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Abstract

Geomagnetic and paleomagnetic data show that certain features of the Earth's
internal magnetic field remain stationary for time scales longer than the presumed
convective time scale of the core. This suggests external control by the mantle, with its
much longer convective time scale. We review the evidence for core-mantle thermal
coupling, which includes spatial correlation between the static magnetic field features,
lateral thermal anomalies in the lower mantle, core-mantle boundary topography, and
possibly virtual geomagnetic pole (VGP) paths during magnetic dipole reversals. However,
questions remain about the resolution of the various data. Maps of the main magnetic field
at the Earth's surface suggest that anomalous electrical currents may be present in the
equatorial zone, with a large azimuthal wavenumber m = 1 contribution. To test this
inference, we invert the surface magnetic field for the magnitude of ideal magnetic dipoles
distributed in various ways throughout the outer core. We find a better, smoother fit with
equatorial dipoles than with polar dipoles. The equatorial anomalies in the surface main
field correlate with regions of high surface magnetic secular variation, further suggesting
persistent motions in the core.

Although the convective equations are highly non-linear due to the high Rayleigh
number of the Earth's core, so that time-dependent motions are certainly present, we are
interested here in the possibility of steady motions that result from either free convection
(laterally homogeneous boundary buoyancy conditions) or forced convection (laterally
inhomogeneous boundary buoyancy conditions), and that might cause static features in the
magnetic field. Our approach to the non-linear problem is therefore to look for finite-
amplitude, time-independent convective solutions using an iterative finite-difference
numerical method. Although we cannot be sure of the stability with respect to time
perturbations of our solutions, our method has computational advantages over time-
stepping that allow us to examine a large parameter space. We provide destabilization in our
model by uniformly fluxing buoyancy across the bottom boundary with a concominant
buoyancy sink at the top boundary. The Rayleigh number Ra is a measure of the
destabilization.

We first apply our method to a non-rotating, electrically insulating, spherical fluid
shell in order to demonstrate the method's viability. We then look for solutions in a rapidly
rotating spherical fluid shell (high Taylor number Ta). We obtain axisymmetric polar
modes, but not the non-axisymmetric equatorial modes (columns) predicted by linear
theory, which require an azimuthal drift in spherical geometry. In an infinite annulus we
have no difficulty obtaining columnar convection, and show that in this geometry, an
imposed toroidal magnetic field actually inhibits convection.

We next return to the rotating spherical shell, impose a poloidal magnetic field, and
look for the magnetic analog of the polar modes. When the Lorentz force is comparable to
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the Coriolis force (Elsasser number El = O(1)), the modes fill the shell and most efficiently
transport buoyancy. We show that it is the component of gravity parallel to the rotation
axis, gz, that is responsible for the modes' existence. Hence, for supercritical convection it
is dynamically incorrect to omit gz, especially for an electrically conducting fluid in which
the polar modes are more efficient. In conjunction with the greater efficiency of convection
near the inner spherical boundary than near the outer one, the non-linear interaction
between the advectively-created toroidal magnetic field and the associated radial electrical
current leads to a consistent bias towards equatorial upwelling flow in the core. Because of
the lack of time-dependence, we cannot be sure of the stability of any particular converged
solution, but we nevertheless believe that this non-linear result is a general feature of the

w-effect.

Finally, we study axisymmetric flows forced by a high buoyancy flux across the
upper boundary near the equator and a low flux near the poles. In the absence of rotation
and a magnetic field, we find converged solutions with local downwelling flow beneath the
equator for a wide range of Ra, displaying the effect of the boundary condition. With
rotation and a magnetic field we find similar results at low Ra, when conduction remains
dominant. At higher Ra, however, when convection becomes dominant, we cannot induce
equatorial downwelling because of the non-linear bias towards equatorial upwelling.
Instead, we obtain equatorial upwelling reduced from that with a homogeneous boundary
buoyancy flux. On the other hand, a high upper boundary buoyancy flux at the poles
enhances the equatorial upwelling. The study of forced flows requires more work,
including discerning the role of non-axisymmetry and time-dependence.

A second topic that we study in this thesis involves a possible consequence of
compositional convection in the Earth's core: the formation of a stably stratified layer at the
top of the outer core. The magnetic analog of Rossby (planetary) waves in this stable layer
(the 'H' layer) may be responsible for a portion of the short-period secular variation. We
adopt a thin shell model to examine the dynamics of the H layer. The stable stratification
justifies the thin-layer approximations, which greatly simplify the analysis. The governing
equations are then the Laplace's tidal equations, modified by the Lorentz force, and also the
magnetic induction equation. We linearize the Lorentz force in the Laplace's tidal equations
and the advection term in the magnetic induction equation, assuming a zeroth order dipole
field as representative of the magnetic field near the insulating core-mantle boundary.

An analytical B-plane solution shows that a magnetic field can release the equatorial
trapping that low frequency, non-magnetic planetary waves exhibit. A numerical solution to
the 2-D spherical equations confirms that a sufficiently strong magnetic field can break the
equatorial waveguide. Both solutions are highly dissipative, but this is essentially due to
our neglect of db/dt in comparison with the advection and diffusion terms in the magnetic
induction equation. Were one to include the time derivative of the magnetic field, which
would necessitate relaxing the radial independence of the solutions, one would find
magnetic planetary waves are considerably less damped. For the magnetic field strength
appropriate for the H layer, the real part of the eigenfrequencies change little from their
non-magnetic values. We estimate a phase velocity of the lowest westward propagating
modes that is rather rapid compared with fluid speeds typically presumed in the core.

Thesis supervisor: Theodore R. Madden
Title: Professor of Geophysics
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Chapter 1

Historical Context

Soon after presenting his 1905 paper on special relativity, Einstein described the
problem of the generation of the Earth's magnetic field as one of the five great unsolved
problems of physics. Despite progress, the geodynamo problem remains unsolved. Larmor
(1919a,b) was the first to suggest that fluid motions within astronomical bodies might be
responsible for generating magnetic fields in a self-exciting dynamo process. However,
Cowling (1934) demonstrated that a velocity field symmetric about an axis (such as the
rotation axis) cannot maintain a magnetic field also symmetric about that axis. This first
anti-dynamo theorem (see Moffatt, 1978 for more anti-dynamo theorems) therefore
mandated that a sufficiently complex velocity field be present in the Earth's magnetofluid
outer core, and was a harbinger of the difficulties ahead. In light of this anti-dynamo
theorem, Blackett (1952) hypothesized that a rotating solid body might have a magnetic
dipole moment inherently proportional to its angular momentum, so that astronomical
bodies might exhibit large magnetic fields. However, in a laboratory experiment involving
a rotating gold sphere and a sensitive magnetometer that he designed expressly for the
experiment, he found no evidence of magnetic field generation.

Bullard and Gellman (1954) pressed forward with finding a solution to the
kinematic dynamo problem. The kinematic dynamo problem consists of finding a velocity
field that when inserted into the magnetic induction equation sustains magnetic field
growth. It is simpler than the full hydromagnetic dynamo problem in that one is not
concerned with dynamics, i.e., one does not solve the Navier-Stoke;s equation with the
non-linear Lorentz force coupling term. Questions remained about the convergence of
Bullard and Gellman's (1954) solution, and Gibson and Roberts (1969) finally proved that
it does not converge, but in the meantime Backus (1958) designed a kinematic dynamo

with a time-varying velocity field that does converge. This demonstrated the viability of the
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kinematic dynamo in a fluid sphere, without relying on wires, brushes, and other matter
presumably foreign to planetary interiors. Along with advances in magnetohydrodynamics
(MHD) by Alfven (1940) and Elsasser (1946a,b,1947), the success of these early
kinematic dynamos propelled the study of dynamo theory, and indeed, no one has yet
established a general anti-dynamo theorem. It is now generally presumed that a dynamo
mechanism is responsible for the generation of the geomagnetic field.

The difficulty of the dynamo problem arises from several sources. Firstly, the
governing equations are mathematically formidable. The equations governing the kinematic

dynamo problem include Maxwell's equations,

VxB =p], (1.1)
VxE =- 0B/t and (1.2)
V-B =0, (1.3)
and Ohm's law,
J= O'(E + VXB), (14)

which combine to yield the magnetic induction equation,

a—B= xVZB + V x (vxB)

ot (1.5)

For the full hydromagnetic dynamo problem one must also solve the Navier-Stokes

equation,

ov

AR -. 2 L
Tt V)v+2Qxv=-Vp+vVv+cg+ o (VxB)x B (1.6)



as well as the continuity equation,

Vv =0, (1.7)

and the buoyancy equation,

%‘u (v-V)c =kVe+e (1.8)

In (1.1) - (1.8), v is the velocity field in the rotating reference frame, B is the magnetic
field, E is the electric field, J is the electric current density, p is the pressure, ¢ is the
density deficit from the mean, p is the magnetic permeability, ¢ is the electrical
conductivity, ¥ = 1/uo is the magnetic diffusivity, Q is the rotation vector, v is the fluid
viscosity, g is the radial gravitational vector, p is the fluid density, x is the density
diffusivity, and € is a density source term. In writing down (1.1) - (1.8) we have already
made two assumptions, incompressibility and the Boussinesq approximation (Melchior,
1986). Solving a set of non-linear partial differential equations such as (1.5) - (1.8) in
spherical geometry for the unknowns B, v, p, and c, subject of course to the proper
boundary conditions, is very clearly a formidable task. Thus, it is not really feasible even
on today's supercomputers to simply 'solve' the geodynamo without making further
assumptions.

The second difficulty associated with the dynamo problem is our deficient
knowledge concerning various parameters associated with the Earth's core. Although we
know the values of . (equal to its free space value o, given the high temperature in the
core) and 2, and have good estimates for G, p, and g (as a function of radius) in the core,
we are less certain of the molecular values of v and k (see Table 1.1). Perhaps more glaring
is our ignorance of the geodynamo's power source. Via viscous and Ohmic dissipation, the

kinetic energy of the fluid motions and magnetic energy stored in the magnetic field gets
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transferred to heat, which then escapes to the mantle. Against this energy loss, the
geodynamo must have a power source. Although some (Malkus, 1968) have suggested
other mechanisms such as precession, most work has concentrated on thermal or chemical
(compositional) buoyancy as the power source. Thermal buoyancy might result from a
distribution of radioactive heat sources in the fluid outer core or from latent heat of
crystallization (Verhoogen, 1980). Latent heat results from the freezing of the core at the
inner-outer core boundary (ICB), where the core freezing point curve intersects the
temperature curve. Accompanying the latent heat and resulting thermal buoyancy may be a
supply of chemical buoyancy that occurs with the release of gravitational energy
(Braginsky, 1963). The gravitational energy results from pure iron preferentially freezing
out, leaving the resulting melt slightly enriched in lighter impurities such as oxygen or
sulfur (Ringwood, 1977).

Although some (Gubbins, 1977) argue that chemical buoyancy is more efficient
than thermal buoyancy, we cannot yet be certain of the energy source for core convection
and hence for the geodynamo. In any case, the equations that govern the distribution of
temperature and of chemistry are the same, (1.8), and because of our uncertainty on the
proper energy source, we use ¢ to denote the density deficit due to either temperature or
chemistry. Similarly, we use € to denote either a thermal or chemical buoyancy source.
However, although the governing equations are identical, the boundary conditions on ¢, the
functional form of €, and the value of k might be very different depending on the driving
force. For instance, the molecular value of x for temperature is probably much greater than
that for chemistry (Table 1.1). Moreover, we might expect € to be uniform throughout the
core for radioactive heat, but concentrated at the lower boundary for latent heat or
gravitational energy. Similarly, the proper boundary conditions for thermal convection
might be a fixed temperature or heat flux at the ICB and a fixed heat flux at the core-mantle
boundary (CMB), whereas for chemical convection a fixed chemical flux at the ICB and

zero flux at the CMB may be more appropriate.
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A major part of the difficulty in evaluating the energy needs of core convection and
the geodynamo is that we do not know the strength of the magnetic field in the Earth's
core. Because the electrical conductivity of the mantle is several orders of magnitude lower
than that of the core (though we do not know the details of the electrical conductivity profile
in the mantle, particularly near the CMB (Merrill and McElhinny, 1983)), electrical currents
cannot effectively flow in the mantle. In the limit that the entire mantle is electrically
insulating, the toroidal magnetic field in the core must go to zero at the CMB. Hence, what
we observe at the Earth's surface, the poloidal magnetic field, is only a part of the total in
the core. Indeed, it is a feature of some dynamo models, the 'strong-field' models, that the
toroidal field is as much as two orders of magnitude stronger than the poloidal field
(Braginsky, 1964a,b). On the other hand, some models, the 'weak-field' models, exhibit a
toroidal field comparable to the poloidal field (Busse, 1975). Although theory shows that
the stability of the weak-field models is doubtful (Soward, 1979), and their energy
requirements may be unreasonably large (Roberts, 1988), we have few observational
constraints to guide us as to strength of the toroidal magnetic field.

Not definitively knowing the parameter range of interest within the core, we cannot
always properly evaluate the assumptions that we must make if we are to attempt to solve
the mathematically difficult problem. Although geomagnetic data can provide us with
information on fluid flow at the top of the outer core, provided we make several
assumptions (Bloxham, 1988), it is available only for the past few hundred years. Also, its
spatial coverage is not generally ideal. Paleomagnetic data has shown us that the dipole
magnetic field can reverse its polarity on an extremely rapid timescale (compared with the
geologic timescale), and that the reversals are aperiodic, presumably demonstrating the high
non-linearity of the problem. However, paleomagnetic data is often of low quality (with
less spatial coverage and discontinuous temporal coverage) than geomagnetic data. Thus,

besides the mathematical difficulty of the theory and the uncertain parameter range, we have
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little observational evidence to guide us. This paucity of observational evidence compounds
the challenge to connect data and theory.

Finally, the dominant forces are likely the Coriolis, pressure, and perhaps, Lorentz
forces. The first arises due to the rapid rotation of the Earth, the last due to the magnetic
field. These two forces are not generally within the realm of common experience, and are
often counter-intuitive. Acting together, they can be counter-counter-intuitive, as we shall
later see. Perhaps as much as any of the mathematical and observational problems, this lack
of intuition makes the problem so difficult, but also so interesting. Of the many non-
dimensional numbers that we will use through this work, the most certain may be the

success parameter S defined by Roberts (1988), where

- number of successful models
S number of attempted models

Needless to say, S is a small number.

Nevertheless, although we do not have a dynamically self-consistent dynamo
operating at the parameter range approaching that likely found in the core, much progress
has been made in understanding the generation of the Earth's magnetic field. One can attack
the full hydromagnetic dynamo problem from two approaches. One, as described above, is
the kinematic approach whereby one studies the magnetic induction equation (1.5). From
this approach one can come to understand the kind of motions that are necessary to sustain
magnetic field growth against the inevitable dissipative processes. An improvement to this
approach is that where one also solves the Navier-Stokes equations (1.6) and the continuity
equation (1.7), but one assigns the buoyancy force ¢ and does not solve the buoyancy
equation (1.8). Braginsky and Roberts (1987) used such an attack in their study of the
model-Z dynamo. In addition, they employed an approach whereby one assigns the
azimuthally averaged effects of interaction between the weakly non-axisymmetric velocity

and magnetic fields (Braginsky, 1964a,b). The interaction is a means to produce an
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'o-effect’ (Parker, 1955), and the method allows one to reduce the dimension of the
problem from three to two, at the cost of a somewhat artificially assigned electrical current.
Alternatively, one can think of using the a-effect as employing a two-scale approach
(Steenbeck et al., 1966). The o-effect is central to modern kinematic dynamo theory, for it
is the primary means to create a poloidal magnetic field from a toroidal one. Also important
to kinematic dynamo theory is the 'w-effect', which is the primary means to create a
toroidal magnetic field from a poloidal one, but which can be axisymmetric and does not
require averaging.

