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Abstract

Geomagnetic and paleomagnetic data show that certain features of the Earth's
internal magnetic field remain stationary for time scales longer than the presumed
convective time scale of the core. This suggests external control by the mantle, with its
much longer convective time scale. We review the evidence for core-mantle thermal
coupling, which includes spatial correlation between the static magnetic field features,
lateral thermal anomalies in the lower mantle, core-mantle boundary topography, and
possibly virtual geomagnetic pole (VGP) paths during magnetic dipole reversals. However,
questions remain about the resolution of the various data. Maps of the main magnetic field
at the Earth's surface suggest that anomalous electrical currents may be present in the
equatorial zone, with a large azimuthal wavenumber m = 1 contribution. To test this
inference, we invert the surface magnetic field for the magnitude of ideal magnetic dipoles
distributed in various ways throughout the outer core. We find a better, smoother fit with
equatorial dipoles than with polar dipoles. The equatorial anomalies in the surface main
field correlate with regions of high surface magnetic secular variation, further suggesting
persistent motions in the core.

Although the convective equations are highly non-linear due to the high Rayleigh
number of the Earth's core, so that time-dependent motions are certainly present, we are
interested here in the possibility of steady motions that result from either free convection
(laterally homogeneous boundary buoyancy conditions) or forced convection (laterally
inhomogeneous boundary buoyancy conditions), and that might cause static features in the
magnetic field. Our approach to the non-linear problem is therefore to look for finite-
amplitude, time-independent convective solutions using an iterative finite-difference
numerical method. Although we cannot be sure of the stability with respect to time
perturbations of our solutions, our method has computational advantages over time-
stepping that allow us to examine a large parameter space. We provide destabilization in our
model by uniformly fluxing buoyancy across the bottom boundary with a concominant
buoyancy sink at the top boundary. The Rayleigh number Ra is a measure of the
destabilization.

We first apply our method to a non-rotating, electrically insulating, spherical fluid
shell in order to demonstrate the method's viability. We then look for solutions in a rapidly
rotating spherical fluid shell (high Taylor number Ta). We obtain axisymmetric polar
modes, but not the non-axisymmetric equatorial modes (columns) predicted by linear
theory, which require an azimuthal drift in spherical geometry. In an infinite annulus we
have no difficulty obtaining columnar convection, and show that in this geometry, an
imposed toroidal magnetic field actually inhibits convection.

We next return to the rotating spherical shell, impose a poloidal magnetic field, and
look for the magnetic analog of the polar modes. When the Lorentz force is comparable to



the Coriolis force (Elsasser number El = 0(1)), the modes fill the shell and most efficiently
transport buoyancy. We show that it is the component of gravity parallel to the rotation
axis, gz, that is responsible for the modes' existence. Hence, for supercritical convection it
is dynamically incorrect to omit gz, especially for an electrically conducting fluid in which
the polar modes are more efficient. In conjunction with the greater efficiency of convection
near the inner spherical boundary than near the outer one, the non-linear interaction
between the advectively-created toroidal magnetic field and the associated radial electrical
current leads to a consistent bias towards equatorial upwelling flow in the core. Because of
the lack of time-dependence, we cannot be sure of the stability of any particular converged
solution, but we nevertheless believe that this non-linear result is a general feature of the

o-effect.

Finally, we study axisymmetric flows forced by a high buoyancy flux across the
upper boundary near the equator and a low flux near the poles. In the absence of rotation
and a magnetic field, we find converged solutions with local downwelling flow beneath the
equator for a wide range of Ra, displaying the effect of the boundary condition. With
rotation and a magnetic field we find similar results at low Ra, when conduction remains
dominant. At higher Ra, however, when convection becomes dominant, we cannot induce
equatorial downwelling because of the non-linear bias towards equatorial upwelling.
Instead, we obtain equatorial upwelling reduced from that with a homogeneous boundary
buoyancy flux. On the other hand, a high upper boundary buoyancy flux at the poles
enhances the equatorial upwelling. The study of forced flows requires more work,
including discerning the role of non-axisymmetry and time-dependence.

A second topic that we study in this thesis involves a possible consequence of
compositional convection in the Earth's core: the formation of a stably stratified layer at the
top of the outer core. The magnetic analog of Rossby (planetary) waves in this stable layer
(the 'H' layer) may be responsible for a portion of the short-period secular variation. We
adopt a thin shell model to examine the dynamics of the H layer. The stable stratification
justifies the thin-layer approximations, which greatly simplify the analysis. The governing
equations are then the Laplace's tidal equations, modified by the Lorentz force, and also the
magnetic induction equation. We linearize the Lorentz force in the Laplace's tidal equations
and the advection term in the magnetic induction equation, assuming a zeroth order dipole
field as representative of the magnetic field near the insulating core-mantle boundary.

An analytical n-plane solution shows that a magnetic field can release the equatorial
trapping that low frequency, non-magnetic planetary waves exhibit. A numerical solution to
the 2-D spherical equations confirms that a sufficiently strong magnetic field can break the
equatorial waveguide. Both solutions are highly dissipative, but this is essentially due to
our neglect of ab/at in comparison with the advection and diffusion terms in the magnetic
induction equation. Were one to include the time derivative of the magnetic field, which
would necessitate relaxing the radial independence of the solutions, one would find
magnetic planetary waves are considerably less damped. For the magnetic field strength
appropriate for the H layer, the real part of the eigenfrequencies change little from their
non-magnetic values. We estimate a phase velocity of the lowest westward propagating
modes that is rather rapid compared with fluid speeds typically presumed in the core.

Thesis supervisor: Theodore R. Madden
Title: Professor of Geophysics
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Chapter 1

Historical Context

Soon after presenting his 1905 paper on special relativity, Einstein described the

problem of the generation of the Earth's magnetic field as one of the five great unsolved

problems of physics. Despite progress, the geodynamo problem remains unsolved. Larmor

(1919a,b) was the first to suggest that fluid motions within astronomical bodies might be

responsible for generating magnetic fields in a self-exciting dynamo process. However,

Cowling (1934) demonstrated that a velocity field symmetric about an axis (such as the

rotation axis) cannot maintain a magnetic field also symmetric about that axis. This first

anti-dynamo theorem (see Moffatt, 1978 for more anti-dynamo theorems) therefore

mandated that a sufficiently complex velocity field be present in the Earth's magnetofluid

outer core, and was a harbinger of the difficulties ahead. In light of this anti-dynamo

theorem, Blackett (1952) hypothesized that a rotating solid body might have a magnetic

dipole moment inherently proportional to its angular momentum, so that astronomical

bodies might exhibit large magnetic fields. However, in a laboratory experiment involving

a rotating gold sphere and a sensitive magnetometer that he designed expressly for the

experiment, he found no evidence of magnetic field generation.

Bullard and Gellman (1954) pressed forward with finding a solution to the

kinematic dynamo problem. The kinematic dynamo problem consists of finding a velocity

field that when inserted into the magnetic induction equation sustains magnetic field

growth. It is simpler than the full hydromagnetic dynamo problem in that one is not

concerned with dynamics, i.e., one does not solve the Navier-Stokes equation with the

non-linear Lorentz force coupling term. Questions remained about the convergence of

Bullard and Gellman's (1954) solution, and Gibson and Roberts (1969) finally proved that

it does not converge, but in the meantime Backus (1958) designed a kinematic dynamo

with a time-varying velocity field that does converge. This demonstrated the viability of the
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kinematic dynamo in a fluid sphere, without relying on wires, brushes, and other matter

presumably foreign to planetary interiors. Along with advances in magnetohydrodynamics

(MHD) by Alfven (1940) and Elsasser (1946a,b,1947), the success of these early

kinematic dynamos propelled the study of dynamo theory, and indeed, no one has yet

established a general anti-dynamo theorem. It is now generally presumed that a dynamo

mechanism is responsible for the generation of the geomagnetic field.

The difficulty of the dynamo problem arises from several sources. Firstly, the

governing equations are mathematically formidable. The equations governing the kinematic

dynamo problem include Maxwell's equations,

VxB = gJ, (1.1)

VxE = - aB/at, and (1.2)

V-B = 0, (1.3)

and Ohm's law,

J = a(E + vxB), (1.4)

which combine to yield the magnetic induction equation,

aB = X V 2B + V x (vxB)
t (1.5)

For the full hydromagnetic dynamo problem one must also solve the Navier-Stokes

equation,

av + (v.V)v + 20xv =- Vp + VV2V + Cg + 1 (VxB) x B (1.6)
Y 9Pl



as well as the continuity equation,

V-v = 0, (1.7)

and the buoyancy equation,

ac 2c-+ (vV)c = KV c + E (1.8)

In (1.1) - (1.8), v is the velocity field in the rotating reference frame, B is the magnetic

field, E is the electric field, J is the electric current density, p is the pressure, c is the

density deficit from the mean, g is the magnetic permeability, a is the electrical

conductivity, X = 1/puy is the magnetic diffusivity, Q is the rotation vector, v is the fluid

viscosity, g is the radial gravitational vector, p is the fluid density, K is the density

diffusivity, and e is a density source term. In writing down (1.1) - (1.8) we have already

made two assumptions, incompressibility and the Boussinesq approximation (Melchior,

1986). Solving a set of non-linear partial differential equations such as (1.5) - (1.8) in

spherical geometry for the unknowns B, v, p, and c, subject of course to the proper

boundary conditions, is very clearly a formidable task. Thus, it is not really feasible even

on today's supercomputers to simply 'solve' the geodynamo without making further

assumptions.

The second difficulty associated with the dynamo problem is our deficient

knowledge concerning various parameters associated with the Earth's core. Although we

know the values of g (equal to its free space value l.o, given the high temperature in the

core) and Q1, and have good estimates for a, p, and g (as a function of radius) in the core,

we are less certain of the molecular values of v and K (see Table 1.1). Perhaps more glaring

is our ignorance of the geodynamo's power source. Via viscous and Ohmic dissipation, the

kinetic energy of the fluid motions and magnetic energy stored in the magnetic field gets
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transferred to heat, which then escapes to the mantle. Against this energy loss, the

geodynamo must have a power source. Although some (Malkus, 1968) have suggested

other mechanisms such as precession, most work has concentrated on thermal or chemical

(compositional) buoyancy as the power source. Thermal buoyancy might result from a

distribution of radioactive heat sources in the fluid outer core or from latent heat of

crystallization (Verhoogen, 1980). Latent heat results from the freezing of the core at the

inner-outer core boundary (ICB), where the core freezing point curve intersects the

temperature curve. Accompanying the latent heat and resulting thermal buoyancy may be a

supply of chemical buoyancy that occurs with the release of gravitational energy

(Braginsky, 1963). The gravitational energy results from pure iron preferentially freezing

out, leaving the resulting melt slightly enriched in lighter impurities such as oxygen or

sulfur (Ringwood, 1977).

Although some (Gubbins, 1977) argue that chemical buoyancy is more efficient

than thermal buoyancy, we cannot yet be certain of the energy source-for core convection

and hence for the geodynamo. In any case, the equations that govern the distribution of

temperature and of chemistry are the same, (1.8), and because of our uncertainty on the

proper energy source, we use c to denote the density deficit due to either temperature or

chemistry. Similarly, we use e to denote either a thermal or chemical buoyancy source.

However, although the governing equations are identical, the boundary conditions on c, the

functional form of E, and the value of K might be very different depending on the driving

force. For instance, the molecular value of K for temperature is probably much greater than

that for chemistry (Table 1.1). Moreover, we might expect e to be uniform throughout the

core for radioactive heat, but concentrated at the lower boundary for latent heat or

gravitational energy. Similarly, the proper boundary conditions for thermal convection

might be a fixed temperature or heat flux at the ICB and a fixed heat flux at the core-mantle

boundary (CMB), whereas for chemical convection a fixed chemical flux at the ICB and

zero flux at the CMB may be more appropriate.
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A major part of the difficulty in evaluating the energy needs of core convection and

the geodynamo is that we do not know the strength of the magnetic field in the Earth's

core. Because the electrical conductivity of the mantle is several orders of magnitude lower

than that of the core (though we do not know the details of the electrical conductivity profile

in the mantle, particularly near the CMB (Merrill and McElhinny, 1983)), electrical currents

cannot effectively flow in the mantle. In the limit that the entire mantle is electrically

insulating, the toroidal magnetic field in the core must go to zero at the CMB. Hence, what

we observe at the Earth's surface, the poloidal magnetic field, is only a part of the total in

the core. Indeed, it is a feature of some dynamo models, the 'strong-field' models, that the

toroidal field is as much as two orders of magnitude stronger than the poloidal field

(Braginsky, 1964a,b). On the other hand, some models, the 'weak-field' models, exhibit a

toroidal field comparable to the poloidal field (Busse, 1975). Although theory shows that

the stability of the weak-field models is doubtful (Soward, 1979), and their energy

requirements may be unreasonably large (Roberts, 1988), we have few observational

constraints to guide us as to strength of the toroidal magnetic field.

Not definitively knowing the parameter range of interest within the core, we cannot

always properly evaluate the assumptions that we must make if we are to attempt to solve

the mathematically difficult problem. Although geomagnetic data can provide us with

information on fluid flow at the top of the outer core, provided we make several

assumptions (Bloxham, 1988), it is available only for the past few hundred years. Also, its

spatial coverage is not generally ideal. Paleomagnetic data has shown us that the dipole

magnetic field can reverse its polarity on an extremely rapid timescale (compared with the

geologic timescale), and that the reversals are aperiodic, presumably demonstrating the high

non-linearity of the problem. However, paleomagnetic data is often of low quality (with

less spatial coverage and discontinuous temporal coverage) than geomagnetic data. Thus,

besides the mathematical difficulty of the theory and the uncertain parameter range, we have
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little observational evidence to guide us. This paucity of observational evidence compounds

the challenge to connect data and theory.

Finally, the dominant forces are likely the Coriolis, pressure, and perhaps, Lorentz

forces. The first arises due to the rapid rotation of the Earth, the last due to the magnetic

field. These two forces are not generally within the realm of common experience, and are

often counter-intuitive. Acting together, they can be counter-counter-intuitive, as we shall

later see. Perhaps as much as any of the mathematical and observational problems, this lack

of intuition makes the problem so difficult, but also so interesting. Of the many non-

dimensional numbers that we will use through this work, the most certain may be the

success parameter S defined by Roberts (1988), where

S = number of successful models
number of attempted models

Needless to say, S is a small number.

Nevertheless, although we do not have a dynamically self-consistent dynamo

operating at the parameter range approaching that likely found in the core, much progress

has been made in understanding the generation of the Earth's magnetic field. One can attack

the full hydromagnetic dynamo problem from two approaches. One, as described above, is

the kinematic approach whereby one studies the magnetic induction equation (1.5). From

this approach one can come to understand the kind of motions that are necessary to sustain

magnetic field growth against the inevitable dissipative processes. An improvement to this

approach is that where one also solves the Navier-Stokes equations (1.6) and the continuity

equation (1.7), but one assigns the buoyancy force c and does not solve the buoyancy

equation (1.8). Braginsky and Roberts (1987) used such an attack in their study of the

model-Z dynamo. In addition, they employed an approach whereby one assigns the

azimuthally averaged effects of interaction between the weakly non-axisymmetric velocity

and magnetic fields (Braginsky, 1964a,b). The interaction is a means to produce an
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'a-effect' (Parker, 1955), and the method allows one to reduce the dimension of the

problem from three to two, at the cost of a somewhat artificially assigned electrical current.

Alternatively, one can think of using the a-effect as employing a two-scale approach

(Steenbeck et al., 1966). The a-effect is central to modern kinematic dynamo theory, for it

is the primary means to create a poloidal magnetic field from a toroidal one. Also important

to kinematic dynamo theory is the 'o-effect', which is the primary means to create a

toroidal magnetic field from a poloidal one, but which can be axisymmetric and does not

require averaging.

The second approach towards gaining an understanding of the geodynamo is to

study the various instabilities that can occur in a rotating, electrically conducting fluid. This

typically involves solving (1.5) - (1.8), but with some fixed basic state assigned a priori.

For instance, one might examine the linear stability of a rotating, electrically conducting

fluid shell, heated from below and cooled from above, and permeated by an assigned

magnetic field and fluid shear. The study of linear convection and magnetoconvection has

unearthed a plethora of instabilities that may play a role in the generation of the magnetic

field and its secular variations (Chandrasekhar, 1961, Fearn et al., 1988, see Chapter 3).

Of course, because the assigned magnetic field and shear are fixed, one cannot speak of

dynamo action. At the juncture of the two approaches lies the full hydromagnetic

geodynamo problem, equations (1.5) - (1.8), with no magnetic fields or fluid shears

assigned a priori, and with parameters, boundary conditions, and an energy source

assigned in a geophysically realistic manner. A problem, of course, is that we do not

always know what is geophysically realistic.

While mathematicians continue to make progress towards an understanding of the

full hydromagnetic dynamo problem through advances in kinematic dynamo theory and

studies of instabilities in electrically conducting, rotating fluids, geophysicists are making

progress in determining the proper parameter range, boundary conditions, and energy

sources under which the geodynamo operates. The challenge is to connect the two, which
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is clearly a formidable task. Although the geophysical data is limited in quality and

quantity, and although the subjects of kinematic dynamo theory and rotating

magnetoconvection are still not fully mastered, we nevertheless believe that we can use the

geophysical data to provide some insight into the dynamics of the lower mantle and core. In

this thesis we therefore hope not only to further our understanding of magnetoconvection

and magnetic instabilities in rotating fluids, but also to apply our findings to the real Earth.

In the second chapter of this thesis, we present the geophysical evidence that static

features in the geomagnetic field may correlate with lateral thermal anomalies in the lower

mantle. Although there remain questions about the resolution of the data, the suggestion of

core-mantle thermal coupling (Bloxham and Gubbins, 1987) is intriguing. However, very

little is known about the stationary motions in an electrically conducting, rotating fluid

driven by a laterally inhomogeneous boundary buoyancy condition (forced convection) that

might give rise to static features in the magnetic field. In the third and fourth chapters, we

therefore develop an iterative method to study steady, finite-amplitude, rotating

magnetoconvection. We will apply the method to both free convection (laterally

homogeneous boundary buoyancy conditions), for which considerable prior work exists

for comparison, and forced convection. Using our iterative method, we will study the

influence of rotation, imposed magnetic field configuration, geometry, and non-linear

effects. In chapter five, we examine a somewhat separate problem, that of magnetic Rossby

waves in a hypothetical stably stratified layer beneath the CMB. We investigate the

possibility that these waves might be responsible for a portion of the magnetic secular

variation. Finally, in chapter six, we conclude.



Mean rotational frequency

Mean radius of the outer coreb

Mean radius of the inner coreb

Composition of the outer corea

Mean density of the outer coreb

Temperature at CMBa,b

Temperature at ICBa,b

Gravity at CMBb

Gravity at ICBb

Fluid viscosity of the outer corea

Magnetic diffusivity of the outer corea

Thermal diffusivity of the outer coreb

Chemical diffusivity of the outer coreb

Rayleigh numberc

Taylor numberd

Elsasser numberd

Thermal Prandtl numberd

Chemical Prandtl numbere

Magnetic Prandtl numberd

7.2722 x 10-5 rad/s

3.48 x 106 m

1.22 x 106 m

primarily Fe, possibly a few percent Ni,

6-10% lighter elements such as O, S, Mg, Si

1.2 x 104 kg/m 3

2300 K < T < 5000 K, best estimate 3157 K

3000 K < T < 8000 K, best estimate 4168 K

10.68 m/s 2

4.40 m/s 2

10-6 m2/s < v < 105 m2/s

O(1) m2/s

4.2 x 10-6 m2/s

3 x 10-9 m2/s

>> 1, perhaps as large as 1030

>> 1, perhaps as large as 1030

perhaps O(1)

0(1)

>>1

0(10-6)

Source: aMerrill and McElhinny (1983), bLoper (1984), cCardin and Olson (1992),

dRoberts (1988), eZhang (1991)

Table 1.1 Estimates for parameters and non-dimensional numbers of importance for

rotating magnetoconvection in the Earth's core.



References

Alfven, H., Cosmical Electrodynamics, Oxford University Press (1940).

Backus, G.E., "A class of self-sustaining dissipative spherical dynamos", Ann. Phys. 4,

372-447 (1958).

Blackett, P.M.S., "A negative experiment relating to magnetism and the Earth's rotation",

Phil. Trans. Roy. Soc. London A245, 309-370 (1952).

Bloxham, J., "The dynamical regime of fluid flow at the core surface", Geophys. Res.

Lett. 15, 585-588 (1988).

Bloxham, J., and Gubbins, D., "Thermal core-mantle interactions", Nature 325, 511-513

(1987).

Braginsky, S.I., "Structure of the F-layer and reasons for convection in the Earth's core",

Dokl. Akad. Nauk SSSR 149, 8-10 (1963).

Braginsky, S.I., "Self-excitation of a magnetic field during the motion of a highly

conducting fluid", Sov. Phys. JETP 20, 726-735 (1964a).

Braginsky, S.I., "Theory of the hydromagnetic dynamo", Sov. Phys. JETP 20, 1462-1471

(1964b).

Braginsky, S.I., and Roberts, P.H., "A model-Z dynamo", Geophys. Astrophys. Fluid

Dynam. 38, 327-349 (1987).



Bullard, E.C., and Gellman, H., "Homogeneous dynamos and terrestrial magnetism",

Phil. Trans. Roy. Soc. London A247, 213-278 (1954).

Busse, F.H., "A model of the geodynamo", Geophys. J. R. Astron. Soc. 42, 437-459

(1975).

Cardin, P., and Olson, P., "Chaotic thermal convection in a rapidly rotating spherical

shell: consequences for flow in the outer core", manuscript, (1992).

Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability. Dover Publications

(1961).

Cowling, T.G., "The magnetic field of sunspots", Mon. Not. Roy. Astr. Soc. 94, 39-48

(1934).

Elsasser, W.M., "Induction effects in terrestrial magnetism. 1. Theory", Phys. Rev. 69,

106 (1946a).

Elsasser, W.M., "Induction effects in terrestrial magnetism. 2. The secular variations",

Phys. Rev. 70, 202 (1946b).

Elsasser, W.M., "Induction effects in terrestrial magnetism. 3. Electric modes", Phys. Rev.

72, 821 (1947).



Fearn, D.R., Roberts, P.H., and Soward, A.M., "Convection, stability, and the dynamo",

60-324, In Energy, Stability, and Convection, eds. Straughan, B., and Galdi, G.P.,

Longmans (1988).

Gibson, R.D., and Roberts, P.H., "The Bullard-Gellman dynamo", 577-601, In The

Application of Modern Physics to the Earth and Planetary Interiors, ed. Runcorn, S.K.,

Wiley (1969).

Gubbins, D., "Energetics of the Earth's core", J. Geophys. 43, 453-464 (1977).

Larmor, J., "Possible rotational origin of magnetic fields of Sun and Earth", Elec. Rev. 85,

412 (1919a).

Larmor, J., "How could a rotational body such as the Sun become a magnet", Rep. Brit.

Assoc. Adv. Sci. 1919, 159-160 (1919b).

Loper, D.E., "Structure of the core and lower mantle", Adv. Geophys. 26, 1-34 (1984).

Malkus, W.V.R., "Precession of the Earth as the cause of geomagnetism", Science 160,

259-264 (1968).

Melchior, P., Physics of the Earth's Core, Pergamon Press (1986).

Merrill, R.T., and McElhinny, M.W., The Earth's Magnetic Field, Academic Press

(1983).



Moffatt, H.K., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge

University Press (1978).

Parker, E.N., "Hydromagnetic dynamo models", Astrophys. J. 122, 293-314 (1955).

Ringwood, A.E., "Composition of the core and implications for the origin of the Earth",

GeochemJ. 11, 111 (1977).

Roberts, P.H., "Future of geodynamo theory", Geophys. Astrophys. Fluid Dynam. 44,

3-31 (1988).

Soward, A.M., "Convection driven dynamos", Phys. Earth Planet. Inter. 20, 134-151

(1979).

Steenbeck, M., Krause, F., and Radler, K.H., "A calculation of the mean electromotive

force in an electrically conducting fluid in turbulent motion, under the influence of

Coriolis forces", Z. Naturforsch. 21a, 369-376 (1966).

Verhoogen, J., Energetics of the Earth's Core National Academy of Science (1980).

Zhang, K.K., "Convection in a rapidly rotating spherical shell at infinite Prandtl number:

steadily drifting rolls", Phys. Earth Planet. Inter. 68, 156-169 (1991).



Chapter 2

Observational Evidence for Stationary Flow in the Earth's Core

2.1 Introduction

In Chapter 1 we discussed the difficulty of interpreting surface geomagnetic and

other geophysical data to shed light on the workings of the Earth's dynamo; in this chapter

we briefly illustrate some of the difficulty with regard to the subject of core-mantle thermal

coupling. The usual geophysical problem of insufficient and defective data is extreme in

matters concerning the lower mantle and core. Moreover, while the evidence is mounting

that the mantle, with its long thermal time constant, plays a role in governing near-surface

core motions, there remain problems with the interpretation of the observations. After

reviewing the observational evidence for core-mantle thermal coupling, we will look

critically at the claimed correlation of various geophysical data. Finally, we will simply

examine maps of the magnetic field and its secular variation at the Earth's surface in an

effort to gain further insight into the dynamics of the Earth's deep interior.

2.2 Evidence for core-mantle thermal coupling

In part because of efforts to obtain maps of the fluid flow at the CMB, considerable

effort has been made to obtain maps of Br and aBr/at at the CMB. One can construct maps

of the magnetic field at the Earth's surface using a least squares fit to a truncated spherical

harmonic expansion (Barraclough et al., 1978). However, constructing maps of the

magnetic field at the CMB using a spherical harmonic analysis is a bit more problematic

(Shure et al., 1982, Gubbins, 1983). Firstly, small wavelength errors (and crustal

contributions) in the magnetic field at the Earth's surface may dominate the field that is

simply downward continued to the CMB. One could truncate the expansion at a low
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degree, but this is somewhat arbitrary. Secondly, it is not possible to assign meaningful

errors to the maps of the magnetic field at the CMB using a spherical harmonic analysis.

This is especially important when one is using the maps quantitatively for finding fluid

flow, and one would like to know the range of possible models.

Shure et al. (1982) and Gubbins (1983) developed alternate methods for modelling

the geomagnetic field on the CMB, both, like the spherical harmonic analysis, assuming an

insulating mantle. Shure et al. (1982) used harmonic splines to find the smoothest field

consistent with the data. They assessed this smoothness using various norms on the

integrated magnetic field on the core surface, such as the Ohmic dissipation. Gubbins

(1983) used stochastic inversion to incorporate a priori knowledge to damp out spurious

small scale features in the magnetic field at the CMB. By choosing similar a priori

knowledge (such as minimizing the Ohmic dissipation), stochastic inversion gives results

similar to harmonic splines, but it also gives error estimates. Gubbins and Bloxham (1985)

reformulated their stochastic inversion in terms of a Bayesian formalism, which also

enabled them to incorporate measurements such as total intensity (from satellites), and

declination and inclination (from ship surveys) that depend non-linearly on the model. They

find that the core fields they obtain are relatively insensitive to the damping level, but that

the error bounds, especially at high degree, very much depend on the damping level.

Gubbins and Bloxham (1985), Bloxham and Gubbins (1985), Bloxham (1986),

and Hutcheson and Gubbins (1990) used this formulation of the stochastic inverse to

produce models of the magnetic field at the CMB as far back as the seventeenth century,

with formal errors that represent the uncertainty in the field models. They found that their

maps resolve small scale features that their error analysis indicates are real features of the

core surface magnetic field. Figure 2.1 is one such map, for 1980. The maps show static

patches of high magnetic flux at high positive and negative latitudes at longitudes of 1200 E

and 1200 W (1 - 4 in Figure 2.1), and static patches of low magnetic flux at the poles

(5 - 6), which is perhaps surprising since one would expect a maximum at the poles for a
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dipole field. They also found rapidly westwardly drifting flux spots, primarily under the

Atlantic region, as well as stationary, local magnetic field oscillations near the magnetic

equator underneath Indonesia.

Gubbins and Bloxham (1987) tentatively identified the static high flux patch pairs

1 and 3, and 2 and 4 with the intersection of convection columns (Roberts, 1968, Busse,

1970, see Chapter 3, Figure 3.1) with the spherical surface at the CMB. Associated with

each convecting column is downwelling flow induced by Ekman suction at the boundary

(Greenspan, 1968) that concentrates the magnetic flux. In between (longitude = 1800) lies a

pair of regions of low magnetic flux associated with a column containing upwelling flow.

