Continuity of displacement and traction is applied locally at

the interface, in the neighborhood of the intersection point with the central

ray. According to George, these formulas are still valid when the curvature

of the interface is comparable to the wavelength.

In our scheme we need no modification to the asymptotic solution,

because we try to match boundary conditions globaly using the distribution

of unknown sources along the boundary instead of continuing beams to

reflected and transmitted waves by locally satisfying boundary conditions.

Since all our application problems are formulated in a cartesian system

represented by geographical coordinates x,z, and

a a a-= n.- + n, ;

explicit formulas for the derivatives 2- o' and 2 i, q = (X, z) are nec-
On Oq

essary. The derivatives -- and depend upon the characteristics of the

medium. Let us assume that the ray centered coordinates s and n can be

expressed in terms of x,z using a suitable coordinate transformation. From

equation (2.20)

av ar 1 aJ
- i - - -as as 2J as
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Using the definition of 7(s,n) (equation 2.9)

v s 1 C 1 1 On 103
-=[iw(- + -- n ) + (-- + )]v (2.22)as P 2 s 4 n as 0Bs

Similarly
Ov Or- iw-v

On On

or,
Ov

- = iwC(s)nv (2.23)
On

The term 1a- can be simplified if we assume that the density p in the

definition of J (equation 2.20) is constant, then

1OJ 103

2J Os 2 Os

The shear stress field at a point P acting in the direction of h due to a

line source located at point Q can be constructed by superposition of these

Gaussian beams,

TSH'(rpQ;-) = [LA(i) -d (2.24)

where p~ is the rigidity of the medium and 0 is the take off angle covering

the radiation Q at regular intervals.

2.4 SH-Gaussian beams in homogeneous media

The solution for a Gaussian beam in homogeneous unbounded media

can be readily obtained from the formulation in the previous section, by

puting d3/dz = 0. The function f in (2.14) becomes f(s) = Pos/cos3 0

(z = s in homogeneous media), where /0 is the constant shear wave velocity.

From (2.17), since - 0,

n =1
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P
pn =0

From (2.18)

nL = As

L
p = 1/0o

where A = 1/ cos 0 The corresponding Gaussian beam DRT solutions are

(from 2.19)

T c -+ S

Pn= 1/0

where we have chosen A = 1 . In some Gaussian beams literatures (e.g.

C(ervenr 1982, Nowack and Aki 1984), the complex parameter c is chosen

in the form of so - i-Z L , where so is the point along the central ray2,3. AlW

where the beam is narrowest, and LAI is the half-width of the beam at so,

as shown in Figure 2.4 (a). We also use parameter Lo which is related to

LAI by LAI = (20 0/w) 1 / 2 Lo. Here, we will set the location of the beam

waist at so = 0 and the beam width to be minimum at the origin of the

central ray. Using these parameters, we have

= s - iL (2.25)

Pn = 1/0o

Inserting (2.25) to n(s) in the expression for J in (2.20)

s - iL 2
J = 0 (2.26)

which becomes the geometrical spreading for a ray in homogeneous media

originating from s = 0 if L0 = 0. In general, J is a complex number. Also,
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inserting (2.25) in the expression for C(s) = pn /n , we have C(s) = pn/n =

1/,3o(s - iL2). Taking into account that the travel time r(s,0) = s/3o in

homogeneous media, equation (2.9) can be written as

1 u 1 n 2 \
T(s, n) = - +2 - i2 (2.27)

Oo 2 s - iLo

7(s,n) is also a complex quantity. Both (2.26) and (2.27), along with (2.20)

define completely the Gaussian beam v in homogeneous media. Let us

summarize these concepts. Refering to Figure 2.4 (a), the beam is defined

for a central ray with origin at s = so = 0, and v(s,n;w) represents the

shear wave field at an observation point whose ray centered coordinates

with respect to the central ray are s and n, measured along and normal to

the ray, respectively. The real part of r(s,n) measures the travel time from

0 to s along the central ray and the additional time due to the curvature of

the wave front at n. Its imaginary part describes the bell-shaped amplitude

distribution of v(s,n) with respect to n increases (hence the name Gaussian

beam).

In a Cartesian system representing geographical coordinates (Figure

2.4 (b)) , the beam solution in a homogeneous medium can be expressed in

terms of x and z (z positive down) by using the following formulas (Benites

and Aki, 1988):

s = (x - xo)sin + (z - zo)cos (2.28)

n = -(x - xo) cos ¢ + (z - zo) sin

Let us rewrite equation (2.21) for the wave field at P = (x, z), due to

a line source at Q = (xo,z o )

vSH (x, z; w) = -r(-oz-zo) d (2.29)
7 f47r 0
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RAY

Su

Sx

observation point

RAY

FIGURE 2.4 (a) The Gaussian beam solution attached to the central ray. The ray centered

coordinates (s, n) are measured along and perpendicularly to the ray, respectively. LM is the initial

beam's half width, measured at so. The amplitude distribution across the ray and along n is shown

below. L is the effective half-width of the beam at s, where the amplitude decreases by a.factor of

1/e. At s = so, L = LAI. (b) A Gaussian beam in geographical coordinates (z, z). The beams are

radiated from the source at (Zo, zo) towards the observation point, at regular angles 4, measured

with respect to the vertical.
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where the excitation constant A(xo,zo) = i/(47r), according to the Fourier

transformed expansion of a line source into Gaussian beams (Cervenr et.al.,

1982). On the other hand, the exact solution for line source in unbounded

homogeneous media (Brekhovskikh, 1960) is

SH(X Z; W) i I e'_00[(XXo) sin 0+(z-zo) cos0]dO (2.36)w (x, z;4w) = - J od (2.30)
7r 

where 4I is the contour going from - i oo to ± + ioo. The path 0 for

(2.29) is restricted to the real axis and the integrand (plane wave) in (2.30)

is replaced by a Gaussian beam in (2.29). Although the Gaussian beam is

an approximate solution of the wave equation, it does not form a complete

function basis to represent the total wavefield of the line source. Therefore,

the observation point P must be densely illuminated with beams radiated

from Q in order to have an accurate representation of the field. Another

important point to mention is that while wSH(x,z;w) has a singularity at

P = Q, vSH(x,z;w) is non-singular everywhere thus deviating from WSH in

the close neighborhood of the source. This effect , however, becomes rather

advantageous when it is used in the boundary integral method, as we will

see in the next section.

In our scheme, line sources distributed along the irregular boundaries

of the medium represent the scattered field. To match the boundary con-

ditions, the total field at some point of the boundary is constructed by

adding the contributions of all sources at that point. Since the Gaus-

sian beam amplitude decays quickly with distance from the central ray,

the main contribution comes from those rays passing near the observation

point. Therefore, the radiation angle € of the beams should be selected in

such a way that the observation points are covered nearly uniformly by the
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beams. The case of an observation point located below the source is shown

in Figure 2.5. The procedure to select q can be divided into the following

three steps. First the radiation range 1 is chosen arbitrarily, subject to

the condition 0 < Q < r. Second, the angle a of the straight line joinning

the source and the observation point is determined and the initial and final

shooting angles are defined as 0 = a - Q/2 and 01 = a + Q/2 respectively.

Third, the range Q is discretized at equal intervals and the beams are shot

counterclockwise starting from q 0 . In this way, the number of beams on

both sides of the observation point will be equal for any choice of Q. In

Figure 2.5, the line A-A' is perpendicular to the line joining source and

station. We should mention that in general, the value of Q and the number

of beams per source may change from source to source, depending on the

geometrical characteristics of the boundary. For instance, a source posi-

tioned at a corner may require a wider Q and denser distribution of beams

than the source for a flat surface.

The line source representation by the Gaussian beam superposition has

been shown to give satisfactory results for an appropriate choice of L0 , given

00 and frequency (see for instance Nowack and Aki, 1984). We shall now

check the accuracy of our Gaussian beam representation for line source for

traction. Let us first obtain the expressions for shear stress in homogeneous

media using the formulae given in section 2.3. Operating (2.22) and (2.23)

on the Gaussian beam for expression defined by (2.21), with J and r given

in (2.26) and (2.27) respectively; and using (2.28), we have

Dv Dv Dv Dv Dv9 = nx( (- sin - - cos ) + n ( cos + -asin e ) (2.31)
a ias 9n as an



A'

A'
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A : observation point

101 0

FIGURE 2.5 The diagram illustrate the case when the observation point is below the source in

the geographical coordinate system. The beams are radiated from 4'o to 01, covering a wide angle

range a to densely illuminate the station. O is bisected by the line joinning the source and the

observation point, so that the beams are always equally distributed around the receiver. The angle

Q cannot be larger than AOA' (1800, plotted here only for display).
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where:

av iw 1 1 iw n 2

Os - 0  2 (s - iL0) 20o (s - L )2]

av w n-V = ) - _ )

On o(s - iL )

After some algebra we find that can be rewritten as the summation Qf

the following four terms:

0 (nx sin + nz cos q)v (2.32)

1 v
2(n, sin e + nz cos (s -)2 (s - iL0 )

iw n2V
- - (nx sin e + nz cos 2)200 (s - iL0)2

+ (nx cos q - nz sin 4)
o (s - iL2)

The first term of (2.32), multiplied by I, can be regarded as the stress
&

obtained by operating -- over the integrand of the plane wave expansion

(2.30) and replacing each plane wave by a Gaussian beam. The other

terms can be interpreted as coupling effect of the wavefront curvature and

the plane normal to h at P. For the beam whose central ray is in the

neighborhood of the obsservation point, the ray centered coordinate n is

small and the contributions of the first two terms to the sum (2.32) are

predominant. For beams away from the observation point n is large and

the magnitude of the contributions of the four terms decreases due to the

exponential decay with n 2

Figure 2.6 shows the normalized shear stress Green's function calcu-

lated by both Gaussian beam superposition and analytical solution at 70

observation points along 10 km of the horizontal line z = 1 km, due to a
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source located at x = 5 km, z = 0 km. Our purpose here is to find the

values of L 0 and the number of beams N that best fit the exact solution,

and observe the effects of different choices of L0 and N. The analytical

solution is given by:

o(x,z,w) = /t(n, sin q + nz cos )- ( r) (2.33)
4,30 '/ 3 0

where H( 2 ) is the Hankel function of first order and second kind; and
)2 )21/2

r = [( - zX0 ) 2 + (z-z 0 ]12. Frequency is fixed at 1 Hz, Bo = 1 km/s

and the radiation angle range at f = 1800. In Figure 2.6 (a - d) the value

of L0 is fixed at 0.4 km 1 / 2 , which yields LAI = 0.2 km, whereas the number

of beams N increases from 20 to 100. In (e)and (f) the number of beams is

kept at 100 whereas L0 is chosen as 0.6 and 0.3 km 1 / 2 respectively. From

the comparison of both solutions we estimate the accuracy of the beam

superposition approach. It is observed that for a fixed L0 = 4 km 1 / 2 the

accuracy increases with the number of beams N, becoming stable for N

greater than about 50. The values for which the Gaussiam beam solution

best fit the analytical solution are L 0 = 0.4 km 1 / 2 , N = 100 (d). However

the accuracy is poor if we choose L 0 = 0.6 km 1 / 2 (e) or L 0 = 0.3 km" / 2

(f) once N = 100 is fixed. In (e) the wavefront is almost planar at the

observation points above the source (s _ 1 km) and all beams in their

neighborhood contribute with the same intensity. In (f) on the other hand,

the beams are too narrow and only a few number around the observation

point contribute significantly to the field. Note that the superposition be-

comes unstable for points far away from the source, resembling the solution

for 20 beams in (a).

We conclude that the shear stress field due to a line source can be ap-

proximately represented by superposition of Gaussian beams of the same
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LM=0.2
N=20
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FIGURE 2.6 Amplitude distribution of the normalized stress (with respect to the rigidity p)
calculated along 10 km of the line z = 1 km, due to a line source located at z = 5 km, z = 0 km.

(a,b,c,d) show the effect on the amplitude when the number of beams is increased from 20 to 100,
keeping L0 = 0.4 kml/ 2 . (e,f) show the effect of choosing Lo = 0.6 km 1/ 2 and 0.3 km 1/ 2 respectively,

keeping the number of beams equal to 100.
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type used to represent the displacement field. The accuracy of this repre-

sentation increases with the number of beams used in the superposition,

and is not singular at the source point since the Gaussian beams have no

singularities anywhere. In a boundary integral scheme, this property of the

Green's function representation is extremely convenient because there is

no further need to smooth Green's functions to obtain discretized matrix

equations.

2.5 Test using problems with known solutions

To check the accuracy of our boundary integral-Gaussian beam

method, we have selected three examples of wave propagation in elastic

structures with strong lateral heterogeneities, which have already been

solved analytically (closed form) or by using other well tested numerical

methods.

2.5.1 Semicylindrical canyon

In the first example we calculate the response of a semicylindrical

canyon of radius a. The exact solution in frequency domain was given by

Trifunac (1973). The solution in time domain was given by Kawase (1988).

Figure 2.7 (a) shows the comparison between both Gaussian beam and an-

alytical solutions for vertical incidence, for varius normalized frequencies 77

(ETA) which is defined to be 77 = 2a/A, where A is the wavelength. We have

used a = 2.5 km. The actual frequency can be calculated from f = -.

The same comparison for 300 incidence and q = 2 is shown in Figure 2.7

(b). The Gaussian beam results were obtained using 20 sources (N, = 20),

100 beams per source (Nb = 100), fQ = 1800 and L 0 = 0.4 km / 2 . The

sources were located along a semicircle of radius rs = 0.9a , concentric to
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FIGURE 2.7 (a) shows the response of a circular canyon to incident SH waves, for the values

of t7 as in Trifunac (1973). We used the number of sources N, = 20, the number of beams per

source Nb = 100 and the radiation angle 1 = 1800. The sources were located at a semicircle of

radius r, = 0.9a The amplitude of the responses is normalized with respect to the response of the

half-space without the canyon.
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FIGURE 2.7 (b) shows the same response for 300 incidence.
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the canyon. The wave field reflected at the surface is calculated by using

the image source.

2.5.2 Effects of Ns, Nb, Q, r 8 and L0

Let us use this example (for q = 2 and normal incidence) to check the

effects on the solution due to different choices of Ns,Nb, f, rs and L0 I-n

Figure 2.8 (a) we choose N, = 10, keeping all other quantities the same

as before. Results show minor disturbance of the response at the center

and edges of the canyon, which disappears when the number of sources is

increased beyond 15. For the results shown in (b) we set N8 = 25 and

decreased both Nb and f down to 50 and 600 respectively. The result is

again in good agreement with the analytical solution, but in this case the

computational time was reduced to about 35 percent of the corresponding

case shown in (a). It must be noted here that most of the computational

effort is expended, rather, in constructing the Gaussian beam representation

of the displacement and stress fields of each source, than in solving the linear

system (2.6). Now we choose r, = a (other quantities are the same as in

(a)). Results are significatively disturbed, as shown in (c), although the

solution does not blow up, as it does when exact Green's function is used,

without an appropiate elimination of the singularity at the source point.

This effect does not disappear for any choice of N., Nb, f or Lo . Finally,

we found that the results are not strongly sensitive to changes in L0 in the

range from L0 = 0.2 km' / 2 to L0 = 1.0 km"/ 2 , as it is shown in Figure 2.9.

This independency on L0 is demonstrated in the case of a line source shown

in Figure 2.6 (e) and (f). The amplitude of the stress field varies roughly

linearly with L 0 for observation points right above the source, when L0 was

chosen between 0.3 and 0.6 km 1 / 2 . A similar result for displacement field



GROUND RESPONSE

Ns=10

Nb= 100
Omega= 180
r=0.9 a

Ns=15
Nb=50
Omega=60
r=0.9 a

Ns=20
Nb= 100
Omega=180
r= a

FIGURE 2.8 Effect introduced on the solution for the response of the circular canyon, for 77 = 2

and vertical incidence, when a N, = 10, keeping the values of Nb, , rT and Lo the same as in Figure

5, (b) Nb and 0 are decreased to 50 and 600 respectively, and N, = 15. This case is an example

of "trade-off" selection of these parameters in turn to decrease the computer time expended to

construct Green's function without affecting the final solution, (c) the artificial sources are located

exactly at the border of the canyon, keeping the values of N,, Nb and 0f the same as in Figure 2.7.

This case suggests that high instability of the final solution may occur when the observation points

coincide with the source locations.

52

~yv- \r~V

~V~S~V



EFFECT OF Lo

........ Lo= 1.0

........ Lo= 0.6
--- Lo=0.2

-4 -3 -2 -1 0 1

DISTANCE (x/a)

2 3 4

FIGURE 2.9 Effect of the beam parameter Lo on the solution for the circular canyon, 77 = 2.

All other quantities are the same as in Figure 2.7. Lo = 0.6 kml/ 2m gives the correct solution.

Variations of Lo to up to 66.6solution.
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was also observed by Nowack and Aki (1984, Fig. 5-e), for the station above

the source. In our method this means that matrices Fij and bi (equation

2.6) are both multiplied by a constant factor roughly proportional to the

selected value of L 0 , without altering the solution of the equation.

2.5.3 Mountain

In the second example we consider a mountain of cosine shape. Bou-

chon (1973) studied this problem using the Aki-Larner method for P, SV

and SH incident waves. The response at the free surface is given for differ-

ent ratios of height to half-width (h/a) of the ridge. The geometry of the

problem in this case does not allow the use of image source scheme; so the

artificial sources are distributed along the entire surface. The results shown

in Figure 2.10 (a),(b),(c) were obtained using 80 sources and 100 beams per

source. As in Bouchon (1973) for the SH case, (a) and (b) correspond to

h/a = 0.4, and 0.8, respectively, and A = 5h. (c) shows the response for

h/a = 1 and A = a using our method. Since an exact solution is not

available for this case, the accuracy of our results is also estimated from

the compliancy of the boundary conditions. This is demonstrated below

for each of the response's curves mentioned above, showing the fractional

residual traction along the free surface, defined as the total traction divided

by the traction due to the incident wave in full-space.

2.5.4 Semicylindrical alluvial basin

In our third example we calculate the diffraction and scattering due

to a semicylindrical alluvial basin over a half-space bedrock. This prob-

lem was solved analytically (closed form) by Trifunac (1971). We used 60

artificial sources of beams along the interface, and image source scheme.
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....... AKI-LARNER (BOUCHON 1973)
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FIGURE 2.10 The response of a half-space whose free surface topography is a ridge of cosine

shape. The response is calculated for different values of the ratio height to half-width of the ridge

(h/a). (a) and (b) are calculated using the Gaussian beam method, and the corresponding cases

given by Bouchon (1973) are shown below. (c) shows the response when the wavelength is equal to

the half-width of the mountain (h/a = 1). In each of these cases the residual stress is shown below

the response, to estimate the accuracy in fulfiling the boundary conditions.
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In Figure 2.11 (a),(b) the Gaussian beam results are compared with the

corresponding boundary element method solutions (Kawase 1988), which

are in good agreement with the analytic solution given by Trifunac (1971)

for v/,r = 1/2, Pv/Pr = 1/1.5 , and several values of 77, where subcripts r

and v stand for rock and basin, respectively. Similar comparison is shown

in Figure 2.12 (a),(b),(c), for flv/,r = 1/3 and pv/p, = 1/1.5 .

In summary, the above test examples show that the results obtained

using our Gaussian beam method are in excellent agreement with those

obtained by exact or other approximate methods. Its performance at low

frequencies is remarkably good, in spite of the fact that it uses a high-

frequency asymptotic solution of the wave equation to represent the field.

In fact, the performance of this method for any frequency depends strongly

upon the source distribution, provided that full space Green's function for

each source is accurately computed by the superposition of Gaussian beams,

as shown in Figure 2.6 (d). Let us take the case of the semicircular canyon to

describe our criterion for the choice of the source interval. We have selected

7 = 2 as the highest non-dimensional frequency for which the scattering

problem is to be solved and used this value to calculate the number of

sources. The wavelength corresponding to this frequency is A = a. We

assume that the boundary conditions can be accurately matched in this

case by assigning six sources per wavelength, which yields a source interval

S = a/6. The total amount of sources necessary to cover the entire length

of the semicircle, distributed at an equal interval 5, can be calculated from

7ra/(a/6) = 67r or, approximately, twenty sources. Actually, a minimun

of four sources per wavelength, or approximately a total of ten sources,

still yields an acceptable solution (Sanchez-Sesma and Rosenblueth 1979),as
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FIGURE 2.11 The cylindrical alluvial valley case. (a),(b) show the response calculated with

Gaussian beams for values of 7 up to 2, compared with the corresponding solution using Boundary

Element method. Here also 7 = 2a/A, and the velocities and densities of both media are related (v:

valley, r: rock) by I3,/3r = 1/2, Pv,/Pr = 1/1.5,
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FIGURE 2.12 (a), (b), (c) show the response of the cylindrical alluvial valley for high velocity

contrast, /3v,//,r = 1/3. Density contrast is 1/1.5. (c) shows the response for 7 larger than 2 (high

frequency). The sharp features of the response amplitude are accuratelly calculated by our metod.
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shown in Figure 2.8 (a). The accurate solution obtained for the lowest

frequency q = 0.25, or A = 4a is due to the fact that we have used twenty

sources per wavelength, which is five times the minimum amount of sources

necesary to match the boundary conditions.

