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ABSTRACT

For internal gravity waves in a stratified fluid, the
height at which the horizontal phase speed is equal to
the mean motion or wind is a singular level. The inviscid,
adiabatic, linearized equations are singular at this height
and predict infinite values for the wave density and the
wave horizontal motion.

In this work the behavior of internal gravity waves
near a singular level is investigated by means of a
transient, two-space-dimensional, finite difference model
which includes all the important nonlinear terms as well
as viscosity and thermal conduction. It is assumed that
the medium is incompressible, but this has a negligible
effect on events near the singular level.

It is concluded that the nonlinear terms are quite
important near a singular level, but that the viscous and
heat conduction terms are not. Some of the qualitative
wave behavior near a singular level can be predicted from
simple linear theory, but the actual interaction of the
wave and wind is nonlinear. For a horizontal wavelength
of five kilometers the interaction region is found to be
several hundred meters thick.

The nonlinear terms generate changes in the wind which
absorb most of the incident wave's momentum and energy
when the Richardson number is greater than 0.25. If the
incident wave has a horizontal phase speed greater than



the wind speed, the wave carries positive horizontal
momentum and energy. This wave is absorbed symmetrically
around the singular level increasing the wind speed there.
The higher harmonics are generated on the side of the
singular level away from the source. When the horizontal
phase speed is less than the wind speed, the incident wave
carries negative horizontal momentum and energy. This wave
is absorbed before it reaches the singular level, where it
decreases the wind speed. The higher harmonics are gener-
ated on the side of the singular level near the source.
When the Richardson number is less than 0.25. the incident
wave is largely transmitted through the singular level and
over-reflection occurs. The excess momentum and energy is
supplied by the wind.

Near the singular level the horizontal phase speed is
observed to differ from that of the source and to be a
function of height. The associated shearing of the wave
pattern accompanies the decrease of the vertical wave-
length. The change in the horizontal phase speed results
in the actual singular level being further from the source
than the linear theory predicts.

Thesis Supervisor: Theodore R. Madden
Title: Professor of Geophysics
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Chapter One

Introduction

Internal gravity waves form a vortion of the spectrum
of internal waves in fluids. This spectrum is divided
into three frequency ranges on the basis of which of the
Coriolis, gravity, or compressibility terms 1s the most
important in the complete equations. The acoustlic branch
is comprised of waves with periods of less than a minute
or so for which the gravity and Coriolis terms in Newton's
law may be neglected. The study of rotational waves
considers waves which have a period which is a sizable
fraction of one day, and for which the Coriolis term
dominates the gravity term in Newton's law and the fluid
cen be considered incompressible. The gravity branch
consists of those waves of intermediate frequency and
period, for which the gravity term in Newton's law 1is the
most important. The veriods of internal gravity waves
range from rougnly five minutes to an hour or two. When
both the gravity term and the compressibility are kept
in the equations, the phrase acoustic-gravity is often
used, even though the periods of the waves being con-
sidered may not lie in the transition region where the
retention of both terms is mandatory.

In the early theoretical work only simple models
were used., For waves with periods much shorter than one

day this means an isothermal, invisclid, adlabatic,
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irrotational model with constant wind. With these
assumptions the equations are quite tractable and analytic
solutions may be readily obtained (Hines, 1960), Relaxation
of one or more of these assumptions renders the problen
considerably more complex and simple analytic solutions.

are no longer available,

In the case where the wind is a function of height,
if there is a height at which the horizontal component
of the phase velocity is equal to the wind velocity, this
height is known as a critical level or a singular level,
The two terms will be used interchangeably. At this
height the intrinsic frequency or Doppler frequency is
zero. This frequency is that which would be observed by
someone at rest with respect to the fluid.

There are two problems assccilated with a critical
level, The first and simpler of the two, with which this
work is vorimarily concerned, is the nature of wave behavior
near a critical level. The second, and related problem,
is the role, if any, which critical levels play in the
source mechanism which is responsible for the gravity
waves observed on the ground and in the ionosphere.

At a singular level the simple linear equations
predict that the wave density and the wave horizontal
motion will be infinite and that the wave pressure and the
wave vertical motion will be zero. This can certainly not
be the case because it contradicts what we know about the

real, physical world. The vertical wavelength is also
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predicted to be zero at the singular level, Due to this
increase in the magnitude of the wave horizontal motion
and decrease in the vertical wavelength as a singular

level is approached, any analysis which neglects the non-
linear effects cannot correctly describe events near a
critical level, 1In this study avpropriate nonlinear

terms as well as the viscous and heat conduction terms are
retained in the equations, so that more realistic con-
clusions about what happens near a singular level are
obtained, With all these terms included, the resulting
equations are analytically intractable, so they are handled
by finite difference methods, Insofar as known, this is
the first study of singular levels to include the nonlinear
terms.

Chapter two contains a brief review of previous werk
which has a direct bearing on the critical level problens,
In chapter three the complete basic equations are analysed
in order to discover which terms in these equations are
likely to be of significant size near a critical level,
The details of the finite difference scheme are presented
in chapter four, and chapter five consists c¢f the results

of the finite difference calculations.
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Chapter Two

Review of Previous York
2,1 Theory

This section contains a brief review of those papers
which theoretically treat the critical level. The reader
who is unfamiliar with internal gravity waves is advised
to first consult Hines (1960), Eckart (1960a) or Tolstoy
(1963) where the basic linear equations for simple atmos-
pheric models are presented.

Before the geovhysicists and wave provagation
theorists took up internal gravity waves, a few meteorolo-
gists had done some work with mountain lee waves. These
large scale disturbances which are formed when a steady
wind blows over a large mountain range are a speclal case
of internal gravity waves, They are stationary waves
because the obstacle causing them is fixed and a nonzero
wind 1é necessary for their existence., Thus one of the
earlier works which has a direct bearing on critical
levels is Eliassen and Palm (1960)., (The review of the
earlier lee wave studies in Eliassen and Palm is adequate
except for the omission of Scorer (1949).) Although Ellassen
and Paln did not consider a critical level as such, their
linear analysis showed how the energy and momentum fluxes
depended on the wind sveed, They also considered layer
boundaries and derived the quantities which must be con-

tinuous there. Much of the later work has been the
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extension and application of ideas in their paper,

The behavior of a gravity wave near a critical level
has been investigated by Bretherton (1966) and extended
by Garrett (1968) using the W.X,.B. approximation. To
do this, it must be assumed that the problem is linear,
adiabatic, inviscid, and non-rotational. 1In addition, it
is required that the Richardson number is large and that
the vertical wavelength is small with respect to distances
over which such ambient quantities as the Brunt frequency
and wind speed change by a significant amount. These
conditions are unlikely to be satisfied for the actual
atmosphere. The conclusion reached in this unrealistic
model was that the wave packet approaching a critical
level is neither reflected nor absorbed, but that the
packet never reaches the critical level due to the vertical
group velocity becoming increasingly smaller as the distance
from the critical level decreases. Thus the energy remains
in the vicinity of the critical level, An extension and
a more general consideration of conserved quantities has
been made by Bretherton and Garrett (1968).

A more realistic treatment of the same simple equations
is that of Booker and Bretherton (1967). They treated the
singular level by taking the frequency to be complex
and applying contour integration. They found that the
Reynolds stress of a wave was attenuated by a factor of
exp(-27T(Rc-0.25)1/2 upon passage through a critical

singular level, where R, 1s the Richardson number at the
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critical level,

This basic analysis was extended by Jones (1967) to
include rotation and by Hazel (1967) to include viscosity
and heat flow, Inclusion of the Earth's rotation does
not remove the singularity at f1 = 0 but introduces two
additional singularities at JL = & W i. Jones showed
that the basic conclusions of Booker and Bretherton con-
cerning attenuation held but that the nature of the solu-
tions very near the singular level was quite different.
The Richardson number of unity was used and the reflected
wave was found to be about 0.026 of the incident wave.

By including the viscosity and thermal conductivity
Hazel found that the singularity in the equations was
removed, Like Jones he used the linearized equations but
Hazel considered the problem in the mountain lee wave form
rather than the propagating wave form. The four addition-
al solutions resulting from the abandonment of the adiabatic
and inviscid requirements are naturally small away from
the critical level, Hazel calculated all six solutions
numerically from assymptotic expansions matched at
appropriate heights for Ri = 3. He found that the
transmitted wave was indeed attenuated by the factor
found by Booker and 3retherton and that there was no
reflected wave, The wave energy and monentum were ab-
sorted by the wind in the region around, but mostly below,
the singular level for an upward traveling wave. For

the critical layer, defined to be that region where the
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viscosity is important, Hazel found a height of five to

ten meters for a horizontal wavelength of ten kilometers.
Hazel used the molecular (laminar flow) values for

the viscosity and thermal conductivity, but the evidence

from meso-scale meteorology (Sutton, 1953, 1955) is that

turbulence is almost always present on scales smaller than

the wavelengths of internal gravity waves. Therefore

the eddy (turbulent flow) values for the viscosity and

thermal conductivity would be more appropriate., Multiply-

ing Hazel's values'py 10“ glves a critical layer one

hundred meters thick, which seems more reasonable for

the atmosphere. Since the value of the Prandtl number

is unaffected by this change, Hazel's analysis is un-

changed except for the value of z the normalization

0!
length,

Jones (1968) has calculated reflection coefficients
and complex normal mode fregquencies for a simple model
atmosphere using the linearized incompressible equations.
His model consisted of a region of constant shear below
& reglion of no wind, so that reflections occurred both at
the critical level and at the boundary between the two
regions, The reflected wave was considerably enhanced
when the wave was evanescent in the upper region, in which
case reflections might also be expected at the point in
the sheared region where the wave becomes evanescent,

The analytic solutions used in the lower rezion were

Whitsker's functions, which imply that w 1s zero and u is
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infinite at the critical level, Jones found that the
downgoing wave below both the interface and the critical
level could be larger than the upgoing wave if the
Richardson number was small enough and the other para-
meters fell within certain limits. The upper limit on
Ri for this over-reflectivity was 0.25 in the case where
the wave was evanescent in the upper region, and 0.115 in
the case where the wave was propagating in the upper
rezion, If the reflected wave is smaller than the incident
wave, the excess energy and momentum go into the wind;
and if the reflected wave 1s larger, then the extra
energy and momentum is supplied by the wind. In these
studies the wave approached the critical level from the
low wind speed side, and these energy remarks refer only
to this case. In the stability analysis portion of the
work, Jones found that instabilities occurred for low
Richardson numbers only if the wind had an inflection
point.

Bretherton (1969) has also considered the interaction
between gravity waves and the wind. Unfortunately his
linear perturbation analysis applies only when the Froude
number (]u]z/A)gHz) and the ratio [ul/vg are much less

than unity, where v_ 1s the group velocity. This last

g
requirement restricts the validity of the conclusions to
regions well away from a critical level.

Utilizing the Lagrange equations and a variational

principle, Drazin (1969) has considered one facet of the
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nonlinear behavior of an internal gravity wave, that of
propagation to great helghts where the perturbation density
is a significant fraction of the ambient density. While
there was no mean flow and the analysis is not applicable
to the critical level problem as it is, it does indicate

a new approach through which future progress might be

made. In the Lagrange equations, the equations do not
become singular at a critical level.

The importance of an inflection point in the wind
profile has been emphasized by those investigations which
are of a more mathematical nature. With the usual inviscid,
irrotational, adiabatic aﬁd linear assumptions, the basic
equations can be combined into one tractable equation, and
for many years mathematicians have been examining the
roots to this differential equations for various assunmptions
and various wind profiles. Drazin and Howard (1966)
—présent an exhaustive review of this approach to the
- problem of the stability of parallel fluid flow. The
basic Kelvin-Helmholtz instability is given in Lamb
(1945, p. 373, 458) and the Richardson number as a
stability parameter is discussed by Taylor (1931).

Another area of inquiry which may have implications
regarding the critical level problem is that of resonant
interactions among d;fferenﬁ internal gravity waves.

A short review of this field is given by Kelly (1968), and
this.paper together with Davis and Acrivos (1967) and
Phillips (1968) reference most of the important sarlier

work. In general only cases with no wind shear are
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considered. Exceptions include Craik (1968) and Kelly

(1967, 1968), Craik's work is the most interesting because
he finds that most of the energy transfer takes place in
the vicinity of a critical level, He states, however, '
that the resonance condition is rather severe because it
requires larger velocity gradients than may be exrected

to occur in nature,

In wave propagation studies where the amblent quantities
vary slowly the layered media approach has proven extremely
valuzble (Pierce, 1966, Hines and Reddy, 1967). However
this technique cannot validly be applied to the study of
singular levels because the ambient quantities vary too
quickly and because the quantities otherwise continuous at
layer boundaries are not continuous across a singular
level,

Turbulence as a source for acoustic and gravity waves
has been considered by Stein (1967). Hs approach, based
on some earlier ideas of Lighthill, appears to be more
successful in analyzing the acoustic wave generation than

it is for the gravity wave generation.
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2.2 PFinite Difference Studies

There appear to be only two finite difference studies
which have any bearing on the critical level problem,
Foldvik and Wurtele (1967) set up a model to study the
development of nonlinear effects near the mountain for
the lee wave problem., Houghton and Jones (1968, 1969)
were concerned with the behavior of propagating waves at
a singular level,

Foldvik and Wurtele were primarily interested in the
details of the fluid flow near the mountain, and they
evidently made no attempt to investigate the critical
level prodblem, They note that the main perturbation cells
were set up very rapidly, which is to be expected since
their model is incompressible in the perturbations, and
these main cells are a direct result of the fluid flow
over the obstacle, They found this no drawback since their
interest was in the steady state form of the lee waves
rather than in their development. A number of their
techniques have been used in this study such as the
staggered grid system and the use of the stream function -
vorticity equations instead of the basic equations. While
they report no stability or error analysis, they do
mention that an occasional forward time step was found
to be helpful for stability.

Houghton and Jones, on the other hand, were primarily

interested in the critical level problem and worked in
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the propagating wave mode. To obtain sufficient vertical
resolution they used only a one dimensional matrix of
points, having eliminated the x dimension by linearizing
and taking exp (ikx) dependence, Viscoslity, heat flow,
and Coriolis terms were also omitted, although the pressure
and a finite value for the compressibility were kept. A
moving lower boundary was the source and a region with
Rayleigh damping at the top served to absorb the energy.

The results of these calculatlons showed good agree-
ment with the predictions of Booker and Bretherton (1967)
regarding attenuation upon passage through a critical
level, Also, by making the wind vary with respect to
time, they demonstrated that the momentum flux varied as
the intrinsic frequency, which had been suggested by

Bretherton and Garrett (1968) and by Claerbout (1967).
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2.3 Experiments

As far as known to the author there have been no
experiments involving internal gravity waves in a gas.

On the other hand, experiments on stratified liquids have
been going on for over half a century. 1In two recent
papers Thorpe (1968a, 1968b) reviews the previous work

and presents hls own experimental and theoretical work.
One serles of experiments involved internal waves in a
stratified fluid at rest. The largest waves were obtained
when the forcing frequency differed slightly from one of
the tank's natural frequencies. Irregularities in the wave
motion and overturning were ascribed to distortion of
internal wave rays by standing waves rather than to in-
stabllities because the local Richardson numbers generated
by the wave motion were always very large, Both two-
layer and multi-layer experiments were conducted.

Thorpe's other paper concerns the instability of shear
flow. No internal gravity waves were present. The forma-
tion of regular spiral structure and later decay to
irregular turbulence was observed for cases when the
Richardson number was less than 0.25.

A fairly simple experiment that demonstrates the
failure of a gravity wave to propagate through a critical
level has been reported by Bretherton, Hazel, Thorpe and
Wood (1967). Densilty stratificatlion was obtalned by

means of solutions of salt in water with various concen-
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trations. Their rectangular taenk was briefly tilted
to initiate a shear flow., A train of lee waves behind an
obstacle of triangular cross-section had apparentiy reached
a steady state before the effects of the ends of the tank
changed the flow significantly. For Richardson numbers
of greater than 0.5 they found no detectable transmission
of the lee wave through the critical level, They also
note that the amplitudes are large enough so that the
linearized theory is not applicable near the critical

level,
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Chapter Three

The Basic Equations near a Critical Level

3.1 The Relative Importance of the Terms in the Basic

Equations

The purpose of this section is to analyse the complete
basic equations in order to determine which terms are
jmportant as a critical level is approached. First the
notation used is described and then the complete basic
equations are presented. Next two of the commonly used
linear approximations are written down and discussed,

The predictions of how the wave parameters will vary as

a critical level 1s neared are obtained from the linearized
equations., These predictions are used to determine at

what distances and for which cases each of the terms in

the complete equations 1i1s important. This analysis is
lengthy and the details are contained in appendix D.

Here only the results and their implications are pre-
sented.

Let the unit vectors in a Cartesian coordinate system
be Z,, 3&. end Z,. The positive x direction is east-
ward, the positive y direction is northward, and the
positive z direction is upward. The amblent or time-
independent pressure, density, and fluild flow are re-

presented by'ﬁ,/ﬁ , and u, where it is assumed that the
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ambient flow or mean wind is in the x direction only.
The perturbation or wave pressure, density and velocity
are represented by Py p o and V = qu + E&v +'gzw.

The total pressure density and velocity are given by

P=D+ D
fr=p*P
V’:‘gxﬁ + v

MKS units are used throughout. The total or convective

derivative is defined by

D _ 92 ,+v.V
Bt = 5% + V-V
where
9. = > 5 > D
V=3, 3% ta ST tE S

Assuming that the curvature of the Earth can be
neglected, that there are no sources or sinks of heat,
and that the mean wind and ambient density are functions

of height only: the complete basic equations are:

Ar _ﬁj‘z/ 4‘.3&52;<\7]+\7P~§/-,-

p [£V(VV)+ VT V]=0

3.1-1A,E,C

— ey

‘%@I" +Pr V-V =0 3.1-1D
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D 2z, W
25E - K Y7Jp = 0 3.1-1EF

jwl{w)
S
~
!
Qi
o)

The first equation is Newton's law for the change
of momentum.&?ﬁ is the radian frequency of the Earth's
rotation and has the direction of the axis of rotation.

2 is the acceleration of gravity and 1is downward, an@/ﬁ
1s the dynamic viscosity. The second equation expresses
the conservation of matter and the last equation expresses
the conservation of heat. X 1is the coefficient of ther-
mometric conductivity, and ¢ represents the speed of sound.

The equation of heat transfer, 3,1-1E, has already
been simplified somewhat. The effect of the vertical
temperature and density gradients on the heat conduction
is shown to be negligible in appendix D, so they have
been omitted from the conduction term, thereby eliminating
the temperature from the equation. The effect of the
pressure on the conduction has also been neglected as
mentioned in appendix A.

The viscous and heat conduction parameters are dis-
cussed at some length in appendix D. Besides defining
these and other parameters, the appropriate values to use
for them are considered. While the above equatlions do
not take turbulence and convection which have the same
scale as the internal gravity waves into account, it is
shown that these random processes on scales smaller than

the scale of the gravity waves can be treated by adopting



27
the eddy values for A and X.