At 00 longitude a third pair of regions of high flux is missing; they ascribed this to the near

core surface flow that is associated with the high secular variation under the Atlantic region.

The static low flux patches near the poles they accredited to the dynamical effect of the

inner core. In the absence of strong Lorentz forces this picture is appealing. However, the

columns, if they represent free convection driven by a homogeneous boundary temperature

or buoyancy flux, should drift in azimuth (Busse, 1970); they show no such drift.

Bloxham and Gubbins (1987) ascribed this lack of drift to core-mantle thermal

coupling. The mantle, being much more viscous than the core, has a much longer

convective time scale than the outer core. Hence, horizontal temperature differences in the

lower mantle should persist over many core convective overturns, and force flow in the

outer core via an inhomogeneous boundary heat flux (King and Hager, 1989, Zhang and

Gubbins, 1992). (Note that because of the short thermal time scale of the outer core the

proper thermal boundary condition on mantle convection remains an isothermal

temperature.) Bloxham and Gubbins (1987) found evidence for core-mantle thermal

coupling by finding a spatial correlation between static features in the magnetic field at the

CMB, anomalies in the seismic P-wave velocity at the bottom of the mantle (Dziewonski,

1984), and CMB topography (Hager et al., 1985). Figure 2.2 shows the P-wave velocity

at the CMB and Figure 2.3 shows the CMB topography. Regions in the lower mantle that
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Figure 2.1 Map of the radial component of the magnetic field at the core-mantle

boundary for 1980 (reproduced from Gubbins and Bloxham, 1987, originally from

Gubbins and Bloxham, 1985). The contour interval is 100 giT; solid contours represent

positive radial field, dashed contours represent negative radial field, and bold contours

represent zero radial field. The pairs 1-3 and 2-4 are patches of high (enhanced) magnetic

flux and 5-6 are patches of low magnetic flux.

Figure 2.2 Map of the seismic P-wave velocity at the core-mantle boundary (reproduced

from Bloxham and Gubbins, 1987, originally from Dziewonski, 1984). The contour

interval is .5%. The minus signs corresponds to fast, i.e., cold, mantle, and the plus sign

to slow, or hot, mantle. The regions of cold mantle appear to correlate with the patches of

high magnetic flux in Figure 2.1, suggesting downwelling core flow, while the region of

hot mantle appears to correlate with the flux spots beneath southern Africa, suggesting

upwelling flow.

Figure 2.3 Map of dynamic core-mantle boundary topography inferred from P-wave

variations and constrained by the geoid, assuming a chemically uniform mantle with a

ten-fold increase in viscosity beneath 670 km (reproduced from Bloxham and Gubbins,

1987, orginally from Hager et al., 1985). The contour interval is 500 m. The minus signs

correspond to regions of depressed CMB, or cold mantle, the plus sign to a region of

elevated CMB, i.e., hot mantle. Again, there is some correlation with Figure 2.1.
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are cold should be seismically fast, with a dynamically maintained depressed CMB, and

vice versa. Further, regions in the lower mantle that are cold might exhibit a high heat flux

from the underlying region of the core, resulting from core fluid horizontally converging

and then downwelling, which could also cause a static high magnetic flux patch. Although

the correlation in Figures 2.1 - 2.3 is certainly suggestive of core-mantle thermal coupling,

the resolution of the three plotted quantities is perhaps insufficient, as we shall shortly

discuss.

During a magnetic dipole reversal it is unlikely that the field maintains a simple

structure, i.e., the dipole does not simply 'flip' (Merrill and McElhinny, 1983). If this were

the case, one could define a single VGP path for each reversal that without control external

to the core would vary for each reversal. If not the case, a VGP path is in theory a

meaningless quantity, since there is no single north pole to define. Nevertheless,

paleomagnetists have found that while each reversal does not trace out a single VGP path, it

does often yield just two distinct longitudinal paths. This suggests that during a reversal a

relatively simple, though not unique, field structure remains. One possibility (Clement and

Kent, 1991) that gives rise to the observed equatorial symmetry is a magnetic field with a

dominant h' Gauss coefficient. Clement and Kent (1991) and Clement (1991) state that the

longitudes of the two VGP paths during the Matuyama-Brunhes magnetic dipole reversal

(Figure 2.4) nearly coincide with the longitudes of the static patches of high magnetic flux

at the CMB (Gubbins and Bloxham, 1987), but we later question this correlation. In any

case, there is also evidence that VGP paths have preferred these two longitudes during

other reversals (Tric et al., 1991, Laj et al., 1991), which further supports the idea that the

mantle exerts control over core motions.

While these possible correlations between static magnetic flux patches, P-wave

velocities in the lower mantle, CMB topography, and VGP paths during magnetic dipole

reversals are certainly suggestive of coupling between core and mantle, the data are not

without considerable uncertainty. Backus (1988) questioned the error estimates of Gubbins
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Figure 2.4 Virtual geomagnetic pole paths for the Matuyama-Brunhes dipole reversal

(from Clement and Kent, 1991). Solid squares indicate pole positions for si:e V16-58,

open squares for site 609, and solid circles for site 664, with the open circles indicating

site positions. The mid-latitude sites yield VGP paths passing through the Americas,

while the equatorial site yields a VGP path passing through Asia. The longitudes of the

paths are nearly antipodal.
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and Bloxham (1985), believing that their optimistic error estimates resulted from an

overemphasis on the a priori information, i.e., too much damping. Thus, the resolution of

the small scale features (degree / > 10) of the magnetic field on the CMB of Bloxham and

Gubbins (1985), Bloxham (1986), and Hutcheson and Gubbins (1990) is under question.

However, maps produced with entirely different data sets (different epochs) and with a

different inversion technique (a spherical harmonic analysis truncated at degree 14) produce

similar looking maps (Gubbins, 1989), and in any case, the static flux patches are less than

degree 10.

More severe doubts remain about our current ability to resolve aspherical seismic

structure of the lower mantle for e > 3. Gudmundsson and Clayton (1991) discussed the

low signal to noise ratio of the International Seismological Centre (ISC) Catalogue for

tomographic inversions for lower mantle asphericity. In addition, the data set contains

systematic errors and uneven geographical coverage. Significantly less unique than our

maps of lower mantle P-wave velocity, and the inferred thermal structure, are our maps of

CMB topography (Hide et al., 1992). By using the surface geoid, and lateral seismic

velocity variations to infer temperature (and hence density) variations in the mantle, and

assuming a chemistry and viscosity structure in the mantle, one can obtain the dynamic

CMB topography (Hager et al., 1985). For a chemically uniform mantle with a ten-fold

increase in viscosity beneath 670 km, this procedure predicts the CMB topography that we

show in Figure 2.3, which has a peak-to-peak amplitude of about 3 km. However, we do

not know the viscosity structure of the mantle, particularly in the D" layer directly above the

CMB, and a low viscosity zone associated with an elevated temperature yields a smaller

dynamically maintained CMB topography. For instance, for a 200 km thick D" layer with a

viscosity 1/100 that of the lower mantle, the procedure predicts an amplitude less than 2 km

(Hager and Richards, 1989). We show this topography in Figure 2.5 (from Hide et al.,

1992). Although the amplitudes differ between Figures 2.3 and 2.5, the spatial variation

appears similar.
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Figure 2.5 Map of dynamic core-mantle boundary topography inferred from P-wave

variations and constrained by the geoid, assuming mantle model WL of Hager and

Richards (1989) (reproduced from Hide et al., 1992). The model allows for a low

viscosity D". The contour interval is 200 m. Solid contours correspond to regions of

elevated CMB, dashed contours to regions of depressed CMB. Although the amplitude

differs from Figure 2.3, there is spatial correlation.
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Figure 2.6 Map of core-mantle boundary topography inferred directly from P-wave

variations, allowing for velocity variations in D" (reproduced from Hide et al., 1992,

originally from Gudmundsson and Clayton, 1992). The contour interval is 500 m. Solid

contours correspond to regions of elevated CMB, dashed contours to regions of depressed

CMB. Although the amplitude is much less than that inferred seismically by Creager and

Jordan (1986) or Morelli and Dziewonski (1987), there is no azimuthal correlation with

the dynamically inferred topography of Figures 2.3 and 2.5. On the other hand,

Figures 2.2, 2.3, 2.5, and 2.6 all show an equatorial bias towards hot, upwarped mantle

and a polar bias towards cold, downwarped mantle.



29

On the other hand, direct inversion of ISC travel-times of seismic phases that

sample the CMB in different ways (reflection off the core surface, refraction through the

uppermost core) yields maps of CMB topography that are different for different workers,

and different and with larger amplitude than the maps of dynamically inferred topography.

Creager and Jordan (1986) used PKPAB and PKIKP phases for their study, which yielded

a 20 km peak-to-peak amplitude. They hypothesized that the large amplitude and poor

spatial correlation with the dynamically inferred topography could be explained by a

chemical boundary layer (CBL) underneath the CMB, which would allow the seismic

velocity to be uncorrelated with density. Morelli and Dziewonski (1987) used PKPBC and

PcP phases for their study, which yielded a 12 km amplitude. They again found poor

spatial correlation with the dynamically inferred topography, which cannot be solely

explained by a core-side CBL since PcP does not sample beneath the CMB. Figure 2.6

shows the CMB topography from an inversion of ISC PcP and PKP travel-times by

Gudmundsson and Clayton (1992). They found a trade-off between horizontal variations

of seismic velocity in the D" and the amplitude of CMB topography. Although the

amplitude in Figure 2.6 is only about 5 km, it does not look similar to the dynamically

inferred topography of Figure 2.5, at least in its azimuthal dependence. On the other hand,

though they may disagree in their azimuthal dependence, Figures 2.2, 2.3, 2.5, and 2.6 all

show an equatorial bias towards hot, upwarped mantle and a polar bias towards cold,

downwarped mantle.

Valet et al. (1992) reanalyzed the paleomagnetic data, and found no statistical

evidence for a simple magnetic field structure remaining during a single dipole reversal, nor

for any preferred longitudes for VGP paths for different reversals. Hopefully, the addition

of more transition records will alleviate the current paucity of VGP paths and resolve the

question. In addition to the questionable statistical significance of the VGP paths, we do

not understand how there can be a correlation between (m = 1) antipodal VGP paths and

the presumed m = 3 symmetry that Gubbins and Bloxham (1987) inferred. The
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interpretation of convecting columns (of the Busse (1970) type) in the core being thermally

locked to the mantle also puzzles us. Free convective columns drift; according to Gubbins

and Bloxham (1987) the inhomogeneous heat flux at the CMB keeps the columns

stationary, presumably to transport heat most effectively from the lower core to the mantle.

However, according to Figure 9 of Zhang (1991), free convection slightly above the critical

Rayleigh number (the parameter regime at which convecting columns exist) primarily

transports heat in the equatorial zone, with the heat flux negative in the polar regions. In

other words, the primary means of heat transport of freely convecting columns is not

motion parallel to the columns, so that it is not clear that an inhomogeneous boundary heat

flux will fix convecting columns to align themselves with temperature anomalies in the

mantle. Hence, while downwelling core flow due to cold mantle may well cause static

patches of high magnetic flux on the CMB, the mechanism may not in essence be the

Ekman flow of convection columns locked to the mantle. Zhang and Gubbins (1992)

studied steady flows forced by a laterally variable CMB temperature, and found that

rotation induces an azimuthal phase shift between the thermal boundary condition and the

flow. Their model did not include free convection driven by bottom heating, however, and

it assumed Lorentz forces are negligible, so it remains difficult to apply the results to the

Earth's core.

Thus, while we find the basic concept of core-mantle thermal coupling intriguing,

we need to understand better the steady motions that occur in an electrically conducting,

rotating fluid shell driven by 1) a laterally homogeneous and 2) a laterally inhomogeneous

boundary buoyancy flux. We will develop an iterative method to study steady, finite-

amplitude motions in Chapter 3 and apply it to the Earth's core in Chapter 4. At the same

time, the observational evidence needs strengthening. We can expect this as geomagnetism,

paleomagnetism, seismology, and geodynamics advance. In the meantime, in the next

section we examine maps of the surface magnetic field to look for further clues on the state

of the Earth's deep interior.



2.3 Interpretation of surface magnetic field data

Figure 2.7 is a contour map of the north-south (X) component of the 1980 magnetic

field at the Earth's surface, produced from the International Geomagnetic Reference Field

(IGRF) Gauss coefficients up to degree and order 10 (Peddie, 1982). The 1980 IGRF uses

data from MAGSAT and approximately 150 permanent magnetic observatories. If the field

were purely dipolar, the contours would of course be parallel to lines of constant latitude.

The largest deviation away from a dipole field appears to be an equatorial m = 1 anomaly,

with additional north-seeking field beneath Indonesia and a deficit of north-seeking field

beneath the northern coast of South America. Such an anomaly implies large electrical

currents in the east-west and radial directions in the equatorial zone, e.g., current loops

parallel to but displaced from the rotaton axis.

To test this inference, we set up a small inverse problem for electrical currents in the

outer core. We first place ideal magnetic dipoles, i.e., infinitesimal current loops, spaced

every forty degrees in longitude, at +/- 200 latitude, and at four fixed depths in the core. At

each of these 72 positions we allow for X (current loop with axis in the north-south

direction), Y (axis in east-west direction), and Z (axis in radial direction) dipoles. For

comparison we then change the location of the 72 ideal magnetic dipoles, placing them on

the cylinder circumscribing the inner core, again at four depths and nine longitudes. For

each geometry we invert all three components of the surface non-dipole field (from the

coefficients of the 1980 IGRF) for the magnitudes of the 216 dipole components. We hope

that this simple approach will yield some insight into the electrical current system associated

with the poloidal magnetic field, though of course, the magnetic field maps contain the

same information.

The expression for the magnetic field B due to an ideal magnetic dipole m is
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Figure 2.7 Map of the north-south (X) component of the magnetic field at the Earth's

surface for 1980 produced from the IGRF Gauss coefficients up to degree and order 10

(Peddie, 1982). The contour interval is 2500 nT. The positive anomaly beneath southern

Asia and the negative anomaly beneath the northern coast of South America are

antipodal, and are suggestive of east-west and radial electrical currents in the equatorial

zone.
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where io is the permeability of free space, r is the distance between the dipole and the

observation point, r is the direction between the dipole and the observation point, and ih is

the orientation of the dipole (Jackson, 1962, and converting to the MKS system). We

invert equation (2.1) using damped least squares, so that we solve

x = (ATA + 2Ij)-1 . (ATb). (2.2)

In (2.2) the model x consists of the magnitudes of the components of the 72 dipole

moments m, the operator matrix A (with transpose AT) represents (2.1) in some coordinate

system, and the data b consists of 432 evenly spaced point values of the components of the

surface non-dipole magnetic field B, computed from the 1980 IGRF coefficients. The term

e2I represents the damping.

For both the equatorial dipoles, which form a cone, and the polar dipoles, which lie

on a cylinder, we position dipoles at depths of the CMB, CMB - 600 km, CMB - 1200

kmin, and CMB - 1800 km, and at nine longitudes. Figures 2.8 and 2.9 show the results of

the inversions for the amplitudes of the X, Y, and Z components of the current loops, for

damping with E2 = 103. In each figure, the upper four traces of each plot represent the

amplitudes for one component in the northern hemisphere at the four fixed depths, the

lower four in the southern hemisphere. The traces begin at 00 longitude and proceed

eastwardly at intervals of 400. The amplitude between traces is 1021 A-m 2. The number at

the lower right of each plot is the fit of the plotted solution to the original set of equations

A-x = b, or equation (2.1).

At this level of damping, E2 = 103, the fit for the equatorial dipoles, .99, is better

than for the polar dipoles, .98. For the equatorial dipoles, the largest amplitudes occur for

the X component, in accordance with our inference. The X component shows a strong
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Figure 2.8 The amplitude (1021 A-m2 between traces) of the ideal magnetic dipoles that

fit the non-dipole part of Figure 2.7 through a damped least-squares inversion of equation

(2.2). The damping level is E2 = 103, with a resulting fit of .99. The first four traces of

each plot are at +200 latitude, the second four at -200, at the indicated depths. Each trace

begins at 00 longitude, and proceeds eastwardly at 400 intervals. Plot a) shows the

amplitude of the X (current loop with axis in the north-south direction) component, b)

shows the Y (east-west) component, and c) shows the Z (radial) component. X has the

largest amplitude and shows a large m = 1 contribution.
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Figure 2.9 As for Figure 2.8, but with ideal dipoles on the cylinder circumscribing the

inner core. The upper four traces of each plot are for northern hemisphere dipoles, the

lower four for southern hemisphere dipoles. The solution is not as smooth as for the

equatorial dipoles, and the fit is only .98.
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Figure 2.10 As for Figure 2.8, but with damping C2 = 104. The solution is smoother than

that in Figure 2.8, but the fit is only .98.
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m = 1 contribution, particularly for the dipoles at -200 latitude. On the other hand, the

solution for the polar dipoles is very rough and requires large amplitudes in all three

components. An m = 1 dominance is not obvious. A comparison of the two solutions,

Figures 2.8 and 2.9, suggests that equatorial currents with a large m = 1 contribution

account for much of the non-dipole field. With higher damping, e2 = 104 , the equatorial

dipoles achieve a .98 fit and the polar dipoles but a .94 fit. These solutions, Figures 2.10

and 2.11, are of course smoother, but at the expense of the fit, particularly for the polar

dipoles. Thus, these figures convey a message similar to those of the rougher solutions.

While these inversions suggest that electrical currents in the equatorial zone may

give rise to the anomalous m = 1 non-dipole field at the Earth's surface, they by no means

constitute a proof. With damping E2 < 104, the fits are well over 90% for either equatorial

or polar sources, but we prefer equatorial sources because of the slightly better fit and

smoother solution. We have parameterized the currents sources with an assigned

distribution of ideal dipoles; this parameterization is by no means unique, nor are the

locations of the dipoles. Moreover, there is almost certainly a trade-off between the

amplitudes of dipoles at different depths. Nevertheless, we believe that these inversions do

support the notion that electrical currents in the equatorial zone are responsible for the

anomaly in the X component of the surface magnetic field, Figure 2.7.

Figure 2.12 is a contour map of the radial (Z) component of the magnetic secular

variation at the Earth's surface, also produced from the 1980 IGRF coefficients (Peddie,

1982). The geometry of this map is similar to that of Figure 2.7, in that the largest secular

variation is present at low latitudes and at two azimuths. Interestingly, the azimuths of the

largest anomalies in X and aZ/at are the same as for the apparent preferred VGP paths: the

Americas and eastern Asia. Given the uncertainty in the VGP paths, we cannot be sure of

the reliability of the correlation. However, the correlation between the main field and the

secular variation is also suggestive of persistent high activity in those regions, which is

perhaps evidence for long-period control by the mantle. Until we better understand the
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Figure 2.12 Map of the radial (Z) component of the magnetic secular variation at the

Earth's surface for 1980 produced from the IGRF Gauss coefficients up to degree and

order 8 (Peddie, 1982). The contour interval is 250 nT / 10 yr. The geometry of the map is

similar to Figure 2.7.
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steady, or mean, motions that can occur in an electrically conducting, rotating fluid shell,

we cannot offer a specific explanation for this persistent activity. Thus, for instance, using

the method of Chapter 3, we will find in Chapter 4 that cold mantle does not necessarily

induce downwelling core flow. Although the observational evidence for stationary

magnetic fields and persistent core flow remains somewhat under debate, we believe it is

important to improve our scant understanding of free and forced steady motions.
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Chapter 3

Rotating Magnetoconvection: Development of a Numerical Technique to

Find Steady Solutions

3.1 Introduction

As witnessed by aperiodic reversals of the dipole field as well as the short-period

magnetic secular variation, convection and magnetic field generation in the Earth's core are

clearly time-dependent. Nevertheless, we have noted in Chapter 2 that certain features of

the magnetic field, and hence certain fluid motions in the core, may remain relatively

stationary, or at least exhibit a mean, for much longer than the presumed core convective

timescale of a few thousand years. In this chapter and the next, we therefore develop and

employ a numerical method to study steady, rotating magnetoconvection. After a brief

review of prior work on rotating magnetoconvection, we introduce our method and

demonstrate its viability for studying non-rotating, non-magnetic free convection in a

spherical shell. We next apply the method to study free convection in rotating systems,

both non-magnetic and magnetic, in order to compare our solutions with those from

previous work. We then study forced convection, for which very little prior work can

guide us, but which may be of some interest if core-mantle thermal coupling is important.

The governing equations for the unknown velocity field v, pressure p, density

deficit c, and magnetic field B are (1.5) - (1.8). We will non-dimensionalize them by

setting V=V*/L, t=t*L2/, v=v*K/L, p=p*KV/L 2 , c=c*(Ap/p), B=B*B(gtop) 1/2 , g=gg,

and f2=00, where L is the characteristic length scale of the system, Ki is the thermal or

chemical diffusivity, (Ap/p) is the magnitude of the density deficit from a mean density p,

B is the magnitude of the magnetic field, to is the magnetic permeability of free space, g is

the magnitude of the gravity vector, Q is the magnitude of the rotation vector, and g and Q

are unit vectors. Inserting these into (1.5) - (1.8) and dropping the *'s, we obtain



B q-IV2B + V x (vxB) (3.1)

av
Pr-1 ( + (v-V)v) =

- Vp + V2v - Tal/ 2 Qxv + Ra c9 + Ta1/ 2 El (VxB) x B
q , (3.2)

V v = 0, and (3.3)

_c12
+ (v V)c = V c, (3.4)

where we have dropped the source term from (3.4). The non-dimensional numbers in

(3.1) - (3.4) are the Prandtl number
Pr=v/K, (3.5)

the magnetic Prandtl number

q=c/X, (3.6)

the Rayleigh number

Ra=(Ap/p)gL 3/(vK), (3.7)

the Taylor number
Ta=4Q 2L4/v2, (3.8)

and the Elsasser number
El=B2/20X, (3.9)

where v is the fluid viscosity and X=l/poo is the magnetic diffusivity, with a the electrical

conductivity. The Rayleigh number is a measure of buoyancy to dissipative forces, the

Taylor number a measure of the Coriolis force to viscous force, and the Elsasser number a

measure of the Lorentz force to the Coriolis force. Table 1.1 contains estimates for various

core parameters and non-dimensional numbers.



3.2 Early work on rotating mangetoconvection

Before we begin our search for steady solutions to (3.1) - (3.4) for various

parameter ranges of (3.5) - (3.9), we will review prior work on rotating

magnetoconvection. We begin with the classic treatise by Chandrasekhar (1961), who

studied the linear stability of a variety of hydrodynamic and hydromagnetic systems. The

first problem considered by Chandrasekhar that is of particular interest to us is his analysis

of the stability of thermal conduction between two horizontal planes each in the (x,y) plane,

with vertical gravity g = -2, rotation 2 = z, and impressed magnetic field B = . The

system is heated from below, with the lower and upper planes held fixed at given

temperatures. The non-dimensional number that characterizes the strength of the heating is

the Rayleigh number, Ra = (gapL4)/(Kv), where aPL replaces Ap/p. For this problem L

is the distance between the parallel planes, a is the coefficient of thermal expansion, and J

is the uniform temperature gradient between the planes. As one increases the heating from

below, 3, and hence Ra, rises, and the fluid becomes increasingly gravitationally unstable.

At the critical Rayleigh number, Rac, the conductive (diffusive) solution is no longer stable,

and the fluid begins to convect.

The approach that Chandrasekhar developed to find Rac and the infinitesimal fluid

motions that develop at Rac for a variety of fluid boundary conditions is to assume the

conductive solution and linearize (3.4) by assuming Vc = -2 (-Dp in dimensional terms).

All variables are then perturbations, which must satisfy

B = q-V 2B + V x (v xz), (3.10)

Prav
at

- Vp + V2v - Ta1/2 zxv + Ra c" + Tal2 El (VxB) x z
q , (3.11)

V-v = 0, and (3.12)



a- = w + V c, (3.13)
at

where w is the velocity in the z-direction. Assuming normal mode solutions of the form

exp i (kxx + kyy + ot), where (kx,ky) are the horizontal wavenumbers, and oa are the

eigenfrequencies, Rac is that Ra at which there exists an Im(o) < 0, indicating positive

growth rate. If Re(o) = 0 at Rac, one says 'the principle of the exchange of stabilities' is

valid and the convection is stationary, else the convection sets in as overstability. The

eigenfunction f(z) associated with this eigenfrequency gives the geometry of the solution at

Rac but, being a linear analysis, no information on its amplitude.

When Ta and El are zero, Rac is independent of Pr (and obviously of q), and the

convection is stationary at Rac. When El is zero, but Ta non-zero, the situation is more

complicated. For Pr > 0(1), the convection at Rac is also stationary, with Rac proportional

to Ta2/3 and kc proportional to Tal/6 in the asymptotic limit that Ta --+ c, where kc is the

horizontal wavevector of the convective cell patterns at Rac. When Pr < 0(1), convection

commences as overstability, provided Ta is large enough. The same asymptotic

dependencies on Ta hold. Already for the plane layer, the complexity of the subject is

becoming apparent. It is perhaps appropriate here to point out that we do not know the

value of Pr in the Earth's core. Its molecular value is typically presumed to be much greater

than one, but then, its eddy (turbulent) value is typically presumed to be order one (Zhang,

1991a).

To understand the dependence of Rac and kc on Ta, we introduce the Taylor-

Proudman theorem (Proudman, 1916, Taylor, 1921), central to the theory of rotating

fluids. Consider (3.11) in the absence of inertial, viscous, buoyancy, and Lorentz forces.

This yields the geostrophic balance,

- Vp = Tal/2 xv (3.14)
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If we now take the curl of this equation, we obtain the Taylor-Proudman theorem,

av/i)z = 0, so that the fluid has a tendency to move in columns, independent of the

coordinate parallel to the rotation axis. To the extent that other forces are present, it is

possible to break the strength of the theorem. We can now understand why Rac increases

with increasing Ta: convective motions in a horizontal plane layer with vertical gravity and

rotation must necessarily have a z-dependence so that to overcome rotation the fluid

requires more buoyancy to commence convection. Similarly, the convective cells tend to

become aligned with the z-axis in the interior of the fluid, bending only in the viscous

(Ekman) boundary layers near the horizontal surfaces. This alignment results in a smaller

horizontal wavelength with increasing rotation rate.

Similarly, in the absence of other forces, motion in the presence of a uniform

magnetic field B = ^ also tends towards two-dimensionality, independent of the

z-coordinate. Thus, in the limit that the Chandrasekhar number Q = B2L2/(vX) - cc, Rac is

proportional to Q and kc is proportional to Q1/6 , and the convective cells become elongated

in the z-direction. For the magnetic Prandtl number q < 0(1), stationary convection

commences at Rac, and for q > 0(1), overstability occurs provided Q is large enough. The

molecular value of q in the Earth's core is probably much less than one, though again, there

is the question of its eddy value (Fearn, 1979, Zhang, 1991a). Chandrasekhar (1961) also

showed that if the impressed magnetic field B is inclined to the vertical, the isotropy of the

two horizontal directions is lost, and convection commences most easily as longitudinal

rolls in the direction of the horizontal component of B. Such rolls do not need to vary along

the component of B that they are aligned with, and so they exhibit the minimum Rac. A

similar effect occurs if Q and g are not collinear.

Although acting separately rotation RQ and an impressed magnetic field Bi each

inhibit convection in a horizontal plane layer with gravity -gi, together they can actually

promote it. To understand this, consider that by decreasing the Taylor number, increasing

viscosity facilitates convection in a rotating fluid, and impressing a magnetic field on an
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electrically conducting fluid is in some sense giving the fluid additional viscosity. The

critical Rayleigh number Rac is a complicated function of Pr, q, Ta, and El (or Q), and the

convection at Rac can be either stationary or overstable depending on the parameter values.

The general pattern, however, is that for a given Ta, as Q increases from zero, Rac and kc

decrease until a minimum is reached, and then they begin to increase with further increase

in Q. Not surprisingly, the minimum Rac and kc occur when the Coriolis and Lorentz

forces are comparable, or El = 0(1).