2.6 Conclusions

We have shown that our new method based on Gaussian beam su-

perposition can accurately calculate the scattering of plane SH-waves by

a semi-cylindrical canyon, a cosine shaped mountain and a semicylindri-

cal soft basin in a homogeneous half-space. The accuracy of our method

is confirmed by the excellent agreement between the Gaussian beam solu-

tions and solutions obtained by exact and/or other well tested approximate

methods.

The novelty of the method and its power to deal with strong lateral

heterogeneities lie in our global approach to match boundary conditions

instead of the traditional local approach in formulating transmitted and

reflected Gaussian beams. Our boundary point (line) source scheme al-

lows the global solution of the boundary conditions in the least-squares

sense, including the effect of lateral variation of the interface. However,

this requires an accurate representation of the tractions at the boundaries

in terms of the same Gaussian beams used to represent displacement field.

Here we have demonstrated that this is possible by increasing the number

of beams to represent the displacement field. Our use of Gussian beams

in the boundary integral method has an important advantage that Green's

function represented by superposition of Gaussian beams are not singu-

lar anywhere. This is important to avoid the need for smoothing matrix

elements when the integration path includes the point where the source
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is located. We also confirmed that the method gives stable results with

respect to the choice of L 0 .

The most important outcome of the present Chapter is the validity of

the use of Gaussian beams in calculating Green's function to be used in the

boundary integral method of solving the seismic scattering problems. Since

the Gaussian beam solutions can be readily obtained for inhomogeneous

media, we believe that our method can be extended to a medium consist-

ing of inhomogeneous layers with irregular interface and topography in a

straight-forward manner. This problem will be addresed in Chapter IV.
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CHAPTER III

APPLICATION TO SOFT AND HARD INCLUSIONS BURIED IN

A HALF-SPACE

3.1 Introduction

In this Chapter III we apply the boundary integral-Gaussian beam

method to study the surface motion, in frequency and time domains, of

a homogeneous two dimensional half-space containing a soft or a hard in-

clusion when a plane SH-wave is incident from below. The shape of the

inclusion is assumed to be cylindrical with circular cross-section, although

there is no restriction for the formulation with other shapes.

To the author's knowledge, no explicit closed form solution for the

above problem exists, although the analytic solution for the case of full-

space containing such an inclusion is known (Mow and Pao 1971, pp.279).

In a study related to upper mantle seismic tomography, Wielandt (1987)

analyzed the effects of diffraction on the travel times of teleseismic waves

propagating through an inclusion, in order to estimate the error in observed

arrival times which can be caused by diffracted waves of larger amplitude

with faster velocity than the direct wave. He used a closed form solution

of Helmholtz equation for pressure wavefield in a full space with an spher-

ical inclusion, considering plane wave incidence. Chapman and Phinney

(1972) treated a similar problem for elastic waves and obtained high and

low frequency asymptotic solutions.

On the other hand, numerical techniques applicable to wave scattering

by inclusions in a half-space are available. Dravinski (1983), for instance,

developed a boundary integral method based on the representation of the



complete elastic wavefield by means of dilatational potential q and equivo-

luminal potential 0 , applicable to 2-D cases for multiple cylindrical inclu-

sions embedded in a half-space. He focused mainly on the study of ground

motion on the free-surface, in frequency domain, for the case of one and two

inclusions with elliptic cross-section and for obliquely incident P, SV, and

SH waves. Results show that the amplitude distribution of the ground mo-

tion depends strongly on the type of incident wave, depth of inclusion, angle

of incidence, frequency and on the separation distance between inclusions

(in the case of two inclusions).

As the results in this chapter demonstrate, our approach of studying

both in frequency and time domains helps capturing the physics of various

aspects of wave phenomena.

3.2 Formulation

Refering to Figure 3.1 and to equations (2.7) (Chapter II) for two

regions separated by a closed boundary, we define the fields inside and

outside of the inclusion, respectively as:

M

v- z; W) A, v ( , Z; W) (3.1)
m=1

N

v(E)(xz;w) = V0 + E Bnv vE)(XZ;W)
n=1

wher and(E)

where v, and vE) represent Green's function for medium I (interior) with

source point(line) located at a point (Xm, zm) of medium E (exterior), and

for medium E with source(line) point at (Xn,Zn) of medium I (interior), re-

spectively, M and N are the number of point(line) sources distributed along

the interface, in the inclusion and in the half-space respectively. Functions
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FIGURE 3.1 Elastic inclusion in a half-space, enclosed by C. The wave sources to represent

the scattered wavefield inside the inclusion are distributed in the exterior region E, on a circle of

radius ri = 1.1a, marked with 'x'. The wave sources to represent the wavefield are distributed in

the interior region I, on a circle of radius TE = 0.9a, marked with '*'. The normal i is taken as the

outward normal to the region where the sources are distributed.
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vr ) and v ( E ) are constructed by superposition of Gaussian beams for ho-

mogeneous media, defined by equation (2.29). The complex constants Am

represent the strength of the sources of Green's function for the inclusion

and B, the strength of the sources for the half-space Green's function. The

observation point is at (x, z).

Using the least-squares procedure described in section 2 of Chapter II

to satisfy continuity of displacement and traction along the boundary, the

constants Am and Bn are obtained from the following system of simulta-

neous equations:

Al N

Am rnRkm (1,1) - E BnRkn(1,2) So (3.2)

mr= 1 n= 1

AI N

SAm Rim (2,1) - E B, Rin(2,2) So
m=1 n= 1

with k, m = (1,M) and 1,n = (1,N). The R's and S's are matrices whose

complex valued elements represent the interaction of all sources with each

other and with the incident wave, respectively. They are given by:

Ov (I ) * Ov ( )

Rkm(11) a 2 v)* V(I) + [ k m -]ds (3.3)R~km (11a=[2I*~ I ) +f 6 3

Rim(2,1) = [a2 )E) ()

Rin (2,2) = [a2E)* (E) 2 E) v ( )Ica v Vm +' I °  dsah~ aii
I.(E)* (E)

R~~n (2,~~ ]) [a 2v ) (E) + L2 Dy1i av d

R1(22 1p n~ Dii Di d

so a [ v(I)* 0 + Ivo D

k C k
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0E 0 2 (
E ) * o

S= [. v vE) 0+ ]ds

with a = w/IPE, Y = I//LLE, pI and [LE are the rigidities of the inclusion

and the half-space respectively, and !E is the shear wave velocity in the half-

space. C denotes the integration path along the boundary of the inclusion;

and ()* stands for complex conjugate.

3.3 Numerical examples

In our first example we study the surface motion of a half-space con-

taining a soft cylindrical inclusion due to plane waves incident from below.

As we find from our results, the incident wave is first reflected (back to

the half-space) and refracted (into the inclusion) by the boundary of the

inclusion. The refracted waves are, in turn, transmitted out of the inclusion

and also multiply reflected inside. The energy carried by the waves con-

fined to the inside of inclusion are referred here as "trapped" energy. We

have computed the seismic motion on the free surface, as shown in Figure

3.2 (a) for vertical incidence, and (b) for 300 incidence angle. The depth

h of the center of the inclusion is twice its radius a, the ratios of the ve-

locity and density of soft inclusion to those of half-space are /3 I/IE = 1/2

and pI/PE = 1/1.5, respectively. We have used M = 40 and N = 30

sources, located along circles concentric to the boundary of the inclusion,

of radii rJ = 1.1a and rE = 0.9a respectively. The Gaussian beam param-

eter is chosen to be L0 = 0.16a and we have used 100 beams per source.

The amplitude distributions shown in Figure 3.2 for several values of the

non-dimensional frequency q = 2a/A are normalized with respect to the

amplitude of the ground motion of the half-space without the inclusion. In

(a), amplification of the ground motion is observed in the region x/al > 2
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FIGURE 3.2 Response of a half-space containing a totally embedded soft inclusion. The inci-

dence of the SH plane waves is vertical in (a) and 300 in (b). The depth of the inclusion is equal

to 2a, measured from the surface to the center of the inclusion. 77 = 2a/A, A3inct/ 3 h, = 1/2 and

Pindct/Pha, = 1/1.5 . We have used a total of 60 sources to represent the scattered field. The response

amplitude is normalized with respect to the response of the half-space without the inclusion.
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on the surface, where the reflected waves from the boundary contructively

interfere with the incident wave. This amplification effect appears to be

stronger for larger values of q. On the other hand, a deamplification of

ground motion is observed at the surface immediately above the inclusion,

in the region x/aj < 2. In the case (b) of inclined incidence, the interfer-

ence between incident and reflected waves causes amplification in the region

x/a < -1 (from the direction of wave incidence) and, at lesser extent, at

x/a > +3. The region within -1 < x/a < 3 shows deamplification.

The deamplification effect observed in the shadow of inclusion both for

normal incidence (a) and inclined incidence (b) maybe due to the reflection

of the incident wave at the boundary of the inclusion, or the energy trapped

inside the inclusion, or both. With only amplitude information as shown

in Figure 3.2, it is difficult to find which. The time domain solution, which

includes both amplitude and phase information, is needed to resolve this

question.

Figure 3.3 shows the motion at z = 2a, along the horizontal line passing

through the center of the inclusion. The motion is plotted for various non-

dimensional frequency 7 over the whole range inside the inclusion. The

amplitude of motion is shown in the unit ten times greater that in Figure

3.2, indicating an order of magnitude greater motion inside the inclusion

as compared to the motion on the surface.

To see if any focusing effect due to the low velocity inclusion may

be produced by increasing the depth of the inclusion, and decreasing the

velocity and density contrast, we tried the depth h = 4a and the velocity

and density ratios I/0E = 1/1.2 and pI/PE = 1/1.1 respectively. Results

for q up to 4 are shown in Figure 3.4 (a), (b). We see no strong focusing
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FIGURE 3.3 Amplitude distribution inside the inclusion, along a horizontal line at depth 2a.

The elastic parameters, the depth of the inclusion and the range of variation of 'q are the same as

in Figure 10. The vertical scale is 10 times larger. It can be estimated from these results that the

amplitudes inside the inclusion are of one order of magnitude larger than on the surface. Also, the

shape of this amplitude distribution suggests the existence of natural vibratory modes caused by

resonance.
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FIGURE 3.4 (a), (b) response for deeper inclusion (H = 4a) and lower velocity and density

contrast between the soft inclusion and the half-space. Incidence is vertical. Apparently, no focusing

effect occurs in this case for values of 77 up to 4.
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FIGURE 3.5 - Surface response of a half-space containing a hard cylindrical inclusion. These

results were obtained by switching the velocities and densities between the half-space and the soft

inclusion in Figure 11. Incidence is vertical. The amplitude distribution in this case is quite similar

to the case of the soft inclusion, particularly for low frequencies.
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effect on ground motion at the free surface in these cases.

For comparison with the effect of a buried soft inclusion on seismic

motion on the surface, let us study now the case of a hard inclusion, with

the same medium parameters but switched between the half-space and the

inclusion. Results for normal incidence of plane waves are shown in Fig-

ure 3.5. Surprisingly the general pattern of amplitude distribution in this

case is quite similar to that in the case of a soft inclusion, i.e., we observe

again amplification in the region x/aj > 2 and deamplification in the re-

gion x/a < 2. This is a surprise because ray-theoretically, we expected

defocussing for a hard inclusion and focussing for a soft inclusion, for re-

ceivers on the surface immediately above the inclusion. This result poses

the question of serious non-uniqueness if we wanted to determine whether

the inclusion has higher or lower velocity than the half-space from the ob-

served amplitude at the surface. Detailed studies of spectrum and wave

forms, however, give a unique answer, as demonstrated below.

Figure 3.6 (a), (b) shows the spectra as a function of non-dimensional

frequency q, for the case of a hard and that of a soft inclusion, respectively,

at five stations located on the surface at x = 0, a, 2a, 3a, 4a; marked with

solid triangles in the inset. The spectra was computed for 80 frequency

points, at the spacing of 3/80 in q. We note that the spectra shown in (a)

and (b) are remarkably different. Let us first look at the case of hard inclu-

sion. Its spectrum shows no significant peaks up to q = 2 at any station.

For the station immediately above the inclusion (STA 1) the whole spec-

trum varies smoothly and with low amplitudes for this range of frequency,

indicating a true shadow zone for y up to 2. For q _ 2 there is a rather broad

peak of small amplitude. The period of this peak is T _ a/ 3 E = 2a/3 1 ,
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FIGURE 3.6 Amplitude spectra as a function of 77 at five stations located at distance intervals

a on the surface of a half-space containing a hard inclusion (a), and soft inclusion (b), for vertical

incidence. The spectra for hard inclusion appears to be smoother than the spectra for soft inclusion.

In (a) the spectrum at observation points away from the inclusion show more defined peaks for 77

greater than 2, due to the interaction between incident and scattered waves. In (b) observe a well

defined peaks at 77 = 0.97 and broader peaks at 1.15, 2.0 and 2.15. These peaks may be caused by

energy radiated from the inclusion for the values of 7 corresponding to resonance inside the inclusion.
72

2

2

FREQUENCY(ETA)

I I !

Ora

~nn

* -\ - %11110 11 ,10,1 0 111,1 d ,



which corresponds to the two way travel time between the free-surface and

the top boundary of the inclusion. As we shall see in our time domain

solution, the wavefield in the region immediately above the inclusion is due

to waves that have been transmitted through the inclusion with velocity /3,

and to difracted waves travelling along the boundary also with velocity ,

i.e., both faster than the incident wave. Several spectral peaks appear for

values of q larger than 2, at all stations, probably due to the constructive

interference of waves scattered by the inclusion (by reflection, refraction

and diffraction) and the incident waves. The strongest peak occurs at STA

1 for 77 around 2.75.

The spectrum for the soft inclusion (Figure 3.6 b) shows a well defined

narrow peak at q = 0.97 (A = 2a/0.97) for all stations. Other peaks can be

observed around -q = 1.15,2., 2.15, although they are broad and not as well

defined as the first. These peaks are related to the resonance modes trapped

in the soft inclusion. For instance, comparing the spectrum calculated at

STA 1 with that at the point x = 0, z = a immediately above the inclusion

shown in Figure 3.7, we observe that spectral peaks occur at about the

same frequency for both. The first peak at both observation points occurs

for 77 _ 1, corresponding to the period T = 2a/3E = 4a//3. This period

corresponds to the mode with a loop at the center of the inclusion and

nodes at the boundary. The presence of the free-surface, impedance con-

trast between the half-space and the inclusion and 2-D resonance inside the

inclusion add complexity to the observed spectra. In fact the 2-D resonace

peaks of an inclusion in general do not coincide with those determined from

a simple 1-D model even in the full space (Mow and Pao, 1971). The study

to estimate to what extent these factors affect the spectra for soft inclusion
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FIGURE 3.7 - Amplitude spectrum at the vertical top of the soft inclusion. Well defined peaks

occur at the same frequencies observed in the spectrum of each station at the surface of the half-

space in Figure 3.6 (b), suggesting that those peaks correspond to the resonant modes excited by

the trapped waves inside the inclusion.
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is described next.

In order to analyze the effect of the free-surface, we increased the depth

of the center of soft inclusion to h = 4a, and computed the spectra at the

same five stations considered above, keeping velocities and densities of both

half-space and inclusion exactly the same as for Figure 3.6 (b). Results are

shown in Figure 3.8. The peak for q _ 1 dissapears, because of the greater

distance from the inclusion. On the other hand, a peak occurs at r = 0.33

in the spectrum at all stations. This peak cannot be due to resonance inside

the inclusion, but probably to waves propagating back and forth between

the free-surface and the top boundary of the inclusion.

Let us now study the case with stronger velocity and density contrast

between the inclusion and half-space, choosing Or = 0.10E and p, = 0 .5PE,

i.e. for a large impedance contrast between half-space and inclusion. Re-

sults for the depth of the inclusion the same as in Figure 3.6 (b) are shown

in Figure 3.9 (a), in which we have increased the number of frequency ()

points to 200, i.e., the frequency interval is now 3/200 in q. We observe a

well defined peak at q = 0.16 in the spectra of all stations. Other peaks are

commonly observed at 1 = 0.38 and 'q - 1. The results for the increased

depth of the center of the inclusion h = 4a (same as the case of Figure

3.8) are shown in Figure 3.9 (b), where we observe well defined peaks at

77 = 0.08, 7 = 0.16 and q = 0.38, at all stations. The sharpness and the large

amplitude of the peak at 77 = 0.16 in both (a) and (b) (larger than any other

peak in the spectra) suggests that this may correspond to the fundamental

mode of resonance inside the inclusion. A second mode may correspond to

7 = 0.38 in (b), which appears not well defined in (a). Although we could

consider the peak at r7 = 0.16 to be insensitive to variations of depth of the
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FIGURE 3.8 Spectra for soft inclusion at the same locations described for Figure 3.6, but the

depth of the inclusion is twice larger. The sharp peak observed in 3.6 dissapeared, suggesting the

effect of the free-surface.
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FIGURE 3.9 (a) Same location of the soft inclusion and stations as in Figure 3.6, but velocity

inside the inclusion is 10 timessmaller than that of the half-space. Note that the sharp peak occurs

at much lower frequency (17) than the peak for the soft inclusion in Figure 3.6. In (b) the inclusion

is deeper, but a sharp peak appears at the same frequency as that in (b), suggesting that the effect

of the free-surface decreases as impedance contrast increses.
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inclusion, as compared with the earlier case of smaller impedance contrast,

we note that there is still some effects due to the free-surface, by compar-

ing the spectra (a) and (b) (Figure 3.9) computed at each station. These

complexities suggest some coupling between the resonance in the inclusion

and that set up between the free-surface and the top of inclusion.

From the above examples on spectral computations of the ground mo-

tion at the surface of a half-space with an inclusion, we conclude that

the free-surface plays an important role on the build-up of resonance of

trapped modes inside the inclusion, in particular for shallow depths and

small impedance contrasts between the half-space and the inclusion. The

reason is that reflected waves at the free-surface back to the half-space

also contribute to trapped modes (in addition to the incident wave), by re-

fraction at the boundary of the inclusion. This effect appears to be smaller

when the impedance contrast between the inclusion and half-space is larger,

so that the fundamental resonance peak appears as a dominant feature in

the spectra, regardless of the position of the inclusion with respect to the

free-surface. The detection at the surface of spectral peaks correspond-

ing to the resonance inside a buried soft inclusion is extremely interesting

in view of the recent report by Biswas et. al. (1990) about the narrowly

peaked site amplification effect of Hawaiian stations near the active rift zone

presumably containing magma body on the T-phase generated by distant

earthquakes.

3.4 Synthetic Seismograms in Time Domain

Now let us compute the solution in time domain for both the soft

and hard inclusion cases treated in the previous section. We choose radius

a = 1 (unit of distance), half-space shear wave velocity /3 E = 1 (unit
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FIGURE 3.10 (a) Ricker wavelet of characteristic frequency f,. (b) spectrum of Ricker wavelet.
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of distance/time). The synthetic seismograms are computed by inverse

Fourier transform of the ground response spectrum for 100 frequencies, in

the non-dimensional frequency range from 7 = 0.02 to 77 = 5. The input

source-time function is the symmetric Ricker wavelet,

S2 U 2
U N/7r

sR(t) = ( -) exp(--) (3.4)
4 2 2 4

whose spectrum is
2  f 2

Sn(w) = exp( ) (3.5)

where u = 2x/6(t - to)/tb, to being the arrival time of the center of the

wavelet, tb the time interval between the two peaks of the wavelet, also

called "breadth" of the wavelet (see Figure 3.10), f is frequency, and f =

V6/Trtb is the characteristic (peak) frequency of the wavelet. Both f and 4

are related by f = 077/2a.

Figure 3.11 (a) shows the synthetic seismogram section for the case of

the soft inclusion and vertical incidence. The seismograms shown in the

right part of (a) are synthesized for 100 stations, deployed along the line

A-A', shown in the left part of (a), covering a range of 8a. The center of

the inclusion is located at x/a = 0 and z/a = 2 (x-positive to the left).

