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ABSTRACT

For internal gravity waves in a stratified fluid, the
height at which the horizontal phase speed is equal to
the mean motion or wind is a singular level. The inviscid,
adiabatic, linearized equations are singular at this height
and predict infinite values for the wave density and the
wave horizontal motion.

In this work the behavior of internal gravity waves
near a singular level is investigated by means of a
transient, two-space-dimensional, finite difference model
which includes all the important nonlinear terms as well
as viscosity and thermal conduction. It is assumed that
the medium is incompressible, but this has a negligible
effect on events near the singular level.

It is concluded that the nonlinear terms are quite
important near a singular level, but that the viscous and
heat conduction terms are not. Some of the qualitative
wave behavior near a singular level can be predicted from
simple linear theory, but the actual interaction of the
wave and wind is nonlinear. For a horizontal wavelength
of five kilometers the interaction region is found to be
several hundred meters thick.

The nonlinear terms generate changes in the wind which
absorb most of the incident wave's momentum and energy
when the Richardson number is greater than 0.25. If the
incident wave has a horizontal phase speed greater than



the wind speed, the wave carries positive horizontal
momentum and energy. This wave is absorbed symmetrically
around the singular level increasing the wind speed there.
The higher harmonics are generated on the side of the
singular level away from the source. When the horizontal
phase speed is less than the wind speed, the incident wave
carries negative horizontal momentum and energy. This wave
is absorbed before it reaches the singular level, where it
decreases the wind speed. The higher harmonics are gener-
ated on the side of the singular level near the source.
When the Richardson number is less than 0.25. the incident
wave is largely transmitted through the singular level and
over-reflection occurs. The excess momentum and energy is
supplied by the wind.

Near the singular level the horizontal phase speed is
observed to differ from that of the source and to be a
function of height. The associated shearing of the wave
pattern accompanies the decrease of the vertical wave-
length. The change in the horizontal phase speed results
in the actual singular level being further from the source
than the linear theory predicts.

Thesis Supervisor: Theodore R. Madden
Title: Professor of Geophysics
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Chapter One

Introduction

Internal gravity waves form a portion of the spectrum

of internal waves in fluids. This spectrum is divided

into three frequency ranges on the basis of which of the

Coriolis, gravity, or compressibility terms is the most

important in the complete equations. The acoustic branch

is comprised of waves with periods of less than a minute

or so for which the gravity and Coriolis terms in Newton's

law may be neglected. The study of rotational waves

considers waves which have a period which is a sizable

fraction of one day, and for which the Coriolis term

dominates the gravity term in Newton's law and the fluid

can be considered incompressible. The gravity branch

consists of those waves of intermediate frequency and

period, for which the gravity term in Newton's law is the

most important. The periods of internal gravity waves

range from roughly five minutes to an hour or two. When

both the gravity term and the compressibility are kept

in the equations, the phrase acoustic-gravity is often

used, even though the periods of the iaves being con-

sidered may not lie in the transition region where the

retention of both terms is mandatory.

In the early theoretical work only simple models

were used. For waves with periods much shorter than one

day this means an isothermal, inviscid, adiabatic,



irrotational model with constant wind. With these

assumptions the equations are quite tractable and analytic

solutions may be readily obtained (Hines, 1960). Relaxation

of one or more of these assumptions renders the problem

considerably more complex and simple analytic solutions

are no longer available.

In the case where the wind is a function of height,

if there is a height at which the horizontal component

of the phase velocity is equal to the wind velocity, this

height is known as a critical level or a singular level.

The two terms will be used interchangeably. At this

height the intrinsic frequency or Doppler frequency is

zero. This frequency is that which would be observed by

someone at rest with respect to the fluid.

There are two problems associated with a critical

level. The first and simpler of the two, with which this

work is primarily concerned, is the nature of wave behavior

near a critical level. The second, and related problem,

is the role, if any, which critical levels play in the

source mechanism which is responsible for the gravity

waves observed on the ground and in the ionosphere.

At a singular level the simple linear equations

predict that the wave density and the wave horizontal

motion will be infinite and that the wave pressure and the

wave vertical motion will be zero. This can certainly not

be the case because it contradicts what we know about the

real, physical world. The vertical wavelength is also
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predicted to be zero at the singular level. Due to this

increase in the magnitude of the wave horizontal motion

and decrease in the vertical wavelength as a singular

level is approached, any analysis which neglects the non-

linear effects cannot correctly describe events near a

critical level. In this study appropriate nonlinear

terms as well as the viscous and heat conduction terms are

retained in the equations, so that more realistic con-

clusions about what happens near a singular level are

obtained. With all these terms included, the resulting

equations are analytically intractable, so they are handled

by finite difference methods. Insofar as known, this is

the first study of singular levels to include the nonlinear

terms.

Chapter two contains a brief review of previous work

which has a direct bearing on the critical level problems.

In chapter three the complete basic equations are analysed

in order to discover which terms in these equations are

likely to be of significant size near a critical level.

The details of the finite difference scheme are presented

in chapter four, and chapter five consists of the results

of the finite difference calculations.
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Chapter Two

Review of Previous Work

2.1 Theory

This section contains a brief review of those papers

which theoretically treat the critical level. The reader

who is unfamiliar with internal gravity waves is advised

to first consult Hines (1960), Eckart (1960a) or Tolstoy

(1963) where the basic linear equations for simple atmos-

pheric models are presented.

Before the geophysicists and wave propagation

theorists took up internal gravity waves, a few meteorolo-

gists had done some work with mountain lee waves. These

large scale disturbances which are formed when a steady

wind blows over a large mountain range are a special case

of internal gravity waves. They are stationary waves

because the obstacle causing them is fixed and a nonzero

wind is necessary for their existence. Thus one of the

earlier works which has a direct bearing on critical

levels is Eliassen and Palm (1960). (The review of the

earlier lee wave studies in Eliassen and Palm is adequate

except for the omission of Scorer (1949).) Although Eliassen

and Palm did not consider a critical level as such, their

linear analysis showed how the energy and momentum fluxes

depended on the wind speed. They also considered layer

boundaries and derived the quantities which must be con-

tinuous there. Much of the later work has been the



extension and application of ideas in their paper.

The behavior of a gravity wave near a critical level

has been investigated by Bretherton (1966) and extended

by Garrett (1968) using the W.K.B. approximation. To

do this, it must be assumed that the problem is linear,

adiabatic, inviscid, and non-rotational. In addition, it

is required that the Richardson number is large and that

the vertical wavelength is small with respect to distances

over which such ambient quantities as the Brunt frequency

and wind speed change by a significant amount. These

conditions are unlikely to be satisfied for the actual

atmosphere. The conclusion reached in this unrealistic

model was that the wave packet approaching a critical

level is neither reflected nor absorbed, but that the

packet never reaches the critical level due to the vertical

group velocity becoming increasingly smaller as the distance

from the critical level decreases. Thus the energy remains

in the vicinity of the critical level. An extension and

a more general consideration of conserved quantities has

been made by Bretherton and Garrett (1968).

A more realistic treatment of the same simple equations

is that of Booker and Bretherton (1967). They treated the

singular level by taking the frequency to be complex

and applying contour integration. They found that the

Reynolds stress of a wave was attenuated by a factor of

exp(-27T(Rc-0.25)1/2 upon passage through a critical

singular level, where Rc is the Richardson number at the
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critical level.

This basic analysis was extended by Jones (1967) to

include rotation and by Hazel (1967) to include viscosity

and heat flow. Inclusion of the Earth's rotation does

not remove the singularity at = 0 but introduces two

additional singularities at A = R Jones showed

that the basic conclusions of Booker and Bretherton con-

cerning attenuation held but that the nature of the solu-

tions very near the singular level was quite different.

The Richardson number of unity was used and the reflected

wave was found to be about 0.026 of the incident wave.

By including the viscosity and thermal conductivity

Hazel found that the singularity in the equations was

removed. Like Jones he used the linearized equations but

Hazel considered the problem in the mountain lee wave form

rather than the propagating wave form. The four addition-

al solutions resulting from the abandonment of the adiabatic

and inviscid requirements are naturally small away from

the critical level. Hazel calculated all six solutions

numerically from assymptotic expansions matched at

appropriate heights for Ri = 3. He found that the

transmitted wave was indeed attenuated by the factor

found by Booker and Bretherton and that there was no

reflected wave. The wave energy and momentum were ab-

sorbed by the wind in the region around, but mostly below,

the singular level for an upward traveling wave. For

the critical layer, defined to be that region where the



viscosity is important, Hazel found a height of five to

ten meters for a horizontal wavelength of ten kilometers.

Hazel used the molecular (laminar flow) values for

the viscosity and thermal conductivity, but the evidence

from meso-scale meteorology (Sutton, 1953, 1955) is that

turbulence is almost always present on scales smaller than

the wavelengths of internal gravity waves. Therefore

the eddy (turbulent flow) values for the viscosity and

thermal conductivity would be more appropriate. Multiply-

ing Hazel's values by 104 gives a critical layer one

hundred meters thick, which seems more reasonable for

the atmosphere. Since the value of the Prandtl number

is unaffected by this change, Hazel's analysis is un-

changed except for the value of zo , the normalization

length.

Jones (1968) has calculated reflection coefficients

and complex normal mode frequencies for a simple model

atmosphere using the linearized incompressible equations.

His model consisted of a region of constant shear below

a region of no wind, so that reflections occurred both at

the critical level and at the boundary between the two

regions. The reflected wave was considerably enhanced

when the wave was evanescent in the upper region, in which

case reflections might also be expected at the point in

the sheared region where the wave becomes evanescent.

The analytic solutions used in the lower region were

Whitaker's functions, which imply that w is zero and u is
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infinite at the critical level. Jones found that the

downgoing wave below both the interface and the critical

level could be larger than the upgoing wave if the

Richardson number was small enough and the other para-

meters fell within certain limits. The upper limit on

Ri for this over-reflectivity was 0.25 in the case where

the wave was evanescent in the upper region, and 0.115 in

the case where the wave was propagating in the upper

region. If the reflected wave is smaller than the incident

wave, the excess energy and momentum go into the wind;

and if the reflected wave is larger, then the extra

energy and momentum is supplied by the wind. In these

studies the wave approached the critical level from the

low wind speed side, and these energy remarks refer only

to this case. In the stability analysis portion of the

work, Jones found that instabilities occurred for low

Richardson numbers only if the wind had an inflection

point.

Bretherton (1969) has also considered the interaction

between gravity waves and the wind. Unfortunately his

linear perturbation analysis applies only when the Froude

number (ju12/4) H2) and the ratio jul/vg are much less

than unity, where vg is the group velocity. This last

requirement restricts the validity of the conclusions to

regions well away from a critical level.

Utilizing the Lagrange equations and a variational

principle, Drazin (1969) has considered one facet of the
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nonlinear behavior of an internal gravity wave, that of

propagation to great heights where the perturbation density

is a significant fraction of the ambient density. While

there was no mean flow and the analysis is not applicable

to the critical level problem as it is, it does indicate

a new approach through which future progress might be

made. In the Lagrange equations, the equations do not

become singular at a critical level.

The importance of an inflection point in the wind

profile has been emphasized by those investigations which

are of a more mathematical nature. With the usual inviscid,

irrotational, adiabatic and linear assumptions, the basic

equations can be combined into one tractable equation, and

for many years mathematicians have been examining the

roots to this differential equations for various assumptions

and various wind profiles. Drazin and Howard (1966)

present an exhaustive review of this approach to the

problem of the stability of parallel fluid flow. The

basic Kelvin-Helmholtz instability is given in Lamb

(1945, p. 373, 458) and the Richardson number as a

stability parameter is discussed by Taylor (1931).

Another area of inquiry which may have implications

regarding the critical level problem is that of resonant

interactions among different internal gravity waves.

A short review of this field is given by Kelly (1968), and

this paper together with Davis and Acrivos (1967) and

Phillips (1968) reference most of the important earlier

work. In general only cases with no wind shear are
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considered. Exceptions include Craik (1968) and Kelly

(1967, 1968). Craik's work is the most interesting because

he finds that most of the energy transfer takes place in

the vicinity of a critical level. He states, however,

that the resonance condition is rather severe because it

requires larger velocity gradients than may be expected

to occur in nature.

In wave propagation studies where the ambient quantities

vary slowly the layered media approach has proven extremely

valuable (Pierce, 1966, Hines and Reddy, 1967). However

this technique cannot validly be applied to the study of

singular levels because the ambient quantities vary too

quickly and because the quantities otherwise continuous at

layer boundaries are not continuous across a singular

level.

Turbulence as a source for acoustic and gravity waves

has been considered by Stein (1967). Hs approach, based

on some earlier ideas of Lighthill, appears to be more

successful in analyzing the acoustic wave generation than

it is for the gravity wave generation.



2.2 Finite Difference Studies

There appear to be only two finite difference studies

which have any bearing on the critical level problem.

Foldvik and Wurtele (1967) set up a model to study the

development of nonlinear effects near the mountain for

the lee wave problem. Houghton and Jones (1968, 1969)

were concerned with the behavior of propagating waves at

a singular level.

Foldvik and Wurtele were primarily interested in the

details of the fluid flow near the mountain, and they

evidently made no attempt to investigate the critical

level problem. They note that the main perturbation cells

were set up very rapidly, which is to be expected since

their model is incompressible in the perturbations, and

these main cells are a direct result of the fluid flow

over the obstacle. They found this no drawback since their

interest was in the steady state form of the lee waves

rather than in their development. A number of their

techniques have been used in this study such as the

staggered grid system and the use of the stream function -

vorticity equations instead of the basic equations. While

they report no stability or error analysis, they do

mention that an occasional forward time step was found

to be helpful for stability.

Houghton and Jones, on the other hand, were primarily

interested in the critical level problem and worked in
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the propagating wave mode. To obtain sufficient vertical

resolution they used only a one dimensional matrix of

points, having eliminated the x dimension by linearizing

and taking exp (ikx) dependence. Viscosity, heat flow,

and Coriolis terms were also omitted, although the pressure

and a finite value for the compressibility were kept. A

moving lower boundary was the source and a region with

Rayleigh damping at the top served to absorb the energy.

The results of these calculations showed good agree-

ment with the predictions of Booker and Bretherton (1967)

regarding attenuation upon passage through a critical

level. Also, by making the wind vary with respect to

time, they demonstrated that the momentum flux varied as

the intrinsic frequency, which had been suggested by

Bretherton and Garrett (1968) and by Claerbout (1967).



2.3 Experiments

As far as known to the author there have been no

experiments involving internal gravity waves in a gas.

On the other hand, experiments on stratified liquids have

been going on for over half a century. In two recent

papers Thorpe (1968a, 1968b) reviews the previous work

and presents his own experimental and theoretical work.

One series of experiments involved internal waves in a

stratified fluid at rest. The largest waves were obtained

when the forcing frequency differed slightly from one of

the tank's natural frequencies. Irregularities in the wave

motion and overturning were ascribed to distortion of

internal wave rays by standing waves rather than to in-

stabilities because the local Richardson numbers generated

by the wave motion were always very large. Both two-

layer and multi-layer experiments were conducted.

Thorpe's other paper concerns the instability of shear

flow. No internal gravity waves were present. The forma-

tion of regular spiral structure and later decay to

irregular turbulence was observed for cases when the

Richardson number was less than 0.25.

A fairly simple experiment that demonstrates the

failure of a gravity wave to propagate through a critical

level has been reported by Bretherton, Hazel, Thorpe and

Wood (1967). Density stratification was obtained by

means of solutions of salt in water with various concen-
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trations. Their rectangular tank was briefly tilted

to initiate a shear flow. A train of lee waves behind an

obstacle of triangular cross-section had apparently reached

a steady state before the effects of the ends of the tank

changed the flow significantly. For Richardson numbers

of greater than 0.5 they found no detectable transmission

of the lee wave through the critical level. They also

note that the amplitudes are large enough so that the

linearized theory is not applicable near the critical

level.



Chapter Three

The Basic Equations near a Critical Level

3.1 The Relative Importance of the Terms in the Basic

Equations

The purpose of this section is to analyse the complete

basic equations in order to determine which terms are

important as a critical level is approached. First the

notation used is described and then the complete basic

equations are presented. Next two of the commonly used

linear approximations are written down and discussed.

The predictions of how the wave parameters will vary as

a critical level is neared are obtained from the linearized

equations. These predictions are used to determine at

what distances and for which cases each of the terms in

the complete equations is important. This analysis is

lengthy and the details are contained in appendix D.

Here only the results and their implications are pre-

sented.

Let the unit vectors in a Cartesian coordinate system

be ax ay, and iz. The positive x direction is east-

ward, the positive y direction is northward, and the

positive z direction is upward. The ambient or time-

independent pressure, density, and fluid flow are re-

presented by p, , and u, where it is assumed that the/0



ambient flow or mean wind is in the x direction only.

The perturbation or wave pressure, density and velocity

are represented by p, / , and v = axu + ayV + a w,

The total pressure density and velocity are given by

P= p+ p

&--A+

V= axu + v

IKS units are used throughout. The total or convective

derivative is defined by

Dt at

where

-9a 

+V= ax + a a

Assuming that the curvature of the Earth can be

neglected, that there are no sources or sinks of heat,

and that the mean wind and ambient density are functions

of height only: the complete basic equations are:

3.1-1A,E,C

D"IoY Vv-
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pp. 1 DP K VZ 0 3.1-1E
Dt CDt K 3.1-1E

The first equation is Newton's law for the change

of momentum.0)R is the radian frequency of the Earth's

rotation and has the direction of the axis of rotation.

- is the acceleration of gravity and is downward, and/L-

is the dynamic viscosity. The second equation expresses

the conservation of matter and the last equation expresses

the conservation of heat. K is the coefficient of ther-

mometric conductivity, and c represents the speed of sound.

The equation of heat transfer, 3.1-1E, has already

been simplified somewhat. The effect of the vertical

temperature and density gradients on the heat conduction

is shown to be negligible in appendix D, so they have

been omitted from the conduction term, thereby eliminating

the temperature from the equation. The effect of the

pressure on the conduction has also been neglected as

mentioned in appendix A.

The viscous and heat conduction parameters are dis-

cussed at some length in appendix D. Besides defining

these and other parameters, the appropriate values to use

for them are considered. While the above equations do

not take turbulence and convection which have the same

scale as the internal gravity waves into account, it is

shown that these random processes on scales smaller than

the scale of the gravity waves can be treated by adopting



the eddy values for ,a and K.

The momentum equation has been written in vector

form for compactness. When written out the x, y, and z

components will be the A, B, and C equations respectively.

The mass conservation and heat transfer equations will be

the D and E equations whenever this set is written. The

coupling between the three momentum equations is contained

in the Coriolis term through the cross product and in the

viscous term through the divergence of the velocity. If

these terms are not included, the x and z momentum

equations will not contain the north-south component of

motion v. In this case it is common to consider the

problem to have only two spatial dimensions and to drop

the y momentum equation from consideration. If this is

done there will be no B equation in the set. Since ignoring

the motion in the y direction results in a considerable

simplification of the equations, this is often done when

the viscosity is kept by simply requiring that v = 0

everywhere.

The momentum equation contains several nonlinear

terms. Some of these come from multiplying the first term

by the total density rather than by just the ambient den-

sity and some are implicitly contained in the convective

derivative. The convective derivative appears because

the Eulerian form of the equations is being used. These

nonlinear terms may be seen by expanding the convective

derivative:
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t dx d

The momentum equation also includes some terms,

ambient terms, which contain only ambient variables and no

perturbation variables. By definition these terms must

sum to zero, and the resulting equations are written out

in appendix D. It is common to remove the ambient terms

by subtracting these equations from the complete component

momentum equations.

When the Coriolis, nonlinear, viscous, and heat con-

duction terms are also removed, and it is assumed that

there is no motion in the y direction, the following

equations are obtained:

V -1,-/ -O + + ou e/ 3.1-2A,C

S=O 3. -2D

This set of equations will be referred to as the simple

linear equations, and these equations are those upon which

most internal acoustic-gravity wave studies are based.

The ambient quantities are invariably assumed to be in-
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dependent of x and t so that when exp (ikx - iwt) is

assumed for these variables the dependence of these

equations on x and t may be eliminated.

Equations 3.1-1-2 can be simplified further by

assuming that variations of the density with time and

position are unimportant in the equation of mass conser-

vation. This leads to

V01 = 0 3.1-3

which is the expression used when the density is constant.

This approximation is valid when the period of the wave

is several times the Brunt period.

An extended form of the equation above,

( v) = 0 3.1-4

is often used when dealing with stratified fluids. This

extension takes the change of ambient density with height

into account by including the w(d f/dz) term. Equation

3.1-4 is a valid approximation to the complete equation

of mass conservation over a much wider range of a fre-

quency than is 3.1-3. This is shown in detail in appendix

D.

Equation 3.1-3 implies that the density, and thus

the volume, of a fluid parcel does not change with respect

to time or position. Equation 3.1-4 implies that the
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parcel's density and volume are functions of the parcel's

height because the ambient density is a function of height.

Although the writing of the equation of mass con-

servation in one of the simpler forms just discussed al-

ways comes to mind when incompressibility is mentioned,

incompressibility strictly means only that the density

is not affected by the pressure. When the density is

unaffected by the pressure, the speed of sound is in-

finite, but it is always invalid in this problem to let c

approach infinity indiscriminantly.

The two vertical derivatives of ambient variables in

3.1-2E are generally combined to give

B P 3.1-5
Sc dz dz

This equation defines the Brunt frequency, which can also

be written in terms of the vertical ambient temperature

derivative:

=q- [, - adiabatic 3.1-6

(The Brunt frequency, also called the VAisal frequency,

is a measure of the static stability of the atmosphere

and is denoted by N by most meteorologists.) It turns out

that it is a very bad approximation to let the speed of

sound become infinite in the Brunt frequency, so that when
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incompressibility is assumed for gravity waves a realistic

value of c is used for the Brunt frequency and an.infinite

value elsewhere. It is very convenient to treat the Brunt

frequency as a constant. For an isothermal atmosphere

this is the case, but a more realistic constant may be

obtained by the slightly inconsistant procedure of using

a more normal value for dT/dz (such as the standard lapse

rate of 6.50 C/km) and an average value for T in 3.1-6.

Making the approximations just discussed, equations

3.1-2 become:

P l - 4-3.1-7A9C

-

V.= 0 or V-(f) = 0 3.1-?D

&)z 3.-7E

If the left equation in 3.1-7D is used this set will be

referred to as the simple or regular linear incompressible

equations, while extended linear incompressible equations

will apply if the right equation is used.

In the case that the mean wind u and the Brunt

Frequencyw B are constant, either 3.1-2 or 3.1-7 can be

solved analytically. These solutions and their applications

form the bulk of the literature on atmosoheric internal
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gravity waves. The basics are given by Hines (1960). The

ambient quantities are almost always taken to be independent

of x and t so that exponential dependence of the pertur-

bation variables on x and t may be assumed. With this

assumption

where the intrinsic or Doppler frequency 11 is defined by

11 = (0-ku

0) is the radian frequency, k is the horizontal wavenumber,

and m is the vertical wavenumber.

Note that this frequency is equal to the radian fre-

quency if the mean wind is zero, that it will be a function

of height if the mean wind is, and that it will be negative

if the wind speed is greater than the horizontal phase

speed. The critical level is often defined as that level

where £L = 0. -a is the frequency which would be seen by

an observer moving with the wind, and it is the relevant

frequency for almost all discussions. For example, for

an isothermal atmosphere with scale height H, the disper-

sion relation is

m2 = k2 _ _ 3.1-8
7H-

m C Z. Y H~



where /u, 1 w, , and p were assumed to have

exp(i(-cot + kx + (m+i/2H)z)) dependence. It can be shown

that m is real for all values of J- except those within

a small range bounded approximately by LOB and 0,z = c/2H.

The higher range of frequencies are acoustic waves which

will not be considered. Only those waves which have --

less than LOB will be dealt with, and it is obvious that

the smaller - is with respect to ">B the less effect the

compressibility will have. Thus the validity of the in-

compressibility assumption depends on the relationship of

.f and )3B .

As a critical level is approached,-Lapproaches zero.

This is also true if waves with a very long period are

being considered, and there is no fundamental difference

between the two cases. Either way the wave is nearly a

zero frequency wave with respect to the fluid. As dis-

cussed in the appendix, the linear analysis predicts that

other wave parameters will change in certain ways as -(

approaches zero. Specifically, the vertical wavelength

z, goes at 1/fi , the magnitudes of7) and u go as

1/}Y- , and the magnitudes of p and w go as --I- . This

behavior causes some of the Coriolis, viscous, thermal

conduction, and nonlinear terms which are validly neglected

otherwise to become important near a critical level.

Each equation in 3.1-1 is treated in detail in the

appendix and here only the results will be presented.

Because u and p become large with proximity to a critical



34

level and the vertical wavelength becomes very short, it

is expected that terms involving these variables and/or

the vertical derivative will take precedence over the

others. Because they change in very different ways, it

is necessary to treat the components of the vector momentum

equation separately. The terms containing only ambient

variables sum to zero independently of the other terms

so these terms have been removed leaving perturbation

equations.

In equation 3.1-1A the perturbation density occurs

only in the sum 0r=P +P and it never becomes large

enough to be significant with respect to the ambient

density, so p may be neglected entirely in this equation.

Thus the x momentum equation may be written:

3.1-9A

where $ is the latitude north of the equator. The first

line of this equation comprises the terms kept in the

simple linear approximation, the second line contains the

nonlinear and Coriolis terms, and the viscous term is on

the last line. (Additional nonlinear terms, called the

nonlinear density terms, which are entirely negligible,

would appear if the wave density had been kept.) For the
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waves in which we are interested all three of the addition-

al terms may be validly neglected far from a critical

level, but as a critical level is neared each term eventually

becomes larger than the linear term. (The first line of

the equation is referred to as the linear term.) The

Coriolis term becomes large because v, like u, approaches

infinity at a singular level. It is not valid to include

the Coriolis term and require that v = 0 because whenever

u is not zero there is a force in the y direction.

Which of these three additional terms is the largest

unfortunately depends on the wave parameters so that no

completely general conclusion can be drawn. The nonlinear

term is the most important for most of the waves in which

we are interested, but if the period is more than a few

Brunt periods and the wave amplitude is small the Coriolis

term will be the dominant one. Or, if the quantity k2/tO

is large enough and the amplitude is small the viscous

term will be the largest. For the x momentum equation it

is concluded that the wave density may be dropped entirely,

and, of the nonlinear, Coriolis and viscous terms, the non-

linear term will be the most important if the amplitude

is large or if the period is not too much greater than

the Brunt period.

The y momentum equation behaves in exactly the same

manner as a critical level is approached, so the above

conclusions apply here as well.

The z component of the vector equation of Newton's law
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is+

f)Y)7 K W -2W Cos/ Tz 1 9C

-V D V,+ ( -G + -z

Unlike the equation for the horizontal momentum, none

of the additional terms ever become important in this

equation. Not only are the nonlinear, Coriolis and viscous

terms completely negligible, but some of the terms retained

in the simple linear approximation become small enough

to neglect also. Within a kilometer or so of a singular

level

i 3.1-10

is a valid approximation to the vertical momentum equation.

In 3.1-9C it is seen that the Coriolis term becomes

large as a critical level is approached. How:ever, the

terms retained in 3.1-10 also become large. Two of the

three quantities in the Coriolis term increase at the same

rate as the terms in 3.1-10 and thus are always much

smaller than these terms. The other quantity in the

Coriolis term increases faster than the terms in 3.1-10,



but it is so much smaller to begin with that, for

reasonable scales, it never becomes large enough to be

significant. The viscous term also becomes large as a

singular level is neared, but like the Coriolis term it

becomes equal in magnitude to the gravity term only for

distances which are much smaller than reasonable scales for

this problem. Thus both the Coriolis and viscous terms

may be neglected in this equation.

The equation of mass conservation has already been

discussed and it need not be written again. The nonlinear

terms are completely negligible. Within a kilometer or

two of a critical level the extended incompressible equation

3.1-4 is a valid approximation, and within several hundred

meters the regular incompressible equation 3.1-3 is a

valid approximation.

When written out using the definition of the Brunt

frequency the heat transfer equation 3.1-1E is:

.. - , - 3.1-9E

The first line contains the terms kept in the simple

linear approximation and the second line contains the non-

linear density term, the nonlinear pressure term, and the

heat conduction term, The nonlinear pressure term is
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completely negligible. The linear pressure term decreases

in importance as a critical level is approached and may

be neglected completely within about half a kilometer of

the critical level. The nonlinear density term and the

heat conduction term are of about equal importance for

many of the cases of interest. For large amplitude

waves the importance of the nonlinear term is increased

and the conduction term is negligible while if the value

of k2 /1 is large the nonlinear term may not be significant.

In general both terms should be included for unquestioned

validity. As with the viscosity term in the horizontal

momentum equation, only the z derivative in the heat

conduction term is important due to the predicted vertical

wavelength shortening. Use of the molecular (laminar

flow) value rather than the eddy value for the conductivity

would make this damping term completely negligible also.

An additional term is one of those neglected in the

simple linear approximation. For frequencies in which we

are interested all such terms are validly excluded if

the region being considered is far from a critical level.

In the foregoing an additional term has been said to be

important if its magnitude becomes equal to that of the

largest linear term and if it is not aliays dominated by an-

other additional term. Of course the influence of an

additional term will extend some distance beyond the point

at which it is equal in magnitude to the linear term.