The second approach towards gaining an understanding of the geodynamo is to
study the various instabilities that can occur in a rotating, electrically conducting fluid. This
typically involves solving (1.5) - (1.8), but with some fixed basic state assigned a priori.
For instance, one might examine the linear stability of a rotating, electrically conducting
fluid shell, heated from below and cooled from above, and permeated by an assigned
magnetic field and fluid shear. The study of linear convection and magnetoconvection has
unearthed a plethora of instabilities that may play a role in the generation of the magnetic
field and its secular variations (Chandrasekhar, 1961, Fearn et al., 1988, see Chapter 3).
Of course, because the assigned magnetic field and shear are fixed, one cannot speak of
dynamo action. At the juncture of the two approaches lies the full hydromagnetic
geodynamo problem, equations (1.5) - (1.8), with no magnetic fields or fluid shears
assigned a priori, and with parameters, boundary conditions, and an energy source
assigned in a geophysically realistic manner. A problem, of course, is that we do not
always know what is geophysically realistic.

While mathematicians continue to make progress towards an understanding of the
full hydromagnetic dynamo problem through advances in kinematic dynamo theory and
studies of instabilities in electrically conducting, rotating fluids, geophysicists are making
progress in determining the proper parameter range, boundary conditions, and energy

sources under which the geodynamo operates. The challenge is to connect the two, which
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is clearly a formidable task. Although the geophysical data is limited in quality and
quantity, and although the subjects of kinematic dynamo theory and rotating
magnetoconvection are still not fully mastered, we nevertheless believe that we can use the
geophysical data to provide some insight into the dynamics of the lower mantle and core. In
this thesis we therefore hope not only to further our understanding of magnetoconvection
and magnetic instabilities in rotating fluids, but also to apply our findings to the real Earth.

In the second chapter of this thesis, we present the geophysical evidence that static
features in the geomagnetic field may correlate with lateral thermal anomalies in the lower
mantle. Although there remain questions about the resolution of the data, the suggestion of
core-mantle thermal coupling (Bloxham and Gubbins, 1987) is intriguing. However, very
little is known about the stationary motions in an electrically conducting, rotating fluid
driven by a laterally inhomogeneous boundary buoyancy condition (forced convection) that
might give rise to static features in the magnetic field. In the third and fourth chapters, we
therefore develop an iterative method to study steady, finite-amplitude, rotating
magnetoconvection. We will apply the method to both free convection (laterally
homogeneous boundary buoyancy conditions), for which considerable prior work exists
for comparison, and forced convection. Using our iterative method, we will study the
influence of rotation, imposed magnetic field configuration, geometry, and non-linear
effects. In chapter five, we examine a somewhat separate problem, that of magnetic Rossby
waves in a hypothetical stably stratified layer beneath the CMB. We investigate the
possibility that these waves might be responsible for a portion of the magnetic secular

variation. Finally, in chapter six, we conclude.



Mean rotational frequency
Mean radius of the outer cored
Mean radius of the inner coreb

Composition of the outer core?

Mean density of the outer coreb
Temperature at CMB2.b

Temperature at ICB2:

Gravity at CMBb

Gravity at ICBb

Fluid viscosity of the outer core?
Magnetic diffusivity of the outer core?
Thermal diffusivity of the outer core?

Chemical diffusivity of the outer core?

Rayleigh number®

Taylor numberd

Elsasser numberd
Thermal Prandtl numberd
Chemical Prandtl number®
Magnetic Prandtl numberd

14
7.2722 x 1073 rad/s
3.48x 106 m
1.22 x 106m
primarily Fe, possibly a few percent Ni,
6-10% lighter elements such as O, S, Mg, Si
1.2 x 104 kg/m3
2300 K < T < 5000 K, best estimate 3157 K
3000 K < T < 8000 K, best estimate 4168 K
10.68 m/s2
4.40 m/s2
106 m2/s < v < 105 m%/s
O(1) m%s
4.2 x 106 m?%/s

3 x 109 m2/s

>> 1, perhaps as large as 1030
>> 1, perhaps as large as 1030
perhaps O(1)

o)

>>1

0(106)

Source: aMerrill and McElhinny (1983), PLoper (1984), ¢Cardin and Olson (1992),

dRoberts (1988), €Zhang (1991)

Table 1.1 Estimates for parameters and non-dimensional numbers of importance for

rotating magnetoconvection in the Earth's core.
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Chapter 2

Observational Evidence for Stationary Flow in the Earth's Core

2.1 Introduction

In Chapter 1 we discussed the difficulty of interpreting surface geomagnetic and
other geophysical data to shed light on the workings of the Earth's dynamo; in this chapter
we briefly illustrate some of the difficulty with regard to the subject of core-mantle thermal
coupling. The usual geophysical problem of insufficient and defective data is extreme in
matters concerning the lower mantle and core. Moreover, while the evidence is mounting
that the mantle, with its long thermal time constant, plays a role in governing near-surface
core motions, there remain problems with the interpretation of the observations. After
reviewing the observational evidence for core-mantle thermal coupling, we will look
critically at the claimed correlation of various geophysical data. Finally, we will simply
examine maps of the magnetic field and its secular variation at the Earth's surface in an

effort to gain further insight into the dynamics of the Earth's deep interior.

2.2 Evidence for core-mantle thermal coupling

In part because of efforts to obtain maps of the fluid flow at the CMB, considerable
effort has been made to obtain maps of B; and dB,/dt at the CMB. One can construct maps
of the magnetic field at the Earth's surface using a least squares fit to a truncated spherical
harmonic expansion (Barraclough er al., 1978). However, constructing maps of the
magnetic field at the CMB using a spherical harmonic analysis is a bit more problematic
(Shure et al., 1982, Gubbins, 1983). Firstly, small wavelength errors (and crustal
contributions) in the magnetic field at the Earth's surface may dominate the field that is

simply downward continued to the CMB. One could truncate the expansion at a low
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degree, but this is somewhat arbitrary. Secondly, it is not possible to assign meaningful
errors to the maps of the magnetic field at the CMB using a spherical harmonic analysis.
This is especially important when one is using the maps quantitatively for finding fluid
flow, and one would like to know the range of possible models.

Shure ez al. (1982) and Gubbins (1983) developed alternate methods for modelling
the geomagnetic field on the CMB, both, like the spherical harmonic analysis, assuming an
insulating mantle. Shure ez al. (1982) used harmonic splines to find the smoothest field
consistent with the data. They assessed this smoothness using various norms on the
integrated magnetic field on the core surface, such as the Ohmic dissipation. Gubbins
(1983) used stochastic inversion to incorporate a priori knowledge to damp out spurious
small scale features in the magnetic field at the CMB. By choosing similar a priori
knowledge (such as minimizing the Ohmic dissipation), stochastic inversion gives results
similar to harmonic splines, but it also gives error estimates. Gubbins and Bloxham (1985)
reformulated their stochastic inversion in terms of a Bayesian formalism, which also
enabled them to incorporate measurements such as total intensity (from satellites), and
declination and inclination (from ship surveys) that depend non-linearly on the model. They
find that the core fields they obtain are relatively insensitive to the damping level, but that
the error bounds, especially at high degree, very much depend on the damping level.

Gubbins and Bloxham (1985), Bloxham and Gubbins (1985), Bloxham (1986),
and Hutcheson and Gubbins (1990) used this formulation of the stochastic inverse to
produce models of the magnetic field at the CMB as far back as the seventeenth century,
with formal errors that represent the uncertainty in the field models. They found that their
maps resolve small scale features that their error analysis indicates are real features of the
core surface magnetic field. Figure 2.1 is one such map, for 1980. The maps show static
patches of high magnetic flux at high positive and negative latitudes at longitudes of 120° E
and 120° W (1 - 4 in Figure 2.1), and static patches of low magnetic flux at the poles

(5 - 6), which is perhaps surprising since one would expect a maximum at the poles for a
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dipole field. They also found rapidly westwardly drifting flux spots, primarily under the
Atlantic region, as well as stationary, local magnetic field oscillations near the magnetic
equator underneath Indonesia.

Gubbins and Bloxham (1987) tentatively identified the static high flux patch pairs
1 and 3, and 2 and 4 with the intersection of convection columns (Roberts, 1968, Busse,
1970, see Chapter 3, Figure 3.1) with the spherical surface at the CMB. Associated with
each convecting column is downwelling flow induced by Ekman suction at the boundary
(Greenspan, 1968) that concentrates the magnetic flux. In between (longitude = 180°) lies a
pair of regions of low magnetic flux associated with a column containing upwelling flow.
At 0° longitude a third pair of regions of high flux is missing; they ascribed this to the near
core surface flow that is associated with the high secular variation under the Atlantic region.
The static low flux patches near the poles they accredited to the dynamical effect of the
inner core. In the absence of strong Lorentz forces this picture is appealing. However, the
columns, if they represent free convection driven by a homogeneous boundary temperature
or buoyancy flux, should drift in azimuth (Busse, 1970); they show no such drift.

Bloxham and Gubbins (1987) ascribed this lack of drift to core-mantle thermal
coupling. The mantle, being much more viscous than the core, has a much longer
convective time scale than the outer core. Hence, horizontal temperature differences in the
lower mantle should persist over many core convective overturns, and force flow in the
outer core via an inhomogeneous boundary heat flux (King and Hager, 1989, Zhang and
Gubbins, 1992). (Note that because of the short thermal time scale of the outer core the
proper thermal boundary condition on mantle convection remains an isothermal
temperature.) Bloxham and Gubbins (1987) found evidence for c.ore-mant]e thermal
coupling by finding a spatial correlation between static features in the magnetic field at the
CMB, anomalies in the seismic P-wave velocity at the bottom of the mantle (Dziewonski,
1984), and CMB topography (Hager et al., 1985). Figure 2.2 shows the P-wave velocity
at the CMB and Figure 2.3 shows the CMB topography. Regions in the lower mantle that
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Figure 2.1 Map of the radial component of the magnetic field at the core-mantle
boundary for 1980 (reproduced from Gubbins and Bloxham, 1987, originally from
Gubbins and Bloxham, 1985). The contour interval is 100 uT; solid contours represent
positive radial field, dashed contours represent negative radial field, and bold contours
represent zero radial field. The pairs 1-3 and 2-4 are patches of high (enhanced) magnetic

flux and 5-6 are patches of low magnetic flux.

Figure 2.2 Map of the seismic P-wave velocity at the core-mantle boundary (reproduced
from Bloxham and Gubbins, 1987, originally from Dziewonski, 1984). The contour
interval is .5%. The minus signs corresponds to fast, i.e., cold, mantle, and the plus sign
to slow, or hot, mantle. The regions of cold mantle appear to correlate with the patches of
high magnetic flux in Figure 2.1, suggesting downwelling core flow, while the region of
hot mantle appears to correlate with the flux spots beneath southern Africa, suggesting

upwelling flow.

Figure 2.3 Map of dynamic core-mantle boundary topography inferred from P-wave
variations and constrained by the geoid, assuming a chemically uniform mantle with a
ten-fold increase in viscosity beneath 670 km (reproduced from Bloxham and Gubbins,
1987, orginally from Hager et al., 1985). The contour interval is 500 m. The minus signs
correspond to regions of depressed CMB, or cold mantle, the plus sign to a region of

elevated CMB, i.e., hot mantle. Again, there is some correlation with Figure 2.1.
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are cold should be seismically fast, with a dynamically maintained depressed CMB, and
vice versa. Further, regions in the lower mantle that are cold might exhibit a high heat flux
from the underlying region of the core, resulting from core fluid horizontally converging
and then downwelling, which could also cause a static high magnetic flux patch. Although
the correlation in Figures 2.1 - 2.3 is certainly suggestive of core-mantle thermal coupling,
the resolution of the three plotted quantities is perhaps insufficient, as we shall shortly
discuss.

During a magnetic dipole reversal it is unlikely that the field maintains a simple
structure, i.e., the dipole does not simply 'flip' (Merrill and McElhinny, 1983). If this were
the case, one could define a single VGP path for each reversal that without control external
to the core would vary for each reversal. If not the case, a VGP path is in theory a
meaningless quantity, since there is no single north pole to define. Nevertheless,
paleomagnetists have found that while each reversal does not trace out a single VGP path, it
does often yield just two distinct longitudinal paths. This suggests that during a reversal a
relatively simple, though not unique, field structure remains. One possibility (Clement and
Kent, 1991) that gives rise to the observed equatorial symmetry is a magnetic field with a
dominant h% Gauss coefficient. Clement and Kent (1991) and Clement (1991) state that the
longitudes of the two VGP paths during the Matuyama-Brunhes magnetic dipole reversal
(Figure 2.4) nearly coincide with the longitudes of the static patches of high magnetic flux
at the CMB (Gubbins and Bloxham, 1987), but we later question this correlation. In any
case, there is also evidence that VGP paths have preferred these two longitudes during
other reversals (Tric et al., 1991, Laj et al., 1991), which further supports the idea that the
mantle exerts control over core motions.

While these possible correlations between static magnetic flux patches, P-wave
velocities in the lower mantle, CMB topography, and VGP paths during magnetic dipole
reversals are certainly suggestive of coupling between core and mantle, the data are not

without considerable uncertainty. Backus (1988) questioned the error estimates of Gubbins



25

Lafitude

B0 135 .80 5 O & . 80 135 160
Longitude

Figure 2.4 Virtual geomagnetic pole paths for the Matuyama-Brunhes dipois reversal
(from Clement and Kent, 1991). Solid squares indicate pole positions for si:z V16-58,
open squares for site 609, and solid circles for site 664, with the open circles indicating
site positions. The mid-latitude sites yield VGP paths passing through the Americas,
while the equatorial site yiclds a VGP path passing through Asia. The longitudes of the
paths are nearly antipodal.
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and Bloxham (1985), believing that their optimistic error estimates resulted from an
overemphasis on the a priori information, i.e., too much damping. Thus, the resolution of
the small scale features (degree £ > 10) of the magnetic field on the CMB of Bloxham and
Gubbins (1985), Bloxham (1986), and Hutcheson and Gubbins (1990) is under question.
However, maps produced with entirely different data sets (different epochs) and with a
different inversion technique (a spherical harmonic analysis truncated at degree 14) produce
similar looking maps (Gubbins, 1989), and in any case, the static flux patches are less than
degree 10.