Breadth of the Ricker wavelet is 0.78 a/3 seconds, which corresponds to a

characteristic wavelength of a in the half-space. We observe the arrivals of

phases corresponding to the direct wave d, the reflected waves r at stations

located in the region |x/al > 2, and phases R, Rs, all marked by arrows. As

observed for the frequency response (Figure 3.2), the direct wave identified

in the time domain is also strongly attenuated at stations just above the

inclusion. The field in the region |x/a = 1 is due mainly to diffraction

along the border of the inclusion (see ray diagram (b)). The time delay for
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FIGURE 3.11 (a) Synthetic seismograms (full waveform) for scattered waves by a soft inclusion,

upon the incidence of a plane wave, for a Ricker wavelet source time function. (b) ray diagram

corresponding to the observed phase arrivals in (a). (c) seismograms for deeper inclusion. Note the

effect of the free-surface on the delay of the pulse R,.
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these waves with respect to the direct wave in the absence of inclusion is

about 0.4a/ 3 E seconds at x = 0. These diffracted waves reach all stations,

appearing as a minor feature marked as phase c in the seismograms. Phase

R, which arrive later than phase c, is the wave transmitted through the

inclusion, marked as rr or rd, shown in the ray diagram (b). The wave rd

travelling vertically is delayed by 2a(1/O3 - 1/13 E) or 2a/3E seconds with

respect to the incident wave in the absence of inclusion for the station at

x/a = 0. At other stations this delay includes the one proportional to the

travelling path outside the inclusion, which determine the wavefront well

defined in the seismograms. For large x, phase R is propagating horizontally

with the half-space velocity 3E. Phase Rs corresponds to the reflection of

phase R at the free-surface and the inclusion boundary. It arrives at about

2a/E seconds after R, since the two-travel time path between the top

boundary and the free surface is 2a. In order to clarify the nature of R,,

we calculated the seismograms shown in Figure 11 (c), where the depth of

the inclusion is increased to h = 4a and accordingly, we observe the time

interval between R and R 8 equal to 4a/ 3 E . Note that in this case the

wavefronts become more curved than in (a). Also, note in both (a) and (c)

that the amplitude of Rs is smaller than that of R, reflecting the assumed

1/2 impedance contrast ratio and to other factors such as the wavelength

A and the size of the inclusion.

The resonance of trapped modes inside the soft inclusion is not evident

in our synthetic seismograms. Also, it is difficult to depict it with the ray

diagram shown in Figure 3.11 (b). Assuming that resonance can be built by

two trapped rays travelling in opposite directions (one dimensional model),

the period corresponding to one resonant mode will be T = 2a/0i or 4a/13 E,
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seismograms for deeper inclusion. Note the effect of the free-surface on

83

t



which is the time delay by a trapped wave to travel back and forth over one

diameter. Looking at the seismogram section shown in Figure 3.11 (a), we

observe no clear periodicity corresponding to such mode, though the total

duration of the seismogram, 12a/ 3 E, may allow to see at least the first two

periods.

Some of the peaks identified earlier in the frequency response corre-

spond to a very long period. For example, the peak identified at r7 = 0.16

in the spectra shown in Figure 3.9 (a) and (b) correspond to the period

T = 12.5a/OE seconds. In order to observe such periodicity we need to cal-

culate synthetic seismograms much longer than those in Figure 3.11. We

do not intend to compute a longer seismogram to show more details of the

resonance phenomena in this case, but emphasize that to study resonance

phenomena it is more important to compute the frequency domain solution

than the corresponding time domain, because the computation of periodic

pulses that synthezise narrow peaks of the spectra would require a long

duration seismogram.

Figure 3.12 (a) shows the synthetic seismograms for the case of hard

inclusion. The model parameters are shown at its left. We observe the

arrival of the direct phase d, reflected phase r , refracted phases denoted as

fl, f2 respectively, and phases corresponding to multiple bouncing between

the top boundary of the inclusion and the free-surface, two of them marked

as sl and s2. As in the case of soft inclusion, the direct wave is again

attenuated at stations immediately above the inclusion in the region x/aj <

1. This attenuation in this case is partly due to reflection at the inclusion

boundary and partly due to defocusing of the refracted wave, as depicted

in diagram (b). Refracted phase f2 arrives earlier than phase r in the
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FIGURE 3.12 (a) Synthetic seismograms of the scattering for a hard inclusion upon the incidence

of a plane wave. In both, soft and hard inclusions the dominant feature of the seismogram sections

is the strong attenuation of the primary wave at stations right above the inclusion. (b) ray diagram.
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region Ix/aI > 2, since it travels along a faster path inside the inclusion.

The refracted phase f, arrives a/E seconds before the direct wave (in the

absence of inclusion) at the station x/a = 0. Its wavefront is clearly defined

in the seismograms at stations within the region x/aj < 2. The amplitude

of this phase is about one-fourth of that of the incident wave. How much of

this reduction is due to defocusing and how much to the reflection?. From

the ray theory, the refracted direction with respect to the inward normal

to the boundary at the incidence point is smaller for the case in which the

wave is transmitted from hard to soft media than for the opposite case. As a

result, refracted waves into soft inclusion have larger amplitudes and travel

longer paths than those refracted by the hard inclusion. By comparing

Figures 3.11 (a) and 3.12 (a) we find amplitude reduction of direct waves

for both soft and hard inclusions. Focusing, therefore, is not the main factor

controlling the amplitude of direct waves. We also observe diffracted waves

c similar to those observed for soft inclusion but faster and with reversed

polarity. In addition, as illustrated in Figure 3.12, phase s, arrives at about

2 a/ 3 E seconds after fi. Phases s2 corresponding to reflection of diffracted

waves at the free-surface and top boundary of the inclusion arrives about

a/E seconds after sl.

The most interesting difference between the cases of hard and soft

inclusion shows up in the waves marked as R and Rs for the latter, and as si

and s52 for the former. All of them form well defined wavefronts propagating

away from the general region inside or above the inclusion. These waves are

stronger for the case of soft inclusion than for the case of hard inclusion,

because of the following two reasons. First, as we mentioned earlier, the ray

theoretical condition favors the concentration of wave energy toward x = 0
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for the soft inclusion, while the hard inclusion tends to divert wave energy

away from x = 0. Secondly, the seismic motion within a soft inclusion may

be sustained by trapped modes which behave as inhomogeneous waves in

the half-space. For the hard inclusion, all motions set up inside it will be

quickly lost as radiated waves into the half-space.

3.5 Conclusions

We have applied the boundary integral-Gaussian beam method to com-

pute surface ground motion of a half-space with a buried cylindrical inclu-

sion due to vertically incident plane SH waves. The computed wavefield

is complete including all multiply reflected, refracted and diffracted waves

by the boundary of the inclusion. We found a surprising result that both

soft and hard inclusions cause deamplification of surface motion at sta-

tions immediately above the inclusion, due mainly to scattering by the

boundary of inclusion in both cases, and to less extent, to wave energy

trapping by the soft inclusion and defocusing by the hard inclusion. The

computed amplitude spectra for hard and soft inclusions are significant dif-

ferent, being smoother for the former, and showing many spectral peaks for

the latter. Some of the spectral peaks for soft inclusion is attributted to

resonance of trapped modes inside the inclusion. We found that this reso-

nance phenomenon is affected by the presence of free-surface, for example,

the peak for a shallower inclusion occurring at higher frequencies than the

corresponding peak for a deeper inclusion. The effect of the free-surface

decreases as the impedance contrast between the half-space and the inclu-

sion increases. Larger impedance contrasts yield narrower resonant peaks,

as expected for a trapped mode.

Finally, from the analysis of the synthetic seismograms, we found that
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the frequency domain solution is more appropiate than the time domain

solution to analyze resonance phenomena, because the resolution necessary

to define a sharp peak in the spectra requires long duration seismograms.

On the other hand, the time domain solution gave a clear physical picture of

the reflection, refraction and diffraction of waves, and helped to understand

the essential difference in wave phenomena between the scattering due to

a hard inclusion and a soft inclusion buried in a half-space.
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CHAPTER IV

GROUND MOTION AT MOUNTAINS AND VALLEYS WITH

VERTICAL SEISMIC VELOCITY GRADIENT

4.1 Introduction

In this Chapter IV we apply the full power of our method to study the

ground motion in two-dimensional structures that exhibit irregular topogra-

phy and interface, and whose shear wave velocity varies linearly with depth,

for incident plane waves. In our first example of application, the model is

a half-space whose free-surface topography is a ridge of cosine shape, with

vertical shear wave velocity gradient. In the second, the model is a semi-

cylindrical sedimentary basin in a homogeneous half-space, in which the

shear wave velocity of the sediment increases linearly with depth. Our

results are given in frequency and time domains. To our knowlegde, the

present work is the first study on these subjects.

The ground motion at elevated free-surface topographies of homoge-

neous half-space has been studied extensively from observations (Davis and

West 1973, Tucker et. al. 1984) and by theoretical modeling using finite dif-

ference method (Boore 1972, 1981, Jih et. al.1986), the Aki-Larner (1970)

method (Bouchon 1973 and Bard 1982) and the boundary method using

point sources by Bouchon (1985). The results of 2-D modeling of ridge in

a homogeneous half-space in general predicts amplification of ground mo-

tion at its top, there are considerable discrepancies between the observed

ground motion amplification factor and the one obtained by modeling (Bard

1982). For instance, ridge effects observed by Tucker et. al. (1984) show

large amplification factors (4 to 8), while the corresponding theoretical pre-
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diction using the Aki-Larner method yields only a factor equal to 2. This

discrepancy has been attributed to combined effects of vertical variation of

seismic velocities and lateral resonance pattern due to repeated neighboring

topographies. Bard and Tucker (1985) made a parameter sensitivity study

of such effects in order to explain the results observed by Tucker et. al.

(1984). They used several models of isolated ridges and groups of neigh-

boring ridges, which were either homogeneous or covered by a low velocity

surface layer. They showed that although the models with the low velocity

layer improved the agreement of the predicted ground motion with the ob-

served, none of them satisfactorily fit the observed. They concluded that

more accurate prediction would require a model that includes both effects

of ridge topography and near surface velocity gradient.

The case of a homogeneous half-space containing a sedimentary basin,

in which the shear wave velocity of the sediment increases linearly with

depth has been treated by Bard and Gariel (1986). The purpose of their

study was to investigate to which extent the velocity gradient modified

the behavior of the groung motion response calculated for a homogeneous

basin (Bard and Bouchon 1985), in particular for an incident plane SH

wave. They used a technique based on the modified Aki-Larner method

in which the expression for a plane harmonic wave in homogeneous media

eikx±ivz (ommiting the factor ewit), where k and v are the horizontal and

vertical wavenumbers respectively and the F sign refers to plane waves go-

ing up and down respectively, is replaced by a eikx Z(z,k), where Z(z,k)

is the exact solution of the wave equation in media with a linear increase

of velocity with depth. This technique is applicable to shallow valleys with

smooth interface irregularity, for which the Rayleigh-ansatz error described
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in Aki and Larner (1970), is small. They concluded that neglecting the

velocity gradient leads to significant underestimation of surface amplifica-

tion, particularly at the edges of the basin, where large differential motion

is developed. Bard and Gariel (1986) also applied their method to study

the ground motion observed in the Chusal valley (Soviet Union) by King

and Tucker (1984), and obtained a satisfactory fit of the theoretical results

with the observations. Other studies have considered steep 2-D basins com-

posed of several sedimentary homogeneous layers and incident SH, P-SV

plane waves (Fukuwa et. al. 1985), using a hybrid method in which the field

exterior to the basin is computed using a boundary element scheme and the

interior field by the finite element method. We will see that although this

method deals quite satifactorily with the case of the basin composed of

several homogeneous layers, it failed to simulate the case of the basin with

continuous vertical variation of velocity for high frequencies.

In our study, in addition to the vertical variation of velocity, we inves-

tigate the effect of the slope of both the ridge topography and the interface

between the basin and the half-space. We believe that our method is par-

ticularly suited for these problems because it combines the power of the

boundary integral representation to deal with steep boundary shape, and

that of the Gaussian beam method to describe wave propagation in inho-

mogeneous media. In section 4.2 we develop expressions for the Gaussian

beam representation of displacement and traction in media where velocity

increases linearly with depth. We use the formulas for calculating the com-

plex travel time and spreading in vertically inhomogeneous media already

obtained in Chapter II. Here, the ray centered coordinates (s,n) of the ob-

servation point with respect to each ray departing from the source point



can be computed exactly, taking advantage of the fact that in such media

ray paths are segment of circles uniquely determined from the geograph-

ical coordinates of observation and source points, and the take-off angles

of the rays. In section 4.3 we describe the Gaussian beam superposition

to compute Green's function for both displacement and traction due to a

point(line) source, in the vertically inhomogeneous media considered. It

was not easy to implement a general computer routine to perform this su-

perposition for any pair of observation-source points, because our analytical

solutions for the ray centered coordinates are a multiple valued function of

their positions with respect to an absolute system of geographical coordi-

nates. In this thesis we have developed a computer program subroutine

called INGREEN, which carries out the Gaussian beam superposition and

provides the displacement and traction Green's functions, in such a way

that it can be easily incorporated into the boundary integral scheme. Tests

of accuracy for both the ray centered coordinates and the wave field com-

puted for small velocity gradient are also given in this section. In section

4.4 we apply the method to compute the ground response of a vertically

inhomogeneous half-space with ridge topography, for several ridge aspect

ratios, i.e. the ratio of height h to half-width a, for several values of the

non-dimensional frequency q = 2a/A (A wavelength) and several choices

of the velocity gradient. Similarly, in section 4.5 we study the response of

a semi-cylindrical sedimentary basin with vertical heterogeneity, for small

and large velocity gradients.

4.2 Gaussian beam for displacement

The medium considered in this section has a linear seismic wave
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velocity- depth dependency defined by

(z) = 0o + g(z - zo) = 0o[1 + S(z - zo)] (4.1)

where g, the velocity gradient, is a constant with the units of reciprocal of

time, and 5 = g/. Refering to Figure 4.1, consider a ray with its source

point at (x 0o,z 0 ) and take-off angle €0 (positive z is taken downward). The

shear wave velocity at the source point is 0. The ray path in this media

is an arc of a circle whose radius R and center (xc, z) are determined from

(x 0 ,z 0 ) and 00

R = (/3 0/g) sin €o (4.2)

20 = xo + R cos 0

ze = zo - 'o/g

The center of the circular ray path is located on the line normal to the ray

direction at its source point and at a vertical distance 0/g from the source

point. Then the ray centered coordinates (s,n) of any observation point

(x, z) can be expressed as

n = R- d (4.3)

s = R( - o)

where d = [(x - zX) 2 + (z - Zc) 2 11 / 2 and 0 = tan-'(z - z,)/(a - xc)

The intersection point (x*,z*) on the ray at which the normal to the

ray passes through the observation point can be obtained as

z* = x 0 + g sin (cos 40 - cos 0) (4.4)g sin €0

z* = zo + s (sin -sin 0o)
g sin 0
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(Xc, Zc)

x* /

I
R

-/

rX
x

Zc = Zo- o /g

Xc = Xo - R cos 0o

FIGURE 4.1 Ray path in media with linearly increasing velocity (with depth). The Take-

off angle 0o, source point coordinates (Xo, zo) and observer position coordinates (X, z) determine

completely the ray-centered coordinates (s, ni).
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and the travel time from the origin (x 0o, zo) to the intersection point (x*,z*),

along the ray is

( -In (//o),

T(S,O) =!
I ln[tan(q/2)/ tan(qo/2)],

when = 0, 7r, 27r;

otherwise.

The corresponding DRT solutions are determined by the procedure

introduced in Chapter II, section 2.3. Recalling equations 2.15 and putting

do/dz = g, we obtain

n(s) = A cos q + B cos ¢.f(z) (4.6)

B2
Pu(s) = -Ap 2 g + - [1 - p gcos .f(z)]COS

In this case the evaluation of f(z) from equation (2.14), namely,/ z So + g(z - zo)
f(z) = o +g(z -z) dz

Zo COS 3 4

is straightforward. We use 3 = sin 0/p to obtain do = pg/ cos q; and insert

both in the equation for f(z), resulting in

1
f(z) - p 2

p2 g J 2 sin decos 2 q

S(z) 2  (gsin € 0 cos€

1
) (4.7)

Thus, we have

n(s) = A cos +
B 23

g sin2 (i

cos )
COS 0

B
Pn(s) = -Agp 2 + B

COS 0
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As described in section 2.3 (Chapter II), for the plane wave source we have

A = 1/cos o, B = gp2 . Putting them into (4.8),

n (s) = 1 (4.9)

p (s) = 0

PnFor the point source, A = 0 , B = 0 cos 40, and we have
cosq o cosq5 1 1

nL(s) = ( 1 ) (4.10)
fogp2  cosq$ cos q0

These solutions for both plane wave and point source, differ from the cor-

responding solutions in the homogeneous case only in the value of n . For

the homogeneous case nL = s (see section 2.4). We can find a simple geo-

metrical meaning of nL in the inhomogeneous case by taking into account

equation (4.4) and rewriting n L as

L * - zo
n X (4.11)

sin 0

This is the length of the line O'M in Figure 4.1, which corresponds to the

straight line ray path in the homogeneous case, for the same shooting angle.

As described in section (2.3), the DRT solution for the Gaussian beam

is obtained by a linear combination of the DRT solutions corresponding to

plane wave and point(line) source

G 0 Xn = + - (4.12)
sin 0

p=G /0

96



Where e is a complex constant. The constant c is chosen as in section 2.4,

i.e. c = -iL , assuming that the beam waist is at the source point (x 0 , z 0 ).

From C(s) = p,,/n (section 2.3),

po /2
C(s) = P0/ 2

c sin 0 + x*- - Xo

According to the definition given in section 2.3, the Gaussian beam for

displacement is now given by

1
v(s, n, w) i (Sn(4.13)

j 1 / 2

where

+l X* -- XJ = ( )
coo sin 0

T(s1) 1 n tan(q/2) + pn 2 /2

g tan(qo/2) esin q0 + x* - x

This expression is different from the one given by Madariaga (1984), who

used the WKB solution nW1KB = cos / cos o, PWVKB = -9gp2 /cos 0 for

the Gaussian beam, instead of the plane wave source (n = 1,p = 0).

The expressions for both spreading J and travel time -r in equation

(4.13) contain a complex factor q = c + (x* - xo)/ sin qo, which yields

indeterminate values for a Gaussian beam propagating vertically; i.e. x* =

x0 and q0 = 0 or 7r. In this case it is simpler to recall equations (4.6) and

find first the DRT solutions for the Gaussian beam. Let us take first the

case of q = 0, and put p = sin q/f = 0 in equation (4.6)

n(s) = A + B f(z) (4.14)

B
= cos
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From equation (2.14)

f(z) =- dz --
zo

SZ[0 + g(z - zo)]dz

1 2f(z) = o(z - Zo) ± -g(z - zo)2
2

The corresponding DRT solutions are

n(s) = A + B[O0 (z - zo) + - g(z - zo)2
2

Pn (s) = B

For plane wave source n(O) = 1, Pn(0) = 0, or A = 1 and B = 0, and

n(s) = 1 and pP(0) = 0. For point source n(0) = 0 and pn(O) = 1/30, or

A =0 and B = 1/3o, andnL(s) =(z-zo)[1+ - (z-z)] and ps(s) = 1/o.

The DRT solutions for the corresponding Gaussian beams are

1
nG ( s ) = + (z - zo)[1 + -(z - zo)] (4.16)

200

pG(S) =

Then

C(s) =
0o/2

C + (z - z~o)[I1 + (z - zo)]

The complete expression for T(s,n) requires to find the travel time along

the ray r(s, 0) = fo ds/l(s), or (since s = z) r(s,0) = fz dz/[ o +g(z-zo)]

We obtain
1

r(s,0) = -

9

/()
In ( 0)

00

Finally, the formulas for J(s) and T(s, n) for a vertically propagating Gaus-

sian beam are:

J(s) = - { + (z* - zo)[1 + (z -zo)]}
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r(s,n) = -In ( () +
g 0o

n 2 /2

S+ (z* - zo)[1 + (z - zo)]
23o

where '+' and '-' correspond to q0 = 0 and q0 = r, respectively, and

we have taken z = z*. These formulas for J and 7 do not present the

indeterminate problem.

4.3 Gaussian beam for traction

Let us now follow a similar procedure used for homogeneous media

(Chapter II) to represent traction in our inhomogeneous media, and start

with the general expression for the derivative of the Gaussian beam dis-

placement v(s,n,w)

o ( o
a( 2 J 8a

+ 7
o (4.18)

where ( represents x or z, and

The derivatives involved in equation (4.18) are:

a -1
-

3 2 q2 C

- 1

sin e
g sin 0

n 2 sin €

g sin 2gq 2 sin 0o)

sin/0 +z* - o
c sin 00 + x* - x

ao sin q
S sgn d

80 cos €
-- sgn-

az d
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On
8n = -Cos
Ox

On
= sin q

Oz

1, if X < Xc;
sgn = -1, if x > xc

where q = c + (x* - xo)/sin 0o.