The intrinsic frequency 1 is linearly related to
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zd, the distance from the critical level, and from equations

3.1-9 it may be seen that in both the horizontal momentum

equation and the heat transfer equation the largest

nonlinear term varies as zd 3/2 and the damping term varies

as zd 
3 with respect to the largest linear term. In the

horizontal momentum equation the Coriolis term varies as

-1
zd  . No additional terms ever become important in the

vertical momentum equation or the mass conservation equation

so this discussion does not apply to these equations.

Due to this dependence on the distance from the

singular level the nonlinear term will affect the wave's

behavior over a larger region than will the damping term.

Since the nonlinear term removes the singularity in the

equations, by the time the wave has moved close enough to

the critical level for the damping term to be of significant

size according to the linear prediction, the effect of the

nonlinear term may have altered the wave so that the

damping term has little or no effect.

Although the Corilis term will be of significant

size over a larger range than the nonlinear term, the

inclusion of the Coriolis force does not remove the

singularity in the equations or alter the basic nature

of the wave behavior near a singular level. Thus it is

unlikely that the Coriolis term will alter the wave in

such a manner that the nonlinear term would be ineffective.

In this section the complete basic equations and two

commonly used linear approximations have been discussed.
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The predictions about how the perturbation quantities

will vary with proximity to a critical level have been

used to determine which approximations are valid for

different distances from the critical level. The predictions

were found from the linear, inviscid, adiabatic, irrota-

tional equations and so cannot be expected to be accurate

when one of the excluded terms becomes large with respect

to the terms included.

None of the additional terms ever become important

in the vertical momentum equation or in the mass conser-

vation equation so that the simple linear approximations

remain valid as a critical level is neared. In fact,

some of the linear terms become negligibly small, thus

simplifying the equations even further.

The horizontal momentum and heat transfer equations,

however, become increasingly complicated as a critical

level is approached, and the simple linear approximation

is invalid. In the horizontal momentum equation the

Coriolis force, the viscous damping, and those nonlinear

terms which do not involve the wave density must all be

kept for general validity. In the heat transfer

equation, the pressure terms are negligible near a critical

level but the nonlinear density term and the heat conduction

terms are too large to be excluded generally. While the

Coriolis, nonlinear, or damping term may be the dominant

term if the wave parameters are appropriately chosen, the
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nonlinear term in both equations will have the greatest

effect for most of the cases of interest.

The damping terms are completely negligible unless

the eddy values are used for the coefficients of viscosity

and conduction.
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3.2 Wave behavior close to a singular level

In this section two examinations of how an internal

gravity wave may be expected to behave in the region

close to a critical level will be undertaken, Each exam-

ination is based on a different approximation to the com-

plete set of equations. While not strictly valid, these

approximations are necessary for an analytic treatment

due to the complexity of the complete equations. The

insights gained from these analyses are considered to be

helpful, even though the approximations on which they are

based allow them to be considered only as tentative in-

dications.

Let the height range near the critical level where

the nonlinear terms dominate the horizontal momentum

equation and the heat transfer equations be called the

strongly nonlinear region. In this region equations 3.1-1

become:

+ 0 3.1-1A

+ - o 3.2-1C

_L +_U = 0 3.2-1D

u + w &= 0 3.2-1E

In the precoding section it was demonstrated that the middle

two equations are valid approximations to the vertical
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momentum and continuity equations for a region extending

several hundred meters from the critical level. If the

horizontal wavelengths are not too long, the Coriolis

force may be neglected, and this allows simplification of

the problem to two space dimensions, x and z, and the

dropping of the y momentum, or "B", equation.

The first and the last of the four equations above,

however, are valid approximations to the horizontal momentum

and heat transfer equations only for fifty meters or so

around a critical level, and only for large amplitude

perturbations. The other terms which would extend the

region of validity of these equations are not included

because they make the set of equations analytically

intractable.

Combining 3.2-1A and 3.2-1D by eliminating ju/ x

one obtains

u = 0 3.2-2

This implies that the ratio u/w is independent of height.

This is in direct contradiction to the linear prediction

in which w approaches zero at a critical level while u

approaches infinity.

Since w would not be zero and u would not be infinity

at that distance from the critical level where this set of

equations becomes valid, this linear prediction can be

ruled out. It is possible, as far as the above equation
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is concerned, that u and w could both go to infinity or

zero together, however.

Very large values of u (and P ) are not compatible

with purely physical considerations, and because the

equations which contain ) p/ ? z and )w/) z remain

linear near a critical level, the linear predictions concern-

ing the behavior of p and w near a critical level are much

more likely to be correct than those for u and / . Thus

it appears more reasonable that u would become small with

w at a critical level than that w would approach infinity

with u. All that can be definitely concluded though is

that the ratio u/w remains constant with height for a

region in which these equations are valid.

By equation 3.2-2 u and w may be related by u = wf

where f = f(x,t) is independent of z. Then 3.2-1D is

3.2-3

If we let s = x + fz, then this equation becomes

S O 3.2-4

From this it is seen that u is constant along lines in

the xz plane which are perpendicular to the lines s =

constant. Now the ratio u/w = f is likely to be a reasonably

large number. This is because u will have increased and

w will have decreased in the linear region as the wave
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approached the critical level. If f is large, then a line

given by s = constant will be nearly horizontal, and it

follows that u will be constant along lines which are

nearly vertical.

In the previous section it was seen that the linear

theory predicts that the vertical wavelengths will become

increasingly shorter as a critical level is neared. This

implies that u would change rapidly along a vertical line.

But here we see that these nonlinear equations show that u

is constant along a line which is nearly vertical. This

rules out the rapid fluctuation of u with height and the

very short vertical wavelengths. Since the ratio u/w is

constant with respect to z, it follows that w also is

constant along the same nearly vertical line.

From 3.2-1D one can obtain

u + - 0

u = 0 identically over the entire region is an uninterest-

ing solution, and the other solution gives an equation

analogous to 3.2-3 for 0 . Thus all the conclusions

regarding u above hold for also unless u = 0 everywhere.

And from 3.2-1C it can be seen that the conclusions for

the density hold for the vertical derivative of the pressure

as well.

For the region in which equations 3.2-1 are a valid

approximation to the complete equations it has been shown

that the ratio u/w is independent of z and that u, w, ,
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and ap/ ) z are constant along lines of slope f = u/w.

These conclusions do not agree with the behavior predicted

from the simple linear approximation. If f is large,

which appears likely, then u, w, P , and dp/z are

constant along a line which is nearly vertical.

For the values of the wave parameters in appendix D

which include horizontal and vertical wavelengths of about

twenty kn, these conclusions hold rigorously only for a

region extending about fifty meters from a critical level

and only for a large amplitude wave. From the linear and

nonlinear predictions of what happens at a critical level

it is difficult to draw a general conclusion. The attenua-

tion in the most reasonable linear study, that of Booker

and Bretherton (1967), occurs all at once right at the

critical level, and the linear theory is certain to give

less reliable results at that point than the nonlinear

theory. On the other hand the nonlinear theory is applicable

over such a narrow region that about all that can be

definitely stated is that infinite values of u and 0 will not

occur. Also, if the linear results are extended very close

to but not through the critical level on each side, and

joined by the nonlinear results, no attenuation at all

occurs, which does not agree with the experimental results,

It would appear that wave behavior near a critical level

depends on the region in which both the linear and the

nonlinear terms are too large to be omitted, and for which

the equations are analytically intractable.
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These conclusions do not depend on the use of 3.1-3

instead of 3.1-4. If the extended expression for the

conservation of mass is used in place of 3.2-1D, the

results obtained are essentially equivalent to those above.



48

Chapter Four

The Numerical Computation Scheme

4.1 Possible approaches to the critical level problem

It was shown in section 3.1 that the Coriolis, non-

linear and damping (viscous and thermal conduction) terms

must be kept if the set of equations used for an investi-

gation is to have unquestioned validity for all cases in

the vicinity of a critical level. The complexity and the

nonlinearity makes this complete set of equations very

formidible. Even with just the Coriolis force (Jones,

1967) or just the damping terms (Hazel, 1968) the equations

though linear are far from simple. The next step would

seem to be either keeping both the Coriolis and damping

terms in which case the equations remain linear, or

inclusion of only the nonlinear terms.

If the nonlinear terms are included most of the

familiar techniques are no longer available. There is

no point in assuming exp(-i4)t + ikx) dependence because

this factor can no longer be factored out to leave the

equations dependent on z only. A numerical approach is

practically dictated. A few analytic considerations such

as those in section 3.2 may be made, but the approximations

necessary to make the equations amenable to analytic

treatment are strictly valid in a very restricted region

if at all.
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Before a numerical scheme can be designed, one must

decide which set of basic equations to use, and whether to

attack the problem as an initial value problem in time or

in height.

In deciding on the set of basic equations to use, the

first question would seem to be, are there any drawbacks

to inclusion of the Coriolis and damping terms as well as

the nonlinear terms. For the damping terms the answer is

no, but keeping the Coriolis terms means that three space

dimensions must be used. If the Coriolis term is neglected,

it is reasonable to assume that there is no motion in

the y direction and to reduce the problem to two space

dimensions. If we wished to have 102 points in each

dimension, considering only two space dimensions instead

of three means that only 104 points need be considered

instead of 106 . The storage capacity and speed of the

present computers make it infeasible to consider three

space dimensions, so the Coriolis term will not be included.

Since the Coriolis force does not remove the singularity

or change the basic singular behavior, its exclusion should

not alter the wave behavior close to a critical level. It

does make the equations an invalid approximation in long

period and small amplitude cases, but should not alter

the basic conclusions about the singular level, even in

these cases.

The next question is whether or not to assume that the

equations are incompressible. It has been shown that the
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3.1-4 equation is a good approximation to the mass con-

servation equation for quite a wide region around a

critical level, and that the pressure terms in the heat

transfer equation are of diminishing importance near a

critical level, so by making the incompressible assumption

there is no danger of an invalid approximation near the

critical level. The incompressible approximation is not

valid far from a critical level for frequencies near the

Brunt period, but since the main interest is in behavior

near the critical level this is not important.

If the initial value in time approach is to be used,

there is an important argument in favor of using the

incompressible equations, It was seen that the linear

prediction is that the pressure terms in the heat transfer

equation become small and that the equation of mass

conservation approaches V-' = 0 as a critical level is

neared. For the progress in time scheme equations 3.1-1D

and 3.1-1E would be solved for the time derivative in p:

or

Nt V. Vr ~p v p~7



Now c2 is large number , and bu/cx and 3w/ z which

together form ;Jf are large quantities, so in solving

for c p/ct we are adding two large numbers which very

nearly sum to zero, and then multiplying this small

quantity by a large number. Because of the small word

size of the IBM 360 computers a preliminary study showed

that double precision would be necessary in order to make

the above calculations with sufficient accuracy. If in-

compressibility is assumed, the stream function - vorticity

formulation can be used and the entire problem avoided

because the perturbation pressure does not appear.

Thus it appears that the incompressible equations without

the Coriolis terms are the most suitable for a numerical study

of internal gravity wave behavior near a critical level. This

set of equations is valid near a critical level except

for the exclusion of the Coriolis term which has already

been discussed. This set of equations is most easily

worked with in the stream function - vorticity formulation

which is presented in the next section. This formulation

has the advantage of reducing the working variables to

three, and the important nonlinear terms and the damping

terms may be kept throughout.

The other main question was whether to use a progress

in z approach or a progress in time approach. While the

latter is tne more familiar form of the initial value

problem, since gravity waves are continuously monitored at

the ground for a number of locations, the wave's dependence
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on x and t can be considered known there. By solving the

set of equations for the z derivatives the values of the

wave parameters at successive heights could be found.

Since there are no measurements of gravity waves in the

atmosphere over a considerable height range at nearly

the same time, the initial values for the progress in

z approach are much better known.

At first this progress in z approach was tried, with

simple exp(-ic)t + ikx) dependence at the ground and

cyclical or repetitive boundary conditions in the x and t

directions. After some investigation this approach was

abandoned. The reasons for this failure will be briefly

discussed.

It is clear from equations 3.1-1 that one may solve

explicity for and - so advancing those two

variables will pose no problem. While one may also solve

for bu and , one is constrained to divide by w when

so doing, and for those points where WV is near or equal

to zero this is incorrect. Further the terms containing

l and a-P are nonlinear terms, and solving the equations

this way is certainly going to be very inaccurate far from

a critical level.

An implicit scheme in which a relaxation procedure

was used to find L and P at the new z step was tried but

was unsuccessful because the relaxation procedure did not

work correctly. Apparently the equations used in the

relaxation were ones for which relaxation does not



converge.

Another scheme involving matrix inversion was also

tried, again without success. Let the two dimensional

matrix FJ contain the N2 values for each of the four

variables ,W, l, o for any z-step J. The basic

equations may be written as a balanced difference scheme

of the form

AFJ+1 = BFJ

where A and B are 4N x 4N matrices. FJ + 1 is obtained by

inversion of A and matrix multiplication. Unfortunately

when only the linear terms are used A is a singular matrix

and inversion is impossible. When the nonlinear terms are

included A becomes invertable but since the determinant

involves only the nonlinear terms the results are very

inaccurate unless the equations are extremely nonlinear.

The reason for the singularity of A in the linear case

is that the equation for some point (I,L) is the exact

negative of the equation for the point (I+N/2,L) half

a wavelength away. When the nonlinear terms are added

the two equations are no longer exact negatives of each

other. By using only the first N/2 points a nonsingular

A is obtained and the resulting scheme works very well

in the linear region. In the region where the nonlinear

terms are of significant size, this scheme amounts to



imposing a very artificial reflection condition. No

satisfactory method was found to treat the region in which

the nonlinear terms were large enough to be significant

but not large enough to allow using all N points in A.

Upon discovery that the progress in z approach

appeared to be intractable, work was begun on the

transient or progress in T approach. In this approach

the cyclical boundary conditions are imposed in the x

direction. The lower z direction boundary is the ground,

a w = 0 surface. It is very difficult to find a feasible

upper boundary condition which successfully simulates the

real infinite atmosphere for all times and for all condi-

tions. The exact method of treating this boundary will be

considered at some length in the next chapter where the

details of the finite difference scheme are presented.

While artificial when compared to physical reality, the

condition imposed on the upper boundary has as minimal

an effect as possible on the events near the critical

level,
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4.2 The stream function - vorticity form of the equations

In this section the basic equations on which the

finite difference scheme is based will be manipulated

into the more appropriate stream function - vorticity form.

Because of the use of 3.1-4 instead of 3.1-3 for the

equation of the conservation of mass, the resulting

equations will appear somewhat different from the usual

ones. In addition to the stream function and the vorticity,

two new momentum variables are introduced.

As discussed in the preceeding chapter it is a good

approximation near a critical level to use equation 3.1-4

instead of the complete equation for mass conservation

and to let the speed of sound be infinite everywhere but

in the Brunt frequency. Because of computational limita-

tions only two space dimensions can be included, so the

Coriolis force is neglected and it is assumed that there

is no motion in the y direction. The basic equations to be

used for the numerical model are then obtained:

/o D<f72 4.2-1A

D----- -W 4.2-1C

V" 4.2-1D
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& 2 z; 4. 2-LE

These four equations can not be used for a finite

difference scheme as is because they do not determine

the pressure at the new time step. In order to eliminate

the pressure from these equations, the stream function-

vorticity form for these equations is adopted.

Define new momentum variables 8, ' by

S= LL= - 4.2-2A

and define the stream function e and the vorticity i by

4.2-2B

7- 4.2-2C

Note that by the definition of the stream function equation

4.2-1D is automatically satisfied. The wind could have

been included in the definitions of P and but it has

been omitted for two reasons. Inclusion of the wind adds

a large term which is a function of z only to W and

reduces the accuracy with which the perturbation motions
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may be calculated. Secondly, it increases the complexity

of the calculations. Changes in the average horizontal

motion for any given height may occur by means of the

perturbation variable u acquiring a nonzero average, so

keeping u constant does not rule out interaction between

the wind and the wave.

With these definitions equations 4.2-1 become:

~-s #~#-+ 4v )Z 4.2-3A

di 4.2-3C

To get the vorticity equation, the result of operating on

4.2-3A with 0/,z is subtracted from the result of

operating on 4.2-30 with d/jx. After some algebra

one obtains:
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+ 1±

the terms involving the second or third derivative of the

ambient density or the square of the first derivative of

the ambient density are small with respect to other terms

(see appendix C). Their neglect corresponds to the

Boussinesq approximation in the more common form of the

vorticity equation based on 3.1-3 instead of 3.1-4. In

general, wind profiles with constant shear will be used,

so that the second derivative of the wind will not be

carried further. Because of the importance of inflection

points in the mathematical studies, the case where the

second derivative of the wind is nonzero is not entirely

excluded.

For the few cases where the shear is not constant,

the nature of the additional term in the following equations

is evident.

Thus the equations from which the finite difference

equations will be obtained are:
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J -~;7-e-3P ibt /6'

i X5-9 31 - idE P

4.2-4A

S4,

da L J

4x

4.2-4c

4. 2-4D

In order to see how these equations are used for the

transient calculation assume that all the variables are

known for time step L and all preceeding time steps. First

and p for the next time step are calculated from

4.2-4A and 4.2-4B. Using this 5 , b is found from

4.2-4C, and then the momentum variables are found from

2-Ld

3 x

f (13-g
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4.2-4D. All the variables are now known at the new time

step and the sequence is complete.



4.3 The grid system and the finite difference equations

Before equations 4.2-4 can be written in finite

difference form the grid system to be used must be described.

Let the positive integers I,J,L refer to values in the

x,z,t dimensions respectively. Ax, Zz, and .t are the

step sizes. The grid system to be used is the staggered

one used by Foldvik and Wurtele (1967). 9 and / are

defined at points given by x = 6 x(I-l), z = A z(J-1.5).

' is defined at points given by x = aZ x(I-O.5),

z = D z(J-1). , is defined at points given by x = 6x(I-0.5),

z = 6 z(J-1.5). is defined at points given by x = Ax(i-l),

z = z(J-1).

It can be seen that p is defined at points halfway

between the points on the same row where and 1 are

defined, and that Y is defined at points halfway between

the points in the same column where 9 and 1 are defined.

The top and bottom boundaries of the region being

considered are taken to coincide with rows of 3 and CY,

and to be halfway between rows of ~, a and 1 .

There is no staggering in the time dimension, and

t = A t(L-1) always. The value chosen for a t will

depend on the results of the stability and error analysis

and will be considered further in later sections. While

A z can generally be chosen at one's discretion, the

value of 6x must depend on the choice of a basic horizontal

wavelength. This will be discussed in more detail when
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boundaries are considered.

The notation P(I,J) is used to represent the value

of the perturbation density at the values of x and z

given above for this variable. It is assumed that time

step L is meant unless a different value is indicated by

a superscript. Note that, for example, a (I,J) and

V (I,J) do not refer to values at the same point in space.

Equations 4.2-4D are simply expressed due to the

staggered grid system:

,(IJ) = ( '(I,J-l) = (I,J) ) / z~z 4.3-1A

(I,J) = ( J(I,J) - (I-1,J) ) //\x 4.3-1B

The method of handling the Poisson's equation 4.2-4C will

be covered in the next section.

The time step is treated in the balanced or leapfrog

manner:

(IJ) L-(IJ) - 2~at F (I,J) 4.3-2A

L+l(IJ) = L- 1 (I,J) - 2 Ct F (I,J) 4.3-2B

where -F and -F/ represent the finite difference

analogs of the right sides of equations 4.2-4A and 4.2-4B.

These quantities can be written:
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Fg (I,J)

TTx1 I-i,J))

I,J)/rs(J))

-1 ( 
'Ij

- B(J) (Tp(I,J)

T ( ,I,J)

- Tx(O,I-l

- Tp(1-1,J)))

,J))

/lx

- TZ(p,I,J-1) /Az

-K DL(p,I,J)

where the

B(J) = W2(J) (J)Ig

Tp(I,J)

following quantities have been used:

4.3-4A

(IJ) +

rs(J) = [+)(J) +) /21

+ g/ (J))TX f9* "

+ (TX(

4.3-3A

Tx( ,. -j-,J)/(e5(5))

vz(ptirj-l)/rx(

-/ D L /3I ,J)

Fl (IJ) = 60(J

(IJ.l ))

p~,,,,) 4.3-4c

= ((J) Tx I,

J-1)) /1 z
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and letting f represent P/7 or :

DL(f,I,J) = f(I+l.J) + f(I-1,J) - 2f(I,J)J/(AX)2

+ [f(I,J+1) + f(I,J-1) - 2f(I,J) /(6z)2

4.3-4D

For Tx and Tz let f represent or / s

Tx(fI,J) =P (J)u(J) + (I,J)j Sx(fI,J) 4.3-5A

Tz(f,I,J) =+ (I,J) Sz(f,I,J) 4.3-5B

The exact form of Sx and Sz will depend on which method

of averaging is used. In the following definitions the

simple two-point average is obtained by setting I7a = 0

and a six-point average is obtained by setting Ma = 1:

Sx(f,I,J) = [f(I,J) + f(I+l,J)] (4-ma)/8

+ [f(I,J+l) + f(I+l,J+l) + f(I,J-l)

+ f(I+l,J-l)j Ma/ 6 4.3-5C



Sz(f,IJ) I= f(IJ)+ f(IJ+l)] (4-Ma)/8

+ [f(+l,J) + f(I+l,J+l) + f(I-i,J)

+ f(I-1,J+l)J Ma/1 6  4.3-5D

The choice of which method of averaging to use will be

discussed in conjunction with the error analysis.

The complete finite difference analogs to equations

4.2-4A and 4.2-4B may be obtained by the use of 4.3-4,

4.3-4 and 4.3-5 in 4.3-2 but there seems to be little

point in writing out the whole equations.

Of course any numerical model can consist of only

a finite number of points, and for a transient calculation

two boundaries are required for each spatial dimension.

Let the maximum values of the horizontal and vertical

indices be Imax and Jmax respectively. This means, for

example, that Imax different values of x are being con-

sidered, and that there are Ima x columns of points, for

the different variables.

In the horizontal, cyclical boundary conditions are

imposed. This is equivalent to considering an infinite

repetitive model, and each wave considered is infinite

in the x direction. If a region with a repetition length

of N8x is desired, then Imax = N + 2 is used. Values on

all sides of each point at which t and / are defined

are needed to advance these variables one time step.
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Assume that all the varlables are known for all Imax

points for step L and preceding time steps. The values

for step L+1 are first found for values of I from I = 2

to I = Imax-1 using the equations of section 4.2. Then

the cyclical boundary conditions are invoked and the values

at the new time step for I = 1 are defined to be those

found for I = I -1 and the values for I = Imax are

defined to be those found for I = 2.
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4.4 Solving Poisson's equation

Foldvik and Wurtele solved Poisson's equation 4.2-4C

by a relaxation procedure, and this method was used

initially in this work also. However, when the variable

vertical spacing was introduced the relaxation procedure

failed to work satisfactorily and the Fourier transform

method described below was developed.

The fact that the linear theory predicts that the

vertical wavelength will become increasingly shorter with

proximity to a critical level creates an undesirable

situation. Although the nonlinear consideration of section

3.2 indicates that this will not continue right up to the

critical level, it is not known how short the wavelength

might become and some shortening must be expected.

Use of a value of 8z which provides reasonable

resolution elsewhere will probably give insufficient re-

solution near the critical level. Use of a much smaller

value of Liz which might be expected to provide sufficient

resolution near the critical level would mean the calcula-

tion of many thousands of unnecessary values in the region

away from the critical level. The obvious solution is to

use some Azs, much smaller than 6 z, only in an expanded

region around the critical level, and Lz elsewhere.

Using these two different spacings has its drawbacks,

however. It has been found in practice that the constants

and the harmonics of the wave variables, which depend upon
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the nonlinear terms for their generation, often come to

exhibit erratic behavior near the boundaries of the ex-

panded region. This is not unexpected. Certainly dis-

turbances which have a vertical wavelength less than z

will not be able to propagate outside of the expanded

region, so that these waves will be reflected at the

boundaries of the expanded region.

Implementation of this idea was hindered by a few

minor complications due to the staggered grid system,

but the real difficulty was that the relaxation procedure

either failed to converge at all or converged only for

very inefficient values of the relaxation parameter.

Since Poisson's equation is linear many techniques

are available for its solution. Each variable is re-

presented by values at a finite number of points so that

Fourier analysis and synthesis should provide very accurate

results at these points. The existence of fast transform

routines means that the time required for this method

will be comparable with that for the relaxation method.

Let Pj be the solution to Poisson's equation when

is nonzero for only the Jth row of points. Because of

the linearity superposition is valid and the total solution

is

x, J(xz) 4.4-1
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where the sunrmation is over all the rows of in the

region. C'j satisfies the equation

V 2 j k j (X) ( z-z)

where

and zj is the height of the Jth row. (Note that due to

the use of a finer vertical spacing near the critical

level it is no longer true that zj = z(J-1.5).

The transform functions Hj and Fj are defined by

Hj(k,z) =

Fj(k) =

fJ (x,z)exp(-ikx)dx
- (x)exp(ikx)dx

j T(x)exp(ikx)dx

with the appropriate inverse transforms. H is composed

of a homogeneous and an inhomogeneous part:

H (k,z) = Gj(k,z) + Aek z + Be - k z

The equation for the inhomogeneous part is

J(x) W Z z (x z )

4.4-2A



2 +(-k +  2 G (k,z) - Fj(k) (z-J)

for which the solution is

0o

G (k,z) = j -FFj(k)/(k2+m2)] exp(im(z-zj ))dm

This integral is done by contour integration with the

result that

Gj(k,z) = - FJ(k) exp(-klz-zjJ) /2k 4.4-2B

With the boundary conditions that Y = 0 at z = 0 and

at z = h the values of A and B may be found:

A = exp(-kh) Gj(k,O) - Gj(k,h) /2sinh(kh)

B = - Gj(k,0) - A 4.4-3

More general top boundary conditions will be considered

shortly.

Thus the final form for Hj is

H(k,z) = (Fj(k)/2k) E-exp(-klz-zji) + CAekz + CBe-kz

4.4-3A



where

CA = e-khsinb(kz )/sink(kh)

CB = exp(-kz ) - CA'

The solution for the stream function can now be written

DO CO

I(x,z) = H (k,z)eikxdk - J Y_ HJ(k,z)eikxdk
J2r -- -

4,4-5

Interchanging the order of the summation and the inverse

transform means that a transform must be done for each

source row and an inverse transform only for each value

of z at which values of P are desired.

For computation the sums

SA(I) = Ta(I,JX) F(I,JX) 4.4-6A
JA

4.4-6BSB(I) + YTb(I,JX) F(1,JX)
Jx

SC(I,JP) =

are formed, where

Ta(I,JX) = CA(I,JX) / 2k(I)

ETo(I,JP,JX) F(I,JX)



Tb(I,JX) = CB(I,JX) / 2k(I)

To(I,JP,JX) = -exp(-k(I) Izp(JP)-zx(JX)I) / 2k(I)

are quantities which can be calculated once in the beginning

of the program and stored for future use. JX refers to a

row of _ values at height z x(JX) and JP refers to a row

of / values at height zp(JP). F(I,JX) is the finite

difference analog of Fj(k). In these transformed quantities,

I refers to the value of the wavenumber k(I) where

k(I) = 2 (I-1)/N6x

N is the number of points in a row and should be an integer

power of two for most of the fast Fourier transform

routines. NLx is the basic horizontal wavelength or

the repetition length.

One drawback to this method of solving Poisson's

equation is the need to store the matrix Tc. Because

Tc is three dimensional, only moderate values of the

three indices imply a huge array. If Tc is too large

to be stored, the factors of Tc, which are two dimension-

al, may be stored instead and T. recalculated at each step.

Since and P are defined at values of x separated

byAx/2, after the 5-H is complete it is multiplied by

exp(ikAx/2) prior to the inverse transfornation so that

F will be evaluated at the appropriate values of x.

4.4-7
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The above method will not account for any average in

the horizontal wave motion. Because k(l) = 0, equation

4.4-4 cannot be used for the first (constant) term in the

transform of each row of . . The two poles of the contour

integral merge on the contour, so that the integral cannot

be evaluated. These constant values are saved as the

other values in the transform are treated, and together

these values are represented by a(J). For this case

there is no x dependence in Poisson's equation, so

is solved for Pa which is added to the result above.

' is undetermined to within an additive constant,

so I,(z=O) = 0 can always be required. A value of

Sa(z=h) cannot also be specified, however, because so
h

doing places an unjustifiable restriction on Juadz,

where Fua = - d Sa/dz and 9a = -d( ua)/dz. Only

one boundary value of ua may be given if the problem is

not to be overspecified, and as long as the viscosity is

nonzero this is provided by the requirement that

ua(z=O) = 0. Using the boundary values just discussed,

and with ua defined at the same values of z at which ]

is defined, Pa is found by using

Ua(J) = Ua(J-l) - 6z(4 a(J) + a(J--l))/2



a(J) = Pa(J-1) - 4zua(J)

The case in which the top boundary acts as a source

is easily treated by adding to the above solution a

function Y's which is a solution of Laplace's equation

and which satisfies the top boundary condition. The source

is taken to have a trigonometric dependence on a single

wavenumber k in the horizontal, and the lower boundary

condition is still = 0 so that

s(x,z) = Real FCseikj] sinh(kz)
sinh(kh)

where Cs, containing the magnitude and phase, will be

constant for each solution of Poisson's equation at a given

time step but will in general be a function of time.