Chandrasekhar (1961) next considered the linear stability of the thermal conduction

solution in non-rotating, non-magnetic, internally heated fluid spheres and shells, primarily

with constant radial gravity and basic state temperature gradients. He found the critical

Rayleigh number for stationary convection as a function of spherical harmonic order £ for

various fluid boundary conditions. He then examined the stability of a fluid sphere rotating

about the z-axis, finding that Rac increases with increasing Ta, in analogy with the

horizontal plane layer. Roberts (1965) showed that for this problem, Rac is proportional to

Ta2/3, as for the plane layer. However, these studies considered only convection symmetric

about the rotation axis.

3.3 Recent developments in rotating magnetoconvection

Roberts (1968) realized that non-axisymmetric convection in a rotating fluid sphere

might have a lower Rac than axisymmetric convection because non-axisymmetric

convection could arrange itself in rolls (columns) parallel to the rotation axis, thereby not

requiring that the buoyancy force break the constraint of the Taylor-Proudman theorem.

Were it not for the spherical boundaries, such columnar convection could commence at the

lower Rayleigh number associated with that of a non-rotating fluid. However, such

columns must necessarily intersect the spherical boundaries, so that their effectiveness in

transporting buoyancy is somewhat limited, as we shall later see. The tendency for rotation
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to eliminate z-dependence and the strong z-dependence of the spherical boundaries conspire

to limit the length scale of the rolls so that the azimuthal wave number m increases with

Tal/6 and Rac with Ta2/3 (though with a lower constant of proportionality than for the

axisymmetric modes).

Busse (1970) re-examined the problem of convection in a rotating sphere and found

that solutions with a different symmetry with respect to the equatorial plane had a lower Rac

than Robert's solutions. Figure 3.1 is a sketch of the convective motions that occur in an

internally heated, rotating sphere at Rac in the Roberts-Busse theory. The pattern of

columns occurs not as stationary convection, but drifts eastwards as a Rossby wave

(Busse, 1970, Gill, 1982). To understand this, consider Figure 3.2, in which a filament of

fluid moves outwards from the rotation axis. As it does so, it acquires an anticyclonic

vorticity relative to the ambient fluid in order to conserve potential vorticity. A nearby

filament moving inwards acquires cylconic vorticity, and the motion that this pattern of

vorticity induces causes a net eastward propagation of the pattern. Busse (1970) also

observed that the non-linear interaction of Rossby waves can give rise to a mean azimuthal

flow in the form of differential rotation.

Busse and Cuong (1977) studied convection in a spherical shell of inner radius 71

and outer radius 1. They noted the qualitative difference between convection in the region

with cylindrical radius s < 1 and that for Tl < s < 1 (Figure 3.3). In the former region, the

rotation and gravity vectors tend to be parallel, so that the polar modes resemble convection

in Chandrasekhar's (1961) horizontal plane layer rotating about a vertical axis with vertical

gravity. In the latter region, the two vectors are nearly perpendicular, so that the equatorial

modes resemble the columnar convection of Roberts (1968). The minimum Rac at all

Prandtl numbers occurs for the equatorial modes, which Busse (1975) argued would

arrange themselves in columns around the cylinder tangent to the inner core.

Gilman (1975) performed extensive linear numerical calculations on convection in a

rotating spherical shell of inner radius Tr = .8 at Pr = 1 and Ta between 0 and 106. His



Figure 3.1 A sketch of the convective motions that occur at Rac in a rotating sphere with

constant radial buoyancy gradient (from Busse, 1970).



Rotation axis

Figure 3.2 The mechanism for the eastward propagation of Rossby waves in a thick shell

such as the Earth's core (adapted from Gill, 1982). A filament of fluid moving towards the

rotation axis (on the right) experiences vortex stretching, and thus acquires cyclonic

relative vorticity in order to conserve potential vorticity. The filament on the left, moving

away from the rotation axis, conversely acquires anticyclonic relative vorticity. This

pattern of relative vorticity causes the wave to propagate eastwardly, as indicated by the

broad arrow. The Rossby wave rmechanism is responsible for the azimuthal drift of the

convective columns at Rac pictured in Figure 3.1.
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o) b)

Figure 3.3 (from Busse and Cuong, 1977)

a) Convection in a layer with gravity and rotation perpendicular, as at the equator. In

order not to violate the Taylor-Proudman theorem, the convective columns arrange

themselves aligned parallel with the rotation axis. In the absence of spherical boundaries

this columnar convection has the same critical Rayleigh number Rac as non-rotating

convection.

b) Convection in a layer with gravity and rotation parallel, as at the poles. Convection

must necessarily break the Taylor-Proudman theorem, thereby inhibiting convection and

raising Rac. There is no preferred horizontal direction for the convective rolls.
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calculations confirmed the analytical predictions that solutions with high azimuthal wave

number m (up to m = 24) are most unstable in the equatorial zone and those with lower m

are most unstable in the polar zone, with a mid-latitude gap. The calculations confirm that

the equatorially symmetric equatorial modes are overall the most unstable, with Rac

proportional to Ta2/ 3, the critical azimuthal wavenumber mc to Tal/6 , and an eastward drift

frequency at critical coc to Ta1/3 . Gilman (1977) extended the numerical calculations at

Ta = 105 to include non-linear effects. The finite-amplitude solutions show that as Ra

rises above the overall Rac, the peak in the kinetic energy spectrum shifts from m near mc

to lower m, with a second peak at m = 0. The shift towards lower m represents the

increasing importance of the polar modes so that convection begins to fill the sphere,

though the tendency for a mid-latitude gap remains even for finite-amplitude convection.

The peak at m = 0 represents the differential rotation.

It is impossible under terrestrial laboratory conditions to simulate a radial buoyancy

force in a sphere or spherical shell (though see Hart et al., 1986). However, the centrifugal

force of a rotating fluid can simulate the component of the gravitational force perpendicular

to the rotation axis, the s-component, with a change in sign. By switching the basic state

temperature gradient within the fluid, one can simulate convection in a rotating fluid sphere

or spherical shell, at least to the extent that the component of the gravitational force parallel

to the rotation axis, the z-component, is dynamically unimportant. At least near Rac, this

appears to be true. Using such a set-up, Busse and Carrigan (1976), Carrigan and Busse

(1983), Chamberlain and Carrigan (1986), and Cardin and Olson (1992) confirmed the

existence of columnar convection near Rac. (In addition, the conduction solution for this

geometry presumably induces fluid motion for subcritical Rayleigh numbers, but none of

these authors discuss this.)

Working with Taylor numbers in the range of 1011 and Pr = 7, Cardin and Olson

(1992) found experimentally that at Rayleigh numbers even a few times critical, the pattern

of steadily drifting, periodic columns degenerates into chaotic, time-dependent convection,
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though the tendency towards z-independence remains. Their numerical calculations for Ta

between 106 and 2.5 x 109 and Pr = 7, again using cylindrical gravity, confirmed that as

Ra rises above Rac convection becomes aperiodically time-dependent and chaotic in planes

perpendicular to the rotation axis. The columnar structure in the direction parallel to the

rotation axis remains, however. Using a power law fit (Rac proportional to Ta3/5) to their

numerical results, they extrapolated Rac to the large Taylor number appropriate to the

Earth's core (Ta = 1028, see Table 1.1), well beyond what they could model numerically.

This Rac, approximately 1018, is ten orders of magnitude less than the Rayleigh number

they presume in the core (Table 1.1), so that they conclude that the core convects in the

chaotic manner so described. To obtain the larger, more steady features observed in the

surface magnetic field, they suggest that either Lorentz forces or mean-field effects, such as

the mean azimuthal flow, play a role.

Busse (1975, 1977) constructed a dynamo based on columnar convective motions.

He argued that the Lorentz force in the Earth's core is not of primary importance, so that

the basic state force balance is geostrophic. Treating the Lorentz force as a perturbation of

the geostrophic balance, Busse showed that the toroidal magnetic field is of the same order

of magnitude as the poloidal field, thereby justifying the original assumption of a

geostrophic balance. Because the toroidal field remains of the same order of magnitude as

the poloidal field, Busse's dynamo is a weak-field model. The convective motions of

Figure 3.1 provide a means to generate the toroidal magnetic field. Associated with each

convecting column is a flow in the z-direction induced by the Ekman pumping (Greenspan,

1968) that occurs at the intersection of the columns with the spherical surface. The direction

of the Ekman flow within each column depends upon the sense in which the column is

convecting. This poloidal motion provides the helicity (Moffatt, 1978) necessary to

generate the poloidal magnetic field and complete the dynamo cycle.

Weak-field dynamos may be intuitively satisfying and analytically tractable, but

they may not be geophysically plausible (Roberts, 1988). Although small magnetic field
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strengths characterize weak-field dynamos, so do small length scales. These small length

scales result in high electric currents that increase the Ohmic dissipation, which has led to

the oft-quoted comment that 'if the Earth operated a weak-field dynamo, one could stand a

kettle of water anywhere on the Earth's surface and have it boil in three minutes'. Soward

(1979) showed that at all but very small (ungeophysical) magnetic field strengths, the

weak-field dynamo is unstable and the system prefers a strong magnetic field in which the

Lorentz force enters into the basic state force balance. This magnetostrophic state prefers

large length scales and hence the Ohmic dissipation for the strong-field dynamo is less than

that for the weak-field dynamo. Eventually, of course, the back reaction of the Lorentz

force will limit the ultimate strength of the magnetic field (Malkus and Proctor, 1975).

Braginsky (1964, 1967, 1980) suggested that magnetic-Archimedean-Coriolis

(MAC) waves might be responsible for the generation of the main magnetic field. These

asymmetric MAC waves, riding on an axisymmetric basic state, would both break the force

of Cowling's theorem and supply the a-effect necessary to maintain the poloidal magnetic

field. In this view, the Lorentz force is of primary importance in the force balance, and the

Earth operates a strong-field dynamo. A new class of instabilities are possible due to the

presence of a dynamically important magnetic field. Hide (1966) considered diffusionless

MC waves as a possible mechanism for the westward drift. Acheson (1972, 1973) studied

the effects of the variation with cylindrical radius s of basic differential rotation (shear),

toroidal magnetic field, and buoyancy on ideal (non-diffusive) MAC instabilities. Fearn

(1983, 1984, 1985) confirmed the results of Acheson's local analysis numerically in an

infinite annulus and Fearn and Weiglhofer (1991) confirmed the results in a sphere.

Acheson (1972, 1973) found that a basic state toroidal magnetic field can destabilize

a fluid via the ideal field-gradient instability, provided B(s) increases faster than s3/ 2, where

the basic state toroidal magnetic field B = B(s)o, and 0 is the unit vector in the eastward

direction. Typically these linear instabilities take the form of westwardly propagating

waves, and a fluid shear can stabilize them. In addition to ideal instabilities, Roberts and
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Loper (1979) investigated resistive instabilites that require finite electrical conductivity for

their existence. Much as increasing fluid viscosity facilitates ordinary convection in a

rotating fluid, the presence of Ohmic dissipation can actually lower the strength or

functional increase with s of the basic state magnetic field (from which the energy derives)

necessary for instability. Fearn (1984) found that in the limit of small magnetic diffusivity,

resistive instabilities concentrate in the critical layer near a requisite zero in B(s). Resistive

instabilities can propagate either eastwardly or westwardly, and shear has less effect. The

buoyancy-catalyzed instability (Roberts and Loper, 1979) requires stratification (either

stable or unstable!) and diffusion to break the rotational contraint and release the magnetic

energy.

A different mechanism for instability, and possible explanation for magnetic secular

variations with 60 year periods, was suggested by Braginsky (1970, 1984). This

mechanism is that of torsional oscillations, which result when the magnetic extension of the

Taylor-Proudman theorem, Taylor's condition (Taylor, 1963), is not satisfied. Taylor's

condition requires that in the absence of diffusion and time-dependence, the f-component

of the Lorentz force integrated over a coaxial cylinder C(s) must vanish. When this force

does not vanish, torsional oscillations occur through the action of the poloidal magnetic

field weaving its way across different fluid cylinders. This imparts a certain rigidity to each

fluid cylinder. In the model-Z dynamo (Bragisnky and Roberts, 1987), the field lines are

primarily aligned with the z-axis, so that large geostrophic flows Vg = vg(s)4 are possible

without violating Taylor's condition. To the extent that it is violated, one expects torsional

oscillations (and diffusive effects). Clearly, rotating, electrically conducting fluids allow a

wealth of instabilites that may (or may not) play a role in generating the main magnetic field

and its secular variation.

However, in this section we are ultimately interested in the instabilities driven not

by an unstable magnetic field gradient, but by an unstable buoyancy gradient, as for

Chandrasekhar's (1961) rotating plane layer permeated by a uniform magnetic field.
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Unfortunately, unlike Busse's models, rotating magnetoconvection and strong-field

dynamos in spherical geometry are not amenable to analytical progress because one can no

longer treat the magnetic field as a perturbation. Eltayeb and Kumar (1977) numerically

studied linear magnetoconvection in a rotating sphere permeated by a toroidal field B = so.

For small values of the Elsasser number El they found that critical convection takes the

form of drifting rolls as Roberts (1968) and Busse (1970) predicted. As for the plane layer,

the magnetic field facilitates convection so that the critical Rayleigh number Rac reaches a

minimum for an Elsasser number El = 0(1). The magnetic field increases the length scale

of the convection, which now fills the sphere, but unlike for the plane layer, the spherical

boundary causes overstability for all investigated values of the Prandtl number Pr and

magnetic Prandtl number q. For q = 0(1), as El exceeds 0(1), the instability takes on the

form of a diffusionless MAC wave.

Fearn (1979) found similar results for q << 1, as may be geophysically more

realistic, except that as El exceeds 0(1), the most unstable mode does not resemble a MAC

wave in that it is eastwardly propagating. This 'exceptional' mode requires stable

stratification and derives its energy from the basic state magnetic field. Fearn and Proctor

(1983a, 1983b) studied the effects of differential rotation on modes driven by an unstable

buoyancy gradient. They found that increasing shear, as measured by the magnetic

Reynolds number Rm = VL/X, where V is a characteristic speed and L a length scale such

as the core radius, increases Rac. For small q, as Rm rises above O(q), the differential

rotation localizes the buoyancy perturbation at a critical point and at that critical point the

phase speed of the instability approaches the fluid velocity. They suggest that the magnetic

secular variation could represent a combination of the fluid motion and the phase speed of

the wave relative to the fluid, particularly if a critical point exists near the outer core

surface. Drew (1991) found that the addition of an inner core with radius 1i has little effect

on Rac until 1 nears .5. In order to simulate compositional convection he employed a basic
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state temperature gradient that is largest near the inner core, which he found increases the

efficiency of convection over a uniform gradient.

Zhang and Busse (1987, 1988, 1990) and Zhang (1991a,b) studied the linear and

non-linear development of rotating convection in a spherical shell of inner radius 11 = .4 for

Ta < 1012 and (Ra-Rac)/Rac < 2. They used a Galerkin method based on that of Cuong and

Busse (1981) that allows for an azimuthal drift of the solution, so that the finite-amplitude

solutions are stationary in the drifting reference frame. They found that for Pr < O(1), the

curve describing Rac as a function of Ta shows some unusual bends, which is apparently

due to the most unstable mode switching from columnar convection to one more

concentrated near the equator (Zhang and Busse, 1987, 1988). The columnar equatorial

modes that occur for Pr = 0(1) near Rac spiral from mid-latitude to equator in the prograde

direction (Zhang, 1991a). At Pr = 7, Cardin and Olson (1992) observed this

experimentally. Zhang (1991a) noticed, as did Gilman (1977), that as the non-linearity

increases the kinetic energy spectrum of the system shifts towards lower azimuthal

wavenumbers. As Pr increases, the columnar modes at Rac exhibit less spiralling (Zhang,

1991a,b) and the mean azimuthal flow generated by the non-linear advective force

decreases (see Equation (3.2) of this chapter, and Zhang and Busse, 1990). For infinite Pr,

as Ra rises above Rac, the eastward drift rate is a strongly decreasing function of Ra (even

becoming westward), and the non-linear solutions shift the convection to lower latitudes,

where they can more efficiently convect heat to the surface.

Note however (Figure 9 of Zhang, 1991b), that for all Ra > Rac the heat flux is

large and positive near the equator and small and negative at mid-latitudes. His

interpretation of 'hot' and 'cold' columns convecting heat via the Ekman flow in the

direction along columns is therefore confusing. Rather (Bloxham et al., 1992), the

convective columns are out of phase in azimuth with the temperature perturbations, and the

primary heat transport is via the convective overturning of the columns, which produces the

maximum heat flux at the equator. At Rac this columnar convection is inefficient in a
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sphere, and for cylindrical radii between the columns and the spherical surface the heat

must diffuse. For supercritical Ra, the non-linearity helps break the rotational constraint

and allows more efficient convection in the equatorial zone, as Zhang deduced. The origin

of the negative heat flux at mid-latitudes remains uncertain.

Cuong and Busse (1981) studied convectively driven dynamos in the same

spherical shell for Pr = 1 and Ta < 105. Their Galerkin formulation allowed them to

examine the linear stability towards hydromagnetic perturbations of the stationary finite-

amplitude hydrodynamic solutions. They obtain dynamo action when the magnetic Prandtl

number, which they treat as an eigenvalue (rather than the more difficult but more

physically sensible velocity amplitude), reaches a critical level qc. Zhang and Busse (1988,

1989, 1990) extended the analysis to include finite-amplitude magnetic fields and the

effects of the Lorentz force on the fluid motions, for a range of Pr and Ta < 106. For

Ta = 3 x 104 and azimuthal wavenumber m = 2 they found sub-critical magnetic field

generation, i.e., a finite-amplitude magnetic field permitted dynamo action at a Rayleigh

number lower than that at the onset of dynamo action, indicating that the magnetic field is

facilitating convection and magnetic field generation. On the other hand, for m = 4, the

length scale is small enough at this relatively low Taylor number so that rather than

releasing the rotational constraint the magnetic field competes for the available energy and

subcritical dynamo action is not possible. They found magnetic field generation

concentrated in high latitudes, with an increase in the strength of the polar meridional

convection (Zhang and Busse, 1990).

These studies all considered instabilities driven by laterally homogeneous boundary

conditions, i.e., free convection. If lateral temperature differences in the lower mantle help

drive core flow, we must also study forced convection, about which very little is known.

The study of forced convection requires one to specify the functional form and amplitude of

the laterally inhomogeneous boundary condition. Zhang and Gubbins (1992) considered

steady thermal convection driven by a laterally variable temperature on the CMB, with a
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neutrally or stably stratified core. As mentioned in Chapter 2, they found that rotation

induces an azimuthal phase shift between the thermal boundary condition and the flow, and

allows the boundary driven motion to penetrate into the shell. Stratification supresses the

radial flow, but has little effect on the surface toroidal flow. Their study did not include

bottom heating (the mechanism for free convection) or Lorentz forces.

3.4 A method to find steady, finite-amplitude solutions

We have given a necessarily brief review of rotating convection and

magnetoconvection, as well as an even briefer introduction to instabilities that are

magnetically rather than buoyantly driven. Our review has completely omitted the other

route towards an understanding of the fully self-consistent hydromagnetic dynamo

problem: kinematic dynamo theory. This highly mathematical subject has made great

progress (Moffatt, 1978), and has guided the work of those studying rotating

magnetoconvection. We have seen that in the absence of a magnetic field, buoyancy driven

flow in a rotating fluid shows some very unexpected behavior. In the presence of a

magnetic field, or with the possibility of magnetic field generation, the mathematical and

physical subtleties can be very difficult to assimilate. Given our primitive knowledge of the

conditions in our planet's interior, it is even more difficult to know what is of geophysical

interest and what is of purely mathematical interest.

Most of the work on magnetoconvection has been linear, rather understandable

given the analytical and numerical difficulties of the problem. Thus, most studies in the

field have been eigenanalyses of the conduction solution with an imposed toroidal magnetic

field, with MAC waves representing the first bifurcation. Non-linear solutions have been at

Rayleigh numbers only slightly above critical. This slight supercriticality permits stationary

solutions in a steadily drifting (with respect to the rotating spherical shell) reference frame.

Fully time-dependent calculations are computationally prohibitive. Many of the
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computational problems are a result of the high Taylor number inducing small length

scales. For those trying to model dynamo processes that occur over thousands to tens of

thousands of years, the short time step that small length scales require in order to avoid

numerical instability is a bitter pill.

In our rather unconventional approach, we remove the explicitly time-dependent

terms from (3.1) - (3.4). As discussed, the motivation for looking for time-independent

solutions to the convective equations is that the data indicate that there are certain motions

that are nearly time-independent on the convective timescale. By removing the necessity to

time step and looking directly for stationary solutions, we make our search for finite-

amplitude solutions computationally easier. The price we pay of course is that time-

dependent solutions are beyond our reach, and earlier work has shown that the most

unstable freely convecting solutions contain a steady drift. At Ra above Rac the drift rate

may be lower, though for higher Ra we certainly expect aperiodic time-dependence.

Nevertheless, the data indicate that there is some steadiness in the core. This may be a

function of a non-linear mean-field effect, or more likely, of inhomogeneous forcing. In

their study of boundary forced flows, Zhang and Gubbins (1992) found steady solutions.

Before we progress to inhomogeneous forcing, however, we will study homogeneous

forcing to build confidence in the method. In addition, we hope to gain some insight into

axisymmetric rotating magnetoconvection, for which we will see our method can

successfully model.

Throughout these calculations, we use an infinite Prandtl number. If core

convection is compositionally driven, this is a reasonable approximation given the

extremely low rate at which chemical inhomogeneities diffuse. On the other hand, if core

convection is thermally driven, Pr 2 0(1) (Table 1.1). Moreover, if one bases an estimate

for Pr on turbulent values rather than molecular values, a sensible choice for the Prandtl

number might be Pr = 1. However, given that core convection is most likely

compositionally driven (Gubbins, 1977, Loper, 1978), and that the qualitative form of
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rotating convection may be insensitive to Pr once Pr > 0(1) (Zhang and Busse, 1990), we

feel there is ample justification for studying the system at infinite Pr. Moreover, an infinite

Pr removes the added difficulty of the non-linear advection term v*Vv from equation (3.2).

The magnetic Prandtl number q in the Earth's core is most likely 0(10-6) (Table 1.1),

though again, using turbulent values rather than molecular values might imply q = O(1).

Fearn (1979) found that the value of q plays a key role for magnetically driven instabilities,

but for buoyantly driven instabilities he obtained results for q = 10-6 similar to those of

Eltayeb and Kumar (1977) for q = 1. Thus, to further reduce the parameter space we fix

q = 1 for the remainder of the calculations.

Rather than use the second order equation (3.1), we found that we could achieve

greater numerical accuracy by using the first order equations on a staggered grid, which we

will soon present. Of course, this results in a larger system with more unknowns to solve

for. Setting Pr = oo, q = 1, aB/t = 0, and ac/at = 0, the equations we solve are

Vx B - (e + vx B)= 0, (3.15)

V B=0, (3.16)

Vxe =0, (3.17)

-Vp + V2v - Ta /2  x v + Ra cg +Ta/ 2E1 (Vx B) x B = 0, (3.18)

v =0, and (3.19)

v f- Vf =0, with (3.20)

f - Vc = 0. (3.21)

For the remainder of this chapter, we will concentrate on non-magnetic, non-rotating

convection to introduce our method of solution and demonstrate its viability. Thus, we will

solve (3.18) - (3.21) in a spherical shell of inner radius Ti and outer radius 1 with

El = Ta = 0 and radial gravity g = i~. We use a spherical coordinate system (r,0,0), with



i the unit vector in the radial direction, 0 the unit vector in the colatitudinal direction, and

4 the unit vector in the eastward direction.

To force non-zero solutions to the system (3.18) - (3.21) there must of course be a

buoyancy source. In most studies on core convection such as those we have discussed, that

source is a fixed, high value for the buoyancy deficit c at the bottom of the system and

some lower value at the top. The reasons for adopting such boundary conditions on c,

whether temperature or composition, are primarily historical and for comparisons with

prior work. However, if the release of light material at the ICB is driving core convection,

a more realistic boundary condition at r = Tr might be a fixed radial buoyancy gradient

VrC = fr = 1 (in this non-dimensionalized system). The corresponding condition at r = 1

should be fr = 0, assuming no core material leaks into the mantle.

On the other hand, if convection is thermally driven, the proper boundary condition

at r = 1 might be a fixed (but perhaps laterally variable) fr, representing the heat flux into

the mantle at the CMB (King and Hager, 1989). At r = 1, the proper thermal boundary

condition is not so evident, so that it might be a fixed c or fr. In any case, boundary

conditions on fr that have a net non-zero buoyancy flux into or out of the system must

necessarily be time-dependent, as one would expect for a fluid outer core that is gradually

becoming enriched in ligher elements or gradually cooling (and in either case with ri

growing as a function of time). Although we are not inherently concerned here with these

changes that occur on a timescale much longer than the convective timescale, we must pay

heed to our boundary conditions if we have any hope of finding time-independent

solutions. Thus, we have chosen to use fixed boundary conditions on fr to supply

buoyancy to the system, but we must assign fr such that the net flux across the upper and

lower boundaries of the spherical shell is zero.

We first break (3.18) - (3.21) into their scalar components, with (u,w,v) the

velocity v and (fr,fe,fo) the buoyancy gradient f. In the r-0 plane we discretize the

equations using a staggered grid, which we show in Figure 3.4. Such a grid allows one to
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take central differences accurately. For more details on our finite differencing, see the

appendix to this chapter. In the azimuthal direction, we assume exp im4 dependence, where

the azimuthal wavenumber m is an integer. We can then remove fo = imc from our set of

unknowns and the O-component of (3.21) from our set of equations. Because the problem

is non-linear through the term v-f in (3.20), there will be coupling between solutions of

different wavenumbers m. For instance, the interaction of sin mo and cos mo solutions will

produce contributions to the m = 0 and sin 2m4 and cos 2m) solutions. We include the

interaction terms in the equations that govern the m = 0 solution, but we do not calculate the

2m solutions, an approximation we will later examine. Thus, for each variable at each grid

point we compute an m = 0, cos m4, and sin m4 solution. If our grid contains N points in

radius and L points in colatitude, as measured by the points at which we define the pressure

(Figure 3.4), then our system contains

K = 3[(N-1)L+(N-1)L+N(L-1)+NL+NL+(N-1)L+N(L-1)] (3.22)

unknowns.

We will compute solutions only for 0 < 0 < n/2, and assume a symmetry about the

equator in order to make computational savings. Again, because there can be non-linear

coupling between solutions of different symmetries, this is not strictly correct, but for the

weakly non-linear parameter range that we will consider, the symmetry approximation

should be valid. We impose the following symmetry conditions for m = 0 and all m 2:

au/la = v = w = ap/a = ac/D0 = fr/ 0 = f0 = 0 at 0 = 0, and (3.23)

au/i0 = av/0 = w = ap/0 = ac/a0 = afr/Ia = fe = 0 at 0 = /2. (3.24)

The symmetry conditions that we have imposed across the equator through (3.24) represent

dipole symmetry, as opposed to the opposite symmetry conditions at 0 = n/2, which
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represent quadrupole symmetry. We have studied only dipole symmetry in an effort to

reduce the parameter space. For m = 1, in which there can be flow across the pole, we

impose the following symmetry conditions:

u = av/aO = Dw/A8 = p = c = fr = Ofo/O = 0 at 0 = 0, (3.25)

with the symmetry conditions at 0 = r/2 unchanged. Finally, we impose no slip and no

normal flow at the rigid spherical boundaries, so that

u = w = v = 0 at r = 11 and r = 1. (3.26)

Our solution method for the non-linear problem (3.18) - (3.21) with (3.23) or

(3.25), (3.24), and (3.26) is an iterative one. For a linear system, one solves A*x = b

once, where A is the finite difference matrix operator, independent of the solution vector x,

and b contains the sources. However, for a non-linear problem the operator A is a function

of the solution vector x, i.e., A = A(x), and the system one must solve is A(x).x = b. At

iteration n we can set the vector of K unknowns xn = Xn-1 + Ax, so that

A(xn-.+Ax)-(xn-l+Ax) = b. (3.27)

Since we cannot solve (3.27) directly, we solve its approximation at iteration n,

A(xn-1)'Ax = b - A(xn-1)*Xn-1. (3.28)

Until Ax = 0, when Xn = Xn-1, we have not satisfied the original system of equations

(3.27). When Ax = 0, we speak of a converged solution. In the absence of a converged
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solution, the vector Xn is meaningless since it does not represent the solution to a physical

problem, as would a numerical solution at a given time step.