If the propagation is vertical, the derivatives in (4.18) are:

OJ eo gOz - - {gq + 0[1 + (z - zo)]} (4.19)
az 02 q2 00

oT g [1 + (z - zo)
z s 200q2  30

where

q•+(- )[+-(z* - z0 )]q =6 + (z - zo)[1 + (Z zo
200

and

1, if o = 0;
sgn -1, if 40 = 7r

Using the above spatial derivatives, traction is computed as in section 2.3

(Chapter II).

The accuracy of the displacement and traction fields of Gaussian beam

in the media considered above depends to a large extent on the accuracy

of computation of the angle € for given source point, observation point,

and central ray (see Figure 4.1). Since q is determined by the multivalued

function tan - 1 of the source and observation points coordinates (equation

4.3), it is important to construct an algorithm capable of systematically and

correctly compute its value for arbitrary positions of source and observation

points, values of the velocity gradient g and rays with different take-off
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angles. This is done in the next section, along with the Gaussian beam

superposition.

4.4 Beam superposition. Subroutine INGREEN.

The analytical procedure described in the previous section to construct

a Gaussian beam in vertically linear inhomogenous media has to be adapted

for superposition of many such beams in order to represent Green's func-

tion as described in sections 2.3 and 2.4 to be used in the boundary integral

scheme described in section 2.2. The superposition for displacement and

traction are given by equations (2.21) and (2.24) respectively, where the

radiation angle range f is chosen and discretized in such a way that the

observation point is uniformly and densely illuminated with beams depart-

ing from the source. Since in our boundary integral scheme many sources

and observation points are spatially distributed, the algorithm that carries

out the superposition has to be capable to deal with all possible situations

emerged from the relative source-receiver position and the take-off angle of

the ray at the source, without yielding non-unique solutions for the ray-

centered coordinates. In this process we must be careful in determining the

angular quadrant, (in our geographical coordinate system) corresponding

to the value of q, which in fact determines the ray centered coordinates

(s,n) of the observation point with respect to a given ray, and the intersec-

tion point (x*,z*) of the ray with the perpendicular line passing through

the observation point. In addition, we must choose the appropriate sign of

n for the computation of traction, although this is not important for the

displacement since n always appears squared in its Gaussian beam expres-

sion.

The superposition of Gaussian beams is carried out by the subroutine
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INGREEN, which computes the displacement and traction fields at an ob-

servation point (x, z) (along a surface direction in the case of traction) due

to a line source at (xo0 ,z 0 ) in a 2-D full-space with linear increase of shear

wave velocity with depth. Once the number of beams and the radiation

angle Q have been selected, INGREEN discretize the radiation angle range

i and computes the take-off angles q0 measured counter-clockwise with

respect to the vertical (z-positive down) in a similar way as the one de-

scribed in Chapter II (section 2.4, Figure 2.5). For each ray shot at angle

do it computes the angle 4 (counter-clockwise from the vertical) according

to the formula

7rz - z
S(i - 1)- + (- 1)(i - 2) tan 1  - I; 0 < o < 7r (4.20)

2 - x-C I

i = (i/2 + 1)7r + (-1)i(i - 2)tan- 1 
z  0 >

where i = 1, 2,3 for positions 1, 2, 3 respectively, as shown in Figure 4.2,

where position 2 corresponds to x = x*. Then it computes the ray-centered

coordinates (s,n), the intersection point (x*,z*) and the travel-time along

the ray from the source point (xo0 ,z 0 ) to (x*,z*). The sign of n is defined

by
n= (R - d), if 0 < O0 < r; (4.21)~(4.21)

-(R - d), if 00 > 7r

Finally, after computing the Gaussian beam corresponding to each ray ac-

cording to equations (4.13) and (4.17-4.19) in section 4.2, the superposition

is performed for displacement and traction.

It is desirable to check the results given by INGREEN before incorpo-

rating it into the boundary integral scheme. This can be done for simple

cases involving one point(line) source and one or several observation points,
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source

obs. point

2

3 source

obs. point 1

2

n

' "Z

b

FIGURE 4.2 (a) The observation point, marked with 'o', at three possible positions, marked

1, 2, 3, with respect to the source and to the ray, when the take-off angle of the ray is (a) less than

7r and (b) greater than 7r. All angles are measured from Z axis, counterclockwise.
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similarly to those computed for the homogeneous case (section 2.4, Figure

2.6). First, the accuracy of calculation for the intersection points (x*,z*)

by INGREEN is demonstrated in Figure 4.3 (a)-(e), for several arbitrary

positions of source and observation points located within an spatial range

of 10 km wide and 5 km depth (full-space), for 30 rays departing from a

source, and for velocity gradients from 0.0001 sec - 1 (nearly homogeneous)

to 1.0 sec - 1 (100 % velocity change). The rays are traced only for display,

since ray tracing is not needed in our case. The path of these rays are

computed by an analytic formula, equation (4.2). The set of intersection

points is refered as the "locus" curve, perpendicular to the rays. On the

right side of the figure is the travel-time computed along each ray from its

origin to the corresponding intersection point, plotted as a function of the

take-off angle 40 (defined in Figure 4.2) in radians, where angles greater

than 27r are shown as q0 - 27r.

Next we calculate amplitude and phase for both displacement and trac-

tion acting on a surface with normal i = (0,1), at observation points dis-

tributed along a line of length 10 km at a distance 1 km below the source

point, due to a single line source in full-space, for several values of the

velocity gradient. The geometry is depicted in Figure 4.4. Since for verti-

cally inhomogenous media we have no analytical solution to compare our

results with, we compute first the case where g = 0.001sec - 1 , and compare

our results with those corresponding to analytical solutions for homoge-

neous media, as we did in Chapter II. Then we compute the cases for which

g= 0.1 km - 1 , g = 0.5 km - 1 and g = 1. km - 1 , keeping other parameters

exactly the same as for the homogeneous case, and check the results with

physical arguments regarding the effect of the velocity gradient.
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FIGURE 4.3 (a), (b) illustrate the accuracy of computation of the intersection points on

the ray where the normal to the ray passes through the station (locus). The numbers indicate the

value of the velocity gradients, in units sec-1 according to /(z) = 3o + g(z - zo). For instance, if

/3o = 1 km/sec, g = 1 sec - I means that the velocity increases 100% in one km depth. At the left,

travel-times are plotted as function of the take-off angle, in radians.
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FIGURE 4.3 (c) same as in (a) and (b) but the source below the receiver.
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FIGURE 4.3 (d), (e) source at the sides of the receiver.
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P km/sec source

N=(0, 1) A*

tA
receiver (i)

i 10 km

FIGURE 4.4 Geometry of the test problem (section 4.3). The superposition of beams with

take-off angles between 40 and 01 is carried out for each observation point i.
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The results for the nearly homogeneous case mentioned above are

shown in Figure 4.5, (a) for the exact solution and (b) for the Gaussian

beam, where the source is located at x0 = 5 km, zo = 0 km, and the ob-

servation points are located along the line z = 1 km. Frequency is 1 hz. In

(b) we have used 100 beams, each with parameter L0 = 0.3 km - 1 / 2 and

radiation angle range 2 = 1800. The amplitude factors 50 for displacement

and 10 for traction in the figure are used for the purpose of plotting only

(the fields are not normalized); they do not play any role in the computa-

tions. Note that the agreement between the analytical and Gaussiam beam

solutions for both displacement and traction acting on the surface with nor-

mal h = (0, 1) (and their respective phases) is satisfactory. The agreement

can be improved by adjusting the initial beam parameter L0 , however this

adjustment will not affect the final solution of a particular problem using

the boundary integral-Gaussian beam method, as demonstrated in section

2.4. We observe that for both analytical and Gaussian beam solutions, the

phase of either displacement or traction wavefields varies smoothly and non-

linearly with distance. The separation distance between two points whose

wavefield is 2r out of phase (or "jump" interval) tends to decrease from

points in the near field towards those in the far-field, down to a constant

value proportional to the separation distance between observation points.

This is barely observed within the spatial range considered for Figure 4.5,

because the wavefront of the cylindrical wave originated at the point(line)

source becomes planar at the far-field.

In Figure 4.6 (a), (b) we have computed the cases in which the values

of the gradient are 0.1 sec - 1 , 0.5 sec - 1 and 1.0 sec 1 respectively, keeping

all other parameters the same as for Figure 4.5 (see their corresponding ray
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FIGURE 4.5 Displacement and traction amplitude distribution along the observation line

depicted in Figure 2.4 for homogeneous media, computed (a) using exact solution (Hankel function),

(b) by superposition of Gaussian beams, using INGREEN with g = 0.001 sec - 1. The phase of each

amplitude distribution is plotted below.
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FIGURE 4.6 (a) displacement amplitude and phase distribution along the observation line

depicted in Figure 2.4 for inhomogeneous media, computed using INGREEN. (b) Traction amplitude

and phase distribution along the same observation line as in (a).
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paths, locus and travel-times at selected observation points in Figure 4.3).

(a) corresponds to the displacement field and phase for those three values

of g; and similarly (b) corresponds to the traction field. For g - 0.1 sec 1

the results are only slightly different than those for homogeneous media,

but for g = 0.5 and 1.0 sec - 1 the amplitudes become smaller and somewhat

localized. Also the phase becomes more non-linear and with less number

of 27 jumps as g increases, which reflects the effect of shorter travel times

of faster waves than for the homogeneous case.

Next we compute the case in which the source is at x 0 = 5 km, z0 = 1

km, and the observation points are located along the line z = 0 km, i.e.

the observation line is 1 km above the source point rather than below

as in the case of Figure 4.6. The ray paths, locus and travel time for

selected observation points were already shown in Figure 4.3. Results are

shown in Figure 4.7 (a) for displacement amplitude and its phase, and

(b) for traction amplitude and its phase. Comparing each case with their

counterpart in Figure 4.6, we observe that the amplitudes become larger for

both displacement and traction as g increases. This is due to the focusing

effect as obvious from- the pattern of rays shown in Figure 4.3. On the

contrary, for the case shown in Figure 4.6 the defocusing effect tends to

lower the amplitude with increasing g. The phase of the displacement field

is exactly the same for both cases, because travel-times are equal. The phase

of traction, however, is different, because of the difference in wavefront.

Thus, our subroutine INGREEN computes Green's function for a ver-

tically heterogeneous media with linearly increasing velocity with depth by

the superposition of Gaussian beams. Considering 100 beams in the su-

perposition, the computational time (in terms of CPU time) is about 30%
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FIGURE 4.7 In this case, the observation line depicted in Figure 2.4 is 1 km above the

source. (a) corresponds to the displacement amplitude and phase distribution along the observation

line for inhomogeneous media, using INGREEN. (b) Traction amplitude distribution and its phase

along the same observation line.
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larger than the corresponding Hankel function for the homogeneous case,

using the same computer. Green's function for displacement and traction

calculated by INGREEN will be used in the boundary integral method as

described in section 2.2 (e.g equations 2.4 and 2.7) to solve the problems

of wave scattering by mountains and valleys, in the next two sections.

4.5 Inhomogenous mountain

In this section we compute the scattering of plane SH waves in verti-

cally inhomogeneous 2-D media whose free-surface topography is a cosine

shaped ridge (Figure 4.8 (a)). The vertical position z (positive down) are

measured with respect to z0 = 0 at the top of the ridge. The height and

half-width of the ridge are h and a respectively, and the shear wave velocity

is ,0 at the top of the ridge and Oh, at the bottom, thus the gradient is

g = (3h - 30 )/h. The density is assumed to be uniform. The same gradi-

ent continues to the depth D = 5a i.e. 4a below the bottom of the ridge.

At that depth we place a horizontal interface, below which the medium

is homogeneous, with the same velocity as the inhomogeneous medium at

the interface. We assume that the density below the interface is also uni-

form and equal to that above the interface. The aim of this "transparent"

interface is to model a plane SH wave incident upon the ridge in the inho-

mogeneous medium. Since the wavelength A of the incident wave varies as

it travels in the inhomogeneous medium, we take its value at the bottom

of the ridge, Ah, to define the non-dimensional frequency q = 2a/Ah, in

order to study the response of the mountain for several values of q, as we

did in section 2.4 for the homogeneous case. That is, if we wanted to study

the case of Ah = a, the incident wavelength in the lower (homogeneous)

medium has to be AD = (OD /h)a. We define the local wavelength Az at
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FIGURE 4.8 (a) Shear wave velocity distribution with depth for the case of mountain. (b)

wave source distribution along the topography to represent the scattered field.
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FIGURE 4.9 The incident plane wave for the mountain problem. The mountain range is

between A and A', centered at O, its top is at zo and its bottom at zh. The field due to the incident

wave is computed by Gaussian beams attached to the rays shown in this figure, considering that the

mountain is at the top of an inhomogeneous layer over a homogeneous half-space. The flat interface

between both media is at ZD. The incident plane wave in the homogeneous media is expanded in

Gaussian beams and each is continued into the inhomogeneous layer, (a) for vertical incidence and

(b) for inclined incidence.
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an arbitrary depth z in the inhomogenous medium as Az = (Oz/fh)Ah.

With regards to the distribution of sources along the free-surface to-

pography, as mentioned in section 2.4, we need at least four point(line)

sources per wavelength in order to satisfy the boundary conditions at any

point on the surface. This means that the distribution of sources would

be denser towards the top of the ridge. We will use a regular distribu-

tion by selecting an equal interval between any pair of adjascent sources

as 6. = A0 /4, where Ao is the wavelength at the top of the ridge. Since

AO is the smallest wavelength, the compliance of the boundary conditions

everywhere is guaranteed.

4.5.1 Ground motion in frequency domain

We have distributed 80 sources along the surface topography of the

mountain (marked by '*' in Figure 4.8 (b)), which extends from -4a to 4a.

The ridge is centered at x = 0. This choice of distance range is to avoid

the error introduced by truncating the source distribution at the edges of

the mountain. Here, these sources are located at a distance 0.9a above the

mountain. Since the Gaussian beam Green's function has no singularity

at the source point, we can put them exactly on the surface. We avoid

that, however, because of a slightly unstable solution. The expression for

the total field is given by equation (2.4), for which G('p FQj ;w) (refer to

section 2.2 for definition of the variables) is computed by INGREEN, using

100 beams with initial beam parameter L0 = 0.2a (with units of square root

of length) and radiation angel Ql = 180 0 , i.e., with a take-off angle interval of

1.80. The value of L0 is chosen from the definition L0 = (7r/A) 1 / 2 Lj 1 , where

LAI is the half-beam width (see section 2.3), assuming that A = Ah = a

and that LA1 = 0.1a. The incident wave is computed also by superposition
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of Gaussian beams, in the following way. We consider first a plane wave

exp(ikox + ivoz) incident with an angle 7-y in the lower medium , where

ko -= (w/D)sin 7 and vo = (w/10D)cos 7. -7 is measured with respect to

the vertical, counterclockwise. This plane wave is expanded into parallel

Gaussian beams, according to Cerven' (1982), then each beam is continued

into the inhomogeneous medium individually, as shown in Figure 4.9 (a) and

(b), for vertical and inclined incidence. The travel time from the interface

to the observation line z = h is the same for all rays, so that the phase

difference for non-vertical incidence will be due only to delay in the lower

homogeneous medium. Finally, the wavefield at each observation point on

the surface topography is computed by summing the contribution of each

beam. This process is well known and accurate (Nowack and Aki, 1984)

and therefore will not be discussed here. Let us just mention that we have

constructed the incident wave using a modified version of INGREEN, so

that we can also get tractions acting on any surface.

Let us first describe the amplitude distribution of the ground motion

at the free-surface in frequency domain for various values of the velocity

gradient g, the non-dimensional frequency q = 2a/Bh and the "aspect ratio"

h/a of mountain. In examples that follow, a and Ph are fixed parameters, h

is given in terms of a and aspect ratio, and 0 is given in terms of /3 h and g.

The amplitude of the ground motion is normalized to the amplitude of the

response of a homogeneous with velocity Ph half-space without the ridge.

In Figure 4.10 the ground motion amplitude is shown (a) for /30 = /3h/1.001,

and (b) for /30 = /h/2 The aspect ratio is 0.4 and q = 2a/Ah = 1, both

chosen to be the same as in Bouchon (1973). Since h = 0.4a, g = 0.002500 /a

for (a) and g = 2.5/30 /a for (b). The fractional residual traction, defined
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GAUSSIAN BEAM METHOD

h/a = 0.4

77=1

10 - 2

I-10O- 2

-4 -3 -2 -i 0
x/D

DISTANCE

2 3 4

FIGURE 4.10 Response of the ridge (a) homogeneous case; (b) inhomogeneous, when the

velocity at the top of the ridge is 0.5 times the velocity at the bottom, or g = 1/h sec - 1 . Aspect

ratio h/a = 0.4, and the wavelength is equal to the width of the ridge. The dotted line in the figure

below is the fractional residual traction.
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as the total traction at the free-surface divided by the traction due to the

incident wave, is shown by the dotted line below the curve for ground motion

amplitude, to demonstrate the compliancy of the boundary conditions. We

observe that the ground motion is in general amplified in comparison to

that in (a), nearly twice as large at the top of the ridge. In both cases

the residual traction is of the order of 10 - 3 . In Figure 4.11 (a) and (b) we

computed the similar cases to those in Figure 4.10 (a) and (b) respectively,

but for h/a 0.8 and 21 = 0.5, so that g = 0.001 0 /0.8a = 0.0012530/a

for (a) and g = o30/0.8a = 1.25,0o/a for (b). The amplification effect is also

observed here, although with a factor _ 1.6. Residual tractions are of the

order of 10-2 in both (a) and (b), and we note that in (b) these are slightly

spread towards the slopes of the ridge, where the space interval between

the distributed sources is larger than those on the flat and top parts of

the mountain. The residuals can be reduced by increasing the number of

sources along the slope. Nevertheless, for the results shown in (b) our choice

of sources is enough to guarantee their accuracy.

Final example for assessing the effects of velocity gradient for the case

of /30 = 3 h/2 and aspect ratio h/a = 1 is shown in Figure 4.12; for non-

dimensional frequency 77 = 2. Comparing it with the corresponding ho-

mogeneous case shown Figure 2.10 (c), the amplification on the top of the

ridge is a factor of 1.5 this case.

Now, we would like to make a parameter sensitivity study of the effects

of the ridge's shape, velocity gradient and incident wave frequency on the

ground motion response along the mountain topography. First, we fix the

values of the aspect ratio, Oh and velocity gradient, and calculate the ground

response for several values of 77. Then the process is repeated for different
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GAUSSIAN BEAM METHOD

.......... ....... . ..... ..... . . ...... .

-4 -3 -2 -1
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FIGURE 4.11 Same as for Figure 4.10, but for aspect ratio h/a = 0.8.
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g =1/h

h/a = 1

102
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FIGURE 4.12 Steep ridge, h/a = 1 , velocity on the top of the ridge is 0.5 of that at the

bottom, and wavelength at the bottom is equal to a.
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values of aspect ratio and velocity gradient, keeping /3 h the same. Results

of the amplification distribution of the ground motion are shown in Figures

4.13 (a)-(e), and 4.14 (a)-(c), for 7 up to 4, or Ah = a/2. In all these

figures we observe a systematic amplification at the top of the ridge for all

non-dimensional frequencies, except for q = 0.25 (or Ah = 8a). When the

gradient is _ 0 and the aspect ratio is fixed, we obtained the well known

result that the amplification factor at the top of the ridge increases with q

(Bouchon 1973, Bard 1982). In fact, note in Figures 4.13 (a) and 4.14 (a)

that our results agree with those of Bouchon (1973) for the corresponding

case of 7 = 1 and q = 0.5, respectively. From our results, we estimate that

the amplification factor in the homogeneous case is close to 3 for 7 = 2.

When the velocity gradient is introduced, for fixed aspect ratio, 27 and

/3,, the ground motion is amplified in general, and particularly strongly

at observation points within the ridge region. This can be observed, for

instance, by comparing the results in Figure 4.13 for the same q. Taking

7 = 2 as example, we estimate that the amplification factors at the top of

the ridge for 0 = (2/3) 3 h and f0 = 0. 5 3 h are about two and three times

larger than that for the homogeneous case, respectively (or four and six

times larger, respectively, than the response of the half-space with neither

ridge nor velocity gradient). This result seems to be robust, independent

of the aspect ratio up to 0.8, as we observe by comparing (a) and (b) of

Figure 4.14. A similar conclusion can be obtained by taking as example

other values of 7. In addition we observe in (a), (b) and (d) of Figure 4.13

that the amplitude outside the ridge appears to vary less as the gradient

increases. Finally, the amplification/deamplification pattern observed along

the slopes of the ridge appears not to be affected by either the velocity
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G.BEAM SCATTERING BY A COSINE MOUNTAIN
Aspect h/ =0.4, Lam=2a/eta, Vh=Vo+Vo/1000

-

+V
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vh=Vo+( 1/2)*Vo
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FiGURE 4.13 (a) The response of the mountain with aspect ratio h/a = 0.4, for the

homogeneous case, and for several values of 77 = 2a/A. The arrow points the similar solution

obtained by Bouchon (1973). (b) inhomogeneous case, velocity on the top of the ridge in 2/3 of that

on the bottom.
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FIGURE 4.13 (c) the same ridge as in (a), but with velocity on the top equal to 1/2 of that on
the bottom. (d) same as in (c) but for larger r's (high frequency).
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G.BEAM SCATTERING BY A COSINE MOUNTAIN
Aspect h/a=0.8, Lam=2a/eto, Vh=Vo+(1/1000)*Vo
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FIGURE 4.14 The aspect ratio h/a = 0.8, (a) homogeneous. The arrow points the solution

for similar problem obtained by Bouchon (1973).
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FIGURE 4.14 (b), (c) correspond to the inhomogeneous case, with velocity at the top of the

ridge equal to 2/3 of that in the bottom.
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gradient or aspect ratio, but rather by the non-dimensional frequency 77.