More severe doubts remain about our current ability to resolve aspherical seismic
structure of the lower mantle for £ > 3. Gudmundsson and Clayton (1991) discussed the
low signal to noise ratio of the International Seismological Centre (ISC) Catalogue for
tomographic inversions for lower mantle asphericity. In addition, the data set contains
systematic errors and uneven geographical coverage. Significantly less unique than our
maps of lower mantle P-wave velocity, and the inferred thermal structure, are our maps of
CMB topography (Hide et al., 1992). By using the surface geoid, and lateral seismic
velocity variations to infer temperature (and hence density) variations in the mantle, and
assuming a chemistry and viscosity structure in the mantle, one can obtain the dynamic
CMB topography (Hager ez al., 1985). For a chemically uniform mantle with a ten-fold
increase in viscosity beneath 670 km, this procedure predicts the CMB topography that we
show in Figure 2.3, which has a peak-to-peak amplitude of about 3 km. However, we do
not know the viscosity structure of the mantle, particularly in the D" layer directly above the
CMB, and a low viscosity zone associated with an elevated temperature yields a smaller
dynamically maintained CMB topography. For instance, for a 200 km ‘thick D" layer with a
viscosity 1/100 that of the lower mantle, the procedure predicts an amplitude less than 2 km
(Hager and Richards, 1989). We show this topography in Figure 2.5 (from Hide et al.,
1992). Although the amplitudes differ between Figures 2.3 and 2.5, the spatial variation
appears similar.
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Figure 2.5 Map of dynamic core-mantle boundary topography inferred {rom P-wave
variations and constrained by the geoid, assuming mantle model WL of Hager and
Richards (1989) (reproduced from Hide et al., 1992). The model allows for a low
viscosity D". The contour interval is 200 m. Solid contours correspond to regions of
elevated CMB, dashed contours to regions of depressed CMB. Although the amplitude

differs from Figure 2.3, there is spatial correlation.
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Figure 2.6 Map of core-mantle boundary topography inferred directly from P-wave
variations, allowing for velocity variations in D" (reproduced from Hide ez al,, 1992,
originally from Gudmundsson and Clayton, 1992). The contour interval is SO0 m. Solid
contours correspond to regions of elevated CMB, dashed contours to regions of depressed
CMB. Although the amplitude is much less than that inferred seismically by Creager and
Jordan (1986) or Morelli and Dziewonski (1987), there is no azimuthal correlation with
the dynamically inferred topography of Figures 2.3 and 2.5. On the other hand,
Figures 2.2, 2.3, 2.5, and 2.6 all show an equatorial bias towards hot, upwarped mantle

and a polar bias towards cold, downwarped mantle.
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On the other hand, direct inversion of ISC travel-times of seismic phases that
sample the CMB in different ways (reflection off the core surface, refraction through the
uppermost core) yields maps of CMB topography that are different for different workers,
and different and with larger amplitude than the maps of dynamically inferred topography.
Creager and Jordan (1986) used PKPap and PKIKP phases for their study, which yielded
a 20 km peak-to-peak amplitude. They hypothesized that the large amplitude and poor
spatial correlation with the dynamically inferred topography could be explained by a
chemical boundary layer (CBL) underneath the CMB, which would allow the seismic
velocity to be uncorrelated with density. Morelli and Dziewonski (1987) used PKPgc and
PcP phases for their study, which yielded a 12 km amplitude. They again found poor
spatial correlation with the dynamically inferred topography, which cannot be solely
explained by a core-side CBL since PcP does not sample beneath the CMB. Figure 2.6
shows the CMB topography from an inversion of ISC PcP and PKP travel-times by
Gudmundsson and Clayton (1992). They found a trade-off between horizontal variations
of seismic velocity in the D" and the amplitude of CMB topography. Although the
amplitude in Figure 2.6 is only about 5 km, it does not look similar to the dynamically
inferred topography of Figure 2.5, at least in its azimuthal dependence. On the other hand,
though they may disagree in their azimuthal dependence, Figures 2.2, 2.3, 2.5, and 2.6all
show an equatorial bias towards hot, upwarped mantle and a polar bias towards cold,
downwarped mantle.

Valet et al. (1992) reanalyzed the paleomagnetic data, and found no statistical
evidence for a simple magnetic field structure remaining during a single dipole reversal, nor
for any preferred longitudes for VGP paths for different reversals. Hopefully, the addition
of more transition records will alleviate the current paucity of VGP paths and resolve the
question. In addition to the questionable statistical significance of the VGP paths, we do
not understand how there can be a correlation between (m = 1) antipodal VGP paths and

the presumed m = 3 symmetry that Gubbins and Bloxham (1987) inferred. The
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interpretation of convecting columns (of the Busse (1970) type) in the core being thermally
locked to the mantle also puzzles us. Free convective columns drift; according to Gubbins
and Bloxham (1987) the inhomogeneous heat flux at the CMB keeps the columns
stationary, presumably to transport heat most effectively from the lower core to the mantle.
However, according to Figure 9 of Zhang (1991), free convection slightly above the critical
Rayleigh number (the parameter regime at which convecting columns exist) primarily
transports heat in the equatorial zone, with the heat flux negative in the polar regions. In
other words, the primary means of heat transport of freely convecting columns is not
motion parallel to the columns, so that it is not clear that an inhomogeneous boundary heat
flux will fix convecting columns to align themselves with temperature anomalies in the
mantle. Hence, while downwelling core flow due to cold mantle may well cause static
patches of high magnetic flux on the CMB, the mechanism may not in essence be the
Ekman flow of convection columns locked to the mantle. Zhang and Gubbins (1992)
studied steady flows forced by a laterally variable CMB temperature, and found that
rotation induces an azimuthal phase shift between the thermal boundary condition and the
flow. Their model did not include free convection driven by bottom heating, however, and
it assumed Lorentz forces are negligible, so it remains difficult to apply the results to the
Earth's core.

Thus, while we find the basic concept of core-mantle thermal coupling intriguing,
we need to understand better the steady motions that occur in an electrically conducting,
rotating fluid shell driven by 1) a laterally homogeneous and 2) a laterally inhomogeneous
boundary buoyancy flux. We will develop an iterative method to study steady, finite-
amplitude motions in Chapter 3 and apply it to the Earth's core in Chapter 4. At the same
time, the observational evidence needs strengthening. We can expect this as geomagnetism,
paleomagnetism, seismology, and geodynamics advance. In the meantime, in the next
section we examine maps of the surface magnetic field to look for further clues on the state

of the Earth's deep interior.
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2.3 Interpretation of surface magnetic field data

Figure 2.7 is a contour map of the north-south (X) component of the 1980 magnetic
field at the Earth's surface, produced from the International Geomagnetic Reference Field
(IGRF) Gauss coefficients up to degree and order 10 (Peddie, 1982). The 1980 IGRF uses
data from MAGSAT and approximately 150 permanent magnetic observatories. If the field
were purely dipolar, the contours would of course be parallel to lines of constant latitude.
The largest deviation away from a dipole field appears to be an equatorial m = 1 anomaly,
with additional north-seeking field beneath Indonesia and a deficit of north-seeking field
beneath the northern coast of South America. Such an anomaly implies large electrical
currents in the east-west and radial directions in the equatorial zone, e.g., current loops
parallel to but displaced from the rotaton axis.

To test this inference, we set up a small inverse problem for electrical currents in the
outer core. We first place ideal magnetic dipoles, i.e., infinitesimal current loops, spaced
every forty degrees in longitude, at +/- 20° latitude, and at four fixed depths in the core. At
each of these 72 positions we allow for X (current loop with axis in the north-south
direction), Y (axis in east-west direction), and Z (axis in radial direction) dipoles. For
comparison we then change the location of the 72 ideal magnetic dipoles, placing them on
the cylinder circumscribing the inner core, again at four depths and nine longitudes. For
each geometry we invert all three components of the surface non-dipole field (from the
coefficients of the 1980 IGRF) for the magnitudes of the 216 dipole components. We hope
that this simple approach will yield some insight into the electrical current system associated
with the poloidal magnetic field, though of course, the magnetic ﬂeid maps contain the
same information.

The expression for the magnetic field B due to an ideal magnetic dipole m s
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Figure 2.7 Map of the north-south (X) component of the magnetic field at the Earth's
surface for 1980 produced from the IGRF Gauss coefficients up to degree and order 10
(Peddie, 1982). The contour interval is 2500 nT. The positive anomaly beneath southern
Asia and the negative anomaly beneath the northern coast of South America are
antipodal, and are suggestive of east-west and radial electrical currents in the equatorial

zone.
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=Ho 1 3 O - m
B a7 33 [3(m-r)r-m], 2.1

where |, is the permeability of free space, r is the distance between the dipole and the
observation point,  is the direction between the dipole and the observation point, and i is
the orientation of the dipole (Jackson, 1962, and converting to the MKS system). We

invert equation (2.1) using damped least squares, so that we solve

x = (ATA +€2I)-1 - (ATD). (2.2)

In (2.2) the model x consists of the magnitudes of the components of the 72 dipole
moments m, the operator matrix A (with transpose AT) represents (2.1) in some coordinate
system, and the data b consists of 432 evenly spaced point values of the components of the
surface non-dipole magnetic field B, computed from the 1980 IGRF coefficients. The term
€2 represents the damping.

For both the equatorial dipoles, which form a cone, and the polar dipoles, which lie
on a cylinder, we position dipoles at depths of the CMB, CMB - 600 km, CMB - 1200
km, and CMB - 1800 km, and at nine longitudes. Figures 2.8 and 2.9 show the results of
the inversions for the amplitudes of the X, Y, and Z components of the current loops, for
damping with €2 = 103. In each figure, the upper four traces of each plot represent the
amplitudes for one component in the northern hemisphere at the four fixed depths, the
lower four in the southern hemisphere. The traces begin at 0° longitude and proceed
eastwardly at intervals of 400. The amplitude between traces is 1021 A-m2, The number at
the lower right of each plot is the fit of the plotted solution to the original set of equations
Ax =b, or equation (2.1).

At this level of damping, €2 = 103, the fit for the equatorial dipoles, .99, is better
than for the polar dipoles, .98. For the equatorial dipoles, the largest amplitudes occur for

the X component, in accordance with our inference. The X component shows a strong
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Figure 2.8 The amplitude (102! A-m? between traces) of the ideal magnetic dipoles that
fit the non-dipole part of Figure 2.7 through a damped least-squares inversion of equation
(2.2). The damping level is €2 = 103, with a resulting fit of .99. The first four traces of
each plot are at +20° latitude, the second four at -209, at the indicated depths. Each trace
begins at 0° longitude, and proceeds eastwardly at 400 intervals. Plot 2) shows the
amplitude of the X (current loop with axis in the north-south direction) component, b)
shows the Y (east-west) component, and c) shows the Z (radial) component. X has the

largest amplitude and shows a large m = 1 contribution.
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Figure 2.9 As for Figure 2.8, but with ideal dipoles on the cylinder circumscribing the
inner core. The upper four traces of each plot are for northern hemisphere dipoles, the
lower four for southern hemisphere dipoles. The solution is not as smooth as for the

equatorial dipoles, and the fit is only .98.
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Figure 2.10 As for Figure 2.8, but with damping €2 = 104, The solution is smoother than

that in Figure 2.8, but the fit is only .98.
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Figure 2.11 As for Figure 2.9, but with damping €2 = 10*. The solution is smoother than

that in Figure 2.9, but the fit is only .94.
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m = 1 contribution, particularly for the dipoles at -200 latitude. On the other hand, the
solution for the polar dipoles is very rough and requires large amplitudes in all three
components. An m = 1 dominance is not obvious. A comparison of the two solutions,
Figures 2.8 and 2.9, suggests that equatorial currents with a large m = 1 contribution
account for much of the non-dipole field. With higher damping, €2 = 104, the equatorial
dipoles achieve a .98 fit and the polar dipoles but a .94 fit. These solutions, Figures 2.10
and 2.11, are of course smoother, but at the expense of the fit, particularly for the polar
dipoles. Thus, these figures convey a message similar to those of the rougher solutions.

While these inversions suggest that electrical currents in the equatorial zone may
give rise to the anomalous m = 1 non-dipole field at the Earth's surface, they by no means
constitute a proof. With damping €2 < 104, the fits are well over 90% for either equatorial
or polar sources, but we prefer equatorial sources because of the slightly better fit and
smoother solution. We have parameterized the currents sources with an assigned
distribution of ideal dipoles; this parameterization is by no means unique, nor are the
locations of the dipoles. Moreover, there is almost certainly a trade-off between the
amplitudes of dipoles at different depths. Nevertheless, we believe that these inversions do
support the notion that electrical currents in the equatorial zone are responsible for the
anomaly in the X component of the surface magnetic field, Figure 2.7.

Figure 2.12 is a contour map of the radial (Z) component of the magnetic secular
variation at the Earth's surface, also produced from the 1980 IGRF coefficients (Peddie,
1982). The geometry of this map is similar to that of Figure 2.7, in that the largest secular
variation is present at low latitudes and at two azimuths. Interestingly, the azimuths of the
largest anomalies in X and 9Z/dt are the same as for the apparent preferred VGP paths: the
Americas and eastern Asia. Given the uncertainty in the VGP paths, we cannot be sure of
the reliability of the correlation. However, the correlation between the main field and the
secular variation is also suggestive of persistent high activity in those regions, which is

perhaps evidence for long-period control by the mantle. Until we better understand the



43
BZ SV FIELD AT SURFACE (NT/10 yr)

|

-166:145:120:100-80-50-40~20. 0. 20. 40 60. 80.100.120.142160.

Figure 2.12 Map of the radial (Z) component of the magnetic secular variation at the
Earth's surface for 1980 produced from the IGRF Gauss coefficients up to degree and
order 8 (Peddie, 1982). The contour interval is 250 nT/ 10 yr. The geometry of the map is

similar to Figure 2.7.
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steady, or mean, motions that can occur in an electrically conducting, rotating fluid shell,
we cannot offer a specific explanation for this persistent activity. Thus, for instance, using
the method of Chapter 3, we will find in Chapter 4 that cold mantle does not necessarily
induce downwelling core flow. Although the observational evidence for stationary
magnetic fields and persistent core flow remains somewhat under debate, we believe it is

important to improve our scant understanding of free and forced steady motions.
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Chapter 3
Rotating Magnetoconvection: Development of a Numerical Technique to

Find Steady Solutions

3.1 Introduction

As witnessed by aperiodic reversals of the dipole field as well as the short-period
magnetic secular variation, convection and magnetic field generation in the Earth's core are
clearly time-dependent. Nevertheless, we have noted in Chapter 2 that certain features of
the magnetic field, and hence certain fluid motions in the core, may remain relatively
stationary, or at least exhibit a mean, for much longer than the presumed core convective
timescale of a few thousand years. In this chapter and the next, we therefore develop and
employ a numerical method to study steady, rotating magnetoconvection. After a brief
review of prior work on rotating magnetoconvection, we introduce our method and
demonstrate its viability for studying non-rotating, non-magnetic free convection in a
spherical shell. We next apply the method to study free convection in rotating systems,
both non-magnetic and magnetic, in order to compare our solutions with those from
previous work. We then study forced convection, for which very little prior work can
guide us, but which may be of some interest if core-mantle thermal coupling is important.