In order to begin our iterative procedure to solve (3.27) we must start with a guess

solution xo. We can then compute the operator matrix A(xo) as well as the right hand side

of (3.28) so that we can solve (3.28) for Ax, set xl = xo + Ax, and repeat the procedure

with xl replacing xo. At each iteration we must solve a system A.Ax = d, where

d = b - A(xn-1)*xn-1. To solve A-Ax = d we use damped least squares with

preconditioning. Hence,

Ax = (ATD-1A+e2I)-1.(ATD-ld), (3.29)

where AT is the transpose of A, 21 is the diagonal damping matrix, and D is the

preconditioning matrix. The matrix D is a diagonal matrix with element Di, = Lj A j,

where i is the row index and j the column index. In essence, the preconditioning normalizes

the magnitude of the rows of A in order to reduce the eigenvalue spread and make the

inversion of ATA more stable in the limit of small damping E2.

3.5 Solutions in a spherical shell for Ta = El = 0

In this section we demonstrate the method's use and its ability to find steady, finite-

amplitude convective solutions in a spherical shell when Ta = El = 0. Unless otherwise

noted the spherical shell has an inner radius Tr = .35, which is roughly the scaled radius of

the Earth's inner core for a CMB with radius 1. We carried out program development and

testing on an Apollo workstation DN 3500, while we performed the calculations presented

throughout the remainder of this chapter and the next on a Cray X-MP. For most of the

calculations we used a grid with N = L = 8, so that K = 1224, as according to (3.22).

Later on we will compare the numerical accuracy of these solutions with those on larger
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grids. Although the code can handle a graded net for which we can obtain finer resolution

in boundary layers, we find for this non-rotating, non-magnetic problem that a graded net

is unnecessary at the relatively low Rayleigh numbers that we search for solutions. Finally,

for all matrix inversions (3.29) we used the LINPACK routines.

We begin with an intial guess solution xo that consists of a field of ones and zeros

(in the non-dimensionalized system), which we denote starting model 1. With the matrix A

normalized to 0(1) by the preconditioning, we set our initial damping E2 = 10-6, which is

much less than 0(1) but still much greater than the 0(10-14) precision of the Cray X-MP.

We proceed with the iterative procedure outlined above, solving the problem (3.28) via

(3.29) at each iteration step, and updating xn. At each iteration step, we compute the root

mean square of the fit, rms = (dii)1/2 . For an 0(1) model such as model 1, the starting

rms is 0(1), and for a converged solution, Ax = 0, so that the rms approaches zero

(actually, machine error, O(10-14)). We have found that if we decrease the damping e2

beneath 10-6 too quickly, the solution Xn is difficult to control and the rms may not

decrease smoothly . Thus, only as the rms decreases during an iteration sequence do we

lower the damping E2 . Typically, we require roughly 15 - 30 iteration steps to reach a

converged solution (if we are to reach one), though this number will vary with the values

of Ra, Ta, and El under study. We will further discuss the iteration sequence as we solve

specific problems.

For boundary conditions such as those here, in which we have homogeneous

forcing (fr independent of 0 and 4 along both r = rl and r = 1), the linear conduction

solution induces no motion and buoyancy simply diffuses for non-zero Ra. The conduction

solution is a solution for all Ra, though as Chandrasekhar (1961) found, for Ra > Rac, the

conduction solution is unstable and non-linear convection commences. Beginning each

iteration sequence with xo equal to model 1, the converged solution that we obtain for

m = 0 (axisymmetric solution only), m = 2, or m = 4 for all Ra < 2.2 x 104 is the

conduction solution. However, for Ra = 2.2 x 104, the iteration sequence converges not
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to the conduction solution but to a solution in which the buoyancy gradients are no longer

purely radial and 0(1) motions are present. We have obtained a finite-amplitude, non-linear

convective solution. Hence, for this problem Rac = 2.2 x 104.

The solution that occurs at Rac is axisymmetric. In Figure 3.5 we show fluid

velocity flux arrows in an arbitrary meridional slice of the northern hemsiphere. Even when

we allow the possibility of an m = 2 or m = 4 (along with an m = 0) solution, the iteration

sequence at Ra = 2.2 x 104 always converges to the purely m = 0 solution. Moreover, we

obtain the same Rac and the same solution at Rac for a variety of iteration sequences with

different damping at each iteration step. Similarly, when we begin with xo equal to model

2, which substitutes minus ones for the ones of model 1, or model 3, which substitutes

tens for ones, we obtain the same Rac and the same solution at Rac.

In order to check the accuracy of the solutions we employ a finer mesh with

N = L = 12. Beginning with xo equal to model 1 and looking for axisymmetric

convection, we find that at Ra = 2.2 x 104 we converge to the conduction solution, unlike

for the 8 x 8 grid. It is not until Ra = 2.4 x 104 that we obtain a convective solution. For

N = L = 14, we find Rac also equals 2.4 x 104 , so our value for Rac on the

computationally more manageable 8 x 8 grid is perhaps not more than 10% off its 'exact'

value. The convective solutions that occur at Ra = 2.4 x 104 for the three grids are

qualitatively similar to that in Figure 3.5. The amplitude of the convection (as measured by

the maximum flux) on the 8 x 8 grid is twice that on the 12 x 12 grid, which in turn is not

quite twice that on the 14 x 14 grid. This variation represents the rapid growth of the

amplitude of convection with Ra above Rac, and the apparent tendency of the coarser grid

to overestimate the amplitude of the convection.

Figure 3.5 shows that latitudinal wavenumber £ = 2 dominates the axisymmetric

convection that commences at Rac for N = L = 8. Although Chandrasekhar (1961) studied

convection with fixed buoyancy rather than fixed buoyancy gradient boundary conditions,

our results are nevertheless in general agreement with his. Referring to his Chapter 6, Table
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XXV, we find that for a shell of inner radius Tr = .3, Rac = 1.8 x 104 with a critical

latitudinal wavenumber ic = 2, whereas for rl = .4, Rac = 2.8 x 104 with £c = 3. For a

thinner shell with TI = .6 we obtain Rac = 1.2 x 105 (for N = L = 8), which is again in

reasonable agreement with Chandrasekhar's value Rac = 1.1 x 105. Although £ = 2 again

dominates our axisymmetric convection, as opposed to his value £c = 6, a closer inspection

of Table XXV reveals that Rac is a very weak function of i, so it is perhaps not surprising

that we might obtain a different dominant £ at Rac.

Returning to the shell with T1 = .35, we follow the nature of steady solutions on the

8 x 8 grid as the Rayleigh number rises above Rac. As Ra rises through 3 x 104 , the

convective pattern remains m = 0 and £ = 2, but the amplitude of the motions increases

non-linearly with Ra (Figure 3.6). This of course represents the increasing importance of

convection over conduction in the transport of buoyancy. Like Figure 3.5, we obtain

Figure 3.6 independent of the model that we begin with for xo. At Ra = 5 x 104 we obtain

i = 3 axisymmetric convection for all starting models (Figure 3.7). In between

Ra = 3 x 104 and Ra = 5 x 104, however, the iteration sequence becomes very difficult

to control, with the rms not decreasing smoothly, even when heavily damped. Eventually,

after some 30 iteration steps, we obtain a converged solution, but the solution we arrive at

is the conduction solution! The iteration sequence behaves similarly for all starting models.

We interpret this behavior as follows. For 2.2 x 104 5 Ra 5 3 x 104 the iteration

sequences converge to m = 0, £ = 2 convection. For Ra 2 5 x 104 but less than some as yet

undetermined Ra the iteration sequences converge to m = 0, £ = 3 convection. Clearly there

is a bifurcation in between, so it should not surprise us that the iteration sequences should

become difficult to control for 3 x 104 < Ra < 5 x 104. In some sense it is as though an

unconverged solution xn cannot easily determine the direction in which it should move in

order to further minimize its misfit. Conduction is a mathematically possible solution for all

Ra, and at only roughly twice critical it is not improbable for an iteration sequence to

converge to the conduction solution.
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At Ra = 1 x 105, we find converged solutions that depend upon the starting model

and are thus non-unique. However, the final converged solution for a given starting model

is not particularly sensitive to the damping at a given iteration step. Some of the solutions

are three-dimensional. With x0 as starting model 1, we obtain axisymmetric convection

even if we allow for an m = 2 or m = 4 solution. We show this axisymmetric solution,

which is primarily £ = 4, in Figure 3.8. In Figure 3.9 we show the more vigorous £ = 3

axisymmetric convection that results with xo as starting model 2, again independent of

whether we allow an m = 2 or m = 4 solution. With starting model 3, however, we obtain

different solutions if we impose axisymmetry, m = 2, or m = 4. If we impose

axisymmetry, we obtain the same solution as in Figure 3.9. If we impose m = 2, we

converge to the three-dimensional convection that we show in Figure 3.10a,b,c. Finally, if

we impose m = 4, the solution reverts to the axisymmetric convection of Figure 3.8.

Presumably, at this modest Ra the convection resists the small length scale of m = 4 by

reverting to axisymmetry.

In order to obtain converged three-dimensional solutions we have had to operate at

higher Ra. While this is not completely surprising, the method does appear to show some

predilection towards finding axisymmetric solutions. As Ra rises further above Rac the

iteration sequences become more difficult to control due to the increasingly non-linear

solution surface becoming more complex. Moreover, the conduction solution surface

becomes more difficult to reach at higher Ra, so we are less likely to obtain conduction as a

converged solution. By Ra = 5 x 105 > 20 Rac we cannot get the iteration sequence to

converge within 40 iterations. Of course, this is not unexpected behavior from a physical

standpoint: as Ra rises above critical, conduction becomes more remote, convection

becomes smaller scale, and turbulence eventually develops. Accompanying the cascade to

smaller scales we expect time-dependence, though this method cannot predict the time-

dependence.
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Figure 3.8 As for Figure 3.5, but with Ra = 1 x 105. The flow is e = 4.
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Figure 3.10 As for Figure 3.8, but with starting model 3. The convection contains m = 2

flow in addition to axisymmetric flow.

a) The axisymmetric component. The flow is t = 3, though of lesser amplitude than.

thepurely axisymmetric flow of Figure 3.9.
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At higher Ra such as Ra = 105, the converged solutions, even the axisymmetric

ones, are no longer unique. However, despite trying starting models other than 1, 2, or 3,

and iteration sequences with different damping levels, we always obtain one of only a few

different converged solutions (Figures 8 -10). In any case, as Ra rises above Rac, the

omission of the explicitly time-dependent terms becomes more suspect. Although we may

obtain a converged solution in the space domain, without the time-dependent terms we

cannot be sure our solutions are stable in the space-time domain. Thus, much as the

conduction solution is an exact solution that is unstable to perturbations in the space domain

for Ra > Rac, our converged, stationary convective solutions in the space domain may be

unstable to perturbations in the time domain.

Short of time-stepping, one could perform a linear stability analysis of our finite-

amplitude solutions to determine the stability with respect to time perturbations. Although

we have not done this yet, our general expectation for this non-rotating, non-magnetic

problem is that the converged solutions that we have obtained with relative ease at moderate

Ra are likely to be stable with respect to time. As Ra rises, our difficulty in finding

converged solutions in the space domain is very likely related to the increasing importance

of the time-dependence, which we have neglected. As we shall see in the next chapter,

however, one cannot always be so confident about the stability of converged solutions, and

a certain amount of physical intuition is necessary in lieu of the mathematical stability

analysis. In any case, in this chapter we have demonstrated that the method can reproduce

reasonably well the nature of stationary convection in a non-rotating, non-magnetic fluid.
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Chapter 3 Appendix

In this appendix we present the finite difference operators that we use for our

staggered graded net. In Figure 3.4 we show the grid points at which compute the various

unknowns. We use this staggered grid because generally it allows us to take centered first

derivatives. Thus, we compute the radial component of the Navier-Stokes equation, (3.19),

about the o's in Figure 3.4, the colatitudinal component about the x's, and the azimuthal

component about the o's. We compute both the divergence equation, (3.19), and the

buoyancy equation, (3.20), about the A's (both for which the value of the staggered net is

most apparent). Finally, we compute the radial component of (3.21) about the o's and the

colatitudinal component about the x's.

Let fo represent the value of a particular scalar unknown f at a grid point

xo = (ro, 00). If f+ represents the value of f at x+ = xo + Ax and f. the valiue at

x. = xo - Ax, then the derivative of f with respect to the scalar direction x (r or 0) about

the point xo is

fo'= (f+ - f-)/(x+ - x.). (A3.1)

Equation (A3. 1) is accurate to second order (in the Taylor series expansion of f about fo)

for a centered first derivative (such as au/ar in the diverence equation), and holds for a

graded net as well as for a uniform net. In order to obtain second order accuracy for a

derivative that is not centered (such as au/Dr in the radial component of the Navier-Stokes

equation), we must replace (A3. 1) with

fo [(f_)(x - x) 2 
- (f+)(x - o)2 - (fo)((x+ - Xo) 2 - (x.- X) 2 )] (A3.2)

[(x. - xo)(x+ - xo)(X+ - x-)]



The second derivative of f with respect to x about xo is

,, 2[(f+)(x - xo) - (f-)(x+ - xo) + (fo)(x+ - x)] (A3.3)
[(x_- Xo)(X+- Xo) 2 - (x+- Xo)(X_- Xo) 2 ]

Equation (A3.3) is accurate to second order and is also valid for a graded net as well as for

a uniform net. Finally, we sometimes need to take a weighted average of an unknown f.

Thus, to assign a value fo at a point xo at which f is not actually defined on the grid of

Figure 3.4, we set

fo = [(x+ - xo)(f-) + (X0 - x.)(f+)]/(x+ - x). (A3.4)



Chapter 4

Rotating Magnetoconvection: Steady Solutions, Free and Forced

4.1 Introduction

In Chapter 3 we developed an iterative method to find steady solutions in a

spherical shell to the non-linear equations (3.1) - (3.4), which govern the buoyancy-driven

convection of a fluid with Rayleigh number Ra, Taylor number Ta, Elsasser number El,

Prandtl number Pr, and magnetic Prandtl number q. We then solved the system for infinite

Pr and q = 1 (for reasons laid out in Section 3.4), and Ta = El = 0, in order to

demonstrate the method's successes and limitations in studying free convection. The time-

independent equations for infinite Pr and q = 1, (3.15) - (3.21), are once again

Vx B - (e + vx B)= 0, (4.1)

V -B = 0, (4.2)

Vxe =0, (4.3)

-Vp + V 2v - Ta1/ 2 Q x v + Ra cg + Ta'1 2E1 (V x B) x B = 0, (4.4)

V.v=O, and (4.5)

v-f- Vf =0, with (4.6)

f - Vc =0. (4.7)

In this chapter we will continue our study of the non-magnetic problem (4.4) - (4.7) with

El = 0, but for non-zero Ta. After applying our iterative method to find solutions to the full

problem (4.1) - (4.7) in the simpler geometry of a cylindrical annulus in order to further

test our method, we will return to solve (4.1) - (4.7) in a spherical shell. We will also solve

(4.1) - (4.7) in a spherical shell with gravity in the cylindrically radial direction rather than
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in the spherically radial direction, in order to observe the role of gz, the component of

gravity in the z-direction. Having built up an understanding of our iterative method through

a study of free convection, we will then use the method to find steady motions forced by

laterally inhomogeneous buoyancy flux boundary conditions, as may be appropriate at the

Earth's core-mantle boundary (CMB).

4.2 Solutions in a spherical shell for non-zero Ta, El = 0

The value of Ta in the Earth's outer core is unknown, though it is certainly very

large, perhaps 0(1028), because of the high rotation rate and small molecular fluid viscosity

of the liquid metal in the outer core (Table 1.1). It is infeasible to numerically model at such

large Ta because of the small length scales that occur in this parameter range (see

Section 3.3). It is for this reason that there has been so much emphasis on the asympototic

relationship of the critical Rayleigh number Rac, critical azimuthal wavenumber mr, and

critical drift frequency coc to Ta, as Ta -- oo. Zhang and Busse (1987) found that by

Ta = 107, the asymptotic relationship that Rac is proportional to Ta2/3 is very closely

approached. Thus, in order to get at least a qualitative sense of the role of rapid rotation,

one needs to model with Ta approaching that range. For this reason we will primarily study

solutions at Ta = 106, which is numerically manageable, and also some at Ta = 4 x 106.

As for the non-rotating problem, we study free convection driven by a

homogeneous buoyancy flux across r = 11 and r = 1. Throughout this chapter we set

11 = .35. We again apply the symmetry conditions (3.23) - (3.25) and boundary

conditions (3.26). We compute solutions with the number of grid points N = L = 8,

except for a few checks on the accuracy of the solutions when we employ a finer mesh.

Except for the addition of relatively rapid rotation, the problem is identical to that studied in

Section 3.5. As for when Ta = 0, if Ra is lower than a certain value, Rac, the iteration
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sequence converges to the conduction solution, independent of the choice of starting model

xo and azimuthal wavenumber m.

At Ta = 106 we find Rac = 1.7 x 105 , nearly a factor of ten higher than that for

Ta = 0. We obtain this value for Rac for starting models 1, 2, and 3. Although we allow

for m = 2, 4, 6, 8, or 10 components, the convective solution that we obtain at Rac is

always axisymmetric, and £ = 1, as measured by the number of convective overturns. We

show the poloidal motion in Figure 4.1. The effects of rapid rotation are evident. Firstly,

convection does not commence until the buoyancy force, as measured by Ra, is large

enough to overcome the rotational constraint - hence the higher Rac as compared with that

for Ta = 0. Secondly, when convection does commence, the fluid motions tend towards

two-dimensionality, independent of the coordinate parallel to the rotation axis. Thus, in the

polar regions the motion is oriented in the z-direction, turning only in the boundary layers

on r = 1I and r = 1. In the equatorial region, axisymmetric poloidal motion is absent except

at radii near r = T1, because such motion in the mainstream violates the Taylor-Proudman

theorem. Hence, diffusion remains the primary means of buoyancy transport in the

equatorial region, except near the inner boundary. The rapid rotation results in an

axisymmetric azimuthal flow that we show in Figure 4.2. The flow is westward in regions

where the flow is away from the rotation axis, and eastward in regions where the flow is

decreasing its cylindrical radius.

The behavior of the iteration sequences at Ta = 106 as Ra rises above Rac is similar

to those at Ta = 0. For Ra = 3 x 105, we obtain axisymmetric convection whether we start

with model 1 (Figure 4.3) or model 3 (Figure 4.4). The solutions are very clearly different

modes, although their effective buoyancy transports are similar. Beginning with model 1,

we converge to axisymmetric £ = 3 convection at both Ra = 4 x 105 and Ra = 5 x 105

(neither shown). The mode we obtain for the two is the same, but the amplitude at

Ra = 5 x 105 is greater than four times that at Ra = 4 x 105, demonstrating the rapid

non-linear growth of the amplitude of convection with increasing Ra. Through their



Velocity Flux: Ra:1.7e5 Ta I.eO El:O m:O (t)

0.152E-CI .35 ralius 1.0

Figure 4.1 Axisymmetric fluid velocity flux arrows in a meridional slice of the northern

hemispherical shell with Tl = .35 for Ra = Rac = 1.7 x 105, Ta = 106, El = 0, and Pr = **

(starting model 1). The rotation induces an m = 0 flow out of the meridional plane. For

plotting purposes we linearly interpolate fluxes from the N = L = 8 grid. The number at

the bottom left of the figure represents the maximum flux vmax. If the flux at a point is

less than one-tenth vmax, we do not plot its flux arrow. The effects of rapid rotation on

this primarily e = 1 polar mode are clear.
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A~tiuthal Velocity Flux: Fa:1.7a5 Ta-i.eG El:O fi=0 (1)

radius

Figure 4.2 Axisymmetric azimuthal velocity flux in a meridional slice of the northern

hemispherical shell for the parameters of Figure 4.1. The x's represent flow into the page

(eastward flow) and the o's represent flow out of the page (westward flow). The flow is.

westward in regions where the flow is away from the rotation axis, eastward where it is

towards.

0.533E-02
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Velocity Flux: Fa.3.e5 Ta:.le3 EI:Q0 0 (1)
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Figure 4.3 As for Figure 4.1 but for Ra = 3 x 105. The flow is primarily e = 3.
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,eloctty Flux: Fa:3.e5 Ta:l.e; EI:O I'O (3)
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z-independence and their prevalence in the polar regions, all converged modes show the

effects of rapid rotation. As the Rayleigh number rises to Ra = 106, we are no longer able

to obtain converged solutions, at least within 40 iteration steps. As for when Ta = 0, this is

presumably due to a cascade to smaller scales, and the likely accompanying time-

dependence.

When we increase the Taylor number to Ta = 4 x 106, we observe behavior similar

to that at Ta = 106, except that the rotational effects are yet more apparent. At

Ta = 4 x 106, the critical Rayleigh number rises to Rac = 3.2 x 105. In Figure 4.5 we

show the axisymmetric £ = 1 convection that occurs at Rac. It is qualitatively similar to that

at Rac for Ta = 106, except that it is perhaps more confined to the polar region, as one

might expect. However, we can also begin to see the effect of numerical inaccuracy at this

higher Ta, for which the length scale of motions becomes smaller. The N = L = 8 grid does

not provide completely sufficient resolution of the small length scale, with the result that the

solutions display spurious spatial ocillations. We can see this in Figure 4.5, particularly in

that part of the convective cell in which fluid is rising.

For a finer grid with N = L = 12 we find Rac = 2.2 x 105 at Ta = 106, as compared

with Rac = 1.7 x 105 on the 8 x 8 grid. As for at Ta = 0, a coarser grid tends to yield

convection at a lower value of Ra than does a finer one. For Ta = 4 x 106 the 12 x 12 grid

yields Rac = 4.6 x 105, thirty percent higher than Rac = 3.2 x 105 on the 8 x 8 grid. In

Figure 4.6 we show the convection that occurs at Rac for Ta = 4 x 106 on the finer grid.

Note that the finer grid eliminates the spurious spatial oscillations of the coarser grid. We

can see that as the rotation rate increases an accurate solution requires a finer grid, as

expected. We do not solve the equations (4.4) - (4.7) with non-zero Ta on a yet finer grid

with N = L = 14, so we cannot yet be sure of the accuracy of our solutions. Nevertheless,

we are quite confident that we have captured the essential behavior of the converged

solutions.
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Velocitd Flux: Fa 3.2e5 Ta:4.eo El.O =0O (1)
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Figure 4.5 As for Figure 4.1 but with Ta = 4 x 106, so that Rac rises to 3.2 x 105. At this

higher Ta the effects of numerical inaccuracy become apparent.
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VelocLty Flux: Fa:4,6e5 Ta 4.e ElO FI:0 (t-I2)

0.937E-02 .35 ra2ljs

Figure 4.6 As for Figure 4.5 but with N = L = 12. For the finer grid Rac = 4.6 x 105.The

finer grid eliminates the spurious spatial oscillations of Figure 4.5.
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Unlike at Ta = 0, we cannot obtain solutions with a 0-dependence, even as we

progress to higher Ra. Although Busse and Cuong (1977) demonstrated that the columnar

equatorial modes, which necessarily have a 0-dependence, occur for a lower Ra than do the

polar modes, which can be axisymmetric (though must not necessarily be), we converge

only to the polar modes. Why have we been unable to obtain any solutions with cos mo

and sin mo components? The most likely explanation of course is that modes with a

0-dependence, i.e., the columnar equatorial modes, are not time-independent, but rather,

exhibit a drift. At infinite Prandtl number Pr, the only explicity time-dependent term is

ac/at, which we have dropped from (4.7). We can restore this term, assign a drift

frequency co, and search for converged, steadily eastwardly drifting equatorial modes.

Looking for solutions near the critical Rayleigh number for the columnar equatorial modes

(which we henceforth denote Raceq to distinguish it from Rac that we find using our

iterative procedure) at Ta = 106, we choose the appropriate oc from the asymptotic relation

oc = .23 Ta1 /3 of Zhang (1991). However, we are still unable to obtain the equatorial

modes, but instead, obtain the conduction solution.

Since we assign the drift frequency co rather than have it come out of the analysis,

even with guidance we must be extraordinarily lucky to pick the exact drift frequency that

would yield the equatorial modes. Moreover, Zhang and Busse (1990) found that co is a

strong function of Ra at infinite Pr, so the guidance may be of somewhat limited help.

However, there is second though related explanation for our inability to obtain steady

equatorial modes. Cardin and Olson (1992) demonstrated experimentally and numerically

that steadily drifting solutions persist only to within a few times critical (beyond the range

of Zhang and Busse's steadily drifting solutions), beyond which the time-dependence

becomes more complicated, eventually becoming aperiodic. Hence, the columnar

convection that occurs near Raceq (similar to Figure 3.1 in a sphere) may not persist for a

very wide range in Ra. In some rough sense our inability to find the steadily drifting
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equatorial modes using our iterative method may be related to the physical reality that these

modes do not exist but for a very limited parameter range.

In light of the absence of equatorial modes, we must consider the stability with

respect to time perturbations of the polar modes. Given that the equatorial modes occur for

Ra lower than for the polar modes, it seems likely that our converged solutions are unstable

with respect to time. Thus, the purely axisymmetric, steady polar modes that we have

obtained as converged solutions are probably not physically realizable. On other hand,

Gilman (1977) found that as Ra rises above Raceq, there is a shift in the kinetic energy

spectrum towards lower azimuthal wavenumber m (in addition to the Reynolds stress

induced m = 0 differential rotation that occurs at finite Pr), and the convection begins to fill

the sphere, both indicating that the polar modes are becoming increasingly important

relative to the equatorial modes. Cardin and Olson (1992) did not obtain polar convection in

their laboratory and numerical experiments in a spherical shell at large Ra because they

simulated only the component of gravity perpendicular to the rotation axis. While a

dynamically valid approximation near Raceq, it is very likely not valid for Ra large enough

such that buoyancy can overcome the rotational constraint at high latitudes.

4.3 Solutions in an infinite annulus

Spherical boundaries induce an azimuthal drift of convective columns via the

Rossby wave mechanism of Figure 3.2. They also make the convective columns inefficient

for transporting buoyancy by imposing a small radial length scale, which leads to the rapid

onset with increasing Ra of highly time-dependent convection (Cardin and Olson, 1992).

For one or both of these reasons we are unable to obtain three-dimensional convective

columns in a spherical shell. We therefore feel it might be instructive to study rotating

convection in an infinite annulus, which avoids interference from spherical boundaries, and

forces convective solutions to have a 0-dependence. We will also study rotating
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magnetoconvection in an infinite annulus. The main objective of this section is to establish

our ability to find steady columnar convective solutions in the simpler geometry of an

infinite annulus, and to understand the effect of a magnetic field on these 'equatorial'

modes.

In the absence of a magnetic field, the equations governing steady convection at

infinite Prandtl number in an infinite annulus remain (4.4) - (4.7), but we here solve them

in cylindrical coordinates (s,4,z), with " Ethe unit vector in the cylindrical radial direction,

0 the unit vector in the eastward direction, and i the unit vector in the direction parallel to

the axis of symmetry of the coaxial cylinders. As in the spherical shell, we flux buoyancy

into the fluid uniformly along the inner cylinder s = rl = .35, and remove a concomitant

flux uniformly along the outer boundary s = 1. The rotation axis Q = ' lies along s = 0,

and gravity ' = * is thus everywhere directed perpendicular to the rotation axis. The

boundary conditions (3.26) remain unchanged on the rigid boundaries at s = 1 and s = 1,

where (u,v,w) now represent the velocity components in the (s,O,z) directions. We again

assume exp imo dependence, and in the z-direction we assume exp ikz dependence, where

k is the z-wavenumber, not necessarily an integer. As in the azimuthal direction, we allow

for the interaction of sin kz and cos kz solutions to modify the k = 0 solution, but we

ignore the sin 2kz and cos 2kz solutions. We thereby reduce the numerical problem to

finding the s-dependence of the nine retained Fourier components for each of the scalar

unknowns: the velocity (u,v,w), the pressure p, the buoyancy c, and the radial buoyancy

gradient fs. We find their s-dependence on a staggered grid with N = 8 radial points, using

the same iterative procedure as for the spherical shell. For each iteration sequence we must

choose Ra, Ta, m, and k.