We conclude that an intensive amplification occurs for the ground mo-

tion at the top of a ridge when the velocity increases with depth. For

example, the amplification factor at the top of the ridge, which is about

two for the homogeneous case when the wavelength of the incident wave is

comparable with the half-width of the ridge, was found to be close to seven

when the velocity of the shear wave at the bottom of the ridge was twice the

velocity at its top. This intensive effect of the ridge with a velocity gradient

depends on the non-dimensional frequency, but is not strongly dependent

on the aspect ratio of the ridge.

4.5.2 Ground motion in time domain

Time domain synthetic seismograms are obtained by inverting Fourier

transform evaluated at 100 non-dimensional frequencies q - 2a/Ah, and

using Ricker wavelet source time function, as it was described in Chapter

III (section 3.4). Refering to Figure 4.8, the seismograms are synthesized at

100 stations covering a distance 8a along the free-surface topography (AA'

in the figure), at equal intervals. Their duration is given in the unit of time

needed by the wave to propagate the ridge half-width a with velocity 30,

i.e. the velocity at the top of the ridge. The characteristic wavelength of

Ricker wavelet Ac is selected to be equal to a.

Results for a ridge whose aspect ratio is 0.4 are given in Figure 4.15,

for A c = a and for g = 0, 0.25, 0.5 and 1 (unit of time) - ', with 3o = 1 unit

of distance/time. The velocity Oh at the bottom of the ridge is therefore

Oh = 1. + 0.4ga. We should mention that the origin times of these four

seismograms sections have been adjusted for plotting, in such a way that

the arrival of the incident wave outside the ridge region be simultaneous.
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FIGURE 4.15 Synthetic seismograms for a ridge of 0.4 aspect ratio. g = 0 (sec - 1) corresponds

to the homogeneous case. g = 0.25 (sec-1) corresponds to velocity at the bottom equal to 1.25 times

that at the top, similarly g = 0.5 and g = 1 (sec - 1) to 1.5 and 2 times the velocity at the bottom,

respectively. 129
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We observe two dominant features in these seismogram sections, the first

is the amplification of the waveform at stations close to the top of the

ridge, being largest at the top; and the second is the wave scattered by

the ridge, propagating outwards along the free-surface, without significant

attenuation.

Regarding the first, the amplification of the waveforms observed for

the homogeneous case has been reported by several authors, e.g. Bard

(1982), who obtained waveforms similar to those shown in our figure, us-

ing the Aki-Larner (1970) method. Bard attributes this amplification to

constructive interference of waves inside the ridge. For the inhomogeneous

case, it appears that the gradient only enhances this amplification without

affecting significatively the shape of the waveforms. As observed for the

ground motion in frequency domain, there is also a systematic amplifica-

tion with increasing velocity gradient g. The amplification effect due to g

is also observed in Figure 4.16, where h/a = 1, keeping Ac = a. (a) is for

homogeneous (b) for g = 1 (unit of time) - '1 (origin time is not adjusted in

this case). Although the amplitude of the waveform observed at the top of

the ridge is larger for the inhomogeneous case than for the homogeneous by

a factor of about 1.4, this amplification factor appears to be smaller than

that for the corresponding cases for h/a = 0.4 shown in Figure 4.15., which

we esimate _ 2. We observe also that the amplification at stations on the

slopes of the ridge is relatively small compared with that on the top, in all

cases. This characteristic of the motion on the flanks of mountais has been

reported in some observations (e.g.Davis and West 1973) and in studies

using theoretical modeling, considering homogeneous media (Bard 1982).

The second feature mentioned above, that is, the scattered wave by
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FIGURE 4.16 Synthetic seismograms for a ridge of aspect ratio equal to 1, for (a) g = 0

sec - 1, and (b) g = 1 sec - , /30 -= 1 unit distance/time.
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the ridge, is examined more closely next. Due to the complexity of the

waveform at stations within the ridge region, we plot the seismograms of

only 17 stations distributed at equal intervals, five of them on the ridge

in such a way that one is on the top and four on the flanks. We choose

the seismograms of Figure 4.15 corresponding to h/a = 0.4, 30 = 1 unit

of distance/time, and g = 0 and 1 (unit of time) - 1 , shown in Figure 4.17

(a) and (b) respectively. The total duration has been increased to 16a/30

for both. The scattered wave appears to be originated by reflection of the

incident SH wave at a certain point R, and subsequent diffraction at point

S of the ridge topography, as illustrated by the ray diagram below each

seismogram section. Thereafter, the wave propagates outward along the

free-surface. Note that points R and S represent any points in the ridge

where this phenomenon occur. The velocity of this wave, measured from

the seismogram section, is the same as the SH velocity at the bottom of the

ridge. We demonstrate this by measuring in Figure 4.17 (a) the velocity of

the scattered wave from the slope of its trace within the time interval of

about 1.7a/0, marked by two arrows, i.e., 2.9a/(1.7a/0o x 1.6) -_ lunit of

distance/time. Similarly, for the case shown in Figure 4.17 (b) the velocity

of the scattered wave is 2.9a/(0.9a/0o x 1.6) _ 2., where 0.9a is the time

interval marked by two arrows. We conclude that the scattered wave is

an SH (body) wave propagating along the free-surface. In both cases (a)

and (b) the amplitude of the scattered SH wave is - 1/4 of the amplitude

of the incident wave, keeping the same waveform, and attenuating slightly

away from the center of the ridge. We observe that there is a constructive

interference between the incident and the scattered waves at the ridge top

causing amplification. The amplitude at the top of the ridge for the in-

132



x
LiJ
U
z

E-U,-

N
0

A'

0 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

TIME (a/#flosec)X 1.6

3

FIGURE 4.17 (a) seismograms at 17 stations for the homogeneous case. Aspect ratio is 0.4.

The velocity of the scattered wave, measured from the slope of its trace between the arrows is equal
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FIGURE 4.17 (b) the inhomogeneous case, when velocity at the bottom is twice the velocity

at the top of the ridge. As in (a), the velocity of the scattered wave, measured from the slope of its

trace between the arrows is equal to the velocity at the bottom of the ridge.
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FIGURE 4.18 The seismogram for g = 1 (unit of time)-' in Figure 4.15 is blown-up after

the time marked by an arrow.
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homogeneous case is about 1.3 times that of the homogeneous case. The

amplification at stations on the flanks of the ridge is about the same in both

cases. Comparing these results with those for a higher aspect ratio ridge,

as the one shown in Figure 4.16, we observe that the amplitudes of the

scattered SH wave outside the ridge are much smaller than those for lower

aspect ratio ridge. The motion on the flank of ridge is, on the other hand,

greater for higher aspect ratio ridge. When #0 = 1 unit of distance/time,

and the gradient is g = 1 (unit of time) - 1 , the amplitudes of the scattered

wave outside the ridge are even smaller than those for the homogeneous

case, but the seismograms at stations inside the ridge show more arrivals,

suggesting multiple reflection-diffraction phenomena.

The presence of the vertical inhomogeneity may give rise to surface

Love waves. We suspect this from the barely observed arrivals in Figure

15, for g = 1 (unit of time) - ' and 30 = 1 unit of distance/time. This

arrivals are not present in the case of g = 0 (unit of time)-', but appear

gradually as g increases. We have blown-up these arrivals, starting from

t = 3.4a/3 0 (marked with arrow), that is to include the arrival of the

scattered SH wave. Results are shown in Figure 4.18. It appears that in

effect, these arrivals correspond to Love waves. We need to calculate phase

velocity of Love waves to confirm it.

4.6 Inhomogeneous sedimentary basin

In this section we compute the ground motion of a sedimentary basin

in which shear wave velocity increases linearly with depth, embedded in a

homogeneous half-space. The geometry of the problem is depicted in Figure

4.19, along with the source distribution. To represent the field outside the

basin (exterior) we have used the sources marked with '*' distributed along
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FIGURE 4.19 Source distribution along the interface with the half-space and free-surface

of the semi-cylindrical inhomogeneous basin. The sources represent scattered fields in the exterior

region (CE), interior (C1 and 0j). At the left is the velocity distribution with depth. a is the radius

of the basin.
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the semi-circle CE in the figure. For the field inside the basin we use the

sources marked with '+' distributed along the free-surface CI and along the

semi-circular interface with the homogeneous half-space. The wavefield in

both regions is expressed by equations (3.1) (refer to Chapter III for more

detail about source distribution for interior and exterior fields), where vM

is computed by INGREEN (section 4.4) and

v E)(, z; W) [H(2)(kr) + H 2 (kr )] (4.21)
4

where H( 2 ) is Hankel function of second kind, order zero, i = -, k = w/,3

is wavenumber, O =/3(z), and

r= V( - ) + (z - zE 2

-_ = V(X - X )2 + (z + ZE) 2

where (ZE,ZE) is the position of the source distributed along the semicircle

CE . (x, z) is the position of an arbitrary observation point, and r_ is the
(E)

vector position of its image source (XE, -ZE). VnE) in equation 4.21 is 2-D

Green's function for a homogeneous half-space.

The boundary integral scheme for the inhomogeneous basin described

above requires a much more involved algebra than those for the homoge-

neous basin (section 2.4) and embedded inclusions (section 3.2, equations

3.2 and 3.3). In the present case, we must include the integral of the total

field along the free-surface of the basin in order to satisfy boundary condi-

tions. In Chapter II we overcame this problem for the valley by adopting

a image source scheme, which allowed automatically the compliance of the

boundary conditions along the free-surface in both the half-space and the
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valley, so that the distribution of sources and integration paths (see equa-

tion 2.6) were restricted only to the curved interface between valley and

half-space. Similarly in the case of inclusions. Here it is not possible to

adopt such a scheme for the basin, therefore we must distribute sources

along its free surface and incorporate them into our least squares method

to determine their strengths, as described in section 2.2. In this section we

shall write neither the algebra nor the elaborated equations, as we did for

the inclusion in section 3.2, but refer to Appendix 1 in this thesis. Let us

only mention that now we have nine submatrices of the type R (see equa-

tion 3.2 and 3.3) and one more integral (along CI) incorporated into their

expressions and in those for the source terms S'0 .

4.6.1 Ground motion in frequency domain:

Comparison with the finite element method.

We compute the ground motion along the free-surface of a semi-

cylindrical inhomogeneous basin in a half-space of radius a, in which the

shear wave velocities at the top (i3o) and bottom (Sa) of the basin are 1 and

2 unit of distance/time, and in the half-space (0h) 3 unit of distance/time.

That is, g = 1 (unit of time)-' in the basin and a strong jump of ve-

locity at the bottom of the basin. Densities p, and PH of sediments and

half-space respectively are assumed uniform and their values are related

by PS/PH = 0.667. Results are shown in Figure 4.20, for several values

of 71 = 2a/Aa. These are to be compared with the results of Figure 2.12

(Chapter II) corresponding to the case of a similar basin whose shear wave

velocity is constant and equal to 1 unit of distance/time, and the half-space

velocity is 3 units of distance/time.

We observe that the response is in general strongly affected by the

139



G.BEAM, INHOMOGENEOUS VALLEY
v-top=, v-bottom=-2. v-rock=3. Lam=2o/eta

-4 -3 -2 -1 0
x/a

DISTANCE

C

1 2 3 4

FIGURE 4.20 (a), (b), (c) response of the inhomogeneous basin for several 7;'s, computed

with boundary-integral Gaussian beam method.
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velocity gradient, but the effect is not systematic. In fact, for some fre-

quencies, e.g. 77 = 0.25 the motion is deamplified by a factor of - 6. The

amplitude distribution of the ground motion at the edges of the basin be-

comes more pronounced with the gradient, for all frequencies, reaching its

maximum amplitude for = 1, or A, = 2a. On the contrary, the amplitude

outside the basin becomes smoother with the increased gradient. These

characteristics of the motion can be observed more clearly in Figure 4.21

(a)-(d), which shows the effect of the velocity gradient on the response of

the basin for 77 = 1, by increasing the velocity at the bottom of the basin Oh

from 1 at intervals of 0.1 unit of distance/time. We observe that area of am-

plification within the basin systematically becomes wider as 3, increases,

covering the basin range for 0, = 1.6 and thereafter amplifying the motion

at the edges more than at any other parts of the basin. This dependence

of the ground motion with velocity gradient was also noted by Bard and

Gariel (1986), who modeled inhomogeneous basins with sinusoidal interface

with the half-space.

The accuracy of our results are checked by comparing them with those

obtained by solving an identical case using a hybrid method based on

boundary element representation of the wavefield for the homogeneous half-

space and finite element computation of the field in the basin. The method

was developed by Toshiaki Sato (1984 ) and used in problems of Eartquake

Engineering (Fukuwa et. al. 1985). Figures 4.22 (a)-(e) showing the results

for the cylindrical basin using this method are courtesy of T. Sato and H.

Kawase (personal communication). The finite element mesh for the basin

is shown in Figure 4.22 (a), providing 10.67 elements per wavelength in the

basin for q = 2. The coarse mesh attached to the left of the basin is used
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G.BEAM, INHOMOGENEOUS VALLEY
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FIGURE 4.21 (a)-(d) response of the basin for 77 = 1, gradually increasing the velocity at

the bottom, from 0 to 2.00.
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FIGURE 4.22 (a) Finite element mesh of the same inhomogeneous basin as in Figure 4.20.

Results in (b) and (c) are to be compared with their corresponding in Figure 4.21 (a) and (b). Such

comparison shows that the results by both methods are in good agreement, except for 7 = 0.75.
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FIGURE 4.22 (d), (e) r7 = 0.75 corresponds to a resonance mode of the inhomogeneous basin

in Figure 4.20 (a). The corresponding resonance mode for the finite element basin model is q = 0.76,

as demonstrated here by increasing 77 gradually in 0.001 steps, from 0.750 to 0.770.
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to compute the motion at the free- surface. The distribution of velocity

with depth is simulated by stepwise velocity variation in a layered struc-

ture with homogenous layers, where the velocity of each layer is assigned

to be the velocity at the mid-depth of the layer. The values of velocity at

the top and bottom of the basin, and that in the half-space are 1, 2 and 3

units of distance/time, as same as in our case. Results for up to 71 = 1.5

are shown in Figure 4.22 (b),(c). Our results in Figure 4.20 are in good

agreement with theirs, except for q = 0.75. However, this disagreement is

due to the homogeneous layered structure introduced to simulate the con-

tinuous gradient, because q is related to the velocity at a given depth, so

that the q's for the layered model mismatches the corresponding values of

,q for the continuous model. The error due to such mismatch is larger when

the selected q is a resonant mode, as it appears to be the case here. This

is demonstrated in Figure 4.22 (d),(e), by increasing stepwise the value of

,q from 0.75 to 0.77. The response computed for q = 0.76, which gives the

largest amplification, is in perfect agreement with our results for 77 = 0.75.

The above problem can be overcome by increasing the number of layers,

although requiring costly computations and cumbersome mesh design.

We also have performed the test of residual traction as introduced in

Chapter II and used in the present chapter for the study of inhomogeneous

mountain. We found that the fractional residual tractions for the worst

case of 7 = 5 and gradient g = 1 (unit of time) - 1 when /30 = 1 unit of

distance/time, is of the order of 10-2 at most.

4.6.2 Synthetic seismograms

The appropriate number of sources to represent the wavefield in the

basin has to be chosen according to the wavelengths at the free-surface of
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the basin, in order to guarantee accurate solution for all frequencies of the

incident wave considered in the computation of synthetic seismograms. Us-

ing the criterion of 4 sources within a wavelength, we have distributed a

total of 120 sources along the free-surface, and enclosing the cylindrical val-

ley. Refering to Figure 4.19 of the basin, the seismograms are synthesized

at 160 stations distributed over a distance 10a, centered at z/a = 0 of the

basin. These seismograms are 18a/3 0 of duration, computed for the source

waveform of Ricker wavelet (Chapter III) with Ac = 0.6a. In Figure 4.23

(a) the incidence of the primary wave is vertical, 30 = 1 unit distance/time,

0, = 1.001 unit distance/time, 3 H = 3 unit distance/time and a = 1 unit

of distance. In (b) the angle of incidence is 300, other parameters are kept

the same. Since the velocity gradient is small (0.001 (unit of time)-' 1 ), we

consider this as "homogeneous case". In (c) 30 = 1, 3 a = 1.8 and H = 3

unit of distance/time, which means that there is less velocity contrast at

the bottom interface of the basin with the half-space. As for Figure 4.20,

the densities of basin and half-space are uniform, and in the ratio 1/1.5. In

both (a) and (b) we observe the smooth delay of the the incident wave pass-

ing through the valley, and the reverberations caused by two-dimensional

resonance due to trapped waves inside the basin. Similar behavior of the

wave propagation inside and outside the basin were obtained by Bard and

Gariel (1986) in their study of shallow, medium and deep valleys. Our

computation of the total wavefield for this short wavelength allows us to

identify the individual reflections taking place in the interference pattern

in the basin. We observe stronger attenuation of the waves reflected back-

and-forth between the bottom of the basin and the free-surface than those

reflected on the sides. Only the first reverberation leaks significant amount
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FIGURE 4.23 (a), (b) Synthetic seismograms for the homogeneous basin, and for Ac = 0.6a.

Velocity of the half-space /3# is three times the velocity of the basin 0o. In (b) the incidence angle

is 300. In (c) the velocity of the bottom of the basin 0, = 1.800o.

147

x
UJ

z

(n 7

25

I.,

x

LaJ

z
i-
_ 7

N1,



of energy towards the sides of the basin. In (b), the wave interference inside

the basin does not allow reverberation as regularly as in (a). The ampli-

tudes of the reverberating waves appear to attenuate more rapidly in this

case. In (c), where velocity gradient is present, two remarkable features

emerge. The first is the widening of the amplification zone as compared to

the case of homogeneous basin. Second, the reverberations caused by two

dimensional resonance have in this case larger amplitudes than those in the

case of homogeneous basin, and their time intervals are much shorter due

to faster velocity within the basin. The total duration of the seismograms

at stations within the basin becomes shorter, due to energy loss carried

by waves transmitted back into the half-space. This is more evident in

Figure 4.24, where /3a = 2.5 unit distance/time, keeping 30, /3 H the same

as in Figure 4.23(a). In (a) the incidence is vertical, and we observe only

one back-and-forth reflection from the sides of the basin having significant

amplitude, because of reduced velocity contrast across the interface, and

almost no waves are transmitted towards the sides of the basin. In (b) the

angle of incidence is 300 keeping the value of velocities the same as in (a).

In this case we see well defined travel-times of the waves reflected back-and-

forth at the sides of the basin, where the impedance contrast is large. The

time delay in each reflection suggests that the waves are reflected towards

the bottom of the basin, where most of their energy is transmitted into the

half-space.