The momentum equation has been written in vector
form for compactness, When written out the x, y, and z
components will be the A, B, and C equations respectively.
The mass conservation and heat transfer equations will be
the D and E equations whenever this set 1s written. The
coupling between the three momentum equations is contained
in the Coriolis term through the cross product and in the
viscous term through the divergence of the velocity. If
these terms are not included, the x and z momentum
equations will not contain the north-south component of
motion v. In this case it 1s common to consider the
problem to have only two spatial dimensions and to drop
the y momentum equation from consideration. If this 1is
done there will be no B equation in the set. Since ignoring
the motion in the y direction results in a considerable
simplification of the equations, this is often done when
the viscosity is kept by simply requiring that v= 0
everywhere,

The momentum equation contains several nonlinear
terms., Some of these come from multiplying the first term
by the total density rather than by just the ambient den-
sity and some are implicitly contained in the convective
derivative. The convective derivative appears because
the Fulerian form of the equations is being used. These
nonlinear terms may be seen by expanding the convective

derivative:
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The momentum equation also includes some terms,
ambient terms, which contain only anmbient variables and no
pefturbation variables, By definition these terms must
sum to zero, and the resulting equations are written out
in appendix D. It i1s common to remove the ambient terms
by subtracting these equations from the complete component
momentum equations.

When the Coriolis, nonlinear, viscous, and heat con-
duction terms are also removed, and it is assumed that
there is no motion in the y direction, the following

equations are obtained:

=0
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This set of equations will be referred to as the simple
linear equations, and these equations are those upon which
most internal acoustic-gravity wave studies are based,

The ambient quantities are invariably assumed to be in-
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dependent of x and t so that when exp (ikx - iwt) is
assumed for these variables the dependence of these
equations on x and t may be eliminated,

Equations 3.1-1-2 can be simplified further by
assuming that variations of the density with time and
position are unimportant in the equation of mass conser-

vation. This leads to
V: V=0 3.1-3

which is the expression used when the density is constant.
This approximation i1s valid when the period of the wave
is several times the Brunt period.

An extended form of the equation above,
Vv(/a‘\?) =0 3.1-4

is often used when dealing with stratified fluids, This
extenslion takes the change of ambient density with height
into account by including the w(d}5/dz) term. Egquation
3.1-4 is a valid approximation to the complete equation
of mass conservation over a much wider range of a fre-
quency than is 3.1-3. This is shown in detail in appendix
D.

Equation 3.1-3 implies that the density, and thus
the volume, of a fluid parcel does not change with respect

to time or position. Equation 3.1-I implies that the
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parcel's density and volume are functions of the parcel's
height because the ambient density 1s a function of height.

Although the writing of the equation of mass con-
servation in one of the simpler forms just discussed al-
ways comes to mind when incompressibility is mentioned,
incompressibility strictly means only that the density
is not affected by the pressure. When the density is
unaffected by the pressure, the speed of sound is in-
finite, but it is always invalid in this problem to let ¢
approach infinity indiscriminantly.

The two vertlcal derivatives of ambient variables in
3.1-2E are generally combined to give

2 1 d 7]
wB-“-;é?[:za‘Z? a"’p] Peies
This equation defines the Brunt frequency, which can also

be written in terms of the vertical ambient temperature

derivative:

2
afs = -—?{- ——g—ét- -—3%;) adiabatic] 3.1-6

(The Brunt frequency, also cslled the VAis#lid frequency,
is a measure of the static stability of the atmosphere

and is denoted by N by rmost meteorologists.) It turns out
that it is a very bad approximation to let the speed of

sound become infinite in the Brunt frequency, so that when
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incompressibility 1is assuned for gravity waves a realistic
value of ¢ 1is used for the Brunt frequency and an infinite
value elsewhere, It 1s very convenient to treat the Brunt
frequency as a constant., For an isothermal atmosphere
this is the case, but a more realistic constant may be
obtained by the slightly inconsistant procedure of using
a more normal value for dT/dz (such as the standard lapse
rate of 6.5°C/kxm) and an average value for T in 3.1-6.

Making the approximations just discussed, equations

3.1-2 becomnme:

— - O — Pl 4
/o[('gag + U ”3‘5{)(7”‘ a W %‘f]* \/]o 3.1-74,cC
+ a5 ?/0 = O
V-?= 0 or v (15 V) = 0 3.1-7D

(G vz 3~ (%7)=0 e

If the left equation in 3.1-7D is used this set will be
referred to as the simple or regular linear incompressible
equations, while extended linear incompressible equations
will apply if the right equation is used.

In the case that the mean wind u and the Brunt
Frequency wp are constant, elither 3.1-2 or 3.1-7 can be
solved analytically. These solutions and their applications

form the bulk of the literature on atmospheric internal
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gravity waves. The basics are given by Hines (1960)., The
ambient quantities are almost always taken to be independent
of X and t so that exponential dependence of the pertur-
bation variables on x and t may be assumed, With this

assumption

_9 i 2 - — 1L
ot 4 IR '

where the intrinsic or Doppler frequency L) is defined by
N = w-xi

@ is the radian frequency, ¥ is the horizontal wavenumber,
and m is the vertical wavenumber,

Note that this frequency 1s equal to the radian fre-
quency if the mean wind is zero, that it will be a function
of height if the mean wind 1s, and that it will be negative
if the wind speed is grester than the horizontal phase
speed. The critical level is often defined as that level
where L = 0. {1 is the frequency which would be seen by
an observer moving with the wind, and it is the relevant
frequency for almost all discussions. For example, for
an isothernmal atmosphere with scale height H, the disper-

sion relation is

Z z
m? = k2 EBJL_ - -£L« L 3.1-8
n= L
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where fau, }5w. /;, and p were assumed to have
exp(i(-wt + %x + (m+i/2H)z)) dependence, It can be shown
that m is real for all values of fL except those within
a small range bounded approximately by Wg and W, = c/2H,
The higher range of frequencles are acoustic waves which
will not be considered. Only those waves which have L
less than éOB will be dealt with, and it is obvious that
the smaller {L is with respect to (p the less effect the
compressibility will have. Thus the validity of the in-
compressibility assumption devends on the relationship of
0 and Wgp.

As a critical level is approached,il.approaches zero,
This is also true if waves with a very long period are
being considered, and there 1s no fundamental difference
between the two cases. Either way the wave 1s nearly a
zero frequency wave with respect to the fluid. As dis-
cussed in the appendix, the linear analysis predicts that
other wave parameters will change in certain ways as Lo
approaches zero. Specifically, the vertical wavelength
X, goes at 1/LL , the magnitudes of p and u go as
1/Y7L. , and the magnitudes of p and w go as WCFi’. This
behavior causes some of the Coriolis, viscous, thermal
conduction, and nonlinear terms which are validly neglected
otherwise to become important near a critical level,

Each equation in 3.1-1 is treated in detail in the
appendix and here only the results will be presented.

Because u and f? become large with proximity to a critical
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level and the vertical wavelength becomes very short, it
is expected that terms involving these variables and/or
the vertical derivative will take precedence over the
others. Because they change in very different ways, it
is necessary to tfeat the components of the vector momentum
equation separately. The terms contalning only ambient
variables sum to zero independently of the other terms
so these terms have been removed leaving perturbation
equations,

In equation 3.1-1A the perturbation denslty occurs
only in the sum Pr = /i +/0 and i1t never becomes large
enough to be significant with respect to the amblent
density, s0/7 may be neglected entirely in this equation.
Thus the x momentum equation may be written:
i[(ﬁ,uz;%)u # w%%] +SP 4

3.1-9A

ra (7'\-7)&/ + 0 2 Wy (Weos g —vsing)
A5 (T # V] < 0

where ¢ is the latitude north of the equator. The first
line of this equation comprises the terms kept in the
simple linear approximation, the second line contains the
nonlinesr and Coriolis terms, and the viscous term is on
the last line. (Additional nonlinear terms, called the
nonlinear density terms, which are entirely negligibdle,

would appear if the wave density had been kept.,) For the
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waves in which we are interested all three of the addition-
al terms may be validly neglected far from a crltiéal

level, but as a critical level is neared each term eventually
becomes larger than the linear term. (The first line of

the equation is referred to as the linear term.) The
Coriolis term becomes large because v, like u, approaches
infinity at a singular level. It is not valid to include

the Coriolis term and require that v = 0 because whenever

u is not zero there is a force in the y direction,

Which of these three additional terms is the largest
unfortunately depends on the wave parameters so that no
completely general conclusion can be drawn. The nonlinear
term is the most important for most of the waves in which
we are interested, but if the period is more than a few
Brunt periods and the wave amplitude is siall the Coriolis
term will be the dominant one, Or, if the quantity %2/
is large enough and the amplitude is small the viscous
term will be the largest. For the X momentum equation it
is concluded that the wave density may be dropped entirely,
and, of the nonlinear, Corlolis and viscous terms, the non-
linear term will be the most important if the amplitude
is large or if the period is not too much greater than
the Brunt period.

The y momentum equation behaves in exactly the sane
manner as a critical level is appreached, so the above
conclusions apply here as well,

The z component of the vector equation of Newton's law
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is:
(ﬁf/)[(ﬁt+t’é;% w] + ?/0459% ¥
(5 +P) (V- Yw - 2wg cosf(Turp +,au)9

c

—te [£ 2 (FV) + VW] =0

Unlike the equation for the horizontzl momentum, none

of the additional terms ever become important in this
equation., Not only are the nonlinear, Coriolis and viscous
terms completely negligible, but some of the terms retained
in the simple linear approximation become small enough

to neglect also. Within a kilometer or so of a singular

level

2
7P j‘i’ =0 3.1-10

1s a valid approximation to the vertical momentum equation.
In 3.1-9C it is seen that the Coriolis term becomes
large as a critical level is approached. However, the
terms retained in 3.1-10 also become large. Two of the
three quantitlies in the Coriolis terin increase at the sanme
rate as the terms in 3.1-10 and thus are always much
smaller than these terms. The other quantity in the

Coriolis term increases faster than the terms in 3.1-10,
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but it is so much smaller to begin with that, for
reasonable scales, 1t never beconmes large enough to be
significant. The viscous term also becomes large as a
singular level is neared, but like the Coriolis term it
becomes equal in magnitude to the gravity term only for
distances which are much smaller than reasonable scales for
this problem. Thus both the Coriolis and viscous terms
may be neglected in this equation.

The equation of mass conservation has already been
discussed and it need not be written again. The nonlinear
terms are completely negligible., Within a kilometer or
two of a critical level the extended incompressible equation
3,1-4 is a valid approximation, and within several hundred
meters the regular incompressible equation 3.1-3 1s a
valid approximation.

yhen written out using the definition of the Brunt

frequency the heat transfer equation 3.1-1E is:

Ger®30(pr g - (5F)w +

(7'§>/~?%(\7~\7),o ~K'Vja~=0

3.1-9E

The first line contains the terms kept in the simple
linear approximation and the second line contains the non-
linear density term, the nonlinear pressure term, and the

heat conduction term. The nonlinear pressure term 1s
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completely negligible., The linear pressure term decreases
In importance as a critical level is approached and may
be neglected completely within about half a kilometer of
the critical level. The nonlinear density term and the
heat conduction term are of about equal importance for
many of the cases of interest. For large amplitude
waves the importance of the nonlinear term is increased
and the conduction term is negligible while if the value
of kz/&) is large the nonlinear term may not be significant.
In general both terms should be included for unguestioned
validity. As with the viscosity term in the horizontal
monmentum equation, only the z derivative in the heat
conduction term is important due to the predicted vertical
wavelength shortening. Use of the molecular (laminar
flow) value rather than the eddy value for the conductivity
would make this daemping term completely negligible also.

An additionzal term is one of those neglected in the
simple linear approximation. For frequencies in vhich we
are interested all such terms are validly excluvuded if
the region belng considered is far from a critical level.
In the foregoing an additional term has been said to be
important if its magnitude becomes equal to that of the
largest linear term and if it is not elways dominated by an-
other additional term. Of course the influence of an
additional term will extend some distance beyond the point
et which 1t is equal in magnitude to the linear term,

The intrinsic frequency £l is linezrly related to
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z3s» the distance from the critical level, and from equations
3.1-9 it may be seen that in both the horizontal momentum
equation and the heat transfer equation the largest
nonlinear term varies as zd'3/2 and the damping term varies
as zd'3 with respect to the largest linear term. In the
horizontal momentum equation the Coriolis term varies as
zd-l. No additional terms ever become important in the
vertical momentum equation or the mass conservation equation
so this discussion does not apply to these equations.

Due to this dependence on the distance from the
singular level the nonlinear term will affect the wave's
behavior over a larger region than will the damping term.
Since the nonlinear term removes the singularity in the
equations, by the time the wave has moved close enough to
the critical level for the damping term to be of significant
size according to the linear prediction, the effect of the
nonlinear term may have altered the wave so that the
damping term has little or no effect.

Although the Corilis term will be of significant
size over a larger range than the nonlinear term, the
inclusion of the Coriolis force does not remove the
singularity in the equations or alter the basic nature
of the wave behavior near a singular level, Thus it is
vnlikely that the Coriolis term will alter the wave in
such a manner that the nonlinear term would be ineffective.

In this section the complete basic equations and two

commonly used linear approximations have been discussed.
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The predictions about how the perturbation gquantities

will vary with proximity to a critical level have been

used to determine which approximations are valid for
different distances from the critical level, The predictions
were found from the linear, inviscid, adiabatic, irrota-
tional equations and so cannot be expected to be accurate
when one of the excluded terms becomes large with respect

to the terms included.

None of the additlional terms ever become important
in the vertical momentum equation or in the mass conser-
vation equation so that the simple linear approximations
remaln valid as a critical level is neared. In fact,
some of the linear terms become negligibly small, thus
simplifying the equations even further.

The horizontal momentum and heat transfer equations,
however, become increasingly cqmplicated as a critical
level is approached, and the simple linear approximation
is invalid. 1In the horizontal momentum equation the
Coriolis force, the viscous demping, and those nonlinear .
terms which do not involve the wave density must all be
kept for general validity, In the hezt transfer
equation, the pres;ure terms are negligible near a critical
level but the nonlinear density term and the heat conduction
terms are too large to be excluvded generally. While the
Corioiis, nonlinear, or damping term may be the dominant

tern if the wave parameters are appropriately chosen, the
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nonlinear term in both equations will have the greatest
effect for most of the cases of interest.

The damping terms are completely negligible unless
the eddy values are used for the coefficients qf viscosity

and conduction,
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3.2 Wave behavior close to & singular level

In this section two examinations of how an internal
gravity wave may be expected to behave in the region
close to a critical level will be undertaken. Each exan-
ination is based on a different approximation to the com-
plete set of equations. While not strictly valid, these
approximations are necessary for an analytic treatment
due to the complexity of the complete equations. The
insights gained from these analyses are considered to be
helpful, even though the approximations on which they are
based allow them to be considered only as tentative in-
dications,

Let the height range near the critical level where
the nonlinear terms dominate the horizontal momentum
equation and the heat transfer equations be called the

strongly nonlinear region., 1In this region equations 3,1-1

become:

22U 24 _ -

uax+-waz 0 3.1-1A
ep +%§= Y 3.2-1C
24 oW _ o .2-1
ax +22 3 b
2L 8L - o .2-1%
u&x-+wéz 3.2-18

In the preceding section it was demonstrated that the middle

two equations are valid approximations to the vertical
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momentum and continuity equations for a region extending
several hundred meters from the critical level, If the
horizontal wavelengths are not too long, the Coriolis
force may bé neglected, and this allows simplification of
the problem to two space dimensions, x and z, and the
dropping of the y momentum, or "B", equation.

The first and the last of the four equations above,
however, are valid approximations to the horizontal momentum
and heat transfer equations only for fifty meters or so
around a critical level, and only for large amplitude
perturbations. The other terms which would extend the
region of validity of these eguations are not included
because they make the set of equations analytically
intractable,

Combining 3.2-1A and 3.2-1D by eliminating du/ 2x

one obtains

ﬁ(ﬂ) = 0 3.2-2

az_w

This implies that the ratio u/w 1s independent of height.
This is in direct contradiction to the linear vrediction
in which w approaches zero at a critical level while u
approaches infinity.

Since w would not be zero and u would not be infinity
at that distance from the critical level where this set of
equations becomes valid, this linear prediction can be

ruled out. It is possible, as far as the above equation
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is concerned, that u and w could both go to infinity or
zero together, however,

Very large values of u (and /7 ) are not compatible
with purely physical considerations, and because the
equations which contain Jp/ J z and QJw/) z remain
linear near a critical level, the linear predictions concern-
ing the behavior of p and w near a critical level are much
more likely to be correct than those for u and./o . Thus
it appears more reasonable that u would become small with
w at a critical level than that w would approach infinity
with u., All that can be definitely concluded though is
that the ratio u/w remains constant with height for a
region in which these equations are valid.

By equation 3.2-2 u and w may be related by u = wf

where f = f(x,t) is indevendent of z, Then 3.2-1D is

Q
g

A 2u _ 3.2-3
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" If we let s = x + £z, then this equation becomes

2U . o  3.2-4

25
Frog this it is seen that u is constant along lines in
the xz plane which are perpendicular to the lines s =
constant. Now the ratio uw/w = f is likely to be a reasonadbly
large number., This 1s because u will have increased and

w will have decreased in the linear region as the wave
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approached the critical level, 1If f is large, then a line
given by s = constant will be nearly horizontal, and it
follows that u will be constant along lines which are
nearly vertical.

In the previous section it was seen that tHe linear
theory predicts that the vertical wavelengths will become
increasingly shorter as a critical level is neared. This
implies that u would change rapidly along a vertical line.
But here we see that these nonlinear equations show that u
i1s constant along a line which is nearly vertical. This
rules out the rapid fluctuation of u with height and the
very short vertical wavelengths. Since the ratio uw/w is
constant with respect to z, it follows that w also is
constant along the same nearly vertical line.

From 3,2-1D one can obtain

P 1 90 |
u[_afi *45’02—1“0

u = 0 identically over the entire region is an uninterest-
ing solution, and the other solution gives an equation
analogous to 3,2-3 for /9 « Thus all the conclusions
regarding u above hold for/p also unless u = 0 everywhere,
And from 3.2-1C it can be seen that the conclusions for
the density hold for the vertical derivative of the pressure
as well,

For the region in which equations 3.2-1 are a valid
approxiration to the complete equations it has been shown

that the ratio u/w 1s independent of z and that u, w, f>.



and op/ 2 z are constant along lines of slope f = u/w.
These conclusions do not agree with the behavior predicted
from the simple linear approximation. If f is large,
which appears likely, then u, w, 0, and apv/0 z are
constant along a iine which 1is neerly vertical.

For the values of the wave parameters in appendix D
which include horizontal and vertical wavelengths of about
twenty km, these conclusions hold rigorously only for a
reglion extending about fifty meters from a criticsl level
and only for a large amplitude wave. From the linear and
nonlinear predictions of what happens at a critical level
it is difficult to draw a general conclusion, The attenua-
tion in the most reasonable linear study, that of Rooker
and Bretherton (1967), occurs all at once right at the
critical level, and the linear theory is certain to give
less reliable results at that point than the nonlinear
theory. On the other hand the nonlinear theory is applicable
over such a narrow region that about all that can be
definitely stated is that infinite values of u and}p will not
occur. Also, if the linear results are extended very close
to but not throuch the critical level on each side, and
joined by the nonlinear results, no attenuvation at all
occurs, wnich does not agree with the experimental resuvlts.
It would appear that wave behavior near a critical level
deperds on the region in which both the linear and the
nonlinear terms are too large to bz omitted, and for which

the equations are anslytically intractable.
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These conclusions do not depend on the use of 3,1-3
instead of 3.1-4, If the extended expression for the
conservation of mass is used in place of 3.2-1D, the

results obtained are essentially equivalent to those above,
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Chapter Four

The Numerical Computation Scheme
4,1 Possible apvroaches to the critical level problem

It was shown in section 3.1 that the Coriolis, non-
linear and damping (viscous and thermal conduction) terms
must be kept if the set of eguations used for an investi-
gation i1s to have unquestioned validity for all cases in
the vicinity of a critical level. The complexity and the
nonlinearity mskes this complete set of equations very
formidible. Even with just the Coriolis force (Jones,
1967) or just the damping terms (Hazel, 1968) the equations
though linear are far from simple, The next step would
seem to be either keeping both the Coriolis and damping
terms in which case the equations remain linear, or
inclusion of only the nonlinear terms.