A line vorticity source has been found to be a more

satisfactory wave source than motion of the top boundary.

Before beginning the solution of Poisson's equation for P,
row JX, of values is replaced by scos(kx-aOt),

where s,, and the wavenumber k and the radian frequency O

may be specified at the experimenter's discretion.

Because each row enters the solution of Poisson's

equation as Az, if the source strength is to be inde-

pendent of the spacing, Ss8z, not Is, is the source

strength. This product conveniently has the units of m/s

and is roughly equal to the magnitudes of the wave motions
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it generates. Because s, may be much larger than the

other values of , especially for small AZ, the nonlinear

and damping terms in 4.3-3A must be omitted when applying

4.3-2A to the rows adjacent to JXs if huge erroneous

source terms are to be avoided. This also has the ad-

vantage of making the source completely free from the

tendency to generate nonlinear terms close to the source.

The alternative to placing a rigid top surface at

z = h is to place another region above z = h, because a

free surface is very hard to incorporate in the stream

function - vorticity formulation. Let the subscript u

refer to the region above z = h and the subscript r to

the region below z = h. The existence of this upper

region makes it necessary to redefine A and B appropriately,

and to consider what values will be used for in region

u. Solving the boundary condition equations properly for

A and B does not eliminate the need for values of

above z = h, although it is true that values very far

above the interface will have a negligible influence on

region r.

The obvious choice for region u is an infinitely

high region with constant wind. The boundary conditions

are easily solved for A and B (see appendix B), but the

proper values of t in region u are not readily found.

For a steady state, could be found from the analytic

solutions. However, in the early stages of these calcu-

lations the transient wave has spread only a very short
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distance into the upper region and using the steady

state values for the entire region leads to large

errors. It may be possible to treat the propagation of

the wave into the upper region correctly, by Laplace

transforms perhaps, but this must be a future development.

It is much simpler to ignore above z = h entirely or

to generate it from the steady state solutions, but both

of these options are unsatisfactory because the wave does

not propagate out through the upper boundary properly and

large values of the wave variables occur there which

dominate the development elsewhere. Professor T. R.

Madden suggested that the values of below the source

could be used above the source as well. This mirror

technique for generating the values of in region u

has worked well in practice. Although this amounts to

placing another critical level and a rigid boundary

above the source, reflections from them have caused no

problem because they take so long to propagate to the

lower critical level.

For an infinitely high region r, A = 0 in 4.4-2A, and

since the mirrored upper boundary at z = 2h is far from

the lower critical level, it is a good approximation

with the mirrored upper region. 5 in region u is never

calculated, and the contributions to I in region r from

in region u have the form (Fj/k) sinh(kz) exp(-kzj). The

source is at height zx(JX s ) and JPh is defined by

zp(JPh) = h; then equations 4.4-6A and 4.4-6B become
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SA(I) = Ma(Iia) F(IJ-J a

SB(I) = Tb(I,JX) F(I,JX) -

S-Z 2

ZMa(I,Ja) F(I)Jr-a)

where

Jr = JXs + (JXs - JPh),

Tb(I,JX) = exp(-k(I) zx(JX))/2k(I),

and

Ma(I,Ja) = -exp(-k(I) (zx(JPh) + JaAz))/2k(I)

(Note that zx(JPh) = h - 6z/2, so that JPh denotes the

topmost row of ! values in region r.) In practice

it has been found sufficient to carry the summations over

Ja to ten or twenty instead of Jr - 2. Because the effect

of the rows in region u decreases as exp(-JaAz),

exactly how many rows should be included depends on the

value of A z.



4.5 Stability analysis

In this section the methods of Richtmyer (1957) are

applied to the finite difference scheme just described

in order to determine whether or not the scheme is stable

and if so what restrictions on t are necessary to

achieve this stability. The available methods for assess-

ing stability are applicable only to equations which are

linear, so the complete equations will be linearized

for this analysis. The nonlinear terms are expected to

be small except in a small region right around the critical

level, and the results of this analysis should prove

adequate.

Linearizing the finite difference equations described

in section 4.3 one obtains:

L+1 (I(jL-1 (IJ) - 23t [- (J) Sx( t  t.t

- SIx( 9 -1.J)j /x + g Sx( .I,J) - Sx(p,I-1,iJ

/6x - D -L( ,J)] 4.5-1A
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L+1 (IJ) L-1 (IJ) - 2t i(J) SX *it)

-Sx(PI-1,J) / Z x /g Tp(I,J) - Tp(I-1,J

/,x - KDL(p.IJ)] 4.5-1B

where for simplicity it has been assumed that the ambient

density may be taken outside the Laplacian operator in

the viscous term and B(J)/ 2(J) = W 4/g has been used.

Sx , Tp, and DL retain the meanings given them in section

4.3. Letting f represent or/, and assuming exp(ikx+imz)

depedence:

Sx(f,I,J) - Sx(f,I-1,J) = f(I,J) (isin(kdx))

(1 + Ma(cos(mAz))/4)

DL(f,I,J) = f(I,J) [(2cos(k x) - 2)/( Cx) 2 +

(2cos(m\z) - 2)/(Az)2 j

In theory the Fourier transform method solves Poisson's

equation without any error due to the finite differencing,

so using

(I,J) = (I,J) exp(ik(6x/2) + im(Az/2))/(-k 2-m 2 )
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where the exponential factors are introduced to account for

the fact that V'and & are defined at different points:

Tp(I,J) - Tp(I- 1 ,J) [- (I,J)/(k 2 + m2)]

(21sink(A x/2)) cos(m6z/2)

Now let

Tu = -2U( 4t//-x) isin(kx) [1 + MN(cos(mL\z) - 1)/4

Ta T ug/u

Tb = -2(M)2/(g(k 2 + m2 ))( t/,x)2isin(kAx/2)cos(m6z/2)

Tv = 2, at [(2cos(kx) - 2)/(6x) 2 + (2cos(mAz) - 2)

/(Az)23

Th TK/

and defining the new variables r and q by the equations:

r L+(I,J) =P (I,J)

qL+1(I,j) = (IJ)

where a time step value of L is to be assumed when no

superscript is present. Suppressing the (I,J) dependence,

the equations for the advance of one time step can now be

written in matrix form:



L+ 1
qL+1

L+l

L+1

where the matrix A,

0

0
A=

1

r

q

called the amplification matrix, is

0 TU+Th Tb

Ta Tu+Tv

A difference scheme is said to be stable for a system in

which exponential growth in time is not allowed only if

I YImax -- i

where the k are the eigenvalues of the amplification

matrix for the difference scheme.

Unfortunately the expression for X is exceedingly

cumbersome when all the terms in A are retained. However,

the damping terms TV and Th are small with respect to

Tu for moderate wind speeds, so taking Tv = 0 = Th:
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= - iB (l - B2 1/2 4.5-2A

with

B =( -Tu (Tab)/2)/21 4.5-2B

It may be seen that B is a real quantity and the stability

condition can be shown to be

B - 1.

Using the above definitions, this condition may be written

(at/Ax) I U sin(k Ax) (1 + Ma(cos(mAz)/ 4 ) ±

(JB/(k 2 +m2 )1/2) sin(kbx) 1 + Ma(cos(mbz)

- 1)/4) cos(m Az/2) 1/1 - 1

The value of A\t used should be chosen such that this

inequality holds for all values of k and m which have

meaning for the difference scheme. For example, all

wavelengths between 2,8x and the width of the region must

be considered in the horizontal. In the simplest case

where Ma = 0 and only the first order and zero order terms

in the trignometric expansions are kept, the stability
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condition is

4t L[(max/Ax) +)Bl-1 = L\ts 4.5-3

where emax is the maximum wind speed in the region. This

equation defines the stability limit At s.

The effect of neglecting the second and higher order

terms in the trigonometric expansions has been to make

4t s smaller than it would be otherwise. Thus this

stability condition was found to be perfectly adequate when

the relaxation method was used for solving Poisson's

equation. Ho;wever, when the Fourier transform method was

adopted it wias found that even though 6t was well below

At s very small horizontal wavelengths tended to increase

rapidly when the viscosity and thermal conductivity were

zero. This effect was magnified by increasing the number

of horizontal points which decreased the size of the

smallest wavelength considered. It was discovered that

this problem could be eliminated by using small but non-

zero values for the damping constants.

Since the shortest wavelengths are accounted for in

the above stability analysis, this effect is not under-

stood. Even though truncation errors give rise to finite

values for the shortest wavelengths, there is no known

reason why these wavelengths should increase in magnitude.

Because values of the damping constants which are so much
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smaller than the eddy values that the damping terms remain

insignificant very close to a critical level are sufficient

to eliminate this problem, it will not be pursued further.

Foldvik and Wurtele state that their scheme is stable

provided that the centered time step is replaced by a

forward time step every tf steps, where tf was determined

by experiment.

The equations

step are

L+1

= A

A = 1+(T
u + T h )/2

Ta/2

in matrix form for the forward time

/Lo

Tb/2

1+(Tu+Tv)/2

For the case where Th = 0 = Tv, the eigenvalues are

= 1 ± iB/2

where B is defined in equation 4.5-1B. Since B is a real

quantity it is seen that this method is unstable for all

values of At. It is not surprising, then, that an

occasional forward time step was found to be of no help

in this work.

with
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4.6 Error analysis

In this section the error which results from using

finite difference equations instead of partial differential

equations is evaluated. Since this requires a known

analytic solution, only the linear equations for the case

with no shear can be treated, but this provides an in-

dicative result for the complete equations.

Assume that the wave variables have exp(-iLt+ikx+imz)

dependence where 0, k, and m are related by the dispersion

relation. The notation of the preceding section is used,

but note that k and m are here wavenumbers which must

satisfy the dispersion relation while in the preceding

section they were any meaningful wavenumbers.

Let the error factor Eu be defined by

Eu = (Af/ax)/( f/ax)

where Af/Z1x represents the finite difference operator

and f represents f or t . If there is no error at all,

Eu = 1. From the preceding section, it is seen that Eu

is given by:

Eu = Tuf(J) = sin(kbx) [1 + Ma(cos(mAz)
2 AtU( C f/b x)

-1)/4] /(k6x)
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If 6x and bz approach zero, Eu approaches one as would

be expected. In an analogous manner other error factors

are formed from Ta, Tb, Tv , and Th which are all defined

in the preceding section:

Ea = Eu

Eb = 2sin(k6x/2) cos(mLz/2) / (k Ax)

r -2 cos(kAX) -
Ev = k2+m2 (kx) 2

Lk+ -J (k~x

cos(m z) - 1
+ (mAz)2

Eh= E

A time error factor Et is also needed:

L+l L-1
Et - = sin(OA t)/(4 At)

2At(b f/ t)

where a balanced time step has been used.

By means of these error factors the actual finite

difference equations being used can be written using the

partial differential terms. Thus one obtains

Et

E

E d
t;d~

- E u + g + E 6 1A

+- EhK  + E g(.6-1-/(k 2

+ EhK t 4.6-13
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where it has been assumed that Poisson's equation is

solved without any error due to the finite differences.

The case where there is no wind and, = 0 = K is

easily treated. The dispersion relation obtained from

equations 4.6-1 is

0 2(1 + m2/k 2 ) 2 2  4.6-2A
B s

where

E = (EuEb) 1/2/Et 4.6-2B

The error factor in the impedance is (Eu/b)1/2. Note

that changing the vertical spacing will change the

impedance and thereby cause spurious reflections.

From 4.6-2 it is seen that the best time deoendence

that can be expected from the finite difference system is

exp(-iWlEst). The array values for any variable will be

then obtained from an expression of the form

Real (F exp(-l ) ) where F is the correct complex value,

and F = f exp(-i)t) with f being a complex function of

x and z. The phase error e = WOt(E,-l). The theoretical

error At due to this phase shift is computed in the same

manner as the actual error:

A [ lReal (F exp(-i e)) - Real(F)Idxdz

t  lReal(F)I max

Oo 4.6-3A
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This expression can be shown to be equivalent to

2 f

At = 21- Real(exp(-i4 -i e)) d'= 2-(sin e

+ cos e -1) 4.6-3B

It is clear that a value of 6t which makes E s = 1 will

eliminate this error. This value of At, denoted ate'

is called the minimum error value because there will be

other sources of error which will keep the total error

from being zero.

For the case where the wind is a nonzero constant it

can be shown that it is necessary that Et = Eb = Eu in

order to eliminate this source of error. In general it

is not possible to choose Lx and tz so that Eb = Eu

because there are other requirements which these quantities

must meet, but in practice Eb and Eu are about the same

size and it is adequate to use Es = 1 as the minimum

error condition.

If terms above second order are neglected in the

series representations for the sine and cosine, expanding

the error factors gives

E= 1 - 1 (kX) 2- 1  (m z)2  )2

--i-6- m ) +Lt
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te 8 8 (1+)( Azj j

If Ax/ A x = N = /A where N is some integer, then

Ate = 2X/N = dAx/ Ax 4.6-4

For any analytic solution of interest the viscous and

thermal conduction terms are quite small, so their neglect

throughout is justified.

The results of three computer runs in which an

analytic solution appropriate to the region was given

as the initial condition are presented in table 4.1.

Table 4.1

Theoretical and actual error after L steps for three

values of At: ' = 0, N = 20, t= 900s, = 345s,

it s = 54.Os, ate = 55.1s.

At = 25.Os Zt = 50.os At = 55.os

L Th. Actual Th. Actual Th. Actual

4 0.017 0.004 0.008 0.031 0.0002 0.031

8 0.035 0.011 0.016 0.028 0.0004 0.029

16 0.070 0.023 0.031 0.043 0.0008 0.066

32 0.14 0.051 0.062 0.030 0.0016 0.066

64 0.28 0.105 0.12 0.050 0.0032 0.17
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These runs were made when the relaxation procedure

was still being used, and with the finite difference

error in the relaxation taken into account

Es = 1 + (2f) 2 2- _ 1_ .= 2 N

The theoretical error is calculated from equation 4.6-3B

to first order. The actual error is calculated using

4.6-3A and is the average over the three working variables

p, and L. In one case the error is large because

the value of Lt used is far from Ate and in the other

case it is large because the stability condition is

violated.

The error is large in the beginning for At = 50s and

At = 55s because the first step was a forward time step

which is inherently inaccurate. The time derivatives are

calculated for t = 0 and used as if they were the values

for t = Zt/2. For the -At = 50s case the program was

terminated after 180 steps when the error was 0.08.

Unfortunately, for all interesting cases the stability

and minimum error requirements on J\t are incompatible.

Of course it is desirable that

tst, te

so that At = Lte may be used. From 4.5-3 and 4.6-4 it

is seen that this inequality is



1 >max/Vpx + w>B

where vpx = Ax/t* is the horizontal component of the

phase velocity. For a critical level to exist the maximum

wind speed in the region must be greater than vpx and this

condition cannot be satisfied.

The error can be reduced by using as small a value

as possible for 'i and by using as large a value as

possible for N. However, the Brunt period places a lower

limit on 2 and computation time varies as N3 , so not

much can be done in this regard. It is seen to be ad-

vantageous to choose the two-point averaging method

(Ma = 0) in order to make ate as small as possible.



Chapter Five

Results of Calculations

5.1 Specification of parameters and description of

output.

The numerical model based on the finite difference

scheme described in the preceding chapter has been run

for different combinations of the many parameters describing

the ambient atmosphere and the wave source. These results

and the inferences drawn from them are presented in the

following sections. In this section the restrictions on

the various parameters and the reasons for choosing certain

values for them are discussed. Limitations of the model

and the type of output produced by the program are also

described.

Wave behavior near a critical level is largely

independent of the temperature gradient, so an isothermal

atmosphere, Brunt period 3B = 345s, has been used

throughout. The important parameter to vary is the

Richardson number, Ri, and since the Brunt frequency is

constant, it will be a function of the wind shear only.

The maximum and minimum wind speeds are related to the

stability of the finite difference scheme and the propaga-

tion or nonpropagation of the wave fundamental and its

higher harmonics, however, so they cannot be chosen

indiscriminantly,

While the 'harmonics' can refer to multiples of

either the frequency or the wavenumber, it is the hori-
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zontal wavenumber which is meant in this case. The

reason for choosing wavenumber rather than frequency will

be discussed shortly. In the case that all the harmonics

travel with the same horizontal phase speed, the two are

equivalent. For a linear system only the fundamental

would be of concern since the source contains only the

fundamental (to the extent that this is possible in a

finite difference system). In this model the nonlinear

terms are capable of generating constants and higher

harmonics, so that these must be considered.

From the simple dispersion relation it can be shown

that for the vertical wavenumber m to be real, the wind

must satisfy the following relation:

vpx - B/k(I) u Vpx + WB/k(I) 5.1-1

where the horizontal wavenumber k is given by equation

4.4-7. vpx = /k is the horizontal phase speed of the

source. The maximum range of the wind for real m is

seen to be

up = 20B/k(I) = 2vpx B/ B(I-).

Note that if the entire range of u is to be used, the

values of u must be centered on vpx for 5.1-1 to be

satisfied.

It is desirable that the stability limit be as large
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as possible and that the wave period be as small as

possible so that a given number of time steps will equal

as many wave periods as possible. Usinz equation 4.5-2:

VN umax + 2 V/ /
dts VDpx

There is a definite lower limit on this ratio because

Umax must be greater than vpx for a critical level to

exist and the wave period must be greater than the Brunt

period for propagation with no wind. Keeping N small will

make this ratio small, and it also makes the number of

points to be calculated small. While both of these factors

decrease the amount of computer time required, N cannot be

made so small that the results are entirely inaccurate.

In practice, N = 8 has generally been used. This provides

somewhat less accuracy than might be desired, but as long

as the third harmonic (which has a wavelength of 2.76x)

is not too large, it appears to be adequate.

The ((N/2) + l)th value of the transform must be real

to produce a real inverse transform, and since this term

is usually largely imaginary it is arbitrarily attenuated

by either requiring this term to be real or by taking only

the real portion of the inverse transform. Thus the

Fourier transform method of solving Poisson's equation

makes this term, the fourth harmonic for N = 8, unreliable.

It is generally true that the second harmonic is

larger than the third, and the third larger than the
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fourth since they are all generated by the interactions of

lower harmonics. If the third harmonic is small with

respect to the fundamental, the attenuation of the fourth

harmonic is insignificant. If the third harmonic is an

appreciable fraction of the fundamental, however, the

opposite must be assumed and the model is unreliable. In

practice it has been found that soon after the third

harmonic becomes of significant size the wave quantities

become locally larger than is physically reasonable and

the program terminates. This may be because the energy

which would normally go down-scale to higher harmonics and

eventual viscous dissipation is blocked and accumulates in

the third harmonic where it causes instability.

While Z" should be reasonably close to ' , there

are no restrictions on /tx = NAx and thus on vox.

However, from section 4.4 it is seen that for a source row

at height zs / will have exp(-k)z - zsl) dependence.

This implies that unless the height of the region, h, is

on the order of or greater than Lx/2, the disturbance

from the source will fill the entire region after only

one time step. If the critical level is in the near field

of the source, then it will not be possible to observe

the wave's arrival at the critical level, and the effect of

the critical level on energy transmission will be difficult

to evaluate since the wave will be about the same size

on both sides of the critical level in the beginning.

So, while kx is arbitrary, ratios like h/Ax and



umax/vpx are important.

A horizontal wavelength of 5000m has been used

throughout, but the results apply to any wavelength as

long as various quantities are scaled appropriately. If

the wavelengths, wave motions and wind speed are all

multiplied by a factor f while the period is unchanged, it

can be seen from the basic equations that they are un-

changed if / is multiplied by f, and if p, * A V,

and K are all multiplied by f2. The magnitude of is

unaffected.

With V , A x h, and Ri chosen, umax and 6ua are

chosen taking into account the propagation or nonpropagation

of the wave harmonics, and then A zw is chosen to give

the specified value of Ri. The shear layer, containing

the critical level is placed as far as possible from the

source so that the wave parameters will be small there in

the beginning. On the other hand, the shear layer must be

far enough from the ground so that the events near the

critical level are not obscured by the effect of the

rigid surface at z = 0.

In presenting the results of this model the emphasis

is more on horizontal wavelength as opposed to frequency

because it is convenient to Fourier analyse the arrays

for /p, w, and u by rows and to present magnitude and phase

angle of the variable in tabular form as a function of

wavelength and height. The repetition length is a fixed

constraint in this model, and cannot chanrge with time.



97

While the source has a constant frequency as well as a

constant wavelength, in the transient early stages the

frequency exhibited by the wave is often quite different

from that of the source. To Fourier analyse in the time

dimension, the arrays of the variables would have to be

stored for many time steps which is not feasible.

A fairly good idea of the frequency as a function of

time, height and wavelength can be obtained by comparing

the phase angles at successive print steps. Unfortunately

this was not done for some of the earlier runs. It has

been found easier to think in terms of speed than fre-

quencies, so the relation used is

HPSL(I,J) = ( L(I,J) _ $L-Lo(I,J))/Lo 6tk(I)

L(I,J) is the phase angle of the Ith term in the Fourier

transform for the Jth row at time step L. Lo is the

number of time steps between successive print steps. A

value of Lo At roughly equal to VB/2 has been found best.

HPS is seen to be the average horizontal phase speed over

the preceding period LoLt.

The other portion of the model's output which will

be shown here are contour plots of the variables / , w, and

u. When an expanded region is present, in addition to a

plot of the entire region, a plot of the same size for

the expanded region is also produced, thereby showing

the region of interest in greater detail. Because of
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similarities between the plots for different variables,

and the troubles with averages in the horizontal motion,

only the plots of the wave density are usually shown.

As mentioned in section 4.4 some local effects

develop at the boundaries of the expanded region where

the vertical spacing changes. Large values of 6z/6z s

such as eight and sixteen must be used in order to have h

as large as Ax and yet have adequately small spacing
near the critical level. Disturbances with vertical

wavelengths less than 2-Lz will not be able to propagate

outside the expanded region and so their reflection at

these boundaries is expected. It is found that the second

and third harmonics which have shorter vertical wave-

lengths than the fundamental are occaionally quite large

at these heights. In a few cases large spurious values of

a, the constant term in the transform of , are

generated at one of the edges of the expanded region.

Since ua, the change in the wind, is obtained from in-

tegrating la upward from the ground, the values of ua

above the spurious value for a will be offset. There is

no reason to doubt the relative changes of ua within

the expanded region, though.
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5.2 Results of calculations

The finite difference model described in the pre-

ceding chapter has been run for a number of different

cases. The reference, case A, will be presented in some

detail. The other cases, most of which differ from case A

by having different values for only a few parameters,

are treated more briefly. Then some figures which contain

the results of most of the cases are discussed, and

finally some observations about energy and momentum flow

are made.

Some new parameters will be needed to describe the

model completely. Let zwb and zwt be the heights of the

bottom and top of the layer in which the wind shear is

nonzero. Ub and 9t denote the wind speed below zwb and

above zwt respectively. The wind is a linear function of

height between Zwb and zwt and is continuous everywhere.

Zeb and Zet are the heights of the bottom and top of the

expanded region. h is the height of the region. vpx is

the constant horizontal phase speed of the source. The

source strength ss = sz is approximately equal to

the magnitude of the horizontal wave motion it generates.

zs is the height of the source. zc is the height of the

critical level assuming that the wave moves with v

and that the wind remains unchanged.

Those parameters which are the same for all cases are:

At = 15s, 6x = 625m, 2 B = 345s, Ax = 5000m, and
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bz s = 25m.

Now it is not expected that the actual critical level

will remain at the theoretical value of zc.  In the first

place the wind will change if the incident wave brings

momentum which is absorbed near the critical level. The

original wind Ti is independent of time, so the total wind

is Ti + ua, where ua(z,t), the change in the wind since

time zero, is the average of u over a row of points at

height z and at time t. u. is also the constant term in

the Fourier transform of a u row. In addition, the actual

critical level may change because the wave at a given

height may be moving with a speed different from vpx*

Further, the different wave variables may move at different

speeds, so that the critical level may be different for

each variable.

Case A (Reference)

The parameters for this case are: h = 6400m,

Az = 400m, Zwb Zeb = 2 000m, zwt = Zet = 2800m,

z s = 6200m, ub =0, t = 20m/s, 0= 450s, s s = 1.12m/s,

Ri = 0.53, A = 0.02kg/ms, and K = 0.02m2/s. This gives

vOx = ll.llm/s and zc = 2444m. The upper boundary is

treated by the mirror techtique.

Tables 5.1 and Fipures 5.1 contain the row transforms

and contour Dlots for three times this case which ran for

4500s. Changes after 3165s were not too great, and the

tables and contour plots are presented at this time in order



to faciliate comparison with other cases. The vertica

phase speed above zwt is 8.6m/s so it takes about 400s

for the wave to reach the shear layer.

With these tables and figures there is no need for

a detailed description of this case, but attention must

be drawn to a number of features. From figures 5.1H,L

it may be seen that the angle which the pattern makes

with the vertical just above the critical level is much

greater than it is near the top of the expanded region.

The wave pattern is being sheared and in order to do this

it is necessary that the horizontal phase speed be different

at different heights. From tables 5.1D,F it may be seen

that just above zcHPS increases with height as the figures

suggest. This shearing of the wave decreases its vertical

wavelength. Also, 7(2437.5m) = 10.94m/s so that by

2025s the actual critical level for Q and'u is about

25m below zc.

The linear theory predicted that 0 and u would increase

without limit as a critical level is approached, and that

w would decrease to zero. From tables 5.1 it is seen

that these predictions are partially true. w does decrease

but does not go to zero, and the increase of / and u

stops about 100m from the critical level, below which

height these variables decrease in size.

In the 1000s following 3465s the fundamentals remain

about the same size but the second harmonics roughly

double. ua in the expanded region increases in magnitude
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by approximately one third, but ua above zet changes

sign. The importance of the sign of ua will be discussed

later when energy and momentum are considered.