4.7 Discussion

The boundary integral and Gaussian beam methods have provided a

new tool to study accurately SH wave propagation phenomena in com-

plex structures by computing the complete waveform for a wide range of
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FIGURE 4.24 Synthetic seismograms for the inhomeogeneous basin, when /3a = 2.53o, (a)

for vertical incidence, (b) for 300 incidence angle.
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frequencies. We believe that we combined the two methods taking advan-

tages of the strengths of their methods, avoiding their weaknesses. The

Gaussian beam method helps to reduce the number of unknowns needed

by the boundary integral method to attack a complicated problem. For

instance, in media showing smooth spatial variations of velocity and strong

boundary irregularity, sources can be distributed along the boundary and

Green's function for the smooth media can be constructed by superposition

of Gaussian beams, avoiding the task of discretizing the whole medium. In

our method, there is no need for the cumbersome calculation of transmis-

sion and reflection for Gaussian beams, because the boundary conditions

are satisfied globally, by the least squares method. The aim of the present

Chapter was to demostrate such advantage, by choosing problems of sim-

ple geometry. The validity of the results obtained here are confirmed by

using other well stablished methods. Our algorithm to superimpose Gaus-

sian beams is flexible and fast, mainly due to the analytical computation

of ray-centered coordinates, although limited to media with linear increase

of velocity with depth.
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CHAPTER V

MULTIPLE SCATTERING OF SH WAVES IN MEDIA WITH

MANY CAVITIES

5.1 Introduction

The problem of scattering of waves interacting with a complex system

of heterogeneities was formaly treated for the first time by Foldy (1945)

for scalar waves and subsequently studied extensively in several fields of

Physics (Lax 1951, Varadan 1980, Kikuchi 1981). In most cases, the dif-

ficulty of solving the wave equation under given boundary conditions has

forced researchers to look for approximate solutions, using assumptions that

simplifies certain aspects of the scattering phenomena. For waves in ran-

domly heterogeneous media, analytical solutions of the wave equation have

been restricted to the case of weak scattering, where multiply scattered

waves may be neglected (Chernov 1960). The case of strong scattering can

be studied only by numerical techniques (Frankel and Clayton 1986) or by

the laboratory simulation controlling the size and density distribution of

the scatterers as well as source (Matsunami 1989). Unfortunately, numeri-

cal techniques such as finite-difference and finite-element methods face the

great difficulty of core memory and CPU time limits in dealing with real-

istic scattering problems, even with state-of-the-art-computers. Moreover,

it is not clear whether these techniques can simulate correctly the inho-

mogeneous (evanescent) waves converted at interfaces with strong velocity

contrast and sharp interfaces since their wavelength may turn to be smaller

than the size of the mesh used.
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In the present chapter, we use the boundary integral method (BIM) to

address deterministically the problem of multiple scattering of SH waves in

two-dimensional media, where the heterogeneities are distribution of regu-

larly or randomly spaced cylindrical cavities of circular or elliptical cross

section. As explained in early chapters, the boundary conditions of the

problem are imposed on the integral representation of the wavefield, lead-

ing to an integral equation in which the kernel, or Green's function, incor-

porates the values of the wavefield at the boundaries into the solution for

the total wavefield. In general, the integral equation is solved numerically

by means of discretization of the boundary. While they share a common

foundation, all boundary methods differ in their discretization scheme and

the way in which Green's function is evaluated. We use the so-called sin-

gle layer potential form of the integral representation, described by Ursell

(1973), and a discretization based on distribution of point (line) sources

along the boundary of the scatterers. Our Green's function is exact (Han-

kel function for 2-D full-space) and the boundary conditions are imposed

in the least-squares sense. A similar scheme has previously been used by

Dravinski (1983) to formulate in terms of potentials the complete elas-

tic wavefield in media with many elastic inclusions of arbitrary (smooth)

shape, and to compute the ground response of a half-space with one and

two elliptical inclusions.

Here we treat cases involving up to 50 cavities in half and full spaces,

and for wavelengths larger and smaller than the size of the cavities. Our

results are time-domain synthetic seismograms obtained by the inverse

Fourier transform of the solution at many frequencies. There are no re-

strictions on the frequency range of applicability. In fact, the accuracy of
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FIGURE 5.1 (a) vo is incident upon a collection of M cavities. Upon the incidence

of vo (plane wave or line source) the total field is measured at the observation point

A whose vector position is i. The total field at the observation point is vo plus the

scattered field contribution from all cavities. (b) a single cavity enclosed by the

curve C. Artificial wave sources denoted by '+' are distributed along an interior

curve C_, at a distance 6 from C, in order to represent the scattered wave field

due to the cavity.
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the solution for a given frequency is determined by the number of sources

used to satisfy the boundary conditions.

In the following, we first describe the method and check its accuracy

in frequency domain. Next, synthetic seismograms along an observation

line at z = 0 (z positive down) are computed for the cases in which one,

two, four, and twelve cavities are regularly distributed in both half and full

spaces. The purpose of this exercise is to show the interference patterns

that develop in time domain as the number of scatterers increases. Finally

we compute the synthetic seismograms corresponding to fifty randomly

distributed cavities along with the corresponding quality factor Q(w) due

to scattering loss for primary waves propagating through the region.

5.2 Basic theory and formulation

The method of integral equations described by Ursell (1973) for the

exterior problem of acoustic scattering is used here to derive an expression

for the SH wavefield in a medium with many cavities, for the plane wave

or line source incidence. According to this method, which was described in

our Chapter II, the scattered field due to one cavity can be expressed as the

integral of the wavefield produced by a continous distribution of artificial

wave sources with unknown strengths along its boundary (see equation

(2.1)). In the present chapter, we extend this formulation to compute the

total wavefield in the presence of many cavities as the sum of the scattered

field due to unknown sources distributed along the boundary of each cavity

plus the incident wave.

Referring to Figure 5.1 (a), a plane SH wave v0 is incident from be-

low (z-positive down), upon a collection of M cavities of arbitrary cross

sectional shape. The total wavefield v at an arbitrary observation point P
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(position vector ip) is given by equation

v(p) = vo(P) (r' Q) G(rP rQ)ds1 + 02(TQ )G(' Q)dS2 +...
C C 2

+ J , (FcQ )G(p r-Q )dsA
CM

or

p) + ()G( )d (5.2)
i= 1 C

oi represents the strength of the continuous distribution of wave sources

along the contour Ci in cavity i.

G(rFp |Q) satisfies the Helmholtz equation (V 2 + k 2 )G(Fp Q) = 0

(omitting the factor exp(iwt)), except at Fp := Q, at which it has a singu-

larity. The analytical solution obtained for G in a homogeneous full-space,

satisfying the radiation condition

1/2( - ikv) -* 0 , as r -* oo

is

G(p Q 2)(kr)

where H (2) is Hankel function of zero order and second kind, i = V ,

and r = V(Xp - XQ)2 + (zp - ZQ) 2 . In evaluating (1) the singularity of

G('p Jr'Q) can be avoided by distributing the wave sources along a curve C_,

interior to C, whose points are located at a finite distance 6 from C (see

Figure 5.1(b)). The validity of this approach is demonstrated by Ursell

(1973) by constructing Green's function G(rp 'Q) in such a way that it

remains bounded as r'p - r'Q. The construction is in terms of series of

Bessel functions that converge for Ifrp - r'o 'Q - ro I > 62, where r 0 is the

position vector of the center of the cavity.
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To evaluate the integral in (5.2) we discretize the boundaries of the

cavities following the same discretization scheme described in Chapter II

for one scatterer. Although the formulation is quite similar to that in

Chapter II, the presence of two indexes, i and j representing cavity and

source, respectively, makes it necessary to write the formulas for many

cavities explicitly. Let us assume that instead of the continuous wave source

distribution we select N points along the boundary of each cavity and assign

a line source at each point. The strength o-i is thus written as

N

0 Q(FQ) = Aijb(|Q - Qi ) (5.3)
j=1

where 'TQ, is the vector position of the j - th source in the i - th cavity.

Inserting (5.3) in (5.2)

MA N

v(Fp) = vo(ip) + E j Aj A6J( S(Q - F )G(Fp rQ)dsi
i=1 Ci j=1

MAl N

V rp ~~~ +p Z: Z Ai 8( Q -rQ 1 G (rp IrQ ) d si=1 j=l 
Ci

MAl N

v(Fp) =vo(rp) + E Aij G(rp rQ,) (5.4)
i=1 j=1

Aij is a complex constant that represents the strength of the source located

at the j - th point on the boundary of the i - th cavity. Since equation (4)

is derived for a given w, it should be written as

MAl N

v(r'p,w) = vo(r'p,w) + E Aij(w)G(Fp Qij ;w) (5.5)

i=1 j=1

In general, the appropriate number of sources assigned to each cavity may

vary according to the shape of its cross-section and to its size relative to the
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input wavelength. In this study we assume that all cavities are identical,

so that we assign the same number N of sources to each of them.

The problem has been reduced to determine the constants Aij(w).

This is done by imposing the boundary conditions in the least-squares

sense (Sanchez-Sesma and Rosenblueth 1979), i.e. by minimizing the total

quadratic error of the values of traction along all boundaries:

[I Ov 12
L I= ds (5.6)

Iil I

where C = C1 + 02 + ... CAI, 1L is the shear modulus and A the outward

normal vector to C at P. The following system of simultaneous linear

equations is obtained:

Ml N

S rmnijAij - bmn (5.7)

i=1 j=1

where

/ G* G.
Pmnij j G3 OG ds

c i 9A 0

and

bmn =- OGmDnyo
c Oh Oh

(*) stands for complex conjugate, m = 1, 2, ... , M, n = 1, 2, ... , N and Go =

G(r'p 7r, ). In (5.7) Fmnij represents the interaction between the n - th

source of the m - th cavity and the j - th source of the i - th cavity.

Similarly, bmn, represents the interaction between the n - th source of the

m-th cavity and the incident wave. It is understood that in our calculations

the artificial sources will be located at an interior circle C whose radius

a_ = 0.8a, which has been shown to give accurate results (Sanchez-Sesma

and Esquivel 1979).
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5.3 Test of accuracy

We consider that a fundamental test of accuracy for our method is to

check its results with known analytical solutions. We have selected two such

problems for this purpose. The first is to compute the scattering pattern,

i.e. the pure scattered field after substracting the incident wave, due to one

cylindrical cavity in full-space upon incidence of a plane wave. This is done

for the range of frequencies that we intent to use in the numerical solution

of more complicated problems. In Figure 5.2 we show the comparison of

the pattern obtained with both our method (solid line) and the analytical

solution (dots) given by Mow and Pao (1971, pp 269) Here the measurement

is made at 100 stations located along a circumference of radius equal to

10 times a, the radius of the cavity. The values of the non-dimensional

frequency 7 = 2 and 20 are equivalent to a and a/10 , respectively (q =

2a/A). The second problem is to compute the ground response of a half-

space with one cavity totally embedded, also for SH plane wave incidence,

and compare our results with those obtained by Lee (1977). We used the

exact 2-D Green's function for a homogeneous half-space

G(Fp |I, ;w) = H (2) kri) + HO2) (kr 2= ~4+

where

r" --- T- XQi j )2 + (zp - ZQ)

r2 /(Xp - XQi, )2 + (zp + ZQJ. 2

(r 2 is the position of the image source corresponding to the source located

at (xi, ,zQi 1 ). The incident wave is the superposition of up-going and

down-going (reflected at the surface) SH plane waves, as if there were no
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FIGURE 5.2 Scattering radiation pattern due to one cavity, computed for 77 = 2

and 77 = 20 (7 = 2a/A). Solid lines correspond to the solution given by this

method; dots to the exact solution.
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cavity in the half-space, i.e.

vo(rp) = exp (-i k.'p) + exp (ik.r'p)

As shown in Figure 5.3 for H/a = 1.5 (a), (c); H/a = 5 (b), (d), and for

several values of r77, the accuracy of our numerical solution is excellent.

The case of two or more cavities is complicated and no explicit ana-

lytic results in either frequency or time domains are available. Some closed

form solutions based on the wavefield representation by linear superposition

of basis functions have been proposed by some authors (Waterman 1969,

Kristensson and Str6m 1978, Chaterjee et. al. 1978) but in most of these

studies results are given for the average value of the physical quantity of

interest (displacement for instance) in terms of the probability of finding

one cavity within certain spatial interval. The involved algebra and the

computation of large polynomial expansions required to compute the scat-

tering for wavelengths comparable or smaller than the size of the cavities

made them impractical for our purpose of comparing results. Instead we

examine how accurately the traction-free condition along the boundaries of

the cavities half-space is satisfied by our solution. A measure of the error

in traction at a certain point on the stress free boundary is given by the

fractional residual traction (introduced in Chapter II) defined here as

2 N

TrR(a,O) = 1 + E E Aij T r o (a,0)
Tro

i=1 j=1

where Trij is the traction at this point acting on the plane with normal

i, due to the artificial source j on the boundary of cavity i, Aij are the

coefficients obtained after solving (5.7), and Tr 0 is the traction acting on the

plane with normal i due to the incident wave at the same point, when there
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are no cavities. The polar angle 0 is measured from the center of the cavity,

counterclockwise from the vertical. Thus, the fractional residual traction at

the point where the error is estimated is equal to the total traction measured

at this point (due to the incident wave plus all artificial sources), divided by

the traction due to the incident wave only. This way to check the solution

given by a boundary integral method has consistently shown that small

residual along the boundaries correspond to an accurate solution of the

problem (Benites and Aki 1989), and that the degree of accuracy depends

to a large extent on the total amount of artificial wave sources distributed

in order to correctly fulfil the boundary conditions. The geometry of our

example is shown in the right top of Figure 5.4 The centers of the cavities

are separated by a distance D. Our purpose here is to measure the residual

traction for each cavity and estimate how sensitive it is to variations of

separation distance D. In Figure5.4 (a), (b), (c) we show the results for

300 plane wave incidence and 77 = 2, using 30 artificial sources; and for D

increasing from 1.2 to 2 times the diameter of the cavity. We observe that

the values of the fractional residual traction in all cases are of the order

of 10- 3 . As D increases, the distribution of residual along the boundary

becomes similar to that obtained for a single cavity (D = oo).

The above example demonstrates not only that the presence of an

additional cavity does not affect the accuracy of the solution obtained for

one cavity in our first example, for any separation distance D, but also

that the traction-free condition is fulfilled to a high degree of accuracy

using 30 sources per cavity, as evidenced by the small values of residual

normalized traction at the boundary of the cavities. It can be observed in

Figure 5.4 that the absolute value of this residual is in no case larger than
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FIGURE 5.4 Residual traction computed along the boundaries of two cavities

in a half-space, whose centre are at 1.5a depth and separated by a distance D.

The angle of incidence of the primary wave is 300, measured clockwise from the

vertical. In (a) D = 1.2(2a) and in (b) D = 2(2a). (c) corresponds to the residual

traction computed for a single cavity. Note that as D increases the residual traction

distribution along the boundary of each cavity becomes similar to that of a single

cavity.
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5 x 10 - 3 . We conclude that our method gives an accurate solution to the

scattering problem for the case of two cavities. The case of any number

of cavities can be treated similarly, by distributing a sufficient number of

sources around each cavity to correctly satisfy the boundary conditions.

For our experience, we select at least four sources per wavelength measured

along the boundary in order to represent the external wavefield amplitude.

Therefore, if the wavelength is A, the minimun number of sources required

will be Ns = 87ra/A for each cavity.

5.4 Multiple scattering in media with many regularly

spaced cavities

In this section we analyze in time domain the wavefield generated by

one, two, four, twelve and fifty cavities distributed in both half and full

spaces, upon the incidence of either plane wave or wave from a point (line)

source. This gradual increasing of cavity number is important in order

to identify various scattered phases that arrive at the stations of a given

seismic observation array, as the number of cavities increases. It is also

helpful in understanding the seismograms obtained for more complicated

structures, such as those containing a random distribution of cavities.

In the following examples we choose radius a = 1 (unit of distance),

shear wave velocity /3 = 1 (unit of distance/ time). The synthetic seismo-

grams are computed by inverse Fourier transform of the frequency response

at 100 frequencies, in the range from q = 0.02 to 7 = 2, where i = 2a/A is

a non-dimensional frequency. The input source-time function is the sym-

metric Ricker wavelet, described in Chapter III. We recall that both the

real frequency f and 77 are related by f = 7/2a. For example, for a cavity

radius of 100 m in the crust with S-wave velocity 3 km/s, q = 2 corresponds
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to 30 Hz.

We start with computing the synthetic seismograms of the scattering

due to one cavity in a homogeneous full-space, upon the incidence of a

plane SH wave, shown in Figure 5.5 The seismograms are synthesized at

100 stations, deployed along the line A-A', covering a total range of 8a -.

The center of the cavity is located at x/a = 0, z/a = 1.5 . Breadth of

the Ricker wavelet is 0.6 a/#l seconds, which correspond to a characteristic

wavelength of 0.77a . The main feature observed here is the time-delay

and attenuation of the incident wave at stations immediately above the

cavity, in the region z/aj < 1 . The wavefield in this region is due

to diffraction of the incident wave at points on the boundary where the

incidence direction is perpendicular to the unit normal vector, e.g. the

point marked by G in Figure 5.5(b). Upon hitting these points the incident

wave creeps around the cavity (Keller 1962), radiating diffracted waves

arriving at stations with a time delay proportional to their creeping path

along the boundary and their travel path from the boundary to the station,

as shown in Figure 5.5 (b). In Figure 5.5(a) we refer to the incident wave

and creeping waves as phases d and c respectively, pointed by arrows in

the seismogram corresponding to the station at x/a = 4. The reflected

waves from the cavity boundary, which in turn are referred as phase r ,

are clearly defined in the seismograms, correctly showing the same polarity

as the incident wave. By simple geometrical relations we estimate that

their arrival at the farthest stations ( x/aj = 4) is about 1.2 a/0 after the

arrival of the incident wave, also pointed by an arrow in Figure 5.5(a). In

order to observe the effect of 150 inclined incidence, we have computed the

seismogram section shown in Figure 5.5(c). The three phases mentioned
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FIGURE 5.5 (a) Synthetic seismograms computed for the scattering due to one

cavity in full space, upon the incidence of a plane wave, measured at 100 seismic

stations along an observation line 1.5a above the center of the cavity. (b) ray

diagram depicting the origin of the direct 'd', reflected 'r' and "creeping" 'c' phases

observed in the seismograms shown in (a). jz/aj < 1 is region of diffraction.
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FIGURE 5.5 (c) synthetic seismograms computed when the angle of incidence of the primary wave

is 150.
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above are also clearly identified here, with strong phase r for stations on

the side of source wave incidence. The wavefront corresponding to phase c

appears as a smooth continuation of phase d beyond x/a = 1.

In Figure 5.6 we show the case of one cavity in a homogeneous half-

space. All parameters are the same as those defined for Figure 5.5. The

description of the scattering and diffraction phenomena is similar to the

full-space case except for the effect introduced by the free-surface on the

amplitude and duration of the seismograms. The amplitude is exactly twice

as in Figure 5.5(a), and in addition to phases d, r and c, we observe later

arrivals marked as sl, s2, s3 at regular time intervals of a/3, corresponding

to multiple reflection of trapped waves between the free-surface and the top

boundary of the cavity (see ray diagram 5.6(b)).

The case of two cavities in a full space is presented in Figure 5.7. The

centers of the cavities are located at x/a = ±1 and z/a = 1.5, i.e., the

minimun distance between their boundaries is 2a. The observation line A-

A' is located at z = 0. As was described for the case of a single cavity, we

observe the arrivals of phases r ,cl , r 2 , c2 due to cavities 1 and 2 respectively

(subscript 2 corresponds to the cavity at x/a = -1). In addition, we

observe the arrival of four phases, r 21 , r12, r 1 2 1 and r 2 1 2 , separated by

intervals of about 2a/3, which correspond to the waves reflected between

the boundaries of the two cavities (see ray diagram (b)). The subscripts

indicate the order in which each reflection takes place; for instance r 2 1

indicates that the wave reflected first by cavity 2 is thereafter reflected

by cavity 1 before reaching a particular station. Similarly for r 12 1 . We

call them "interaction" phases. As we can see, it is quite cumbersome to

identify each one of these arrivals in the seismogram section of Figure 5.7
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Phases sl, s2, s3 correspond to waves reflected one, two and three times back and

forth between the free-surface and the boundary of the cavity. In ray diagram (b)

only sl is shown.
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FIGURE 5.7 Two cavities in full-space, (a) synthetic seismogram, (b) ray di-

agram. Their centre are separated by a distance equal to 4 a. The observation

line is at 1.5 a above the centre. Subscripts indicate the cavity (1 or 2) where the

phases originate.

dj L C1 t C2b

FIGURE 5.7 Two cavities in full-space, (a) synthetic seismograms, (b) ray di-

agram. Their centre are separated by a distance equal to 4 a. The observation

line is at 1.5 a above the centre. Subscripts indicate the cavity (I or 2) where the

phases originate.
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(a). For most part, they are interfering with the other phases, resulting in

their disturbed wavefronts. This situation is not changed in Figure 5.7 (c),

where we have computed the effect of 150 incidence on the above described

phases.

In another experiment, we locate the centres of the cavities at x/a -

+3, z = 1.5a , i.e., the minimum distance between their boundaries is now

4a. Results are shown in Figure 5.8. In this case the stations are deployed

for a range of 10a . Here we can identify clearly the phases r 2 1 , r 12 , r 121

and r 2 12 arriving at time intervals of about 4a/# seconds. The ray diagram

for this case is similar to that in Figure 5.7 (b). Note that within the region

zx/a = ±3, the wavefront of phases r 21 and r 12 have the same curvature as

r, and r 2 respectively (the same we can say about r 12 1 and r 2 1 2 ). Outside

this region their wavefronts merge with those corresponding to r, and r 2

respectively.