The governing equations for the unknown velocity field v, pressure p, density
deficit ¢, and magnetic field B are (1.5) - (1.8). We will non-dimensionalize them by
setting V=V*/L, t=t*L2/x, v=v*«/L, p=p*xv/L2, c=c*(Ap/p), B=B*B(Lop)1/2, g=gg,
and Q=Qa, where L is the characteristic length scale of the system, k is the thermal or
chemical diffusivity, (Ap/p) is the magnitude of the density deficit from a mean density p,
B is the magnitude of the magnetic field, [y is the magnetic permeability of free space, g is

the magnitude of the gravity vector, Q is the magnitude of the rotation vector, and g and Q

are unit vectors. Inserting these into (1.5) - (1.8) and dropping the *'s, we obtain
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98% =q1V?B + V x (vxB) (3.1)

Pr! {%—:+ (v-V)v} =

-Vp+ v2v - Tal’2 Qxv + Ra cg + Ialg_El (VxB) x B

: (3.2)
V-v =0, and (3.3)
% + (v-V)e = Ve, (3.4)

where we have dropped the source term from (3.4). The non-dimensional numbers in

(3.1) - (3.4) are the Prandtl number

Pr=v/x, (3.5)
the magnetic Prandtl number
q=x/%, (3.6)
the Rayleigh number
Ra=(Ap/p)gL3/(vx), (3.7
the Taylor number
Ta=4Q2L4/v2, (3.8)
and the Elsasser number
El=B2/2Qy, (3.9)

where v is the fluid viscosity and ¥=1/l,0 is the magnetic diffusivity, with ¢ the electrical
conductivity. The Rayleigh number is a measure of buoyancy to dissipative forces, the
Taylor number a measure of the Coriolis force to viscous force, and the Elsasser number a
measure of the Lorentz force to the Coriolis force. Table 1.1 contains estimates for various

core parameters and non-dimensional numbers.
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3.2 Early work on rotating mangetoconvection

Before we begin our search for steady solutions to (3.1) - (3.4) for various
parameter ranges of (3.5) - (3.9), we will review prior work on rotating
magnetoconvection. We begin with the classic treatise by Chandrasekhar (1961), who
studied the linear stability of a variety of hydrodynamic and hydromagnetic systems. The
first problem considered by Chandrasekhar that is of particular interest to us is his analysis
of the stability of thermal conduction between two horizontal planes each in the (x,y) plane,
with vertical gravity g = -Z, rotation Q= z, and impressed magnetic field B = Z. The
system is heated from below, with the lower and upper planes held fixed at given
temperatures. The non-dimensional number that characterizes the strength of the heating is
the Rayleigh number, Ra = (gaBL#)/(xv), where afiL replaces Ap/p. For this problem L
is the distance between the parallel planes, o is the coefficient of thermal expansion, and B
is the uniform temperature gradient between the planes. As one increases the heating from
below, P, and hence Ra, rises, and the fluid becomes increasingly gravitationally unstable.
At the critical Rayleigh number, Rac, the conductive (diffusive) solution is no longer stable,
and the fluid begins to convect.

The approach that Chandrasekhar developed to find Ra¢ and the infinitesimal fluid
motions that develop at Rac for a variety of fluid boundary conditions is to assume the
conductive solution and linearize (3.4) by assuming V¢ = -Z (-BZ in dimensional terms).

All variables are then perturbations, which must satisfy

%% = qV?B + V x (vx2), | (3.10)
ov
12V -
Pr 3

-Vp+ Vv - Tal2Zxv + Ra cZ + El(llz—El-(VxB) X Z 3.11)

V-v =0, and (3.12)
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%(ti =w + Vzc, (3.13)

where w is the velocity in the z-direction. Assuming normal mode solutions of the form
exp i (kxx + kyy + 0t), where (kx,ky) are the horizontal wavenumbers, and ® are the
eigenfrequencies, Rac is that Ra at which there exists an Im(w) < 0, indicating positive
growth rate. If Re(m) = 0 at Rac, one says 'the principle of the exchange of stabilities' is
valid and the convection is stationary, else the convection sets in as overstability. The
eigenfunction f(z) associated with this eigenfrequency gives the geometry of the solution at
Ra, but, being a linear analysis, no information on its amplitude.

When Ta and El are zero, Ra. is independent of Pr (and obviously of q), and the
convection is stationary at Rac. When El is zero, but Ta non-zero, the situation is more
complicated. For Pr > O(1), the convection at Ra is also stationary, with Ra¢ proportional
to Ta2/3 and k. proportional to Tal/ in the asymptotic limit that Ta — eo, where K is the
horizontal wavevector of the convective cell patterns at Rac. When Pr < O(1), convection
commences as overstability, provided Ta is large enough. The same asymptotic
dependencies on Ta hold. Already for the plane layer, the complexity of the subject is
becoming apparent. It is perhaps appropriate here to point out that we do not know the
value of Prin the Earth's core. Its molecular value is typically presumed to be much greater
than one, but then, its eddy (turbulent) value is typically presumed to be order one (Zhang,
1991a).

To understand the dependence of Rac and k¢ on Ta, we introduce the Taylor-
Proudman theorem (Proudman, 1916, Taylor, 1921), central to the theory of rotating
fluids. Consider (3.11) in the absence of inertial, viscous, buoyancy, and Lorentz forces.

This yields the geostrophic balance,

- Vp = Tal2 Zxv. (3.19)
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If we now take the curl of this equation, we obtain the Taylor-Proudman theorem,
dv/dz =0, so that the fluid has a tendency to move in columns, independent of the
coordinate parallel to the rotation axis. To the extent that other forces are present, it is
possible to break the strength of the theorem. We can now understand why Rag increases
with increasing Ta: convective motions in a horizontal plane layer with vertical gravity and
rotation must necessarily have a z-dependence so that to overcome rotation the fluid
requires more buoyancy to commence convection. Similarly, the convective cells tend to
become aligned with the z-axis in the interior of the fluid, bending only in the viscous
(Ekman) boundary layers near the horizontal surfaces. This alignment results in a smaller
horizontal wavelength with increasing rotation rate.

Similarly, in the absence of other forces, motion in the presence of a uniform
magnetic field B =Z also tends towards two-dimensionality, independent of the
z-coordinate. Thus, in the limit that the Chandrasekhar number Q = B2L2/(vy) — oo, Rag is
proportional to Q and k¢ is proportional to Q1/6, and the convective cells become elongated
in the z-direction. For the magnetic Prandtl number q < O(1), stationary convection
commences at Rac, and for g > O(1), overstability occurs provided Q is large enough. The
molecular value of q in the Earth's core is probably much less than one, though again, there
is the question of its eddy value (Fearn, 1979, Zhang, 1991a). Chandrasekhar (1961) also
showed that if the impressed magnetic field B is inclined to the vertical, the isotropy of the
two horizontal directions is lost, and convection commences most easily as longitudinal
rolls in the direction of the horizontal component of B. Such rolls do not need to vary along
the component of B that they are aligned with, and so they exhibit the minimum Rac. A
similar effect occurs if Q and g are not collinear.

Although acting separately rotation QZ and an impressed magnetic field Bz each
inhibit convection in a horizontal plane layer with gravity -gZ, together they can actually
promote it. To understand this, consider that by decreasing the Taylor number, increasing

viscosity facilitates convection in a rotating fluid, and impressing a magnetic field on an
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electrically conducting fluid is in some sense giving the fluid additional viscosity. The
critical Rayleigh number Ra is a complicated function of Pr, q, Ta, and El (or Q), and the
convection at Ra. can be either stationary or overstable depending on the parameter values.
The general pattern, however, is that for a given Ta, as Q increases from zero, Rac and k¢
decrease until a minimum is reached, and then they begin to increase with further increase
in Q. Not surprisingly, the minimum Rac and k¢ occur when the Coriolis and Lorentz
forces are comparable, or E1 = O(1).

Chandrasekhar (1961) next considered the linear stability of the thermal conduction
solution in non-rotating, non-magnetic, internally heated fluid spheres and shells, primarily
with constant radial gravity and basic state temperature gradients. He found the critical
Rayleigh number for stationary convection as a function of spherical harmonic order £ for
various fluid boundary conditions. He then examined the stability of a fluid sphere rotating
about the z-axis, finding that Ra increases with increasing Ta, in analogy with the
horizontal plane layer. Roberts (1965) showed that for this problem, Ra is proportional to
Ta2/3, as for the plane layer. However, these studies considered only convection symmetric

about the rotation axis.

3.3 Recent developments in rotating magnetoconvection

Roberts (1968) realized that non-axisymmetric convection in a rotating fluid sphere
might have a lower Rac than axisymmetric convection because non-axisymmetric
convection could arrange itself in rolls (columns) parallel to the rotation axis, thereby not
requiring that the buoyancy force break the constraint of the Taylor-Proudman theorem.
Were it not for the spherical boundaries, such columnar convection could commence at the
lower Rayleigh number associated with that of a non-rotating fluid. However, such
columns must necessarily intersect the spherical boundaries, so that their effectiveness in

transporting buoyancy is somewhat limited, as we shall later see. The tendency for rotation
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to eliminate z-dependence and the strong z-dependence of the spherical boundaries conspire
to limit the length scale of the rolls so that the azimuthal wave number m increases with
Tal/6 and Ra; with Ta2/3 (though with a lower constant of proportionality than for the
axisymmetric modes).

Busse (1970) re-examined the problem of convection in a rotating sphere and found
that solutions with a different symmetry with respect to the equatorial plane had a lower Ra¢
than Robert's solutions. Figure 3.1 is a sketch of the convective motions that occur in an
internally heated, rotating sphere at Rac in the Roberts-Busse theory. The pattern of
columns occurs not as stationary convection, but drifts eastwards as a Rossby wave
(Busse, 1970, Gill, 1982). To understand this, consider Figure 3.2, in which a filament of
fluid moves outwards from the rotation axis. As it does so, it acquires an anticyclonic
vorticity relative to the ambient fluid in order to conserve potential vorticity. A nearby
filament moving inwards acquires cylconic vorticity, and the motion that this pattern of
vorticity induces causes a net eastward propagation of the pattern. Busse (1970) also
observed that the non-linear interaction of Rossby waves can give rise to a mean azimuthal
flow in the form of differential rotation.

Busse and Cuong (1977) studied convection in a spherical shell of inner radius n
and outer radius 1. They noted the qualitative difference between convection in the region
with cylindrical radius s < 1 and that for | <'s < 1 (Figure 3.3). In the former region, the
rotation and gravity vectors tend to be parallel, so that the polar modes resemble convection
in Chandrasekhar’s (1961) horizontal plane layer rotating about a vertical axis with vertical
gravity. In the latter region, the two vectors are nearly perpendicular, so that the equatorial
modes resemble the columnar convection of Roberts (1968). The minimum Rag at all
Prandtl numbers occurs for the equatorial modes, which Busse (1975) argued would
arrange themselves in columns around the cylinder tangent to the inner core.

Gilman (1975) performed extensive linear numerical calculations on convection in a

rotating spherical shell of inner radius 1 = .8 at Pr = 1 and Ta between 0 and 109. His
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Figure 3.1 A sketch of the convective motions that occur at Rag in a rotating sphere with

constant radial buoyancy gradient (from Busse, 1970).
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Rotation axis

Figure 3.2 The mechanism for the eastward propagation of Rossby waves in a thick shell
such as the Earth's core (adapted from Gill, 1982). A filament of fluid moving towards the
rotation axis (on the right) experiences vortex stretching, and thus acquires cyclonic
relative vorticity in order to conserve potential vorticity, The filament on the left, moving
away from the rotation axis, conversely acquires anticyclonic relative vorticity. This
pattern of relative vorticity causes the wave to propagate eastwardly, as indicated by the
broad arrow. The Rossby wave mechanism is responsible for the azimuthal drift of the

convective columns at Ra; pictured in Figure 3.1.



58

\

e

\

a) b)

Figure 3.3 (from Busse and Cuong, 1977)

a) Convection in a layer with gravity and rotation perpendicular, as at the equator. In
order not to violate the Taylor-Proudman theorem, the convective columns arrange
themselves aligned parallel with the rotation axis. In the absence of spherical boundaries
this columnar convection has tﬁc same critical Rayleigh number Ra; as non-rotating

convection.

- b) Convection in a layer with gravity and rotation parallel, as at the poles. Convection
must necessarily break the Taylor-Proudman theorem, thereby inhibiting convection and

raising Rac. There is no preferred horizontal direction for the convective rolls.
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calculations confirmed the analytical predictions that solutions with high azimuthal wave
number m (up to m = 24) are most unstable in the equatorial zone and those with lower m
are most unstable in the polar zone, with a mid-latitude gap. The calculations confirm that
the equatorially symmetric equatorial modes are overall the most unstable, with Rac
proportional to Ta%/3, the critical azimuthal wavenumber m to Tal/6, and an eastward drift
frequency at critical ®¢ to Tal/3. Gilman (1977) extended the numerical calculations at
Ta = 103 to include non-linear effects. The finite-amplitude solutions show that as Ra
rises above the overall Ra, the peak in the kinetic energy spectrum shifts from m near m¢
to lower m, with a second peak at m = 0. The shift towards lower m represents the
increasing importance of the polar modes so that convection begins to fill the sphere,
though the tendency for a mid-latitude gap remains even for finite-amplitude convection.
The peak at m = represents the differential rotation.

It is impossible under terrestrial laboratory conditions to simulate a radial buoyancy
force in a sphere or spherical shell (though see Hart et al., 1986). However, the centrifugal
force of a rotating fluid can simulate the component of the gravitational force perpendicular
to the rotation axis, the s-component, with a change in sign. By switching the basic state
temperature gradient within the fluid, one can simulate convection in a rotating fluid sphere
or spherical shell, at least to the extent that the component of the gravitational force parallel
to the rotation axis, the z-component, is dynamically unimportant. At least near Rag, this
appears to be true. Using such a set-up, Busse and Carrigan (1976), Carrigan and Busse
(1983), Chamberlain and Carrigan (1986), and Cardin and Olson (1992) confirmed the
existence of columnar convection near Rac. (In addition, the conduction solution for this
geometry presumably induces fluid motion for subcritical Rayleigh numbers, but none of
these authors discuss this.)

Working with Taylor numbers in the range of 1011 and Pr = 7, Cardin and Olson
(1992) found experimentally that at Rayleigh numbers even a few times critical, the pattern

of steadily drifting, periodic columns degenerates into chaotic, time-dependent convection,
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though the tendency towards z-independence remains. Their numerical calculations for Ta
between 106 and 2.5 x 10° and Pr = 7, again using cylindrical gravity, confirmed that as
Ra rises above Ra; convection becomes aperiodically time-dependent and chaotic in planes
perpendicular to the rotation axis. The columnar structure in the direction parallel to the
rotation axis remains, however. Using a power law fit (Rac proportional to Ta3/5) to their
numerical results, they extrapolated Rag to the large Taylor number appropriate to the
Earth's core (Ta = 1028, see Table 1.1), well beyond what they could model numerically.
This Rag, approximately 1018, is ten orders of magnitude less than the Rayleigh number
they presume in the core (Table 1.1), so that they conclude that the core convects in the
chaotic manner so described. To obtain the larger, more steady features observed in the
surface magnetic field, they suggest that either Lorentz forces or mean-field effects, such as
the mean azimuthal flow, play a role.