At Ta = 106 we cannot find any convergent solutions that contain a non-zero

k-component. This of course reflects the proclivity of the rapidly rotating infinite annulus to

eliminate any z-dependence. Unlike in the sphere, we easily obtain non-drifting convection

with non-zero m-components, i.e., columns, provided Ra is high enough. The overall
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lowest critical Rayleigh number occurs for m = 1, for which Racl = 2.0 x 104 . As the

assigned m rises, Racm rises, so that Rac2 = 2.5 x 104 , Rac4 = 3.6 x 104, and so forth.

This preference for large scale flow in the annulus demonstrates the restrictive geometry of

the sphere. Moreover, in the absence of spherical boundaries the presence and strength of

rotation does not affect Racm, with Rac = 2.0 x 104 at Ta = 4 x 106, as at Ta = 106. As Ta

rises, the pressure gradient simply rises to balance the increasing Coriolis force.

For a given Ra we can obtain convective solutions only for m < m*, and for

m > m* we obtain the conduction solution. The larger Ra is, the larger is m*. In

Figure 4.7 we show the velocity flux in a one-quarter cross-section of the annulus for

Ra = 105 , Ta = 106, and m = 4. In this plan view the columnar structure of the flow is

evident. The absence of a net azimuthal flow is a result of the infinite Prandtl number. The

solution that we show in Figure 4.7 we obtain independent of the starting model and

damping scheme. Within a few percent we also obtain the same solution on a grid with 12

radial points.

At Ra = 106, Ta = 106, and m = 4, and a starting model that consists of the

converged solution at Ra = 105, we find a convergent solution that looks qualitatively like

that of Figure 4.7, but with a larger amplitude. However, as discussed above and in

Section 3.4, we have ignored the sin 2m4 and cos 2mo part of the solution, an

approximation whose validity we will now examine. At Ra = 105 , Ta = 106, and m = 4,

the ratio of the non-axisymmetric radial buoyancy gradient to the axisymmetric radial

buoyancy gradient, Ifsm/fsol, is less than one percent at each grid point, indicating that the

non-linearity is not too great and that little power is transferred to the 2m wavelength. On

the other hand, at Ra = 106, Ifsm/fsol is about one hundred percent in the interior of the

fluid, so that considerable power is transferred to the smaller lengthscale, which we do not

account for in our analysis. Moreover, if we begin with a more arbitrary starting model, we

find a convergent solution at Ra = 106, Ta = 106, and m = 4 that exhibits a double

columnar structure in radius (Figure 4.8), which is also clearly an attempt to achieve a
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Figure 4.8 As for Figure 4.7 but for Ra = 106. We obtain this double columnar structure

when we start with an arbitrary model xo, but when we start with xo set to the converged

solution at Ra = 105 we obtain a single columnar structure.
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smaller length scale. In any case, for such large Ra we begin to doubt the stability of the

steady, converged solutions with respect to time perturbations.

Before we study the effects of an imposed magnetic field on rotating convection in a

spherical shell, we will study rotating magnetoconvection in an infinite annulus with

rl = .35 (and q = 1). The solid in s < rl and the fluid in rT < s < 1 are of equal and finite

electrical conductivity, and the solid in s > 1 is an electrical insulator. The finite electrical

conductivity of the fluid adds the magnetic field B = (bs,bo,bz) and electric field

e = (es,eo,ez) as unknowns to the system. Thus, in the fluid in rl < s < 1 we solve the

three components of (4.1), the scalar equation (4.2), the -component of (4.3), and also

the scalar equation

V*e = 0, (4.8)

in addition to the convective equations with the Lorentz force, (4.4) - (4.7). In s < 11 we

solve (4.1) with the fluid advection term v x B omitted, (4.2), the )-component of (4.3),

and (4.8). In the electrical insulator s > 1 the magnetic and electric fields must match to

potential fields. Alternatively in s > 1, B and e must satisfy (4.1) with the term

(e + v x B) omitted (i.e., the electric current density j = 0), (4.2), the )-component of

(4.3), and (4.8), with the condition that B and e approach zero as s ---> .

Although the potential fields in s > 1 have an analytic solution, we choose to

numerically solve for B and e in this region using a graded net and requiring B = e = 0 at

some arbitrarily large radius, such as s = 100. Although such a formulation increases the

size of the matrix in (3.29) that we must invert at each iterative step, and although the

impedance boundary conditions at s = 1 that follow from the analytic solution in s > 1 are

relatively easy to implement in cylindrical geometry, they require a spectral transform for

the colatitudinal direction in the spherical shell. Thus, for simplicity and in preparation for
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the spherical shell we numerically find B and e in s > 1, as we will for r > 1 in the

spherical shell. Across s = 0 the symmetry conditions for m = 0 and m 2 2 are:

bs = bo = bz/s s = = e = aez/s = 0, (4.9)

with the opposite conditions (abs/s = abo/as = bz = aes/as = aeo/As = ez = 0) holding for

m = 1. As before the fluid velocity (u,v,w) must satisfy the rigid wall, no slip conditions

(3.26) on s = Tr and s = 1. As for the purely hydrodynamical problem we assume exp imo

and exp ikz dependence, and numerically solve for the radial dependence on a staggered

grid with four points (evenly spaced) in 0 < s < il, eight points (evenly spaced) in

Tr < s < 1, and six points (spaced geometrically larger with increasing s) in

1 < s < 100.

Ideally we should not need to impose a magnetic field, but rather have one emerge

as part of a steady finite-amplitude convective solution. However, creating a steady

dynamo is not the main objective of this section. Hence we will impose a fixed magnetic

field Bo, though we retain all the non-linear terms in (4.1) - (4.8). We will impose two

different magnetic fields: a uniform Bo = z and a toroidal field Bo = (1/s)4. Experimentally

we could set up the former by building a solenoid about our rotating annulus and the latter

by placing a wire along s = 0. Note that since we are primarily interested in convectively-

driven instabilities and not magnetically-driven instabilities, the exact functional dependence

of Bo is not crucial (Eltayeb and Kumar, 1977, Drew, 1991). As for the non-magnetic

problem, 2 = z lies along s = 0, and gravity g = s.

A fixed Bo = i should not affect the value of Racm nor the the form of the

convective columns at Racm since Bo is parallel to 2, both perpendicular to g. We observe

this at Ta = 106 for both El = 10-1 and El = 100 and m = 4 and m = 6. Moreover, the

convection at Ra = 105 > Rac6 > Rac4 remains aligned parallel to the z-axis, with no

z-dependence (despite trying k = 1, 2, 4, and 10 and several starting models) and no flow
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w in the z-direction. The convective columns create neither bs nor bo, but simply drag bz

field lines independently of z. The non-linear interaction of u(0) and v(4) with bz(o) creates

an axisymmetric bz that effectively opposes the imposed Bo within the fluid. The regions of

dense and sparse bz field lines create no net Lorentz force to modify the fluid motions.

The choice of B0 = (1/s)4 is more interesting in the infinite annulus. Once again, in

the presence of rapid rotation we cannot obtain solutions that contain a non-zero k

component, despite trying several z-wavenumbers and several starting models. At

Ta = 106 we find that an azimuthal magnetic field at a non-zero El delays the onset of

convection to higher Ra for both m = 4 and m = 6. Thus, whereas for El = 0,

Rac4 = 3.6 x 104 , for El = 10-1, Rac4 = 9. x 104, and for El = 4 x 10-1, Rac4 = 3. x 105 .

Similarly, for El = 0, Rac6 = 8. x 104 , but for El = 10-1, Rac6 = 2. x 105. We observe

consistent behavior for Ra > Racm, in that an azimuthal magnetic field at a non-zero El

lessens the amplitude of convection for a given Ra, Ta, and m. For instance, compare the

amplitude of the velocity flux in Figure 4.9 at El = 10-1 with that of Figure 4.7 at El = 0,

both at Ra = 105, Ta = 106, and m = 4. In Figure 4.10 we show the total magnetic flux of

the imposed field B0 plus that field created by the convective motions in Figure 4.9.

In the infinite annulus with gravity g = s the rotation Q = z imposes no constraint

on convection, and the presence of a magnetic field aligned perpendicularly to both Q and g

does not promote convection, but rather, inhibits it. This differs from the sphere, in which

the combination of rotation and spherical boundaries limits the length scale and

effectiveness of convection, so that an imposed toroidal magnetic field promotes convection

(Eltayeb and Kumar, 1977, Fearn, 1979). Thus, it is both the presence of spherical

boundaries and the relative orientation of Q, 9, and Bo near the equator that allows a

magnetic field to enhance rotating magnetoconvection in a sphere. Through their absence,

we have seen in this section the importance of spherical boundaries for limiting the length

scale of rotating convection and for inducing the columnar convection that occurs near

Raceq to behave as a Rossby wave. We have also observed the inhibiting role that a
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field has a constraining effect on the columnar modes, which is most noticeable in the

reduced fluid velocity flux from Figure 4.7.
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magnetic field can have on rotating convection. Finally, we note here that our attempts to

achieve dynamo action fail in that we are unable to find converged solutions that have a

non-zero magnetic field when we do not impose a magnetic field. This failure reflects the

lack of a z-velocity w that would give the convective columns the helicity necessary to

generate dynamo action (Moffatt, 1978).

4.4 Solutions in a spherical shell for non-zero Ta and non-zero El

In this section we return to the study of free convection in a rotating shell, 1r = .35,

but with an imposed magnetic field. In Section 4.2 we witnessed the difficulty of finding

steady, non-axisymmetric solutions in a spherical shell with El = 0, but Ta non-zero. This

difficulty may be due to convection near Raceq appearing as a Rossby wave, or to the

inefficiency and rapid onset of small scale, aperiodically time-dependent convection with

increasing Ra. In either case, the time-dependence at even moderate Ra is a result of the

spherical boundaries. Although an imposed toroidal magnetic field allows the convection in

a rotating spherical shell near Raceq to be larger scale, that convection appears as a MAC

wave (Eltayeb and Kumar, 1977), so that finding steady, non-axisymmetric solutions still

seems unlikely. We therefore concentrate on the influence of an imposed poloidal magnetic

field on axisymmetric rotating convection, i.e., the polar modes of Section 4.2. While Rac

for the polar modes is greater than the critical Ra for the non-axisymmetric equatorial

modes, Raceq (at least in the absence of magnetic fields), the polar modes may play a role in

supercritical convection (Gilman, 1977), so it is important to understand the influence an

imposed magnetic field has on them.

In searching for steady, axisymmetric solutions we can set eo = 0, since a non-zero

eo would result in a non-zero V x e and hence a non-steady B. Moreover, in the insulating

region in r > 1 we can set bo = 0, since a non-zero bo would result in a non-zero electric

curent density j. In the electrically conducting solid in r < T1 and the equally electrically
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conducting fluid in Ti < r < 1 we solve the three components of (4.1) (v x B is of course

zero in r < 7), the scalar equation (4.2), and the -component of (4.3) for B = (br,b,b )

and e = (er,eo,O). In Ti < r < 1 we must also simultaneously solve (4.4) - (4.7). In r > rl

we simply solve V-B = Ve = (V x B)O = (V x e)o = 0, with the condition that B and e

approach zero as r - oo ( 100). We solve these equations numerically on the staggered

grid in Figure 3.4 (with additional points in r > 1) using the iterative procedure discussed in

detail in Section 3.4. The solutions we present are for L = 8 evenly spaced points in

0 < 0 < n/2, and Ni = 4 evenly spaced points in 0 < r < rl, N = 8 evenly spaced points

in rl < r < 1, and No = 6 points whose spacing grows geometrically with r in 1 < r < 100.

For the axisymmetric problem this grid yields K = 1146 unknowns.

The fluid boundary conditions on r = rl and r = 1 are (3.26), the symmetry

conditions about the pole (for m = 0) are (3.23), and the dipole symmetry conditions about

the equator are (3.24). The electromagnetic boundary conditions (for m = 0) are B = e = 0

at r = 100 and r = 0. The m = 0 symmetry conditions about the pole are

Dbr/aO = be = bo = aer/O0 = eo = 0 at 8 = 0, and (4.10)

the dipole symmetry conditions about the equator are

br = ab/O0 = b = aer/D = e0 = 0 at 0 = n/2. (4.11)

Because the magnetic field due to a line current along s = 0, Bo = (1/r sin0)O, contains a

singularity within the fluid at 0 = 0 and is very large in the polar regions, it is not the best

imposed magnetic field to work with. Previous studies (Eltayeb and Kumar, 1977,

Fearn, 1979, Drew, 1991) have used an imposed field of the form Bo = (r sin0)4. Such a

Bo avoids any singularities, and is a simple toroidal field for which to study the linear
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Figure 4.11 As for Figure 4.1 but for Ra =Rac =1.4 x 105, El 1 00 and q I (and

Ta = 106), and an imposed magnetic field B0 =i. We compute the solution on a grid with

four points (N1 = 4) in 0 < r < il, eight points (N = 8) in il < r < 1, and six points (No = 6)

in 1 < r < 100, and L = 8. In the spherical shell the z-magrnetic field has a liberating effect

on the polar modes, which is most noticeable in the larger scale t = 1 flow than we

picture in Figure 4. 1.
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Figure 4.12 As for Figure 4.2, but for the parameters of Figure 4.11. With the addition of

a magnetic field, the zonal velocity flux profile becomes smoother, and exhibits a net

westward flow.
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Figure 4.13 Axisymmetric azimuthal magnetic flux in a meridional slice of the northern

hemispherical shell for the parameters of Figure 4.11. The x's represent eastward be and

the o's westward b (none in this picture). Associated with b is a jr in the equatorial

region, which acts with Bo = z to yield a Lorentz force that opposes the Coriolis force,

thereby allowing the broad profile of Figure 4.12.
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stability of the conduction solution. However, it is not ideal for finite-amplitude studies

because it requires an electric current that cannot be maintained in a physically plausible

way. We therefore impose Bo = ", which, since we are studying the influence of an

imposed magnetic on the polar modes, is perhaps an interesting choice for Bo in light of the

possibility of the model-Z dynamo (Braginsky and Roberts, 1987).

The presence of an imposed magnetic field Bo = z at non-zero El and Ta lowers

Rac for axisymmetric convection from its value at zero El and non-zero Ta. Thus at

Ta = 106, Rac = 1.4 x 105 for El = 100, whereas Rac = 1.7 x 105 for El = 0. For a weaker

magnetic field, El = 2.5 x 10-1, or a stronger magnetic field, El = 4.0 x 100, we converge

to the conduction solution at Ra = 1.4 x 105, supporting the idea that rotating

magnetoconvection is most efficient at El = 100 (Fearn, 1979). Figure 4.11 shows the

poloidal velocity flux in an arbitrary meridional slice of the northern hemisphere at Rac for

El = 100. The £ = 1 flow that occurs at Rac is large scale, and no longer aligned with the

z-axis in the mainstream. The Lorentz force resulting from the cross-product of the radial

electric current jr (associated with the eastward bo that develops in the northern hemisphere

from the westward advection of Bo (Figure 4.13)) with Bo opposes the Coriolis force, and

radial flow in the equatorial zone becomes possible. The zonal velocity flux (Figure 4.12)

associated with the increased radial flow exhibits a broader profile with more flow at larger

radii than does the corresponding flow with El = 0 (Figure 4.2). We also note that a net

westward azimuthal flow develops in response to the external torque due to Bo.

Near Rac the converged solutions are independent of the starting model and details

of the iteration sequence. However, as before, as Ra rises, the converged solutions become

dependent on the starting model. Starting with the same model, let us compare supercritical

solutions at Ra = 4 x 105 and Ta = 106, for three values of El: El = 2.5 x 10-1

(Figure 4.14), El = 100 (Figure 4.15), and El = 4.0 x 100 (Figure 4.16). For all three we

obtain £ = 3 convection, but once again we observe that El = 100 promotes convection

most effectively. For Lorentz and Coriolis forces of comparable magnitude, the poloidal
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Figure 4.14 As for Figure 4.11 but for Ra = 4 x 105 and El = 2.5 x 10- 1. The e = 3

convection shows the dominant effect of rotation.
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Figure 4.16 As for Figure 4.14 but for El = 4 x 100. The e = 3 convection shows the

dominant effect of Bo =iz.
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Figure 4.17 As for Figure 4.12, but for the parameters of Figure 4.15. In the equatorial

zone, the westward flow extends to all radii, but remains largest nearer the bottom.
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Figure 4.18 As for Figure 4.13, but for the parameters of Figure 4.15. The maximum b

shifts to lower latitude as Ra rises.
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motions are largest in amplitude and the convection is largest in scale. Note that for either

El = 2.5 x 10-1 or El = 4.0 x 100, the convection becomes more aligned with the

z-direction, in the former case due to rotation and in the latter to Bo = z. Figure 4.15, and

Figure 4.17, which shows the zonal velocity flux for El = 100, demonstrate that despite the

liberating effect of the Lorentz force in the equatorial zone, convection remains more

effective at smaller radii with conduction playing an important role nearer the outer

boundary. Though we cannot be sure that conduction will remain important for larger Ra,

the spherical geometry will most likely dictate that convection will continue to be more

vigorous nearer the inner boundary.

A comparison of Figure 4.18 with Figure 4.13 shows that the maximum bo remains

near r = (11+1)/2, but that maximum shifts to lower latitude with increasing Ra (even

though with the imposed dipole symmetry bo is zero at the equator). This bo represents the

largest magnetic field that the convection creates through advection (the co-effect, Moffatt

(1978)). At El = 2.5 x 10-1 the magnitude of bo is roughly 150% of the magnitude of

Bo (= 1), at El = 100 bo achieves 80% of the magnitude of Bo, and at El = 4 x 100 bo is

only about 10% of the magnitude of Bo. Although strong-field dynamos imply a toroidal

magnetic field an order or two stronger than the poloidal field (Moffatt, 1978), we have

only obtained an order one toroidal field via advection of the imposed poloidal field. At

Ta = 4 x 106, we find an overall minimum Rac = 2.8 x 105 at El = 100, whereas

Rac = 3.2 x 105 at El = 0. An interesting feature of the large scale £ = 1 convection at Rac

(Figure 4.19) is that despite the rapid rotation the spurious spatial oscillations of El = 0

convection have disappeared (compare Figure 4.19 with Figure 4.5), presumably due to

the magnetic field increasing the length scale of the flow and reducing the need for high

numerical resolution.

All of these solutions, Figures 4.11, 4.14, 4.15, 4.16, and 4.19, as well as others

that we do not show, feature flow near the inner core moving towards the equator, with

accompanying westward flow. Convection cells that have motion in the opposite sense are
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Valoctty Flux: Fa:2.B&5 Ta:4.S' Ell.eO PO (CL)

0.2247-Cl .35 radius

Figure 4.19 As for Figure 4.11 but for Ra = Rac = 2.8 x 105 at Ta = 4 x 106. Despite the

increased rotation rate, numerical inaccuracy is not a problem with El = 100 as it is with

El = 0 (Figure 4.5).
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pushed to larger radii (Figures 4.14 - 4.16). This is unlike solutions with El = 0

(Figure 4.4) where there is no such bias. The preference for flow towards the equator at

the lower boundary, with resulting radially outward flow at low latitudes, is a result of the

non-linear interaction of the inward directed jr with the eastward bo (Figures 4.13 and

4.18). Near the equator the Lorentz force due to these terms is in the direction towards the

equator, thus re-enforcing the upward flow above the inner-outer core boundary. Consider

now the converse flow: radially inward flow at low latitudes. Such flow causes eastward

drift, resulting in a westward bo, an outward directed jr, and a Lorentz force again towards

the equator, which thereby opposes the radially inward flow. Thus, the non-linear flow

near the lower boundary and near the equator is not symmetric with respect to radial upflow

or downflow; radial upflow is preferred. The preference would be symmetric because of

the opposite scenario near the upper boundary at r = 1, but for the demonstrated dominance

of convection near the lower boundary and dominance of conduction near the upper

boundary. This non-linear result is independent of the sign of B0 because B0 enters into

equation (4.4) as the square.

Although the axisymmetric rotating magnetoconvective solutions of this section are

large scale and fill the spherical shell, they appear to be the magnetic modification of the

polar modes of Section 4.2. In that sense, and despite radial flow in the equatorial zone (an

effect of the spherical geometry), their existence depends only on the z-component of

gravity, and not on the s-component. In order to confirm this, in the next section we will

search for solutions in the spherical shell with gravity in the s-direction rather than the

r-direction. The observation that the modes are large scale and fill the spherical shell

suggests that they effectively transport buoyancy. On the other hand, at least for an

imposed toroidal magnetic field, linear stability theory predicts that the convection that

commences at Raceq appears as a non-axisymmetric MAC wave (Eltayeb and

Kumar, 1977), for which the s-component of gravity plays an important role.
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Nevertheless, for Ra > Rac (> Raceq), the polar modes may play a role in buoyancy

transport, especially in the presence of a magnetic field.

4.5 Solutions in a spherical shell with cylindrical gravity

The equatorial modes that appear near Raceq in a rotating spherical shell depend

upon the s-component of gravity, gs. For this reason, laboratory experiments using the

centrifugal acceleration to replace gs have been successful at confirming the theoretical

predictions for Raceq (Busse and Carrigan, 1976). However, they cannot obtain the polar

modes that occur at higher Ra because they do not include the z-component of gravity gz.

By removing gz we will confirm that the polar modes of Section 4.2 and the magnetically

modified polar modes of Section 4.4 owe their existence to gz. We remove gz by setting

g= si, which simulates the centrifugal acceleration 0 2sS, rather than setting g = ^r, which

is more representative of the Earth's core and which we have used in our previous

calculations. Other than this change in the buoyancy force, the problem formulation and

solution method remains the same.

Because our method seeks time-independent solutions, and because the equatorial

modes require non-axisymmetry and hence, because of the spherical boundaries, a time-

dependence in the form of a drift (at the very least), we cannot hope to converge to

columnar convective solutions. Since we presumably have also removed the engine for the

polar modes, the only convergent finite-amplitude solutions we should find should be those

driven by the axisymmetric thermal wind that results from the baroclinic conductive state

(Cordero and Busse, 1992). Indeed, this is what we find. For Ta = 106, El = 0, and

Ra = 103, 104, 1.7 x 105 (Figure 4.20), and 3 x 105 (Figure 4.21), we obtain converged

I = 1 solutions that have a large westward flow in the equatorial zone and eastward flow in

the polar regions. These solutions do not represent free convection, but merely the motion

due to the non-alignment of surfaces of constant pressure and density. The motion occurs
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Velc:ty Flux: Ra:1.7e5 Ta-I.eG El :0 =0 (Isg)

0.431E-01 .35 raJtus

Figure 4.20 As for Figure 4.1 but for g = s S. The motion is not due to the z-component

of gravity (polar convection) but rather to the baroclinicity of the basic state.
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Velo:tty Flux: Fa:3.e5 Ta1I.eB EI:0 i:0 (1,3)

0.C59E-CI .35 radius

Figure 4.21 As for Figure 4.20 but at Ra = 3 x 105. Compare with Figures 4.3 and 4.4

for evidence that this motion does not represent a polar mode of free convection.
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for all non-zero Ra, with the amplitude proportional to Ra rather than growing non-linearly

beyond a particular bifurcation point, Rac. Moreover, the motion remains primarily £ = 1

rather than switching to a higher latitudinal wavenumber as Ra increases (compare

Figure 4.21 with Figures 4.3 and 4.4).

Eventually however, the non-linearity of the equations begins to make the iteration

sequence difficult to control, and by Ra = 106 we are no longer able to reach a converged

solution. For Ta = 106 and El = 100 (with Bo = i) we observe similar behavior. At

Ra = 3 x 104 , 3 x 105, and 6 x 105 , we obtain converged i = 1 solutions, though of

larger scale and decreased azimuthal flow from their El = 0 counterparts. By Ra = 3 x 106

we can no longer find a convergent solution. It is interesting to note that at both El = 0 and

El = 100, the amplitude of the polar modes near Rac is actually slightly less than the

amplitude of the motions driven by the imposed baroclinic buoyancy state (compare

Figure 4.20 with Figure 4.1). If the amplitude of the baroclinically driven azimuthal flow

near Raceq is of comparable magnitude with the azimuthal drift rate of columnar convection,

it is perhaps not surprising that the laboratory experiments can accurately confirm the

theoretical predictions for Raceq but not the drift rate at Raceq (Cordero and Busse, 1992).

In any case, as Ra rises, the amplitude of the free convection rises much more rapidly than

does that of the baroclinic motion (the ratio of the amplitudes of the solution in Figures 4.3

or 4.4 to 4.1 is much greater than that of Figure 4.21 to 4.20).

Clearly, in the absence of the z-component of gravity the polar modes do not exist

in a rotating spherical shell. Even in the presence of a magnetic field Bo = z at non-zero El,

for which the polar modes fill the sphere, the z-component of gravity remains the driving

force. The s-component of gravity drives the columnar equatorial modes (Busse and

Cuong, 1977), though we have been unable to obtain them in the spherical shell using our

iterative approach to search for steady solutions. For El = 0 the equatorial modes have a

lower critical Rayleigh number, Raceq, than do the polar modes, Rac, though for Ra > Rac

one would expect that the z-component of gravity would become of dynamical importance
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(Gilman, 1977). For El non-zero an imposed toroidal magnetic field lowers Raceq for the

equatorial modes (Eltayeb and Kumar, 1977), and an imposed z-magnetic field lowers Rac

for the polar modes. Although those modes dependent upon gs may still be the most

unstable, one should not overlook the importance of gz for rotating magnetoconvection for

Ra > Rac.

Although core convection is undoubtedly time-dependent and non-axisymmetric,

we have developed this iterative method to look for time-independent (and because of

rotation and spherical boundaries, axisymmetric) solutions of the non-linear convective

equations based on the observation that certain anomalous features of the Earth's magnetic

field persist for much longer than the core convective time scale. Thermal anomalies in the

lower mantle may provide this longer time scale. It seems unlikely that free convection

cause the stationary features, but rather, motions driven via a laterally inhomogeneous

boundary buoyancy flux do. We will examine this in the next section. However, we note

that in developing and employing our method to obtain finite-amplitude solutions, we have

observed that for Ra > Rac, as is likely in the core, gz may be dynamically important.

4.6 Solutions driven by a laterally inhomogeneous boundary buoyancy

flux

Although we have demonstrated that we can obtain steady, finite-amplitude

convective solutions in a rotating, electrically conducting, fluid spherical shell, we can find

such converged solutions only at Ra much less than that presumed in the Earth's outer

core. On the other hand, we have used Ta much less than that appropriate to the core, so

we cannot be sure by how much we underestimate (if at all!) the vigor and non-linearity of

the convection. If the convection is in a turbulent state, we do not know if replacing the

molecular values of the diffusivities with their eddy values in order to obtain a lower Ra

yields a flow that is at all representative of the mean flow. Moreover, without a stability

~__iXI __j_1_~~~___4~11__~
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analysis we cannot be sure our solutions could ever be attained. Nevertheless, we believe

that the dynamical importance of gz remains even for time-dependent solutions. In any

case, it seems unlikely that free convection is responsible for the stationary features of the

Earth's magnetic field, so we will now employ our method to find motions driven by a

laterally inhomogeneous boundary buoyancy flux, which we call forced convection.

As we have seen in Chapter 2, there is some evidence that certain anomalous

features of the Earth's magnetic field remain stationary for much longer than the convective

time scale. Bloxham and Gubbins (1987) found that stationary regions of high magnetic

flux across the CMB correlate with anomalously seismically fast mantle, i.e., cold mantle,

and stationary lows in the magnetic flux correlate with seismically imaged hot mantle. This

suggests that the mantle, with its long thermal time scale, controls those features in the core

that remain relatively stationary. They argued that regions in the lower mantle that are

anomalously cold maintain a high heat flux from the core, which results from horizontally

converging core fluid, bunching of magnetic field lines, and thus a high magnetic flux, and

vice versa for hot mantle. This is in contrast to classical Rayleigh-Benard convection, for

which a high heat flux implies upwelling. However, King and Hager (1989) argued that

the proper boundary condition at the CMB is not the constant temperature boundary

condition of Rayleigh-Benard convection, but rather variable heat flux, i.e., a laterally

inhomogeneous boundary buoyancy flux.