TABLE 5.1A FCURIER TRANSFORM CF RHO RY ROWS FOR CASE A
MAGNITUDE AND IPS IN MKS UNITS ANGLE IN RADIANS
HPS IS THE HCRIZCNtAL PHASE SPtEL CALCULATED FROM THE CHANG

TIME STEP 64 TIME - 945.0

E IN THE PHASE ANGLE IN THE LAST 180O00 SECONDS

FUNDAMENTAL SECCND HARMCNIC
MAGNITUDE ANGLL H P S MAGNITUDE ANGLE

200.0
600.0

1000.0
14)0.0

1830.0
2012.5
2037.5
2062.5
2087.5

2112.5
2137.5
2162.5
2187.5
2212.5

2237.5
2?62.5
2287.5
2312.5
2337.5

2362. 5
2381.5
2412.5
2417.5
2462.5

2487.5
2512.5
2537.5
2562.5
2587.5

2612.5
2637.5
2662.5
2617.5
2112.5

2737.5
2762.5
2787.5
3COC. C
3400.0

380C.0
4200.0
460C.0
5030.0
5400.0

10.00
9.60
8.8d9
8.53

0.000000
0.000000
C.COOCCC
0.000000

CCNSTANT

-0.000000
-0.000000
-0.000000
-0.000000

-0.000000
-0.000000
-0.000000
-0.000001
-0. 00001l

-0.000002
-0.000004
-0.000006
-0.000009
-C.000012

-C.000016
-C.000019
-0.000021
-C.00002?
-0.000022

-C.000021
-0.000018
-C.000314
-0.300010
-0.000005

-0.000C01
0.000003
0.00000?
0.C00C09
0.000011

0.000012
0.000012
0.000013
0.00001/
C000C012

0.000011
0.000017

-0.030001
-0.0CC00O
-0.300009

0.000O07
0.00c00b

-0.030C02
-C. 000003
-0.0000 08

0.000020
0.000055
0.000076
0.000084

0.000099
0.000124
0.000129
0.000134
0.000142

0.000158
0.000145
0.000225
0.000277
J.000338

0. 000406
0.000475
0.00054i
0.000605
0.000659

0.000704
0.00073
0.0007 62
0.000777
0.0007d5

0.000786
0.000781
0.000771
0.000757
0.000739

0.000719
0.000696b
0.000672
0.000647
0.000022

0.00C596
0.000574
0.000544
0.000773
0.001114

0.001241
0.001061
0.001015
0.001050
0.001130

0.000037
0.000C39
0.000040c
0.000C40
C.000C39

C.00')C38
0.0000C7
0.000036
0.OOC03
0.00)034

0.000034
0.000038
0.000CC6
C.000C 1
0.000 84

0.000074
0.0000?9
0.0000L70
0.000035
C.000018

0. 89b
1.113
1.551
L.127

2. 842
3.127
3.137

-3.110
-4.043

-2.9 61
-2.693
-2.863
-7.877
-2.930

-3.010
-3.109
3.060
2.937
2.805

2. 667
2.5'5
2.381
2.237
2 096

HP S

9.15
9.45

10.00
9.23

THIRD HARMONIC
MAGNITUUE ANGLE

0.000000 0.0
0.000000 0.0
0.000n00 0.0
0.000000 1.787

0.504
0.643
0.737
1.116

1.589
1 .*'95
1.617
1.713
2.270

2. SO 1
3.1 7
3. C76
2.945
2.787

2.615
2.431
2.233
2.016
1.779

1.523
1.251
0. 66
0.677
0. 58d

0.103
-0. 115
-0.444
-0. C04
-0.951

-1.183

-1.747
-1.170

-1. 43
-1.983
2.631

-2.C56
-2.431

- , 49-
1.216
1. 761
1.618

-0. 740

8.21
3.86
5.11

10.58

7.15

11.37
10. 7r

7.17
-1.02

0.000001
0.000008
0.000001
0.000001
0.000000

7.45 C. 003CCC
7.08 0.000001
7.30 0.00)C01
7.45 0.000CCI
7.44 U0.000001

7.27 0.00CCI
7.03 0.000002
6.83 C.00CC
6.71 G.00CC04
6.66 0.00)006

6.67 0.003C08
6.71 0.000010
6.78 0.003013
6.9 0.00C0016
7.07 0.000019

7.19 0.000022
7.34 C.001026
7.61 0.000029
7.86 0.000032
8.11 0.000C35

0.000003 0.084
0.000001 1.599
0.00000? 1.985
0.000001 1.804

46 5800.0 -0.000000 0.001212 1.871 11.41 0.000014 1.012 8.37 0.000001 -0.507 -0.53
47 6200.0 0.0 0.001340 1.515 11.23 0.0000 0 2.765 0.2o 0.000001 -0.885 -1.28

HP S

0.0
0.0
0.0
6.63

-0.32
7.35
5.17
5.84

6.35

6.54
6.67
6.71
6.71

1.464
0.736
0.0
7.122
2.310

2.317
2.260
2.177
2.016
1.985

8.19 0.000000
1.99 0.0r0000
9.- 0.000000
9.56 0.000000
.50 0.000000oooono

6.90 0.000000
6.%2 0.000000
6.35 0.000000
6.39 0.C0000
6.44 0.000000

6.49 0.000000
6.55 0.000000
6.67 0.000000
6.71 .C000000
o.84 0.000001

1.01 -0.000001
7.22 0.C00001
7.4! 0.000001
7.69 0.000001
1.94 0.000001

8.18 0.000002
d..1 0.00000?
8.64 0.000002
8.85 0.000002
9.04 0.000001

9.22 0.00001
9.36 0.000001
9.46 0.0ooo0001
9.46 0.000C01
9.26 0.000001

1.321
1.n64
0.760
0.422
0.0)61

-0.117
-0.106
-1.10o
-1.502
-1.913

-2.348
-7.841
7. 32
2.174
1.571

0.975
1.627

-1.992
-1.414
0.284

1.958 H.38
1.827 8.64
1.703 8.90
1.587 9.15
1.479 9.9

1.37b 9.63
1.284 9.87
1.196 10.11
1.112 10.15

0.953 10.81
0.885 11.14
0.788 11.55
0.529 11.66
0.243 10. 5

-0.131 9.78
-0.842 10.26
-1.838 11.13
-2.822 12.02

2.559 12.13

1.907 6.68
1.847 6.59
1.774 6.49
1.678 6.41
1.530 6.37

6.39
6.47
6.60
6. 76

6.94

7.13
7.37
7.50

-1.40

8.06
8.15

-0.44
0.11
0.50

0.64
7.34
5.90
7.33
3.09

5.12
3.'5
4.66
7.C6

_ I



TABLE 5.1B FOURItR TRA4SFO.:RM OF w tY ROwS FUR CASE A TIME STEP 64
MAGNITUDE AND HPS IN MKS UNITS ANGLE IN RAOIANS
HPS IS THE HCRIICNTAL PHASE SPEtO CALCULAftiL F-cOM THE CHANGt IN THE PHASE ANGLE

CCNSTANT FUNDAMENTAL SECCND HARMVCIC
J 1 MAGNITUDE ANGLE H P S MAGNITUDE ANGLt:

400.0
800.0

12)0.0
1600.0

2000.0
2025.0
2050.0
2075.0
2100.0

2125.0
21 5C.C
2175.0
223C.0
2225.0

220.0
2275. 0
2300.0
2325.0
2 150.0

2375.0
2400.0
2425,0
2450* 0
2475.0

250C.O
2525.0
2550 .0
2575.0
2600.0

2625.0
265C.0
2675.0
27J000
2725.0

2750.0
2775.0
2800.0
3200.0
36)C.0

400C.0
4400.0
4800.0
5200.0
560C. 0

-0.000000
-C.000000
0.000000

-0.000000

0.0
0.000000

-0.00000oo
0.0
0. OOOC00

0.000000
-0.000000
0.000000
-0.00000

C. 000000

0.000000
0.0003000
0.000000
0. 000000
-0.000000

0.000000
0. 000000

-C. OOC00
C. 000000
-0.000000

-0.0(0000
0.o00000

-0.000000
-0.000000
0.000000

0.000000
-0.0000oo
-0.000000
-0.000000
0.0 00000

-0.00000
0. OCOCOu

-C. 000000
0.000000

-0. 300000

0.000000
-0.000000
0.000000
0.000000
0.000000

0.009629
0.017143
0.024 563
0.035981

0.057427
0.0594258
0.061858
0.061H27
0.065744

0.067490
0.068s0
0.070064
0 .C 708 74
0.071574

0.072543
0.0 14 20
0.071518
0.082672
0. 00086

0.099171
0.111491
0. 12437q
0.139522
0.15502b

0.171052
0.18d7316
0.20 363S
0.219759
0.?2 15 71

0.251284
0.266564
0.281508
0 ,296128
0.310444

0.324478
0.338242
0.355642
0.517606
3.581395

0.571148
0.453634
0. 30H408
0.336989
0.442455

-0.096
0.209
0. 809
1.469

1.985
2.013

2.065
2. 089

2.112
2.137
2.166
?.203
2.251

2.314
2.389
2.473
2.558
2.633

2.693
2.733
2. 75
2.700
2.754

2.738
2.715
2.689
2.660
2.629

2. 598
7.568
2.537
2.55 ('
/. *480

2.45?
2.426
2.401
2.061
1.687

1.214
0.598

-0.446
-1.706
-2.623

-0.534
0.198
0.717

*1.C99

1.394
1.4C 7
1.414
1.4C9

1.396

TIME * 945.0

IN THE LAST 180.00 SECON)S

HP S
THIPO I-ARMONIC

MAGNITUUL ANGLE

9.11 0.000000
7.76 0.000000
6.87 0.000001
6.15 0.000003

5.56 0.000006
5.53 0.000C06
5.51 0.000007
5.50 0.0C0008
5.51 0.000009

1.380 5.52
1.172 5.51
1.389 5.49
1.457 5.37
1.617 5.09

9 9.8 0.000CC 7
9.46 0.000019
7.89 0.00)062
6.21 0.000199

5.02 0.000587
4.95 0.000635
4.88 0.00079
4.87 C.000771
4.75 0.001756

4.69 C0.00077
4.62 0.000177
4.55 0.00n754
4.47 0.000711
4.36 0.000667

4.24 0.000675
4.12 0.000811
4.CC 0.001114
3.94 0.001567
3.96 0.002149

4.06 0.002839
4.72 0.003614
4.48 0.00444e
4.70 0.,0053C7
4.94 0.006152

5.17 0.006944
5.38 0.301647
5.51 0.008236
5.74 0.008696
5.89 C.C0902H

6.03 0.009247
6.14 0.00937.
6.25 0.009457
6.34 C. CO')*1
6.42 0.00 598

6.!C 0.00973C
6.57 0.009930
6.64 0.010332
7.45 0.008580
8.19 0.022736

0.000009
0.000010
0.000010

0.000009

4.63 0.30008
4.18 0.000008
4.04 0.000017
4.20 n.000019
4.53 0.000042

4.90 0.000049
5.26 0.000071
5.51 0.000094
5.85 0.000142
6.13 0.0n0167

1.7C1 6.32
1.561 6.52
1.42t o.64
1.300 6. 85
1.184 6.98

1.C79

0. C14 1
0.97 

0.771
0.72 7
0.678
0.630

-0. 168
-2.100

-2.553
-2.722

.2.539
2.40e
2. 316

0.000202
0.000234
0.000750
0.000773
0.000275

7.10 0.000763
7.19 0.000236
7.28 0.000196
7.34 0.000 146
1.40 0.o000'1

7.46
7.51

9.29
-1.13

5.17
6.13
8.52
7.24
7.50

0.000037
0.0000459
O.C00048
0.000441
0.000950

0.000703
0.001049
0.0014h4
0.000521
0.000396

-0.472
-0.082

1.612

1.114
0.942

0.678
0.419
0.177

-0.071
-0.30o

-- 0.549
-0.41?
-1.138

-1.610
-7.343

2.672
2.31

2.010)

1.472
1.214
0.,961

0.714
0.474
0.242
0.020

-0.189

-0. 183
-0.563
-0.723

-0.732
0.745
1.021

-2.551
-2. 716

-2.553
-0. 321
0.308
1.209

-2. %9

HPS

6.87
6.60
5.01
5.10

5.97
6.17
6.54

7.18

7.51
-1.42
-1.02
-0.50
0.77

1.44
2.98
4.37
5.24
5.77

6.15
6.45
6.69
6.92
7.17

7.31
7.48
7.65

-1.45
-1.30

-1.15
-0.99
-0. 84
-0.6m
-0.56

-0.83
6.34
6.09
3.71
6.48

6.09
3.37
5.04
5.n7
2.37

46 6C00.0 0.0 0.560728 2.933 11.55 C.016116 2.58- 7.27 0.000300 -2.751 2.08
47 6400.0 0.000000 0.587482 2.930 11.56 0.016918 2.589 7.27 0.000315 -7.157 2.08

1.892
2.195
2.391
2.459
2.438

2.363

2.255
7.178
IoH9

8.80
9.18
11.11
13.27
12.17

C0044538
0.026436

0 025016

C.035 117

0.019014

~_ __ ~
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TABLE 5.1C FCURIER TRANSFURM OF U BY ROWS F
MAGNITUDE AND HPS IN MKS UNITS ANGLt IN RAUIAN
HPS IS THE HCRIICNTAL PHASE SPEEO CALCULATLO FROM

TIlE STEP 64 TIME z 945.0

THE CHANGE IN THE PHASE ANGLE IN THE LAST 180.00 SECONDS

FUNUAMENTAL SECCND iAMMCICIC
MAGNI TUoE ANGLE H P S MAGNI TUI)L ANGLE

200.0
600*0

1000.0
1400.0

1800,0
2012.5
2037.5
2062.5
2087.5

2112.5
2137.5
2162.5
2187.5
2212.5

2237.5
2262.5
2287.5
2312.5
2337.5

2362.5
2387.5
2412.5
2437.5
2462.5

2487.5
2512.5
2537.5
2562.5
2587.5-

2612.5
2637.5
2662.5
2687.5
2712.5

2737.5
2762.5
2787.5
3000.0
3400.0

3800.0
42C0.0
46C00.0
5000.0
5400.0

CCNSTANT

0. 000CR
0.000036
0.000069
0.0 CJ 94

0.000108
C.0000087
0.000119
C.000260
0.0005o8

0.001066
0.001727
0.002462
0.003123
0.003515

0.003442
0.002179
0.001278

-0.0C091 1
-0.003751

-0.007027
-0.010473
-0.013799
-0.016713
-0.019066

-0.020669
-0.02 1510
-0.021638
-0.021163
-0. 0231

-0.018994
-0.017596
-0.01615?
-0.014755
-0.013471

-0.012364
-0.011444
-0.011105
-0.014692
-0.025843

-0.033262
-0.03?214
-0.031714
-0.036737
-0.043660

46 5800.0 -0.046872 0.748845 -2.351 11.23 0.006673 0.751
47 6230.0 -0.046470 0.003005 3.021 9.97 C0.00001 0.822

HP S
THIRi HARMONIC

MAGNI UJE ANGLt

9.11 0.000000
7.14 C.000000
6.59 0.003000
5.85 0.000007

J.25 0.000001

6.11 0.003015
5.20 0.000025
6.40 0.000028
5.69 0.000029

6.20
8.96

-0.31
3.49
4.75

0.0000942
0.000012
0.000043
0.000036
0.000044

0.019202
0.016159
0.026671
0.044614

0.062561i
0.016b753
0.078157

0.075494

).071572
U.0688 59
0.072641
J.CHln0d
0.113961

0.148414
0.187911
0.230022
0.27318*
0.316177

0.357971
0.397576
0.454001
0.466159
0.493235

0.514692
0.530334
0.540502
0.545158
0.546924

0*544886
0.540542
0.534610
0.527745
0.520427

0.512974
0.505316
0.491504
0.418176
0.430346

0.562064
0.694012
0.831088
0.776662
0.720075

1.8 8
2.557

-2.650
-2.107

-1.699
-I1 .545
-1.544
-1.41-I.51

-1.433
-1.264
-1.018
-0. 790
-0.662

-0.633
-0.672
-0.753
-0.861
-0.985

-1.117
-1.250
-1. 382
-1.508
-1.62H

-1.739
-1.843
-1.937
-2.024
-2.103

-2.174
-2.238
-2.29')6
-2.348
-2.396

-2.439
-2.479
-2.517
-2.884
2.481

1.68 1
0.o90
0.113

-0.655
-1.549

9.98 0.001008
8.43 0.000015
5.52 0.000050
5.24 0.000151

4,8 0.000430
4.46 0.000120
4.37 C.000745
4.33 0.000711
4.42 O.C00602

4.14 0.00039q2
5.49 0.000113
6.25 0.003502
6.40 0.0012C0
6.2') 0.002111

6.15 0.003246
6.15 0.0004614
6.23 0.006233
6.38 0.308102
6.5c 0.0102c0

6.76 0.01?496
6.97 0.014852
7.16 0.017114
7.33 0.019092
7.47 0.OOb6C2

7.60 C.C21509
7.70 0.021752
7.78 0.021344
7.u5 0.020366
7.91 0.01d941

1.96 0.017218
8.00 0.015329
8.05 0.013404
8.09 0.011586
8.14 0.01n0027

8.20 0.009057
8.26 0.00499
8.35 0.009147%
9. 16 U.010301

10.42 0.Od8029

9.78 0.027362
10.48 0.07786
11.18 0.027952
10.79 0.010589
11.28 0.C19490

1.822
2.902

- . 996
-2.653

-2. 381
-2. 319
-2.409
-2 *596
-2.875

-3.131
1.894
0.122

-0.195
-0.423

-0.634
-0.848
-1.(70
-1.303
-1.t46

-1.794
-2.044
-2.795
-2.545
-2. T93

-3.C3-)
.0C02

2. 165
2.535
2. 116

2.115
1.939
1. 798
1.707

1.739
1.833
1.929
0.756

-0. 110

-0.621
-3.127
-2.539
-1.876

1.120

0.000097 -2.938 2.30
0.000000 -0.891 3.09

5.20 0.000057
5.4a 0.00007d
5.73 0.000101
5.96 0.000149
6.1) 0.00205

6.42 0.000?81
1.64 0.00037?
6.65 0.0O0477
7.05 0.0005818
7.5 U0.0069

7.46 0.000771
7.66 0.000822
7.88 0.000835
8.10 0.000814
8.34 0.000774

d.55 0.000730
8.17 0.000707
8.94 0.000718
9.06 0.000752
9.06 0.000767

8.93
d. 76

11.10
9.52

7.47
12. 40
3.70
3.81
0,19

8.59
6.74

0.000743
0.000658
0.000226
0.000402
0.000412

0.000266
0.00131t
0.000726.
0.001072
0.000725

2.269
2.974

-1.918
-1.I863

-2.954
2.403
2. 49
2.127
1.3659

1. 564
1.237
0.822
C.409

-0.059

-0.469

-0.816
-1.114
-1 .401
-1.696

-1.995
-2.305
-7.618
-7.944

3.001

2.664
2.307
1.935
S1.5 40
1.112

0.645
0.1i6

-0.314
-0. 155
-1.123

-1.469
-1 o2 3

0.740
-0.119

2.816
2.797

-2.303
-0.405

0.500

P S

6.86
6.27
4.90
5.11

-1.T6
5.1,
5.41
5.67

5.39
5.20
5.20
5.33
5.63

5.80
5.99
6.13
6.12
6.46

6.64
6.82
6. 7
7.15
7.31

7.49
7.67

-1,37
-1.13
-0.90

-0.41
0.05
0.56
1.15
3.43

5.48

7.53
5.77
7.16

2.15
4.49
4.86
3.43
4.84
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TABLE 5.1D FCURIER TRANSFO) OF RHO BY ROWS F
MAGNITUDE ANO HFS IN MKS UNITS ANGLE IN RADIAN
HPS IS THE HORIICNTAL PHASE SPEEO CALCULAftU FROM

OR CASE A TIME STEP 136 TIME v 2025.0
S
THE CHANGE IN THE PHASE ANGLE IN THE LASI 10R.00 SFCnNOS

2CO. C
600.0

1000.0
1400.0

1800.0
2012 .5
2017.5
2062.5
2087.5

2112.5
2137.5
2162.b
2187.5
2212.5

2237.5
2262.5
2287.5
2312.5
2337.5

2362.5
2 87.5
2412.5
2437.5
2462.5

.248 1.5
2512.5
2537.5
2562.5
2587.5

2612.5
2637.5
2662.5
2687.5
2712.5

2737.5
2762.5
2781.5
3000.0
3400.0

380C.0
4200.0
46OC.0
5000.0
5400. 0

FUNDAMNINTAL
MAbNITUUE ANGLE

CCNSTANt

-0.000000
-0.000000
-0.000000
-0.000000

-O.00000
-0.000000
-0.000002
-0.000001
-0.000002

-C. OC0004
-0.000005

0.000000
0.000005

-0.0 C)O3

-0.000 13
-C0.00061
-0.000062
-0. o00 1

0.000054

0.000080
0.0C007

-0.000106
-0.00o075
-0.000523

-0.000529
-0.000319
-0.00014b
0.000062
0.000160

0.000210
0.000111
0.000180
0.000221
C.O00014

0.000166
0.000145

-0.00000
0.0O0013
0.00014

0.000018
-0. 000002
-0.000009
0.000005
0.000003

0.485
0. 5uh
0.599
0.672

0.652

0.595)
0.562
0.510

HPS
SECCN) HARMCFIC

MANI TUOE ANGLE

11.41 0.00o000
11.46 0.00o0CCI
10.98 0.00C01
10.49 0.00000

10.50 0.000CC3
10.56 0.000005
10.67 C.000CC4
10.90 0.000003
10.93 0.0000C5

0.607 10.70
0.592 10.61
0.513 10.91
0.464 11.56

0.616 11.31

0.000050
0.000144
0,000220
0.000265

0.000260
0.000250
3.000268
0.0)0216
0.0002178

0.030293
0.000324
0.000345
0.000328
0.000295

0.000353
0.003524
0.000711
J. 0 HJc0
0.000786S

0. 000581
0.000293
0.000551
0.001154
0.00172Y

0.00714C
0.0J23)0O
0.002452
0.002463
0.002403

0.0072o3
0.002119
0.0019 84
0.001920
0. J0180O

0.001836
3.001981
0.001531
0.001444
0.0014 34

0.000773
0.000411
0.301052Z
0.001045
0.000673

46 5800.C -0.000000 0.000861 -1.184
47 6200.0 -0.000000 0.001200 -1.490

O.JO)COR
0. oO COH
0.000005
0.00 0 7
0.00Cl0019

9.92 0.00)C3C
9.?2 0.000032
9.2t 0.000CC
9.44 0.000018
9.93 C.001C07

11.73
14.6
10.95
10.55
10.6

10.82
11.01
11.21
11.39
11.52

11.61
11.66
11. 78
11.65
11.77

11.89
12.19
12.21
11.63
11.16

9.84
11.91
12.58
12.55
13.12

10.14
10.06

0. 000104
0.009004
C.000C I
0.000116
0.0001t 5

C.000260
0.000315
0.0003e6
0.000299
0.000219

C. 000178
0.000 14
0.000312
0.000293
0.000248

0.030j81
0.000232
C,330325
0.000091
0.300167

0.000153
0.000119
0.00JC54
0.000046
0.000024

-2.910
-2.164
-1.541
-1 . E 3

-1.340
-1.073
-1. *46

-1.453
-1.367

-1.843
-1."84
-0.681

-1 .5 23
-1 . 558
-2.557

2.863
1.C10

-0.317
-0. 102
-0.485
-1.C39
-1. 7(6

-2. * 44

-2.910
2.858
2.3 t 1
1.47

1.38
0.0 I
0.481
0.258

-0.551

0.502
-1.533
2.540

-0.691
-0.613

-0.740
-0.414

0.599

0.267
-1.If 3

HP S

-0.45
-1.08
-1.73
-?.06

11,55
10.93
11.57
11.j7
10.65

1 ,.84
-1.70
-0.80
10.14
9.80

THIRD HARMONIC

MAGNITUDF ANGLE

0.0000000
OOnnOnO
0.000000

0.0001 n

0.000001
0.0000010.000001
0.000001

0.0000010 00001

0.000001

0.000007

9.64 0.00(003
9.32 0.000004
8.9 0.000005
4.25 3.000005
o.73 0.000015

11.48
10.23
9.45
9.113
9.36

9.23
9.18
9.34
9.66
9. 93

10.02
9.82

10.45

7.63

-0.92
8, 79
8.31

0.000004
0.000001
0.00000
0.000013
0.000016

0.000019
n. 000026
0. 0)003
U.000011
0.000037

0. 000046
0.00043
0.0O0021
0.00017
0. 0 00034

0.000047
0.000109
0.000057
0.000014
0.000006

8.2 0.000011
6.94 0.000006
4.02 0.000001
4.21 0,000002
7.0 0.000002

0.0
7.041
2.00
0.7 In

0.948
0.943
1*134
1.791
1.12 1

1 1.62
0.901
0.943
1.217
1.010

0.605
0.224

-0.062
-0.224
-0.07

-C. 199

1. 41
1.081
e,987

1.10.)
0.90 h
C.417

-0.092
-C. 526

-0.793
-1.265
-1.789
-2.85h
1. 758

2.339
1.465
1.022

-1.160
-0.-*06

C.209
0.134
1.164
2.? 758
3.0S7

0.0bo2S
6.25
6.45

-0.14

0.16
-0.03
0.56
0.56
0.49

0.68
1.65
2.60
2.11
?.00

2.16
2.29
1.65

-0.51
7.7H

7.04
4.78
2.31
1.58

1.11

0.89
0.86
1.10
1.15
1.58

1.5I
1.71
1.75
1.85
0.73

1.25
1.20

-1.36

2.09
3.34

5.40
7.19
5.75
3.20
5.98

0.000028 -0.593 3.81 0.000004 -2.681 5.11
0.000197 -1.451 -0.30 0.C00004 -2.651 5.10

0.909
0.911
0.695
0.382
0.054

.- 0.193
0.154

1.151
1.086
0.838

0.541
0.217

-0. 110
-0.401
-0.030

-0.802
-0.927
-1.050
-1.102
-1.235

-1.283
-1.431
-1.473
-1.698
-1 .925

-2.158
2.181
l.364
0.9d?
0. 1b6

n;n ------- -- 1.---. - er xI. I_



TABLE 5.1E FOURIER TRANSFORM OF W
MAGNITUDE AND HPS IN MKS UNITS ANGL
HPS IS THE HORIZCNTAL PHASE SPEED CALCI

BY ROWS FOR CASE A TIME STEP 136
E IN RADIANS
LAIED FROM THE CHANGE IN The PHASE ANGLE

TIME = 2072.0

IN THt LAST 1ln.00 SECONDS

FUNDAMENTAL SCCCND HAMMCKIC
MAGNITUOt ANGLE H P S MAGNITUDE ANGLE

400.0
800.0

1200.0
1600.0

2000.0
2025.0
2050.C
2075.0
2100.0

2125.0
2150.0
2175.0
2200.0
2225.0

2250.0
2275.0
7300.0
2325.0
2350.0

2375.0
2400.0
2425.0
2450.0
2415.0

2500. 0
2525.C
2550.0
2575.0
2600.0

2625.0
265C.0
2675.0
2700.0
2725.0

2750.0
2775.0
2800.0
3200.0
360C.0

4000.0
4400.0
4800.0
5200. C
5600.0

CCNSTANT

0.000000
0.000000
0.000000
0.000000

-0.COC00
-0.0000000
-0.000000
-0.000o00
0.000000

-0.00000
0.303000
0.000000
0.000000
0.300000

-0.000000
-0.000000
-0.00n0000
-0.000000

0.000000

-0.000000
-0.000000
-0.000000
0.0
0.O00000

-0. OC0000
0.C00000

-0.000000
-0.000000
-0.300000

-0.000000
-0. 0C000
C.000000
0.OC0000
0.0

0.000000
-0.0000
0.00000
0.000000

-0.o00Coo

0.000000
.000000

0.000000
0.000000
0.000000

0.031260
0.064462-
0. 089510
0.101775

0.094772
0.094696
0.093434
0.092151
O.09Ou803

0.0d9152
0.08 7103
0.04986
0.083114
0.080931

0.076765
0.009349
0.059176
3.049385
0.043721

0.041205
0.D 5788
0.0225 1.
0.00>253
0.032386

0.06H814
0.108615
0.149293
0. 188598
0.224946

0.257902
0.287894
0.315523
0.341221
0.j 4 It

0. 35956
0.404073
0.424415
0.577294
0.4b,454

0. 108v47
0.306990
O.051 49
0.407618
0.337301

-1.031
-0.980
-0.942
-0.940

-C. 99C

-00999

-1.003
-1.011
-1.019

-1.C2a
-1.037
-1.045
-1.057
-1.O0b

-1.133
-1.180
-1.188
-1.115
-0.979

-0.903
-0.963
-1.d184
-2.902

1. 948

1.646
1.414
1.20O
1 * C59
0.928

0.819
0. 728
0.6'.9
0.579
0.511

0.462
0.411
0.36h
0.029

-0.oCd9

-0.198
2.791

2.576
2.115
0.870

0.030347
C.029270
0.030426
0.045444
0.059430

0.062SC2
0.031984
C.021609
0.03578
0. 02 8 200

C.000119
0.000186
0.000573
0.001381

0.001233
0.0034H3
0.003722
0.003949
0.004134

C.004339
0.034619
0.004868
0.004903
0.004172

0.004929
0.005 748
C.006941
0.007973
0.008577

0.008682
0.308050
0.3007C38
0.009253
C.016o23

HP S

10.77
10.83
11.31
IC.82

10.24
10.23
10.22
10.22
10.20

10.15
10.09
10. 06
10.12
10.10

THIPO hARMONIC
MAGNITUOE ANGLE

0.000000
0.000015
0.000053
0.000178

0.r)00004
0.000898
0.000995
0.001100
0.001209

0.001326
0.001461
0.001614
0.001 761
0.001882

11.19
10.93
10.74
10.72

11,00
11.03
11.06
11.09
11.13

11.19
11.24
11.28
11.33
11.45

11.7C
12.05
12.35
12.30
11.84

11.46
11.57
12.44
20. 1

0. 11

-2.441
-2.7C 7
-2.766
-2.583

-2.383
-2.374
-2.367
-2.358
-2.338

-2.3C7
-2.285
-2.287
-2.286
-2.22 3

-2.Cm5
-1.477
-1.S75
-2.030
-2.CE6

-2.123
-2.107
-1.852
-1.337
-1.199

-1.333
-1.562
-1.833
-2.138
-2.477

-2.845
3. C56
2.680
2.301

I.~?R2
1.262
1.C70
0.641
0.612

0.286
-0.C54
-1.112
-1.461
-1.420

3.003921
0.001779
0.004224
0.00605s
0.007501

0.009571)
0.011659
0.013640
0.014997
0.015479

0.01497
0.013 A0
0.013n01
0.008 715
3.00316 ?

9.14 0.000607
5.06 0.001649
6.38 0.000602
6h.95 0.009? 1
6% 9 0.001120

46 6000.0 -0.000000 0.598526 0.018 10.39 0.029892 -1.745
47 6400.0 -0.000000 0.629068 0.013 10.39 0,031338 -1.744

9.94 0.0r1986
9.75 0.007117
9.65 C0.002307
9.57 0.002566
9.4? 0.00226

.27 0.003277
9.26 0.001633
9.4? 0.003886
4.18 0.004021
9.04 0.004046

9.13
9.32
9.31
9.88

10.23

10.59
10.95
11.?9
11.h2
-1.9.

-1.69
-1.62
-1.77
8.45
8.40

4.38 0.025902
6.86 0.03970
8.05 0.038970
8.70 0.040856
9.10 0.040816

9.30 0.040166
9.54 C.039376
9.67 0.0i8024
9.77 0.0 5sl?
9.85 (.03)h19

9.91
9.96

10.00
9.98
9.42

7.99
16.03
13.11
12.40
10.58

-1.122
-C. 419
-0.849
-0.843

-0.871
-0.q71
-0.868
-0.965
-0. 861

-0.854
-0.845
-0.84?