Busse (1975, 1977) constructed a dynamo based on columnar convective motions.
He argued that the Lorentz force in the Earth's core is not of primary importance, so that
the basic state force balance is geostrophic. Treating the Lorentz force as a perturbation of
the geostrophic balance, Busse showed that the toroidal magnetic field is of the same order
of magnitude as the poloidal field, thereby justifying the original assumption of a
geostrophic balance. Because the toroidal field remains of the same order of magnitude as
the poloidal field, Busse's dynamo is a weak-field model. The convective motions of
Figure 3.1 provide a means to generate the toroidal magnetic field. Associated with each
convecting column is a flow in the z-direction induced by the Ekman pumping (Greenspan,
1968) that occurs at the intersection of the columns with the spherical surface. The direction
of the Ekman flow within each column depends upon the sense in which the column is
convecting. This poloidal motion provides the helicity (Moffatt, 1978) necessary to
generate the poloidal magnetic field and complete the dynamo cycle.

Weak-field dynamos may be intuitively satisfying and analytically tractable, but

they may not be geophysically plausible (Roberts, 1988). Although small magnetic field
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strengths characterize weak-field dynamos, so do small length scales. These small length
scales result in high electric currents that increase the Ohmic dissipation, which has led to
the oft-quoted comment that 'if the Earth operated a weak-field dynamo, one could stand a
kettle of water anywhere on the Earth's surface and have it boil in three minutes'. Soward
(1979) showed that at all but very small (ungeophysical) magnetic field strengths, the
weak-field dynamo is unstable and the system prefers a strong magnetic field in which the
Lorentz force enters into the basic state force balance. This magnetostrophic state prefers
large length scales and hence the Ohmic dissipation for the strong-field dynamo is less than
that for the weak-field dynamo. Eventually, of course, the back reaction of the Lorentz
force will limit the ultimate strength of the magnetic field (Malkus and Proctor, 1975).

Braginsky (1964, 1967, 1980) suggested that magnetic-Archimedean-Coriolis
(MAC) waves might be responsible for the generation of the main magnetic field. These
asymmetric MAC waves, riding on an axisymmetric basic state, would both break the force
of Cowling's theorem and supply the a-effect necessary to maintain the poloidal magnetic
field. In this view, the Lorentz force is of primary importance in the force balance, and the
Earth operates a strong-field dynamo. A new class of instabilities are possible due to the
presence of a dynamically important magnetic field. Hide (1966) considered diffusionless
MC waves as a possible mechanism for the westward drift. Acheson (1972, 1973) studied
the effects of the variation with cylindrical radius s of basic differential rotation (shear),
toroidal magnetic field, and buoyancy on ideal (non-diffusive) MAC instabilities. Fearn
(1983, 1984, 1985) confirmed the results of Acheson's local analysis numerically in an
infinite annulus and Fearn and Weiglhofer (1991) confirmed the results in a sphere.

Acheson (1972, 1973) found that a basic state toroidal magnetic field can destabilize
a fluid via the ideal field-gradient instability, provided B(s) increases faster than s3/2, where
the basic state toroidal magnetic field B = B(s)a, and a is the unit vector in the eastward
direction. Typically these linear instabilities take the form of westwardly propagating

waves, and a fluid shear can stabilize them. In addition to ideal instabilities, Roberts and
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Loper (1979) investigated resistive instabilites that require finite electrical conductivity for
their existence. Much as increasing fluid viscosity facilitates ordinary convection in a
rotating fluid, the presence of Ohmic dissipation can actually lower the strength or
functional increase with s of the basic state magnetic field (from which the energy derives)
necessary for instability. Fearn (1984) found that in the limit of small magnetic diffusivity,
resistive instabilities concentrate in the critical layer near a requisite zero in B(s). Resistive
instabilities can propagate either eastwardly or westwardly, and shear has less effect. The
buoyancy-catalyzed instability (Roberts and Loper, 1979) requires stratification (either
stable or unstable!) and diffusion to break the rotational contraint and release the magnetic
energy.

A different mechanism for instability, and possible explanation for magnetic secular
variations with 60 year periods, was suggested by Braginsky (1970, 1984). This
mechanism is that of torsional oscillations, which result when the magnetic extension of the
Taylor-Proudman theorem, Taylor's condition (Taylor, 1963), is not satisfied. Taylor's
condition requires that in the absence of diffusion and time-dependence, the ¢-component
of the Lorentz force integrated over a coaxial cylinder C(s) must vanish. When this force
does not vanish, torsional oscillations occur through the action of the poloidal magnetic
field weaving its way across different fluid cylinders. This imparts a certain rigidity to each
fluid cylinder. In the model-Z dynamo (Bragisnky and Roberts, 1987), the field lines are
primarily aligned with the z-axis, so that large geostrophic flows vg = vg(s)g are possible
without violating Taylor's condition. To the extent that it is violated, one expects torsional
oscillations (and diffusive effects). Clearly, rotating, electrically conducting fluids allow a
wealth of instabilites that may (or may not) play a role in generating the main magnetic field
and its secular variation.

However, in this section we are ultimately interested in the instabilities driven not
by an unstable magnetic field gradient, but by an unstable buoyancy gradient, as for

Chandrasekhar's (1961) rotating plane layer permeated by a uniform magnetic field.
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Unfortunately, unlike Busse's models, rotating magnetoconvection and strong-field
dynamos in spherical geometry are not amenable to analytical progress because one can no
longer treat the magnetic field as a perturbation. Eltayeb and Kumar (1977) numerically
studied linear magnetoconvection in a rotating sphere permeated by a toroidal field B = s&;.
For small values of the Elsasser number El they found that critical convection takes the
form of drifting rolls as Roberts (1968) and Busse (1970) predicted. As for the plane layer,
the magnetic field facilitates convection so that the critical Rayleigh number Rac reaches a
minimum for an Elsasser number El = O(1). The magnetic field increases the length scale
of the convection, which now fills the sphere, but unlike for the plane layer, the spherical
boundary causes overstability for all investigated values of the Prandtl number Pr and
magnetic Prandtl number q. For q = O(1), as El exceeds O(1), the instability takes on the
form of a diffusionless MAC wave.

Fearn (1979) found similar results for q << 1, as may be geophysically more
realistic, except that as El exceeds O(1), the most unstable mode does not resemble a MAC
wave in that it is eastwardly propagating. This 'exceptional’ mode requires stable
stratification and derives its energy from the basic state magnetic field. Fearn and Proctor
(1983a, 1983b) studied the effects of differential rotation on modes driven by an unstable
buoyancy gradient. They found that increasing shear, as measured by the magnetic
Reynolds number Ry, = VL/, where V is a characteristic speed and L a length scale such
as the core radius, increases Rac. For small q, as Ry, rises above O(q), the differential
rotation localizes the buoyancy perturbation at a critical point and at that critical point the
phase speed of the instability approaches the fluid velocity. They suggest that the magnetic
secular variation could represent a combination of the fluid motion and the phase speed of
the wave relative to the fluid, particularly if a critical point exists near the outer core
surface. Drew (1991) found that the addition of an inner core with radius N has little effect

on Ra, until 1 nears .5. In order to simulate compositional convection he employed a basic
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state temperature gradient that is largest near the inner core, which he found increases the
efficiency of convection over a uniform gradient.

Zhang and Busse (1987, 1988, 1990) and Zhang (1991a,b) studied the linear and
non-linear development of rotating convection in a spherical shell of inner radius 1 = .4 for
Ta < 1012 and (Ra-Rac)/Rac < 2. They used a Galerkin method based on that of Cuong and
Busse (1981) that allows for an azimuthal drift of the solution, so that the finite-amplitude
solutions are stationary in the drifting reference frame. They found that for Pr < O(1), the
curve describing Ra¢ as a function of Ta shows some unusual bends, which is apparently
due to the most unstable mode switching from columnar convection to one more
concentrated near the equator (Zhang and Busse, 1987, 1988). The columnar equatorial
modes that occur for Pr = O(1) near Ra, spiral from mid-latitude to equator in the prograde
direction (Zhang, 1991a). At Pr = 7, Cardin and Olson (1992) observed this
experimentally. Zhang (1991a) noticed, as did Gilman (1977), that as the non-linearity
increases the kinetic energy spectrum of the system shifts towards lower azimuthal
wavenumbers. As Pr increases, the columnar modes at Rag exhibit less spiralling (Zhang,
1991a,b) and the mean azimuthal flow generated by the non-linear advective force
decreases (see Equation (3.2) of this chapter, and Zhang and Busse, 1990). For infinite Pr,
as Ra rises above Rag, the eastward drift rate is a strongly decreasing function of Ra (even
becoming westward), and the non-linear solutions shift the convection to lower latitudes,
where they can more efficiently convect heat to the surface.

Note however (Figure 9 of Zhang, 1991b), that for all Ra > Rac the heat flux is
large and positive near the equator and small and negative at mid-latitudes. His
interpretation of 'hot' and 'cold' columns convecting heat via the Ekman flow in the
direction along columns is therefore confusing. Rather (Bloxham et al., 1992), the
convective columns are out of phase in azimuth with the temperature perturbations, and the
primary heat transport is via the convective overturning of the columns, which produces the

maximum heat flux at the equator. At Ra this columnar convection is inefficient in a
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sphere, and for cylindrical radii between the columns and the spherical surface the heat
must diffuse. For supercritical Ra, the non-linearity helps break the rotational constraint
and allows more efficient convection in the equatorial zone, as Zhang deduced. The origin
of the negative heat flux at mid-latitudes remains uncertain.

Cuong and Busse (1981) studied convectively driven dynamos in the same
spherical shell for Pr = 1 and Ta < 103. Their Galerkin formulation allowed them to
examine the linear stability towards hydromagnetic perturbations of the stationary finite-
amplitude hydrodynamic solutions. They obtain dynamo action when the magnetic Prandtl
number, which they treat as an eigenvalue (rather than the more difficult but more
physically sensible velocity amplitude), reaches a critical level qc. Zhang and Busse (1988,
1989, 1990) extended the analysis to include finite-amplitude magnetic fields and the
effects of the Lorentz force on the fluid motions, for a range of Pr and Ta < 109. For
Ta =3 x 10# and azimuthal wavenumber m = 2 they found sub-critical magnetic field
generation, i.e., a finite-amplitude magnetic field permitted dynamo action at a Rayleigh
number lower than that at the onset of dynamo action, indicating that the magnetic field is
facilitating convection and magnetic field generation. On the other hand, for m = 4, the
length scale is small enough at this relatively low Taylor number so that rather than
releasing the rotational constraint the magnetic field competes for the available energy and
subcritical dynamo action is not possible. They found magnetic field generation
concentrated in high latitudes, with an increase in the strength of the polar meridional
convection (Zhang and Busse, 1990).

These studies all considered instabilities driven by laterally homogeneous boundary
conditions, i.e., free convection. If lateral temperature differences in the lower mantle help
drive core flow, we must also study forced convection, about which very little is known.
The study of forced convection requires one to specify the functional form and amplitude of
the laterally inhomogeneous boundary condition. Zhang and Gubbins (1992) considered

steady thermal convection driven by a laterally variable temperature on the CMB, with a
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neutrally or stably stratified core. As mentioned in Chapter 2, they found that rotation
induces an azimuthal phase shift between the thermal boundary condition and the flow, and
allows the boundary driven motion to penetrate into the shell. Stratification supresses the
radial flow, but has little effect on the surface toroidal flow. Their study did not include

bottom heating (the mechanism for free convection) or Lorentz forces.

3.4 A method to find steady, finite-amplitude solutions

We have given a necessarily brief review of rotating convection and
magnetoconvection, as well as an even briefer introduction to instabilities that are
magnetically rather than buoyantly driven. Our review has completely omitted the other
route towards an understanding of the fully self-consistent hydromagnetic dynamo
problem: kinematic dynamo theory. This highly mathematical subject has made great
progress (Moffatt, 1978), and has guided the work of those studying rotating
magnetoconvection. We have seen that in the absence of a magnetic field, buoyancy driven
flow in a rotating fluid shows some very unexpected behavior. In the presence of a
magnetic field, or with the possibility of magnetic field generation, the mathematical and
physical subtleties can be very difficult to assimilate. Given our primitive knowledge of the
conditions in our planet's interior, it is even more difficult to know what is of geophysical
interest and what is of purely mathematical interest.

Most of the work on magnetoconvection has been linear, rather understandable
given the analytical and numerical difficulties of the problem. Thus, most studies in the
field have been eigenanalyses of the conduction solution with an imposed toroidal magnetic
field, with MAC waves representing the first bifurcation. Non-linear solutions have been at
Rayleigh numbers only slightly above critical. This slight supercriticality permits stationary
solutions in a steadily drifting (with respect to the rotating spherical shell) reference frame.

Fully time-dependent calculations are computationally prohibitive. Many of the
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computational problems are a result of the high Taylor number inducing small length
scales. For those trying to model dynamo processes that occur over thousands to tens of
thousands of years, the short time step that small length scales require in order to avoid
numerical instability is a bitter pill.

In our rather unconventional approach, we remove the explicitly time-dependent
terms from (3.1) - (3.4). As discussed, the motivation for looking for time-independent
solutions to the convective equations is that the data indicate that there are certain motions
that are nearly time-independent on the convective timescale. By removing the necessity to
time step and looking directly for stationary solutions, we make our search for finite-
amplitude solutions computationally easier. The price we pay of course is that time-
dependent solutions are beyond our reach, and earlier work has shown that the most
unstable freely convecting solutions contain a steady drift. At Ra above Rac the drift rate
may be lower, though for higher Ra we certainly expect aperiodic time-dependence.
Nevertheless, the data indicate that there is some steadiness in the core. This may be a
function of a non-linear mean-field effect, or more likely, of inhomogeneous forcing. In
their study of boundary forced flows, Zhang and Gubbins (1992) found steady solutions.
Before we progress to inhomogeneous forcing, however, we will study homogeneous
forcing to build confidence in the method. In addition, we hope to gain some insight into
axisymmetric rotating magnetoconvection, for which we will see our method can
successfully model.

Throughout these calculations, we use an infinite Prandtl number. If core
convection is compositionally driven, this is a reasonable approximation given the
extremely low rate at which chemical inhomogeneities diffuse. On the other hand, if core
convection is thermally driven, Pr 2 O(1) (Table 1.1). Moreover, if one bases an estimate
for Pr on turbulent values rather than molecular values, a sensible choice for the Prandtl
number might be Pr = 1. However, given that core convection is most likely

compositionally driven (Gubbins, 1977, Loper, 1978), and that the qualitative form of
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rotating convection may be insensitive to Pr once Pr > O(1) (Zhang and Busse, 1990), we
feel there is ample justification for studying the system at infinite Pr. Moreover, an infinite
Pr removes the added difficulty of the non-linear advection term v-Vv from equation (3.2).
The magnetic Prandtl number q in the Earth's core is most likely 0O(10-6) (Table 1.1),
though again, using turbulent values rather than molecular values might imply q = O(1).
Fearn (1979) found that the value of q plays a key role for magnetically driven instabilities,
but for buoyantly driven instabilities he obtained results for q = 106 similar to those of
Eltayeb and Kumar (1977) for q = 1. Thus, to further reduce the parameter space we fix
q = 1 for the remainder of the calculations.