If the nonlinear terms are included most of the
familiar technigues are no longer avallable. There is
no point in assuming exp(-i1@t + ikx) dependence because
this factor can no longer be factored out to leave the
equations devendent on z only. A numerical approach is
practically dictated. A few analytic considerastions such
as those in section 3.2 may be made, but the approximations
necessary to make the equations amenable to analytic
treatment ere strictly valld in a very restricted region

if at all,
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Before a numerical scheme can be designed, one must
decide which set of basic equations to use, and whether to
attack the problem as an initial value problem in time or
in height.

In deciding on the set of baslec equations to use, the
first question would seem to be, are there any drawbacks
to inclusion of the Coriolis and damping terms as well as
the nonlinear terms, For the damping terms the answer is
no, but keeping the Coriolis terms means that three space
dimensions must be used., If the Coriolis term is neglected,
it is reasonadle to assume that there is no motion in
the y direction and to reduce the problem to two space
dimensions, If we wished to have lO2 points in each
dimension, cocnsidering only two space dimensions instead
of three means that only 10“ points need be considered
instead of 106. The storage capacity and speed of the
present computers make it infeasible to consider three
space dimensions, so the Corlolis term will not be included.
Since the Coriolils force does not remove the singularity
or change the basic singular behavior, its exclusion should
not alter the wave behavior close to a critical level, It
does make the equations an invalid approximation in long
period and small amplitude cases, but should not alter
the basic conclusions about the singular level, even in
these cases,

The next question is whether or not to assume that the

equations are incompressible, It has been shown that the
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3.1-4 equation is a good approximation to the mass con-
servation equation for quite a wide region around a
critical level, and that the pressure terms in the heat
transfer equation are of diminishing importance near a
critical level, so by making the incompressible as;umption
there is no danger of an invalid approximation near the
critical level, The incompressible approximation is not
valid far from a‘critical level for frequencies near the
Brunt period, but since the main interest is in behavior
near the critical level this is not important.

If the initial value in time approach is to bedused.
there is an important argument in favor of using the
incompressible equations. It was seen that the linear
prediction is that the pressure terms in the heat transfer
equation become small and that the equation of mass
conservation approaches iioV'z 0 as a critical level is
neared. For the progress in time scheme equations 3.,1-1D

and 3.1-1E would be solved for the‘time derivative in p:

or
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Now c? is large number , and du/dx and Jw/9 z which
together form .§§'? are large quantities, so in solving
for dp/ Ot we are adding two large numbers which very
nearly sum to zero, and then multiplying this small
quantity by a large number. Because of the small word
size of the IBM 360 computers a preliminary study showed
that double precision would be necessary in order to make
the above calculations with sufficient accuracy. Ir in-
compressibility is assumed, the stream function - vorticity
formulation can be used and the entire problem avoided
because the perturbation pressure does not appear,

Thus it appears that the incompressible equations without
the Coriolis terms are the most sultable for a numerical study
of internal gravity wave pehavior near a critical level. This
set of equations is valid near a critical level éxcept
for the exclusion of the Coriolis term which has already
been discussed. This set of equations is most easily
worked with in the stream function - vorticity formulation
which is presented in the next section. This formulatiqn
has the advantage of réducing the working variables to
three, and the important nonlinear terms and the damping
terms may be kept throughout.

The othgr main question was whether to use a progress
in z approach or a progress in time approach. While the
latter is tne more familiar form of the initial value
problem, since gravity waves are continucusly monitored at

the ground for a number of locations, the wave's dependence
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on x and t can be considered known there, By solving the
set of equations for the z derivatives the values of the
wave parameters at successive heights could be found.
Since there are no measurements of gravity waves in the
atmosphere over a consliderable height range at nearly
the same time, the initial values for the progress in
z approach are much better known.

At first this progress in z avproach was tried, with
simple exp(-1@Wt + ikx) dependence at the ground and
cyclical or repetitive boundary conditions in the x and t
directions. After some investigation this approach was
abandoned., The reasons for this failure will be briefly
discussed,

It is clear from equations 3.1-1 that one may solve

explicity for %?g and 2P so advancing those two

o2
variables will pose no problem. While one may also solve
for -%ﬁi and-%é? , one is constrained to divide by W when

so doing, and for those points where w 1is near or equal
to zero this 1s incorrect. Further the terms containing
%ﬁ? and gﬁ% are nonlinear terms, and solving the eguations
this way is certainly going to be very inaccurate far from
a critical level,
An implicit scheme in which a relaxation procedure
was used to find W and/ﬁ at the new z step was tried but
was unsuccessful becavse the relaxation procedure did not

work correctly. Apparently the equations used in the

relaxation were ones for which relaxation does not
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converge,
Another scheme involving matrix inversion was also
tried, again without success, Let the two dimensional

J contain the N2 values for each of the four

matrix F
variables U, W, P,/o for any z-step J. The basic
equations may be written as a balanced difference scheme

of the form

ardtl o gl

where A and B are 4N x 4N matrices. FJ+1 is obtained by

inversion of A and matrix multiplication. Unfortunately

when only the linear terms are used A is a singular matrix

and inversion is impossible, When the nonlinear terms are

included A becomes invertable but since the determinant

involves only the nonlinear terms the results are very

inaccurate unless the equations are extremely nonlinear,
The reason for the singularity of A in the linear case

i1s that the equation for some point (I,L) is the exact

negative of the equation for the point (I+N/2,L) half

a wavelength away. When the nonlinear terms are added

the two equations are no longer exact negatives of each

other., By using only the first N/2 points a nonsinguler

A is obtainsd and the resulting scheme works very well

in the linesr region. In the region where the nonlinear

terms are of significant size, this scheme amounts to
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imposing a very artificial reflection condition. No
satisfactory method was found to treat the region in which
the nonlinear terms were large enough to be significant
but not large enough to allow using all N points in A.
Upon discovery that the progress in z approach
appeared to be intractable, work was begun on the
transient or progress in T approach. 1In this approach
the cyclical boundary conditions are imposed in the x
direction. The lower z direction boundary is the ground,
a w= 0 surface, It is very difficult to find a feasible
upper boundary condition which successfully sirmulates the
real infinite atmosphere for all times and for all condi-
tions. The exact method of treating this boundary will be
considered at some length in the next chapter where the
detalls of the finite difference scheme are presented.
Whlle artificial when comvared to vhysical reality, the
condition imposed on the upper boundary has as minimal
an effect as possible on the events near the critical

level,
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4,2 The stream function - vorticity form of the equations

In this section the basic equations on which the
finite difference scheme 1is based will be manipulated
into the more appropriate stream function - vorticity form.
Because of the use of 3.1-4 instead of 3.1-3 for the
equation of the conservation of mass, the resulting
equations will avpear somewhat different from the usual
ones. In addition to the stream function and the vorticity,
two new momentum variables are introduced,

As discussed in the preceeding chavter it is a good
aporoximation near a critical level to use equation 3,1-4
instead of the complete equation for mass conservation
and to let the speed of sound be infinite everywhere but
in the Brunt frequency. BRecause of computational limita~
tilons only two space dimensions can be incluvuded, so the
Coriolis force 1s neglected and it is assumed that there
1s no motion in the y direction. The basic equations to be

used for the numerical model are then obteined:

/5@5-+/5W—é—‘2“+‘31‘9—*:/0\72« b, 2-1a
/E'Z.)D-M # 7//0 o+ %{l—- = M vlw 4,2-1c

@"" (/-0—7>::O 4,2.1D



56

%_}L/Z.W(—g;éi) - K V/zﬁ 4, 2-1E

These four equations can not be used for a finite
difference scheme as is because they do not determine
the pressure at the new time step. 1In order to eliminate
the pressure from these equations, the stream function -
vorticity form for these equations is adopted.

Define new momentum variables 4, Y by

/6=/Zu_ b"—*ﬁw L, 2-2a

and define the streem function ¥ and the vorticity g by

__ 2L Y - DL 4,2-2B

J z X
g"?%“f?f“=vz// L, 2-2C

Note that by the definition of the stream function equation
L,2-1D is automatically satisfied. The wind could have
been included in the definitions of ﬁ& and ﬁ but it has
been omitted for two reasons, Inclusion of the wind adds

a large term wnich 1s a function of z only to ¥ and

reduces the accuracy vwith which the perturbation motions
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may be calculated, Secondly, 1t increases the complexity
of the calculations, Changes in the average horizontal
motion for any given height may occur by means of the
perturbation variable u acquiring a nonzero average, SO
keeping u constant does not rule out interaction between
the wind and the wave.

With these definitions equations U4.2-1 become:

'927% T =0 4.2-3D

%ﬁ' B b/(“&' = KV / 4,238

q\

To get the vorticity equation, the result of operating on
L,2-35 with 2/2z is subtracted from the result of
operating on L,2-3C with Q/px. After some algebra

one obtalins:



the terms involving the second or third derivative of the
ambient density or the square of the first derivative of
the ambient density are small with respect to other terms
(see appendix C). Their neglect corresponds to the
Boussinesq approximation in the more common form of the
vorticity equation based on 3.1-3 instead of 3.1-4, 1In
general, wind profiles with constant shear will be used,
so that the second derivative of the wind will not be
carried further, Because of the importance of inflection
points in the mathematical studles, the case where the
second derivative of the wind 1s nonzero 1s not entirely

excluded,

For the few cases where the shear is not constant,
the nature of the additional term in the followlng equations
is evident,

Thus the egquations from which the finite difference

equations will be obtained are:
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> {;:é ] +/vv2{;§:“} b, 2-bp

b,2-4B

Vi =5 b, 2-4

o

/" - g—; a’:: —é-}é L,2-4D

In order to seec how these equations are used for the
transient calculation assume that all the variables are
known for time step L and all preceeding time steps. First

§ and /0 for the next time step are calculated from
4,2-4A and 4,2-4B, Using this &, ¥ 1is found from

L, 2.4¢, and then the momentum variables are found from
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L, 2.4D, All the variables are now known at the new time

step and the sequence is complete,
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4,3 The grid system and the finite difference equations

Before equations 4,2-4 can be written in finite
difference form the grid system to be used must be described,
Let the positive integers I,J,L refer to values in the
x,z,t dimensions respectively. A4Ax, 42z, and At are the
step sizes., The grid system to be used is the staggered
one used by Foldvik and Wurtele (1967). £ and O are
defined at points given by x = A x(I-1), z = Az(J-1.5).

¥ 1is defined at points given by x = A x(I-0.5),

z = Oz(J-1). /6 is defined at points given by x = Ax(I-0.5),
z = Az(J-1.5). ¥ is defined at points given by x = Ax(I-1),
z = AZ(J"l)c

It can be seen that %Q is defined at points halfway
between the points on the same row where § and 4 are
defined, and that )  is defined at points halfway between
the points in the same column where g and P are defined,
The top and bottom boundaries of the region being
considered are taken to coincide with rows of }4 and b/.
end to be halfway between rows of ‘g. /0 and /6 .

There is no staggering in the time dimension, and
t = A t(L-1) always. The value chosen for At will
depend on the results of the stability and error analysis
and will be considered further in later sections. While

A z can generally be chosen at one's discretion, the
value of Ax must depend on the choice of a basic horizontal

wavelength. This wlll be discussed in more detail when



boundaries are considered.
The notation /o(I,J) is used to represent the value
of the perturbation density at the values of x and z
given above for this variable. It is assumed that time
step L is meant unless a different value 1s indicated by
a superscript. Note that, for example, Y (I,J) and
¥ (1,3) do not refer to values at the same point in space.
Equations 4.,2-4D are simply expressed due to the

staggered grid system:

(¥Y(1,0-1) = Y(1,7) )/ &z . 3-1A

]

B(1.9)

Y(1,3) = (¥(1,3) - ¥(I-1,9) ) /Ax 4.3-1B

The method of handling the Poisson's equation 4.2-4C will
be covered in the next section.
The time step is treated in the balanced or leapfrog

mannexr:

g 1,0

1t

L-1
E777(1,3) - 24t FE(I,J) 4,3-24
M1, = PUHILI) - 208 Fp(1,9) ku3-28
where -?g and —%/ represent the finite difference

analogs of the right sides of equations 4,2-4A and 4,2-4B,

These quantities can be written:
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Fg (1,3) = g(J) ({(’l‘x(g.I.J) - Tx(g.z-l,J))/(;(J))z
+ (s/4() (Tx</a.1,J) - TX(/o.I-l.J))} /o
+ {(Tx(g.I.J)/rs(J)) - (Tz(f,I,J-J)/rX(J»l))}/Az]
- <Dy (§/5,143)

L"Q 3"3A

F/o (1,J) =(,3(J))"1 [{(Tx(lo,l,J) - Tx(p,l-l,J))

- B(3) (T,(1,9) - Tp(I-l.J))} /D x

+ {mo(pna) - HPRRESY /Az‘} 4.3-38

-X DL(/).I.J)

where the following quantities have been used:
B(J) = w§u>/;u>/g b,3-ba
Tp(IIJ) = (’IJ(IoJ) + ¢(IvJ"‘1) /2 L".B-L!'B

rg(J) = [(E(J) + ﬁ.(J—ﬁ-l)) /2] 2 b, 3-4C
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and letting f represent 5//5 or/:
D; (£,1,J) = [f(I+l.J) + £(I-1,J) - 2f(I,J{J/(¢Ax)2

+ (f(I,J-.»l) + £(1,3-1) - 2f(I,J)]/(Az)2

L, 3-4D

For Ty and T, let f represent g or /9 :

7 (£,1,J) =(/5 (@) + B(1,3)] 8,(£,1,5) 4.3-5a

Tz(f'ItJ) 33/(10']) Sz(f,I,J) u’oBfSB

The exact form of Sy and SZ will depend on which method
of averaging is used. 1In the following definitions the
simple two-point average 1s obtained by setting lig = 0

and a six-point average is obtained by setting Mg = 1:

S, (f,I,J)

[f(I,J) ¥ £(11,3)] (betig)/8
+ [f(I,J—:-l) + £(I+1,J+1) + £(I,J-1)

+ £(141,3-1)] 1,/16 4, 3-5C
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Sz(f,I,J)

i

[r(1,0) + f(I,J+l)] (4=1,)/8
+ [f(I+1,J) & £(T41,341) + £(1-1,7)
+ £(1-1,341) ] 1,/16 4. 3-5D

The choice of which method of averaging to use will be
discussed in conjunction with the error analysis.

The complete finite difference analogs to equations
L,2-4A and 4,2-4B may be obtained by the use of 4,3-4,
4, ,3-4 and 4,3-5 in 4,3-2 but there seems to be little
point in writing out the whole equations,

Of course any numerical model can consist of only
a finite nunber of points, and for a transient calculétion
two boundaries are required for each spatial dimension.
Let the maximum values of the horizontal and verticeal

indices be I, and Jmax respectively. This means, for

X
exanple, that Imax different values of X are being con-
sidered, and that there are ImaX columné of points, for
the different variables,

In the horizontal, cyclical boundary conditions are
imposed. This is equivalent to considering an infinite
repetitive model, and each wave considered is infinite
In the x direction., If a region with a revetition length
of NAx is desired, then I v = N+ 2 is used. Values on

2ll sides of each point at which ‘é‘i and /0 are defined

are needed to advance these variables one time step.
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Assume that all the valrlables are khown for all Imax
points for step L and preceding time stevs. The values

for step I+l are first found for values of I from I = 2

to I = Imax“l using the equations of section 4.2. Then

the cyclical boundary conditions are invoked and the values
at the new time step for I = 1 are defined to be those
found for I = Imax'l and the values for I = Imax are

defined to be those found for I = 2,



67

4,4 Solving Poisson's equation

Foldvik and Wurtele sclved Poisson's equation 4,2-4C
by a relaxation procedure, and this method was used
initially in this work alse, However, when the variable
vertical spacing was introduced the relaxation procedure
failed to work satisfactorily and the Fourier transform
method described below was developed.

The fact that the linear theory predicts that the
vertical wavelength will become increasingly shorter with
proximity to a critical level creates an undesirable
situation, Although the nonlinear consideration of section
3.2 indicates that this will not continue right up to the
critical level, it 1s not known how short the wavelength
might become and some shortening must be expected,

Use of a value of Az which provides reasonable
resolution elsewhere will probably give insufficient re-
solution near the critical level, Use of a much smaller
value of Az which might bg expected to provide sufficient
resolution near the critical level wculd rean the calcula-
tion of many thousands of unnecessary values in the region
away from the criticel level. The obvious solution is to
use some AzZg, nuch smaller than Az, only in an expanded
region around the critical level, and Az elsewhere,

Using these two different spaclngs has its drawbacks,
however, It has been found in practice that the constants

and the harmonics of the wave variables, which depend upon
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the nonlinear terms for their generation, often come to
exhibit erratic behavior near the boundaries of the ex-
panded region. This is not unexpected, Certainly dis-
turbances which have a vertical wavelength less than b4
will not be able to provagate outside of the expanded
region, so that these waves will be reflected at the
boundaries of the expanded region.

Implementation of this idea was hindered by a few
minor complications due to the staggered grid systen,
but the real difficulty was that the relaxation procedure
either failed to converge at all or converged only for
very inefficient values of the relaxation parameter.

Since Poisson's equation is linear many techniques
are availabie for its solution., Each variable is re-
presented by values at a finite number of points so that
Fourier analysls and synthesis should provide very accurate
results at these points. The existeﬁce of fast transform
routines means that the time required for this method
will be comparable with that for the relaxation method.

Let p& be the solution to Polsson's equation when
_E is nonzero for only the Jth row of points. Because of
the linearity superposition is valid and the total solution

is

%(X.z) = ZV’J(X.Z) boh-1
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where the summation is over all the rows of g in the

region. Y3 satisfies the equation

il

Vz Y5 gJ(x)S(z»zJ)

where

gJ(x)

Il

Dz g;(x,zJ)
and zj 1s the height of the J¥M row. (Note that due to
the use of a finer vertical spacing near the critical

level 1t is no longer true that z; = 4 z(J-1,5).

The transform functlons Hy and Fj are defined by

[- =
HJ(k,z) = J/?%(x,z)exp(wikx)dx
)

Fy(k) = d/igJ(x)exp(mikx)dx
-l

with the appropriate inverse transforms. HJ is composed

of & homogenecous and an inhomogeneous part:
Hy(k,2) = Gy(k,z) + Ae¥Z 4 pe~¥Z, b h-24

The equation for the inhomogenecous part is
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(-x% + o ) G;(k,2) = Fy(k) S(z-2,)
daz giheel =g “Tg

for which the solution is

(= ~4

_ A 2 2
GJ(k.z)- e [;FJ(k)/(k +m )] exp(im(z-zJ))dm

-0

This integral is done by contour integration with the

result that
Gy(k,z) = - FJ(k) exp(-k]z-le) /2% L, L.2B

With the boundary conditions that %} = 0at z = 0 and

at z = h the values of A and B may be found:
A = exp(-kh) GJ(k,O) - GJ(k,h) /2sinh(kh) 4.,4-34
B= - Gy(k,0) - A L, 438
More general top boundary conditions will be considered

shortly.

Thus the final form for HJ is

Hy(k,z) = (F;(x)/2k) [;exp(-klz-le) + CAekz + CBe‘kz]

bbb
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where

c, = e“khsinh(sz)/sink(kh)
Cg = exp(-sz) - Cpe

The solution for the stream function can now be written

— /
Vixz) = 5oL H (k,z)eMax = 577{/2 Hy(k,z)el%%ak
T 3

Interchanging the order of the summation and the inverse
transform means that a transform must be done for each
source row and an inverse transform only for each value
of z at which values of y/are desired.