King and Hager (1989) studied convection driven by internal heating in a

rectangular box, inifinite in one direction. They assumed thermally insulating bottom and

side walls, and a prescribed variable heat flux along the top wall of the form

fr = -1 - .5 cos (nix/2), (4.12)

where x is distance across the box and n is an iteger. A laterally inhomogeneous boundary

buoyancy flux of the form (4.12) removes as much heat as the internal heating generates.
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For moderate Ra (= 105), their results with (4.12) agree with the hypothesis of Bloxham

and Gubbins (1987). At higher Ra (= 2.7 x 106), the convection becomes time-dependent,

though statistically the downwellings tend to occur beneath regions of (imposed) high heat

flux along the upper boundary. However, their calculations were for a box with side walls,

rather than for a spherical shell, and they did not include the effects of rotation or a

magnetic field. Zhang and Gubbins (1992) studied forced convection in a rotating spherical

shell, but they did not include the effects of a magnetic field or free convection.

In this section we use the method of Section 3.4, but with variable rather than

constant buoyancy flux conditions along r = 1. The boundary condition along r = 1

remains the same. Whereas for our study of chemically driven free convection a

homogeneous buoyancy flux is a reasonable model (at least along r = rl), for a study of

thermally driven forced convection, an inhomogeneous buoyancy flux along r = 1 is

perhaps a better model than a homogeneous buoyancy flux. The results of King and Hager

(1989) show that at high enough Ra, as may be appropriate to the Earth's core, the forced

convection becomes time-dependent, though statistically there is a correlation between the

convective patterns and the boundary conditions. Of course, our iterative approach cannot

find time-dependent solutions, but we nevertheless hope that for moderate Ra we will find

converged solutions that represent a mean solution. Whereas in a rotating spherical shell all

non-axisymmetric free convective solutions exhibit a drift or more complicated time-

dependence, not all motions forced by an azimuthally inhomogeneous boundary buoyancy

flux will (Zhang and Gubbins, 1992). Indeed, the data seem to indicate that some such

motions remain steady or maintain a mean (on the free convective time scale) in the mantle

reference frame. Although the data show a 0-dependence, perhaps with an m = 1

dominance, so that it would be interesting to try and obtain steady, 0-dependent solutions,

for simplicity we will continue our search for steady, axisymmetric solutions in order to

understand latitudinal variations.
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We first study motion in a spherical shell with rj = .35 and Ta = El = 0. Throughout

the following calculations we set

fr =-1/(4t72) along r = il. (4.13)

Along r = 1 we try various boundary buoyancy flux conditions. In analogy with (4.12), we

try

fr = -1/(4n)(.5 + 2/n sine) along r = 1. (4.14)

Note that for (4.14), and for the choices of fr that follow, the net buoyancy flux across

r = 1 equals that across r = Tr with (4.13). As for the solutions in a rotating spherical

shell with s-gravity, baroclinic motion occurs at all non-zero Ra. For Ra < Ra* = Rac (for

Rac, see Section 3.5), this motion simply consists of downwelling near the equator, the

region of high heat flux, and upwelling near the pole, the region of low heat flux, as King

and Hager (1989) found (Figure 4.22 for motion at Ra = 104). The motion is essentially

linear in that the amplitude is very nearly proportional to Ra. For Ra > Ra* the iteration

sequences converge to convective solutions not dramatically different from those of

Section 3.5 (compare Figure 4.23 with Figure 3.7, both for motion at Ra = 5 x 104). We

obtain similar behavior for both

fr = -1/(4nt)(4/r sine) along r = 1, and (4.15)

fr = -1/(4r)(.5 + 3/4 sin28) along r = 1. (4.16)

However, for

(4.17)fr = -1/(4n)(3/2 sin2o) along r = 1
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Figure 4.22 As for Figure 4.1 but for Ra = 104, Ta (and El) = 0, and the boundary
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Figure 4.23 As for Figure 4.22 but for Ra 5 x 104. A comparison with Figure 3.7

demonstrates that the boundary condition (4.14) does not yield a soluton significantly

different from that driven by a la terally homogeneous boundary buoyancy flux.- 4 4-
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Figure 4.23 As for Figure 4.22 but for Ra = 5 x lO. A comparison with Figure 3.7

demonstrates that the boundary condition (4.14) does not yield a solution significantly

different from that driven by a lterally homogeneous boundary buoyancy flux.
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Veloctty Flux: fa:5.e4 Ta:O E!:0 n-O (1) 3/2,tn,3*2

O.918E-L .33 radius

Figure 4.24 As for Figure 4.23 but for the boundary condition (4.17) replacing (4.14).

The change in the nature of convection is evident, with a local downwelling occurring

near the equator near r = 1.
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Figure 4.25 As for Figure 4.24 but at Ra = 105. The behavior at this higher Ra is similar

to that at Ra = 5 x 104 (Figure 4.24), though the forced convection cell reaches to higher

latitudes.
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we obtain different behavior for Ra > Ra*. The converged solutions no longer represent

free convection only slightly modified by the variable heat flux boundary condition. Rather,

the concentrated and powerful boundary source (4.17) forces motion with the predicted

sense near r = 1, and a separate convection cell forms deeper in the shell (Figure 4.24 for

motion at Ra = 5 x 104). We obtain similar behavior at Ra = 105 (Figure 4.25), though

by Ra = 5 x 105 we can no longer obtain a converged solution. The forced motion reaches

further horizontally if not vertically into the core at larger Ra (compare Figure 4.25 with

4.24). It is tempting here to speculate that the effects of an inhomogeneous boundary

buoyancy flux, i.e., a variable heat flux into the mantle, reach only a fraction of the depth

into the outer core. The forced motion, occurring in the upper fraction of the core, may be

responsible for many of the observed stationary features in the secular variation field,

whereas the free convection, occurring in the lower fraction, likely generates the dipole.

(We speculate that a single convection cell with the proper sense is not likely to transport

buoyancy efficiently enough at this moderately high Ra.) In order to produce a significant

change from free convection for Ra > Ra* the forcing had to be concentrated and

powerful. Whether this is realistic is not clear, given our uncertainty on the thermal

conditions near the CMB.

We next add rotation and a magnetic field, looking for solutions in the spherical

shell at Ta = 106 and El = 100. For our boundary condition on fr we choose a function of

the form

fr = [-1 - y (3/2 sin 20 - 1)]/(4t) along r = 1, (4.18)

where y is a real number. When y = 0 (4.18) reduces to a laterally homogeneous boundary

buoyancy flux, and when y = 1 (4.18) reduces to (4.17). We will only examine solutions

for 0 < y < 1, though y can take on any real value. For small Ra and non-zero y we obtain

baroclinic solutions qualitatively similar to that in Figure 4.22. We interpret small as Ra <
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Ra*, which we again define as roughly that value of Ra below which we obtain a solution

dominated by conduction (for y = 0, Ra* = Rac, but for non-zero y there is not a clear

bifurcation between conduction and convection). As Ra rises slightly above Ra* (= Rac =

1.4 x 105), for y < .2 the iteration sequences converge to solutions very similar to those in

Section 4.4 (y = 0), but for y > .2 they do not converge.

However, for larger Ra, such as Ra = 4 x 105, we can obtain converged solutions

for a greater range in y. As before, for y = .1 we obtain a solution similar to that for y = 0

(Figure 4.15). On the other hand, for y = .5 (Figure 4.26) we obtain very different looking

motion. With upwelling flow beneath the region of high boundary buoyancy flux, this

motion does not represent the nearly linear conductive solution. Somewhat paradoxically,

the motion at y = .7 (Figure 4.27) looks more similar to that in Figure 4.15 than does the

motion at y = .5. We did not explore the uniqueness of the solutions with respect to the

starting model (though Figures 4.26 and 4.27 result from the same starting model), so the

solutions being different modes may be one possible explanation for the apparent paradox.

Their net efficiency at transporting buoyancy is similar. For y = 1 at Ra = 4 x 105 we

cannot reach a converged solution.

Like in Figure 4.26, and unlike in Figures 4.24 and 4.25 (Ta = El = 0, y = 1),

the motion near the equator in Figure 4.27 is still radially outward. Nevertheless, the

upwelling near the core surface is reduced from that of Figure 4.15. This is more easily

seen from Figures 4.28 and 4.29, which show the azimuthal velocity flux corresponding to

the poloidal motion of Figures 4.26 and 4.27. In both Figures 4.28 and 4.29, the

westward flow is pushed to smaller radii as compared with the flow in Figure 4.17. We

propose that we could not obtain downwelling flow near the equator, despite the forcing,

because of the strong effect of the non-linear interaction of jr with bo near the lower

boundary, which causes convective motion to prefer radial upwelling near the equator, as

discussed near the end of Section 4.4. Nevertheless, we observe that the effect of the

inhomogeneous boundary buoyancy flux is felt. Indeed, we hypothesize that we cannot
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Velocity Flux: Ra:4.e5 Ta:l.eS El:I.eO r,:O () l+.5C(/2 ln,*2-i)

1.0
0.233E+I0 .35 radius

Figure 4.26 As for Figure 4.15 but with the boundary condition (4.18) on fr, with y = .5.

The solution represents neither the conductive solution nor the convective solution of

Figure 4.15.
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Figure 4.27 As for Figure 4.26 but with y = .7. For non-zero Ta and non-zero El we are

unable to produce a steady local downwelling beneath the region of high heat flux out of

the spherical shell (this figure and Figure 4.26).
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Az ~ Flux: Fa 4.e5 TalI.eS El:l.eO ,,:O () 1+.5(1/2 i'I*2-1)

0.49GE-01 .35 radius 1.0

Figure 4.28 As for Figure 4.17, but for the boundary condition of Figure 4.26. The

boundary condition forces the westward flow to smaller radii than for the free convection

solution of Figure 4.17.
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Figure 4.29 As for Figure 4.28, but for the boundary condition of Figure 4.27.
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obtain converged solutions for y > .2 near Ra* because of the difficulty the iterative

procedure sometimes has in moving towards a solution near a bifurcation, in this case

between conduction, with its equatorial downwelling, and convection, with its equatorial

upwelling.

To test this hypothesis we set y = -.7, so that there is a high heat flux from the core

into the mantle near the poles rather than near the equator. Near Ra* = 1.4 x 105 we easily

obtain a converged solution, which looks similar to Figure 4.11, but with an amplitude

about three times as large. For this boundary condition (negative y), convection and

conduction work together to produce downwelling at the poles and upwelling at the

equator. At Ra = 4 x 105 we obtain a converged solution that looks similar to the free

convection solution of Figure 4.15, but with an amplitude nearly twice as large. Compare

this with Figure 4.27 (y = +.7), in which the solution has an amplitude less than half that

of Figure 4.15. Near Ra = Ra*, conductive and convective motions are of comparable

strength, so we have difficulty obtaining a converged solution if they work in an opposite

sense (positive y). For Ra < Ra*, conduction is prevalent, and for Ra > Ra*, convection is

prevalent, though the boundary condition does modify the solution.

Although we have not always obtained a steady local downwelling beneath the

region of high heat flux from the spherical shell for non-zero Ta and non-zero El, the

boundary condition very clearly plays a role in governing the fluid motion and magnetic

field generation. We have concentrated here on the effect of a latitudinally varying

boundary condition. However, the variable heat flux from the core into the mantle is

unlikely to be axisymmetric; neither will the resulting motions be axisymmetric (of course,

they might not be even if the boundary conditions are). We have not yet studied the steady,

non-axisymmetric motions in an electrically conducting, rotating spherical shell forced by a

non-axisymmetric boundary heat flux. However, we know non-axisymmetric free

convective solutions drift relative to the rotating frame, and the importance of MAC waves

and of deterministic time-dependence for non-axisymmetric forced motions is unknown.
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So too the role of non-deterministic time-dependence is unclear. Moreover, we have

observed that the motions are rather sensitive to the exact functional form of the laterally

inhomogeneous boundary buoyancy flux, which is imprecisely known near the CMB.

Thus, before we can claim to understand the influence of the thermal boundary conditions

at the CMB on core convection and magnetic field generation, we must make further

observational and theoretical progress.
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Chapter 5

Magnetic Rossby Waves in a Stably Stratified Layer near the Surface of the

Earth's Outer Core

5.1 Introduction

In this chapter we study the magnetohydrodynamics of a stably stratified,

electrically conducting, rotating, thin fluid shell as a model of the hypothetical stably

stratified fluid layer at the top of the Earth's core. Though concerning the Earth's core, the

topic is different from that studied in the previous two chapters, in which we considered

free and forced rotating magnetoconvection in an unstably stratified thick fluid shell. The

two are not necessarily contradictory, as it is possible that a thin stably stratified layer lies

atop a thick unstably stratified layer (Fearn and Loper, 1981). On the other hand, if there is

a strong laterally inhomogeneous boundary heat flux across the core-mantle boundary

(CMB), it is not clear a stable layer can persist. Since we do not know the relative

buoyancy of the stable layer to the variable buoyancy flux across the CMB, we cannot yet

assess the stability of a stably stratified layer beneath the CMB. Although the stratification

profile of the fluid outer core has been the topic of much discussion (Verhoogen, 1980) it

nevertheless remains unknown.

A possible driving mechanism for core convection, and hence for the geodynamo,

is compositional buoyancy (Braginsky, 1963), which depends upon the core not being a

pure metal, but rather an alloy of a metal and a non-metal. In one scenario (Fearn and

Loper, 1981), the metal preferentially freezes out at the inner-outer core boundary, leaving

the remaining fluid enriched in the lighter non-metal component In a cooling Earth with a

sufficiently rapidly growing inner core, the diffusive state is unstable and convection

occurs, most easily near the inner core. For the parameters given in Loper and Roberts

(1981), and assuming the inner core has been steadily growing for three billion years,
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Fearn and Loper (1981) estimated the entire outer core is convecting except for a

diffusively stable layer some 70 km thick beneath the CMB. One problem with this

scenario, as they realized, is that creating a stable layer of this thickness by diffusive

processes would take several times the age of the Earth.

Alternatively, Loper (1989) hypothesized that it may be possible to have both stable

stratification throughout the outer core and the movement of chemically buoyant material

towards the CMB, a scenario known as penetrative convection. This suggestion rests in

part on experiments on non-rotating, electrically insulating fluids (Turner, 1973), in which

there is a buoyancy source at widely spaced intervals (relative to the container size) along

the bottom of the system. The experiments indicate that as the buoyant material rises, it

entrains surrounding material and becomes more dilute, and thus slightly heavier.

Nevertheless, it always remains lighter than the surrounding material. Hence, the new

material always rises to the top, with broad return of material everywhere else. In such a

manner it might be possible to form a stably stratified compositional state in the outer core.

Since stable stratification inhibits convective motions, which presumably regenerate the

magnetic field, one might infer that stable stratification throughout the outer core is not

compatible with the presence of a magnetic field. However, although penetrative

convection implies a stably stratified core, the helicity of the rising blobs can provide the

necessary dynamo action (Moffatt, 1988). Thus, an outer core with at least some stable

stratification may not preclude dynamo action. In fact, there is some evidence (Gubbins et

al., 1990) that a stationary (perhaps stably stratified) fluid layer at the top of the core, some

thirty percent of the core radius, can enhance dynamo action.

A different hypothesis on forming a stable layer at the top of the outer core invokes

a CMB temperature that is constant with time (Gubbins et al., 1982). From an initially

convecting core, a constant temperature boundary condition will allow a subadiabatic

region to develop beneath the CMB. The heat flux must conduct across this region,

implying a relatively low rate of core cooling. For the parameters relative to the core, this
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stable layer may be anywhere between 350 and 2000 km thick. However, the proper CMB

boundary condition on temperature is not known, but a non-cooling mantle is unlikely

(Loper, 1984). Moreover, these calculations are for a one-component fluid; compositional

convection may very likely reduce the size of the stable region (Gubbins et al., 1982, Fearn

and Loper, 1981).

Yet another mechanism for establishing a stable layer beneath the CMB involves

dissolving mantle material at the top of the outer core with subsequent downward diffusion

(Stevenson, 1990). The experiments of Knittle and Jeanloz (1986) indicate that FeO

becomes a metallic liquid at high pressures and temperatures, and that FeO in the outer core

could react with oxides such as one would expect in the lowermost mantle. Thus, chemical

reactions may be occurring at the CMB, so that material less dense than the bulk of the

outer core might be accumulating at the top of the outer core. In summary, there are several

hypotheses on how a stable layer at the top of the Earth's outer core might form, but we

cannot yet prudently choose which, if any, have any validity. Moreover, the possibility of

thermally forced motions disrupting a stably stratified layer has not yet been explored.

Unfortunately, geophysical observations have been unable to resolve the presence

of a stable layer. Although the seismic data can rule out strong stratification, weak

stratification with a buoyancy period of a few hours may be present, particularly near the

top of the outer core (Masters, 1979, Bolt, 1982). Attempts to fit the magnetic secular

variation data with purely toroidal flow, which stable stratification near the outer core

surface implies, have also been inconclusive (Whaler, 1980, 1986). However, although the

data appear to disfavor tangentially geostrophic toroidal flow, the possibility of

magnetostrophic toroidal flow leaves open the question of stable stratification near the core

surface (Bloxham, 1990). Crossley (1984) and Melchior and Ducarme (1986) suggested

that superconducting gravimeters may be able to detect gravitational changes small enough

to observe core modes, and hence determine the stratification structure of the core.

However, despite claims by Aldridge and Lumb (1987) that they had identified particular
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inertial modes in a spectral analysis of the data, Melchior et al. (1988) were not so

confident that they could identify observed peaks in the residual gravimetric data as inertial

modes in the fluid core.

Braginsky (1984) christened the hypothetical layer beneath the CMB the 'H' layer,

and he (1984, 1987) began a theoretical investigation of its magnetohydrodynamics. It is

the intent of this chapter to continue the investigation of the dynamics of the H layer.

Unlike the work on internal waves in a thick shell (Olson, 1977, Friedlander, 1985,

Friedlander, 1989), which are concerned primarily with the parameter regime in which the

buoyancy frequency is small compared with the rotational frequency, we will be concerned

with a fluid shell in which the two are comparable. This will allow us to make certain thin-

layer simplifications in our study of the H layer, which are not possible in a nearly

homogeneous, thick fluid shell. Unlike studies of the hydrosphere (Lindzen, 1967,

Longuet-Higgins, 1968), we must also contend with the effects of the magnetic field.

Although there is no unambiguous geophysical evidence concerning stable

stratification near the surface of the Earth's core, and although there are a variety of

magnetohydrodynamic instabilities that occur in a nearly homogeneous thick shell that may

manifest themselves through the short-period (years-decades) geomagnetic secular variation

(Hide, 1966, Fearn and Proctor, 1983, Friedlander, 1989), the secular variation may likely

have a relatively shallow source in the core. We intend to investigate the possibility that low

frequency wave motions supported by a stable layer at the top of the Earth's outer core may

be responsible for a portion of the secular variation, as Braginsky (1984) suggested. An

alternative shallow mechanism for causing the short-period secular variation is an electric

current instability associated with the large currents that result from the curvature of the

magnetic field lines near the insulating mantle in the model-Z dynamo (Braginsky and

Fishman, 1987). However, the large electrical currents are a feature of the model-Z

dynamo, but not of the Taylor-state dynamo, so it is by no means certain that these large

currents exist, given the uncertainty of the state of the dynamo (Roberts, 1989). In any
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case, while it will be impossible to identify exact features in the secular variation field with

the solution to any simple theoretical model, we hope to at least gain an understanding of

the general spatial and temporal characteristics of waves in the hypothetical H layer.

In Section 5.2, we review Laplace's tidal equations, which govern the motion of a

stably stratified, electrically insulating, rotating, thin fluid shell. Laplace's tidal equations

rely on several assumptions, including a zeroth order hydrostatic balance, the Boussinesq

approximation, inviscid flow, linear flow, the 'shallow-water' approximation, and the

'traditional' approximation, the last two relying on the primarily horizontal flow of a stably

stratified, thin fluid layer. Lindzen (1967) and Longuet-Higgins (1968) have solved the

Laplace's tidal equations, using a thin shell as a model for the Earth's atmosphere and

oceans. For a homogeneous one-layer model with a free surface, the equations admit

oscillations of the fluid surface known as the surface, or barotropic, mode. For a

continuously stratified model with real buoyancy frequency N, the equations admit an

infinite number of internal, or baroclinic, modes. Two classes of waves exist for both the

surface and internal modes: the high frequency gravity waves and the low frequency

Rossby, or planetary, waves.

If we are to apply the results to the H layer at the top of the Earth's magnetofluid

core, we must also model the fluid as an electrical conductor. A dipole magnetic field will

serve as a simple model for the core surface magnetic field. We modify Laplace's tidal

equations to include the effects of the linearized Lorentz force due to this dipole field, and

also add the linearized magnetic induction equation to our system of equations. In the limit

of a thin-layer, the induction term is small compared with the advection and diffusion terms

in the magnetic induction equation. We then extend the model from one shallow layer to

two as an improved model for studying stratified flow in the core, and discuss the

relevance of the first baroclinic mode of the two-layer model. We also introduce the

'rigid-lid' approximation that will enable us to represent the first baroclinic mode of the
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two-layer model as the surface mode of the one-layer model, using the 'equivalent depth'

and 'reduced gravity'.

In Section 5.3 we transform the spherical system to a Cartesian one, using the

P-plane transformation. Since we are primarily interested in the magnetic analog of the low

frequency Rossby waves, we make a further approximation that we denote the quasi-

magnetostrophic approximation. In the quasi-magnetostrophic state, the Coriolis and

pressure forces balance in the momentum equations, but the curl of the Lorentz force

balances the curl of the Coriolis force in the vorticity equation. Using this approximation,

we analytically solve the modified Laplace's tidal equations for magnetic Rossby waves on

the P-plane, and compare the solutions with those for the well-understood non-magnetic

problem. The eigenfunctions show that a magnetic field can break the equatorial waveguide

that traps non-magnetic Rossby waves. However, for this thin-layer analysis the purely

imaginary eigenfrequencies indicate that the solutions are overdamped due to the high

Ohmic dissipation.

In Section 5.4, we numerically solve the modified Laplace's tidal equations on the

sphere, and again compare the solutions with those for the non-magnetic problem. The

solutions bear out the behavior predicted by the -plane solutions. The solutions on the

sphere also uncover a deficiency of the quasi-magnetostrophic approximation. In Section

5.5 we present a continuously stratified model, and review Braginsky's (1984, 1987)

solutions. Finally, in Section 5.6, we discuss the limitations of the theory, and comment on

the possible relevance of magnetic Rossby waves to the short-period secular variation. The

notation that we use in this chapter differs slightly from that in the previous two, but we

hope that we clearly define terms as we proceed.
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5.2 Derivation of the modified Laplace's tidal equations

The Navier-Stokes equations governing the motion of an electrically conducting,

rotating fluid are

p (Dv + 20 x v) = -Vp+ pg + vV 2v + -j-(V x B) x B, (5.1)

where v represents the fluid velocity, p the fluid pressure, p the fluid density, v the

kinematic viscosity, 02 the rotation vector, and g the gravitational acceleration. Associated

with the magnetic field B is an electric current density J = 1/go(V x B), where go is the

permeability of free space. Moreover, for an incompressible fluid

V-v = 0. (5.2)

In order to simplify the equations of motion (5.1) - (5.2), we must make additional

assumptions. We assume a hydrostatic equilibrium state (po,Po), about which we expand

p, p, v, and B. For p'/p, << 1, where p' is the perturbation density and po is the

hydrostatic density, the Boussinesq approximation permits us to omit terms in P'/Po except

as they affect the buoyancy force. We will also assume inviscid flow, since we are

concerned with low Ekman number flow of the mainstream.

Stable stratification tends to supress radial motions, so that in stably stratified

regions of the core horizontal motions are dominant. For a system in which motions are

primarily horizontal, the horizontal scale L is much greater than the vertical scale D. This

scaling is natural for the thin spherical shells that comprise the Earth's atmosphere and

oceans, but it is not obviously valid for a thick shell such as the Earth's outer core.

However, in stably stratified regions of the core, the thick fluid shell behaves as many

concentric thin fluid shells, so that D is perhaps order tens of kilometers and L is order

hundreds of kilometers. We will next consider two approximations that take advantage of
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the thinness (D << L) of the stratified layers. The first is the shallow-water (long wave)

approximation.

We employ a spherical system with coordinates (,0,r) representing the longitude,

latitude, and radius. Consider first a homogeneous fluid layer of density po (p' = 0 for a

single homogeneous layer) bounded by a rigid sphere at r = R and a free surface at

r = R+H+il, with 1r = rl(k,0). H << R is the equilibrium thickness of the layer, and

1 << H represents perturbations of the free surface from r = R+H. This is the simplest

model that one might use to model the atmosphere or oceans. Of course, it is not a very

good model for a stable layer at the top of the Earth's outer core, but we begin with it in

order to introduce ideas. In a shallow system such as the thin spherical shell that we are

considering, we can replace the continuity equation (5.2) with

ar 1 a[(H+il)uo cose] a[(H+l)ux]+  + )= 0
at r cosO ae a ~ - (5.3)

where (ux,uo) are the eastward and northward velocities. This is the shallow-water

approximation, which is valid under the conditions D << L, and 1 << H << R (Gill,

1982). One consequence of the hydrostatic assumption and the shallow-water

approximation is that VHp = pogV0H , where p is now the non-hydrostatic pressure, and

VH is the horizontal gradient operator. We will make use of this in reducing (5.1)

The second approximation that relies on the shallow geometry is the traditional

approximation, which allows one to substitute the variable radial coordinate r by the

constant radius R of the spherical shell. In addition, one must also drop the terms in the

horizontal components of (5.1) that are proportional to the radial velocity ur in order to

preserve the conservation of linear momentum principle that the equations should express

(Phillips, 1966, Veronis, 1968). The resulting equations for horizontal motions are
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Du (20 + ) uo sin0=- 1 + Fx
D R cosO poR cosO 8a and (5.4)

Du + (2 + ---- ) ux sin0 = 1 P + F0
D R cos0 poR ae (5.5)

where F = (Fx,Fe) is the Lorentz force per mass density. Linearizing (5.3) and (5.4) - (5.5)

with respect to ue, ux, and Tr, and substituting pogVHl for VHp, we obtain the Laplace's

tidal equations modified by (still undetermined) Lorentz forces. They are

Du 20 uo sin0 = - + F(
t R cosOe , (5.6)

+ 2ux sinO = +F
at R ,and (5.7)

S H a[ue cosO] ux= 0on + H + (50
t R cos0 D0 • (5.8)

With F = 0, the system admits longitudinally travelling wave solutions (Longuet-Higgins,

1968). These waves involve a fluctuation of the fluid surface 11, and hence are known as

surface modes.

Let us now examine the form of F, which represents the Lorentz force contribution.

F = 1/poRo (V x B) x B, but hereinafter, we will absorb a factor of (Poro)-'/ into B,

which will now represent the total magnetic field strength as measured by its Alfven

velocity. Similarly, we will absorb a factor of (Porto)-1/ 2 into E, the electric field intensity,

and a factor of (lp0/ 0 )l/2 into J, the electric current density. Let us set B = bo+b, with

bo >> b, and eo = 0, so that E = e. The linearized form of the Lorentz force is then

F = (V x b) x bo + (V x bo) x b . The toroidal component of the magnetic field, possibly

quite large in the core's interior, is likely nearly zero at the CMB due to the low electrical

conductivity of the mantle. Though it is possible that large electrical currents directly



163

underneath the CMB allow a large toroidal magnetic field very near the CMB, it is also

possible that the poloidal component of the field dominates in this zone. We will thus

choose the simplest poloidal field, a dipole, for bo.

In spherical coordinates, a dipole field takes the form

bo = BR3/r 3 (2sine r - cosO 0), (5.9)

where B is the magnitude of the dipole field. For this choice of bo, V x b. = 0, so that the

linearized Lorentz force F = (V x b) x bo = j x bo. The scaled, linearized form of Ohm's

law for the perturbation fields (with vo = 0) is

j = (1/X) (e + v x bo), (5.10)

where X = 1/oeo is the magnetic diffusivity and ae is the fluid electrical conductivity. With

bo from (5.9), and r =R across the thin layer,

j = (1/X ) ( 2ue Bsin0 + ex, -2ux BsinO + ee, -ux Bcos0 + er). (5.11)

Taking the cross product with bo (with r = R) to form F, and substituting into

(5.6) - (5.7), we obtain

a - 20 u sinO g 0
at R cosO ak

- ux (3 sin20 + 1) + (er cos0 + 2ee sinO) , arid (5.12)
- X sin0= - 1---- ues~n e and (5.12)

uIt + 2M2 u; sin0 = 4B2 ue sin2 2B e( sin0
tR a0 X X (5.13)
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Equations (5.8), and (5.12) - (5.13) form a set of three partial differential equations

in (t,0,X) for the unknowns functions ux, uo, and 71. Because of the thin-layer

approximations, the solution is independent of r. However, (5.12) - (5.13) also contain the

unknown electric field, e, r-independent by assumption. In the absence of fluid viscosity,

we allow free slip along the horizontal boundaries. We observe that j = V x b =

(1/X) (e + v x bo) is then also not necessarily zero on these boundaries. But inside an

insulator (the mantle will form one horizontal boundary in our final, more realistic model)

j = 0, so jr must be zero everywhere since the radial component of the electric current

density cannot suffer a discontinuity at a horizontal boundary. Thus by (5.11),

er = ux B cosO. However, we can say nothing about the horizontal components of e,

since they relate to the horizontal components of j, which can suffer a discontinuity at the

horizontal boundaries. We will later return to this issue.