Rather than use the second order equation (3.1), we found that we could achieve
greater numerical accuracy by using the first order equations on a staggered grid, which we
will soon present. Of course, this results in a larger system with more unknowns to solve

for. Setting Pr = 0, q = 1, dB/dt = 0, and dc/dt = 0, the equations we solve are

VxB-(e+vxB)=0, (3.15)

V-B=0, (3.16)

Vxe=0, (3.17)

~Vp+V2v-Ta" Qxv+Racg+Ta”El(VxB)xB=0, (3.18)
V-v=0,and (3.19)

v-f-V-f=0, with (3.20)

f-Vc=0. (3.21)

For the remainder of this chapter, we will concentrate on non-magnetic, non-rotating

convection to introduce our method of solution and demonstrate its viability. Thus, we will

solve (3.18) - (3.21) in a spherical shell of inner radiusm and outer radius 1 with

El = Ta = 0 and radial gravity g =r. We use a spherical coordinate system (r,8,¢), with
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r the unit vector in the radial direction, 0 the unit vector in the colatitudinal direction, and
6) the unit vector in the eastward direction.

To force non-zero solutions to the system (3.18) - (3.21) there must of course be a
buoyancy source. In most studies on core convection such as those we have discussed, that
source is a fixed, high value for the buoyancy deficit ¢ at the bottom of the system and
some lower value at the top. The reasons for adopting such boundary conditions on c,
whether temperature or composition, are primarily historical and for comparisons with
prior work. However, if the release of light material at the ICB is driving core convection,
a more realistic boundary condition at r = 1| might be a fixed radial buoyancy gradient
V< = f; = 1 (in this non-dimensionalized system). The corresponding condition at r = 1
should be f; = 0, assuming no core material leaks into the mantle.

On the other hand, if convection is thermally driven, the proper boundary condition
at r = 1 might be a fixed (but perhaps laterally variable) fi, representipg the heat ﬂu); into
the mantle at the CMB (King and Hager, 1989). Atr =1, the proper thermal boundary
condition is not so evident, so that it might be a fixed c or f;. In any case, boundary
conditions on f; that have a net non-zero buoyancy flux into or out of the system must
necessarily be time-dependent, as one would expect for a fluid outer core that is gradually
becoming enriched in ligher elements or gradually cooling (and in either case with
growing as a function of time). Although we are not inherently concerned here with these
changes that occur on a timescale much longer than the convective timescale, we must pay
heed to our boundary conditions if we have any hope of finding time-independent
solutions. Thus, we have chosen to use fixed boundary conditions on f; to supply
buoyancy to the system, but we must assign fr such that the net flux across the upper and
lower boundaries of the spherical shell is zero.

We first break (3.18) - (3.21) into their scalar components, with (u,w,v) the
velocity v and (fr,fo.fg) the buoyancy gradient f. In the r-0 plane we discretize the

equations using a staggered grid, which we show in Figure 3.4. Such a grid allows one to
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take central differences accurately. For more details on our finite differencing, see the
appendix to this chapter. In the azimuthal direction, we assume exp im¢ dependence, where
the azimuthal wavenumber m is an integer. We can then remove fy = imc from our set of
unknowns and the ¢-component of (3.21) from our set of equations. Because the problem
is non-linear through the term v-f in (3.20), there will be coupling between solutions of
different wavenumbers m. For instance, the interaction of sin m¢ and cos m¢ solutions will
produce contributions to the m = 0 and sin 2m¢ and cos 2m¢ solutions. We include the
interaction terms in the equations that govern the m = 0 solution, but we do not calculate the
2m solutions, an approximation we will later examine. Thus, for each variable at each grid
point we compute an m = 0, cos m¢, and sin m¢ solution. If our grid contains N points in
radius and L points in colatitude, as measured by the points at which we define the pressure

(Figure 3.4), then our system contains

K = 3[(N-1)L+(N-1)L+N(L-1)+NL+NL+(N-1)L+N(L-1)] (3.22)

unknowns.

We will compute solutions only for 0 < 6 < 1t/2, and assume a symmetry about the
equator in order to make computational savings. Again, because there can be non-linear
coupling between solutions of different symmetries, this is not strictly correct, but for the

weakly non-linear parameter range that we will consider, the symmetry approximation

should be valid. We impose the following symmetry conditions for m =0 and all m 2 2:

du/d8 = v = w = dp/d0 = dc/d8 = of;/00 = fg =0 at 6 = 0, and (3.23)

0u/00 = 9v/d0 = w = dp/dB = dc/dO = of;/d8 = fg = 0 at © = /2. (3.24)

The symmetry conditions that we have imposed across the equator through (3.24) represent

dipole symmetry, as opposed to the opposite symmetry conditions at 8 = 7/2, which



Figure 3.4 A schematic of the finite difference staggered grid that we use for the

calculations. In this model, N =L = 4, and Nj = 2. The ret is ungraded, and we omit grid

points forr > 1.
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represent quadrupole symmetry. We have studied only dipole symmetry in an effort to
reduce the parameter space. For m = 1, in which there can be flow across the pole, we

impose the following symmetry conditions:

u=0v/08 =ow/08 =p=c=1f,=0fg/00=0at0 =0, (3.25)

with the symmetry conditions at © = /2 unchanged. Finally, we impose no slip and no

normal flow at the rigid spherical boundaries, so that

u=w=v=0atr=7nandr=1. (3.26)

Our solution method for the non-linear problem (3.18) - (3.21) with (3.23) or
(3.25), (3.24), and (3.26) is an iterative one. For a linear system, one solves Ax =b
once, where A is the finite difference matrix operator, independent of the solution vector x,
and b contains the sources. However, for a non-linear problem the operator A is a function
of the solution vector x, i.e., A = A(x), and the system one must solve is A(X)x =b. At

iteration n we can set the vector of K unknowns Xp = Xp.1 + AX, so that

A(Xp-1+AX)-(Xp-1+AX) = b. (3.27)

Since we cannot solve (3.27) directly, we solve its approximation at iteration n,

A(Xp-1)'Ax =b - A(Xp-1)Xn-1- (3.28)

Until Ax =0, when x,; = Xp.1, we have not satisfied the original system of equations

(3.27). When Ax = 0, we speak of a converged solution. In the absence of a converged



73
solution, the vector X, is meaningless since it does not represent the solution to a physical
problem, as would a numerical solution at a given time step.

In order to begin our iterative procedure to solve (3.27) we must start with a guess
solution x,. We can then compute the operator matrix A(Xo) as well as the right hand side
of (3.28) so that we can solve (3.28) for Ax, set X] = X + Ax, and repeat the procedure
with X1 replacing x,. At each iteration we must solve a system A-Ax =d, where

d=b- A(Xp-1)'Xpn-1- To solve A:Ax =d we use damped least squares with

preconditioning. Hence,

Ax = (ATD-1A+€21)-1(ATD-1d), (3.29)

where AT is the transpose of A, €2I is the diagonal damping matrix, and D is the
preconditioning matrix. The matrix D is a diagonal matrix with element Djj = X Afj,
where i is the row index and j the column index. In essence, the preconditioning normalizes
the magnitude of the rows of A in order to reduce the eigenvalue spread and make the

inversion of ATA more stable in the limit of small damping €2.

3.5 Solutions in a spherical shell for Ta = El = 0

In this section we demonstrate the method's use and its ability to find steady, finite-
amplitude convective solutions in a spherical shell when Ta = El = 0. Unless otherwise
noted the spherical shell has an inner radius 1 = .35, which is roughly the scaled radius of
the Earth's inner core for a CMB with radius 1. We carried out program development and
testing on an Apollo workstation DN 3500, while we performed the calculations presented
throughout the remainder of this chapter and the next on a Cray X-MP. For most of the
calculations we used a grid with N =L = 8, so that K = 1224, as according to (3.22).

Later on we will compare the numerical accuracy of these solutions with those on larger
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grids. Although the code can handle a graded net for which we can obtain finer resolution
in boundary layers, we find for this non-rotating, non-magnetic problem that a graded net
is unnecessary at the relatively low Rayleigh numbers that we search for solutions. Finally,
for all matrix inversions (3.29) we used the LINPACK routines.

We begin with an intial guess solution X, that consists of a field of ones and zeros
(in the non-dimensionalized system), which we denote starting model 1. With the matrix A
normalized to O(1) by the preconditioning, we set our initial damping €2 = 106, which is
much less than O(1) but still much greater than the O(10-14) precision of the Cray X-MP.
We proceed with the iterative procedure outlined above, solving the problem (3.28) via
(3.29) at each iteration step, and updating x,. At each iteration step, we compute the root
mean square of the fit, rms = (di,i)1/2- For an O(1) model such as model 1, the starting
rms is O(1), and for a converged solution, Ax =0, so that the rms approaches zero
(actually, machine error, O(10-14)). We have found that if we decrease the damping €2
beneath 10-6 too quickly, the solution Xy is difficult to control and the rms may not
decrease smoothly . Thus, only as the rms decreases during an iteration sequence do we
lower the damping €2. Typically, we require roughly 15 - 30 iteration steps to reach a
converged solution (if we are to reach one), though this number will vary with the values
of Ra, Ta, and El under study. We will further discuss the iteration sequence as we solve
specific problems.

For boundary conditions such as those here, in which we have homogeneous
forcing (f; independent of 6 and ¢ along both r =m and r = 1), the linear conduction
solution induces no motion and buoyancy simply diffuses for non-zero Ra. The conduction
solution is a solution for all Ra, though as Chandrasekhar (1961) found, for Ra > Rag, the
conduction solution is unstable and non-linear convection commences. Beginning each
iteration sequence with xq equal to model 1, the converged solution that we obtain for
m =0 (axisymmetric solution only), m = 2, or m = 4 for all Ra < 2.2 x 104 is the

conduction solution. However, for Ra = 2.2 x 104, the iteration sequence converges not
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to the conduction solution but to a solution in which the buoyancy gradients are no longer
purely radial and O(1) motions are present. We have obtained a finite-amplitude, non-linear
convective solution. Hence, for this problem Rac = 2.2 x 10%.

The solution that occurs at Ra¢ is axisymmetric. In Figure 3.5 we show fluid
velocity flux arrows in an arbitrary meridional slice of the northern hemsiphere. Even when
we allow the possibility of an m = 2 or m = 4 (along with an m = 0) solution, the iteration
sequence at Ra = 2.2 x 104 always converges to the purely m = 0 solution. Moreover, we
obtain the same Ra. and the same solution at Ra, for a variety of iteration sequences with
different damping at each iteration step. Similarly, when we begin with x, equal to model
2, which substitutes minus ones for the ones of model 1, or model 3, which substitutes
tens for ones, we obtain the same Ra; and the same solution at Rac.

In order to check the accuracy of the solutions we employ a finer mesh with
N =L = 12. Beginning with X, equal to model 1 and looking for axisymmetric
convection, we find that at Ra = 2.2 x 104 we converge to the conduction solution, unlike
for the 8 x 8 grid. It is not until Ra = 2.4 x 10 that we obtain a convective solution. For
N =L = 14, we find Ra; also equals 2.4 x 104, so our value for Ra; on the
computationally more manageable 8 x 8 grid is perhaps not more than 10% off its 'exact’
value. The convective solutions that occur at Ra = 2.4 x 104 for the three grids are
qualitatively similar to that in Figure 3.5. The amplitude of the convection (as measured by
the maximum flux) on the 8 x 8 grid is twice that on the 12 x 12 grid, which in turn is not
quite twice that on the 14 x 14 grid. This variation represents the rapid growth of the
amplitude of convection with Ra above Rac, and the apparent tendency of the coarser grid
to overestimate the amplitude of the convection.

Figure 3.5 shows that latitudinal wavenumber £ = 2 dominates the axisymmetric
convection that commences at Rag for N = L = 8. Although Chandrasekhar (1961) studied
convection with fixed buoyancy rather than fixed buoyancy gradient boundary conditions,

our results are nevertheless in general agreement with his. Referring to his Chapter 6, Table
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XXV, we find that for a shell of inner radius 1 = .3, Rac = 1.8 x 104 with a critical
latitudinal wavenumber £ = 2, whereas for 1| = .4, Rac = 2.8 x 10% with £; = 3. For a
thinner shell with 1 = .6 we obtain Rac = 1.2 x 105 (for N = L = 8), which is again in
reasonable agreement with Chandrasekhar's value Rac = 1.1 x 103. Although £ = 2 again
dominates our axisymmetric convection, as opposed to his value £; = 6, a closer inspection
of Table XXV reveals that Ra, is a very weak function of ¢, so it is perhaps not surprising
that we might obtain a different dominant £ at Rac.

Returning to the shell with 1 = .35, we follow the nature of steady solutions on the
8 x 8 grid as the Rayleigh number rises above Rac. As Ra rises through 3 x 104, the
convective pattern remains m = 0 and £ = 2, but the amplitude of the motions increases
non-linearly with Ra (Figure 3.6). This of course represents the increasing importance of
convection over conduction in the transport of buoyancy. Like Figure 3.5, we obtain
Figure 3.6 independent of the model that we begin with for x,. At Ra =5 x 104 we obtain
£ = 3 axisymmetric convection for all starting models (Figure 3.7). In between
Ra =3 x 104 and Ra = 5 x 104, however, the iteration sequence becomes very difficult
to control, with the rms not decreasing smoothly, even when heavily damped. Eventually,
after some 30 iteration steps, we obtain a converged solution, but the solution we arrive at
is the conduction solution! The iteration sequence behaves similarly for all starting models.

We interpret this behavior as follows. For 2.2 x 104 < Ra < 3 x 10# the iteration
sequences converge to m = 0, £ = 2 convection. For Ra = 5 x 104 but less than some as yet
undetermined Ra the iteration sequences converge to m = 0, £ = 3 convection. Clearly there
is a bifurcation in between, so it should not surprise us that the iteration sequences should
become difficult to control for 3 x 104 < Ra < 5 x 104. In some sense it is as though an
unconverged solution x; cannot easily determine the direction in which it should move in
order to further minimize its misfit. Conduction is a mathematically possible solution for all
Ra, and at only roughly twice critical it is not improbable for an iteration sequence to

converge to the conduction solution.
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Veloctity Flux: Raz2.2e4 Ta:0 E1:0 mzB (D)

0.193E-0L .35 radius 1.6

Figure 3.5 Axisymmetric fluid velocity flux arrows in a meridional slice of the northem
hemispherical shell with j = .35 for Ra =Ra, =2.2 x 104, Ta=0,El =0,and Pr= oo
(starting model 1). The m = 0 flow has no component out of the meridional plane. For
plotting purposes we linearly irterpolate fluxes from the N = L = 8 grid. The number at -
the bottom left of the figure represents the maximum flux vpax. If the flux at a point is

less than one-tenth vpax, we do not plot its flux arrow.,
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Veloctty Flux: Raz3.e4 Ta=0 Eiz0 m=0 (¢8)

0.170€E+00 .35

rasius 1.0

Figure 3.6 As for Figure 3.5, but with Ra = 3 x 10%. The amplitude of the £ = 2 flow has

increased by nearly a factor of ten above its value at Ra = 2.2 x 104, as evidenced by

Vmax-
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Figure 3.7 As for Figure 3.5, but with Ra = § x 104, The flow is £ = 3.
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AtRa =1 x 105, we find converged solutions that depend upon the starting model
and are thus non-unique. However, the final converged solution for a given starting model
is not particularly sensitive to the damping at a given iteration step. Some of the solutions
are three-dimensional. With X, as starting model 1, we obtain axisymmetric convection
even if we allow for an m = 2 or m = 4 solution. We show this axisymmetric solution,
which is primarily £ = 4, in Figure 3.8. In Figure 3.9 we show the more vigorous £ =3
axisymmetric convection that results with Xo as starting model 2, again independent of
whether we allow an m = 2 or m = 4 solution. With starting model 3, however, we obtain
different solutions if we impose axisymmetry, m = 2, or m = 4. If we impose
axisymmetry, we obtain the same solution as in Figure 3.9. If we impose m = 2, we
converge to the three-dimensional convection that we show in Figure 3.10a,b,c. Finally, if
we impose m = 4, the solution reverts to the axisymmetric convection of Figure 3.8.
Presumably, at this modest Ra the convection resists the small length scale of m = 4 by
reverting to axisymmetry.