For computation the sums

Sp(1) = > T.(I,3X) F(I,JX) b, b4-6a
TR
Sp(I) + > Tp(I,JX) F(I,JX) 4. h6B
Ix
S¢(1,JP) = > T.(1,JP,JX) F(I,JX) b.b-6C
!

are formed, where

Ta(1,JX) = C5(I,JX) / 2k(I)
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Tp(I,IX) = C5(I1,3X) / 2k(I)

T (I,JP,JX) = -exp(-k(I) ’zp(JP)~zX(JX)’) / 2k(I)

are quantities which can be calculated once in the beginning
of the prograsm and stored for future use, JX refers to a
row of_g; values at height zX(JX) and JP refers to a row

of ¥ values at height zp(JP). F(I,JX) is the finite
difference analog of FJ(k). In these transformed quantities,

I refers to the value of the wavenumber k(I) where
k(I) = 27 (1-1)/80x T

N is the number of points in a row and should be an integer
power of two for most of the fast Fourier transfornm
routines. NAx is the basic horizontal wavelength or
the repetition length.
One drawback to this method of solving Poisson's
equation is the need to store the matrix T,. Because
Tc is three dimensional, only moderate values of the
three indices imply a huge array. If Te is too large
to be stored, the factors of T,, which are two dimension-
al, may be stored instead and Tc recalculated at each step,
Since g and P are defined et values of x separated
by Ax/2, after the §EHJ is complete it is multiplied by
exp(ik Ax/2) prior to the inverse transformation so that

}9 will be evaluated at the approprizte values of X.
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The above method will not account for any average in

the horizontal wave motion. Because k(1) = 0, equation
b L.y cannot be used for the first (constant) terﬁ in the
transform of each row of é; . The two poles of the contour
integral merge on the contour, so that the integral cannot
be evaluated, These constant values are saved as the
other values in the transforn are treated, and togethor
these values are represented by ga(J). For this case

there is no x dependence in Poisson's equation, so
2
dh _ ¢
dz* <

is solved for ¥, which is added to the result above.
¥ is undetermined to within an additive constant,

so ¥,(z=0) = 0 can always be required. A value of

77 a(z=h) cannot also be specified, however, because so

doing places an unjustifiable restriction on \nggdz,

where /d—ua = - 4 Wa/dz and §a :-d(/?'ua)/dz. Only

one boundary value of uy may be given if the problem is

not to be overspecified, and as long as the viscosity is

nonzero this is provided by the regulrement that

ua(zzo) = 0, Using the boundary values Jjust discussed,

and with ugy defined at the same values of z at which §

is defined, ﬁ%_is found by using

ug(J) = ug(3-1) - Az(€,(3) + §a(3-1))/2
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Pld) = $,(3-1) = 4zuy(J)

The case in which the top boundary acts as a source
is easily treated by adding to the above solution a
function 5bs vhich is a solution of Laplace's equation
end which satisfies the top boundary condition. The source
is taken to have a trigonometric dependence on a single
wavenumber k in the horizontal, and the lower boundary

condition is still ¥ = 0 so that

Y (x,z) = Real [b eikx] sinh(kz)
S S
: sinh(kh)

where CS, containing the magnitude and phase, will be
constant for each solution of Poisson's equation at a given
time step but will in general be a function of tinme,

A line vorticity source has been found to te a more
satisfactory wave source than motion of the top boundary.
Before beginning the solution of Poisson's equation for %ﬁ
row JXg of _gvalues is replaced by g gcos(kx-wt),
where _§S, and the wavenurber k and the radian frequency W
may be specified at the experimenter's discretion.

Because each 2 row enters the solution of Polsson's
equation as é[}z, if the source strength is to be inde-
pendent of the spacing, $,4z, not &, is the source
strength, This product converiently has the units of m/s

and is roughly equal to the magnitudes of the wave motions



75

it generates, 2ecause ,gs nay be much larger than the
other values of g , especially for small A=z, the nonlinear
and damping terms in 4,3-3A nmust be omitted when applying
b,3-2A to the rows adjacent to JXg if huge erroneous

source terms are to be avoided. This also has the ad-
vantage of making the source completely free from the
tendency to generate nonlinear terms close to the source,

The alternative to placing a rigid top surface at
z = h is to place another region above z = h, because a
free surface is very hard to incorporate in the stream
function - vorticity formulation., Let the subscript u
refer to the region above z = h and the subscript r to
the region below z = h, The existence of this upper
region makes it necessary to redefine A and B appropriately,
end to consider what values will be used for g in region
u. Solving the boundary condition equations properly for
A and B does not eliminate the need for values of ‘z
above z = h, although it 1is true that values very far
above the interface will have a negligible influence on
region r,

The obvious choice for region u is an infinitely
high region with constant wind, The boundary conditions
are easily solved for A and B (see appendix B), but the
prover values of g in region u are not readily found.
For a steady state, g could be found from the analytic
solutions. However, in the early stages of these calcu-

lations the transient wave has spread only a very short
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distance into the upper region and using the steady
state .é values for the entire region leads to large
errors. It may be possible to treat the propagation of
the wave into the upper region correctly, by Laplace
transforms perhaps, but this must be a future developuent.
It is much simpler to ignore .g above z = h entirely or
to generate it from the steady state solutions, but both
of these options are unsatisfactory because the wave does
not propagate out through the upper boundary proﬁerly and
large valﬁes of the wave variables occur there which
dominate the development elsewhere. Professor T. R.
Madden suggested that the values of g below the source
could be used above the source as well, This mirror
technique for generating the values of § in region u
has worked well in practice. Although this amounts to
placing another critical level and a rigid boundary
above the source, reflections from them have caused no
problem because they take so long to propagate to the
lower critical level.

For an infinitely high region r, A = 0 in 4 ,4-2A, and
since the mirrored uvper boundary at z = 2h is far fron
the lower critical level, 1t is a good approximation
with the mirrored uoper region., ¢’in region u is never
calculated, and the contributions to # in region r from é
in region v have the form (FJ/k) sinh(kz) exp(-sz). The
source is at height zX(JXS) and JP, is defined by

zp(JPh) = h; then equations b.,4-6A and U4,4-68 become
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J.-2
Sp(1) = D Ma(1,3,) F(I,0.-0,)
Ja= |
sp(1) = Ty (I,JX) F(I,JX) -
IX= 2
-2
:E:Ma(I,Ja) F(I,J,-J,)
Ja =1
where

Iy = IXg + (JXg - JPp),

Tp(I,3%)

exp(-k(I) 2z, (JX))/2k(1),
and
My(1,J5) = -exp(-k(I) (zx(JPh) + JgAZ))/2x(1)

(Note that z24(JPy) = h = Az/2, so that JPh denotes the
topmost row of Eé values in region r.) In practice

it has been found sufficient to carry the summations over
Jg to ten or twenty instead of J, - 2. Because the effect
of the § rows in region u decreases as exp(-J Az),

exactly how many rows should be included depends on the

valve of A z.
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L,5 Stability analysis

In this section the methods of Richtmyer (1957) are
aprplied to the finite difference scheme just described
in order to determine whether or not the scheme is stable
and if so what restrictions on t are necessary to
achieve this stability. The available methods for assess-
ing stability are applicable only to equations which are
linear, so the complete equations will be linearized
for this analysis., The nonlinear terms are expected to
be small except in a small region right eround the critical
level, and the results of this analysis should prove
adequate.

Linearizing the finite difference equations described

in section 4.3 one obtains:

g 1 (1,0) = £ (1,0) - 240¢ [’ﬁ(J) {sx(‘?, VI,3)

- 5x(§,1-1,0)} /8% + g {550 p,1.3) - Sx()o,l-l.Jz}

/Ax - g DL(g.I,J)] I, 5-1A
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PP () = pM (1) - 240 ﬁ(J){sX(/,.I.J)
“SylpI-L, )}/ Ax ~wh/e {Ty(1,3) - Tp(1-1,9))

/Hx - KDL(/),I.J)] 4,5-18

where for simplicity it has been assumed that the ambient
density may be taken outside the Laplacian operator in
the viscous term and B(J)//?(J) = a)g/g has been used,
Sx» TD, and Dj retain the meanings given them in section

4,3, Letting f represent j; or/y and assuming exp(ikx+imz)

devedence
Sx(f,1,J) = S, (£,1-1,7) = £(I,J) (isin(kaXx))
(1 + Mg (cos(mAz))/4)
D (£,1,3) = £(1,3) [(2cos(xax) - 2)/(ax)? +

(2cos(mAz) - 2)/([_\2)2]

In theory the Fourler transform method solves Poisson's
equation without any error due to the finite differencing,

so using

$(1,9) = §(1,9) exp(ik(Ax/2) + 1n(Az/2))/(-k%-n?)
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where the exponential factors are introduced to account for

the fact that V/and g are defined at different points:
T5(I,3) = TH(1-1,7) = [-g(I,J)/(k2 + m?)]
(Zisink(Ax/Z)) cos(maz/2)
Now let

T = -2(At/ax) isin(xpx) (1 + M (cos(maz) - 1)/4)

3
H

Tug/ﬁ
Ty = -2(w§/(g(k2 + mz))( At/ Ox)2isin(kx Ax/2)cos(maz/2)

Ty = 2 pAt [(2c0s(kax) - 2)/(a%)2 + (2cos(miz) - 2)
/(12)2]
Ty = TvKéu,

and defining the new variables r and q by the equations:
= (1,9) = p (1,9)
ol*1(1,7) = §(1,7)

where a time step value of L 1is to be assumed when no
superscriot is present, Suppressing the (1,J) dependence,
the equations for the advance of one time step can now be

written in matrix form:
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T 7] i 7]
ritl r
g+l =2 |aq
}pL-f-l /0
£141 £

where the matrix A, called the amplification matrix, is

0 0 1 0

0 0 0 1
A=

1 0 T#T, Ty

0 1 T, TytT,

A difference scheme 1s said to be stable for a system in

which exponential growth in time is not a2llowed only if

JUS_—

where the A. are the eigenvalues of the amplification
matrix for the difference scheme.

Unfortunately the exvression for X,is exceedingly
cumbersome when all the terms in A are retained, However,
the damping terms Tv and Th are small with respect to

Ty for moderate wind speeds, so taking Ty = 0 = Ty
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2)1/2

A=-1B4( - B b, 5-24

with

B = ( -1y % (1,02

)/21 L,5-28
It may be seen that B is a real quantity and the stability

condition can be shown to be
|| < 1.
Using the above definitions, this condition may be written
(At/0x%) | Wsin(kAx) (1 + Mg(cos(maz)/b) L
(wB/(k2+m2)1/2) sin(k Ax) {1 + Mg(cos(mdDz)

-1/ cos(maz/a)] V2| &
The value of At used should be chosen such that this
inequality holds for all values of k and m which have
meaning for the difference scheme., For example, all
wavelengths between 2 Ax and the width of the reglon must
be considered in the horizontal. In the simplest case
where M, = 0 and only the first order and zero order terms

in the trignometric expansions are kept, the stability
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condition is
[-( maX/AX +6‘)B] -1 é\ts Lh 5-3

where Up,x 1s the maximum wind speed in the region. This
equation defines the stability limit Aty

The effect of neglecting the second and higher crder
terms in the trigonometric expansions has been to make
Atg smaller than it would be otherwise, Thus this
stabllity condition was found to be perfectly adequate when
the relaxation method was used for solving Poisson's
equation., However, when the Fourier transform method was
adopted it was found that even thoggh At was well below
Atg very small horizontal wavelengths tended to increase
rapidly when the viscosity and thermal conductivity were
zero, This effect was magnified by increasing the number
of horizontal points which decreaced the size of the
smallest wavelength considered. It was discovered that
this problem could be eliminated by using small but non-
zero values for the damping constants.

Since the shortest wavelengths are accounted for in
the above stability analysis, this effect is not under-
stood. Even though truncation errors give rise to finite
values for the shortest wavelengths, there is no known
reason why these wavelengths should increase in magnitude,

Because values of the damping constants which are so much



8L

smaller than the eddy values that the damping terms remain
insignificant very close to a critical level are sufficient
to eliminate this problem, it will not be pursued further,

Foldvik and Wurtele state that their scheme is stable
provided that the centered time step is replaced by a
forward time step every ty steps, where ty was determined
by exveriment,

The equations in matrix form for the forward time

step are
141 /9
f -
§§L+l %;
with - -
1+(Tu+Th)/2 Tb/2
A=

To/2  1+(T+T,)/2

-

For the case where Ty = 0 = Ty, the eigenvalues are

/L: 1+ iB/2

where B is defined in equation 4,5-1B. Since B is a real
quantity it is seen that this method is unstable for all
values of At, It is not surprising, then, that an
occasional forward time step was found to be of no help

in this work,
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L,6 Error analysis

In this section the error which results from using
finite difference equations instead of partial differential
equations is evaluated., Since this requires a known
analytic solution, only the linear equations for the case
with no shezar can be treated, but this provides an in-
dicative result for the complete equations.

Assume that the wave variables have exp(-1Ot+ikx+imz)
dependence where 4, k, and m are related by the dispersion
relation. The notation of the preceding section is used,
but note that k¥ and m are here wavenumbers which nmust
satisfy the dispersion relation while in the preceding
section they were any meaningful wavenumbers.,

Let the error factor Eu be defined by

Ey = (Af/4x)/(d1/2%)

where Af/Ax represents the finite difference operator
and f represents /7or %,. If there is no error at all,

Eu = 1, From the preceding section, it is seen that Ey

is given by:

-T
Ey = uf (1,J) = sin(k Ax) [1 + Mg(cos(maz)
2 Atu( o £/2 x)

-1)/4) /(xAx)
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If Ax and Az approach zero, Eu approaches one as would
be expected. In an analogous manner other error factors
are formed fronm Ta' Ty Tv’ and Th which are all defined

in the preceding section:

= 2sin(k Ax/2) cos(mAz/2) / (k &x)
[ -2 :, (COS(kAX) -1 cos(mAz) - l]
v = | x%n? (k(}x)2 + (m,_\z)z

Eh=E

=3
o
1

o]
!

A time error factor Et is also needed:

JAl_L-1
Ey = = sin(w A t)/ (W At)

2at(d £/ 3¢t)

where a balsnced time step has been used.
By means of these error factors the actual finlte
difference equations being used can be written using the

partial differential terms. Thus one obtains

]

- E
u

(A4
e
—

25 55 28 > L, 6o
Bt S o5 +g-3;2-} +Ev/u,vgls.6 1A

5 3 2 2, 2.y D&,
Etjf = - Euu,}fi—!- Ep) /& (-1/(X%m")) 55

+ EyX V"',a 4.6-13
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where 1t has been assumed that Poisson's equation 1is
solved without any error due to the finite differences.

The case where there is no wind and 4= 0 = K is
easily treated. The dispersion relation obtained from

equations 4,6-1 is

W21 + n2/x?) = w2 w2 4., 6-24
where
B = (EuEb)l/z/Et b.6-28

The error factor in the impedance is (Eu/Eb)l/z. Note
that changing the vertical spacing will change the
impedance and thereby cause spurious reflections,

From L,6-2 it is seen that the best time devendence
that can be expected from the finite difference system is
exp(-1 W3 t). The array values for any varilable will be
then obtained from an expression of the fornm
Real (F exp(-1 ¢_.)) where F is the correct complex value,
and F = f exp(-1wt) with f being a complex function of
x and z., The phase error @ = Wt(Eg=1). The theoretical
error Ag due to this phase shift is computed in the same

manner as the actual error:
X

P
/ |Real (F exp(-1 .)) - Real(F),
Ap = ——Ti dxdz
Aghz ,Heal(F)l max
6 %

L,6-34
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This expression can be shown to be equlvalent to

27 )
1
Ay = T ‘f]Real(exp(-iﬁ -iq‘e))] d¢= %*(sin ¢e
0
+ cos ¢e -1) L, 6-3B

It is clear that a value of At which makes Eg = 1 will
eliminate this error. This value of At, denoted Ate,
is called the minimum error value because there will be
other sources of error wnich will keep the total error
from being zero.

For the case where the wind is a nonzero constant 1t
can be shown that it is necessary that Et = Ey = E; in
order to eliminate this source of error. In general it
is not possible to choose Ax and Az so that Ey = Ey
because there are other requirements which these quantities
must meet, but in practice Eb and Eu are about the same
size and it is adequate to use Eg = 1 as the minimum
error condition.

If terms above second order are neglected in the
series representations for the sine and cosine, expanding

the error factors glves

4 2 _ 1+M 2.1 2
Eg =1 E.g.(k Ax) "‘fég(m Hz) + —6(LO At)
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2 . \% 7;
Ate=fc[.§ (%)Jr 201 + %) (fi‘?) ]

If ;{X/A x=X= AZ/AZ where N is some integer, then
Ate = T =Tax/ A4 .6l

For any analytic solution of interest the viscous and
thermal conduction terms are quite small, so their neglect
throughout is justified,.

The results of three computer runs in which an
analytic solution appropriate to the region was given

as the initial condition are presented in table 4.1,

Table 4.1
Theoretical and actual error after L steps for three
values of At: W = 0, N = 20, £'= 900s, &y = 345s,

Atg = 54.0s, At = 55.1s,

At = 25.0s At = 50,08 Dt = 55.0s8
L Th., Actual Th. Actual Th. Actual
L 0.017 0,004 0.008 0.031 0.0002 0.031
8 0.035 0,011 0.016 0.028 0.0004 0,029
16 0.070 0.023 0.031 0,043 0.0008 0,066
32 0.14 0.051 0.062 0.030 0.0016 0.066

6L 0.28 0,105 0.12 0.050 0.0032 0.17
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These runs were made when the relaxation procedure

was still being used, and with the finite difference

error in the relaxation taken into account
S 43
ES=1+(24V)2[3<@> Z(N :

The theoretical error is celculated from equation 4,6-3B
to first order. The actual error is calculated using
4,6-3A and is the average over the three working variables
Vs .‘g_. and ¢'. In one case the error is large because
the value of At used is far from At, and in the other
case it 1s large because the stability condition is
violated,

The error is large in the beginning for 4t = 50s and
At = 555 because the first step was a forward time step
which is inherently inaccurate. The time derivatives are
calculated for t = 0 and used as if they were the values
for t = At/2. For the At = 50s case the program was
terminated after 180 steps when the error was 0,08,

Unfortunately, for all interesting cases the stabllity
and minimum error requirements on At are incompatible.

Of course it is desirable that

>
Aty = At

so that At = /At may be used. From 4,5-3 and L, 6-4 1t

is seen that this inequality is
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—

1 7upax

/

v
pX+ w3

where Vox = )Lx/if is the horizontal component of the
phase velocity. For a critical level to exist the maximum
wind speed in the region must be greater than Vpx and this
condition cannot be satisfied.

The error can be reduced by using as small a value
as possible for T° and by using as large a value as
possible for N. However, the Brunt period places a lower
limit on 27 and computation time variles as N3. so not
much can be done in this regard. It is seen to be ad-
vantageous to cnoose the two-point averaging method

(Mg = 0) in order to make At, as small as possible.
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Chapter Five

Results of Caglculations

5.1 Specification of parameters and description of

output.

The nunerical model based on the finite difference
scheme described in the preceding chavter has been run
for different combinations of the many parameters describing
the ambient atmosphere and the wave source, These results
and the inferences drawn from them are presented in the
following sections. In this section the restrictions on
the various parameters and the reasons for choosing certain
values for them are discussed. Limitations of the model
and the type of output produced by the vrogram are also
described,

Wave behavior near a critical level is largely
independent of the temperature gradient, so an isothermal
atmosvhere, Brunt veriod ?é = 345s, has been used
throughout. The 1important parameter to vary is the
Richardson number, Ri, and since the Brunt freguency 1is
constant, it will be a function of the wind shear only.
The maximum and mininum wind speeds are related to the
stability of the finite difference scheme and the propaga-
tion or nonprogggation of the wave fundamental and its
higher harmonics, however, so they cannot be chosen
indiscriminantly.