In order to make the model more relevant to a study of the dynamics of a stably

stratified layer at the top of the outer core, we must extend the model to two layers.

Consider the two-layer model of Figure 5.1. The model has two homogeneous layers of

thicknesses H 1 and H2 with total thickness Hi+H 2 = H, and densities Pl > P2 differing by

a small amount Ap = p - P2. The radial distance r = R represents the rigid, lower

boundary, r = R+H 1 the equilibrium level between the two layers, and r = R+H 1+H2 =

R+H the equilibrium level above the two layers. The surface between the two layers lies at

r = R+HI+h and the free surface above the two layers lies at r = R+H+1r. Since

(r,h) << (H1,H2), and (H1,H2) << L, the characteristic horizontal length scale, we will

from the outset assume the hydrostatic, shallow-water, and traditional approximations.

One can show (Gill, 1982), that the two-layer model admits two modes of

oscillations, the barotropic mode and the baroclinic mode. In the limit for which we are

concerned, Ap/p - 0, the first two-layer mode, the barotropic mode, becomes the surface

mode for the one-layer model of thickness H, and involves fluctuations of T1. The second

two-layer mode, known as the first baroclinic mode, is an internal mode, and does not exist
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r = R+H+il B R+H

r=R

Figure 5.1 Sketch of the two-layer model that serves as a study for the H layer. For the

linear, thin-layer approximations to be valid, the (dotted line) wave surfaces must be much

less than the (solid line) equilibrium layer thicknesses, which must be much less than the

(solid line) shell radius, i.e., (h,tl) << (H1,H2) << R. For the surface (barotropic) mode,

h << r1, and for the internal (baroclinic) mode of interest in this study, it << h, so that

under the rigid-lid approximation we can associate r = R+H+71 with the mantle. The density

Pl < P2, though p1 P2. Q is the rotation vector, and B is the zeroth order dipole field.
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for a one-layer model. This mode has no radial surface motion at r = R+H, and involves

only fluctuations of h. For this mode, we can associate r = R+H with the rigid mantle. One

could, of course, extend the two-layer model to include infinitely many layers, i.e., a

continuously stratified fluid, which would have an infinite number of baroclinic (internal)

modes. Internal modes in a continuously stratified fluid exhibit some vertical motion,

characterized by the buoyancy frequency, N, where N2 = - (g/po)(dpo/dr). Braginsky

(1984, 1987) examined the problem of magnetohydrodynamic waves in a continuously

stratified fluid, and we will later discuss his results.

Baroclinic modes in a continuously stratified fluid have no net flow across a vertical

plane, but in a finite-layer model, baroclinic motion can have a net flow in a given fluid

layer. Excitation of the first baroclinic mode of the two-layer model might therefore be a

possible consequence of introducing fluid into an upper stable layer from underneath via

penetrative convection, which is one proposed means for forming the H layer (Braginsky,

1987, Loper, 1989). In order to simplify the analysis, we must restrict the thickness of the

lower layer. Nevertheless, since we are interested primarily in motion along the two fluid

interface, we anticipate that the model will give some insight on magnetohydrodynamic

waves in the H layer.

To study the first baroclinic mode, we will make the rigid-lid approximation. This

consists of assuming ail/at << ah/at, and Pl P2 - p. The positive density contrast Ap is

negligible except for the term involving g, the buoyancy term. This, of course, is simply

the Boussinesq approximation for a two-layer model. The rigid-lid approximation assumes

small upper surface displacements, with an imaginary rigid boundary (the mantle)

providing the necessary pressure gradients. By manipulating the horizontal equations of

motion and divergence equation appropriate to each layer (and using our knowledge of er),

we obtain a system of three equations in the three unknowns h, ux*, and ue*, where

ux* = uX2-uXl, and similarly for ue*, eX*, and e*. The resulting equations are
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au. 2u, sin0=- g Ap ah 4B2 u, sin2 B+2 _Be* sinO
at R cos0 P a~ X X , (5.14)

au0, + 20 ux* sins g Ap h 4B2 u* sin2O 2B ex* sine
at R p a x X ,and (5.15)

h + HH 2  {a[uo* cosO] u_ 0+ +5.1
at (HI+H 2) R cosO ae a• (5.16)

Equations (5.14) - (5.16) are the dynamical equations appropriate for the first

baroclinic mode of a rotating, electrically conducting, thin, two-layer fluid shell permeated

by a dipole magnetic field. Although this system describes the first baroclinic mode of a

two-layer model, it is mathematically identical to the system (5.6) - (5.8) that describes the

surface mode of a one-layer model with equivalent depth H, = HIH 2/(HI+H2), reduced

gravity g* = g Ap/p, and h replacing rl. By our rigid-lid approximation, we have replaced

the vacuum for r > R+H+rl with a solid, so our model now includes the rigid mantle. Of

course, the lower layer must be unrealistically thin, and the solid bottom boundary

precludes further fluid-fluid interactions, but following Braginsky (1987), we assume the

density of forces is greatest in the H layer.

5.3 Derivation and solution of the fl - plane equations

In order to solve (5.14) - (5.16), one must resort to a numerical approach.

However, we will first transform the spherical Laplace's tidal equations to a local tangent

plane, on which we can make analytical progress and gain insight into the full spherical

problem. The transformation, well known and widely used in meterology and

oceanography, is the P-plane transformation. It involves approximating the normal

component of the rotation vector f = 20 sin0, which is the only component remaining after

making the traditional approximation, by f = fo + 3y, where fo = 20 sin 0 0 and
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p = 2Q/R cos 0o. R is the radius of the spherical shell, and y represents the coordinate

northwards from 0o, the latitude at which the 3-plane is tangent. In this Cartesian frame,

x represents the coordinate in the locally eastward direction, and z the coordinate in the

direction locally upward and normal from the tangent plane. The only effect of the Earth's

sphericity that the approximation retains is to allow f to vary linearly with latitude. As the

first term in an expansion of f, the approximation is valid only for motions limited in

latitudinal extent. Hence, we must in general have lyl/R << 1 (Pedlosky, 1987).

Veronis (1963a,b) derived an additional condition on the validity of the 3-plane to

describe baroclinic motion, namely, that D/L << tanO, where D and L are the characteristic

vertical and horizontal length scales, respectively. Thus, one cannot expect accurate

solutions within a narrow band of the equator. For the hydrosphere, with a characteristic

shell thickness of 7 km and a radius of 6400 km, this excludes a band of a few degrees on

each side of the equator. However, for the outer core, with a shell perhaps some 10 - 70

km thick and a radius of only 3500 km, this condition requires the exclusion of at least 5

degrees on each side of the equator. Despite these limitations on the applicability of the

3-plane, we will nevertheless apply an equatorial 3-plane, so that 0o = 0 degrees, fo = 0,

and 0 = 29/R. Moreover, for solutions on the equatorial 3-plane to be valid under the

condition that lyl/R << 1, they must go to zero as lyl -* * (or more precisely, as lyl - R).

Hide (1966) applied a mid-latitude 3-plane analysis to a homogeneous, electrically

conducting, rotating, thick fluid shell. Hide chose such a model to study magnetic-Coriolis

(MC) waves and their possible relation to the secular variation. In his study of MC waves

in a thick, homogeneous shell, Hide dropped XV2b in favor of ab/at. We have retained the

diffusion term, however, because we are concerned with the smaller scale motions in a

thin, inhomogeneous fluid layer. Moreover, the zeroth order magnetic field is different: like

Fearn and Proctor (1983) and Friedlander (1989), Hide used a toroidal field, which may be

more appropriate for the bulk of the core, rather than a poloidal field, which is perhaps a

better model near the top.
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Let us now apply the equatorial P-plane approximation to our system of equations

(5.14) - (5.16). Under the equatorial P-plane approximation, we replace sinO with 0 and

cosO with 1, and set f = Py, where northward distance y = RO and eastward distance

x = RX. We obtain

l yuy = - g - (4B2/X) (y2/ R 2) vx + (2B/X) (Y/R) ey, (5.17)

+pyu x = - g ah - (4B2/X) (Y2/R2) Vy- (2B/) (Y/R) ex, and (5.18)

ah aau au-h + H (ax +  y = 0, (5.19)
at (ax+ ) =0 (5.19)

where (ux,uy) represents the velocity and (ex,ey) the electric field in the (x,y) direction. We

have dropped the '.' subscripts on the velocity fields, g, and H, but it should be

understood that for the first baroclinic mode of the two-layer model, the velocity fields are

actually the differential velocity fields, g is the reduced gravity, and H is the equivalent

depth.

If B, the magnitude of the zeroth order dipole field, and eH, the horizontal electric

field, equal zero, we obtain the 3-plane approximation to Laplace's tidal equations

(Lindzen, 1967). We can then reduce (5.17) - (5.19) to a single equation for uy, and

assume eastward propagating wave solutions of the form uy(x,y,t) =

uy(y) exp [i (kxx - cot)]. The resulting ordinary differential equation that governs the

latitudinal structure is

d2uY 2 Pkx 2y2
+ ( ki ) uy =O

dy 2  c2  2  =0(5.20)

This equation exhibits turning point behavior about the critical latitudes Yc, with

y c2 = ( 2 - k2c 2 - [kxc2/)/P 2 . For lyl < lycl, equation (5.20) admits wavelike solutions,
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but for lyl > lycl, only evanescent solutions exist. Hence, the equator acts as a waveguide,

with the latitude varying Coriolis parameter trapping solutions in low latitudes.

Provided the dispersion relation

02/c2 - k2x- Pkx/ = (2n+1)0/c, (5.21)

the solutions to (5.20) that are finite at y = 0 and vanish as lyl - * are

uy(x,y,t) = 2- 2 Hn{ (0/c) 1/ 2 y) exp (-py 2/2c) cos (kxx - wt), (5.22)

where Ha is the Hermite polynomial of integer order n. Solutions for which the term Pkdo

in (5.21) is small, so that w2 = (2n+1)c +k2c 2, correspond to high frequency gravity

waves. Gravity waves propagate both eastward and westward, symmetrically about kx = 0.

Solutions for which the term c02/c 2 in (5.21) is small, so that o = - Ipkx/(k2 + (2n+1)3/c),

correspond to low frequency Rossby (planetary) waves. Rossby waves, which owe their

existence to the variation of the Coriolis force with latitude, propagate only westward.

There are two waves in the large frequency gap between gravity and Rossby waves. The

first is the non-dispersive Kelvin wave, which corresponds to n = -1 so that co = kxc. It

propagates eastward and involves motion only in the x-direction. The second is the mixed

Rossby-gravity wave, which corresponds to n = 0 so that o/ec - kx - P/co = 0.

For B and eH non-zero, we could again use (5.17) - (5.19) to eliminate two

variables in favor of the third, say the fluid wave surface h, and repeat our procedure for

non-magnetic waves. We have done this, and the result is a rather messy second order

inhomogeneous differential equation, whose associated homogeneous equation does not

have an obvious closed form solution. However, we are primarily interested in waves

whose periods are on the years-decades time scale, i.e., Rossby waves, whereas gravity
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waves have periods of less than a day. We will therefore filter out the high frequency

gravity waves, significantly simplifying the algebra.

For a study of long-period waves, the fluid is nearly in geostrophic balance. For a

geostrophic balance, we can drop the inertial and Lorentz force terms in (5.17) and (5.18),

yielding

ah
- pyuy = - g x, and (5.23)

ah
pyux = - gy. (5.24)

However, this geostrophic balance is degenerative (Pedlosky, 1987), in the sense that it

cannot predict the velocity field's evolution with time, but only insure its Coriolis force

balances the given pressure force. We must therefore go to a higher order of approximation

by obtaining the z-component of the curl of (5.17) and (5.18), obtaining

( + 4+2+y X + PVy B Y Vx=

at X R2  3x ay ax ay X R2

2BY.(ex ae .2aB1
R ax y XR (5.25)

The vorticity balance, equation (5.25), examines the three-way balance between the

curl of the Coriolis, inertial, and Lorentz forces. Using equations (5.19), (5.23), (5.24),

and (5.25), it is now relatively easy to obtain an equation for h, with forcing terms ex and

ey. Again looking for longitudinally travelling wave solutions, we set h(x,y,t) =

h(y) exp [i (kxx - ot)]. The result is

(-icoc 2 + 4B 2  ) + (itc 2/y + 4B 2 .)
X R2 dy2  X R2 dy

(ioc 4B 2c2k ic2 k + i 2y) h = 2B HPy 2 ~ ae ey
X R2 X R ax ay + ?. (5.26)
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If we introduce solely the z-curl of the inertial term, i.e., B = 0, (5.26) reduces to

d2h I dh + (_k2 kx 2 y2 ) h = 0
dy2 Y dy C c2  (5.27)

The form of this equation differs from (5.20) in the presence of the term -(I/y)(d/dy) and

the absence of the term (o 2/c2). The cause of the absence of the latter term is that in setting

the geostrophic balance from the outset, we have already filtered out gravity waves. Such a

system is quasi-geostrophic in that it allows small deviations from the steady state

geostrophic flow; these deviations are the Rossby waves. The second term presumably

results from the small incompatability of (5.23) and (5.24) with (5.25). Nevertheless, at

least for large y, away from the equator where the geostrophic balance must break down,

(5.27) yields the expected behavior of Rossby waves.

For

42 r. ) <<I

'X R2 (5.28)

rearrangements of the magnetic field rather than inertial accelerations account for deviations

from geostrophy. For a core surface magnetic field strength of about 10-4 T,

B = 10-3 m/sec, and for an electrical conductivity oe = 3 x 105 mho/m, X = 1/oeto is

approximately 100 m2/sec, so that except for a band some tens of kilometers about the

equator, the inequality (5.28) should hold for periods longer than a few years. Such a state

we denote quasi-magnetostrophic since the Lorentz force rather than the inertial force enters

into the force balance at this higher approximation. Although we have retained the time

dependence through the continuity equation (5.19), we have filtered out the magnetic

analog of high frequency gravity waves through our geostrophic approximation. Under the
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quasi-magnetostrophic approximation we look for the low frequency magnetic Rossby

waves.

If we apply the condition (5.28) to equation (5.26), it simplifies to

y2 d + y d + (-k)y2 + 2 R2+ ) h=
dy2  dy 4B 2c2  4B2

1 HRPy 2  ex
2B c2  Ox y . (5.29)

The equation governing non-magnetic Rossby waves, (5.20), is a Schrodinger equation;

(5.29) is an inhomogeneous Bessel equation. Provided

2 i kxOXR 2

B2  , and (5.30)

2i c2 R2
y= - k + B2c2 , (5.31)

a solution of the homogeneous equation (eH = 0) associated with (5.29) is h(y) = Cv(kyy),

where Cv represents a Bessel function of order v and ky is the latitudinal wavenumber

(Abramowitz and Stegun, 1964). Alternatively, we can rearrange (5.31) to obtain the

dispersion relation for real, assigned ky. The result is

=- i(k 2 +k) B2  2

2 XR2 . (5.32)

For validity of the 1-plane, we must seek solutions h(y) -- 0 as lyl --+ *, as well

as solutions that are bounded at the origin, i.e., the equator. The proper Bessel function is

therefore that of the first kind, Jv(kyy), which is bounded at the origin. For fixed order v

and large kyy, Jv(kyy) - (2/ickyy) 1/2 cos ( kyy - vn/2 - 7c/4 ). Hence, as lyl -- co, the
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solution amplitude oscillates and decays as lyl-1/2. While this geometric decay with latitude

is not as rapid as the exponential decay with latitude of non-magnetic Rossby waves, it

nevertheless approaches zero at large lyl. Hence, our complete f-plane solution for quasi-

magnetostrophic waves, valid for all y, is

h(x,y,t) = Re { exp [i (kxx - ot)] Jv(kyy) , (5.33)

with v given by (5.30) and w by (5.32).

One consequence of a Bessel function solution is that the solution is not equatorially

trapped, but is non-zero at all latitudes y, albeit with geometric decay near the poles. This is

unlike the solution for non-magnetic Rossby waves, which has the form of a Hermite

polynomial multiplying a decaying exponential. It is because of the wave nature of Bessel

functions that we can define a wavenumber ky in the latitudinal direction as in (5.31). Note

too that because of the lack of a turning point as is present in the Schrodinger equation

(5.20), the modes on the infinite interval [-o,oo] are not discrete, but rather form a

continuous set as seen by (5.32). The breakdown of the equatorial waveguide by the

Lorentz force is an example of the countering effects of rotation and a magnetic field.

In order to insure solutions that are bounded at the equator and go to zero near the

poles, we had to allow that the eigenfrequencies o might be complex. In fact, from (5.32)

we see that they are purely imaginary. In the limit of zero horizontal electric field intensity

eH, magnetic Rossby waves in the H layer on the equatorial f-plane are overdamped; there

is no propagation. Let us put representative numerical values into (5.32) to get an estimate

of the damping time. For an equivalent depth H, = 10 km (e.g., for H1 = 15 km and

H 2 = 50 km, H. = 11.5 km), a density contrast Ap/p = 10-7 (Loper, 1989), and

g = 10 m/sec 2, the squared non-rotational surface mode phase speed c2 is about

10-2 m2/sec 2. With R roughly 106 m and I1 about 10-4 sec-1, B = 20/R is approximately

10-10 (m-sec)- 1. Using an Alfven wave speed B = 10-3 m/sec, and X of the order



175

100 m2/sec, we find co = i O( k2x + k2y ). For disturbances with characteristic horizontal

distances of the order of hundreds of kilometers, the characteristic damping time is roughly

102 years.

Braginsky (1987) found that the internal modes of the magnetic Rossby waves in a

continuously stratified fluid are also heavily damped. In conjunction with his boundary

conditions, by assuming ab/at << [V x (v x bo), XV 2b] in the magnetic induction

equation, Braginsky implicitly set eH = 0. The neglected term in the induction equation,

ab/t, results in a phase shift between co and kx that can indicate less Ohmic dissipation.

Thus, although the eigenmodes in an infinitely thin layer are overdamped, the relevance of

the solution (5.33) with (5.30) and (5.32) (and of Braginsky's solution) to a finite layer is

unclear. In a finite layer, a non-zero eH can approximately balance -v x bo. Unfortunately,

the functional form of the electric field, and therefore of the inhomogeneous term, is

unknown. It is unknown because of our failure to account for the radial (z) details of the

magnetic field in the H layer. We cannot, however, incorporate these details into the

r-independent (z-independent) thin-layer theory.

In obtaining the solution (5.33) we assumed a geostrophic balance in the

momentum equations, which we know is not valid near the equator, and assumed the

Lorentz force terms enter only into the vorticity equation. However, these Lorentz force

terms in our P-plane model are proportional to y2, so as y grows, they should become

increasingly more important in the force balance. While we could not find an analytic

solution to the full f-plane equations (5.17) - (5.19), we note that the forementioned

differential equation analogous to (5.26) contains coefficients of d2h/dy2, dh/dy, and h

with additional terms higher order in (B4/X2)(y 4/R4)/(2 y2). Although these terms are small

in the quasi-magnetostrophic limit, being higher order in y, they do weaken the case for the

validity of the -plane solution, which only decays as y-1/ 2 even under the quasi-

magnetostrophic approximation. Of course, on the sphere, the Lorentz force does not grow

to infinity as a function of latitude. It would therefore be of some interest to solve
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(5.14) - (5.16) numerically, with eH = 0, and compare with the P-plane solution (5.33),

with (5.30) and (5.32).

5.4 Solution of the modified Laplace's tidal equations

With B and eH zero, the -plane solutions quite successfully reproduce the essential

features of the solutions on the sphere (Longuet-Higgins, 1968), including equatorial wave

trapping. Following and extending the method of Longuet-Higgins (1968), we numerically

solve equations (5.14) - (5.16) with zero eH but non-zero B. The details of the numerical

calculations are in the appendix to this chapter. As for the -plane, we look for

longitudinally propagating travelling waves of the form exp [i (sk - cot)], where s is the

longitudinal wavenumber and X is the longitude. Three non-dimensional parameters central

to the problem are the frequency scaled by the rotational frequency,

a = /202, (5.34)

the squared ratio of the rotational speed to the non-rotational gravity wave speed,

e = 4Q 2R2/c 2, (5.35)

where c2 = g(Ap/p)(H1H2)/(H1+H2), and a measure of the strength of the Lorentz to

Coriolis force (essentially the Elsasser number of Chapters 3 and 4),

a = 4B2/20X. (5.36)

For a study of baroclinic Rossby waves in the Earth's hydrosphere, where

c2 = g*H* is in the range 100 - 104 m2/sec 2 (Gill, 1982), a representative value of e is in

the range 104 - 100. The parameter a, of course, is zero. For a study of baroclinic magnetic



177

Rossby waves in the H layer, a representative value of E is probably at least as large as 106,

because c2 is most likely less than 10-2 m2/sec 2 due to the small density contrast of the

layers. For B = 10-3 m/sec, I I about 10- sec-1, and X order 100 m2/sec, a is in the range

10-1 - 10-2 (demonstrating that the quasi-magnetostrophic approximation is reasonable).

When a is non-zero, we must admit the existence of complex eigenfrequencies a due to the

introduction of Ohmic dissipation. For the magnetically damped westward Rossby modes,

both Re(a) and Im(a) will be negative.

Figures 5.2 and 5.3 are log-log plots of the eigenfrequencies lt vs. e-12 for s = 1,

at a = 10-2 and a = 10-1 (and both for eH = 0) respectively, that correspond to the low

frequency modes of the non-magnetic system (a = 0), which we also show for

comparison. In Figure 5.2, we show the eigenfrequencies for the two lowest equatorially

symmetric and antisymmetric modes, corresponding to the mixed Rossby-gravity mode

(which is antisymmetric) and the first three Rossby modes. For small e, the Re(a) at

a = 10-2 is essentially identical to the Re(a) at a = 0 for these low order modes (those

modes with few latitudinal zeros). A small non-zero Im(a) is also present at a = 10-2, not

present at a = 0. Although it is difficult to numerically obtain the low frequency Rossby

modes that are of interest on the years-decades time scale (Re(a) < 10-3) for E as large as

106, we can make asymptotic predictions. As at a = 0, at a = 10-2 the Re(a) for each mode

appears to go asymptotically towards zero as a power of e-lr 2, though the presence of a

magnetic field does somewhat decrease the Re(o) from their non-magnetic values. For

large e at a = 10-2, the Im(a) achieves a constant value of about -5x10 -3 for the lowest

mode, and a slightly larger constant value for higher modes. Thus, for large enough e, the

eigenfrequencies become primarily imaginary, as the 13-plane solution (5.32) predicts

(though with a different dependency on E-l12, which we shall later discuss). Presumably,

the relative increase of the Im(a) to the Re(a) for a given mode at fixed a and an increasing

e is due to the smaller length scale, and hence higher Ohmic dissipation, associated with

increasing rotation rate. Higher order modes show a decreasing Re(a), and a slightly
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increasing Im(o). This too is due to a smaller length scale, associated here with that of the

higher order modes.

Figure 5.3 shows the effects of increasing the ratio of the strength of the Lorentz

force to the Coriolis force. At a = 10-1, it is yet more difficult to calculate the

eigenfrequencies at large e, so for this reason, we show only the first two modes, and

again the corresponding non-magnetic modes. The stronger magnetic field present at

a = 10-1 than at a = 10-2 begins to decrease the Re(a) for each mode from their non-

magnetic values at a smaller e, and continues to increase the Im(a), as one might expect

from (5.32). Unfortunately, it is rather difficult to ascertain the asymptotic values of Re(a)

and Im(a) from the moderate e that we have obtained. For these numerical solutions to the

exact associated homogeneous equations (5.14) - (5.16), there is no reason in principle that

a must be small; however, for a order one or greater, the 1-effect is no longer dominant.

Thus, for instance, we might not necessarily expect low frequency waves to travel

westward, as do Rossby waves. Because near the core surface a is most likely 10-2, and

because we are interested in the magnetic analog of Rossby waves, we have studied the

eigensystem only at small a.

In Figures 5.4 - 5.7, we examine the nature of the eigenfunctions of (5.14) - (5.16)

for non-zero a (and eH = 0), and compare them with the eigenfunctions for a = 0.

Figure 5.4 shows the amplitude of the real and imaginary parts of the eastward fluid

velocity ux.* of the first latitudinally symmetric Rossby eigenmode for s = 1 (for s =1, there

is no symmetric mode with no latitudinal zeros), e = 102, and a = 10-2, as a function of

colatitude. We also plot the imaginary part of ux* (the real part is zero) for the first

symmetric mode for s = 1, e = 102, and a = 0. The normalization that we use here and

throughout this work is that of Longuet-Higgins (1968), which seeks to keep the total

kinetic plus potential energy of each mode constant, independent of o, e, or a. The

imaginary parts of ux. at a = 0 and a = 10-2 are quite similar, but the finite electrical

conductivity induces a phase shift with the introduction of a real part of ux*, which is
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generally of lesser amplitude than the imaginary part of u.. For this mode, a relatively

small value of a does not break the equatorial waveguide. For the second symmetric mode

(Figure 5.5), the phase shift is more significant, as one might expect for the smaller scale

flow, and through the slightly larger amplitude near the pole there is some evidence of a

breakdown of the equatorial waveguide.

At e = 103 and a = 10-2, we could reliably obtain only the lowest symmetric

eigenfunction, shown in Figure 5.6. For this lowest mode, the phase shift is again

relatively small, and the magnetic field has almost no effect on wave trapping. At e = 102

and a = 10-1, the effects of the magnetic field are much more apparent (Figure 5.7).

Firstly, the stronger magnetic field much more effectively breaks the waveguide, with the

equatorial amplitude no longer an order of magnitude greater than the polar amplitude.

Secondly, the phase shift is nearly ir/4 at most latitudes, indicating a diffusive solution. At

this value of a, we could not reliably obtain higher modes or larger e.

Unlike the infinite P-plane, which in the absence of turning points yields a

continuous dispersion relation, the sphere, because of its bounded geometry, allows

discrete modes. Nevertheless, from our limited numerical calculations, we can see the

P-plane predictions are moderately successful. We can rewrite the -plane dispersion

relation (5.32) as

a = /2 = - i (a/e) (k2 + ky) R2. (5.37)

The 0-plane predicts purely imaginary eigenfrequencies for large e (and small e, but the

approximation (5.28) requires small (o and hence large e) that are proportional to a and e-1.

On the other hand, in the asymptotic limit of large e, Figure 5.2 (and perhaps Figure 5.3)

shows the Re(a) is propotional to E-1, and the Im(a) approaches a constant.

Thus, for large E, both the P-plane analysis and the numerical calculations indicate

dissipative behavior, but their predictions on the asymptotic dependence of a on e-1 differ.

The lower limit on the Im(a) of magnetic Rossby waves on the sphere as e increases is
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presumably related to the presence of Ohmic dissipation even in the limit of steady flow

such that the Re(a) = 0, i.e., geostrophic flow. Under the quasi-magnetostrophic

approximation, on the other hand, the zeroth order state (5.23) - (5.24) is exactly

geostrophic, so that in the steady limit, we might anticipate that both the Re(a) and the

Im(a) would go to zero. Finally, while we did not perform extensive numerical calculations

to examine the dependence of a on a, Figures 5.2 and 5.3 bear out the 13-plane prediction

(5.37) that the Im(a) is proportional to a, at least for moderate values of e.

We can rewrite the condition for quasi-magnetostrophic flow, (5.28), as

o/(asin20) = co/(2f2asin 20) << 1. (5.38)

While the P-plane predicts that a magnetic field can break the equatorial waveguide,

condition (5.38) reminds us that a sufficiently strong enough magnetic field is necessary if

the Lorentz force is to supplant the inertial force and prevent wave trapping.