In order to obtain converged three-dimensional solutions we have had to operate at
higher Ra. While this is not completely surprising, the method does appear to show some
predilection towards finding axisymmetric solutions. As Ra rises further above Rac the
iteration sequences become more difficult to control due to the increasingly non-linear
solution surface becoming more complex. Moreover, the conduction solution surface
becomes more difficult to reach at higher Ra, so we are less likely to obtain conduction as a
converged solution. By Ra = 5 x 105 > 20 Ra; we cannot get the iteration sequence to
converge within 40 iterations. Of course, this is not unexpected behavior from a physical
standpoint: as Ra rises above critical, conduction becomes more remote, convection
becomes smaller scale, and turbulence eventually develops. Accompanying the cascade to
smaller scales we expect time-dependence, though this method cannot predict the time-

dependence.
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Figure 3.8 As for Figure 3.5, but with Ra = 1 x 105, The flow is £ = 4.
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Figure 3.9 As for Figure 3.8, but with starting model 2. The flow is £ = 3, though with

greater amplitude than at Ra = 5 x 10%. The ¢ = 3 flow is more vigorous than the £ =4

flow of Figure 3.8, which is also at Ra = 1 x 105,
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Velocity Flux: Razl.e5 Taz0 Ef=C r:0 (In2)

0.253C+00 .35 raiius 1.0

Figure 3.10 As for Figure 3.8, but with starting model 3. The convection contains m =2

flow in addition to axisymmetric flow.

a) The axisymmetric component. The flow is £ = 3, though of lesser amplitude than".

thepurely axisymmetric flow of Figure 3.9.
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Veloclty Flux: Ra:l.e5 Taz0 E1=0 ms2 cos (3n2)

0.273€+00

b) The cosine component of the m = 2 flow in a meridional slice at ¢ = 0. We do not

show the accompanying m = 2 azimuthal flow.



Veloclty Flux: Ra=1.e5 Taz0 E1z0 m=2 sin (3n2)
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0.271E+0) .35 radius

¢) As for Figure 3.10b, but the sine component.

1.0
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At higher Ra such as Ra = 107, the converged solutions, even the axisymmetric
ones, are no longer unique. However, despite trying starting models other than 1, 2, or 3,
and iteration sequences with different damping levels, we always obtain one of only a few
different converged solutions (Figures 8 -10). In any case, as Ra rises above Rag, the
omission of the explicitly time-dependent terms becomes more suspect. Although we may
obtain a converged solution in the space domain, without the time-dependent terms we
cannot be sure our solutions are stable in the space-time domain. Thus, much as the
conduction solution is an exact solution that is unstable to perturbations in the space domain
for Ra > Ra, our converged, stationary convective solutions in the space domain may be
unstable to perturbations in the time domain.

Short of time-stepping, one could perform a linear stability analysis of our finite-
amplitude solutions to determine the stability with respect to time perturbations. Although
we have not done this yet, our general expectation for this non-rotating, non-magnetic
problem is that the converged solutions that we have obtained with relative ease at moderate
Ra are likely to be stable with respect to time. As Ra rises, our difficulty in finding
converged solutions in the space domain is very likely related to the increasing importance
of the time-dependence, which we have neglected. As we shall see in the next chapter,
however, one cannot always be so confident about the stability of converged solutions, and
a certain amount of physical intuition is necessary in lieu of the mathematical stability
analysis. In any case, in this chapter we have demonstrated that the method can reproduce

reasonably well the nature of stationary convection in a non-rotating, non-magnetic fluid.
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Chapter 3 Appendix

In this appendix we present the finite difference operators that we use for our
staggered graded net. In Figure 3.4 we show the grid points at which compute the various
unknowns. We use this staggered grid because generally it allows us to take centered first
derivatives. Thus, we compute the radial component of the Navier-Stokes equation, (3.19),
about the o's in Figure 3.4, the colatitudinal component about the x's, and the azimuthal
component about the o's. We compute both the divergence equation, (3.19), and the
buoyancy equation, (3.20), about the A's (both for which the value of the staggered net is
most apparent). Finally, we compute the radial component of (3.21) about the o's and the
colatitudinal component about the x's.

Let f, represent the value of a particular scalar unknown f at a grid point
Xo = (To,00). If f, represents the value of f at x4 = Xo + Ax and f. the value at

X. = Xq - Ax, then the derivative of f with respect to the scalar direction x (r or 8) about

the point xg is
fo| = (f+ - f.)/(x+ - X-). (A3.1)

Equation (A3.1) is accurate to second order (in the Taylor series expansion of f about fo)

for a centered first derivative (such as du/dr in the diverence equation), and holds for a

graded net as well as for a uniform net. In order to obtain second order accuracy for a

derivative that is not centered (such as du/or in the radial component of the Navier-Stokes

equation), we must replace (A3.1) with

)X - %)% - (E(K. - x6)? - (Eo)((ke - X0)2 - (X - X0)2)]
fo'= 06, - %9)(Xs ~ %0) (ks - K] . A3
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The second derivative of f with respect to x about x¢ is

£ = AED® - X0) - (E)Xs - Xo) + (fo) (x4 - X)) (A33)
[(X. - Xo)(X+ - X0)? - (X4 - Xo)(X. = Xo)?]

Equation (A3.3) is accurate to second order and is also valid for a graded net as well as for
a uniform net. Finally, we sometimes need to take a weighted average of an unknown f.
Thus, to assign a value f, at a point X, at which f is not actually defined on the grid of

Figure 3.4, we set
fo = [(x+ - xo)(f2) + (X - X )ED V(X4 - X.). (A3.4)
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Chapter 4

Rotating Magnetoconvection: Steady Solutions, Free and Forced

4.1 Introduction

In Chapter 3 we developed an iterative method to find steady solutions in a
spherical shell to the non-linear equations (3.1) - (3.4), which govern the buoyancy-driven
convection of a fluid with Rayleigh number Ra, Taylor number Ta, Elsasser number El,
Prandtl number Pr, and magnetic Prandtl number q. We then solved the system for infinite
Pr and q = 1 (for reasons laid out in Section 3.4), and Ta=El =0, in order to
demonstrate the method's successes and limitations in studying free convection. The time-

independent equations for infinite Pr and q = 1, (3.15) - (3.21), are once again

VxB-(e+vxB)=0, 4.1)

V-B=0, (4.2)

Vxe=0, (4.3)

~Vp+V2v-Ta"? Qxv+Racg+Ta”El(VxB)xB=0, (4.4)
V.-v=0,and (4.5)

v-f=V-f=0, with (4.6)

f-Vc=0. 4.7)

In this chapter we will continue our study of the non-magnetic problem (4.4) - (4.7) with
El = 0, but for non-zero Ta. After applying our iterative method to find solutions to the full
problem (4.1) - (4.7) in the simpler geometry of a cylindrical annulus in order to further
test our method, we will return to solve (4.1) - (4.7) in a spherical shell. We will also solve

(4.1) - (4.7) in a spherical shell with gravity in the cylindrically radial direction rather than
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in the spherically radial direction, in order to observe the role of gz, the component of
gravity in the z-direction. Having built up an understanding of our iterative method through
a study of free convection, we will then use the method to find steady motions forced by
laterally inhomogeneous buoyancy flux boundary conditions, as may be appropriate at the

Earth's core-mantle boundary (CMB).

4.2 Solutions in a spherical shell for non-zero Ta, El = 0

The value of Ta in the Earth's outer core is unknown, though it is certainly very
large, perhaps O(1028), because of the high rotation rate and small molecular fluid viscosity
of the liquid metal in the outer core (Table 1.1). It is infeasible to numerically model at such
large Ta because of the small length scales that occur in this parameter range (see
Section 3.3). It is for this reason that there has been so much emphasis on the asympototic
relationship of the critical Rayleigh number Rac, critical azimuthal wavenumber m, and
critical drift frequency @ to Ta, as Ta — . Zhang and Busse (1987) found that by
Ta = 107, the asymptotic relationship that Ra is proportional to Ta%3 is very closely
approached. Thus, in order to get at least a qualitative sense of the role of rapid rotation,
one needs to model with Ta approaching that range. For this reason we will primarily study
solutions at Ta = 106, which is numerically manageable, and also some at Ta =4 x 106,

As for the non-rotating problem, we study free convection driven by a
homogeneous buoyancy flux across r = 1 and r = 1. Throughout this chapter we set
N =.35. We again apply the symmetry conditions (3.23) - (3.25) and boundary
conditions (3.26). We compute solutions with the number of grid points N=L = 8,
except for a few checks on the accuracy of the solutions when we employ a finer mesh.
Except for the addition of relatively rapid rotation, the problem is identical to that studied in

Section 3.5. As for when Ta = 0, if Ra is lower than a certain value, Rac, the iteration
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sequence converges to the conduction solution, independent of the choice of starting model
X, and azimuthal wavenumber m.

At Ta = 106 we find Rac = 1.7 x 103, nearly a factor of ten higher than that for
Ta = 0. We obtain this value for Ra. for starting models 1, 2, and 3. Although we allow
form = 2, 4, 6, 8, or 10 components, the convective solution that we obtain at Rag is
always axisymmetric, and £ = 1, as measured by the number of convective overturns. We
show the poloidal motion in Figure 4.1. The effects of rapid rotation are evident. Firstly,
convection does not commence until the buoyancy force, as measured by Ra, is large
enough to overcome the rotational constraint - hence the higher Ra¢ as compared with that
for Ta = 0. Secondly, when convection does commence, the fluid motions tend towards
two-dimensionality, independent of the coordinate parallel to the rotation axis. Thus, in the
polar regions the motion is oriented in the z-direction, turning only in the boundary layers
onr=m and r = 1. In the equatorial region, axisymmetric poloidal motion is absent except
at radii near r = 1], because such motion in the mainstream violates the Taylor-Proudman
theorem. Hence, diffusion remains the primary means of buoyancy transport in the
equatorial region, except near the inner boundary. The rapid rotation results in an
axisymmetric azimuthal flow that we show in Figure 4.2. The flow is westward in regions
where the flow is away from the rotation axis, and eastward in regions where the flow is
decreasing its cylindrical radius.

The behavior of the iteration sequences at Ta = 100 as Ra rises above Rag is similar
to those at Ta = 0. For Ra = 3 x 105, we obtain axisymmetric convection whether we start
with model 1 (Figure 4.3) or model 3 (Figure 4.4). The solutions are very clearly different
modes, although their effective buoyancy transports are similar. Beginning with model 1,
we converge to axisymmetric £ = 3 convection at both Ra =4 x 105 and Ra = 5 x 103
(neither shown). The mode we obtain for the two is the same, but the amplitude at
Ra = 5 x 103 is greater than four times that at Ra = 4 x 105, demonstrating the rapid

non-linear growth of the amplitude of convection with increasing Ra. Through their
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Veloctty Flux: Raz1.7e5 Ta 1.e6 €120 m=0 (1)

0.152€-C1 35 radius 1.6
Figure 4.1 Axisymmetric fluid velocity flux arrows in a meridional slice of the northemn
hemispherical shell with = .35 for Ra = Ra. = 1.7 x 105, Ta = 106, E1 = 0, and Pr = o0
(starting model 1). The rotation induces an m = 0 flow out of the meridional plane. For
plotting purposes we linearly interpolate fluxes from the N = L = 8 grid. The number at
the bottom left of the figure represents the maximum flux vpax. If the flux at a poim\ is a
less than one-tenth vmax, we do not plot its flux arrow. The effects of rapid rotation on

this primarily £ = 1 polar mode are clear.
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Fziruthal Velocity Flux: Faz1.725 Ta:zl.eB E1:0 m=0 ([}
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0o 00000 e °

rajius 1.8
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Figure 4.2 Axisymmetric azimuthal velocity flux in a meridional slice of the northern
hemispherical shell for the parameters of Figure 4.1. The x's represent flow into the page
(eastward flow) and the o's represent flow out of the page (wcstward flow). The flow is ‘.

westward in regions where the flow is away from the rotation axis, eastward where it is

towards.
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Velocity Flux: Faz3.e5 Tazl.e5 €18 mz0 ({)

6.160€+00 .35 rajius 1.6

Figure 4.3 As for Figure 4.1 but for Ra =3 x 103. The flow is primarily £ = 3.
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Veloctty Flux: Faz3.e5 Tazl.e E1=0 w20 (D)

1.0

0.1E9£+00 .35 radius

Figure 4.4 As for Figure 4.3 but using starting model 3 for x,. Figure 4.4 clearly

represents a different mode than does Figure 4.3.
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z-independence and their prevalence in the polar regions, all converged modes show the
effects of rapid rotation. As the Rayleigh number rises to Ra = 106, we are no longer able
to obtain converged solutions, at least within 40 iteration steps. As for when Ta = 0, this is
presumably due to a cascade to smaller scales, and the likely accompanying time-
dependence.

When we increase the Taylor number to Ta = 4 x 100, we observe behavior similar
to that at Ta = 109, except that the rotational effects are yet more apparent. At
Ta = 4 x 106, the critical Rayleigh number rises to Rac = 3.2 x 105. In Figure 4.5 we
show the axisymmetric £ = 1 convection that occurs at Rac. It is qualitatively similar to that
at Ra¢ for Ta = 100, except that it is perhaps more confined to the polar region, as one
might expect. However, we can also begin to see the effect of numerical inaccuracy at this
higher Ta, for which the length scale of motions becomes smaller. The N = L = 8 grid does
not provide completely sufficient resolution of the small length scale, with the result that the
solutions display spurious spatial ocillations. We can see this in Figufe 4.5, particularly in
that part of the convective cell in which fluid is rising.