While the 'harmonics' can refer to multiples of

either the frequency or the wavenumber, it is the hori-
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zontal wavenuzber which 1s meant in this case. The
reason for choosing wavenumber rather than frequency will
be discussed shortly. In the case that all the harmonics
travel with the same horizontal phase speed, the two are
equivalent, For a linear system only the fundamental
would be of concern since the source contains only the
fundamental (to the extent that this is vpossible in a
finite difference system). In this model the nonlinear
terms are capable of generating constants and higher
harmonics, so that these must be considered.

From the simple dispversion relation it can be shown
that for the vertical wavenumber m to be real, the wind

must satisfy the following relation:

v - a)B/k(I) L u 4 v

px . Wg/%(1) 5.1-1

p
where the horizontal wavenunmber k is given by equation
b 7, Vox = W /% is the horizontal phase speed of the

source. The maximum range of the wind for real m is

seen to be
BTy = 205/%(1) = 2vy, T/ T 5(1-1).

Note that if the entire ranze of u is to be used, the
values of U must be centered on Vpx for 5.1-1 to be

satisfied.
It is desirable that the stability limit be as large
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as possible and that the wave period be as small as

possible so that a given number of time steps will equal

as many wave periods as possible. Using equation 4,5-2:

N u
2? - max , o, ?7mﬁé
dtg vpx
There is a definite lower limit on this ratio because

u must be greater than v

nax " for a critical level to

P
exist and the wave period must be greater than the Brunt
period for propagation with no wind. Xeeping N small will
make this ratio small, and it also makes the number of
points to be calculated small, While both of these factors
decrease the amount of computer time required, N cannot be
made so small that the results are entirely inaccurate.
In practice, N = 8 has generally been used. This provides
somewhat less accuracy than might be desired, but as long
as the third harmonic (which has a wavelength of 2.7AX)
is not too large, it appears to be adequate.

The ((N/2) + 1)th value of the transform must be real
to produce a real inverse transform, and since this term
is usually largely imaginary it 1s arbitrarily attenuzted
by either reguiring this term to be real or by taking only
the real portion of the inverse transform. Thus the
Fourier transform method of solving Poisson's equation
makes this term, the fourth harmonic for N = &, unreliable,

It is generally true that the second harmonic is

larger than the third, and the third larger than the
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fourth since they are all generated by the interactions of
lower harmonics. If the third harmonic is small with
respect to the fundamental, the attenuation of the fourth
harmonic is insignificant. If the third harmonic is an
appreciable fraction of the fundamental, however, the
oprosite must be assumed and the model is unreliable. In
practice it has been found that soon after the third
harmonic becomes of significant size the wave quantities
become locally larger than is physically reasonable and
the program terminates., This may be because the energy
which would normally go down-scale to higher harmonics and
eventual viscous dissipation is blocked and accumulates in
the third harmonic where it causes instability.

While 7?2 should be reasonably close to fé. there
are no restrictions on Ay = NAx and thus on vpy.
However, from section 4.4 it is seen that for a source row
at height zg ¢ will have exp(-k]z - zg[) dependence,

This implies that unless the height of the region, h, is

on the order of or greater than ;LX/Z, the disturbance
from the source will fill the entire region after only

one time step. If the critical level is in the near field
of the source, then it will not be possible to observe

the wave's arrival at the critical level, and the effect of
the critical level on energy transmission will be difficult
to evaluste since the wave will be about the same size

on both sides of the critical level in the beginning.

So, while )\x is arbitrary, ratios like h/),X and
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umax/vpx are important,

A horizontal wavelength of 5000m has been used
throughout, but the results apply to any wavelsngth as
long as various quantities are scaled appropriately., 1If
the wavelengths, wave motions and wind speed are all
multiplied by a factor f while the period is unchanged, it
can be seen from the basic equations that they are un-
changed if o 1is multiplied by f, and if p, ¢ v pe s
and ¥ are all multiplied by 2. The magnitude of £ is
unaffected,

with 7 , A x+ h, and Ri chosen, Upax and A are
chosen taking into account the propagation or nonpropagation
of the wave harmonics, and then A Zyq 1s chosen to give
the specified value of Ri. The shear layer, containing
the critical level 1s placed as far as possible from the
source so that the wave parameters will be small there in
the beginning. On the other hand, the shear layer must be
far enough from the ground so that the events near the
critical level are not obscured by the effect of the
rigid surface at z = 0,

In presenting the results of this model the emphasis
is more on horizontal wavelength as opposed to frequency
because it is convenient to Fourier analyse the arrays
for /9, w, and u by rows and to present magnitude and phase
angle of the variable in tabular form as a function of
wavelength and height., The repetition length is a fixed

constraint in this model, and cannot change with time,



97

While the source has a constant frequency as well as a
constant wavelength, in the transient early stages the
frequency exhibited by the wave 1is often quite different
from that of the source., To Fourier analyse in the time
dimension, the arrays of the variables would have to be
stored for many time steps which 1s not feaslible,.

A fairly good idea of the frequency as a function of
time, height and wavelength can be obtained by comparing
the phase angles at successive print steps. Unfortunately
this was not done for some of the earlier runs. It has
been found easier to think in terms of speed than fre-

quencies, so the relation used is
L L L-L
HPS™(I,J) = (47(I,J) = #-7~0(I,J))/Lo Atk(I)

éL(I,J) is the vhase angle of the 1*® term in the Fourier
transform for the Jth row at time step L. L, is the
nunber of time stevps between successive print steps. A
value of Ly At roughly equal to %%/2 has been found best.
HPS is seen to be the average horizontal phase speed over
the precsding period L0[§t.

The other portion of the model's output which will
be shown here are contour plots of the variables /’, w, and
u. When an expanded region is present, in addition to a
plot of the entire region, a plot of the same size for
the expanded region is slso produced, thereby showing

the region of interest in greater detail. Because of
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similarities between the plots for different variables,
and the troubles with averages in the horizontal motion,
only the plots of the wave density are usually shown.

As mentioned in section b.4 some local effects
develov at the boundaries of the expanded region where
the vertical spacing changes. Large values of 4z/4zg
such as eight and sixteen must be used in order to have h
as large as ‘lx:and vyet have adequately small spacing
near the critical level, Disturbances with vertical
wavelengths less than 2Az will not be able to propagate
outside the exvanded region and so their reflection at
these boundaries i1s expected. It is found that the second
and third harmonics which have shorter vertical wave-
lengths than the fundamental are occalonally quite large
at these heights. In a few cases large spurious values of

g a» the constant term in the transform of g y are
generated at one of the edges of the expanded region.
Since u,, the change in the wind, 1s obtained from in-
tegrating éélupward from the ground, the values of u,
above the svurious value for 3§a‘will be offset. There is
no reason to doubt the relative changes of uy within

the expanded region, though.
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5.2 Results of calculations

The finite difference model described in the pre-
ceding chapter has been run for a number of different
cases. The reference, case A, wWill be presented in sone
detail. The other cases, most of which differ from case A
by having different values for only a few paraneters,
are treated more briefly. Then scme figures which contain
the results of most of the cases are discussed, and
finally some observations about energy and momentum flow
are mede,

Sone new parameters will be needed to describe the
model completely. Let z,y and Zyat be the heights of the
bottom and top of the layer in which the wind shear is
nonzero, Uy and Uy denote the wind speed below Zyp 2nd
above z,t respectively. The wind is a linear function of
height between zyp and z,, and is continuous everywhere,
Zep and zoy are the helghts of the bottom and top of the
expanded region. h is the height of the region. Vox is
the constant horizontal phase speed of the source. The
source strength Sq =‘§ g4z 1s approximately equal to
the magnitude of the horizontal wave motion it generates.
Zg is the helght of the source. 2z, 1s the helght of the
critical level assuming that the wave moves with vpX
and that the wind remains unchanged,

Those parameters which are the same for all cases are:

At = 158, Ax = 625m, Tz = 3455, A4 = 5000m, and
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AZS = 25m,
Now it is not expected that the actual critical level

will remain at the theoretical value of 2z In the first

c*
place the wind will change if the incident wave brings
momentun which is absorbed near the critical level, The
original wind U is independent of time, so the total wind
ie W + ug, vwhere ug(z,t), the change in the wind since

time zero, 1s the average of u over a row of points at
height z and at time t. ug is also the constant term in
the Fourier transform of a u row. In addition, the actual
critical level may change because the wave at a given
height may be moving with a speed different from Vpxe
Further, the different wave variatles may meve at different

speeds, so that the critical level may be different for

each variable.

Case A (Reference)

The parameters for this case are: h = 6400m,
Az = B0Om, z, = 2z, = 2000m, Zyp = Zey = 2800m,
zg, = 6200m, Uy
Ri = 0.53, A = 0,02kg/ms, and K = 0.02m2/s. This gives

= 0, U, = 20m/s, ¥= 450s, sg = 1.12m/s,

Vpx = 11.11m/s and z, = 2ublim,  The upper boundary is

X

treated by the mirror technique,.

Tables 5.1 end Figures 5.1 contain the row transforms
and contour vlots for three times this case wnich ran for
4500s, Chanzes after 34658 were not too great, and the

tatles and contour plois are presented at this time in order



to faciliate comparison with other cases, The vertica!
phase speed above zut 1s 8.6m/s so it takes about L400s
for the wave to reach the shear layer.

With these tables and figures there 1s no need for
a detailed description of this case, but attention must
be drawn to a number of features. From figures 5.1H,L
it may be seen that the angle which the pattern makes
with the vertical just above the critical level 1is much
greater than it 1is near the top of the expanded regilon.
The wave pattern is being sheared and in order to do this
it is necessary that the horizontal phase speed be different
at different heights. From tables 5,1D,F it may be seen
that just above z HPS increases with height as the figures
suggest. This shearing of the wave decreasss its vertical
wavelength., Also, u(2437.5m) = 10.94m/s so that by
2025s the actual critical level for 63 and ‘'u is about
25m below Zgys

The linear theory predicted that/p and u would increzase
without limit as a critical level is approached, and that
w would decrease to zero. From tables 5.1 it is seen
that thesec predictions are partially true. w does decrease
but does not go to zero, and the increase of /0 and u
stops about 100m from the critical level, below which
height these variables decrease in size,

In the 1000s following 3465s the fundamentals remain
about the same size but the second harmonics roughly

double. ug in the expanded reglon increases in magnitude
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by approximately one third, but u_. above Zot changes

a

sign. The importance of the sign of u, will be discussed

a

later when energy and momentum are considered.



TABLE S.1A FCURIER TRANSFORM CF RHO BY ROWS FUR CASE A YIME STEP 64 TIME = 945,0

MAGNITUUE AND FPS IN MKS UNITS ANGLE IN RADIANS

HPS IS THE HCRIZCNTAL PHASE SPEED CALCULATED FROM THE CHANGE IN THE PHASE ANGLE IN THE LASY 180,00 SECONDS
”

CCNSTANT FUNDAMENT AL SECCNU HARMCNIC THIRD HARMONIC

J 4 MAGN I TUOE ANGL L HPS MAGNITULE ANGL E HPS MAGNITUVE ANGLE HPS
2 200.,0 -0, 000000 0.000020 0. 890 10.00 0.000CCO 0e5C4 9.15 0. 000000 0.0 0.0
3 60C.0 -0, 000000 0.000055 l.113 9,60 0.,000000 Qo463 Fe45 0.000000 0.0 0.0
- 1000.0 =0.000C00 0.,000076 14551 8.89 C.C0CCCC 0,732 10.00 0.000000 0.0 0.0
5 14)C.0 -0, 000000 0.,00008¢4 241217 H.53 0,00C020Q lello 9.23 0. 000000 1.787 6463
] 18)0.0 -0.000000 0.000099 24842 T.45 C.002CCC 1.589 8,19 0.000000 le466 5,44
7 2012.5 -0.0CC020 0.000124 3.127 7.08 c.000cC01 1a495 7.99 0.000000 0.736 -0.32
8 203745 -0.0000600 0.000129 3.137 7.30 C.0202C0O1 1.617 9.33 0.000000 0.0 7.35
9 206245 =0.000001 0.000134 =-3.110 7.45 0.000CC1 1.713 9. 56 Q. 0CCNO0 2.122 S.17
10 2087.5 =0 000001 0.000142 =-3,043 Teo4 0.000C01 2,270 . B.50 0.000000 2.310 5.84
11 2112.5 -0.000002 0.000158 =2.961 1.27 0.000CC1 2.6¥1 6.90 0.000000 2.317 6435
12 2137.5 -0.000004 0.000145 <~2.843 7.03 0.,000002 3.1137 6,42 C. 000000 2260 6he 54
13 2162.5 =-0.000000 0.000225 =2.,863 b, 83 c.co0cel 3.C76 6,435 0.000000 2.172 6.67
14 21815 =0.000009 0.0002711 =-2.8177 6,71 C,.N0CC04 2.545 6438 0.C00200 2.016 6.71
15 2212.5 -C.00C012 D.000338 =2,930 bebb Ce00)C05 2.787 6444 0.000000 1.92% 6.71
16 2231.5 -C.000016 0.,000406 =3,010 - 6,67 . 0.C0JCU8 2.€15 6e49 0.00N000 1.907 6,68
17 2262.5 =C.000019 0.000475 =3,109 6,71 0.007010 24431 6455 0.000000 1.842 6.59
18 2287.% =0.200021 0.,000543 3.060 6o 78 0.G02013 2.233 6.62 0+000000 1.77¢ 6e49
19 2312,5 -C. 000022 0.C006YS 2,937 6,49 0.000C16 2.016 6.T1 C«C00000 l.678 bo4l
20 2337.5 -0.900022 1 0.000659 24805 7.02 0, 000019 1.779 0. B4 0.000001 1.530 6437
21 2362.5 -C.000021 0.000706 2,667 7.19 C.000022 1.523 7.01 ~0.000001 1.3213 6,39
22 2381.5 =0.0%0018 0.000738 2.525 Te34 C. 007020 1.259 7,22 0.0C0001 1.064 6,67
23 2412.5 =C. 000014 0.000762 2,341 T.01 0.009C29 0.666 Tead 0.000001 0.760 6.60
24 2437.5 -0.,000010 J.000177 24237 T.86 0.000032 0.677 7.09 0.000001 0,422 LYRLY
25 2662.5 =0.000005 0.0007385 2.096 8.11 0.000C35 O. 343 1.94 0.000001 N6 6He94
26 2487,.5 -0.000C01 J.0007d6 1.958 He 38 0.000037 0.1C3 .18 0.000002 =-0.,317 7.13
27 2512.5 0.0CJ003 0.0C0741 1.827 Yo 64 €.0010C39 =-0.1175 Baul 0.000002 =0.106 7.32
28 2537.5 €.000007 0.000771 1.703 He 90 0.000C4C -0,444 Bebh 0000002 =1.10? T.50
29 256245 0.C00009 0.000757 1.587 9.15 0.00GC40 =0.7Ca .5 0.000002 =-1.502 Te6n
30 2587.5 0.000011 0.000739 1o479 9o 39 C.000C38% =-0.951 9.C4 0000001 =1.913 ~1.40
31 261245 0.000012 0.000719 1.378 Ge.63 ° c.00nC38 =-1.183 9.22 0.,000001 =2.348 8,06
32 2631.5 0.000012 0.000696 1.284 Ye87 0.,000C37 ~1,1397 Y9430 0.000001 =~2,3843 8,35
33 2662,.5 0.000013 0.000672 1,196 10,11 000003 =1.588 9,46 0.0C0001 2.932 ~0.46
4 2647.5% 0.C0001/ 0.000647 lelle 10,45 C.000C3> <~1.1747 Yo b 0.000C01 2.173 N.11
35 2112.5 Cc.00c012 0000022 1,032 10,061 0.001)034 =-1,t70 9,26 N.000CN1 1.571 0.5%50
36 2737.5 0.,000011 0.00C596 0.,9%3 10.8% 0.000034 =1,643 8.21 . 0.000001 0,975 0,64
37 276245 0,000012 0.C00574 0. 885 11.14 0.,000038 -1,983 1,86 ) 0«000008 1.627 Te34
38 27687.5 =C.0J00Ct 0.000544 0.788 11.55 0.000CCe 2,611 5.31 - 0.000007 =1.992 5.90
39 3coc.C =0.,3CC007 0.000773 0.529 11,66 C.003C51 =2.CS56 10458 0.000001 <=l.4l4 7.33
40 3400.0 -0, 300009 0.001174 0e243 10.85 0.007C84 =-2.,431 Tel® 0.000000 02414 3.09
41 380C.0 0.000u07 N.00124¢ =0.131 9,78 0.000074 =2.,849— T3 - 0360000 ——0s15Hh— 365
42 420C.0 0.03C0Ce6 0.001061 =0, 842 10.26 0.000029 le256 11.37 0.000003 0,084 5,32
43 460C.0 =0.,0J0C02 0.,0010%5 ~-1,838 11.73 0.0005L70 1. 7¢1 10.77 0.000001 1.599 3,95
44 5020.0 -C. 000003 0.001050 =2,822 12,02 C.00003Y l.618 T.17 0,000002 1.945 bobt
45 540C.0 -0.000008 0.001130 2559 i2.13 Ce000018 =0.1740 -1.02 0.000001 1.8 7.Ch
46 5800.0 -0.000000 0.001212 1.871 11.41 0.000Cl14 1.012 8432 0,000001 =0.507 -0.53

“7 6200.0 0.0 0.001340 1.515% 11.23 C.000CH0 2.765 0.20 0.000001 ~0C.385% -1,.,28

€01



TABLE S.1B

MAGNITUDE AND HPS IN MKS UNITS
HPS IS THE HCRIZCNTAL PHASE SPEED CALCULATLU FRCM THE CHANGE IN THE PHASEt AANGLE

3

4C0.0
80C.0
12170,0
1600,0

2000.0
2025.0
2050.0
2075.0
2100,0

212%.0
215C.C
2175.0
223C.0
2225.0

225C.C
22175.0
2300.0
2325.0
2350.0

2375,0
2400,0
2425.0
2450,0
2475,0

253C.0
2525.0
25%0.0
2575.0
2600,0

2625.0
265C,0
2675.0
2720.0
2725.0

27150.0
2715.0
2800,0
3200,0
363C. 0

400C.0
4400,0
“800.0
5200.,0
560C. 0

6C00.0
6400.0

FOURIER TRANSFUOKM QF W

CCNSTANT

-0.000000
=C. 000000

0. 000000
=0.000000

0.0
0.000000
-0.000C00
0.0
C.000CQ0

0.0000Q0
-0.000000
0.000000
=0.000C00
C. 00UVCO

0.000000
0. 000990
0.000000
0. 000000
=0.9200000

0.,000000
0.00C000
=C.00C000
C. 000000
«0.,000000

-0, 0(0000
0.000000
-0.000000
-0.000000
0.000000

0.000000
=0.000C00
-0, 000000
-0.000000

0. 000000

=0.00L000
0.0C0C00
-C. 000000
04000000
=0.300000

0.00C000
-0.00c000
0.000000
0.000000
0. C00000

0.0
0. 000000

FUNDAMENT AL
MAGNITUDE  ANGLE
0,009629 ~0,0v6
D.017143 0,209
0.023563 0,809
0.,0359481 lab9
0.057427 1.985
0.05992% /2,013
0.061858 2,040
0.063827 2,065
0.,0657446 2,044
0.067490 2,112
0.068950 2,137
V.070064  2.106
0.C70874 2,203
0.071576 2,251
0.072543 2,314
V.074320 2.389
00771518 2.413
0.,082672 2,558
0.090086 2,633
0,099771 24693
0.111491 2,733
0.124879 2,755
04139522 2.700
0,155026 2,754
0.171052 2.738
0.187316 2,715
0.203605%  2.0689
0.218759  2.660
0.235673 2,629
0.251284  2.594
0.200564 2,568
0281908 2,537
0.296128 2,508
Ve310664 2,480
0.32447d 2,452
0.338242 2,426
0.355642 2,401
0.517606 2,061
3.587395  1.687
04571148 1.214
0.453634  0.598
0.308408 =0,446
0.336989 =1,706
0.,442655 =2,0623
0.560728 2,933
0.587482  2.930