-0. 46I

-0.926
-0. 186
-0.743
-0. 71
-0.704

-0. 71
-0.806
-0.9R95

-1.035

-1.034
-O.Hyl
-0.(32b
-0.456
-0.440

-0.519

-0.657
-0.820
-0.985
-1.126

-1.218
-1.224
-1.141
-0.133
-0.065

-3.008
2.977

-2.654
2.441
2.458

HP S

1.02
1.16

1.36

1.17
1.16
1.14
1.12
1.11

1.09
1,05
1.01
0.98
0.97

0.97
0.94
1.00
1.01

0.90
O.Hh
().8t
0.8h
0.91
1.03

1.19
1.27
1.15

.05

1.00i

1.12
1.15
1.17
1.19

1.22
1.29
1.36
3.14
7,32

3.12
5.48
6.28

-0.50
-0.55

__ ___ _ _ .. .

d.40 0C000260 2.4PZ -0.77

8.40 0,000273 ?.482 -0.77



TABLE e5.1 FOURIER TRANSFCKM OF U NYV CwS F
MAGNITUDE AND HPS IN MKS UNITS ANGLE IN RADIAN
HPS IS THE HCRIZCNTAL PHASE SPEED CALCULATE.O I-UM

TIPE SlIP 136 TIPE a 2025.0

THF CHANGE IN THE PHASE ANGLE IN THE LAST 180,00 SECONDS

FUNDA ME N TAL
MAGNITUUI ANGLE

200.0
6CC.0
1000.0
1400.0

180C. 0
2012.5
2037.5
2062.5
2087.5

2112.5
2137.5
2162.5
2187.5
2212.5

2237.5
2262.5
2281.5
2312.5
2331.5

2362.5
2387.5
1412.5
2417.5
2462.5

2487.5
2512.5
2537.5
2562.5
2587.5

2612.5
2637.5
2662.5
2687.5
2712.5

2737.5
2762.5
2787.5
3000.0
3400.0

3800.0
4200 .0
4600.0
5000.0
540C.0

CONSTANT

0.000036
0.000115
0.0C0430
0.000693

0.0C0994
0.001024
0.000 795
0.O00785
0.001701

0.00260Z
0.001721

-COC00189
0.001447
C.010120

0.020701
0.019406

-0.003785
-0.039890
-0.060848

-0.041400
0.013307
0.061403
0.049691

-0.04 7186

-0. 205119
-0.364713
-0.466438
-0.489382
-0.45 1 IC8

-0.3H88853
-0.330960
-0.286510
-0.245562
-0. q19992

-0. 158157
-0.115120
-0.08 86
-O.dn W14
-0.072171

-0.044458"
-0.0434 19
-0. cC51C5
-0.068 18d
-0.053705

HPS

11.19
10,64
10.16
10.59

SECCNU ARMCNIC
MAGNITtUDE ANGLE

0.000128
0.0000C7
0.0004C9
C.000867

6.38 0.002014
8.17 0.001619
8.61 0.004065
9.11 0.001853
8.80 0.003377

8.34 0.004130
8.53 0.005C14
9.54 0.004161
9. 70 C.000387
8.23 0.305924

7.61 0.012116
7.49 0.017425
7.35 0.02070754
7.04 0.019217
6.33 0.013C74

0.066329
J,059199
0.044154
0.015160

0.024710
0.050175
0.053239
J.053923
0. 07892

0. Cb9013
0.019753
0.080 176

0.111867

0.187020
0.272924
0.338931
0. 3500 72
0.279641

0.136358
0.195989
0.4d1839
O. dO0362
1 o046008

1.212478
*.447629

1.54 4504
1.542908
1.46'.332

1.355325
1.252007
1.lb667
1.100631
1. 02 59 72

0.946151
3.852140
0.111575
0.434014
0o304001

0O759448
0.817618
0.405140
3.4893 7
0.9J1079

2.154 10,91
2.030 10.93
1 . l5 10.2 ?
1.830 10.91
1. 139 10.84

1.647 10.88
1.536 10.96
1.440 11.05
1.1d.2 10.24

-).179 12.05

-1.239 11.05
-1.485 11.07
-2.088 11.39

2.230 13.23
1.722 11.68

0.933
1.042
1.l 3e
I. 04h

-1. h689)
-1.790
-1.847.
-1. d49
-1.714

- 1. 769
-1.881
-1.960
-1.763
-1'.479

-1.585
-1.915
-2.313
-7.711
-3.053

-3.005
-1.* 712
-1.801
-7.144
-2.535

-2.924
3.012
2. 141
2.4 .92
2. 105

-0. Cb
-0.814
-0.440
- 0.00

0.129
0.12t)
0.C97
0.150
0.445

0.634
0.4LH
0.013
0.404
2.1 i

1.564
0.945
0.394

-0. C34
-0.373

-1.C72
-3.101
2.440
1.560
1.327

0. 791
0. 195

-0.456
-1.C5 1
-1.534

-1.926
-2.309
-2. 729
3.0 97
7.666

2. 331
2. C69
.0 C79

2.333
2. 1 l

1.263
-0.209
-0.152
0.4C4

-2.37C

HPS

10.77
11.62
ll.6Z

10.45

10.12
10.26
9.713

9.13

10.86
7.59

THIRD HAR4NIC
MAGNITUUF AN;LI-

3.000001 1.613
0.000009 2.020
0.00001 1.8 7
0.000101 1.910

0.00051 ?
0.001174
0.001268
0.00119
0.001427

0.00151H
J.0017840
0.002004
0.001932
U.001557

8.23 0.001440
4.UJ 0.002011
9.05 0.002197
8.75 0.003657
1.61 0.004354

7.76 0.005185
9.58 0.005752
9.29 0.005577
9.02 0.004647
U.9d 0.003??4

9.12
9.47
9.98

IC. 39
10.39

10.65
10.65
10.6h

lo.HI

10.69

10.51
9.29
6.02Cd

0.001H85
3.00770?
().015427
0.021616
0.025516

0.0290R

0. 03404

0.036475
0.029568

0.020359
0.016120
0. 0)7032

0.004942

5.19 0.003216
9.45 0.000873
7.85 0.001076
1.67 0.000746
0.04 0.0o0134

I s 869
1.87?
1.907
1.417
1.929

1.975
1.991

1,849

1.91

2.797

2.311
2.110

1.460
0.954

0.226

-1.474
-2.654
-3.10
2.759
?. 51.

-0.364
-1.531
-7.408
-2.2?7
-0.561

-0.427
-0.734

2.101
-1.798
-0.975

46 5810.0 -0.048761 0.901783 1.352 11.23 C.010384 -0.765
47 6200.0 -0.048762 0.006427 0.894 11.33 0.00)016 1.732

1.88
10.95

0.000767 2.058 0.31
0.000000 -2.639 1.96

22.37
12.17
10.76
10.55
10.54

10.60
10.70
10.79
10.86
10.91

C.CS07 hl
0.011854
0.01.462
0.082359
0.134053

0.170128
0.185032
0.194571
0./16486
0.243124

0.262382
0.167751
0.57080

0.244870
0.772921

0.207047
0.15 8507
0.101 772
0.02/9qO
0.011236

0.021894
0.040325
0.032035
C.017731
0.010162

HP S

1.04
1*36

1.57

1.12
1.04
0.96
0.04
0.97

0.89
0.72
0.61
0.66

0.9?
0.891.H9
0.74

0.60
0.17

-0.21
-1.05

7.44

-0.42
0.55
0.68
0.88
1.06

1.949 1.19
1.54> 1.76
1.197 1.24
0.f74 1.17
0.723 1.18

0.89

1.64

3.18

3.70
7.21
3.61
3.10
4.04



TABLE 5.1G FCUKIER TRANSFCRM CF RHO BY RCWS FOR CASE A
MAGNITUDE AND HPS IN MKS UNITS ANGLE IN RAUIANS
HPS IS THE HORIZCKTAL PHASE SPEED CALCULATED FROM THE CHANGF IN THE PHASE ANGLE IN THE LAST 180.00 SFCONOS

FUNDAMENTAL
MAGNITUOE ANGLE

2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

31
32
33
34
35

200.0
600.0

1000.0
1400.0

1800.0
2012.5
2037.5
2062.5
2087.5

2117.5
2137.5
2162.5
2187.5
2212.5

2237.5
2262.5
2287.5
2312.5
2337.5

2362.5
2387.5
2412.5
2437.5
2462.5

2487.5
2512.5
2537.5
2562.5
2587.5

2612.5
2637.5
2662.5
2687.5
2712.5

2737.5
2762.5
2787.5
3000.0
3400.0

380C.0
4200.0
4600.0
5000.0
5400.0

SECCNU HAR4ECNIC
H P 5 14AGNITUOE ANJLEJ L

CCNSTANT

-0.000000
-0.0000000
-0.000C00

-0.00000
-0.000001
-0.(00003
-0.000002
-0.000004

-0.000004
-0.000003
-0.300008
0.0000004

-0.000010

-O.JO0004
-0.000024

0.OC0059
-C.003000
-0.000074

0.030037
-0.000162
-0O00407
-0.000122
0.000353

-0.000700
-0.001436
-0.001015
0.000278
0.000382

0.000390
0.000467
0.000431
0.000353
0.000729

0.0CCC76
0.000076
0. (00020
0.000004
0.000002

0.00CO09
-0.000011
-0.000012
0.000018
C.000020

0.000031
0.000093
0.000160
0.000216

0.000239
0.000246
0.000268
0.000285
0.000294

0.000325
0.000331
0.000357
0.000398
0.000335

0.000462
0.000684
0.000616
0.000374
3.000592

0.000526
0.000445
0.000915
0.001362
0.001426

0.001206
0.007040
0.001819
0.002294
0.002473

0.002457
0.002327
0.002268
0.001931
0.001617

0.001559
0.001693
0.001255
0.001114
0.001434

0.000999
0.001019
0.001471
0.001358
0.000760

-7.428
-2.317
-2.137
-7.008

-1.8846
-1.821
-1.796
-1.843
-1.814

-1. b31
-1.874
-1. 806
-1.937
-l1 868

-1.519
-1.89d
-2.330
-L.04o
-1.H99

-2.125
-0.951
-1.736
-2 .Cb 7
-2.440

-1.503

-1.828
-2. 177
-2.393

-2.460
-2.566
-2.636
-2.665
-2.729

-2. 765
-2. 795
-2. 673

3.043
2.546

1.782
0 .6 6
0.112

-0.238
-0.690

THIRD HARMONIC
MAGNITUOL ANGLE

13.54
12.52
11.C6
10.37

10.35
10.41
10.09
1C.44
10.38

10.25
10.79
10.32
10.73
11.93

9.42
8.96
9.70

14.43
11.60

14.11
11.98
10.67
10.90
10.64

12.08
11.60
11.87
11.57
11.07

11.42
11.39
11.22
10.66
10.67

10.59
10.63
10.60
1I.I13
11.92

1C. 85
8.94
9.94

10.19
1C.41

C.OOOCCI
0.000002
0.000004
0.00CC0010

0.003021
0.00)30
0.000034
C.000C38
0.00041

C.00CC48
0.000053
C.000C57
0.000070
C. 001063

C.000057

C.000126
0.003092
0.000114

0.000161
0.000178
0.000100
0.00 185
0.000475

0.000676
0.000C28
0.000633
C0.000369
0.000276

C.C00227
0.000364
C.000262
C.000170
C.000C48

0.000136
0.000253
0.000458
0.000101
0.000125

C.000127
0.000167
C.000157
0.000273
0.000200

-1.712
-2.413
-2.619
-2.779

-2.795
-2.775
-2.776
-2.753
-2.739

-7.713
-7.743
-2.680
-2.813
-2.905

- 2. 384
-7.459
-7. 474
-3.072
-2.739

-3.00
3.115

-2.272
-1.379
-7. eC6

2.510
-1.e41
-1.321
-2.613
2.727

-2.193
-2.141
-2.55d
-2.808
-2.237

2.122
0.983
0.383
0.396

-0.248

-0.45
-0.421
-2ot74
-2.HC80

3.048

46 5800.0 -0.000000 0.000443 -2.600 12.86 0.000165 2.6 8.70 0.0000002 0.732 4.54
47 6200.0 0.000000 0.000844 -2.967 11.64 0.000165 0.367 -0.72 0.000002 0.568 4.33

HPS

6.51
9.61

10.14
10. 90

10.97
10.83
11.00
11.03
10.98

10.87
11.13
10.97
11.01
11.98

11.05
10.05
10.33
12.1 3
11.11

10.67
9q44

-0.74
8.76
8.95

10.37
10. 77
8.99
7.11
1.9

11.06
12. 79
-0. (,4
-C.91

1.72
7.59

11.31
7.52
8.20

TIME STFP 232 TIE a 3465.0

0.0000000
0.000000
0.000001
0.000001

0.00000?
0.000004
0.000005
0.00000
0.ooo0000

0.000010
0.000010
0.0000007
0.000006
0.0000003

0.000011
0.000014
0.000009
0.000032
0.000052

0.00000q
0.000102
0.000079
0.000048
0.000043

0.000105
0.000012
0.000064
0.000163
0.000014

0.000079
0.00003)
0.CO0042
0.000065
0.0000039

0.000067
0.000145
0.000010
0.000032
0.000025

7.58 0.000024
0.98 0.000014
r.61 0.000028
6.72 0.000011
7.34 0.000006

-3.136
1.149
0.930
0.626

0.065
-0.030
-0.248
-0.154

C.005

0.254
0.5725
0 .420
1 . 07
0.417

-1.341

-1. 909
-0.247
-0.331
-0.524

-0.262
-0.310
-0.816
-1.065
-1.440

-0.491l
-0.414
-7.692
-7.136
-2.294

2.051
- 1.642
-1.938
-2.695
-1.154

3.085

-2.867?
-0.163
0.208

1.048
-2.09?
-1.927
-1.835
-0.190

HP S

7.59
-0.60
6.78
6.12

6.62
6.53
7.06
7.45

-1.45

-0.89
-0.10
1.14

1.17
3.35

6.91
-1.41
5.53
6.60
6.96

6.46
6.14
6.82

-1.23
5.54

2. 64
2.75

-1.40
-1.05

4.39
1.43
0.57
2.51
3.33

3.89
4.63
7.29
2.96
5.17

6.26
1.42
6.36
5.91
5.70



TABLE 5.111 FOURIER TRANSFORM OF W HY ROWS FOR CASE A
MAGNITUDE ANU HPS IN PKS UNITS ANGLE IN RADIANS
HPS IS THE HORIZCNTAL PHASE

TIrE STLP 232 TIME - 3465.0

SPEED CALCULATED FROM THE CHANGE IN THE PHASE ANGLE IN THE LAST 180,00 SECONDS

FUNUAMENTAL SECCNO HAR4CNIC
MAGNITUDE ANGLE H P 5 MAGNITUCE ANGLE

11,78
11.34
10.89
10.50

3.053 10.14
3.017 10.11
3.091 10.08
3.112 10.05
3.134 10.01

0.00)0578
0.001443
0.003720
0.009993

0.025434
0.0217271
C.0298C3
0.030549
0.032340

400.0
800.0

1200.0
1600.0

2000.0
2025.0
2050.0
2075.0
2100.0

2125.0
2150.0
2175.0
2200. C
2225.0

2250.0
2275.0
2300.0
2325.0
2350.0

2375.0
2400.0
2425.0
2450.0
2475.0

2500.0
2525.0
2550.0
2575.0
2600.0

2625.0
2650.0
2675.0
2700.C
2725.0

2750.0
2775.0
2800.0
3200.0
3600.0

4000.0
4400.0
4800.0
5200.0
5600.0

CCNSTANT

C.000000
0.0
0.C00ooo

-0.000000

-0.00000
-0.000000
-0.000000
0.000000
0.000000

C.000000
-0.000000

-0.000000
-0.000000

0.000000
-0.000o00
-0.000000
-0.000000
0.000000

0.000000
0.000000
C-0000000

-0.000000
0.000000

0.000000
-0.000000
0.000000

-0.0000000
0.000000

-0.000000
-0.000C00
0.000000

-0.00000
0.0

0.0
0.0

-C. 000000
-0.000000
0.000000

-0.300000
0.000000

-0.000000
0.0

-0.000000

0.022029
0.045959
0.068817
0.086449

( .092523
0.093643
0.093614
0.093585
0.093415

0.093250
0.092935
0.092306
0.091704
0.090779

0.088137
0.0d7578
0.091160
0.092959
0.093908

0.0969o0
0.096025
0.092140
0.09337b
0.089908

0.078944
0.089010
0.135772
0.194778
0.248028

0.293402
0.332056
0.365143
0.395125
0.421914

0.441505
0.456587
0.476612
0.584843
0.428839

0.245210
0.458783
0.587039
0.467129
0.191029

1.750
1I950
1.953
lCSl

HP S

-1.71
11.21
11.15
11.3

1.930 11.44
1.930 11.44
1.929 11.45
1.929 11.44
1.927 11.45

1.926 11.45
1.974 11.44
1.922 11.45
1.924 11.44
1.918 11.43

1.902 11.49
1.904 I1.60
1.926 11.58
1.935 11.50
1.9?5 11.56

1.949 11.63
1.S42 11.51
1.870 11.46
1.829 -2.06
1.92) -2.19

1 * 9Cb
1.7C3
1.548
1.t27
1.487

1.253
0.942
0. 62
I.C98
1.357

1.52b
1.648
1.100
1.409
1.266

1.128
1.793

-1.937
-1.435
-1.842

11.19
11.13
11.37
IC. 95
8.29

THIRD HAACNIC
MAGNITUDC ANGLE

0.000051
0.000072
0.000266
0.000003

0.002812
0.003098
0.003311
0.0C165?
0.003975

0.004395
0.004030
0.005589
0.006757
0.006818

0.007518
0.00874
0.008445
0.008245
0.007912

0.007390
0.007482
0.00648
0.010141
0.010844

0.011496
0.012819
0.015268
0.019237
0.023045

7.24 0.02h81
7.36 0.0319H5
7.30 0.039219
6.76 0.045415
6.43 0.049753

6.51 0.050507
6.30 0.04h426
6.0V 0.041598
7.63 0.014264
8.10 0.008186

-3.125
-3.100
-3.073
-3.038
-3.008

-2.959
-2.862
-2.787
-2. 146
-2.681

-2. 649
-2.653
-2.5,5
-2.389
-2.303

-2.165
-1.795
-1.512
-l.jd7
-1. 336

-1. 33 7
-I. V33
-1.374
-1.400

-1 .426
-1.457
-1 .497
-1 .859
-2.227

2. 844
1.753
1.411
1.111
0.364

J.010616
0.0n6126
0.003146
0.005243
0.00C4020

46 6000.0 0.0 0.326986 -1.482 12.24 0.088253 -1.948
47 6400.0 -0.000000 0.342752 -1.491 12.2% 0.092549 -1.948

8.75 0.001934 1.802 3.08
8.75 0.002028 1.80? 3.08

2.478
2.563
2.18
2.827

5.91
5.20

11.19
11.59
11.48

11.41
11.29
11.12
10.98
10.89

10.81
10. 17
10.75
10.36
9.79

10.80
11.49
10.86h
10.44
10.26

9.97 0.034192
9.93 0.036195
9.90 0.038265
9.83 0.040438
9.79 0.04AC68

9.78 0.04-542
9.5h 0.04711h
9.22 0.049253
8.99 0.052479
8.16 0.055C49

8.52 0.057596
8.33 0.062180
8.05 0.068398
7.12 C.C7C429
7.17 0.012553

0.085155
0.097336
C.093868d
C.077634
0.02070

0.047923
0.036714
0.012148
0.035867
0.045471

0.058941
0.067144
0.007673
0.079499
0.082634

0.060905
0.035994
0.040277
0.062902
0.U66952

9.22
4.27

10.83
8.28
8.13

1.013
-0.935
-1.68Q

-1.719
-1.722
- I. 12t
-I. 142
-1.763

-1. 786
-1.795
-1. 786
-1. 166
-1.722

-1.72

-1.752
-1.795
-1.847

-1.960
-2.002
-1.972
-1.99h
-2.011

-2.007
-1. 894
-1 * 614
-1.465

-1. 517

-1.504
-1.197
-1.347
-1.354
-1.378

-1.379
-I1480
-1.427
-2.934
-2.962

-2.123
-1.910
0.23q
0.830
1.586

HP S

1*79
7.46
7.58
5.37

4.05
4.01
4.01
4.09
4.22

4. 8
4,4r
4.18
4.01
3.23

2.52
2.33
7.66
2.88
2.90

3.03
3.18
3.24
3.33
1.53

3.83
3.57
2.93
2.41
2.32

2.40
2.37
2.30
2.36
2.4U

2.63
2.72
2.68
3.03
2.94

1.00
5.47
1.63
2.87
2.79

Y



TABLE 5.11 FCURIER TRANSFORM OF U
MAGNITUDE AND HPS IN MKS UNITS ANGLE
HPS IS THE HCRIICNTAL PHASE SPEED CALCULi

HV RCWS FOR CASE A TIME STEP 232
IN RADIANS

ATFU FROM TdiE CHANGE IN THE PHASF ANGLE

TIME = 3465.0

IN THE LAST 180.00 SECONDS

FUNDAME N TAL
MAGNITUDE ANGLE

200.0
600.0

1000.0
140C.0

1800.0
2012.5
2037.5
2062.5
2087.5

2112.5
2137.5
2162.5
2187.5
2212.5

2237.5
2262.5
2287.5
23L2.5
2337.5

2362.5
2387.5
2412.5
2437.5
2462.5

2487.5
2512.5
2537.5
2562.5
2587.5

2612.5
2637.5
2662.5
2687.5
2712.5

2737.5
2762.5
2787.5
3000, C
3400.0

3800.0
4200.0
4600.0
5000.0
5400,0

CONSTANT

0.000010
0.000069
0.000215
0.000448

0.000171
0.000387
0.000597
0.000582
0.001118

0.001099
0.002458
0.002681
0.001434
0.010655

0.003784
-0.040805
-0.047859
-0.007596
-0.019475

-0.030159
0.009717

-0.086817
-0.293862
-0.262207

-0.125728
-0.4431C7
-1.027265
-1. 194835
-0. 965993

-0.763024
-0.643569
-0.5C9413
-0.371105
-0.242398

-0.158909
-0.098760
-0.051998
-0.024610
-0.060390

-0.041922
-0.050110
-0.073762
-0.C061501
-0.041758

SFCCNO HARMLNIC
H P S MAGNITUUE ANGLE

11.78
10.89
9.87
9.07

0.000624
0.000925
C.002383
0.006576

8.72 0.C16447
8.71 0.026039
8.39 0.02666H
8.40 0.028252
8.77 0.030CL9

8.57 0.OICCC
9.11 0.033579
8.85 C.034679
8.50 0.036J63
9.69 0.044500

0.043931
0.045920
0.043219
0.036912

0.041826
0.056370
0.060543
0.065914
0.067264

0.075469
0.07 756
0.089198
0.107808
0.096755

0.172078
0.280?66
0.245025
0.132949
0.198359

0.134282
0.041440
0.3288? 1
0.505497
0.2d2284

0.527886
1.058622
1.823413
2.022932
1.755861

1 .457789
1.236120
1.0626h9
0.984216
0.893857

0.701976
0.644834
0.742568
0.427067
0.524008

0.857772
0.816780
0.418057
0.435620
0.743636

-1.841
-1*672
-1.381
-0.875

0.Cb4
0.429
0.49m
0.505
0.563

0.616
0.652
0. 805
0.747
0.926

1.135
0.719
0.252
0.384
C. 710

C.130
2.730
1.356
1.030
1.63%

2.065
1.252
0.914
0.85
0.812

0.b682
0.552
0.446
0.331
0.193

-0.000
-0.278
-0.449
-0.856
-2.412

-2.841
3. 126
2.496h
0.917
0.288

-2.176
-1.836
-1* 72
-1.977

-2.Cl?
-1.998
-2.00C
-2. C14
-2.024

-2.C22
-2.031
-2.045
-1.978
-2.099

-2.313
-1.969
-1.510
-1.859
-1. 7

-1.661
-2.C73
-2.687
-3.075
-0.750

-2.122
-3.127
7.162

0. 61
0.900

1.318
L.177
C.649

-1.797
-1.859

-1.893
-1.582
-0.5e4
2.743
2.C62

0.787
-0.716
0.7C3
1.87 S

-0.817

HPS

-1.71
10.56
11.11
11.48

11.52
11.51
11.45
11.42
11.49

11.44
11.15
11.54

11.31
11.03

-0. 39
-0.42
10.86
10.27
0. 11

-1.61
10.44

9.29

9.37
9.03
8.68

-2.02

-1.31

11.32
11.09

-2.20
-1.94

10.26

10.46
11.25
0.19

11.39

1.01

4.17
10.50
10.17
3.55
9.59

THIRD HARMONIC
MAGNITU)DE ANGLF

0.000042 -2.521
0.000086 1.317
0.000180 0.823
0.000433 1.061

0.001653
0.003329
0.003575
0.003120
0.004355

0.005661
0.007079
0.008131
0.00944
0.0c8295

0.010407
0.009 4637
0.007783
0.005727
0.007484

0.013782
0.004326
0.015796
0.020067
0.09560

0.008509
0.025479
0,0620712
0.063192
0.05?78

0.0502 39
0.080767
0.099444
0.082247
0.058774

0.008269
0.057165
0.078322
0.036801
0.005598

0.006642
0.004381
0.007068
0.002570
0.003116

1.017
0.989
0.957
0. 35
0.741

0.146
0.87r

1.015
1.149
1.494

1.541
0.909

-0.231
-1.153
-1. 345

-1.788
-0.584
0.971
C.60#
0.428

0.921
1,6118
7.020
1.789

0.973

1.324
1.853
1.624
1. 34t

1.127

1.241
-1.760

-1.439

-1.494
2.990

1.544

-7.762
-2.616
-2.071
-0.383

46 5800.0 -0.028213 0.852391 0.013 10C.99 0.021439 0.028 1.52 0.001952 1.017
47 6200.0 -0.028277 0.005960 -1.127 12.80 0.000C16 0.C69 10.86 0.000000 -0.931

8.10
6.61
4. 30

-2.24
10.95

0.63
11.60
11.59
10. 75
14.67

12.36
12.61
11.81
11.09
10.91

11.08A
10.74
10.07
10.04
10.16

10.66
11.30
11.82
11.47
12.02

11.00
10.63
10.51
12.07
11.17

0.043290
0.025449
0.040215
0.054870
C.042627

0.044380
0.018228
0.135325
0,059492
0. 126223

0.220CC 7
C.390781
0.268667
0.2931 94
0.28o230

C.338274
0.305057
C.()095734
0.155322
0.249055

0.782603
0.19458
0.061551
0.025411
0.012877

0.029793
C0.045210
0 .080 56
0.035541
0.029071

HPS

1.79
-0.99
6.92
4.21

3.71
3.65
4.04
4.78
5.42

6.17
7.55
0.14
0.64
0.91

0.Q3
2.10
5.00
6.27
6.06

5.91
5.18
3.44
4.64
-1.25

6.14
2.32
1.02

-0.38
0.69

2.93
1.96
2.20
2.93
4.16

5.70
2.02
2.05
3.39
3.29

5.13
1.43
0.2 9
3.13
2.88

7.76
6.93

_L I
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FIGURE 5.1A
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FIGURE 5. 1D
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FIGURE 5. 1E
MKS UNITS

CONTOUR PLOT OF U
TIME STEP 64

FOR CASE A
TIME = 945.0

FIGURE 5.1F
EXPANOEO REGICK
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FIGURE 5. 1G
MKS UNITS

CONTOUR PLGT OF RHO FOR CASEA
TIME STEP 136 TIME = 2025.0

FIGURE 5.1H
EXPANDED REGION
MKS UNITS

CONTOUR PLCT OF RHO FOR CASE A

TIME STEP 136 - TIME = 2025.0
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FIGURE 5.11
MKS UNITS

CONTCUR PLCT OF w FOR CASEA
TIME STEP 136 TIME = 2025.0

FIGURE 5. 1J
EXPANDED REGION
MKS UNITS
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FIGURE 5*1K
MKS UNITS

CONTOUR PLOT OF U
TIME STEP 136

FOR CASE A
TIME = 2025.0

FIGURE 5. 1L
EXPANUDED REGION
MKS UNITS

CCNTOUR PLCT OF U FOR CASE A

TIME STEP 136 TIME = 2025.0
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FIGURE 5. 1M
MKS UNITS

CChTCUR PLCT OF RHO FOR CASE A
TIME STEP 232 TIME = 3465.0

X AXIS

0.12E 04 0.22E 04 0.32E 04 0.42E 04 3.52E 04 0.62E 04
1 0.28E 04M .. .----- RR+- PP

MF 1 PP I RRRRK P .MM I m
A P I RRRRR I PPP MMM I (
X I PP R RkR P I MW I

I I PPP A P MI
S P Rk P m LLLLLL I
0.26E 04 P - R R P m LLLLLLL

IP R R m PLLLLLLLLLL
I R mQ M LL LLLL .I

IPPPPPPPPP K L~t.
PPPPPP P PM4M M0.25E 04 .P P p -- - P-

I pFPPPPP ,M MMMMM
PPPPPPPPPPP MMMmMMMM

0.23E 04+--PPPPPPPPPP .41v4M.4. --- +

L PP PPPPPPPPPPP MV MMMM M'V I
FPPPPPPPPPP MMM MM M 'M M 

P ;PPPPPPPP MMMMmmmummm P
I \PPPPPP MMMMMI
I pPPPPPP 'MMUHMM I

0,22E 04+--- PPPPPP MMMMM --- +
I ppppp MM I

ppp I
I I I I I I
I I I I I I
I I I I I I

0.20E 04+-------------------+----------------------

CORPESPCNOENCE .BETWEEN PRINTER SYMBOLS AND CONTOUR LEVELS
K - -0,33387E-C2 TO -0.27316E-02
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FIGURE 5.1N
EXPANDEC REGIUN
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CCNTOUR PLOT OF RHC FOR CASE A
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FIGURE 5.1 P
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FIGURE 5.10
EXPANDED REGICN
MKS UNITS

CCKTOUR PLOT OF W FOR CASE A

TIME STEP 232 TIME = 3465.0
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FIGURE 5. 1R
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TIME STEP 232

FOR CASE A
TIME = 3465.0

FIGURE 5. 1S
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Case B (Low Richardson Number)

This case has the same parameters as case A except

that Zeb = Zwb = 2400m, Ri = 0.13, and z. = 2622m.