Summarizing the case of two cavities in a homogeneous full space, we

can observe in general (e.g. station at x/a = 4 in Figure 5.7 (a)) the arrival

of phases r, and cl, due to the closest cavity, plus phases r2 and c2 due to

the presence of the other cavity, plus the phases r 21 and r1 21 corresponding

to the interaction between them, as marked by arrows in Figure 5.7 (a). In

Figure 5.9 we have computed the synthetics for the case of two cavities in a

half-space. The geometry and parameters are the same as those for Figure

5.7. Again taking the stations at x/a = 4 as an example, we observe the

arrivals of phases r, and c 1 , r 2 1 , r 12 1 , plus (S1) 1 , (S1)2, (s2), and (s22) due

to the effect of the free-surface. Note that the seismogram section in this

case shows considerably more complexity than the corresponding full space

case.
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FIGURE 5.8 Two cavities in full-space, their centre separated by a distance 8 a.

Phases r 12 and r2 1 are more clearly defined in this case than in Figure 5.7 (a).
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FIGURE 5.9 Two cavities in half-space. Geometry is similar to that in Figure 5.7,

the observation line corresponds to the free-surface. sl ans s2 are phases reflected

once and twice back and forth between the free-surface and the boundaries of the

cavities. Subscripts indicate the cavity (1 or 2) where the reflection took place,

i.e., (sl1)2 is the wave reflected once back and forth between the free-surface and

the boundary of cavity 2.
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Figure 5.10 shows the case of two elliptic cavities in a half-space. The

purpose of this exersice is to strengthen the arrivals of phases (sl)l, (s2) 1 ,

(s1)2, (s2) 2 , etc, since the trapped energy between the free-surface and the

boundaries of the cavities is larger in this case than that for the case of

circular cross-section, due to the stronger reflection from the cavity upper

boundary. The cavity centers are located at z/a = ±2a, z = 1.5a, and in

both the length of the major axis (horizontal) is a and that of the minor axis

is a/2 . We can observe in Figure 5.10 (a) that these phases have slightly

larger amplitudes than when the cross-section of the cavities is circular.

They arrive at regular time intervals of 2a/0 seconds, i.e. twice the inter-

val observed in Figure 5.7, since in this case the waves multiply reflected

between the free-surface and the top boundary of the ellipse have to travel

back and forth over the distance a. Interaction phases r 1 2 , r2 1 are also ob-

served here. For instance, the wavefront of r 12 appears at about x/a - -1,

and at t = 4.5a/0 seconds, almost merging the one corresponding to (si)1 .

In Figure 5.10 (b) the incident angle is 300. Besides the incident wave, the

most dominant feature of these seismograms are the phases (sl 1 ), (s2 1 ),

(s1 2 ), (s2 2 )... , whose amplitudes are about twice as those for normal in-

cidence. This is due to the fact that more waves get trapped between the

free-surface and the top boundaries of the cavities. We can also observe well

defined interaction phases r 1 2 and r2l. The reflected and creeping phases

appear with smaller amplitudes than when the incidence is normal.

In the following examples of scattering by four, twelve and fifty cavities

we can observe that the resulting seismograms are composed of superpo-

sition of the phases described above, plus the phases due to the mutiple

scattering and creeping of these phases for all cavities. Since the complex-
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ity of the seismograms makes it very difficult to identify individual phases,

we comment only on the observed general feature of scattering.

In Figure 5.11 (a) and (b) we present the case of four cavities in full and

half spaces, respectively, for normal incidence. The centre of the cavities are

located at (2a,1.5a), (2a,5.5a), (-2a,1.5a), and (-2a,5.5a). The ampli-

tudes of individual phases are weaker here than those in the corresponding

cases of two cavities, because part of the energy of the incident wave has

already been lost by scattering at the two deeper cavities before reaching

the upper two (energy carried by waves bounced back to the infinity). We

observe in general the same arrivals than those in the corresponding cases

of two cavities (Figures 5.7 (a) and 5.9 respectively), plus the waves scat-

tered at the deeper cavities, which arrive after t = 6a/0 at stations within

the range x/a = +2.

Figure 5.12 shows the scattering due to twelve cavities in half-space,

for normal incidence (a) and 300 incidence (b). The cavities are distributed

as three horizontal rows of four cavities each, whose centre are located at

x = - 2 a, -6a. The depths to the center of the cavities in each row are z =

1.5a, 5.5a and 9.5a. The seismograms are computed for the Ricker wavelet

with breadth tb = 1.2a/3, which corresponds to A, = 1.5a. In (a) note

that the seismograms of stations located within the range z/2a = ±3 show

more arrivals with relatively larger amplitudes for the duration of 24a/0

than those of stations outside this region. Thus, the seismic signal appear

to last longer within the horizontal range of the cavity distribution, due to

energy supplied from multiple scattering. The effect of spatial finiteness

of the distribution is seen at stations located in the neighborhood of the

edges, at x/a = ±3, particularly clear at times 3.2, 5.2 and 7.2a/0 seconds
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FIGURE 5.12 Twelve cavities in a half-space, arranged in three rows of four

cavities each. The centers of the cavities in each row are located at z/a = ±2,

z/a = 6a, at depths 1.5a, 5.5a and 9.5a respectively. (a) corresponds to normal

plane wave incidence and (b) to 300 incidence.
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. We observe that upon hitting the boundaries of the cavities part of the

scattered waves are reflected back into the region x/a = ±3, while the

rest are transmitted (leaked) outside it. The description of the scattering

for (b) is similar to that for the normal incidence, except that here the

amplitudes of the scattered waves are larger on the side of the incidence

than the other side. For comparison, we have computed the synthetic

seismograms for the case of these twelve cavities for a line source, located

at x = 0, z = 7a, as shown in Figure 5.13. The input source time function is

again a Ricker wavelet. For stations located within the range x/2a = ±1/2

the first arrivals correspond to waves that travel through the cavity-free

path. It is interesting to note that at some stations in the neighborhood

of x/2a = 0 the amplitude of later arrivals in their seismograms increases

with time, being the largest between the time 12 a/3 and 16.8 a/0, and

decreasing after this interval. Apparently this is a "focusing" effect caused

by the contribution of multipath waves that arrive at those stations at the

same time. As examples we have drawn (see ray diagram in Figure 5.13)

once reflected phases r 2 , r 7 at cavities 2 and 7 respectively, which arrive

at the same time at x/2a = 0. We can construct also r 6 3 , r 63 2 , and others

in a similar manner (the subscripts indicate the cavity at whose boundary

they are reflected). This is possible only for uniform distributions. No such

phases are identifiable for random media, as we will see in the next section.

5.5 Scattering in media with randomly distributed cavities

In this section we compute the synthetic seismograms corresponding

to the scattering of a plane wave in media with many cavities randomly dis-

tributed with respect to a certain cartesian coordinate system. Compared

to the examples presented in the previous section, here it is much more
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difficult to identify specific scattered phases; instead we shall be interested

in the average characteristics of the scattering shown in the seismograms,

which may in turn reflect the statistical nature of the prescribed random

media.

First we consider a half-space with 50 cavities as depicted in Figure

5.14 (a). As in the previous section, all cavities have identical cross-section

of radius a and the shear wave velocity of the half-space is 1 (unit of

distance/second). The spatial range of the model is 80a along the free-

surface, and 30a in depth. To generate the random distribution of cavi-

ties we first generate two independent sequences of fifty random numbers

Xi, zi (i = 1,...,50) corresponding to a uniform probability in space defined

by x - z coordinates. Each point (xi,zi) is the center of a cavity. We

must point out that the random generation is such that the cavities do not

overlap; in fact we have imposed that the minimum distance between any

randomly generated pair of points must be 2.2a, so that the minimum dis-

tance between the boundaries of the two closest cavities of the distribution

cannot be smaller than a/5. When the points (xi,zi) and (xj,zj), where

j > i, do not satisfy this condition, (xj,zj) is eliminated and another pair

of numbers are generated. The synthetic seismograms are computed for

normal incident plane SH wave, with Ricker wavelet source-time function,

and for non-dimensional frequencies up to 77 = 1.6, which is equivalent to

AC. = 1.25a. Synthetics are computed at 100 stations along the free-surface,

for the duration of 65a/# . The results are shown in Figure 5.14 (b), (c)

and (d). In (b) the breadth of the input wavelet is 6.25a/3, which yields

Ac = 8a. This is the case of long wave scattering, where we observe signi-

ficative fluctuations in both amplitude and time delay of the first arrivals
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FIGURE 5.14 (a) Fifty cavities randomly distributed in a half-space. The hor-

izontal range of the model is 80a and its depth 30a. In (b) and (c) the synthetic

seismograms are computed for characteristic wavelengths equal to 4 and 1.6 times

the size of the cavity. In (d) the characteristic wavelength is equal to the size of

the cavity.
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at stations immediately above a cluster of scatterers. The effect of trunca-

tion at both ends of the cavity distribution can be seen starting at stations

around x/lOa = -3, after about 32.5a/,3 of their seismograms, where waves

are transmitted into the homogeneous medium and reflected back into the

region of distributed cavities, by the cavities located at the edge of the

distribution. They arrive with relatively large amplitudes (comparable to

the incident wave). In (c) we have reduced the input breadth to 2.45a/3,

or Ac = 3.15a and in (d) to 1.63a/3 or Ac = 2a. Note the tremendous com-

plexity of the seismograms that arises as the wavelength becomes smaller,

approaching the diameter of the scatterer. We observe that at stations

within Ix/101 < 2a in particular, the seismograms seem to be stationary

in time, showing the arrivals of multiply scattered phases with quite large

amplitudes for most of their duration shown here. At stations outside this

region the seismograms show the side effects due to the truncation of the

model, as described above, although the back reflected waves have much

less amplitudes for the wavelengths considered here than for the wavelength

considered in (b).

For comparison we have computed the synthetic seismograms for iden-

tical random distribution of cavities but considering full-space. Results are

shown in Figure 5.15 (a) and (b), for Ac = 3.15a and A, = 2a, respectively.

We observe that scattered waves arriving earlier than about 35a//3 are sim-

ilar to those observed for half-space, with amplitudes one half. However,

later arrivals do not show such similarity in general. For the half-space case

we must consider the backscattered waves caused by the total reflection at

the free-surface. This suggests the importance of the free-surface effect

(and more generally, of the layered structure) in the study of scattering by
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FIGURE 5.15 Synthetic seismograms for the same random distribution of fifty

cavities shown in Figure 5.14(a), but here in full-space. Compare the seismograms

in (a) and (b) with those shown in (c) and (d) of Figure 5.14. Note the effect on

the overall scattering of the waves scattered back from the free-surface.

188

A

0

x

z
I-

A'

0

x

iLi
Qo

z
I-

- I



many heterogeneities in the Earth's crust, in particular when later part of

the seismograms are used.

Finally, let us compare the seismograms shown in Figure 5.14 (c) with

those obtained for the case in which we consider the same realization of

random distribution in half-space, but reduce the radius a of the cavities

by one half. In other words, if a' is the radius of the cavities in this model,

then a' = 0.5a , where a is the radius of the cavities in the model corre-

sponding to Figure 5.14 (c). In Figure 5.16 we have computed the synthetic

seismograms for this case, considering A, = 3.15a', as in the case of Figure

5.14 (c). We observe that although some common arrivals can be observed

in both seismogram sections, the overall scattering is significatively differ-

ent. Most remarkable is that the complexity of the seismograms appears

to be homogenized for all stations, i.e. the scattering process becomes spa-

tially uniform in this case. This suggest the possibility that certain nature

of heterogeneity distribution may be diagnosed from the observed seismo-

grams.

5.6 Measurement of Q- 1

Finally, we measure the attenuation factor Q-1 for the amplitude decay

of direct arrivals due to scattering. We use the seismograms obtained for the

case of a full space with 50 cavities randomly distributed and primary plane

wave incident along z-axis (shown in Figure 5.15). We measure the peak

amplitude, i.e. the maximum amplitude measured from zero to peak, of the

primary wave in the synthetic seismograms of selected stations, obtained

after applying a Butterworth band pass filter to the spectrum computed at

each station. Let us recall that spectra at all stations were computed for

non-dimensional frequencies q up to 1.6 in the present model. We choose
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FIGURE 5.16 The cavity distribution in this case is the same as in Figure 5.15
(full-space), but the radius of each cavity is 1/2 times smaller, i.e. a' = a/2.
The characteristic wavelength is Ac = 3.15a'. Compare the scattering shown in
the seismogram section with that of Figure 5.15 (c), in which Ac = 3.15a. The

scattering in this case appears to be more spatially uniform.
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five central non-dimensional frequencies, 0.1, 0.15, 0.3, 0.6 and 1.2, and ap-

plied the filter with octave bandwidth. These frequencies are equivalent to

wavelengths 20a, 13.33a, 6.67a, 3.33, 1.67a respectively. Figure 5.17 shows

two examples of bandpass filtered seismograms with central frequencies (a)

0.15 and (b) 1.2, respectively. The frequency range lower than 0.1 has been

discarded because the corresponding wavelength (over 20a) is comparable

to the total travel distance of the waves (within 30a), so that there are not

enough cycles to properly compute the amplitudes at the different stations.

In other words, our measurement for this frequency range may lead to an

unstable value of Q-1

Since there is no geometrical spreading for primary plane waves, the

peak amplitudes A(w) of the direct arrivals after passing the scattering zone

with thickness h can be expressed using the relation

A(w) = Ao exp (5.8)

where A0 is the peak amplitude of incident wave and w = 27rf. In order to

avoid the contamination by waves reflected back from the boundaries of the

cavities at the end of the distribution, we use the seismograms of 60 stations

located around the center x/lOa = 0 and in the range x/lOa = +2.5,

where these contaminating waves arrive later than 65a/3 . In Table I

we have listed the values of kd for each characteristic frequency, where

k = w/3 is the wavenumber and d = 2a is the diameter of the cavities.

By definition, kd = 27r. Their corresponding values of Q-1 and standard

deviations computed from the mean of amplitude fluctuations for the chosen

60 seismograms are also listed in Table I:

(over)
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FIGURE 5.17 Examples of synthetic seismograms obtained after a Butterworth

band pass filter was applied to the seismograms shown in Figure 5.16. In (a) the

central non-dimensional frequency q = 0.15 (Ac = 13.3a) and in (b) 1.2 (Ac =

1.67a). The observed noise is due to the effect of the filter.
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TABLE I

77 kd Q- 1 ± o0d

0.10 0.63 -3.63 x 10 - 3  -7.64 x 10 - 3

0.15 0.94 6.08 x 10- 3  5.93 x 10- 3

0.30 1.88 1.53 x 10-2 ± 1.03 x 10 - 3

0.60 3.77 1.07 x 10-2 ± 6.87 x 10 - 3

1.20 7.54 6.24 x 10 - 3' ± 4.34 x 10 - 3

These values (except the first) are plotted versus log(kd) in Figure 5.18.

As mentioned above, the first value is unreliable because the amplitude is

measured for extremely low frequency.

As far as the authors know, there are no studies on the direct mea-

surement of frequence dependency of Q-' for randomly distributed cavities

for such a high frequency, neither experimental nor numerical. Matsunami

(1989) studied scattering attenuation in duralumin plates with randomly

distributed holes (2-D) using ultrasonic waves. In his experiments the ra-

dius a of the holes was about 2 mm, the S-wave velocity of the material

/3 _ 3.0 mm/jusec and the maximum value of the ratio of the diameter of

the holes to the input wavelength (77) was 0.17, i.e. A = 23.5, which cor-

responds to frequency 127.5 KHz. For the same parameters, our value of

A = 2a (,q = 1) in Figure 5.15 (b) corresponds to frequency 750 Khz.

Studies of scattering attenuation in random media characterized by

autocorrelation function (see Herraiz and Espinoza 1987 for review) have

used Born approximation and certain criterion for excluding the forward

scattering loss to estimate Q-1. These studies show that Q 1 increases pro-

portional to (ka) 3 for ka < 1 following the Rayleigh scattering (Chernov

1960), peaking around ka = 1 (Sato 1982 , Wu (1982), then decreasing as ka
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increases (or equivalently, as frequency increases) according to power law,

with power depending on random models. For instance, for exponential au-

tocorrelation function Q- is proportional to (ka) - ' for ka > 1. Although

our model with randomly distributed cavities cannot be compared directly

to such stochastic random models characterized by autocorrelation func-

tions, we note that our result on Q-1 vs kd (see Figure 5.18) also shows

that Q- 1 is roughly proportional to (kd)- 1 for kd > 2, where d is the

diameter of the cavity.

More direct comparison can be made between our results and those of

Varadan et. al. (1978) who studied SH waves in composite materials with

cylindrical inclusions, using T-matrix formulation and statistical average of

the wavefield, and for the scatterer concentration c(= 7ra 2 no) from 0.3 to

0.7, where no is the number of scatterers per unit area. In our model c =

0.07 . They obtained a behavior of Q-1 vs kd similar to the one described

above. By converting their attenuation coefficient a to Q-1 according to

a = w(QP3), where f is the wave velocity, their results show that Q-1

peaks at ka _ 1 and decays sharply for ka >- 1. The peak value of Q- 1

increases with the scatterer concentration c, and they also show that it is

larger for elliptic cross-sectional shape of the scatterers than for circular

one. The extension of the T-matrix formulation and statistical approach to

the case of elastic 3-D scatterers (spheres) distributed randomly in a full-

space (Varadan and Varadan, 1989) yields similar behavior of Q-1 vs ka,

for concentration c = 0.05. Kikuchi (1981) studied Q-1 vs ka for SH waves

in a medium with infinitesimally thin cracks, and found similar behavior

with the peak at ka _ 1 to 2, where a is the half-width of the crack.

Observed Q-1 for S-waves in the lithosphere has usually peaks around
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FIGURE 5.18 Q-1 vs kd, d = 2a. These values of Q-1 were computed using

the seismograms of 60 stations around the center of the seismic array. Error bars

correspond to the standard deviation of first arrival amplitude fluctuations in those

60 seismograms.
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0.5 to 1 Hz, and decays proportionally to f m for higher frequencies with

low m (-- 0.2) for stable area and high m (,- 1.0) for seismically active

areas. Since k = (27rf /0) - 1 - 2 km - 1 corresponding to f = 0.5 ,- 1 hz,

a for the lithosphere may be 0.5 to 1 km (Wu 1989).

Obviously further work is needed to confirm the general applicability

of results on the wavenumber dependency of Q-1. In particular we need

to extend our method to treat the scattering of elastic waves in media

characterized by random distribution of inclusions and cracks of various

shapes.

5.7 Discussions

In this paper we have developed a numerical scheme based on the

Boundary Integral Method to calculate the scattered wavefield of SH waves

propagating in media containing many inclusions. Our solution includes

all reflected and diffracted wave contributions that result from the mul-

tiple scattering process. Our immediate goal was to compute accurately

the total SH wavefield synthetic seismograms in media with randomly dis-

tributed inclusions for wavelengths comparable to the size of the inclusions.

The inclusions studied here are a collection of identical cavities of circular

cross section, distributed in full and half spaces. The choice of cavities of

circular shape was not a necessary imposition but just a convenience for

introductory purposes; in fact the method is especially suited to deal with

irregular shapes and strong impedance contrast between the inclusions and

the surrounded media. Since we used exact Green's function, the accuracy

of the wavefield representation was determined only by the discretization

of the boundary and the corresponding distribution of wave sources. We

have performed several tests that established the satisfactory accuracy of
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our solution. First, we solved problems involving one cavity for which ex-

act analytic solutions exist, and found that our results were in excellent

agreement with those obtained using the exact solutions. For complicated

problems involving more than one cavity we assessed the validity of our

solution by estimating the degree of mismatch for the boundary conditions.

This was done by assuring minimal traction residuals along the boundary

of the cavities.

The first part of our analysis was concerned with identification of var-

ious arrivals in terms of scattering ray paths using a small number of scat-

terers. We studied them one by one, by increasing the number of scatterers

gradually, while keeping the scatterers at regularly spaced locations. We

started with one cavity, computing the synthetic seismograms measured at

a prescribed array of seismic stations and identifying the phases that ar-

rive at these stations. We found that in addition to the waves reflected at

the boundary, there are also waves that creep around the cavity yielding

a wavefront that appears as a smooth continuation of that of the incident

wave. These waves result from diffraction phenomena associated with graz-

ing incidence at the boundary, and have relatively large amplitudes so that

they appear as one of the dominant features in the seismograms. Another

dominant feature is the observed attenuation and time delay of the direct

wave at stations right above the cavity, where the field is basically due

to diffraction. In the case of two cavities the seismograms show the same

arrivals that we would observe for each without the presence of the other,

plus the waves multiply reflected between their boundaries. For the case

of half-space with two cavities, the seismograms become more complicated

but we still could identify ray path for every phase including those due to
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multiple reflection between free-surface and the upper boundary of cavity.