BY ROwS FUR CASt A
ANGLE IN RADIANS

H PSS

9. 98
Y, bb
T.49
6.21

5.02
“e9%
4,88
Lo B2
“ol5

4. 69
4,62
4,55
4.47
4436

“e24
“.12
4.CC
3.94
3.96

4,06
.23
4ohs
4,70
4.94

Se L7
5.38
5.57
5.74
5,89

6003
6.14
6425
Go 34
6.42

te5C
6,57
6,64
7,45
8,19

8480
9.28
11.11
13,27
12.82

11.55
11.56

TIME STEP ¢4

SECCND HARMCNIC

MAGNT TUDE

0. 007CC?
0.000018
0.00)062
0.00C1499

G.000587
0.00006135
0.007¢79
C.000721
0.007756

C.00C?T7
9.000277
C.00N754
0.000711
0.0006067

C.000¢&7%
0.000811
0.00111¢
0.001567
0.002149

0.002439
V0013614
0.00444¢
043053C7
0.006152

0.006944
CeV0 647
C.008236
0.003696
C.CO0502R

0.009247
0.009137¢
0.009457
C.CO9SLY
0.001598

C.00913C
0.009930
0.010232
0.008580
0.022736

Ce04453H
0.020436
0. 025016
C.035196
0.019014

C.016116
0.016918

ANGLE

=0e534
0.198
0.717
1.€99

14294
1.4C7
l.414
1.4C9
1.390

1.380
141372
1.389
1,457
l.617

1. 852
2.195
2.361
24459
2.438

2,363
. 255
?2.124
1.949
lahadb

1.7C1
le501
l.426
1,300
1. 184

1.C79
0.5u7
n.907
0.4833
0.778

0.721
0.678
0.630
-0. 28
=2.100

-2.553
-2.722
2539
2.408
24,316

2,583
24589

180,00 SECONDS

THIRD HARMUNIC

TIMe = 965,0
IN THE LAST
HPS MAGNI TULE
9.11 0.,000000
T.706 0.,000000
6.87 C.0Q00001
6415 0.000003
5.56 0,000006
5453 C.0N0C0h
5.51 0,000007
5.50 0.0CO0N0H
551 Je 00J009
9452 0.0CCO09
56513 0.000010
e 69 0.000010
537 0,000010
5.09 0. 000009
4263 0.0000048
4ol8 0000008
4004 N.000C12
4020 N, 000019
4.53 0.000032
4490 0,000049
D26 0.000071
Seb7 0. 000099
585 0.0001132
bl 0.07M0167
6e32 V000202
6e52 0, 000234
0, 69 0.00025¢9
Y1) 0.,000273
6, 98 0.000275
T.10 0.0300263
7.19 0.0002%
7.28 0.0001986
T. 34 0.000146
1e40 C,0N00Y |
T.496 0.000037
7.51 0.000013%
15K 0.C0004H
9,29 0.000441
-1l.13 0.0920950
Se17 C.000703
6.13 0.001049
Be52 0.00an4
T.24 0.000521
7.5 0.000396
T7.27 0.0003092
T.27 0.000315

ANGLE

«0.,472
-0.,0482
1.388
1.632

1.114
0,942
0.678
N.619
0.177

~0.073
-0.300
-D.549
-0.812
=l.135

-l.610
=2.3463
=3.N96
2.672
2.310

2.1710
1.735
1,472
1.214
Q. 4901

0.714
D.674
0,242
C.020
-J.189

~0.383
-0.563
=0.723
=0.854
=0.938

-0.732
0745
1.021
=2.551
=2.716

~2,553
=-0.321
0,308
1.209
=2.49%

=2.751%
=2.15?

HPS

6.87
6,60
5.01
5.10

5.92
64,17
6e54
betdl
Teln

Te5!
-l.42
=l.02
~0.50

0.27

1e44
2.98
4,37
S5e2%
5,77

615
6445
6.69
6492
T.12

7.31
T.08
7.65
~l.65
-1.30

-1.15
=0.99
-0.83
=0.68
=0.56

-0.83
6.34
6.09
.73
6,48

6.09
3,37
5404
5.07
2.37

2,08
2,08

0T



TABLE 5.1C

MAGNI TUDE AND HPS [N MKS UNITS
HPS IS THE HCRIZCNTAL PHASE SPEED CALCULATED FROM THE CHANGE IN THE PHASLC ANGLE

4

2120,0
600.0
1000.0
1400.0

1800.0
2012.5
2037.5
2062.5
2087.5

2112.5
2137.5
2162.5
21817,5
221245

2231.5
2262.5
2287.5
2312,.5
2337.5

2362.5
2387.5
2412.5
24317,5
2462.5

2487.5
251245
25317.5
2562.5
2587,5-

2612.5
2637.5
266245
2687.5
2112.5

2737.5
2762,.5
2787.5
3000.0
3400.0

3800.0
©2C0,0
46C0.0
5000,0
5400.0

5800.0
6220,0

FCURIER TRANSFURM OF U

CCNSTANTY

0.C000Cs
0.000036
0.0N0006Y
0.COCI94

C.0N00108
c.000087
0.000119
Ce 000260
0.000508

0.001065
0.001727
0.002462
C.003123
0.093515

0.003442
0.0021729
0.0012 74
=0.000918
-0.003753%

-0.007027
=0.010673
=0.013799
-0.016733
=0.019066

-0.0200669
~0.021510
-0.,0210638
-0.021163
~0s020231

=0.018994
-0.01759¢
-0.01615?2
~0.014755
-0.01%71

=0.,012364
=0.011444
=0.011105
=0.0146492
=0.025843

=0.033262
=0.032214
~0.031714
~0.036237
-0,043660

=0.046872
=0.046370

FUNUAMENT AL
MAGNL TUDE ANGLE
0.,019202 l.8068
Ve.016159 24557
0.026671 =2.650
De0s4b14 =-2,107
0.062561 ~1,699
De076753 ~1,545
0,07d187 =~1l.5%44
0,077846 =1,.%41
0. 07%494 =1,51%
D.071572 ~1.,433
Ue 068459 ~1,264
0.072641 ~1,.018
JeCHTnOB ~0,790
0.113963 <-0,662
0.148414 =-0,633
0.187871 =0,672
Ue 230022 =0,753
0.27318> =-0,861
0.316177 <«0,985
04357971 -1.117
0.397576 =1,250
0.4 34001 =-1,1382
0.466159 =-1,508
04493235 =1.624
0.514692 =1.739
0.530334 ~1l.843
Ve540502 =1.937
N.545758 ~2,024
0. 946924 =2,103
Qsbbensy =-2.174
04540542 =-2.238
06534610 =-2.296
0.527749 =2.348
0.520427 =-2.396
0.512974 =2,439
0.505316 -2.419
Q.4917504 =2,517
O.4lHl176 <=2.884
0.,430346 2.481
0.5620064 l.681
0.694072 Ce890
0.831088 0.113
0.776662 =-0.655
0.720075 ~1,549
0.748845 =2,351
0.00300V5 3.021

BY ROWS FUR CASE A
ANGLE IN RAUIANS

H P S

9,94
Bo42
5e52
5424

4488
“e4ts
4. 37
4433
“ob?

4,14
549
6425
6440
6He2H

belS
615
6.23
0. 38
6490

6. 76
6,97
T.16
7.33
T4l

Te €0
T.70
7.78
T.85
7.91

.96
8400
8.C5
8,09
8. 14

8420
8.26
8435

' Y9.l6

10,42

9,18
10,08
11.18
10. 79
11,28

11.23
9.97

TIME STEP 64

SECCND HARMCNIC

MAGNI TUDE

0.C07006
0.000015
0.0060050
0.000151

0.,000430
0.0001720
C. 000745
0.,000711
Qs CONG02

0eNV0392
0.0001113
0.0023502
0.0012(0
veNO21t1

0.003246
Ce004015
04006233
0.308102
0.0t02Cs

0.01246¢
0.0L44852
0.,017114
C.Cl9Ca2
C.0¢06C2

C.C21509
QG.021752
0.0211344
09201366
0.01d8947

N.017218
0.015329
0.,0!340%
0.0115H6
C.010027

0.009C57
0.00991%7
0.009 741
U.010301
0.028029

0.027362
0.0227186
0.027952
C.012589
0.Cl9490

C.0066173
c.000CC!

ANGL &

1.822
2.902
~2.996
=2.653

~2+3H1
=2.319
=2,409
=24598
~2.825

=3.1131
1.894
vel22
=0.19%
~0.423

=0.0634
=0, 843
-1.C70
-1.303
~letan

-le794
=2.C44
~24295
=2.565
=2.1513

-3.,C39
3.C02
2,7¢5
S35
243106

24115
1.939
1,793
1.707
l.686

1.739
1.833
1.929
0. 7%6
~0.110

=0.621
-3.127
~2.939
~le.876

1.72¢C

0. 751
0.822

IN THE LASY

TiMe =

HPS

9.
7.
6o 59
S5e

%

11
14

85

25

.11
920

Se

4“i)

Se 69

6.

20

8,96

=0,

31

3,49

4.

75

5.20
Se4b
9.73
5.96

6.

1

6e42
Seb4
0"
7.05

7.

25

T4t
T.66
Ten8

He

10

B33

8.55
3. 17
8,94
9.06
9,06

8.93
.76
d. 71

1t.

10

Ye52

Teal
12.30

3,

70

3.81

0.

19

8.59

6.

T4

Q45,0

180,00 SECONDS

THIRO) HARMONIC

MAGNITUOE

0.000000
€C.000000
0.002000
0.,000002

0,000003
0007015
N.00002%
0.,000024
0.000029

0,0000 32
0.000032
0.000033
0.000036
0. 000064

U.000057
0,000074
0.000107
0.00C149
0.000205

0.000281
0.0004372
0.UCCAT7
0.CN054K
Ve 000689

0.,000771
0.000822
0.000R3%
0.000814
0000774

0.000730
0.000707
0.,000718
0.000752
0,000767

0.0C07«3
0.0070658
0.200226
0.000402
0.000412

0.000266
0.001331
0.00072¢6
o.001C72
0.000725

0,000097
0.000000

ANGL &

24269
2.974
-1.918
=le863

-2,954
2,401
24369
2.122
1.3%59

l.564
1,237
0e822
Ce409
=C.059

=Co%69
-0.316
-l.11%
=1l.407
=1le696

-1.995
-2.305
-2.618
-2.944

3,007

246064
2.307
1.935
1.540
.12

04645
0.150
~0,321%
=0.755
-1.123

~1.469
~1.923
~1.901

04240
~0.119

2.816
24797
-2.398
=0.40%
0.500

~2.938
-0.891

6.86
6e27
4,90
Sell

6,72
~1.%
Sel?
5e41
5.67

5439
5420
5.20
533
5463

5.80
5499
6.13
6,22
bbb

6.64
6482
6,97
7.15
7.31

T 449
T.67
-1.37
~1l.13
~0.30

=0.41
0.05
0.56
1.15
3.43

5.58
6ebl
7.53
5.77
Tel6

215
459
4.86
3,43
4486

2.30
3.09

S0t



TABLE 5.1D

MAGNITUDE AND HFS IN MKS UNITS
HPS [S THE HURIZCNTAL PHASE SPEED CALCULATED FROM THE CHANGE IN THE PHASE ANGLE IN THE LASY

-
CL®WNE VSN &

o -
V& W

N e
oo~

NNNNN
W& WN

26
27
28
29
30

31
32
33
34
35

36
37
38
39
40

41
42
%3
44
%5

46
47

z

2C0.C
600,0
1C00.0
1400.0

1800.0
2012.5
2037.5
2062,5
2087.5

2112.5
2137,5
2162.%
2187.5
2212.5

2231.5
2262.5
2287.5
2312.5
2337.5

236245
2387.5
261245
2437,.5
2462.5

2481.5

2512.5
2537.5
256245
2587.5

2612,.5
2637.5
2662.5
2631.5
2712.5

21317.5
2762.5
27817.5
3000,0
3400.0

380C.0
4200.0
“60C.0
5020.0
540L0.0

5800.C
6200.,0

FCURIER TRANSFURM OF RHO BY ROWS FOR CASE A
ANGLE [N RADIANS

CCNSTANT

=0.000000
-0.,000000
=2.000000
-0, 000000

=0.C00000
-0, 000000
=0.000002
-0,000001
=C.00CC02

=Ce 0OCO004
-0.000005
0.000C00
C.C00CCOS5
=J.0¢ )03

=0.000921
=C.000062
=0. 000062
-0, 00CO 1Y

0.000054

0.000L080
0.00C207
-0.0001006
-0.,000375
=0.000523

~0.,000529
-0.,00C3 19
~0.0001 40
0.000062
0,000180

C.000210
0.000211
0.000140
0.000221
C. 0001064

0.,000166
0.000145
=0.000030
0.,000013
0.000014

C.000018
=0.000002
-0.000009

0.000005

0.000003

=0.,000000
-0.000000

FUNDAMUNT AL
MAGNITULE ANGLE
0.000050 [Py 1)
0.0001 44 Q. 506
0.,000220 04599
0.000265 0,672
0.000260 0.652
0300250 [FY-Y3
J.000268 0.59%
9.0002176 0.562
2.,000278 0.57C
0.000293 0. 607
0.000324 0,592
0,000345 0.513
0.000328 Qe 40l
0.000295 Ve616
N.000353 0,909 |
0.009524 0.919
J.000711 0. 695
J.00CH20 0.3d2
0.000786 0,054
Ve 000541 =04193
0.0002913 O.l15%4
04000551 l.151
0.001154 1.086
0.00172v 0.838
0.00214C 0,541
V,002360 04217
0,00245%2 =0,110
0,002463 =0,401
0.002403 =0,03C
0,002203 ~0,802
04002119 =0.927
0.001984 =1,0%0
0,001920 =-1.192
0001440 =1,235
0.,001836 -1.,283
2.001981 =~-1,431
0,001%31 =~1,473
0,001444 ~l.698
0.001434 =1.925
0.,000773 =-2,158
0.000411 2.181
0.0010%2 l.3064
2.001045 0.94d2
0.000673 0. 166
0.,000861 -1,1484
0.001200 =~1.490

HPS

1l.41
ll.40
10.94
10,49

10.%0
10.5¢6
t0.67
10.90
10.93

10.7C
10.61
10,97
11.56
11.31

9.92
Y22
9.21
944
9,91

11.73
14,69
10.95
10, 5%
10.06

10.82
11,01
11.21
11.39
11.%2

11,61
li.006
11.78
11.65%
1,77

11.89
12.19
12,21
11.63
11.106

9.84
11.91
12.58
12.55
13.12

10,14
10,06

TIME STEP 136

SECCND
MALNITUDE

0.000000
0.007CC1
0.007cC01
0.000002

0.000CC3
0.C00005
Ce007CC4
U.000003
0.0000C5

0.J001C0R
Ce00ICOH
Ve 0ONCLS
G.0200N0C?
C.002Cly

u.002C3C
0. 000032
CeC00C27
Ue000CLH
C.007C07

C.000010
0000024
C.007Co1
C. 000116
0.0001t5

C.000260
0.000215
04900326
0. 000266
0.000279

C.0N00278
C.000314
0,0001312
0,000263
0.000268

G.009C81
0.000232
C.320225
0.009091
0.G00167

0,000152
0,000119
0.000C54
0.000046
0.,00C024

0.000028
0.000197

HARMCAN IC

ANGLE

~2.910
=?2.104
=l.%41
-l.%¢3

=14340
-1.C73
=le4bs
~le453
-1.367
=-l.5%

-1.843
-l.984
-0.681
~0.d80

~1.323
-l.8658
=2.557
2.8€3
1.¢10

-0.217
-0. 302
~0.485
-1l.C29
-1.7Ch

=2+344
=2.910
2.858
243817
l.t67

1. 381
0.6%171
Q. 681
0.258
~0e.551

0.502
-1.¢33
2.540
=0.091
~0.613

-0.740C
-0.414
0. 58S
0,267
-1.1¢3

=0.593
=1.451

TIME

HPS

=0.45
-1.08
=1.73
=2.06

1155
10.93
11.57
11.27
10,65

Tel4
-1.70
=Cs 8O
10.14

9.80

9,064
9. 32
R.9C
4e25
del3

11,68
10.23
9,45
9,31
9.36

Y9.23
Gel8
Y.34
e bty
9.99

SeB9
Jebb
10,02
082
10.45

T.63
1.8
-Ne92

8e79

8431

Be 20
6,94
4002
“o21
T.60

3.481
=-0.30

* 2025,0

180.0C SECNNDS

THIRD HARMONIC

MAGNITUDF

0.000000
09,0000N0
0000000
0. 000010

Ce 000001
0.000001
N.,000001
0.0n0N01
J.0093001

Ce 000001
0.000001
0,000001
0.030001
0.CC000?