This case terminated at 2430s. Figures 5.2 and tables 5.2

indicate how this case developed. Figures 5.2B,D extend

from 2412.5m to 2787.5m, and the axis values of 2562.5m

and 2637.5m have both been rounded to 2600m.

From the tables it is clear that in this case the

critical level is transmitting almost all of the incident

wave. The growth of the second and third harmonics is

much faster here than it is in case A, so that by 2310s

the third harmonic is too large for the model to be con-

sidered reliable. Note that in addition to a decrease in

the wind above zc, in this case there is an increase below

zc.  Because case B is the only case run when the program

was using a less satisfactory method of handling the

boundaries of the expanded region, and to examine the

stability question further, case C was run.



FOR CASE B TIME STEP 155 TIME = 2310.0
MAGNITUDE AND HPS IN MKS UNITS ANGLE IN RADIANS
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TABLE 5,2A FOURIER TRANSFORM OF RHO BY ROWS



TABLE 5.2B FOURIER TRANSFORM OF W BY ROWS
FJR CASE B TIME STEP 155
MAGNITUDE AND HPS IN MKS UNITS
HPS IS THE HORIZONTAL PHASE SPE

Z

400.0OO.*0

120 C. 0
1600.0

14 10. 1

3400. 0
7-75r)

2"004 )
7 7 5.0
2550.0
757E 0

7500.0

76?'5. 0

'675. 0
~700,0

2750.0
?775.0

00. 0

3600.0

4100,0
44On 0
4900. 0
9'00. 0

5500.3

31 6000.0
7' 6400.0

CONSTANT

0. 000000
3.3
0. 000000
0.000000

0.0noon0
0.0
0.onno000000

-O*onnoon-0.000000
-0.033)3

0,000000

0.0000001.1
O. n0000n
0.0

0. 000000
0.0no0n0n

0.0

-o.ononon

-0.000000-0.03333

n, 000000
-o.onnono-0.000000

0 o0333)3
O .nOoo00

TIME = 2310.0
ANGLE IN RADIANS

ED CALCULATED FROM THE CHANGE IN THE PHASE ANGLE

FUNDAMENTAL SECCND HARMCNIC
MAGNITUDE ANGLE H P S MAGNITUDE ANGL E

001637,7s
0.3n001 ?
0.455333
n,54767

0.o 4543
0.o 46171 1
n. 459630
0. 45001?

0,419051

n. 399O34
0.373 '4
0. 3449~o
0,31 7739

0.131159
0.364 3'
0. 39AAA996
0.4'5397

0.4257n0
0.444A60
0*475 1
0. 654?R25
0.- 4;0 1 4

n, 203499
A, Q7'F
0. o 61 90
0. 06307'3
0.095491

.665
7. 771
3. 997

3,004
-3. 137
-1.123

-'13 086

-3,064
-3 , On
-3', 007

-7. 17

-2.5 o

- .625- .6504

-2* 625g
-'. 660
-?.703

-. 9045

-1.3' 5
-0. ?MS
-0. 00
-1 .nl 0

10.7,

10.35
',. 91

0975
0.46Oo 46

0, 79

10.139,7510,13
11.17

1?.'?
14.09
14. 5
13. '6
13I46

1 '.41
7 '4

17, -1

17.5113.'5

17.34

-2,3)

0.47709) "t. 0A0 15r.1

1,40179 3.034 15.16

0.300751
0.004936
0.013705
0.031464

0,05o9?
0.195580
0. 1694A6
0.175574
3.180 705

0. I 907.
0.1 4535
0.204 99
0. 215!15>
0.27 0961

0.?75477
0, 2 3 4/11
0. 2?4o 51
0.24335
0o. 24193

0. 235' 90
0,)> 0090
0.230430
0.no3305
0.14 '5

0.104314
.1.55356

,141367
1. 14 -4 0 -7,

0,420
-0.'.54
1.7 01

1.159

0.963
3.96

0.8 57

1.7044
0.701
0, 91

0.639

0.906

-n 71

2.669
-7.416
-0.676

-0.010
0.390

IN TIE LAST

HP S

16,05
A,9, 

'4,35
7,70

10.0
10.63
1 0.44
13.54
10. 74

13.14
11.10
11.34
11.64
11,94

12.194
1?.70
17.64
1 2,47
12.51

13,03

13.17
12.75S

4.71

9.55

11 .3?
13.95

0.0655'7 0.5'2 15, 77
3. 59713 . 67 3 1 7

60.00 SECONDS

THIRD HARMONIC
MAGNITUDE

0.000379

1.009369
"). 114.- 4

0. 019304
1.021737
.01)334

0.015600
0, 01 346

1.012767
n0.015144
.01 "71 75

0.01969?
0. 0l7455

3.0190955
3,044771
0,050663
0. 064195

0, 09 ?93
n.I17Q vA

1,090790
.1036941

n 037569
0.001314
1,07967
O.00757
0.003434

ANGLE HPS

-7. 144
1, 004

-1.573
-0. 6n,
-0.549
-0.455
-0.1 07

0.140
0.459
0,.532
0.450
1. 046

1.730
1,339

1.061,056

1.041
1, 09!

1.1
1. 1 54
1 *540

-2,74?

-1. 106

-0. q0
-0.371

-2.22
-0. ?7

-3.49

5.70
3.64
3.40
3.35
2.51

1.35

-0,50
-1.13
-1.66

-?.90
-4.02
-3.27- I .S?

-0.53

-0.33
0.35
1.74
6.07
9.05

q9 07
0.17
9.01

10.20
11.98

0.000n4 0. 44 1q .07
1.011331 0.445 19.n1
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FOURIER TRANSFORM OF U BY ROWS
FOR CASE B TIME STEP 155 TIME a 2310.0
MAGNITUDE AND HPS IN MKS UNITS ANGLE IN RADIANS
HPS IS THE HORIZONTAL PHASE SPEED CALCULATED FROM THE CHANGE IN THE PHASE ANGLE

200,0
00oo.

100.0

1417, o

7700.0
941!?.~
243 7.5
'4'"7. 5

2487,5
7, 1 '. 'S
2517.5

793 O.2547, .5 7, 5

757, 52707. c;

2712n. i273'. I1000.0

t1 5900,0
3? 6700.0

CONSTANT

0.0008o0
0.004'?3
0.010257
0.01 290

n.021460

.0.15 551-0. 0086'4

-0. 05;%61

0. 064302
0.240,175
0.3o'1 o
0.47431

0n.351 7,4

-0.50675
-0. 775665
-0.7n8037

-1.1 l9176
-1. 3651 '
-1. 0C255

n.11 4055
0.054755

0. 0)14:3 s
0.0741 30

-0.014035
-0., 005q40
0. 05366

O*55P052
I .01'fs7

FUNDA
MAGNITUDE

.-2661-3
n0707514
0.2539so
0.19?073

0. 149030
0.262334
0.338836

0,4 55' 1A

0.680667n.7 4 S S
0,7n0655
0no ?5130
I1.'87A+5
105345'5

1.?2 0312
'.135436
0,765547)

p* q35438
0.R44'% S
0no 110,7654~7

1.216 17
0.51'933n.q-Ac;4-4
0.611.63
I '263'41

MENTAL SECCND HARMONIC
ANGLE H P S MAGNITUDE ANGLE

-1. 7?c
-1.5 74

-1,257
-0., 704

0. 570

1.307

1,511

1.557

1. 4?6
1. 4'6
1. 77

f.0 3
0.337

-0. 221
-0 512

-1,37

-I. 1>
-1.46
-1. 140

1. ,654

.135

-1.466
-1. ?

10.??
10.7 

0,4301

12. 45
11.18

10. o05
11,04
10. 77
10.27
11.15

14. n
13.7

1. 1

15.68
14. "9
13.0 !
13.0 2

7.04

11.36

11,45

1.104 n4 -1.714 11 ,07
0.003711 -1.O5 16. 77

0, 000 11
0.004414
0.011370
0. 031 40

0.2?1! 7
0,107997
0.1 9075
0.11 6957
0. 110342

0. 1771 3
0,000650
0. 7001 5
0. ?55! 57
0.256571

0. 406 23
0. 41 4660
0. 191) 7

0, 301777

0.140571
0. 0761 33
0. 709"7?
1,507065
0.? 971 Ol

0. 704430
01, 1 74oo
0.270640
0. 17?5570o
0. 0100 1

! ,774
,0752,*?5

1 .574
-'.330

2* 0?-'. 9??1.021- .,309

2. q7

2.R23
.9375

S.654120402

I .90

2.059
-1 0303

3.404
-'.097
-1.306
-0.2901

-. 737

01.9 07
7. '27

IN THE LAST 60.00 SECONDS

THIRD HARMONIC
H P S MAGNITUDE

16.95
6.57

-7A.04
4.41

12.65
10. 2

7,9 q
11.96
1.503

15.53
16. 3
15.77

17.33

16.59
16.39

11.85

-1.4
15.30

11.71
17. 11

11,70
10.47
10. ?
11.57

9 40

,r Oo)>7. -n0,539 1,Q97
0.3000 0 - .10 13.q

3. 3031 ?
0.00141 
3. 006793
0. 0098'7

.0 n18779
0. 014617
0, 059O65

-0.05145!

0.05750.3. 157790
0.067457

. 046407

.061547
1. 133170

0, 15 534
O .07990
0,17?7077
n0.09564
~3, 77336

0. 21373
.1 811 3

0. 054726
0),08675

0.0333765
000 9 7 A

0. 003( 0

ANGLE H P S

25.56
-0.11

0. 04
-0.n7

2.69
0.07

-0.91
1,09
3.75

3.95
-1 3

0.77
2.34

16.52

5.61
. 36

6.97

4,12
?.q3

0.66
6.11

7.35
8.09
9.77
1,77
9. R1

-7.716
1. 377
0,420

-2. 247

1.242

-1.801
-1 .327
-1,873

-1.730
-2. 145
-2.032
-1. 763
-2. 000

-1. R21
-1. 649

3. 133
-7. 044
-2. 531

-2.154
-?. '49
-7.167

0.287

2.,01
.,153

-1. 1.47

. 007c67 -1.356 11.68
n0.000001 -1.004 2.74
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TABLE 52C
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Case C (Low Richardson Number, Critical Level in Near

Field of the Source)

This case had no expanded region in order that the

effect of the boundaries of the expanded region in case'

B might be assessed. The parameters which differ from

those of case A are: h = l150m, z = 25m, Zwb = 400m,

Zwt = 800m, z s = 1137.5m, z c = 622m, and Ri = 0.13. Since

the critical level is in the near field of the source

the wave will be only slightly smaller below the critical

level than it is above it. Since this was the case at the

termination of case B, this case is to some extent a

continuation of case B, but the second and third harmonics

which were large at the termination of case B are small

at the start of case C.

The large changes of ua that occur near Zwb and Zwt

in table 5.2C do not appear here so it is concluded that

they are spurious effects of the vertical spacing change.

In this case at 1485s ua averages about -0.55m/s between

h and zc, about +0.40m/s for the 125m below Zc, and is

small below that. By this time the third harmonics are

one third the size of the fundamental, and the model blew

up shortly thereafter. The blowing up is associated with

large changes in ua which appear just below the source.

This localized jet creates values of Ri around 0.05 and

several inflection points. This jet develops in only

180s at a height where there was no indication that

anything was going to happen. It is not possible to say
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whether this blowing up was due to the instability of

the flow since the Richardson number was less than 0.25

or was due to the unreliability of the model when the

third harmonics are large.

Case D (High Richardson Number)

This case has the same parameters as case A except

that Zwb = Zeb = 1200m, zc = 2089m, and Ri = 2.12. The

slowing down of the density and horizontal motion per-

turbations as the wave nears a critical level becomes more

pronounced, at higher Richardson numbers. The stretching

out of the pattern is seen to be greater in figure 5.3B

than in figure 5.1F. The horizontal phase speeds. for

S,w and u are plotted in figure 5.3C as functions of

height. u has been plotted instead of T + ua because the

extremum of ua at 2025s is only -0.24. This minimum is

located about 300m above zc. By the time the program

terminated at 3000s the extremum had doubled, and the

second harmonics for / and u were about 10% of the

fundamental and as large as 100% of the fundamental for

w near the critical level.

(Note that if the wave were approaching the singular

level from the low speed side, the wave speed would

increase rather than decrease as the wave approaches zc)
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Speed (m/s)

Figure 5.3C. Horizontal phase speed for,o u, and w, and

the original wind speed, u, as functions of height for case

D (Ri = 2.12) at 2025s. Only the expanded region is shown.

v is the horizontal phase speed of the source. z is the
px c

height of the critical level for a wave whose horizontal

phase speed is vpx
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Case E (Negative Shear)

In this case the wave approached the singular level

from the low speed side rather than the high speed side.

The parameters which differ from those for case A are

Ub = 20m/s, ut = 0, and zc = 2356m. The transforms at

3465s for this case are contained in tables 5.3, which

should be compared with table 5.1G,H.I. The primary

differences between cases A and E are that ua above

zc is positive here, and that the second harmonic for

u is largest above zc in case A and below zc is case E.



Case F (High Viscosity) 133

6= 0.02 = K has been used in all the other cases,

and while these values are about 1000 times greater than

the molecular values, they are still less than the commonly

quoted eddy values. Since the two damping terms seemed

to have little effect in other cases, this case with

A = 1.0 = K was run. All the other parameters are the

same as in case A.

This case blew up at about 2500s due to the generation

of large values for the third harmonics at zet. Evidently

the manner in which the finite difference analog of the

Laplacian operator in equation 4.2-4A,B, treats the

vertical spacing change generates large spurious values

of the third harmonic. Until the third harmonic becomes

large enough to make the model unreliable the results of

this case are practically identical to case A. Therefore

it is concluded that the viscosity and thermal conduction

play a very small part in critical level phenomenon. This

is confirmed by the finding that the rates of viscous

energy dissipation in other cases would be negligible

even with the large values of /& and K used here.

Case G (Small Amplitude)

The only change from case A here was that a source one

fifth the magnitude of that for case A was used: s s = 0.225.

As might be expected, the magnitudes of the second harmonics

and ua are about 1/25 the size that they are in case A.
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Case H (Large Amplitude)

This case is the same as case A except that the

source is five times larger: ss = 5.625m/s. The magnitudes

of the wave motions are over 20% of u.at the source, so that

the second and third harmonics increase in size rapidly.

By 1665s the third harmonic was more than 10 of the funda-

mental and the model blew up shortly thereafter. This

is the only case in which the incident wave contained a

significant amount of second harmonic before it reached

the shear layer.

Case I (Source at the critical level)

The parameters which differ from case A are: '= 516s,

Vpx = 9.69, and z s = Zc = 2387.5. Row transforms for this

case may be found in table 5.4. The line vorticity

source normally is associated with a minimum for u and

a maximum for w, but here a maximum for u and a minimum

for w occur about 100m below the source. The energy

going downward from the source is reflected by the ground

and a standing wave is evident below the source. Note

that the wave which propagates upward has a larger w/u

ratio than the wave generated by the same source in other

cases, and that the wave magnitudes above the shear layer

are about one fourth their values in case A.



MAGNITUOE AND HPS IN MKS UNITS ANGLE IN RADIANS
HPS 15 THE HCRILCNTAt PHASE SPEU CALCULATED FROM THE CHANGE IN THE FHASE ANGLE IN THE LAST 180.00 SECONDS

FUNUAMENTAL SECCNO HARMCNIC
MAGNITUdE ANGLE H P S MAGNITUDE ANGLE

8.10 0.00000
8.52 C.000009

10.70 0.000C16
11.04 0.000020

10.94
12.56
IC. 94
9.59
8.81

8.90
9.82

11.44
12.35
11.54

0.000030
0.000031
C.000128
0.000117
0.000102

0.000C68
0.000029
0.000C29

C.000125

2C0C
600.0
ICCO. 0
1400.0

IdoC. C
2012.5
2037.5
2062.5
2087.5

2112.5
2137.5
2162.5
218 7.5
2212.5

7237.5
2267 .5
2287.5
2312.5
2337.5

2362.5
23H7.5
2412.5
247.5
2462.5

2487.5
2512.5
2537.5
2562.5
25 7.5

2612.5
2637.
262.5 5
2687H.5
2712.5

2737.5
2762.5
2787.5
3000.0
34CC.0

3830.0
4200. C
46CC.0
5CCC.0
543C. 0

CUONSTANT

0.000000
-0.000003
-0.00000
-C.LOU004

0. 0000oo
-0.00C005
-0.000012
-C.00C059
-0.00007 5

- C. 0000 J3
0.OC 026
C. 0006 6
0. 00( 044

-0.00(035

-0.CO0120
-C. 000139
-0.L0081
C.C00C079

0.000 36

0. COO 14 f
0.0(0000

-0.( 00is7
-C. 00o 31

0.000031
0.000021

-L.000003
-0.00018
-C. 300014

0. C 0 02
0.000013
0.000002

-0.000001
-0.00Cooo

0.000000
C. OCOO01

0.100000
-0.000001
-0.000002

0.000104
0.000U48
*.000722

0.000851

0.00054
0.000724
0.000705
0.000776
0.000896

J.000977
0.000992
0.000915
0.00 0844
0.000834

O.00CCC972
0.001153
0.001229
0.001215
0. 001083

0.000973

0. 00179 7
0.001549
0.001100

0.000546
0.000307
0.000311
0.000471
3.000482

0.00073
0.000116

O.000241

0.000311
0.000246
0.000125
0.00014
0.000202

0.000233
0.000207
0.000039
0.000128
0.000233

-1.711
-1.764
-1.936
-1. 891

-1.808
-1.876
-1.675
-1. 543
-1. 539

-1.669
-1.h40
-1.947
-1.892

-1.662

-1.474*
-1.4o8

-1.590
-1.722
-1.915

-0.939
-0.899
-1.316
-1.907
-2.510

3. 001
1. 689
0.30U5

-0.530
-1. 166

-1.736

-7.480
1.645

0.644
0.023

-0.531
-0.825
-1.102
-0.067
0.028

0.457
0.3771

-1 537
-3.04?
-2.815

4.88
7.74

16.19
16.61
8.75

C.00CC04
0.000026
0.000018
0.003C14
0.000013

-2.C88
0.658
0.502
1.109

1.172
1.117
I.Ce3
0.600
0.152

-0.397
-1.284
2.536
1.598
1.C42

0.564
0.097

-0.400
-1.576
I.561

0.422
-1.516
3.038
0.84 0
0.544

-0.436
-1.223
-1.540
-2.685
2.799

1.954
1.060
0.018
-1.5 82
-3.012

2.280
1.427
0.132
2,718
1.869

0.218
2.260
0.895
2.478
2.36o

HP S
THIRD HARPONIC

MAGNITUDE ANGLE

8.88 0.000000
1.34 0.000001
8.67 0.000001
6.08 0.000001

8.58 0.000005
8.77 - 0.000010
8.73 0.000026
8.58 0.000010
0.69 0.000007

0.96 0.000001
2.01 0.000009
6.68 0.000021
8.04 0.000035
8.51 0.000044

8.95
9.55

11.31
3.29
8.49

11.18
2.52
6.18
8.27
8.20

0.000044
0.000037
0.000024
0.000013
0.000072

0.000055
0.000061
0.000068
0.000079
0.000045

9.29 0.000047
9.81 0.000060
9.94 0.000058
9.88 0.000046
9.85 0.000036

10.07
10.49
11.13
-1.13
13.52

-1.11
-1.23
-1.20
4.47
6.66

10.78
4.22
10.69
6.89
2.34

0.000031
0.000030
0.000024
0.000015
0.000004

0.000006
0.000025
0.000011
0.000003
0.000006

0.000004
0.000002
0.000001
0.000000
0.000000

46 5800.0 -0.000002 0.000390 -2.455 6.74 C.COOCC8 C0949 4.83 0.000000 2.904 3.95
47 6200.0 0.000002 0.000448 -2.315 6.00 0.000010 0.434 -1.92 0.000000 1.747 6.80

10.42
9.74
9.91
10.12
10.52

11.30
13.95
14.24
12.33
12.17

12.33
11.16
'19.17
20.62
18.50

10.25 0.000149
9.50 0.000123
9.35 0.000067
9.66 0.000C32

10.89 0.000168

-2.854
1.177
3.052
2.348

3.046
1.752
2.386
1.765

1.485

0.243
-2.245
-2. 822
2.988
2.601

2.268
2.000
1.913
2.858
2.826

1.980
2.059
2.079
0.985
0.970

HP S

4.26
-0.17
1.31
3.82

1.13
-1.18
1.45
2.19
3.70

5.64
-0.19
0.66
1.72
2.42

2.78
3.12
3.61
2.75
2.45

3.08
3.12
3.15
3.22
3.30

C.000C061
0.00)Clq
0.000091
0.000CS7
0.000105

0.000102
0.000117
0.000127
0.000 128
0.000123

0.000113
0.000095
0.000066
0.00,)050
0.001076

14.44 0.000103
12.43 0.000126
11.04 0.000077
6.07 0.0000C17
7.18 0.000020

1.602 2.65
1.557 3.01
1.339 3.51
1.129 3.99
1.054 4.21

1.111
1.085
0.877
C0.494

-0.013

2.739
1.671
1.050
1.779
3.075

2.532
1.779
1.326

-0.246
-1.591

4.08
3.86
3.74
3.73
3.81

-0.96
4.98
4.10
2.54

-0.53

-0.74
-1.16
7.62
1.45
3.93

TABLE 5*4A FCURIER TRANSFORM OF RHO BY RUWS FUR CASE I TIPE STFP 88 TIMNE 1305.0



TABLE 5.4B FCURIER TRANSFORM OF W RY ROWS FUR CASE I TIME STEP 88
MAGNITUUE AND -PS IN MKS UNITS ANGLE IN RADIANS
HPS IS THE I-CRIZCNTAL PHASE SPLED CALCULAIEU FKOM THE CHANGE IN THE PHASE AKGLE

TIE * 1305.0

IN THE LAST 180.00 SECONDS

FUNUAMENTAL
MAGNITUDE ANGLE

400.0
800.0

1200.0
16CO.0

200CCC
2025.C
2u50.0
2015.0
2100.0

2115.0
2150.0
21 .C
2230.0
2225.0

2250.0C
2275.0
2 300.0
2 425.0
235C.C

2375.0
24CC. 0
2425.0
2450. C
2475.0

2500.0
2525.0
2550.0
2575.0
2600.0

2625.0
2050.0
2615.0
2700.0
2725.0

2750.0
2775.0
2800.0
3200.0
360C. 0

4030.0
44C000
4800.0
5200.0
b630.0

2.488
2.669
2.820
2.885

HP S

11*40
10.21
9.29
9.15

3.034 8.l5
3.043 8. 83
1.044 8.H h
1.044 8.94
3.053 8.99

CONSTANT

-C.CCC000
0.000000
0.0
0.000000

-0.000000
0.000000

-0. 000000
-0. 300LOO

C.C000000

0.C00000
-0.000000
-C. 000000

. U00000
-0.000000

0.000000
-0.000000
-0. (00000
-0. 300000

C.00C000

0.000000
0. 000000
0.0
0.00C000

-0. 00000

0.000000
0.0(0000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0. )0000CO

-0.C00 000

-0.00C000
-0.000000
0.000000

-0.000000
C. 000000

-O.C00000
-0.000000
0.000000

-0.000000
-0.000000

46 6000.0 0.OC00000 0.182222 -1.145
47 6400.0 -0.00 300 0.150910 -1.275

SECCOD HARMCNIC
MAGNITUDE ANGLE

0.003326
0.003428
0.006421
C.009503

0.008626
0.00(1216
0.008099
0.009500
0.012045

8.97 0.014717
8.84 0.016563
8.67 0.016981
8.54 0.016175
8.49 0.015652

8.47 0.017334
8.38 0.020936
8.05 0.024212
7.36 C.025086
6.33 0.022983

0.113045
0.180255
0.221806
0.219957

0.168887
0. 167745
0. 164050

0.158690
0. 1 1844

0.144671
0.138638
0.133969
3.129010
0.121502

0.110391
0.096592
0.082694
0.070716
0.059550

0.044150
0.02>tb5
0.077098
0.054466
0.075114

0.0841 77
0.0d3037
0.076755
0.0722 ?.
0.07342 9

0.079221
0.083409
0.083589
0.0 055d
0.017417

0.076773
0.078627
O.081h32
0.086003
0.111744

0.128959
0.126211
0.147539
0.151234
0. 13901

0.020163
0.017973
0.013732
0.007859
0.003802

0.004491
0.007282
0.009526
0.010606
C.C0102C7

0.008445
0.006387
0.006384
0.008160C
0.009028

C.007873
0.005340
0.004655
C.007778
0.003266

3.082
3.126

-3.112
-3.084
-3.073

-3.057
-3.003
-2. 875
-2.661
-2.405

-1.982
-1.354
-0. 135
0.032

-0.080

-0.219
-0.317
-0.335
-0.2b66
-0.172

-0.130
-0.141
-0. 166
-0. 169
-0.134

-0.079
-0.033
-0. 008
0.232
0.435

0.400
0.368
0.271

-0.141
-0.752

11.35
12.29

-1.475
-0.866
-0.324
-0.176

-0.005
-0.013
0.055
0.154
0.130

C.C09
-0.138
-0.252
-0.278
-0.176

-0. C31
0.C18

-0.C19
-0. C69
-0.047

0. C29
0.093
0.126
0.143
0.540

1.373
1.421
1.206
0,926
C.646

C.450
0.506
0.814
0.856
0.661

0.446
0.542
1.146
1.282
1.220

2.017
1.110

-2.957
-0.912
-0.451

0.003535 -1.458
0.004217 -2.602

HP S
THIRD HARMONIC

MAGNITUDE ANGLE

9.50 0.000049
6.08 0.000165
6.09 0.000235
7.79 0.001388

7.73 0.002069
7.85 0.003024
7.78 0.003489
7.58 0.004264
7.59 0.005064

7.75 0.005719
7.97 0.006043
8.20 0.005945
8.39 0.005678
8.44 0.005892

8.36 0.006953
8.36 0.008360
8.43 0.009270
8.48 0.009085
6.38 0.008216

8.04 0.007627
7.29 0.007540
4.22 0.008063
2.00 0.008878
0.50 0.008911

-1.85
11.44
11.40

11.53
-2.12

-1.78
-1.47
-1.60
-1.68
-1.59

-1.52
-1.89
10.92
11.48
9.04

0.23
11.26
12.80
8.24
5.82

3.45
6.04

0.007938
0.006677
0.005930
0.005731
0.005615

0.005446
0.005456
0.005742
0.005974
0.005781

0.005193
0.004778
0.004713
0.002676
0.000993

0.000543
0.000252
0.000195
0.000134
0.000056

2.714
1 343
0.853
1.254

1.330
1. 47
1.394
1.420
1.384

1.321 2.23
1.262 2.37
1.248 2.45
1.328 2.37
1.494 2.14

1.620 1.94
1.637 1.87
1.594 1.88
1.559 1.90
1.636 1.93

1.838
2.065
2.285
2.344
2.256

2.188
2.227
2.366
2.491
2.557

2.614
2.690
2.737
2.713
2.650

2.628 2.20
2.663 1.96
2.699 1.82
2.785 6.93
1.843 7.44

0.700
-0.353
-1.379
-1.651
-0.289

0.000114 C.419 7.13
0.000074 0.409 7.20

HPS

2.19
3.45
4.57
2.81

2.31
2.29
2.19
2.11
2.13

1.48 C.008665
3.11 0.002439
2.72 0.005770
4.85 0.002492
8.67 0.007479

4.43
0.80
21.61
19.28
18.2m

17.75
17.87
19.24
20.16
19.52

18.50
17.65
17.05
16.73
16.80

17.23
17.58
17.58
15.12
20.61

1.97
2.06
2.18
2.33
2.47

2.50
2.37
2.10
1.85
1.68

1.53
1.45
1.66
2.12
2.34

-1.02
-0.02
-1.41
-0.44
-1.38



TABLE 5.4C FCURItM TPANSFCkm OF U UY RCwS FOR CASE I
MAGCNITUDE ANO HPS IN MKS UNITS ANGLE IN IRAUIANS
HIPS IS THE HCRICTAL PHASE SPELD CALCULATtU -ROM THE CHANGE

TIME STEP 88 TIME a 1305.0

E IN THE PHASE ANGLE IN THE LAST 180.00 SECONDS

FUNUAMLNTAL SECEND HARM(hIC
MAGNITUDE ANILE H P S MAGNITUDE ANGLE

46 58)0.0 -0.016544 3.139421 -0.409
47 6200.0 -0.016141 0.091403 -1.881

11.40
8.48
5.64
1.81

C.003590
0.002237
0.004127
C.001250

2
3
4

7
8
9
10

11
12
13
14
15

6lb
17
18
19
20

21
72
23
24
25

26
21
28
29
30

41
32
33
34
35

36
37
38
39
40

41
42
43
44
45

22.31
8. 1

200.0
6CC.O

1000.0
140 .C

1800.0
2012..
2017.5
2062.5
2087.5

211..'3
2137.5
2162.5

21.?.5

2237.5
222t. 
2287.5
2312.5
2337.5

?362.5
2387.5
2412.5
2437.5
24(,2.5

2481.5
2512.5
2537.5
25b?.'.
56281.5

2612.5
2611.5
2662. 5
26d7.5
2712..