Figures 5.4 - 5.6 show that for a = 10-2, the magnetic field is not yet strong enough to

effectively break the equatorial waveguide. Figure 5.7, on the other hand, shows that there

is non-zero amplitude at all latitudes for a = 10-1. Thus, the numerical calculations

substantiate the P-plane prediction that a magnetic field can break the equatorial waveguide,

and they also demonstrate that a sufficiently strong magnetic field is necessary.

Although there are encouraging similarities between the P-plane solutions and the

numerical calculations, the accuracy of the P-plane predictions is not complete, particularly

in regard to the o(e-1) relation. In addition, due to the unknown horizontal electric field

intensity eH in both the analytical and numerical approaches, we do not know the relevance

of the solutions to the H layer. The actual Ohmic dissipation rate is probably much lower

than these models predict, and it is not clear the Lorentz force will be strong enough to

break the equatorial waveguide. In order to include eH, we must release our assumption of



187

an r-independent solution. Unfortunately, this makes the problem considerably more

complicated.

5.5 The internal modes

Braginsky (1984, 1987) examined waves in a thin, stably stratified layer on the

core surface. For his study of the internal modes of a continuously stratified fluid, he

assumed a zeroth order density deviation profile p = -po exp -{ 2/H (R-r)), where H << R

is the thickness of the thin, stably stratified layer. This density profile yields a real

buoyancy frequency N, so that baroclinic motion is possible, and Braginsky (1984)

assumed N/20 is order unity. Assuming, as have we, a quasi-magnetostrophic balance,

Braginsky developed the equations governing the internal modes.

By dropping ab/at in the magnetic induction equation, the r-dependence separates

out, leaving functional dependence on X,0, and t. Looking for short wavelength

perturbations, Braginsky made what is essentially the mid-latitude P-plane approximation

about the latitude 0o, and assumed exp [i (kxX + kyy - cot)] dependence. Here, kx = m/sx,

where m is an integer, and sx = R cos0o is the distance from the rotation axis. The square

of the total horizontal wavenumber is kj = k2 + k2. The resulting local dispersion relation is

a= co- kx = { (N2H2/a 2 ) (1/eR2) } {- kx - i kj (B2/X) / 30 , (5.39)

where a is the r separation constant (a = 2.405 is the first zero of the Bessel function Jo),

e = 20/R cos00 , and the zeroth order magnetic field B is assumed constant. The velocity

of differential rotation C is zero in our model. Equation (5.39) is equation (23) from

Braginsky (1987), but in our notation. With the previously assumed numerical values,

00 = 450, m = 2, and kr = it/600 km-1, Re(l )= Im((0) - 60 years-1. Thus, Ohmic



188

dissipation also damps the internal modes rather strongly. Note, however, that (5.39)

shows that the waves are less heavily damped in regions of small B.

We will now derive the solution and dispersion relation for the internal modes of

quasi-magnetostrophic Rossby waves on the equatorial P-plane, and compare with

Braginsky's mid-latitude f-plane solution, and with our solution for the first baroclinic

mode on the equatorial -plane. We adopt Braginsky's basic density deviation profile. The

governing equations are the full continuity equation (aux/x+auy/dy+aw/az) = 0 replacing

(5.19), (5.23) - (5.24) with the pressure p replacing the fluid boundary h, and the

z-vorticty equation (5.25), with the electric current denisty jH determined from the magnetic

induction equation rather than Ohm's law. Thus, a 2bH/az2 = - (B/IX) (y/R) avH/az, which

is the horizontal part of the magnetic induction equation with abH/at = 0. This is equivalent

to setting the horizontal components of V x e = 0, and upon integrating this in z, to setting

eH = 0. The equation governing the local vertical velocity w is N2w + a 2p/ataz = 0

(Braginsky, 1987, Gill, 1982).

We combine the above into a single equation for w,

S2w ByN y 2V 2 +  ,w-PN2
at az2  XR2  ay ax , (5.40)

and set w(x,y,z,t) = V(x,y,t)w(z). The function w(z) = sin (nxz/H), where n is an integer,

satisfies (5.40) and the boundary conditions that the vertical velocity w(z=0) = w(z=H) = 0

(corresponding to both a rigid top and bottom). Setting V(x,y,t) = V(y) exp [i (kxx - ot)],

the resulting equation for V is

Sd2y d ( imo2)R2 ikxPXR2
y2d 2  + y + (-k' 2 + C 2O+ ) = 0

dy2 dy 4B2c2 4B2 (5.41)
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This equation is the same as the homogeneous part of (5.29) for the first baroclinic mode of

the two-layer model, but with c2 = N2/(n2i 2/H2 ). Hence, we can simply use our results for

the first baroclinic mode of the two-layer model to study the internal modes of a

continuously stratified model by redefining the non-rotational phase speed c. However, the

discussion near the end of Section 5.2 on excitation sources suggests that the two-layer

model may be of more interest for geomagnetic secular variation studies.

We can compare our results on internal quasi-magnetostrophic waves on the

equatorial 3-plane with Braginsky's results on a mid-latitude -plane. In analogy with

(5.39), we can easily derive a local dispersion relation for large wavenumbers ky.

Assuming exp [i (kxx + kyy - ot)] dependence about a low latitude value of y. in (5.41),

we obtain

o = ( (N2H2/n27 2 ) (/R2) ) ( - kx (R2/y ) -  ikky (B2/B2/X)I / ). (5.42)

Aside from the additional term due to propagation in the y direction, and the evaluation of I

at 0 = 0 rather than at some mid-latitude, (5.42) is essentially identical to (5.39), but for the

augmentation of the first term in the second bracket by a very large factor of R2/y2. This

increase in the Re(c) relative to the Im(o) reflects, of course, the fact that in our model bo

increases linearly with y, and the Ohmic damping is proportional to bo. Thus, in regions of

low bo such as the low latitudes, we expect the magnetic Rossby waves to be less heavily

damped. However, it is not clear these local dispersion relations for short latitudinal

wavelengths are particularly valid, since the corresponding solutions do not satisfy the

latitudinal boundary conditions.
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5.6 Discussion

In the preceeding sections we developed a model for the hypothetical H layer at the

top of the Earth's outer core. By invoking the hydrostatic, Boussinesq, linear, shallow-

water, and traditional approximations, we reduced the general Navier-Stokes equations to

the Laplace's tidal equations, which govern the primarily horizontal surface motion of a

rotating, stably stratified, thin fluid layer, such as the Earth's hydrosphere. In order to

model the H layer as a thin layer sitting above a 'homogeneous' core, we employed a two-

layer model, and in particular, we examined the surface motion between the two layers.

Under the rigid-lid approximation, the solution for the first baroclinic mode of the two-

layer model, as such motion between layers is known, is the same as the solution for the

surface mode of the one-layer model, with the use of a reduced gravity and an equivalent

depth.

Laplace's tidal equations admit high frequency gravity waves that propagate both

eastward and westward, and low frequency Rossby waves that propagate only westward.

Due to the variation of the Coriolis parameter with latitude, the equator acts as a waveguide

to trap these waves. Both a numerical solution to the full equations and a IS-plane solution

yield these properties. In the Earth's core, however, we must also model the fluid as an

electrical conductor. To Laplace's tidal equations, we therefore added terms representing

the linearized Lorentz force due to a dipole field, which as a simple poloidal field is a rough

model for the magnetic field near the top of the outer core. We then transformed the

equations from the sphere to the equatorial [3-plane, and invoked the quasi-magnetostrophic

approximation. This approximation enabled us to analytically examine the magnetic analog

of Rossby waves, which because of their long periods, may be of some interest in secular

variation studies.

Both the analytical [3-plane results and the numerical calculations demonstrated that

the addition of a magnetic field can release the equatorial wave trapping of Rossby waves,
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provided the magnetic field is strong enough. Both analyses also demonstrated that the

Ohmic dissipation of these waves is high, as Braginsky (1987) had also derived. However,

they differed on the asymptotic decay rate in the limit of low frequency (high rotation). This

discrepancy appears to be due to a limitation of the quasi-magnetostrophic approximation,

which was necessary to find an analytic solution on the P-plane. Thus, for this highly

dissipative system, one must be careful about dropping the inertial term even in the limit of

small Re(o), because Im(o) can remain large.

While the j3-plane and numerical solutions clearly demonstrate the counteracting

effect of a strong magnetic field on rotation, the applicability of the dispersion relation

(5.32) and the dispersion diagrams (Figures 5.2 and 5.3) to the H layer is unclear. This is

due primarily to our having set eH = 0. Because of our thin-layer approximations, the

electric field intensity remains unknown; however, in setting it to zero, we incurred a much

higher electric current density than we would have had eH - -VH x bo. Had we obtained

smaller electrical currents, the dissipation would have been less, resulting in different

dispersion relations. In the limit of an infinitely conducting fluid, of course, there would be

no Ohmic dissipation, so that the eigenfrequencies would be purely real, as for the non-

magnetic problem.

The terms in the magnetic induction equation [Db/at, V x (v x bo), XV2b] are of

the order [1/T, V/D, X/D2], where T, V, and D are the characteristic time, velocity, and

thickness scales. If we use T = 108 sec as a typical secular variation time scale (though the

above discussion indicates the damping time scale could be less), V _ 10-4 m/sec as a

characteristic fluid speed, and D = 104 m as a characteristic thickness, we find the three

terms are in near balance with each other, in contrast with the assumption that Ob/t is

small. Thus, the actual solution for waves on the H layer probably lies somewhere within

the limits set by the solution for waves in the hydrosphere and the solution set forth here,

with eH = 0. In order to determine eH, and hence the true solution, we must know the

details of the radial dependence of the field variables.
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Another weakness of the theory is that although the H layer may be thin, the

underlying fluid layer is not. Unfortunately, we could not include fluid-fluid interactions

beneath the H layer in our thin-layer model. A solid bottom boundary precludes the radial

propagation of magnetic-Archimedean-Coriolis (MAC) waves and magnetic coupling to the

bulk of the underlying fluid. Moreover, in the limit of an infinitely thin fluid layer the

perturbation magnetic field due to the horizontal current is horizontal, i.e., toroidal, so it

would have no direct surface manifestation. For a finite layer a radial perturbation magnetic

field would be present, so observation might be possible, but we do not know to what

extent. The remedy to these shortcomings of the theory is again to relax the assumptions of

thinness and of radial independence. But in abandoning the thin-layer approximations, we

add enormously to the complexity of the problem. We will not here attempt to explore the

two-dimensional eigenvalue problem. Finally, we have not considered the effects of a

zeroth order differential rotation.

From Figure 5.2, we can roughly extrapolate the Re(a) for the lowest symmetric

mode to about 10-4 at e = 106. For s = 1, the westward phase speed

Cph = Re(co) / (s/R cos 0) near the equator is then approximately 10-2 m/sec, or several

hundred km/year. Although our analysis shows that Im(a) >> Re(o) in the limit of large e,

so that the instabilities are overdamped, the actual dissipation would be less if one allowed

for a non-zero eH. Of course, with the inclusion of a non-zero ei the Re(a) may change as

well, but the Re(a) appears to be relatively unaffected by a moderately weak magnetic field

(see Figures 5.2 and 5.3). In any case, it appears premature to dismiss magnetic Rossby

waves as unobservable based on their improperly derived high dissipation rates. For the

relatively weak magnetic field strength appropriate for the top of the Earth's outer core, the

equator may still act as a waveguide to trap wave amplitudes (see Figures 5.4 - 5.6), as in

the hydrosphere.

Large accelerations of the westward drift such as the 1969 'jerk' (Courtillot and

LeMouel, 1984) indicate that rapid changes in core flow can occur. Since it is unlikely that
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any of the quantities associated with the basic state would have rapidly changed, we should

probably associate such rapid secular acceleration with the forcing motion of sources,

rather than with any resulting waves. If forced motions due to sources (such as the arrival

of blobs in a penetrative convection scenario (Braginsky, 1987, Loper, 1989)) dominate

the core surface motion field, they may swamp out any signals due to magnetic Rossby

waves, even if the waves are relatively undamped. However, Cph as we derived above is

about 2 deg/year, faster than the typically assumed speed of .2 deg/year (Madden and

LeMouel, 1982). Thus, were the geomagnetic data of sufficient quality and quantity, it

might be possible to distinguish fast motion, due to magnetic Rossby waves, from the

slower forced motions. An improvement in data quality, and a refinement of the theory

presented here, may then eventually help us to determine the stability of the top of the

Earth's outer core and magnetic Rossby waves' role in creating the secular variation.
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Chapter 5 Appendix: Method of solution of Laplace's tidal equations

The method of solution of (5.14) - (5.16), with eH = 0, follows closely that

developed by Longuet-Higgins (1968) to find the eigenvalues and eigenfunctions of the

traditional Laplace's tidal equations over a sphere. The method is as follows. We first

introduce into (5.14) - (5.16) a velocity potential 0 and a stream function 1, such that

u I 1 a'iU* = - +
e0 sin0 A, and (A5.1)

UX*
sine0 a aO, (A5.2)

where 0 is now the colatitude, and ue* is the southward velocity. We next form two new

equations by taking the divergence 1/sine0 a(5.14)/A + a(sine (5.15) )/0 ) and the curl

1/sine {( (5.15)/X - )(sine (5.14) )/MO ). Looking for waves travelling in the azimuthal

direction, we assume the solutions (D, 'F, and h have exp [i (s. - ot)] dependence.

Defining g = cos0, D 1 = -sinea/aO = (1-g 2)a/ag, and D2 = sin2 ea2/aO2 =

(1-g2)2a2/ajC2 - gD1 (using the chain rule on the definitions of D 1 and D2 to obtain each of

the second equalities), we perform some tedious algebra to obtain from the two new

equations

S-io(l1-g2)V2 + 2is(1-g2) - B~2 - 3B2 2g2 + 2 B D 2 - 12B - g3D1 + 8 pD1 ) +

{ 20g(1-g 2)V 2 + 20(1-g 2)DI + flis(1-g2)Di - sg(1-g2) )Y = .gPi- 2)V2h,
X X Rp

(A5.3)

and
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-io(1-2)V + 2is(1-"tg2) - 4B2-22 + 3 t22 - 9B2 3D1 + 5B 2 gDi }
X X X X X

+ 2{ _22(12)V 2 - 2(1-2 )D 1 + Elis(1- 4 2)DI - B-isjg(1-i2) )1 = 0.

(A5.4)

The third equation, (5.16), becomes

V2h=i H 1H2  V4where
o R(H 1+H 2) where (A5.5)

V2 is the horizontal Laplacian operator. We now eliminate h from (A5.3) and (A5.4) by

use of (A5.5), and divide the two remaining equations for ) and ' by 2Mi. Using a, e,

and (x as defined by (5.34), (5.35), and (5.36), we can then write (A5.3) and (A5.4) as

(a(-l_2)V2 - s(l- 2) + 2)V 4 - is 2 - 3ias2 2 + 4ia 2D2 - 12ia 3D1 + 8iapDi )

+ ( g(1-Ii2)V 2 + (1-4t2)D1 + ias(1-p2)Di - 8iasg(1-4 2) J}i = 0, (A5.6)

and

( o(1-p2)V2 - s(1-g 2) - 4ias2 j 2 + iaD 2 + 3iali2D2 - 9ia03D 1 + 5iaplD 1 )iP

+ ( g(1-g2)V 2 + (1-jp2)D1 - iaXs(1-jt 2)DI - 6iasg(1-g2) )(D = 0. (A5.7)

We now expand D and T in a spherical harmonic series, so that their latitudinal

representation is

D= AP(ji) and
n=s

'P = C iBtP(t),
n=s

(A5.8)

(A5.9)
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where PnS(9) is the associated Legrendre polynomial of order n and degree s (Abramowitz

and Stegun, 1964). Associated Legendre polynomials have several useful properties that

we will take advantage of in solving for the unknown coefficients As and B', including

V2p s = -n(n+1)P] (A5.10)

Ps +S ps -s+l ps
2n+1 2n+1 n+1, (A5.11)

DIPn = (n+1)(n+s) p n(n-s+l)
n-2n+ l -2n+1 +1, and (A5.12)

D2P' = -n(42+1) PB - t(n+l)D1 Pn + 2p(n+s) Pn_1 + (n+s)D 1 P 1. (A5.13)

Our procedure is now straightforward. We first choose an azimuthal wavenumber, thereby

fixing s. Then, by successively using the recursion relations (A5.10) - (A5.13), and

equating coefficients of like PS1 to zero, we can reduce (A5.6) - (A5.7) to two infinite sets

of independent algebraic equations (the even and odd n Psn uncouple from each other). One

system corresponds to motions symmetrical about the equator, the other to motions anti-

symmetrical about the equator. In practice, we must truncate each system at a finite number

of n = Nmax. For further details of the procedure as applied to the non-magnetic case, see

Longuet-Higgins (1968).

It is evident from (A5.6) - (A5.7) that with the expansion (A5.8) - (A5.9) and the

use of the recursion relations (A5.10) - (A5.13), our matrix equation, for either even or

odd n, is of the form

[oB - Co - aC -1/(ea)J]x = 0. (A5.14)

In this system, the matrix B contains inertial effects, the matrix Co Coriolis effects, the

matrix C magnetic effects, and the matrix J buoyancy effects. x is the solution vector,
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consisting of the coefficients Af and BS , at a chosen s. For a non-trivial solution vector,

the bracketed term must have a determinant equal to zero. We would therefore like to find

the eigenfrequencies a that allow these non-trivial eigenvectors x. The matrix equation

(A5.14) is not a standard linear eigenvalue problem, however, because for a given a and e,

a appears in both the denominator and numerator.

Following Longuet-Higgins (1968), we set

T = 1/a. (A5.15)

Setting D = Co + aC + TiJ, and multiplying by B- 1 (provided B is invertible, which it is,

since B represents the effects of sin20 operating on a Legendre polynomial), we obtain a

standard linear eigenvalue problem

Ax = ox, (A5.16)

where A = B-1D. Of course, we have paid a price for our substitution (A5.15). For a

given a and 11, we obtain Nmax eigenfrequencies a, each corresponding to a different e in

order to keep 11 fixed in (A5.15). Increasing Nmax increases the number of these

eigenfrequencies that converge to a sufficient accuracy.

When a = 0, A is real but not symmetric. Nevertheless, the Nmax eigenfrequencies

a all turn out to be real (Longuet-Higgins, 1968). For real Tl, the corresonding e are then all

real, though some may be negative. The parameter e is a measure of stable stratification, as

(5.35) demonstrates. A negative e corresponds to a negative value of c2 , implying a

negative Ap/p or a negative HIH 2/(Hi+H 2). Either of these possiblities represents unstable

stratification, so that we must reject the free oscillations at eigenfrequencies that correspond

to negative e. The eigenfrequencies corresponding to negative e play a role for forced

motion, however, since in the expansion of an arbitary forcing function we might require

eigenfunctions associated with these eigenfrequencies (Lindzen, 1967).
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Given the nature of the non-linear eigenvalue problem, iteration over 11 is

necessary. For the case in which a = 0, this consists in theory of looping over all real r1. In

practice, one loops over a discrete number of points in rl space, for each 1 obtaining the

spectrum of Nmax eigenvalues a (not all of which will have converged to the desired degree

of accuracy) and corresponding e. Those eigenfrequencies corresponding to a real, positive

e represent the desired eigenfrequencies, after which one can compute the desired

eigenfunctions. As a check of the computer code, we set s = 1 (as did we in all

calculations), a = 0, and 1r = +/- (2k) 1/2 (k = 24,23,...,-20). Setting Nmax = 30, we

reproduced the work of Longuet-Higgins (1968).

When one includes Lorentz forces for a finitely electrically conducting fluid, a is

non-zero, and A is no longer real, nor is it Hermitian. Thus, we must admit the existence

of complex eigenfrequencies a. Physically, of course, this is due to the introduction of

Ohmic dissipation. For a physically realizable, stably stratified fluid, e must be real and

positive, hence for complex a, 1I must be complex. In fact, with

£R + i = (GRTIR - OmI) - i(aRTI + aIR)

(aRTIR - oi) 2 + (ORTII + OIR)2 , (A5.17)

it is evident that aRlI = -GIrlR for real E. Once again, however, although the

eigenfrequencies and eigenfunctions corresponding to a complex e for a fixed and general TI

have no physical significance for the free oscillations, they are necessary for a complete

eigenfunction expansion of forced motions.

When a is non-zero, we expect on a physical basis that both oR and oa will be

negative for the damped westward modes. Hence, from (A5.17) we evidently need search

only over the second quadrant of the complex rl plane to obtain real, positive e. The

algorithm is simply to loop over this quadrant of the complex 1r plane, at each point
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calculating Nmax eigenfrequencies, keeping only those that correspond to real e. We

accomplish this daunting task by setting rR = - (2i) 1/2 and ri = + (2i)1/2, where i and j are

each a range of consecutive integers. In practice, we sped up the search by looking for i1

that caused a change in sign in EI, since a zero of El should therefore have been nearby.

Unfortunately, eigenfrequencies for the large e that we are interested in are extremely

difficult to obtain.
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Chapter 6

Conclusions and Future Work

This thesis has illustrated some of the mathematical, geophysical, and physical

difficulties of studying the Earth's core. The equations governing the motion of a rotating,

electrically conducting fluid are mathematically formidable, necessitating approximations.

The assumptions behind the approximations can be hard to gauge; the geophysical data do

not always constrain the parameter range or the boundary conditions. Moreover, the

geophysical data do not always provide a sufficient guide to the theoretician. This leaves

the geodynamo problem somewhat vague and ill-defined, especially frustrating given the

subtle physics. It is now clear why the non-dimensional number S defined in Chapter 1 is

small. Nevertheless we feel we have made some progress towards gaining insight into the

dynamics of the Earth's core.

In Chapter 2 we noted that certain features of the core magnetic field remain static,

which, together with a possible correlation between the static features, thermal anomalies in

the lower mantle, core-mantle boundary (CMB) topography, and virtual geomagnetic pole

(VGP) paths, suggests that the mantle exerts a long timescale control over core flow. While

questions remain about the resolution of the various data, the most apparent feature in all

appears to be a difference between the equatorial region and the polar zones, perhaps with

an azimuthal wavenumber m = 1 variation. This latitudinal dependence is not surprising -

the grossest differences in both the thermal and motion fields in the Earth's hydrosphere are

of course also between the equator and poles. In the Earth's hydrosphere these differences

arise not only from differential solar heating between latitudes, but also from the different

dynamics in the two regions, which results from the rapid rotation of the Earth.

In order to study steady fluid motions in a thick spherical shell driven by unstable

buoyancy gradients, we developed in Chapter 3 an iterative method that searches for finite-

amplitude, time-independent solutions. The method proved quite successful at predicting
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the critical Rayleigh number Rac at which time-independent, non-rotating, non-magnetic

convection commences, as well as the character of the finite-amplitude motion. As we

raised Ra above critical, we experienced more difficulty in finding converged solutions.

This is a result of the increasing non-linearity, with bifurcations in the space domain

becoming denser. We would also expect that with this cascade to smaller spatial scales, our

solutions would become more unstable with respect to time perturbations, eventually

leading to chaotic convection. At least for moderate Ra, however, we believe our

converged solutions yield correct time-averaged features.

In a rapidly rotating, electrically insulating, thick fluid shell with laterally

homogeneous boundary buoyancy conditions, linear theory predicts that convection

commences as azimuthally drifting columns (equatorial modes) tangent to the inner sphere,

with gs, the component of gravity perpendicular to the rotation axis, providing the driving

force. With further increases in Ra, convection in the form of polar modes, which resemble

the convective cells of a plane layer rotating about a normal axis, also occurs. These modes

depend upon gz, the component of gravity parallel to the rotation axis, for their existence,

and although they are less unstable than the equatorial modes, it is necessary to include gz

for a proper understanding of supercritical convection. While the mode of convection

between the equator and the poles differ, it is not obvious how, with homogeneous

boundary buoyancy conditions, static features in the core magnetic field could arise that

would correlate with the various anomalies in the lower mantle and CMB.

For a rapidly rotating, electrically conducting, thick fluid shell the free convection is

larger scale and more efficient, whether it occurs as a magnetic-Archimedean-buoyancy

(MAC) wave riding on an imposed toroidal magnetic field or as axisymmetric motion with

an imposed z-magnetic field, as we studied in this thesis. The dynamical differences

between the equatorial zone and the polar zones are a little more subtle than for the

electrically insulating fluid. Using the method we developed in Chapter 3, we found in

Chapter 4 that in conjunction with the greater vigor of convection nearer the inner core (due
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to the spherical geometry), the non-linear interaction between the toroidal magnetic field

and its associated radial electrical current leads to a bias towards equatorial upwelling flow.

Although we have found this result through a study of the magnetic analog of the polar

modes with a particular imposed magnetic field, the process by which the upwelling occurs

is essentially a consequence of the co-effect that is very likely responsible for the toroidal

magnetic field in the core. We thus believe equatorial upwelling may be a general feature of

the mean poloidal circulation due to free convection in the Earth's outer core.

On the other hand, it is possible that the mantle imposes thermal boundary

conditions on the core with a latitudinal dependence, analogous to equatorial solar heating

of the hydrosphere (though over many convective overturns of the mantle there is no

dynamical reason why the present distribution should remain). The importance of north-

south thermal boundary condition gradients at the CMB, with the accompanying thermal

winds in the core, is not known. The results of Section 4.6 indicate that the ability of

latitudinally variable boundary conditions to modify the motions of free convection depends

not only upon the relative strength of the inhomogeneous lateral forcing to the homogneous

vertical forcing (the size of the parameter y of Section 4.6), but also on the distribution of

the inhomogeneity (the sign of y). We must therefore be careful about interpreting core

surface flow as a direct result of core-mantle thermal forcing.

Through the Rossby or magnetic Rossby wave mechanism, all non-axisymmetric

free convection solutions in a rotating spherical shell drift in azimuth. However, the data

indicate that some features of the magnetic field do not drift, suggesting steady motions.

Steady motions with an azimuthal variation must presumably result from azimuthally

inhomogenous boundary conditions arising from conditions in the lower mantle. We have

not yet studied azimuthally dependent solutions that arise from azimuthal variations in the

boundary conditions. The importance of wave solutions in addition to steady solutions

complicates such a study, and our iterative method may not be suitable. Indeed, the lack of
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time-dependence is clearly the great limitation of our method, though the alternative, a

three-dimensional time-stepping approach, is computationally prohibitive.

In Chapter 5 we studied magnetic Rossby waves in a hypothetical stably stratified

layer at the top of the outer core. In the thin-layer limit we found analytically, using a

P-plane approximation, and numerically that a sufficiently strong magnetic field can break

the equatorial waveguide caused by rotation. The modes are highly dissipative, but this is a

result of our neglect, necessary for the thin-layer approximations, of the electric field term

in Ohm's law. For a finite-thickness layer the modes will be less dissipative so their

relation to the magnetic secular variations remains unclear. The phase speed of magnetic

Rossby waves is somewhat greater than the velocities generally inferred from secular

variation studies. With an improvement in surface magnetic field data quality and quantity,

it would be interesting to see if there were any evidence of signals of internal origin that

resemble rapidly moving waves.

Finally, we conclude with a few remarks about future work that is a natural

extension to this thesis. Firstly, a more detailed study of the relative effects of latitudinally

variable versus vertical boundary buoyancy gradients would be desirable, as would further

confirmation that the non-linear Lorentz force leads to a preference towards equatorial

upwelling in the core. An extended study of the thesis work should include linear stability

analyses of the steady, non-linear solutions. Secondly, a study of the motions driven by

both an azimuthally variable upper boundary buoyancy flux and bottom forcing would be

interesting, though extremely challenging, as the calculations must necessarily be three-

dimensional, time-dependent, and non-linear. Concurrently, we hope to see further

progress towards obtaining reliable maps of the lower mantle thermal structure and CMB

topography, as well as continued paleomagnetic studies to determine the statistical

significance of the VGP paths. Lastly, if strong enough, core-mantle thermal interactions

are likely to disrupt a stably stratified layer at the top of the outer core, which is most likely

a result of chemical (compositional) convection. A study of the thermal stability of a
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chemically stratified layer could yield bounds on the thickness and buoyancy of a stable

layer as a function of the size of lateral variations in the heat flux across the CMB. We hope

to make progress on these topics in the near future.
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