0.0C00013
0. 000004
0,000005
3.0C0005
0.000005

0.,009004
0. 000002
0.000007
0.00C013
0.000016

2.000019
0.000026
0.,000033
Ve 000037
3,000037

0.000036
0.0700133
0.000021
0,C920037
0.000034

0.00004T
0.000109
Ve 000057
0.000014
0.000076

0.000011
0.000006
0. 000001
0.000002
0,00000?2

0.000004
0.,C00004

ANGLE

.0

2041
2,004
0.7310

ST
0o
1,334
1.291
1.221

1.N62
0,901
0s9413
1.217
1.019

0,605
0,224
=0.062
~0.224
=C.307

-Ce 399
Ce6dY
1,361
1.081
.87

1.109
0.906
Coel?
-0,092
=Cad25

=0.793
-1.265
-1.789
“2.856

1.758

2.339
o465
1.022
~1.160
~0.%06

C.?209
O.134
lelbs
2.758
3.057

-2.631
=2.651

H

14

S

0.0

6,25

6465
=0.34

0.1
-0,03
054
0.56

0.69°

0. 68
1.65
2460
2.11
2,00

2416
229
le065
~0.51
T.78

T.04
4,78
2.31
.58
1.21

0.89
0.86
1.10
1.35
1.58

1.57
1.71
1.75%
1.8%
0.73

1.25
1.20
~l.306
2,08
3.34

S5e40
T.19
5.75
3.20
5.98

5.71
Se

10

90T



TABLE S,1E

werwnN G

[y
oOvm~NO

11

13
14
1%

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

31
32
33
34
3%

36
37
38
39
4«0

41
42
%3
44
45

46
47

2

400.0
800.0
1200.0
1600.C

2000.0
202¢%.0
2050.C
2075.0
2100.0

2125.0
2150.0
2175.0
2200.0
2225.0

2250.,0
2215.0
2300.0
2325.0
2350.0

2371%.0
2400.0
2425.0
26450.0
2415.0

250C. 0
2525.C
2550.0
257%.0
2600.0

2625,0
265C.0
2615,0
2700.0
2125.0

2750.0
2775.0
2800.0
3200.0
360C.0

4CC0.0
4400.0
48J0.0
5200.C
5600.0

6000.0
640C.C

FOURTER TRANSFORM OF W
MAGNITUDE AND HPS IN MKS UNITS

CUNSTANT

0.000000
0. 000000
0.00C000
0.,C00000

~0.C00C00
-0.C00000
~0., 000000
-0.000C00

0.000000

=0.000C00
0. 203000
0.000000
0.000000
0.300000

=0.000000
-0.,000000
-0.000C0C
-0.000000

Q0. 000000

=0,000000

-0.000000

-0.000G00
0.0
C.000C00

-0.0C00C0
0.C00C0O0
-0, 000000
=0.000000
=0.0C0000

-0,000000
-0,0C0020
€. 000000
0.0C0C00
0.0

0.000000
=-0.000C00
0. 000000
0.000C00
=0.0C0C00

0.000000
0.000000
0.000000
0. 000000
0.000000

-0.000000
=04000000

FUNDAMENTAL
MAGNITUOE ANGL E
0033260 =-1,031
06064462 -0.,980
0. 089530 -0.942
0101775 =04940
Q4094772 =~Co99)
Q094696 =~0,999
0.093434 =-1.00%
0.092151 -1.011
Qe092803 ~-1.019
0.049152 -1.C2b
Q.087103 =~-1,037
Qe QB4986 =1.065
VeUB3l14 =-1,057
0.080901 <-1.,0u47
0.076765 =~1.133
0.,009349 =-1,18C
0.059176 -1.188
74049345 =1,11%
V043721t =-0.979
0.041205 =0.903
0.035788 =~0.,963
Ue022513 =1l.l86
0,0052%3 =2.902
0,0323d6 le94y
0. 064814 le bbb
0.108615 le4le
0.149293 1.220
0.188598 1.C59
0.224946 0.928
«257902 0.819
0.287094 0,728
043155923 0.0649
0.341221 0e579
O.304l017 0.517
0.385956 0.%62
0,404073 Q.411
Q426415 Ce 366
0.577294 0.029
Ve460454 =0,089
QelUBY4T =0,148
0,306990 2.791
04505749 2.576
0.407618 24115
0.337301 0.870
0,598526 0,018
0.629068 0.013

BY ROWS FOR CASE A
ANGLE IN RADIANS
HPS IS THE HORIZUNTAL PHASE SPEED CALCULATED FROM THE CHANGE [N Thi PHASE ANGLE

H PSS

11.19
10,93
1C. 74
10.72

11.00
11.03
11.06
11.09
11.13

11,19
11.24
11,28
11.33
11,45

11.7C
12.05%
12.35
12.30
11.8¢

11l.406
11.57
12.44
20431
0. 313

4038
6. 86
Ra05
8,70
9.10

9,36
9,54
9.67
Y. 77
Ye85

9,91
9.96
10,00
9,94
9,42

T.99
16.03
13,11
12.40
10.58

10.39
10.39

VIME STEP 136

SCCCND HARMCANIC

MAGN! TUDE

€.000119
0.000186
0.000573
0.,001387

0003233
0.003443
0.003722
0.003949
0.004136

C.004339
0.074619
C.004808
0.0V49013
0.004772

0.C04929
0.005748
Ce006%41
0.007973
0.00577

0.008¢32
0.008050
0.007C3¢
0,0092%3
Ca0l6¢€23

0.02%4902
0.031970
04038670
Ue040EBSE
0.040816

0.04C166
Ca039376
Qe 44024
0eC¥H9522
C.032619

Ce030247
Ce029270
0.030426
Ve0454 144
0.C59430

0.0628C2
0.031584
Ca021€CH
0.035783
0.028200

0.029882
0.,031238

ANGL E

-2 441
=2.7C7
-2.766
-24583

~2.383
-2.374
~2.367
~2.358
-2.338

-2.3C7
~2¢2E5
~2.287
“2.2t6
=24223

-2.Ct65
~1.677
-1.575
~2.C30
«2.CE6

-2.123
-2.107
-1.852
-1.337
~1.199

=1.333
~1.562
~1.833
-2.138
~2.417

~2.845
3.C5%6
2,680
24301
1.528

1.5¢2
l.2¢2
1.C70
0,841
0.612

Qe 286
-0.C54
-1.112
=l.4el
“1.420

=1.745
~leT44

TIME = 2025.0

IN Tie LAST

HPS

10,77
10.83
11.31
1C. 82

10,24
10.¢3
10.22
10.22
10.20

10,15
10.09
1c.08
10.12
10.10

Yo Y4
9.75
9,65
Ge57
Gebe?

S.217
9.26
Ye&s?
Y. ld
9404

9.13
9,32
Geb1
Y.88
10.23

10.59
10,99
11,79
11,62
“1l.96

~l.69
-leb2
-1.77
BethH
He 40

9. 14
5086
6438
6e9%
3 1]

8440
8.40

180,00 SECONDS

THIPO HARMONIC

MAGNITUOE

0.0%0001%
0.,000C15
0.000053
0.000178

0.000R04
0.0C0898
0.000995%
0.0C1109
0.0C1209

0.001326
JeCO1461
0.001614
Q.00 761
0.0C1882

0.0C1984
0.C02117
C.002307
Q.0002566
0.002896

Ue0C3277
0.00%633
0.0C3H86
0.004C21
0.004066

J.003921
0.003779
0.004224
0.005675%
0.007507

0.009575
0011659
0s013640
Qe014997
0015479

0.,014975
0.013830
0.013001
0.0C8715
J«003167

0000607
0.0016649
0000602
V000923
GeNO1129

2.0C0260
0,000273

ANGLE

-1.122
-Ce3lV
=0,449
~0.343

-0.87!
-0.871
-G 8643
“0.496%
-0ed61l

<0.454
-0, H45
-0s84?
-CoH47
~0.466

-0,9326
=04 186
=Co.743
-0 713
=C.704

ALY
~0an06
-0.R9%
-0.9176
“1.935

~1.03¢
~0,H891
-0.0626
=Ce%5h
=Ne%4d

“Ne519
=0.657
-0.820
=0e9HS
=le126

~1.214
~1.224
-1.141
-0.133
-0.065

~3.N08
2917
=2eb54
24441
2.458

244PR2
?e482

HPS

1.02
lel6
1.37
l.36

1017
1.16
l.16
1.12
1.11

1.09
1,05
1.01
Q.98
C.97

0,97
0.94
1.00
1.01
Ca97?

0,90
0.46
0.86
0.91
1.03

1.19
1.27
1.15
«CS
.05

1.08
t.12
1.15
lel?
1.19

1.22
1.29
1.36
3,14
7.32

3,12
5448
6428
=0.50
=N.55

-0.77
~0.77

40T



TABLE S.1F

MAGNITUDE

-
QLEENEG VwerwnNn

——p— e e
NP N

-
~ 0

N o= g
ovw®

NNNNN
e RV YR

wWNYN N
oL~

W W W
VS WN -

36
37
38
39
“0

«1
«3
44
45

46
47

3

230.,0
6CC.0
1000.0
1400,0

180C.0
2012,.,5
2037.5
2062.5
2087.5

2112,.5
2137.5
2162,.5
2187.5
2212.5

2237.5
2262,5
2281.5
2312.5
23317.5

2362.5
2387.5
2412.5
26437.5
246245

2487.5
2512.5
2537.5
2562.5
25817.5

2612,5
2637.5
2662,.5
2681,5
2712,.5

2737.5
2762.5
27817.5
3000,0
3400.0

3800.0
4200.0
4600,0
5000.0
$4CC.0

5870.0
6200, 0

FOURITR TRANSFCKM OF
AND HPS IN MKS UNITS
HPS IS THE HCRIZCNTAL PHASE SPEED CALCULATED FRUM THE CHANGE IN THE PHASE ANGLE IN THE (AST

CUNSTANT

0.0000136
0.0001175
0.0C0430
0.000693

0.0CN994
0.00102¢
0. 000795
0.C00TH5
0.001 701

0.002602
0.001721
-C.C00L8Y
0,0014¢47?
c.010120

0.C2C701
0.019406
-0,003745
=0.039890
=0.060848

~0,041400
0.013307
Ve0b1403
0.049691
=Ca. 047336

=0.205719
=0¢364713
=0.4064138
-0.489382
~0.4511C8

-Ce 388853
~0.330960
~0.286510
=0.245%62
~0. 199892

-0.158157
~0.115120
=0.089856
=008 30246
-0.072471

-0.C49458
~0.043419
-0,Ce57C5
-0.068 140
=0.05370%

-0.048761
=0.048762

FUNDAMENTAL

MAGN [ TULL ANGL €
0. 066329 0,931
Q4059199 1,042
0.,044154 1.138
0.015760 1. 0406
0. 024210 =1.68Y9
V.0%50175 =1,790
0.053239 ~=1.847
Je053923 =1,4d69
0.057892 =~1.,714
04C69013 =1,7064
0,079753 ~1,.881
0.080176 =1,960
0.077537 ~-l1.761
0.111857 =-1.479
0.147020 ~-1la4585
0.272924 =~1.915
0.,338931 <2.313
041350072 =?2.711
Ve279641 =3,053
0.136353 =3,005
04195987 =1,712
QJe%nlniy «~1,801
0.,740362 =2,144
1.046008 =2,535
1.27264718 =~2.94
leo47629 3.012
1.543%04 2. 1213
1.542903 24492
le4bh332 2. 30%
1359325 2,154
1252007 2.030
lelolba? 1.92%
1.1C0631 1.830
1.025972 1. 139
0.946151 leba?
24852140 1e5386
Q17157 1,440
0.414014 le2t2
0,304007 =0,179
De7594448 =~1.239
0.837E18  =1,48%
0,405140 =-2,088
Je489377 2.230
0.901079 l.722
0.901783 1.352
0.006427 0.894

U  HBY RCWS FOR CASt A
ANGLE IN RADIANS

HPS

11.19
10,64
10.16
10. 59

6438
8e17
.61
9.11
8.80

Be 34
8.53
9,54
9, 70
.23

T.61
T.49
Te35
7.04
6433

22,317
12.17
10.76
10.55
10.54

10.60
10.70
1C.79
10.486
10,91

10,93
10.93
1C. 52
10491
10,84

10.88
10,96
11.05%
10.24
12.05

11.05
t1.07
11.39
13,23
11.68

11.23
11.33

VIVME STEP 136

SECCND HARMCNIC

MAGNI TUDE

0.00N0128
0.000C7S
040004C9
C.00CELT

Je.002014
0.C03629
0.0040065%
0.003353
0.003277

Ue 004130
0.005C14
0.004161
CeCON387
0.305924

0.012116
0.017425
0.0207%4
C.0l92727
G.013C74

CoCOSTHIL
0.C118%4
0.039452
0,0823¢9
04133053

Ue.170124
V185032
0s194571
O.21648¢
042413124

Nel62382
Cel26T751
Ce.257CHQ
0.244370
Ce229021

0.207047
Ce 158507
C.l0t772
Ge0279060
Q.012836

0.021894
0.060325
0.03203%
C.017731
0.,010162

C. 010384
0.0013Cl6

ANGLE

~0.CbH
-0.d14
~0.440
-0.C%0

0.129
0.120
0.CH7
0.150
Qe 465

O.0634
O.4L8
0.033
0.402
2elel

lebSta
Ue 945
C.394
-0.C34
~0.373

-1.C72
-3.101
24440
1ett0
1.227

[*PADY
0.168
-0.456
~1.0517
-l1.34

-1.9206
=24309
-2.1729
3.067
72.6066

2.1331
2.C69
2.C79
2.333
2o k5L

1.263
-C.2CY9
-0.152

Oe4Ca
-2.37C

-0.1765
1.732

TIME = 2025,0

HPS

10,77
11.62
11.02
1C.45

Yol
PR
10.12
10,26
9eT5

Ye08
9.13
Y0
10.86
T.59

8023
HeBU
9.0%
8.75
Tetl

Te?2h
Yehe
9429
9.02
t.94d

9e12
Qub?
9.98
1G, 39
10.59

10.65
10465
1061
10,74
10.81

10.b9
10.43
10.51
9e24
b.Ce

5,19
Fe s
T.89
1.67
0.04

1.48
10.9%

180,00 SECONDS

THIRD HARMNNIC

MAGN I Tuue

2.000001
C.Cn009Y
0400031
0.00010

2,000517
0,001124
Ve 001268
0.,00113179
0.001627

0.001538
Ve001T8e

0.002004 -

0.001932
U DOL65T

0.,001440
N.0020113
0.002797
Ve 003557
000461358

0.00518%
0005752
0.005577
000406617
0.00322¢

0.0014%3
2.,0077902
Ne015427
0.021616
0.026516

04029084
J.024024
0038349
0.03642%
0029565

0.020359
0.016120
Ne020327
0.009503
Ve 0N4942

0,003236
0.000873
N, 001076
0.000746
0.0Mr0134

0,000762
0.000000

ANGLE

1e613
24020
le 147
1,919

18369
le877
1.907
1,917
1.929

1,975
1.991
1.93)
14349
1.9113%

2.297
2.524
2.457
24311
2.110

1.7R2
1. 460
NeV5%
Cehld
0.220

=leeld
-2.,654
=3.10%
2e159
2. 155

1949
1.542
o192
O.Tb4
0.323

-0.364
-1.53%
~2.408
24229
=0.5n1

~0.427
=C.734

2.301
-1,798
~0.975

2,058
-2.639

HPS

1.04
1.36
1.52
le36

.12
1.04
0.96
0494
0.97

0.59
0.72
0.61
D.64
Qe84

0.5
Oedé
0.92
D.H9
0,74

0.60
0.37
-0.21
-1.05
T.04

=0.42
0455
Ne68
0.d%
1.06

1.19
1.26
1.24
te17
1.18

0.89
0.62
1.64
1.96
.18

3.7
7.2
3.61
3.10
4,04

0,31
1.96

80T



TABLE 5,1G FCURIER TRANSFCRM CF RHO HBY RCWS FUR CASE A TIME STEP 232 TIME = 346%5,0
MAGNITUDE AND HPS IN MXS UNITS ANGLE IN RADIANS
HPS IS THE HORI2ZCAYAL PHASE SPEEC CALCULATED FROM THE CHANGF IN THE PHASE ANGLE IN THE LASY 180.00 SFCONDS

CONSTANT FUNDAMENTAL SECCND HARMCNIC THIRD HWARMONIC

J L4 MAGN ITUDE ANGLE HPS MAGNI TUDE ANGLE H P S MAGNITUDE ANGLE [
2 200.0 -0.,000000 0.,000031 =-2,428 13.54 C.000CCL ~1,712 6051 0.,000000 =3,136 7.59
3 60C,0 =0, 000000 0.000093 -2,317 12,%2 0.,000002 =2.413 9.61 0.000000 1149 -0.60
L 1000.0 -0.000C00 0.000160 =2,137 11.C6 C.000004 =-2,619 10.%4 0.000001! €.939 6.78
5 1400.0 -0.000C00 0.000216 =-2.008 10,37 0,00CC10 =2.779 1C. 90 0.000001 0.h26 6.12
6 1800.0 =0.000000 0.00C239 -1,HY6 1C. 3% 0.702C21 =-2.755 10.97 0.000002 0.065 6.62
7 2012.5 ~0.000001 0.000246 -1,821 10,41 0.00)C30 =-2.715 10.483 0.000004 =-0,030 6,53
8 2037.5 -0,C00003 0.000268 ~1,1796 10,09 0.,000034 =-2.776 11.00 0.000005 =0.244 T.06
9 2062.5 =0.000002 0.000285 -1,843 1C. 44 C.000C38 =2.75%3 11.03 0.000006 =0,154 Tet5
10 2087.5 ~0.000004 0.000294 -l.48l4 10.38 0.000041 =2.739 10.98 0.000009 C. 005 -1,645
11 2112.5 -0.,009C04 0000325 <-1.t31 10,25 C.00CC48 <2,713 10.87 0.000010 0.254 -0,89
12 2137.5 ~0.000003 0.,000331 -1l,874 10.79 0.00NC53 =2.743 11.13 0. 000010 0.525 -0.10
13 2162.5 ~0.200008 0.000357 -1.806 10,32 €. 000C57 -2.680 1C.97 0.000007 CeR20 l.14
14 2187.5 0.000004 0.000398 =1,937 10.73 0,007C7C =-2.413 11.01 0.000006 1.5071 l.17
15 2212.5 -C.000010 0.000335 -1l,.868 11.93 C.007063 =-2.905 11.94 0,000003 0,417 3.35
16 2237.5 ~04300064 0.000462 ~1.519 o2 Co000CL7T =~-2.3E4 11.05 Ce DQO011 =1,341 6.91
17 226245 =0.000024 0.00068¢ =~1,898 8,9¢ 0.000102 <=2.459 10.05 0.,000014 =1,909 ~l.41
18 2287.5 0.,0C0059 0.000616 =2.330 S.7C C.000126 =2.542 10.33 0.000009 -0.242 5.53
19 2312.5 =C. 002000 0.000374 =-¢£,040 14,43 0.00)9092 =«3,072 12.13 0.000032 ~=0C.3131 6.60
20 2337.5 =0.000024 J.000%92 -1.899 11.56C 0.000114 =-2,739 11.11 0.,000052 =-0.524 6,96
21 2362.,5 0.C20037 0.000526 ~2.125 14,11 0.000161 =3.C80 10.67 0.00008Q =€,262 6. 36
22 2387,5 -0,000162 04000445 ~0,951 11.98 0.,020178 3,115 Qb4 0,000102 =0,1310 6.14
23 26412.5 ~0.000407 0.000915 -1.236 10.67 0.000100 =2.272 ~0.74 0.000079 <-0.816 6,82
24 2437.5 -0.000122 0.C013%62 =2.C87 10.90 0.002385 ~-1.379 d.76 0,000048 =-1,065 -1.23
25 2462.5 0.000353 0,001426 =2,440 10464 0,000475 =2.¢C86 He 95 0.000043 -1.,449 554
26 24817.5 -0.,000200 0.001206 -1.501 12.08 0.000626 2.5%0 10,37 0.00010% =-0.891 .81
27 2512.5 -0.001436 0.002040 -l.103 11.60 0,007€28 =l.¢41l 10,77 0.000012 =0.414 2,64
28 2537.5 -0,001015 0.001819 -1,828 1l.87 C.000633 =1,%21 Be99 0,000064 =2.692 2.75
29 2562.5 0.000228 0.002294 =-2.377 11.57 C.00C369 =2.613 7.11 0.000163 =2,136 =1.40
30 2587.5 0.000382 0.002473 =2,393 11,07 0,00027¢ 2.727 1.506 0,000034 =2,294 -1,05
a1 2612.5 0.000380 0.,002457 =-2.460 11.42 C.CO0227 =2.193 ~2.03 0,000079 24,051 439
32 2637.5 0.000467 0.002327 =2.566 11439 N,000364 =2,141 11.06 0.000039 =1.6%2 1.63
33 2662.5 0.0C0431 0.,002268 =2.0636 11,22 C. 000262 =2.9548 12.79 0.C00042 =1.93n 0.57
34 2687.5 0.000353 0,001931 =2.665 10,66 C.000170 =~2.HC8H =Q.C4 0.000065 =2.46495 2.51
35 2712.5 0.,000229 0.0016tT7T =-2,729 1C.67 C.000C4B =-2,2137 ~Ce91l 0,000039 =~1,154 3.3
36 27137.5 0.0CCCT6 0.,001559 =2.765 10.59 C.000136 2.122 1.72 0,000067 ~-2,051 3.89
37 276245 0.000076 0.001693 -2,795 10.63 C. 000253 0,983 7.59 0.00014% 3.085 463
38 2787.5 0.000020 0.,001255 <=2.673 10.60 0.,000458 0.383 11.31 0.000010 =2.862 7.29
39 3000.0 0.000004 0.,001314 3.043 11.13 0.000101 0.13506 7.52 0.000032 -0.163 2.96
40 3400.0 0,000002 0.001434 2.546 11.92 C.000125 =~0.248 8,20 0.0C0025 0.208 5.17
41 380C.0 0,00C009 0.000999 1,782 1C. 85 C.000127 <-0.4$5 7.58 0.000024 1,048 6.26
“2 4200.C -0,000011 0.001019 0.634 8494 0.000167 =-0.,421 0.98 0,000014 <2.092 1e42
43 460C.0 -0,000012 N.001471 0.112 9 94 CeQ00157 «2,t74 7.61 0.000028 =1,927 636
44 5000.0 0.000018 0.001358 =0.248 10. 19 0.000273 <2.8C1 6,72 C, 000011 =1,835 591
“5 5400.0 C. 000020 0.000760 =-C.69C 1C. 41 0.0002C0 3.0648 7.34 . 0.000006 =0.390 5.7C
46 5800.0 -0,300000 0.000443 =2.600 12.86 0.0001¢5 2.¢€68 8,70 0, 000002 0.732 4.54