For more than two cavities the computed seismograms became ex-

tremely complicated. There appeared in addition multipath phases cor-

responding to reflection at the boundaries of several neighboring cavities,

before reaching a particular station . For the case of twelve cavities and

incident wave from a point(line) source located in the region of cavity dis-

tribution, it appears that multipath waves cause focusing effect at stations

located between two columns of cavities, right above the source. The same

effect appears for an inclined incident plane wave. In spite of the complex-

ity of the seismograms, we were able to understand the physics of the wave

propagation process, including the gross reflection at the edge of the cavity

region distribution.

Next, we computed the scattering of a plane wave for a wide range

of frequencies, in media with 50 cavities randomly distributed; the highest

frequency corresponding to the wavelength equal to 1.25x the radius of

the cavities. Using the seismograms obtained for the full-space case, we

computed the scattering attenuation factor Q-1 at several frequency bands.

Considering the factor kd (wavenumber times the diameter of the cavity) as

parameter, we found that the value of Q-1 increases with kd in the region

where kd < 2, peaking at about kd = 2 (or A = 27ra and decreasing roughly

proportional to (kd)- 1 for kd > 2. The proportionality of Q-' with k- 1

(or f- 1 ) for large ka implies that the scattering loss per unit distance is

independent of frequency. This can be easily understood if we consider

that for large ka the ray theory may be applicable to the scattering process

and hence attenuation due to scattering loss become frequency independent

(hence Q- proportional to w - 1 ). The observed frequency dependence of
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Q- 1 for shear waves in the lithosphere was explained in this manner by

Dainty (1984)
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Boundary integral - Gaussian beam method

In this thesis we have introduced the boundary integral - Gaussian

beam method and demonstrated that it is a reliable and versatile numerical

technique to accurately compute the full waveform of seismic waves propa-

gating in complex structures expected to be encountered at a shallow part

of the Earth. The method is based on the boundary integral representation

of the scattered wavefield by irregular shaped boundaries, where artificial

wave sources are distributed along the boundaries and the Gaussian beam

method is used to compute the wavefield, or Green's function, due to each

of those distributed wave sources. We take advantage of strengths of the

two methods and avoid their weaknesses. The advantage of the boundary

integral method is in economizing the discretization along the boundary

surface (line) rather than over volume (surface). The Gaussian beam on

the other hand, gives simple, adequate and relatively fast solution of wave

equation in smoothly inhomogeneous media. We avoid the cumbersome

task of calculating reflection and transmission of the Gaussian beam solu-

tion locally at each incidence on a discontinuous boundary, by determining

the intensity and phase of wave sources distributed along the boundaries

to match boundary conditions globally in the least squares sense.

In Chapter II we described the basic theory on both boundary integral

and Gaussian beam methods. We started with the single-layer potential

form of the integral representation of the field, following the formulation

from the Helmoltz integral equation for exterior and interior problems due
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to Mow and Pao 1971. Then we described our discretization scheme based

on distribution of point (line) sources to approximate integrals by discrete

summations, leading to a system of simultaneous linear equations for the

unknown multiplicative complex constants. We then described the geo-

metrical formulation of Gaussian beams following Madariaga (1984), which

is more appealing to intuition than the original asymptotic expansion by

C(ervenr (1982). One novelty in this chapter is that we developed an ex-

pression for the traction field acting on a plane of arbitrary normal vector,

by superposition of the same Gaussian beams that represent displacement

field, to be used in the boundary integral scheme. The accuracy of our

representation of displacement and traction Green's functions for a source

- receiver pair was checked using homogeneous media, by comparing them

with the corresponding Green's functions calculated analytically. Our use

of Gaussian beams to represent Green's functions has an important advan-

tage that they are not singular anywhere. This is important to avoid the

need of smoothing matrix elements when the integration path includes the

point where the source is located.

One of the main purposes of this chapter was to test the validity of our

method, by applying it to problems with known exact solutions, or known

approximation solutions obtained by other reliable numerical methods. Se-

lected problems were (1) the problem of semi-cylindrical canyon studied by

Trifunac (1973), (2) a mountain with cosine-shaped topography and (3) a

semi-cylindrical alluvial valley, for which we computed the ground motion

along the free-surface. In all cases the agreement between our solution and

the corresponding published one was excellent. Through a parameter sen-

sitivity study of our solution, we also confirmed that the final solution is
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insensitive to the choice of the initial beam width of each Gaussian beam.

6.2 Seismological applications

In Chapter III, we applied our method to a comparative study of wave

scattering observed at the surface of a half-space containing a soft (lower

velocity than that of the half-space) inclusion and a hard (higher velocity

than that of the half-space) due to vertically incident plane SH waves. The

computed wavefield includes all multiply reflected, refracted and diffracted

waves by the boundary of the inclusion. One of the surprising results was

that both soft and hard inclusions produced a deamplification of incident

waves at the receivers located immediately above the inclusion. Detailed

investigation of their spectra in frequency domain and their waveform in

time domain revealed that the deamplification is primarily due to the re-

flection of incident waves at the inclusion boundary. In other words the

stations above the inclusion are in its shadow whether the inclusion has

higher or lower velocity than that of the half-space. This suggests a highly

non-unique inverse problem when the data are only amplitudes.

This Chapter III also demonstrated complementary roles of time do-

main and frequency domain solutions for understanding the physics of wave

phenomena. The time domain solution was useful to identify various trans-

mitted, reflected and diffracted waves. For example, they showed clearly the

greater amplitude and longer duration of waves produced and propagated

away of the inclusion for a soft inclusion than for a hard inclusion.

On the other hand, the frequency domain solution revealed a distinct

difference in spectral shape observed near the inclusion between the two

cases. The spectrum for soft inclusion showed narrow peaks clearly asso-

ciated with modes trapped in the inclusion. We found that the resonance
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phenomena are affected by the distance between the free-surface and the

top of the inclusion and that this effect decreases as the impedance be-

tween half-space and the inclusion increases. Larger impedance contrasts

yield narrower resonant peaks, as expected for a trapped mode. The study

of resonance by a time domain solution is ineffective because of the need

for a long duration for synthetics. The result of this chapter is interesting

in view of the discovery of the narrowly peaked spectra observed at sta-

tions near the rift zone of Kilauea, Hawaii, for the T-phase from the recent

Loma Prieta earthquake. The resonance induced in a magma reservoir by

incident waves from distant sources may appear as spectral peaks at nearby

stations.

In Chapter IV we applied our method to two problems of fundamental

interest to strong ground motion in seismology, namely the effect of ridge

topography and that of soft sedimentary basin on the surface ground mo-

tion. For the first time we studied these two problems when the seismic

velocity changes linearly with depth. We choose the cosine shape for the

ridge topography, and semi-cylindrical shape for the sedimentary basin.

Sections 2 and 3 of this Chapter IV are devoted to obtain the Gaussian

beam solution in media having linearly increasing velocity with depth, for

displacement and traction, respectively. The ray-centered cordinates (s,n)

of the observation point are computed analytically, taking the advantage

that a ray path in media with linear increase of velocity is an arc of a

circle, completely determined by the coordinates of the observation point,

source point, and the take-off angle. We gave explicit formulas in terms of

these coordinates for the corresponding Dynamic Ray Tracing equation so-

lutions, and for obliquely and vertically incident Gaussian beams, for both

203



displacement and traction. In section 4 we described the algorithm for su-

perposition of beams, and for the subroutine called INGREEN developed

in this thesis to compute displacement and traction Green's functions for

any arbitrary pair of source-observer points in a full-space with linearly

increasing velocity. We checked the accuracy of the results given by IN-

GREEN in two steps. First we checked the accuracy of computation of

the ray-centered coordinates of an observation point with respect to several

rays departing from a source point, by computing the points on the rays

where their respective normal passes through the observation point (Figure

4.3), for various source-receiver geometries. Then we compared the ampli-

tude and phases for displacement and traction to those obtained from the

analytical solution in the case of homogeneous media.

In section 4.5 we solved the problem of ground motion at the surface of

an inhomogeneous mountain whose velocity increases linearly with depth,

due to an incident plane SH wave. We computed the ground motion for

several values of the aspect ratio of the mountain, defined as the ratio of its

height h to its half-width a (h/a), for several non-dimensional frequencies

q = 2a/A (A wavelength of incident wave) and for four models of linear

variation of velocity with depth in which the velocity /30() at the top of the

mountain and the velocity 3, at the bottom of the mountain were related

as Oh = 0.0010o, S0, = 1.10, 01, = 1.50o and 3h = 2/30, respectively. In

general, results show that the well known amplification on the top of the

ridge in the homogeneous case, is further increased with the velocity gra-

dient. For example, when /3, = 2 300, and q = 2, the amplification at the

top of the mountain was 2 times larger than that for the corresponding

"homogenous case" (30 = 0.001), which was about a factor of 3 greater
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than the incident wave. Therefore, the incident wave at the top of the

ridge is amplified by a factor of 6 in this case. This amplification factor of

the ground motion helps to explain the discrepancy between the observed

amplification of ground motion in ridges and the corresponding theoreti-

cal predictions using homogeneous and layered models of mountains (Bard

and Tucker 1985). Spectral ratios of the motion at the top of a ridge 30

m high and 100 m wide, with respect to the motion at a nearby tunnel,

observed by Tucker et al. (1984), show that the amplification factor at

the top of the ridge is between 4 and 8, in the frequency band between 5

and 10 hz. Theoretical models using homogeneous ridges and ridges with

a surface low-velocity layer (Bard and Tucker) predicted 4 as the largest

amplification factor. We believe that our model can explain these obser-

vations, by considering the continuous velocity profile inferred from their

study of tunnel effect, i.e. 00 = 350 m/sec and 3 2h = 1300 m/sec (2h = 60

m), for q from 0.4 to 2.5, corresponding to their frequency band.

In section 4.6 the problem of inhomogeneous basin embedded in a ho-

mogeneous half-space was solved. In our model, the velocity varied linearly

with depth within the semi-cylindrical basin. The velocity at the surface

is 30, and the velocity at the bottom of the basin is /3,, while the velocity

13 H of the half-space is assumed to be 300. The density was assumed to

be constant in the basin (Po) and in the half-space (PH). PH is assumed

to be 1.5p 0 . We studied the cases for several choices of the velocity at the

bottom of the basin /3,, varying from 30 to 2,0. We found that the effect

of the velocity gradient on the response of the basin is to widen the area

of amplification of the ground motion within the basin, as the gradient in-

creased. For instance, for the homogeneous case and for 7 = 1 (see Figure
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4.21) the amplification of the ground motion within the basin is larger at

observation points close to the center of the basin, than at those at the

edges. As the velocity gradient increases, the area of amplification extends

towards observation points close to the edges, and finally, for 3 = 2/300, the

ground motion at the edges of the valley is amplified by a factor of 6 with

respect to incident wave, twice larger than the amplification at the center

of the basin. However, this amplification effect due to increase of velocity

gradient is not systematic for all frequencies. For instance, the large am-

plification as much as a factor of 8 for r = 0.25 (see Figure 2.12) for the

homogeneous basin, disappears when s3h = 20fl (see Figure 4.20 (a)).

We checked the accuracy of our method in this case by measuring the

fractional residual traction along the free-surface, which turned out to be

no larger than 10-2 for 3, = 2/30, and for a wavelength comparable to

the half-width of the basin. Also our results for selected values of wave-

length showed satisfactory agreement with the corresponding one obtained

by other well-established method, illustrated in Figures 4.22. From our syn-

thetic seismograms, we found that the long duration seismograms observed

within homogeneous basins due to two-dimensional resonance, are short-

ened by increasing the velocity gradient, because the impedance contrast

at the interface of the basin with the half-space is reduced as 3 increases,

allowing energy to leak out of the basin by the waves transmitted to the

half-space.

In Chapter V we used the boundary integral method to compute the

full waveform synthetic seismogram of multiply scattered SH waves by many

cylindrical cavities in homogeneous elastic media. It was not necessary to

use Gaussian beams in this problem, because analytical formulas for dis-
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placement and traction Green's functions are available for homogeneous

media. In section 5.2 we formulated the problem by extending the formu-

lation for the scattered field due to one cavity described in Chapter II to

the case of many cavities, and introducing a discretization scheme based

on distribution of point(line) sources along the boundary of each cavity.

In section 5.3 we checked the validity of this solution by computing the

radiation patern due to a single cavity in full-space, which was in perfect

agreement with its equivalent analytical solution. We also computed the

case of one cavity in a homogeneous half-space, and compared our results

with the analytical solution (Lee, 1977). For more than one cavity we

checked our solution by computing the fractional residual traction along

the boundary of each cavity, which was never larger than 10-2, even for

wavelengths equal to one quarter of the radius of the cavity.

To the author's knowledge, sections 5.4 and 5.5 represent the first de-

terministic computation of the total wavefield due to scattering by many

cavities, due to incident plane or line source SH waves with wavelengths

as short as the radius of the cavity. In section 5.4 we treated the cases of

two, four and twelve cavities, in full and half-spaces, and the case of two

elliptical cavities in half-space. In these examples we identified the arrival

of the phases with a simple ray diagram, and confirmed that our solution

contained all reflected and diffracted waves expected from the physical pro-

cess involved in the wave propagation. In section 5.5 we applied the method

to compute the case of fifty cylindrical cavities, each of radius a, randomly

distributed in a region 80a wide by 30a deep in a half and full spaces for

wavelengths of the incident wave comparable to the size of the cavity. The

seismograms become extremely complex, and we believe that the absence
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of noise due to numerical error guarantees that the computed seismograms

reflect correctly the scattering process for such wavelengths. In section 5.6

the value of the attenuation factor Q- 1 is obtained from the amplitude

of the synthetic seismograms calculated for the random distribution of 50

cavities in full-space. We used the decay of the incident wave with distance,

for wavelengths in the range from 1.7a to 13.3a. The resulting Q-1 as a

function of wave number k showed a peak around kd _ 2 (where d is the

diameter of the cavity). The decrease of Q- 1 toward smaller k or longer

wavelength is due to well understood Rayleigh scattering. The decrease to-

ward greater k or shorter wavelength has been predicted by Varadan (1978)

for cylindrical inclusions, and by Kikuchi (1981) for cracks, both based on

the extended T-matrix method. Dainty (1984) also argued that for Q-1

being inversely proportional to frequency on the basis of ray-theoretical loss

for shorter wavelengths than the scatterer size. Observed Q- 1 for S-waves

in the lithosphere usually has peaks around 0.5 to 1 hz, and decays propor-

tionally to f-m for higher frequencies with low m (- 0.2) for stable area

and high m (- 1.0) for seismically active areas. Since k = (27rf/3) _ 1 , 2

km - 1 corresponding to f = 0.5 - 1 hz, a for lithosphere may be 0.5 to 1

km (Wu 1989).

6.3 Future work

A natural extension of the present thesis work is to solve the 2-D

P-SV problems corresponding to all SH problems studied here. This is

not an unrealistic goal using the available computer. In order to extend

the boundary integral method to 3-D, the integral representation of the
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wavefield (2.1) must be written in a vector form

V (rp) = J () G ( p I r'Q)d s

C

i.e., the scattered field is made up of the contributions of a continuous distri-

bution of sources of density o(FQ) on C. For fixed i', G is the displacement

Green's dyadic due to a force F= (F 1 ,F 2 ,F 3 ) applied at rQ. Then we

would use the appropiate 3-D ray-tracing to compute Green's function by

superposition of Gaussian beams, for each component of the field, in a sim-

ilar way as we did in Chapter IV. This formulation, for the case of irregular

topography, is currently being developed.
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APPENDIX 1

INHOMOGENEOUS BASIN: BOUNDARY INTEGRAL SCHEME.

In this appendix we shall give explicit expression for the matrix ele-

ments Fij (equation 2.6).

Let v j the sources representing the field in the basin, with velocity

,31 (z), and rigidity L1 (z), distributed along the interface (curve CI). Sources

for the half-space are vhi, with velocity 02 (z), and rigidity [L2 (z), distributed

along the interface (curve CE). Let v.,k the sources representing the field in

the basin distributed along the free-surface (line CI). Here, i = 1,...NH,

(j,k) = 1,...NV.

Refering to Figure 4.19, and to equations (2.7), the fields inside and

outside the basin will be, respectively:

NH

vE(X, z;W) = vo + AILiVhi

i= 1

NV NV"

vj(Xz;w)-- E BJv.J + Y J.3kVsk

j=l k=1

where Vhi, represent Green's function for the half-space with point source

at the position i in the basin, vj represent Green's function for the basin

with point source at the position j in the half-space, and v.k represent

Green's function for the basin with point source at the position k in the

free- surface.

The linear system of simultaneous equations obtained from the mini-

mization of the function L in equation (2.7) in order to satisfy continuity

of displacement and traction along the boundary, and at the free-surface is
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E B,VjRqj(1,1) + BskRqk(1, 2 ) +
j=1

NVi

BvjRj(2,1) + S BskRrk(2,2)

j= 1

Ni-

+ S BskRpk (3, 2)
j= 1

NH

j=1

AihiRqi(1,3) = Sq,o

AihiRri(2, 3) = S,.,o
j=1

NH

+
j=1

where the R's and the S's are respectively :

Rqj( 1,1) -

Rqk( 2 ,1) =

Ct

'c I

/Rj(2, 1) =

R,.rk(2, 2) =

0V*q Dvj
dl ±

a- 1  
1

Ov q Ovsk dl +
Ofi OfL I07 l 07

v, OV. j dl +

07,1 O 1"dl +
OOz 0 1

'L

(v qv~y

(v q Vv

V V~ Vs k

, ( .v ,vc

(V Sr vsk +

Ov ,q 8v,,j d
Vq Ov]+ )ds

08 2 0i 2

OV* 1v+ OV)q OSk )ds

+ 0 .. Ov,j )ds
a i 2 Ofi2

O0.:. Ov. k
.2 k )dsOhi2 O2

RqI(3,1) =

R,.i(2,3) =

Rpj (3,1) =

Rpk (3, 2) =

Rpi,(3, 3) = -

(viq V h iIC

1C
VV +

/ (vl,pv.k +

'c.

+ Ovq Ovi )ds
7 O2 0a 2

av * 19Vhp v I )ds
0 f 2 O 2

Ov~1)_Ov.k

02 0p )ds
c 9'h2 2

v + /12 Vp OVh )ds
0'i2 0i 2
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j= 1

NV

j=1NV °E
j=l

V /I SY OVhi )dsrV~i -- 0f 2 On 2

NV N V

Bvj Rpj (3, 1) AhiRpi,(3, 3) = Sp,o



Sq, o  -- j (vqV o

Sr,o = -- (V ,.vo

SP 0 = - c

+ [- v q_ )Vo
+ 2 a 2 )ds

av* avoOr Ovo)ds+ t - 2 O )ds

Vhp *OV)
hp2 0 )ds

where pt = I(z) = PE(z) - pL(z), and dl is an element of distance along

the free surface and ds is an element of arc along the interface.
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APPENDIX 2

DEPARTMENT OF GEOLOGICAL SCIENCES

TELEPHONE (213) 743-271"

7 November 1986 - MEMORANDUM

TO: Francisco, Hiroshi, and Rafael

FROM: Kei Aki

RE: Wave propagation in heterogeneous media with irregular interfaces

Thanks to our discussion Thursday morning I think I know how to solve the above

mentioned problem by the superposition of Gaussian Beams.

Consider an irregular topography, interface and seismic source as shown in Fig.

1. The steps toward the solution are as follows:
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(1) Select points along topography and interface, and let us call them (i=1,2,...
I) and (i=1,2,...J), respectively.

(2) Shoot Gaussian Beams from
a) upward from the source,
b) downward from point j,
c) upward from point j, and
d) downward from point i. Let us refer to

a) as Gsn (n=1, ...N)sn

d
b) as G (n=l,...N)

jn

c) as G . (n=1,...N)
jn
d

d) as G . (n=1,...N)
as shown in Fig. 1. in

(3) Each Gaussian Beam is an approximate solution of wave equation, so their
sum is also an approximate solution. All we have to do is to find G's which
satisfies the boundary condition and interface condition.

(4) Gsn are known quantities determined for a given seismic source.-sn

d u d
(5) In order to determine unknowns G , G , and G , we shall first form
the sum of the squares of traction at ree urface. inFor waves, for example,

we have one component of traction, which is a function of G and G.. We thentrac. in 3
calculate the sum S trac. of the squares of traction at i=l', 2,... 1 n

topo

(6) Next, we calculate the mismatches)in tract on and displacement at j=1,2,.... J, 3

then the sum of their sq ares ad- l 1 them S Nac. and S .I respectively.

They are functions of G . ,in G jn. , G n , and G an sn.Sp

In gn jnsn.

(7) We shall form the weighted sum S=S + Strac + edisp where is the weight

to take care of the difference in phystic un in order o make the numerical
magnitude comparable among the three sums.

(8) We then minimize S with respect to unknowns. We shall have equations of

the form e .

2S -
-- 041G

as many as the number of unknown G.

(9) Knowing G, we can compute the wave field at any point by suposing Gaussian
Beams.

(10) Would any of you try this idea with simple examples?

:jl
- -,
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