2731.5
2762.5t
2787.5
TCJC. U
3400.C

3800.0
4200.0
4bCC.0
SC )0.0
5400.C

0.007188 -0.771
0.004654 -1.145

HP S
TIRO HARPONIC

MAGNITUDE ANGLE

CCSTANT

0.300' 11
0.001811
0.C03811
(.)0u'00

0.000083
0.00948
0.021%64

0.01) 19
0. 0192 19

-0.009206
-0.031937
-0.026137

0. (088 i , 4,

0.0701'.1
0. 049291
0. IL0Od?
U. 019581)
0. 110491

o. 1 4901
0. 184905
0. 184904
0. 1 1 It I
0.0?50dc4

0.302077
0.)32 17 15
0. 04 9 1',
0.3 .48708
0. u27506

0.302803
-0. cCbb 76
-0U.OC442

0.P028 30
0.0 04 174

-0.001268
-u. U 10.41
-o. 01 /1
-U. 015580dO
-0.0 1354)

-0. J313469

-0. 01 11Is-0.012815

-0. )14300

0.225443
0 . 131918
0.089919
0.0A85 77

0.126293
J.13695S
0.190713
0.243714

0.,84272
3.195112
-. ?7578 
0.211979
0.261717

0.318767
0J.49' 99 5
0.593493
3.654948
0.666916

0.d86o06b
0.927329
0.987023
0. 1 3504
0 .70d93 1

0. 461319
0.2 77SH3
0 21814 b
0.228812
J .22171

0.199220
1.132181
O.C6945d
0.107251
0.142446

0.141888
0.127725
3.09 h 10
0.0416b16
0.056-96

0.024972
J. C1909
0.040622
3. 125j13

-1.832
-1.327
-0.816
0.813

1.318
1.449
1.* 809
1 67.b
1.6?5

1.383

1.151
1 . C98

1.404
1 *844

1.6I 95
1.4d7
1.413
1. 583

1.930
2.565
2. 15
2.15h
1.599

0.917
-0. 0-#?
-1.28.
-2. 314
1.123

2.374
1 . 06

U. 200
-1.2 12
-2. 016

-2.653
3.050
2 .701

-2. 7d8
3. 114

2.0 38
-0. 358
1 554
0.404

-0.001

9.50 0.000041
2.12 0.000134
7.56 0.000096
7.22 0.000962

3.88 0.001201
2.26 0.001615
4.80 0.006569
6.71 0.010413
7.13 0.010885

6.50 0.009770
5.14 0.006252
4.56 0.001945
5.70 0.007363
7.56 0.013246

8.12 0.017810
8.61 0.018816
8.75 0.013003
4.75 0.005223
9.22 0.015068

9.81 0.023103
9.84 0.073322
8.69 0.024102
8.10 0.012643
8.01 0.010580

0.000065 -2.605 0.69
0.000038 0.042 7.06

8.98 0.002184
9.80 C.009496
1.89 0.010101
6.93 C.C28747
7.12 0.044662

7.96 0.054519
9.40 0.051495
11.58 0.034577
11.50 C.016860
9.3h 0.030362

8.43 0.051174
8.44 0.064159
H.85 0.053651
9.50 0.025709

IC0.17 C.039533

9.88 0.358555
9.57 0.045130
9.79 0.076342

10.10 0.104442
10.36 0.081507

10.87 0.060330
172.2) 0.049270
14.37 0.050327
14.18 0.074%71
12.H6 0.051827

12.61 C.045172
13.02 0.01501
15.86 0.014604
18.62 0.011476
18.54 0.033152

1H.42 0.038176
17.6 0.046434
15.56 0.053835
-0.16 0.001310
22.72 0.005288

5.00 0.001268
15.34 0.008443
4.64 0.004190
12.14 0.008118
17.98 0.005687

0.8b1
2. 784
2.539
2.515

-1. 788
-0.669
-2.CH7

3.C26
2.194

1.875
1. 3p5
0.780

-0.593
-2.24'

-3.C57
2.606
2. C98
1.324

-1.C79

-1.310
-1.220
-0. 798
-0.683
-0.967

-1.582
-2.430

2.986
2.206
1.426

0.562
-0.507
-1.685
-2.918

2.007

0. 765
-0.535
-1.275
-2.430
0.538

-1.538
1.480

-0.328
?.242
2.12 8

-0.820
-2.507

2.827
-2.198

-2.128
-1.885
-1.814
-1.995
-2.345

-2.667
-3.089

1.494
-0.127
-0.?54

-1.318
-1.809
-2.322
2.173
0.566

0.138
0.051

-0.071
-0.656
-2.797

2.352
1.595
1.051
0.751
0.903

1*152
0.702

-0.047
-1.390
-2.938

2.439
1.870
1.371
2.203
2.739

1.995
0.766
0.051

-1.379
-2.450

8.19
8.71
9.33
9.79

10.14

10.50
11.19
-2.07
11.92
-1.53

-1.04
-0.50
-0.24

2.34
0.08

-0.52
1.26

-1.29
6.46
0.07

6.45
0.86

0.015572
0.017777
0.015728
0.010279
0.005356

0.004954
0.005619
0.005082
0.003472
0.005781

0.008378
0.006271
0.002894
0.001844
0.001952

0.000788
0.000410
0.000193
0.000069
0.000116

H P S

2.19
1.99
5.95
1.84

2.11
1.81
1.34
1.41
1.96

3.03
4.14
6,68

-0.35
0.36

0.95
1.37
1.59
1.19
1.87

2.12
2.21
2.33
2.71
4.75

4.69
4.01
4.20
4.45
4.11

3.47
3.67
4.18
5.37
6.29

4.63
3.96
3.68
2.18

-1.27

7.39
-1.46
-0.93
4.93
7.39

-- 1
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From the results of this finite difference model for

these nine cases we will now procede to determine what may

be concluded about such things of geophysical interest as

wave absorption and transmission at singular levels,

changes in the wind, and the sources of gravity waves.

One of the most important questions is how much of the

wave's energy and momentum is absorbed by the wind, and

where this absorption takes place. Although previous

researchers have considered this problem (Hazel, 1967;

Jones,1968; Lindzen, 1968), the linearized equations do

not contain any terms which are capable of generating a

change in the wind. So most of these workers have assumed

that the wave's horizontal momentum density flux is attenuated

by the factor given by Booker and Bretherton (1967),

f =exp(-2)(Ri - 0.25)2) I 5.2-1

at the theoretical critical level zc , and that the absorption

took place in a thin layer. In this study no such

assumption need be made because the proper nonlinear terms

are included. Instead it is found that this absorption

occurs over a height range of one hundred meters or more.

This is shown by the wind speed changes in figure 5.4A.

Three of the cases in which ua was greater than 0.5m/s

have been plotted. Note that the large changes in the

shear are always decreases and are close to zc. The
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a

Figure 5.4A. Wind speed near the critical level. The

straight lines are u, the original wind. The total wind

is shown at 4185s for case A (Reference), at 3465s for

case E (Negative shear), and at 1665s for case H (Large

Amplitude). The plot for case E has been inverted, so

that it is as if the wave was incident from below.
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increases in the shear are more smoothly distributed and

extend one to two hundred meters from the critical level.

Many of the qualitative features of the changes in

the wind speed can be predicted from the momentum and energy

relations of the linear theory, and a slight digression to

present the needed equations will be made. The equation

for the conservation of horizontal momentum is

S = - 7 (1 UV) - a 5.2-2
Ct x ) x

where '(Vo j) = 0 has been used, and the vertical flux

of horizontal momentum is

FHM = Uw 5.2-3.

where U is the total horizontal motion. Ignoring the

internal energy, viscous losses, etc., conservation of

energy is

t VV/2) + gw = - V' 7 ( VV/2 + p) ) 5.2-4

2 2  2
Now VV = (u + U a ) + 2( + ua)u + u + w

where u + u is the total wind and u contains all thea
-2

oscillatory motion. The u term is constant-with respect

to time and is not of interest. The term with only one

oscillatory factor will average to zero, and of the three

terms remaining after averaging over x, the 2 ua term
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will dominate the others if ua is the same order of maqnitude

as u.

Writinz

ogf'w = kf f/ w 0 vdt 1

this term can be seen to be a potential energy term.

Generally more of the wave energy is contained in this

term than in the oscillatory kinetic energy. (In the linear

theory this term can be shown to be (LOcBW/CL) (Claerbout

and Vadden, 1968). Also, in Lagrane coordinates this

potential enery term would be the gravitational potential

energy of a fluid Darcel, but here w refers to a fixed

position, so this identification is not possible.)

The vertical energy flux density is

FEz = pw + ('/ 2 ) w [( + Ua) 2 + 2u(-i + ua) + u2 + 2

5.2-5

Averazin over x

FHMz =  w)

FEz a(P r + ua) (wu> + <nw>

and applyinc analytic relations from the simple linear



theory:

PH.z =(-rm/2k) w 2

FEz (-17/2k) w 2  (w/k + Ua)

where the factor of one half apDears because peak-to-peak

amplitudes are being used. Since w/k is greater than ua

for all cases of interest we may conclude that FEz is

always in the same direction as FE. and in the opposite

direction to the vertical phase velocity vpz = c/m. The

vertical group velocity is

v cc 3 m = - mil/ (m2 + k2)

and the vertical phase and group velocities have the same

direction only when-O-is negative.

So for case A, above the shear layer,-, n, m, and

Vz are negative and FHI z and FEz are positive. That m is

nezative may be confirmed from tables 5.1. The wave is

carryinr negative momentum and negative energy downward, and

the absorotion of both is in accordance with the negative

values of ua just above zc in figrure 5.4A. For case E the

wind is zero above the shear layer and S1, m, and vpz are

positive, vz is nepative, and FHMV and FEz are negative.

The wave is carryin positive horizontal momentum and

Dositive enerpy doSnward, and the positive values for ua

145
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around z show that the momentum and energy are being

absorbed there.

Thus the changes in the wind indicate that a portion

of the wave's energy and momentum are being absorbed near

the critical level. The actual mechanism by which the

wave is absorbed is nonlinear, and our insight into non-

linear interactions is not sufficient at this time to say

why the wave is absorbed farther from the critical level

in case A than in case E.

It is difficult to rive a quantitative figure for

the portion of the incident wave's energy and momentum

which is absorbed near the critical level because the

incident and reflected wave cannot be easily separated

above the shear layer. Some conclusions can be reached

about the transmitted energy and momentum, and these will

be presented. shortly. A further difficulty is that, unlike

the linear approximation, the relative phases between the

various wave variables is not fixed, and there is no simple

way of evaluating the wave pressure, so that we do not

know exactly how much energy and momentum has been

supplied by the source. It is noted that the phase anples

above the shear layer in case A show that a partial standing

wave is present, while there is less sign of a standing:

wave in case E. The ratio of the energy change to the

horizontal momentumT change for a change in the wind speed is

u, and in the linear approximation, the ratio of the energy

flux to the momentum flux of the wave is W1/k, so that the
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wave must be absorbed right at z if both momentum and

energy are to be conserved in such an absorption.

Reflections will not help create an energy/momentum balance

because the incident, transmitted, and reflected wave all

have the same energy/momentum ratio. For case E the

absorption is roughly symmetrical around zc and, the

reflected wave and the transmitted wave are fairly small;

all of which is in reasonable agreement with this linear

sketch.

In this model, however, the phase relationships are

not fixed, and the incident, transmitted, and reflected

waves may all have different energy/momentum ratios. In

addition, these ratios may be functions of height. In

case A the wave absorption is not symmetrical about z,

so no wholly linear explanation can be offered. Evidently

the phase relationships are such that a reflected wave

is necessary to conserve momentum and energy. The presence

of a reflected wave might explain why the wave magnitudes

are larzer above the shear layer in case A than they are in

case E.

In case B it is quite clear that large reflections are

present. By 2310s in fact, the reflected wave is larger

than the incident wave, and the net transport of energy

and momentum is in the opposite direction from case A, so

over-reflection is oresent. That the vertical phase

velocity vz is indeed positive may be seen from the

phase angles in table 5.2. V was downward in the early
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stapes of this case and reversed about 2000s, so the critical

level went from under reflecting through total reflectinr

to over reflecting about this time. The wave below the

critical level is largely a standin wave by 2310s, so

little energy is being transmitted at this time and the

wind need supply only the excess needed by the over-

reflected wave.

The vertical flux of horizontal momentum density, also

called the Reynolds stress, is plotted in figure 5.43 as

a function of heizht for cases A and E. The time rate of

chance of the horizontal momentum density is the negative

vertical derivative of the Reynolds stress, so the rate of

momrentum gain in the hei;-ht range shown is proportional

to the chane in the Reynolds stress between the top

and bottom of the graph. It is clear that most of the

incident momentum flux is absorbed near the critical

level. COf course the incident flux shown in this manner

is the difference between the downgoing and upgoing flux,

so no conclusions about the size of the reflected wave may

be drawn. The changes in these curves within the shear

layer represent the shifting of momentum locally near the

critical level. In particular, the large negative spike

for case A represents the shifting of some negative momentum

upwards a few tens of meters. This shift has been con-

firmed by comparinz values of ua at the preceding and

following time steps.

The vertical energy flux has not been analyzed
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VERTICAL FLUX DENSITY OF HORIZONTAL
MOMENTUM FH M ( J / m 3 )

Figure 5.4B Vertical flux of Horizontal momentum density (Reynolds stress) at 3465s for
Ri = 0.53. In case A the wave is incident from the high wind speed side, and in case E
the wave is incident from the low wind speed side. AA and AE are the averages of FHMZ
above the shear layer for cases A and E respectively. T is the hypothetical case of a wave
incident with FHMz = AE attenuated by f at zc (see equation 5.2-1).
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similarly to the momentum flux because p is not available,

but the transimission of the wave throu ho, the singular level

can be shown by plotting the ratio of the kinetic energy

density of the oscillatory motion below the shear layer

to that above the shear layer. This is done as a function

of time in figure 5.5.

Case F is not shown because it was essentially identi-

cal to case A. The cause of the fluctuations in cases

A and G is not clear. The wave kinetic energy is not going

into the kinetic energy associated with ua . The total

kinetic enerpy in the bottom 2000m is so small, however,

that it could easily be accounted for by small changes in

the few hundred meters around the critical level.

There is no apparent dependence of energy transmission

on the wave amplitude. Cases A and G are quite similar,

but there is no way of being certain that the large

amplitude case would continue to give like results if

it had run lonzer. There does seem to be considerable

dependence on whether or not the wave approaches the singular

level from the high speed or the low speed side. Case E

develops quite differently from case A. Further, it is

noted that the second harmonics are generated on the side

of the critical level away from the source in case 3, and

if the sccond harmonic had been propagratinz below the

shear layer instea(d of evanescent there, the energy ratio

would be higher than it is.

Ene rgy transmission is strongly dependent on the
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Figure 5.5. The energy ratio as a function of time. The

energy ratio is the average oscillatory kinetic energy den-

sity below the shear layer divided by the average oscilla-

tory kinetic energy density between 3600m and 5600m. The

values for case B (Ri = 0.13) have had to be divided by ten

to fit on this graph. Case F (High viscosity) is identical

to case A (Reference, Ri = 0.53). Ri = 2.12 for case D.

Case E is the negative shear case. Cases G and H are the
low and high amplitude cases, respectively.
low and high amplitude cases, respectively.
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Richardson number as a comparison of cases B,A, and D will

show. These values are plotted on figure 5.6 in comparison

with f, the exponential factor., determined from the linear

theory by Booker and Bretherton. This factor was

derived for the Reynolds stress or momentum density flux,

but the energy density has nearly the same expression in

the linear case, so it seems appropriate to apply it here

also. The value for case D is higher than it should be

for the steady state because f is so small that the little

energy that gets through the critical level in the transient

stages when the wave arrives at the shear layer is enough

to cause the energy ratio to exceed f.

The value plotted for case A is an average value.

The value plotted for case B is the final value, and there

is no reason to expect that, barring instability, the energy

ratio would not have reached unity in this case. Had

a point for case E been plotted, it would have been slightly

above f. Since there is no sign that a steady state had

been reached in case E, it must be concluded that f

underestimates the amount of energy transmitted when the

wave approaches from the low speed sides.

It is of interest for source considerations to know

how rapidly higher harmonics are generated. This informa-

tion can not be obtained from the linear theory. Figures

5.7 show how the constant and the second harmonic for u

developed in time with respect to the fundamental. The

values plotted are for a slngle row about one hundred
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Figure 5.6. Oscillatory kinetic energy transmission as a function of Richardson number.
The curve is a plot of f (see figure 5.4B). The x's mark values from figure 5.5 for
cases B, A, and D. The values for cases A and D are average values. The maximum value
has been used for case B.
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Figure 5.7A u /F, the absolute value of the ratio of the
constant term in u to the fundamental in u, as a function
of time. This quantity is evaluated at a row of points
about 100m above zc.
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Figure 5.7B S/F, the absolute value of the ratio of the
second harmonic in u to the fundamental in u, as a function
of time. This quantity is evaluated at a row of points
about 100m above z .
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meters above zc.

If averages over several rows had been used, the

curves would be much smoother, and the lowest points would

be moved up.

The dependence of the ratios on source magnitude

is clear, but there seems to be no dependence on Richardson

number as long as it is greater than 0.25. These cases,

with the possible exception of case H, show a definite

approach to steady state. The initial growth rate seems

quite similar for all cases, but the S/F ratio in the

cases with Ri less than 0.25 show no sign of decreasing.

Presumably this is a manifestation of the basic instability

of the flow.

In figures 5.7 the curves for case E are lower than

they might be. In all the other cases the height about

100m above zc coincides with the maximum for ua, S, and F;

while in case E S has its maximum below zc and ua reaches

its greatest magnitude right at zc.

In figures 5.8 values from figures 5.7 have been

plotted as functions of Ri and source (or wave) amplitude.

It may be presumptious to have included the point for Ri

= 0.13 since there is no indication that a steady state has

been reached in this case.

Although the exact mechanism of internal gravity wave

generation has not been investigated, if the source is

locnlized and is nearly at zero frequency with respect to

the air aro)nd it some idea of the magnitudes of the motions
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Figure 5.8A. Contour plot of u a/F at 1665s as a function

of Richardson number and amplitude (see figure 5.7A).
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Figure 5.8B. Contour plot of S/F at 1665s as a function

of Richardson number and amplitude (see figure 5.7B).
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at the source needed to -roduce observed manitudes of the

motions at the ground can be obtained from case I. For the

parameters used in this case, u near the ground is about

one fourth of the size of the horizontal motions near

the source.
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5.3 General conclusions

It has been shown that an internal gravity wave is

largely absorbed by the wind at a singular level when the

important nonlinear terms are included if the Richardson

number is zreater than 0.25. When the Richardson number

is less than 0.25 the incident wave is transmitted practically

unattenuated. The factor f = I exp(-2 t(Ri - 0.25))

(Booker and Bretherton, 1967) gives a reasonable idea of

what attenuation to expect for the Reynolds tress, and of

what the ratio of the oscillatory kinetic energy density

on the side away from the source will be to that on the

side near the source. Only cases in which the energy

transmitted through the singular level was trapped

by a solid boundary beyond it were considered.

The model used does not permit easy separation of any

reflected wave from the incident wave, but there are

indications that some reflection takes place for Ri

greater than 0.25. For Ri less than 0.25, the ref2ected

wave became larger than the incident wave, which was clearly

evident. The excess energy for this over-reflection is

supplied by the wind. In the stable cases the wind

absorbed much of the horizontal momentum and energy of

the incident wave, and this absorption took place in a

layer a few hundred meters high.

The linear Dredictions concerning wave behavior hold

to within a few hundred meters of the singular level for
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a horizontal wavelength of five thousand meters. The

nonlinear terms become important inside this region and

change the character of the waves. w decreases as predicted

by linear theory but does not go to zero. /o and u stop

increasing and start decreasing before the critical level

is reached. The nonlinear terms also allow the wave to

generate wind changes and higher harmonics. These wind

changes absorb most of the momentum and energy of the

incident wave for Ri greater than 0.25.

When Ri is less than 0.25 most of the wave passed

through the critical level and over-reflections later

developed. When the singular level was overlain by an

evanescent region, Jones (1968) found that over-reflections

may occur for Richardson numbers equal to or less than

0.25. Since the rigid surface used in this work totally

reflects the incident wave as does the boundary with the

evanescent layer, it is not surprising that over-reflection

is observed here for Ri = 0.13.

There are great differences in the interaction of

the waves and the wind depending on the relative velocity

of the waves to the wind as the singular level is approached.

The sign of the energy and momentum changes of the wind

are as predicted from linear theory. Slow waves decrease

the energy and momentum of the wind while fast waves increase

these values. Other differences which cannot be predicted

by linear theory involve the details of the interaction.

The fast wave's momentum is absorbed symmetrically around



161

the critical level and its second harmonics are generated

on the side of the sing:ular level away from the source. If

these harmonics are able to iropaate out of the shear

layer they may carry a significant amount of energy. The

slow wave is absorbed about a hundred meters before it

reaches the singular level, and the second harmonics are

generated on the side near the source. Also, it appears that

the reflected wave is larger for these waves than it is

for the fast waves.

It has been observed in this work that the wave's

frequency and horizontal phase velocity are not constant.

The change of the horizontal phase speed with height and

the consequent shearing of the wave pattern accompany the

decrease of the vertical wavelength near the critical

level. The changes of the horizontal phase speed with

heizht can also result in moving the actual critical level

several hundred meters from the original critical level.

Inclusion of the nonlinear terms in the equations

allows the different wave variables to travel at different

apparent phase speeds. Figure 5.3C shows that the

phase speeds can be less than half the phase speed of

the source, so the approximation that the horizontal phase

speed is constant near a singular level is invalid.

The viscous and heat conduction terms have been shon

to be unimortant. Even with large eddy values for the

coefficients the effect of these terms was not significant.

As enercy continues to be absorbed near the critical level,



162

of course, the Pgeneration of higher harmonics will

take place and eventually the wavelength will be short

enough that viscous dissipation will occur, but the

basic critical level behavior is apparently independent

of viscosity.

This model was run only for simulated times of

fifteen Brunt periods or less so it is not possible to

say definitely what might develop over much longer periods.

In figure 5.5 case D has certainly reached a steady state,

and cases A and G may have done so. In figures 5.7 cases

A, , E, and G appear to be exponentially approaching

constant values, so extensions of these results to much

lonqer times could be expected to give reasonable results

for these cases.

The momentum absorption described by Lindzen (1968)

is in qualitative agreement with the results here. OE6w;ever

the absorption of the incident wave over a broad area here

acts to decrease the shear markedly near the critical

level and to increase it slightly elsewhere. The high

shear zones predicted by Lindzen did not develop, but

Lindzen considered very long times, and continued absorption

of momentum as in this study could lead to such zones in

time.



163

Appendix A

Inclusion of Heat Conduction

From Eckart (1960, pp. 9, 10)

where is defined to be the thermal energy per unit mass

and 7 9 has been used. The first equation is con-

servation of heat energy and the second is heat flow by

conduction. Conduction is here used to include convection

by eddies of a scale smaller than the scale of interest for

the gravity waves. Assu~me thatXK is independent of position

and time. Let T = T + T where T is the total temperature

and T = T(z) is the mean temperature. Assume that the mean

quantities satisfy

and that the density and temperature perturbations are

independent of pressure so that

To first order

;! i )
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Assumini that T satisfies the basic equations in the absence

of any perturbations:

Dt - Dt cp

This is close to the equation Hazel (1967) uses.

Cp = 7 is the specific heat capacity at constant

pressure. K is called the thermal conductivity by Eckart

and has units of watts/(m0 ). K = K/(Cp -) is called the

coefficient of thermometric conductivity by Chandrasekhar

(1961, p.18) and had units of m2 /s.

If one keeps all terins throughout, one gets

Dop K \72J42 P
Dt 2 Dt Cp I

From the linear theory p/ - , so the neglect
2o , so the neglect

of the pressure term is reasonable. The approximation

that 2 = 19 is also a fairly good one.



165
Appendix B

Boundary Conditions for Poisson's Equation

In this appendix the equations analogous to 4.4-3

are obtained for the model in which the finite difference

region is overlain by an infinitely high region in which

the wind is constant. Let the subscript r denote the

variables in the region extending from the ground to some

height z = h, and let the subscript u denote the variables

in the region from h to infinity. Since there is no shear

in the upper region, analytic solutions exist and we may

assume exp(-iwt+ikx+inz) dependence for the wave variables.

It is assumed that the ambient pressure and density are

continuous at the boundary between the two regions. The

group velocity and energy flow in the upper region should

be upward, so m is taken to be positive if Tu vph and

negative otherwise, where vph = W/k is the horizontal phase

speed. This choice results from the fact that the vertical

phase and group velocities are in oppositie directions

if uu < vph and in the same direction if uu) Vph.

The boundary conditions at the interface of the two

regions (at the top of the finite difference region) are

that the pressure p and the ratio w/DA be continuous.

The pressure is not readily available in the finite differ-

ence region, but if it is assumed that the simple linear

approximation to the complete horizontal momentum equation

+ ikp = 0- 1 .1 + t,
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-i 1 + :E + ikp = 0

is valid just below the boundary, the boundary conditions

are:

- r 4

rr -& at z= h_ r "4-4

where a subscript r is not needed on the wind shear u

since a shear exists only in region r.

The neglect of the nonlinear and viscous terms in

the equation for the continuity of pressure at the boundary

is probably valid if the critical level is not near the

boundary. In any event the inclusion of these terms is

not feasible computationally.

The angular frequency LO used in forming the intrinsic

frequencies 1 r and -1 u is that specified for the source.

This would appear reasonable since the source is usually

quite close to the top boundary. The value used for the

wind u in . r is that at the top of region r.

The momentum variables in region u are related by

equation 4.2-3D and by its use these variables may be

eliminated from equations B-l:to give

r = - Ca at z = h B-2A
Yr a
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where

=a4- B-2B
Ca A- r CL

In obtaining an equation in P from B-2, the expression

for H in 4.4-4 cannot be used as it is because we are

now working in the (k,m) domain, not in the (k,z) domain.

From the z dependence it may be concluded that at the

upper boundary Gj and ekz are upgoing terms and

e - k z is a downgoing term. Thus 4.4-7 becomes

imr[Gj(k,h) - Aekh + Be - kh
Ca = B-3

ik[Gj(k,h) + Aekh + Be - k h )

where mr is the vertical wavenumber at the top of region r

and is found from the simple dispersion relation

m2 = k 2  2

with the assumption that the shear is zero. In the

cases when the shear at the top of region r is nonzero,

the error introduced by this assumption is not significant.

Equation B-3 may now be solved with the equation

resulting from setting = 0 at z = 0 with the result:
resultin
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exp(-kh) Gj(k,O) - Gj(k,h)
A = B-4A

Cbexp(kh) - exp(-kh)

B = Gj(k,0O) - A B-4B

where

kC a + mrCb kCa + B-4C
kCa - mr

From this point on the solution is the same as in the case

of a rigid surface at z = h except that B-4 are used instead

of 4.4- 3 .

Note that for I l= , Cb = 1 and the boundary

condition just derived becomes identical to that for a

rigid surface as would be expected. At the other extreme,

when the wind is continuous at the boundary and there is

no shear in the lower region, Cb = cO and A = 0 which

agrees with what is expected for a region r of infinite

height.
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Appendix C

The Boussinesq Approximation

The term "Boussinesq approximation" has been

associated with a number of approximations which, in

different circumstances, amount to assuming that the

density is constant to a certain degree. Some of the

history and a discussion of the Boussinesq approximation

in the study of thermal convective motions is given by

Spiegel and Veronis (1960). In general any approximation

in which the density is considered constant in the inertial

(acceleration) term in Newton's law but not in the

buoyancy (gravity) term is a Boussinesq approximation.

Here the dropping of a term involving derivatives of the

ambient density in the vorticity equation in section 4.2

will be justified.

Let B be the absolute value of the ratio of the

neglected term to the buoyancy term:

If B is small the neglected term is insignificant.

S= oexp(-z/H) is a good approximation for the height

ranges in which we are interested, where the scale height

H is about 8km. Eliminating 1 from the expression for B
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by using 4.2-3E with the linear and adiabatic assumptions:

/u
B B O)

i. is always less than W B because we wish to deal only

with waves which will propagate vertically, so that

factor in B is less than unity. H(OB is about 100m/s, so

that as long as u is small with respect to this speed the

neglect of the term in question is valid. The linear

theory predicts that SL will approach zero at twice the

rate that u approaches infinity as a critical level is

neared, so B is certainly small near a critical level

no matter what the size of u. No conditions have been

found in this entire project when the neglected term was

of significant size.