For a finer grid with N = L = 12 we find Rac = 2.2 x 105 at Ta = 109, as compared
with Rac = 1.7 x 105 on the 8 x 8 grid. As for at Ta =0, a coarser grid tends to yield
convection at a lower value of Ra than does a finer one. For Ta = 4 x 100 the 12 x 12 grid
yields Rac = 4.6 x 103, thirty percent higher than Rac = 3.2 x 105 on the 8 x 8 grid. In
Figure 4.6 we show the convection that occurs at Rac for Ta = 4 x 100 on the finer grid.
Note that the finer grid eliminates the spurious spatial oscillations of the coarser grid. We
can see that as the rotation rate increases an accurate solution requires a finer grid, as
expected. We do not solve the equations (4.4) - (4.7) with non-zero Ta on a yet finer grid
with N = L = 14, so we cannot yet be sure of the accuracy of our solutions. Nevertheless,
we are quite confident that we have captured the essential behavior of the converged

solutions.
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Velocity Flux: Ka:3.2e5 Taz4.e5 €120 mz0 (1)

0.303€-02 .35 ras.us 1.0

Figure 4.5 As for Figure 4.1 but with Ta = 4 x 106, so that Rag rises to 3.2 x 10. At this

higher Ta the effects of numerical inaccuracy become apparent.
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Veloctty Flux: Ra:4.€e5 Ta=4.¢ E1=0 mz0 (L-12)

0.937€-02 .35 rafius 1.0

Figure 4.6 As for Figure 4.5 but with N = L = 12. For the finer grid Rac = 4.6 x 105, The

finer grid eliminates the spurious spatial oscillations of Figure 4.5.-
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Unlike at Ta = 0, we cannot obtain solutions with a ¢-dependence, even as we
progress to higher Ra. Although Busse and Cuong (1977) demonstrated that the columnar
equatorial modes, which necessarily have a ¢-dependence, occur for a lower Ra than do the
polar modes, which can be axisymmetric (though must not necessarily be), we converge
only to the polar modes. Why have we been unable to obtain any solutions with cos mé
and sin m¢ components? The most likely explanation of course is that modes with a
¢-dependence, i.e., the columnar equatorial modes, are not time-independent, but rather,
exhibit a drift. At infinite Prandtl number Pr, the only explicity time-dependent term is
dc/dt, which we have dropped from (4.7). We can restore this term, assign a drift
frequency , and search for converged, steadily eastwardly drifting equatorial modes.
Looking for solutions near the critical Rayleigh number for the columnar equatorial modes
(which we henceforth denote Raceq to distinguish it from Rac that we find using our
iterative procedure) at Ta = 106, we choose the appropriate ¢ from the asymptotic relation
¢ = .23 Tal/3 of Zhang (1991). However, we are still unable to obtain the equatorial
modes, but instead, obtain the conduction solution.

Since we assign the drift frequency o rather than have it come out of the analysis,
even with guidance we must be extraordinarily lucky to pick the exact drift frequency that
would yield the equatorial modes. Moreover, Zhang and Busse (1990) found that  is a
strong function of Ra at infinite Pr, so the guidance may be of somewhat limited help.
However, there is second though related explanation for our inability to obtain steady
equatorial modes. Cardin and Olson (1992) demonstrated experimentally and numerically
that steadily drifting solutions persist only to within a few times critical (beyond the range
of Zhang and Busse's steadily drifting solutions), beyond which the time-dependence
becomes more complicated, eventually becoming aperiodic. Hence, the columnar
convection that occurs near Rageq (similar to Figure 3.1 in a sphere) may not persist for a

very wide range in Ra. In some rough sense our inability to find the steadily drifting
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equatorial modes using our iterative method may be related to the physical reality that these
modes do not exist but for a very limited parameter range.

In light of the absence of equatorial modes, we must consider the stability with
respect to time perturbations of the polar modes. Given that the equatorial modes occur for
Ra lower than for the polar modes, it seems likely that our converged solutions are unstable
with respect to time. Thus, the purely axisymmetric, steady polar modes that we have
obtained as converged solutions are probably not physically realizable. On other hand,
Gilman (1977) found that as Ra rises above Raceq, there is a shift in the kinetic energy
spectrum towards lower azimuthal wavenumber m (in addition to the Reynolds stress
induced m = 0 differential rotation that occurs at finite Pr), and the convection begins to fill
the sphere, both indicating that the polar modes are becoming increasingly important
relative to the equatorial modes. Cardin and Olson (1992) did not obtain polar convection in
their laboratory and numerical experiments in a spherical shell at large Ra because they
simulated only the component of gravity perpendicular to the rotation axis. While a
dynamically valid approximation near Ragceg, it is very likely not valid for Ra large enough

such that buoyancy can overcome the rotational constraint at high latitudes.

4.3 Solutions in an infinite annulus

Spherical boundaries induce an azimuthal drift of convective columns via the
Rossby wave mechanism of Figure 3.2. They also make the convective columns inefficient
for transporting buoyancy by imposing a small radial length scale, which leads to the rapid
onset with increasing Ra of highly time-dependent convection (Cardin and Olson, 1992).
For one or both of these reasons we are unable to obtain three-dimensional convective
columns in a spherical shell. We therefore feel it might be instructive to study rotating
convection in an infinite annulus, which avoids interference from spherical boundaries, and

forces convective solutions to have a ¢-dependence. We will also study rotating
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magnetoconvection in an infinite annulus. The main objective of this section is to establish
our ability to find steady columnar convective solutions in the simpler geometry of an
infinite annulus, and to understand the effect of a magnetic field on these 'equatorial’
modes.

In the absence of a magnetic field, the equations governing steady convection at
infinite Prandt] number in an infinite annulus remain (4.4) - (4.7), but we here solve them

in cylindrical coordinates (s,,z), with S the unit vector in the cylindrical radial direction,

¢ the unit vector in the eastward direction, and Z the unit vector in the direction parallel to

the axis of symmetry of the coaxial cylinders. As in the spherical shell, we flux buoyancy
into the fluid uniformly along the inner cylinder s = = .35, and remove a concomitant
flux uniformly along the outer boundary s = 1. The rotation axis El = Z lies along s = 0,
and gravity g = § is thus everywhere directed perpendicular to the rotation axis. The
boundary conditions (3.26) remain unchanged on the rigid boundaries at s = 1 and s=1,
where (u,v,w) now represent the velocity components in the (s,0,z) directions. We again
assume exp im¢ dependence, and in the z-direction we assume exp ikz dependence, where
k is the z-wavenumber, not necessarily an integer. As in the azimuthal direction, we allow
for the interaction of sin kz and cos kz solutions to modify the k = 0 solution, but we
ignore the sin 2kz and cos 2kz solutions. We thereby reduce the numerical problem to
finding the s-dependence of the nine retained Fourier components for each of the scalar
unknowns: the velocity (u,v,w), the pressure p, the buoyancy c, and the radial buoyancy
gradient fs. We find their s-dependence on a staggered grid with N = 8 radial points, using
the same iterative procedure as for the spherical shell. For each iteration sequence we must
choose Ra, Ta, m, and k.

At Ta = 100 we cannot find any convergent solutions that contain a non-zero
k-component. This of course reflects the proclivity of the rapidly rotating infinite annulus to

eliminate any z-dependence. Unlike in the sphere, we easily obtain non-drifting convection

with non-zero m-components, i.¢., columns, provided Ra is high enough. The overall
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lowest critical Rayleigh number occurs for m = 1, for which Rac; =2.0 x 10%. As the
assigned m rises, Racpy rises, so that Racy = 2.5 x 104, Racs = 3.6 x 104, and so forth.
This preference for large scale flow in the annulus demonstrates the restrictive geometry of
the sphere. Moreover, in the absence of spherical boundaries the presence and strength of
rotation does not affect Racm, with Racy = 2.0 x 104 at Ta =4 x 100, as at Ta = 106. As Ta
rises, the pressure gradient simply rises to balance the increasing Coriolis force.

For a given Ra we can obtain convective solutions only for m < m«, and for
m > m* we obtain the conduction solution. The larger Ra is, the larger is m=. In
Figure 4.7 we show the velocity flux in a one-quarter cross-section of the annulus for
Ra = 105, Ta = 106, and m = 4. In this plan view the columnar structure of the flow is
evident. The absence of a net azimuthal flow is a result of the infinite Prandtl number. The
solution that we show in Figure 4.7 we obtain independent of the starting model and
damping scheme. Within a few percent we also obtain the same solution on a grid with 12
radial points.

At Ra = 108, Ta = 108, and m = 4, and a starting model that consists of the
converged solution at Ra = 105, we find a convergent solution that looks qualitatively like
that of Figure 4.7, but with a larger amplitude. However, as discussed above and in
Section 3.4, we have ignored the sin 2m¢ and cos 2m¢ part of the solution, an
approximation whose validity we will now examine. At Ra = 105, Ta = 105, and m = 4,
the ratio of the non-axisymmetric radial buoyancy gradient to the axisymmetric radial
buoyancy gradient, Ifsm/fsol, is less than one percent at each grid point, indicating that the
non-linearity is not too great and that little power is transferred to the 2m wavelength. On
the other hand, at Ra = 109, Ifgm/fsol is about one hundred percent in the interior of the
fluid, so that considerable power is transferred to the smaller lengthscale, which we do not
account for in our analysis. Moreover, if we begin with a more arbitrary starting model, we
find a convergent solution at Ra = 106, Ta = 106, and m = 4 that exhibits a double

columnar structure in radius (Figure 4.8), which is also clearly an attempt to achieve a



110

Veloctty Flux: ka=1.e5 Tazl.e§ E1=0 m:4 k=0

T
T
r
/

MR e e e e e N S |

0.€53C+00
Figure 4.7 Fluid velocity flux arrows in a one-quarter cross-section of the cylindrical

annulus with 1 = .35 for Ra = 105, Ta = 105, E1 = 0, and Pr = o. The m = 4,k =0 flow
has no component in the z-direction. For plotting purposes we linearly interpolate fluxes
from the N = 8 grid. The number at the bottom left of the figure represents the maximum

flux vmax. If the flux at a point is less than one-tenth vyax, we do not plot its flux arrow

The columnar nature of the flow is evident.
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Figure 4.8 As for Figure 4.7 but for Ra = 106. We obtain this double columnar structure
when we start with an arbitrary model X, but when we start with X, set to the converged

solution at Ra = 105 we obtain a single columnar structure.
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smaller length scale. In any case, for such large Ra we begin to doubt the stability of the
steady, converged solutions with respect to time perturbations.

Before we study the effects of an imposed magnetic field on rotating convection in a
spherical shell, we will study rotating magnetoconvection in an infinite annulus with
N =.35 (and q = 1). The solid in s < 1 and the fluid in | <'s < 1 are of equal and finite
electrical conductivity, and the solid in s > 1 is an electrical insulator. The finite electrical
conductivity of the fluid adds the magnetic field B = (bs,b¢,bz) and electric field
e = (€5,€¢,€z) as unknowns to the system. Thus, in the fluid inn <s <1 we solve the
three components of (4.1), the scalar equation (4.2), the ¢-component of (4.3), and also

the scalar equation

Ve = O, (48)

in addition to the convective equations with the Lorentz force, (4.4) - (4.7). In s <m we
solve (4.1) with the fluid advection term v x B omitted, (4.2), the ¢-component of (4.3),
and (4.8). In the electrical insulator s > 1 the magnetic and electric fields must match to
potential fields. Alternatively in s > 1, B and e must satisfy (4.1) with the term
(e + v x B) omitted (i.e., the electric current density j = 0), (4.2), the ¢-component of
(4.3), and (4.8), with the condition that B and e approach zero as s — ee.

Although the potential fields in s > 1 have an analytic solution, we choose to
numerically solve for B and e in this region using a graded net and requiring B=e =0 at
some arbitrarily large radius, such as s = 100. Although such a formulation increases the
size of the matrix in (3.29) that we must invert at each iterative step, and although the
impedance boundary conditions at s = 1 that follow from the analytic solution in s > 1 are
relatively easy to implement in cylindrical geometry, they require a spectral transform for

the colatitudinal direction in the spherical shell. Thus, for simplicity and in preparation for
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the spherical shell we numerically find B and e in s > 1, as we will for r > 1 in the

spherical shell. Across s =0 the symmetry conditions for m =0 and m 2 2 are:

bs = by = db,/ds = €5 = e = de;/ds = 0, 4.9)

with the opposite conditions (dbg/ds = dbg/ds = b, = deg/ds = dey/ds = €, = 0) holding for
m = 1. As before the fluid velocity (u,v,w) must satisfy the rigid wall, no slip conditions
(3.26) on s =m and s = 1. As for the purely hydrodynamical problem we assume exp im¢
and exp ikz dependence, and numerically solve for the radial dependence on a staggered
grid with four points (evenly spaced) in 0 <s < 1, eight points (evenly spaced) in
N <s<1, and six points (spaced geometrically larger with increasing s) in
1 <s < 100.

Ideally we should not need to impose a magnetic field, but rather have one em—ergc
as part of a steady finite-amplitude convective solution. However, creating a steady
dynamo is not the main objective of this section. Hence we will impose a fixed magnetic
field B, though we retain all the non-linear terms in (4.1) - (4.8). We will impose two
different magnetic fields: a uniform B, = Z and a toroidal field B, = (1/5)5. Experimentally
we could set up the former by building a solenoid about our rotating annulus and the latter
by placing a wire along s = 0. Note that since we are primarily interested in convectively-
driven instabilities and not magnetically-driven instabilities, the exact functional dependence
of By, is not crucial (Eltayeb and Kumar, 1977, Drew, 1991). As for the non-magnetic
problem, El =7 lies along s = 0, and gravity g = §.

A fixed B, = Z should not affect the value of Racm nor the the form of the
convective columns at Rac, since By is parallel to EZ, both perpendicular to . We observe
this at Ta = 106 for both El = 10-! and El = 100 and m = 4 and m = 6. Moreover, the

convection at Ra = 105 > Ragg > Ragq remains aligned parallel to the z-axis, with no

z-dependence (despite trying k = 1, 2, 4, and 10 and several starting models) and no flow
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w in the z-direction. The convective columns create neither bg nor by, but simply drag b,
field lines independently of z. The non-linear interaction of u(¢) and v(¢) with b,(¢) creates
an axisymmetric b; that effectively opposes the imposed B within the fluid. The regions of
dense and sparse by, field lines create no net Lorentz force to modify the fluid motions.
The choice of Bg = (1/s)$ is more interesting in the infinite annulus. Once again, in
the presence of rapid rotation we cannot obtain solutions that contain a non-zero k
component, despite trying several z-wavenumbers and several starting models. At
Ta = 106 we find that an azimuthal magnetic field at a non-zero El delays the onset of
convection to higher Ra for both m = 4 and m = 6. Thus, whereas for El = 0,
Racg = 3.6 x 104, for El = 10-1, Racg4 = 9. x 104, and for El = 4 x 10-1, Rac4 = 3. x 105.
Similarly, for El = 0, Racg = 8. x 104, but for El = 10-1, Racg = 2. x 105. We observe
consistent behavior for Ra > Racpy, in that an azimuthal magnetic field at a non-zero El
lessens the amplitude of convection for a given Ra, Ta, and m. For instance, compare the
amplitude of the velocity flux in Figure 4.9 at El = 10-1 with that of Figure 4.7 at El = 0,
both at Ra = 105, Ta = 106, and m = 4. In Figure 4.10 we show the total magnetic flux of
the imposed field B, plus that field created by the convective motions in Figure 4.9.
In the infinite annulus with gravity g = § the rotation EZ = Z imposes no constraint
on convection, and the presence of a magnetic field aligned perpendicularly to both El and g
does not promote convection, but rather, inhibits it. This differs from the sphere, in which
the combination of rotation and spherical boundaries limits the length scale and
effectiveness of convection, so that an imposed toroidal magnetic field promotes convection
(Eltayeb and Kumar, 1977, Fearn, 1979). Thus, it is both the presence of spherical
boundaries and the relative orientation of S’i, g, and B near the equator that allows a
magnetic field to enhance rotating magnetoconvection in a sphere. Through their absence,
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