171

Appendix D

Importance of various terms

In this appendix the complete basic equations will

be examined as a singular level is approached in order to

determine which terms are important at various distances

from the singular level. Since the primary interest here

is in the region near the singular level, the complete

equations may be simplified by neglecting terms which are

shown to have little effect in this region. If large

terms must be dropped to make the equations tractable,

their importance and possible effect may be estimated.

Also this analysis will help in understanding the validity

of the various assumptions which have been made in previous

works.

Two parameters will be necessary for this analysis.

E will represent the relationship between the magnitude

of the perturbation quantities and the magnitude of the

ambient quantities in a region far from a critical level,

at the ground for example. The variation of the magnitude

of the perturbation variables with distance from the

critical level will be contained in a second parameter .

Analysis of the basic equations as written in the

usual variables with MKS units is difficult because of

the different magnitudes of the quantities involved.

Identification of the important terms is faciliated by

the introduction of dimensionless variables of order one.
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The normalization factors needed to accomplish this change

of variables can be grouped into numerical coefficients

for each term in the equation and the magnitude of each

term seen at once.

The basic equations to be considered will include

the nonlinear, viscous, thermal conduction, and Coriolis

terms. The effect of the curvature of the Earth has not

been included. Convection cells and turbulence on the

same scale as the gravity waves are not included either,

but the average effect of these random phenomena with

smaller scales has been taken into account by the use of

'eddy' values for the viscosity and thermal conductivity.

Let the MKS perturbation pressure, density, and

velocity be represented by p,o', and v = axu + a v + azw.

ax , ay, az are the unit vectors in a Cartesian coordinate

system with the positive x' direction eastward, the positive

y' direction northward, and the positive z direction up-

ward. Time is t'. The ambient or time-independent pressure,

density, temperature, and fluid flow are denoted p, /',

T , and u . It is assumed that the background fluid flow

or mean wind is in the x' direction only. The total

pressure, density and velocity are (MKS units):

p= p+ p

V = axu + v = ax( + u ) + av + a
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In all the other sections of this work the dimension-

al variables with MKS units are represented by unprimed

quantities. In this appendix, however, the final equations

will include only nondimensional variables, and for ease

of notation it is desirable that these nondimensional

quantities be unprimed. For this reason the dimensional

quantities are represented by primed variables at this

point. The following differential operators are defined:

,4 d' 4

Under the assumptions that:

1. the curvature of the Earth can be neglected;

2. there are no sources or sinks of heat;

3. the mean wind u , ambient density 3 , and ambient

temperature T' are functions of height, z , only;

the basic equations are:

"- , D-1A ,BC

,-• D-lD
I D t -' //0 7- 1 0 71 0
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P ff7- D-

where ALD is the dynamic viscosity and KD is the coefficient

of thermometric conductivity. The other constants, with

average values for the lowest 10 km of the atmosphere, are:

gD = acceleration due to gravity = 9.8m/s
2

cD = speed of sound = 320m/s

CORD = radian frequency of the Earth's rotation =

2V/day = 0.73x10-4/s.

Quantities with a subscript D are constants with MKS

units. If the above equations are unfamiliar, either

Eckart (1960) or Lamb (1945) may be consulted for their

derivation. The extension to include the heat conduction

term is presented in Appendix A.

The next step is to rewrite equations D-1 using

dimensionless variables of order one. First the parameters

C and 8 must be defined and the normalization factors

introduced. Although only three normalization factors

are strictly necessary, it has been found easier to use

seven normalization factors and inter-relate them later.

Because of the way in which the temperature enters the
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equations, the normalization factor for the temperature

will never appear and therefore need not be defined.

Let ( be defined by the equation

(= Iuj / Ua

with the stipulations that lu'j is the magnitude of the

perturbation horizontal motion in a region far from a

critical level and that Ua is typical or average mean wind

speed. In general Iu'l will be taken to be the value

at the ground and da will be taken to be half the maximum

mean wind speed. C is a dimensionless quantity of order

10- 2 which is independent of time and position. Since

its magnitude depends on the size of the wave perturba-

tion, its value may change from case to case.

Let S be defined by the equation

where 0' is the radian frequency of the wave perturbation,

k' is the horizontal wavenumber, andl'=o'-k-'u is the

intrinsic or Doppler frequency. It will be shown

later that S2 can be thought of as a normalized, dimension-

less distance from the critical level. $ is a dimension-

less parameter which is independent of the magnitude of

the perturbations. It depends on the height through the

mean wind, and varies in value from near unity far from

a singular level to zero right at a singular level.
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Five of the normalization factors can be defined at

once:

TD = 600s

vD = 40m/s

L D D = VDD = 24km

PD = 5x104n/m2

-D = 0.6kg/m3

The D subscript indicates that these quantities are

constants with MKS units. TD is approximately equal

to the Brunt period for the standard 6.50/km lapse rate.

vD is half of a typical maximui jet stream speed, and LD,

in addition to being the product indicated, is a typical

wavelength for gravity waves. TD and PD are average

values of the ambient pressure and density for the tropo-

sphere.

The factors PD and I0D are not convenient for normalizing

the perturbation pressure and density. Therefore two

additional normalization factors

D = 0. 25x10 n/m 2

pOD = 0.05kg/m3

are introduced. These magnitudes were selected in the

following manner: Because of the definition of 6 and because

the horizontal motion and vertical motion of a gravity wave

are of the same order of magnitude far from a singular level,
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one can write lu' = vD and w'l = Ev D . Similarly

we wish to be able to write Ip'l = EpD and I 1p= - Do

but TD and P D do not allow this. For a small amplitude

wave the magnitudes of the perturbation variables are

Ip' = 5n/m

lu'l = 0.08m/s

Iw ' = 0.04m/s

Ip'I = 0.12x10o-kg/m3

where the pressure is a value measured in Cambridge and

the other values are calculated from the value for the

pressure using the relationships given by the linear theory

(Mines, 1960).

It was assumed for these calcuations that there was

no mean wind, and W''= 2 T/900s and k = 21f/24km were

used for the radian frequency and the horizontal wave-

number. This gives E = 0.002, and p = p' / and

PD = j?' /C are used to obtain the values given.

The case just described with 6 = 0.002 is the main

case which will be considered. The other is that of a

fairly large amplitude wave for which (= 0.02 will be

used. The relationships between the magnitudes of the

wave variables are of course independent of their magnitude

since they are derived from the linear theory. They do

depend on the frequency and wavelength, ho;wever. The

values used in the calculation of PD and pD above have

been chosen so that these normalization factors will
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suffice for almost all gravity waves of interest. As

long as the frequency and wavelength are not changed too

drastically, a change in perturbation magnitude can be

expressed by changing only the value of 6 without adjus-

ment of the normalization factors.

Before the new dimensionless variables or order one

can be defined it is necessary to consider how the dimension-

al variables depend on , that is, how they behave as a

singular level is approached. Since W'/k' is the horizontal

phase speed, it can be seen from the definition of the

intrinsic frequency SLI that .Q' and thus S approach zero

with decreasing distance from a critical level. A number

of researchers (Bretherton and Garrett, 1968; Eliassen

and Palm, 1960; and Claerbout, 1967) have analyzed in

detail how the various quantitites associated with the

wave perturbation vary as L'approaches zero. They

concluded that the simplified linear equations predict

that the vertical wavelength Xz will vary as - 2 , that

the pressure pl and vertical motion w' will vary as 5,

and that the horizontal motions u' and v and the density

/ ' will vary as S -1. Inclusion of the proper dependence

of S is the definition of the new variables insures that

they remain of order one as the critical level is neared.

This dependence cannot be expected to hold very close to

the singular level, but it is the only guide available.

The new dimensionless variables of order one are

defined by the following equations:



180

x = x'/L D  y y /LD z = z'/LD t = t/L D

D U =O//9D /VDU/V VD

p p= p /D = / OD = Vu S/D W = W /ev D

-p = +- TP-- >+ p p "P

v = axu + ayv + azw V = axU + v

By analogy with the dimensional variables, P is the total

pressure, p is the ambient pressure, p is the wave per-

turbation pressure, and so on for the others.

There is one last step before the equation can be

rewritten in the new variables and that is to make certain

that all the derivatives are of order one. Since the

wavelength is assumed to be of the order of LD,

where the additional factor of -2 in the z derivative

is introduced to account for the shortening of the vertical

wavelen .th which the linear theory predicts. The

operator @- C is analogous to the Doppler frequency

so we have
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) ( P

For the variation of the ambient quantities, the relevant

distance is the scale height HD = 8km, so

The derivatives of the pressure have been presented as

examples, the other variables are treated simiarly.

In order that the equations may be written more

compactly, the following notation is defined:

vd = axu/S + a V/S + azw $ D-2A

= + a + a D-2B

DdS2 + -). d D-2C

V retains its usual meaning

= + ay -  + a

Vd will be used on perturbation quantities, and V on

ambient quantities, but note that d'Vd =V -'V/ and

vd' d = 7/S. The basic equations can now be

rewritten in terms of the new variables.
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(r)2cLP~/o ~-A -

V~fr

C3D 7 ) 7-~42

D-3E

7Z) =/1

where

0 2

8D
zi' TC1
7/L t2

/

defines the Brunt frequency, and the latitude has been

taken to be 450 for simplicity. The complete dependence

on C and S in the above equations is not apparent due

to the presence of E and 5 in equations D-2.

In the absence of perturbations, the following zero

order in 6 equations relating the ambient variables result:

-'jj tkZ
eL z

x~p~l z

D-4A

2 9-

a-Z/I
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O ,-Vk, ,lo

tr,2 -0
D-4B

, ; O tD-4c

From the values already given for the constants with D

subscript:

g DHD/PD = 1

PDvD RDD/ D = 2x10-4

It is evident that the effect of the Coriolis term in the

hydrostatic relation will be very slight and that the

north-south pressure gradient will be much smaller than

the vertical pressure gradient.

To find the magnitude of the east-west pressure

gradient a value for 14' D is needed. This brings up the

euqation of whether the molecular (laminar flow) or eddy
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(turbulent flow) values are the appropriate ones to use.

Since the same problem applies to the conduction coefficients

as well, they will be included in this discussion.

The molecular values for the dynamic viscosity /&D'
the kinematic viscosity VD =  D/ / , and the thermal

conductivity kD may be found in the U. S. Standard Atmosphere

(1962). Both /UD and kD decrease slightly with height.

The coefficient of thermometric conductivity is defined by

KD = D/Cp 7

where Cp is the specific heat capacity at constant pressure.

Since / increases with height faster than /LD and/gD

decrease, )D and KD decrease with height. The change of

all four coefficients with height in the troposphere is

small enough that the most convenient two are often taken

to be constant. Average values for the lowest 10km of

the atmosphere are /D = 1.6xl0- 5 kg/ms, )D = 2.2x10-5m2/s,

kD = 0.023watt/moK, and KD = 3.5x10- 5m2/s. These values

would be appropriate for still air or purely laminar

motion.

In actuality the atmosphere is quite turbulent on

scales smaller than those of interest for internal gravity

waves. Therefore heat is transmitted by convective cells

in addition to conduction, and motion is retarded by the

formation of turbulence in addition to molecular viscosity.
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These additional processes are many times more efficient

than the molecular level processes. Since these random

phenomena are indeed present, their effect will be included

insofar as possible. For gravity waves the average effect

of many convection cells of different scales may be ade-

quately described by using a new, 'eddy' value for the

coefficient of thermometric conductivity. The eddy values

for the viscosity and conductivity are determined by

actual measurements. We will use

AD = 0. kg/ms

KD = 1m 2 /s

(Sutton, 1953, p. 2641 Sutton, 1955, P. 31, 211, 214)

which are approximately 10 times the molecular values.

Using this value for /-D

ADVD/PDHD = 10 - 8

and the east-west pressure gradient is also much smaller

than the vertical gradient. For our purposes the ambient

pressure p may be taken to be a function of height only.

Equations D-3 will now be rewritten with equations D-4

subtracted out and each equation multiplied by an appropriate

factor of dimensional constants so that the largest term

is of order one if the 6 and $ are not included. Al-

though a common factor of 6 could have been removed, it

has been retained to indicate that these are the perturba-
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tion equations. The various factors of dimensional con-

stants which are formed are dimensionless and have been

replaced by numbers.

v --JE.4- W
Vd aX~ piD' \/0$

D-5A,B,C

. < ~. ->-• Vd =a o o~ J-D

ji J -p i ~- PV +

La iC>4.7.

[T44O- 4, PJ - 2-
D-5E

. 2 -

L7Z
-b/.

where the following expressions have been used:

OC Pcl

--V O a a, _^Vl] 4 _C )
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1D = 2 ftY

/--. = 1/2

24?/

2-t- = 2

/0 /3c

2~~ r

2fI
Vj

= 10-6

= 1/2

= 1/12

= 0.01z D.

= 2.6

= 1/2

t2p___ A_ = 6.5x10 - 6

7-,

= 1.5x10 - 6

The dependence of equations D-5 on e and S is not

explicit because of the definitions in equations D-2.

The next step is to consider all the terms which

have the same dependence on 5 and to discard those whose

magnitude, including 6 , is considerably smaller than

some other term. By keeping the largest terms for every

power of 6 there is no possibility that a term is being

discarded which nmiht become important near a singular level.

To make the C and 8 dependence comoletely explicit the vector

equation will be written out as three scalar equations.
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The x momentum equation will be treated in detail as

an illustration. First D-5A is written out with the

terms grouped according to their dependence on :

E [ C - 4 W + C- 1 KOa2 toz -06 k-

N z-
S-IF- 0. 6IC/ J /6 , aL

T- 7-1

9azJ
-3

T~L V, V Vs~-- i -o

Of the four terms which vary as 1 , it is seen that the

third is one percent of the largest, so it will be

neglected. Likewise, the third of the three terms which

have no $ dependence, the second of the two terms which

vary as 8 -1, and the second of the two terms which vary

as 6 -2 may be discarded.

Ef(V.-7) ~56,61 67
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It develops that there are no terms which may be

neglected in equations D-5D and D-5E, so these equations

are just written out with the E and S dependence made
explicit.

4 V, & 4 2

1kL+

C-3
jzS

D-6A

5/2

V7

(]

sE C?~ -i- }
O

D-6B

(J. 0)v
iz;V

-4

I -1

/22 [r LC

--Vo

J- O.o/ Gd jp l
6z j

4 -
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EwJ )7-

+ 6-a V ) .; +,

,o 5Z 7

D-6C
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if Jk ' /
4 - _
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&o ~/o.-
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D-6E
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CS1 d

Equations D-6 will now be examined as S approaches

zero so that the variation in magnitude of the various

D-6D

--co
:d Zz k \J )P

LW~3 ~" S 0
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terms may be assessed as a critical level is neared.

This could be done using only values of a , but 6 is

hard to relate to the physical situation. It has been

found helpful to express S in terms of an actual distance

from the critical level. To do this it is assumed that

the mean wind is a linear function of height:

j. -. - /

u (z') = uo + uzz

- I ' II

where uo and u z are constants. u z is the wind shear
-I

and has units of s-1 . Let the origin of the coordinate

system be at the critical level, then $= 0 for z = 0 and

from the definition of :

u o = LU/k

2 = I b z

with b = k 'o. For the case with 1= 2 /900s,

k' 2- /H D b
= 21~/LD, and z = 2vD/HD, b = 3/HD. This gives

1z' = 2 (2667m). b has the units of m- 1 and is

the ratio of the Twind shear to the wave's horizontal

phase speed.

By equating the magnitudes of two terms we wish to

compare, and solving for 82 and then for z'l using the

value of b I above, the crossover distance is obtained.

This distance, denoted z , is the distance from the critical

level to the height where the two terms are of equal
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magnitude. The term which has the lower (including sign)

power of S will be the larger in that region which is

within za of the critical level, and the other term

will be the larger elsewhere. By taking the S dependence

of the terms into account, one may get an idea of how far

from the crossover distance a term may be of significant

size in comparison to the other. For many typical cases

where b' is not too different from 3/HD this method

allows comparison of the terms in a way which relates to

they physical scale of the problem.

If za is small enough, the term with the lower power

of S can be considered negligible for all regions of
interest. How small is small enough? Since internal

gravity waves are on the scale of kilometers to tens of

kilometers, and since the atmosphere becomes increasingly

random as the scale decreases, events on scales of less

than a meter are probably not relevant. The predictions

concerning the behavior of the magnitudes of the per-

turbation variables is based on the linear, inviscid,

irrotational approximation, and by the time the one meter

scale is reached these neglected terms will be seen to

be large, so that the predictions on which this analysis

is based can not be expected to hold for that scale in

any event. Therefore, if a value for za of less than

one meter is obtained, the term with the lower power of

S is considered to be negligibly small for all regions of
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Equation D-6A will be treated in detail as an

example. The first term is called the linear term even

though the Coriolis term (the third term) and the Viscous

term (the last term) are also linear. The first term is

the only one retained in the simple linear approximation.

The fourth term, which does not contain the perturbation

density, is called the nonlinear term. The second and

fifth terms are called the nonlinear density terms and

they will be seen to be considerably less important than

the nonlinear term which does not contain the density.

The linear term is seen to be the largest for S= 1,

so the other five terms are first compared to it. Each

line below represents the comparison of two terms. The

first equation on the line is the equation of the two

magnitudes, the second gives the value for 6 2 which the

first implies, and the last equation gives the crossover

distance using the value of b given above.

For the case where C= 0.002:

$,= 62/12 2 = 2.8x10 za = 7.4,x10- 5m

0.0 1 2 =0.01 za '= 27m

= S-2 2 2 = 0.016 Z = 4 3m

SC= S-3 e 3/12 2 = 5.9xlo- 4  = 1.5r

(= 10-6 -5 &2? = 0.01 a'= 27m
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The first line is the comparison of the linear term

and the first nonlinear density term. It is obvious that

this nonlinear density term is never large enough to be of

interest. The other nonlinear density term is compared to

the linear term on the fourth line and it appears that it

may be important since the crossover distance is over one

meter. If this second nonlinear density term is compared

to the nonlinear term:

Szz= -3 C3 /12 2 = 2.8x 10 8  a= 7.4x10- 5m.

So this nonlinear density term bears the same relation to

the nonlinear term and the other does to the linear term.

For the case with C = 0.02 the values of zI are increased

by a factor of 100, but za is still so small that the

nonlinear density terms need not be considered further.

From the second, third and fifth lines we see that the

Coriolis, nonlinear, and viscous terms all become larger

than the linear term in the region between ten and fifty

meters from the critical level. It is of interest to

compare these three terms with each other:

0.01E-1 -2 2  2 = 0.04 z a  107m

0. 0 -14 = 10 - 6 5 -5( 2 = 0.01 z a  27m
Sio-= 27m.

6 -2 2 = 10-6 8-56 2 = 0.0063 za/= 16m

Since all the terms still being considered as first

power in 6 except the nonlinear term, only the comparisons
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involving the nonlinear term need to be recalculated for

the large amplitude case where -- 0.02:

t=5-2 2 2 = 0.073 za% 195m

0o.o 6 -l = 6 -2 2 62 = 4 z'-= 10700m

S-2 &2 = 10-6 S-56 g2 = 0.0013 a = 3.4m

Before making definite conclusions about the size of

the various terms, the factors evaluated just after equations

3.1-5 must be examined to see how these numbers depend

on the specific wave parameters chosen. While the values

used were chosen to be representative and are adequate for

most comparisons, here the nonlinear, viscous and Coriolis

terms are very nearly the same size, and the wave period

and wavelength do make a difference. It is seen that the

factor containing ()RD will be increased for waves of

longer period, and that the viscous factor contains the

ratio 1/LDVD = D/LD2. The period of the wave considered

was taken to be about the Brunt period because it is

simpler and because the primary interest here is in waves

of twenty minutes or less.

The figures above show that the Coriolis term is not

too imortant since it is already smaller than the non-

linear term when it becomes as larce as the linear term.

For = 0.002 the values are close enough that the period

of the wave is quite important. In this case the Coriolis
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term will be of the same importance as the nonlinear term

for a period of about twice the Brunt period, and will

completely dominate the nonlinear term for a one hour

period. In the large amplitude case, the nonlinear term

remains significantly greater than the Coriolis term for

all periods of interest.

Due to its -5 dependence the viscous term passes

from insignificance to dominance within a small region

around the crossover height. Thus the viscous effect

will not extend as far from its crossover point with the

linear term as will the Coriolis or nonlinear effects.

The period and wavelength can be adjusted so that the vis-

cous term is the most important of the three, but generally

it is of secondary importance. If the nonlinear term is

larger, the behavior of the wave may be altered so that

the viscous term never becomes significant. This is

unlikely if the larger term is the Coriolis term because

the inclusion of the Coriolis force does not alter the

basic nature of the singularity. Note that only the

viscous term involving the z derivative appears. This

is due to the shortening of the vertical wavelength which

enhances the values of the vertical derivative with

respect to the horizontal derivatives. If the molecular

value for the viscosity had been used the viscous terms

would have been completely negligible.

In both the large and the small amplitude cases, the

nonlinear term is the most important of the additional
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terms. This tern reaches one tenth of the magnitude of

the linear term 200m from the critical level for (= 0.002

and 900m from the critical level for (= 0.02. In the

large amplitude case, the viscous force as well as the

Coriolis effect is dominated by the nonlinearities.

In conclusion, for the x momentum equation, the linear,

inviscid approximation is valid to within a kilometer or

so of a critical level. The exact distance will of course

depend on the rwave parameters such as wavelength and

magnitude. Of the neglected terms, the nonlinear term is

the most important. For small amplitudes, the viscous

force may be important if the nonlinearities do not alter

the linear predictions concerning the behavior of the per-

turbation variables as a critical level is approached.

For a large amplitude wave the nonlinear term is much

larger than the viscous as well as the Coriolis term.

Comparison of equations D-6B and D-6A shows that the

two are analogous except for the lack of a y component

of the mean wind. Since the ragnitudes of the corresponding

terms are identical, the conclusions reached for the

x momentum equation hold for the y momentum equation as

well.

In equation D-6C the first and fourth terms are the

only ones retained in the simple linear approximation.

These terms are the largest for 5 = 1, but since the

fourth term, called the gravity term, increases with

decreasing S while the other decreases, all of the other
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terms will be compared to the gravity term. For (= 0.002:

2 S-1 =S 3 6

= 10-6 C-

2 = 1.4
za =

Za
2 = 2x106

= 62

= 0.o01 - 2 e2/12

= 10-6 S-3t

62 = 0.69x10- 1 2

2 = 0.5x10 - 6

S=i 2.7x10 9 m

a

a

3730m

5.3x10 9m

18xlO- 9 m

0. 0013m

For ( = 0.02 the two comDarisons involving E2

recalculated:

2 -1 = 2 2 = 104

terms are

za = 2.7x10 7m

2 6- = 0.01l -2 2 /12 82 = 0.69x10 1 0  z = 18x10-7

One viscosity term, the second term in D-6C, is

small with respect to the gravity term for 6 = 1 and grows

more so as 5 decreases. The other viscosity term, the

last term, has a crossover distance, with respect to the

gravity term, of about a millimeter, so the viscosity is

entirely negligible for this equation. The crossover

distance of the Coriolis term is also very small so that

this term is also insignificant. The largest of the

nonlinear terms, the third term, does not increase with

decreasing as the gravity term, does, so it, too, need

2 $-1

2 6-1

2 -1i

2 1

2 = 10 6
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not be included. The first term, which being linear is

usually included anyway, is less than ten percent of the

gravity term for the region within 1700m of the critical

level. So, w-ithin a- kilometer or so of a critical level,

only the two quantities comprising the gravity term need

be retained in the vertical momentum equation.

The continuity equation, D-6D, has only three different

S dependencies, so for 4= 0.002:

-1 E 2  82 = 2 za = 5300oom

-16 = -2 /12 2 = 2.8x10- 8  z a = 7.4xlO-5m

and for = 0.02 the second comparison becomes:

-- 1 = S-2C 2 /12 S2 = 2.8x10-6 za = 7.4x10-3m

The nonlinear term is clearly negligible for all regions

---of interest. If the first term is also neglected the

continuity equation become V '9'= 0, which is the

equation usually used for an incompressible fluid. The

first term contains the change of density with time and

position, and becomes less than one tenth of the second

term for the region within 500m of the critical level.

These distances are calculated using the values of b

discussed above.

The expression of the incompressibility of a fluid is
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sometimes written \ (po v') = 0 when the fluid is

stratified. By writing the equation this way the more

usual incompressibility equation is extended by the addition

of w' (d/ /dz'). This extension takes into account the

fact that fluid parcels at different heights were originally

of different densities and includes the effect of vertical

motion in changing the density at a given location. Change

of density with time or with horizontal position continues

to be excluded from consideration. To obtain this ex-

tended equation of incompressibility from 3.1-6D the third

term and the first of the two quantities in the first term

are to be neglected. The second quantity in the first

term is retained. The third term has already been seen

to be negligible. When the first quantity in the first

term is compared to the second term, one gets:

-le = 5/12 2 = 12 z a = 32,500m

It may easily be calculated that the magnitude of this

first quantity is less than ten percent of the second

term for the region within 3250m of the singular level.

Thus by using V ( v ') = 0 as the expression of

incomoressibility, the continuity equation can be consider-

ed to be the incompressibility equation over a much larger

region than if .v = 0 were used to express the in-

compressibility. Since both expressions allow the stream

function-vorticity formulation to be adopted, this is a
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significant point.

For the heat transfer equation, D-6E, only the first

two terms are retained in the simplest linear approximation.

The second term, called the linear density term, decreases

in magnitude as the critical level is neared slower than

does the first term, the linear pressure term, so that the

linear density term is used for the comparisons. For

( = 0.002:

. = :3 6/2

S= 2 /2

SC = 6.5xlO- 6 -4

6 = 6-2( 2

s= 6.5x10-6S56

s2

10-6
l0

62 = 6.5x10 - 6

0.016

0.019

z a = 5300m

z = 0.0027m

z = 0.017m
a

z= 43m

za = 50m

C = 0.02

82= 10-4

62 = 0.073

za = 0.27m

za = 195m

From these figures it may be concluded that the non-

linear pressure term is entirely negligible. The linear

pressure term is equal to one tenth of the linear density

term at 530m from the critical level, so none of the terms

involving pressure is likely to play an important role in

and for

t.= (2/2

6= 6-2E2
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determining the wave's behavior near a critical level.

This is equivalent to saying that the speed of sound is

nearly infinite, or that this equation becomes nearly that

for an incompressible medium near the singular level. It

should be noted, however, that the second quantity in

the linear density term involves the Brunt frequency (the

Brunt frequency disappeared when numbers were substituted

for dimensional quantities) and that the sound speed

cannot be taken to be infinite in the calculation of the

Brunt frequency because the ambient pressure is involved

in that calculation, and the ambient pressure is not

affected by the presence of a singular level as is the

perturbation pressure.

For the small amplitude case the nonlinear density

term and the larger conduction term have nearly the same

crossover distance, but for the large amplitude case the

nonlinear term has a much larger crossover distance. Com-

parison of these two terms gives, for the case = 0.002:

8-2 t2 = 6.5x10-6 6-5-c 52 = 0.022 Za/ = 58m

-2 2 = 6.5xlO- 6 6-5 C 62 = 0.0047 z = 12m

As in the x momentum equation some of the additional

terms are nearly equal in importance and the variation of

the wave parameters must be considered. The ratio

tD/L 2 can be made large enough so that the thermal
D
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conduction term dominates the nonlinear term in the small

amplitude case and is of about equal importance in the

large amplitude case. From the numbers above it is seen

that the conduction is probably unimportant in the large

amplitude case. Thus either the nonlinear density term

or the conduction term must be kept, depending on the wave

parameters, and, in general and for many cases, both terms

must be retained. Only the conduction term involving

the vertical derivative is important, and the conduction

term can be dropped completely if the molecular value for

the thermometric conductivity is used. It is a valid

approximation to neglect the terms involving the wave

pressure within a kilometer or so of a critical level.

In this section the linear, inviscid, adiabatic,

irrotational predictions concerning the variation of the

perturbation variables as a function of the proximity to

a critical level have been used to determine which terms

are important at different distances from the critical

level. Small and large amplitude waves were considered

for a typical value of b, the wind shear - horizontal phase

speed ratio. Values of b2 have been given to facilitate

consideration of other cases.

Two of the equations, it was shown, not only remain

linear, but become simpler near the critical level.

+ 0
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is a good approximation for the vertical momentum equation

within a kilometer or so of a critical level, as is

V1( ,0 v) =0

for the continuity equation. Within a few hundred meters,

the more usual expression of incompressibility, \V0-'= 0

is a good approximation.

The other equations, however, become increasingly

complicated with proximity to a singular level. Only the

nonlinear density terms in the horizontal momentum equation

and the nonlinear pressure term in the heat transfer

equation can be generally neglected. Within a kilometer

or so of a critical level the linear pressure term in

the heat transfer equation is unimportant. In general

the Coriolis, viscous, and nonlinear terms must be kept

in the x momentum equation. According to the choice of

wave parameters each can be the most important of the

three, although the nonlinear term is the largest for most

of the cases of interest. Likewise in the heat transfer

equation, either the conduction or nonlinear density term

may be the largest, but the nonlinear term is more im-

portant for a majority of interesting cases.

The damping terms are large enough to be significant

with respect to the nonlinear terms only if the eddy

rather than the molecular values are used for the viscosity

and conductivity. Also, due to the predicted wavelength
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shortening, only the terms involving the vertical derivatives

are important.
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