“7 6200.0 0,000000 0.000844 ~-2.967 l11.6% 0.000165 0,367 -0.72 0.000002 0.563 .33

60T



TABLE 5,1H

MAGNITUDE AND HPS IN XS UNITS
HPS IS THE HORIZCNTAL PHASE SPEED CALCULATED FROM THE CHANGE IN THE PHASE ANGLE IN THE LAST

z

400.0
800.0
1200.0
1600.0

2000.0
202%,0
2050.0
2075,0
2100,0

212%.0
2150.0
2175.0
2200.C
2225.0

2250,0
2275.0
2300,0
2325,0
2350.0

2375.0
2400.0
2425.0
24%0.0
2475.0

2500.0
2525,0
2550.0
2575.,0
2600, 0

2625.,0
2650.0
2675.0
2730.C
27125.0

2750.0
2175.0
2800.0
3200.,0
3600,0

4000.0
44C0.,0
4800.C
520C. 0
5600.0

6000, 0
6400.0

FOURFER TRANSFORM OF «

CCNSTANT

€. 000000
0.0

0.0C0000
-0.000000

~0.,000000
=0.000000
-0.000000
0.,000000
0.000C00

€. 000000
=0,00C000
=0, 000000
=0.,000000
-0,0C0000

0.000000
-0.000C00
=0,0C0000
~0.000000

0.000000

0.000000
0.000000
C. 000000
-0.,000600
0.000000

0.000000
-0. 000000
0.000000
=0. 000000
0,000000

=0. 000000

-0, 000C00
0.000000

=0.000C00
0.0

C.0
0.0
=C. 000000
-0.000000
0.,000000

-0,200000
0.,000000

-0.000000
0.0

=04000000

0.0
=0.000000

FUNDAMENT AL
MAGNI TUDE ANGLE
0,022029 2.478
04045959 2,563
0.068817 2618
2. 086449 2,827
Ve092523 3,053
0.,093643 3,072
0.093614 3.c91
0.093535 3.112
0,0934 15 3.134
0.093250 =3,125
0,092985 =3,100
0.,092306 <3,073
C.091704 =-3,038
0.090779 -3,004
0.088137 =2,959
0.047578 =-2,862
0.091160 =2,787
V.092959 =2, 746
0.093908 =~2,0681
04096960 =~2.649
0.096025 =2.653
0.092140 =2.535
0,093376 =2,349
0,089908 =2.303
0.078944 =2,165
0.089010 =1,795
0e135772 =1,512
0.194778 =1.3d7
0.24802d4 <«1,3136
0,293402 =1.42a
0.332056 =-1,331?
0.365143 =1,13%3
04395325 =1,374
0.421914 =1,40C
0.441505 =i,426
0.456547 =1,457
0.,476612 =1,497
0.584843 -1,059
0.424839 =2,227
02645210 2,844
0.458783 1,753
0.587039 lo4ll
0,46T129 1.111
0.191029 0.364
0,326386 <-1,482
06342752 =1,491

BY RCWS FOR CASE A
ANGLE [N RADIANS

HPS

11.78
11,34
10.49
10.50

10.14
10.11
1C. 04
10.0%
10.C1

S.97
9,93
9.90
9,83
90Ty

9.78
9,56
9,22
8499
8.176

3¢ 52
8.33
8.0
T.72
T.17

5,91
5420
11.19
11.59
11,48

1l.41
11.29
11.12
10.98
10.89

10.81
10. 77
10.75
10.36
S.79

10.80
11.49
10. 86
10,44
10.26

12.24
12,25

VIME STEP 232

SECCND HARMCNIC

MAGNITULE

0,000578
0.001443
0.003720
0.009993

04025434
0.027271
C.02938¢L3
06030549
0.032340

0.034192
0.036195
0.038265
C.040438
0., 0603CoH

0.,042542
Ce0&T11A
0.049253
0.052419
0.055C49

0., 057596
0,062180
0.0681398
C.C7C%29
0.,072553%

0.085155
0.09733¢
Ce0938H8
C.077634
0.062070

0.041523
0.036714
N.032148
C.C35867
0.065471}

0,0%3941
Ne067144
0.CHp7673
06079499
0.082634

0.0606C5
0.035994
0,040272
0.062902
0.U66952

0.088253
0.092549

ANGLE

1.750
1.950
1,653
1.651

1530
1.930
1.929
1.929
1.627

1.526
1.924
1.622
1,924
1.918

1.902
1.504
1.626
1.935
1.92%

1.949
1e542
1.R70
1. 829
1.92%

1.5C8
1.7C3
1.548
1.627
1.487

1.2¢3
0,942
0.862
1.c98
1.357

1.928
| ST Y -]
1.700
1.409
1.266

1.128
1.793
-1l.937
-1.435
-1l.842

-l.548
~1.948

TIVE = 3465,0

HPS

-l.71
11.21
11.1%
11.33

1l.44
11,44
11,45
lle44
11,45

1l.45
11,44
11,45
11,44
11.43

11,49
11.60
11.58
11.%0
11.56

11.63
11,51
11,46
-2.006
-2.19

11.19
11.113
11.37
1C. 95
8,29

T.24
T.306
7.30
t.76
6,43

6.51
6.30
[2PyL3
T.63
8,10

9.22
“e27
10.83
8,28
.13

8,75
8, 7%

180,00 SECUNDS

THIRD HARMCNIC

MAGNI TUDL

0.00005!
0,000072
0.000266
V. 000803

0. 002812
0.003098
0.003371
Q.003652
0.00397%

0,004395
0,006030
Q.0055489
0.006257
0.,0C6818

0.007518
0.008245
0.008445
CeC0H245
J.007912

0.007330
0.007482
0,008648
0.010141
0.010844

0.011496
0.012819
0.015268
0.019237
0.,023045

0,02681n
0.011945
N.039219
0e045415
N4,049753

0,0%0507
0.046426
N.041584
0. 014264
).008186

J. 010616
0006126
0.003146
0.005243
0.004020

J.CC1934
0.,002028

ANGLE

1.013
=0,935
-1l.689
~1.688%

=1l.719
-l.722
-l.?24
=1ls 742
-1.763

-1.786
~1.79%
-l.7864
-l.766
-1.722

~1.672
~l.486
=1.752
=1,795
-l.867

~1.960
~2.002
-1.972
-1.996
-2.017

-2,007
-1.496
~1.614
-1,465
-1.517

~1.504
-1,397
-1.347
-1.354
-1.378

-1.,379
-1.380
-1.027
~2.934
-2.962

-2,123
=1.910
0.239
0.839
1.586

1.802
1.80?

HPS

1.79
Tebte
7,58
5.32

4,05
4,01
4,01
4.09
“e22

4e38
4ot
4,138
4001
3,23

2.52
2.33
2.66
2.88
2490

3.03
.18
3.24
3.33
V1,53

3.8
3.57
2.93
2,41
2.32

24,40
24327
2,30
2.36
2448

2463
2.72
2468
3.03
2.94

1.00
S5.47
1.63
2.87
2.79

3.08
3.08

0TT



TABLE S.1I

MAGNITUOE AND HPS N MXS UNITS
HPS IS THE HCRIZCNTAL PHASE SPEED CALCULATFU FROM THE CHANGE IN THE PMASE ANGLE IN THE LAST

[

BT N> WVwEWN

10

200,0
60C.0
1000,0
140C.0

1800.0
2012,5
2037.5
206245
2087,5

2112.5
2137,.5
2162.5
2181.5
2212.5

22317.5
2262.5
2247.5
2312.5
2137.5

2362.5
2387.5
2412.5
24317.5
2462,5

2487.5
2512.5
2537.5
2562.5
2587.5

2612.5
2637.5
2662.5
2687.5
2712.5

2737.5
27€2.5
27187.5
3000.C
3400.0

3800.0
4200.0
46CC.0
5000.0
5400,0

5800.0
6220,.0

FCURIER TRANSFORM OF U

CONSTANT

0.000010
0. 000069
0.000215
0,000448

0.0001771
0.0003487
0.000597
0.0900582
o.,001178

C.001099
0.002458
0.002681
0.001434
0.01065%

0.00373¢4
=0.040805
=0.047859
=0.0C7596
=0.019475

=0,030159

0.009717
-0.0u86817
=0.293862
-0.,2622C7

=0.125728
-0.4431C7
=1.027265
~1.194435
=0s665993

-0.763024
<0.643569
«0.5C9413
-0,371105
~0.242398

=0.158909
~0,C96760
~0.051998
-0.024610
=0.,060390

=0.041922
-0.050110
~0.073762
-0.C63501
-0.041758

-0,028273
~0.028277

FUNDAMENTAL
MAGNITUDE ANGLE
0,04393% ~-1.841
0.045920 -1,6172
D,043219 =-1,383
0.036912 =~0.,875
0.041826 0.CH4
0.056370 0,429
04060543 Vo9l
0.065914 0.505
0.0672064 0.563
0.075469 0.616
0.0775496 0.6%2
0.C89194 0, 80S
0,107808 Q747
Ve 096755 0.920
0.172078  1.135
0.280266 0.719
04245025 0.252
0.132949 0.384
04198359 C. 710
0.134282 Ce130
D+041440 2.730
V.328821 1.3%6
0.505497 1.020
0.2822H44 1.635
04527886 2.0065
1.058622 1.252
le823413 0.Y14
2.022932 0,8%3
1.755861 Ue 812
1457739 O.682
1.236120 0. 552
1.062669 0,446
0.9842176 0,331
Oe8893857 0.193%
0,701976 =0.000
0.644834 =0,278
04742568 =0.449
0.427067 =-0.856
0.524008 <~2,412
0.857772 =-2.841
0.816740 3. 126
0.,418057 24496
0e435620 0,917
0.743636 0.288
0.852391 0.Cl13
0.005960 =-1,127

BY RCWS FOR CASE A
ANGLE [N RADIANS

HPS

11.78
10.89
9,47
9.07

8.72
8,71
8,39
8,40
8,77

8457
9,11
8,85
8.50
9.69

8.10
661
4030
-2.24
1C. 95

0,63
11.67
11,59
10.7%
14,67

12,36
12.61
11.81
11.09

10.91

11.08
10.74
10.07

"10.04

10.3%6

10.066
11.30
11.82
11.47
12.02

11.00
10.03
10.51
12.07
11,17

1C. 99
12.80

TIME STEP 232

SFCOND HARMUNIC

MAGNI YUDE

0.000¢24
0.000925
C.C0238%
0.006576

0.C16447
0.,026039
0.026668
0.028252
0.030C19

0.031CCC
0.033579
C.C3467S
0.036463
0. 044500

0.043290
0.025449
N.040215
0.054870
Ce0402€27

0.044380
Ce0Q78228
0.135225
04059492
0.126223

Ce229¢CCT
C.390781
0.268667
0.29315¢
0.283230

Ce.338274
04305057
Ce0957134
Ue155322
04249055

0.282603
0.194588
0.061581
0,025411
0.012877

0.029793
Ce 045210
0.080546
0.035541
0.029071

0.021439
0.003C16

ANGLE

~2.176
=-1.836
=1.672
~1.977

-2.C12
=l.998
-2.€01
~2.,Cl4
=2.024%

-2.C22
=2.C31
=2.045
-1.674
-2.099

~2.213
-1.969
-1.510
~1.859
-1.667

~l.661
=2.C73
~2.687
=3.C?5
=0. 750

~2.122
=3.127
2.162
0. 861
0e9CO

1.318
lel77
C. 649
=1.797
-1l.8%9

=1.893
-1l.582
=0.5¢4
2.743
2.C62

0.787
~0.216
0.7C3
l.587
-C.e17

0.028
0. C69

TIME = 3465,0

HPS

~1.71
10.56
11.11
11.48

1152
11.51
11.45
11.02
11,48

Llo44
11.135
11.54
11,31
11.03

-0.139
~0.42
10.86
10,27

O.17

-l.61
10.44
He 2R
bo76
9,29

9.37
5,03
3,68
-2.02
-1l.31

11.32
11.09
=2.20
~1.94
10.26

10,46
11.25
0el9
11.39
1.01

4,17
10.50
10.17

3.55

G 59

1.52
10.86

180,00 SECONDS

THIRD HARMONIC

MAGNI TUDE

0,000042
0.0000R6
0,000189
0.000433

0.001653
0.003329
0.003575
0.003r20
0.004355

0.00%661
0.007079
0,0687133
0.00893¢4
0.0C8295

0.010407
0,009637
N.007783
0.005727
0.007484

0.013782
2.006326
0.01579%
0.020067
0.009560

0. 008509
0.025479
0,062012
Q.063192
Q.0527H41

0.050239
0.08n767
0.099444
0.082247
0.0%88774

0.008269
0.057165
0.,078322
0,026801
0.005598

0.006642
0,004341
0.007068
0.,002570
0.003116

0.,0019%2
0.000000

ANGLF

~2.521
1.317
0,323
1.061

1.017
Ce989
0.957
0,335
0.741

0. 146
Q.875
1.035
lel69
1.493

1,541
0.909
=0.231
~1l.153
-14345

-1.2848
~0.584
0.971
C.609
0,428

0.921
1.n18
2.020
1.789
0,973

14324
le853
1.626
1s340
1.122

l.241
-1.760
-l.439
~1.494

2.990

leh44
=2.762
=2.616
-2.071
-0.383

1.017
«0,931

HPS

1079
-0,99
6.92
“c21

.M
3. 65
4,04
4,78
be42

6,17
Teb59
O.l4
0. 64
0.91

0.93
2.10
5.00
6.27
6.06

S5.91
SeH3
EXRLS
bob4
=1.25

614
2.32
1.02
=0,.38
0.69

2.93
1.96
2.20
2,93
4.16

5.70
2.02
2495
3,39
3.29

5.13
1,43
«0.29
3.3
2.8R

2.76
6,93

11t



X AXIS

0¢12E 04 0.22E 04 O0432E 04 0,42E 04 0452 C4 C.62F 04

7 0.62€ o«o---12:;7-«-- L Gm=mp S SSSSF==2Be - PHg- +
X ~ ; by AL
A i 1
X 1
1
s
0.50E C4
0.38€ 04
0,26E 04f-—-
MMp
MY FTAMMM MM MMMMMMM
. : MMMV Y MY VMMV
! 1
! I
0.14E 04+—-- ———
1 1
I 1
I I 1 1 1 1
1 I I 1 ! 1
I 1 1 1 I I
0.20€ 03¢--- +- .- — S R

CORRESPONDENCE BETWEEN PRINTER SYMBOLS AND CONTOUR LEVELS
K = =0,14129E-02 70 -0.,11560tL-02

L - -C.B9913E~03 TO -0.,£4224E-03
M = -0.38534E-03 TO -0.12845E~03
P - 0,12845E-03 TO 0.38534E-03
R = 0,64224E-03 TO 0,89913E-03
S - 0.11560E-02 TO 0Q.14129E-02
FIGURE S« 1A CCATOQUR PLOY OF RHO FOR CASE A

MKS UNITS TIME STEP 64 TIME = 945.0

X AXIS

2
A
X
I
)

0.20E Ob4t—mmmmmmm—pocemmee et

0.12E 04 0.22E 04 0.32E 06 0.42E 04 0.52E 04 0.62E 04

0428E Qb é=—pMMMo=at oo YUV MY

CORRESPONDENCE BETWEEN PRINTER SYMBOLS AND CONTOUR LEVELS

K

wxoxr

FIGURE 5. 1B

~0s14129€-02
-0.89913E-03
-0.38534E-03
0.12€845€E-C3
0.64224E-C3
0.11560£-02

EXPANDED REGICN
MKS UNITS

10 -0.11560€-02
TO -Ce64224E-03
TO -0.12845E-03
TC ,0.38534E-03
TO 0.89913€-03
TO 0.14129E~02

CONTOUR PLCT OF RHO FOR CASE A

TIME STEP 64 TIME =  945.0

(AN



X AX1S X AXIS

0.12E 04 Ca22E 064 0432E 04 0,42F 04 0.52E D4 0.62E 04 0.12E 04 0,226 04 0.32E 04 0,42t 04 0,526 04 0.62E 04

I O0.64E 04K =Bl Q¢ KKKKKKKKK L 0.28E CaLLLLp-=--

A A
X X
! 1
S S
PPPPPPPPPPPPPPPPPP
PPPPPPPPPPPPPPPPPP UMMM N MMV Y MMM
POPPPPPPPPPPPRPP (MMM MMM M MY
I
1 I
1 [
Oel3€E 044-—- -—— 0422E Q4MNMIMMIY
1 1 MMMMMM
1 1 MWV MM
1 1 | 1 i 1 MMMV MY
1 1 1 1 1 1 MVMMMM
1 1 1 1 I 1 MMMMpN
029 -0l ¢mmmcmmcccprnc e b ——— ¢t ——— b + 0+20E Q4+-—==- i e ek Ll et Tl R ]
CORRESPCNDENCE BETWEEN PRINTER SYMBQOLS AND CONTOUR LEVELS CORRESPONDENCE BETWEEN PRINTER SYMBOLS AND CONTCUR LEVELS
K = =0,59733 TO -0.48872 K = =0.59733 TO -0.48872
L - -0.,38012 TO -0.,27151 L - ~-C.38Cl2 TG -0.27151
M - -0.,16291 TO -C.543C3E-01 M - -0,16291 TO -C.54303€E-01
P - 04543C2E-01 TO 0.16291 P - 0.54302E-01 TO 0Q.16291
R - 0.,271¢1 TC 0.38012 R = 0.,27151 TO C.38012
S - 0.48872 YO 0.59733 S - 0.48872 T0O 02.56733
FIGURE 5. 1C CONTQUR PLCT OF W FOR CASE A FIGURE S. 1D CONTOUR PLOYT OF W FOR CASE A
MKS UNITS TIME STEP 64 TIME = 945,0 EXPANDED REGICN
MKS UNITS TIME STEP 64 TIME = 945,0

€1t



X AXIS

Oel6E 04 0.26E 04 0,36k U4 0.46E 04 0,56E 04

0062 0b#mmmmpmommbmmmmmmmmmg o= ===~

Veb06E 04

(]

Vo~ X >

0.26E 06FPP Qﬁﬁ}

PPPP
[
1
1
Osl4E 04 ¢——-
l 1
[ !
1 1 1 1 i 1
1 1 1 1 1 1
1 1 ! 1 1 1
0,20 034=——momemams —— bemmmem—e b ——————

CORRESPONDENCE BETWLEN PRINTER SYMBOLS AND CONTOUR LEVELS

K = =0.87995 T0 -0.71996
L = =0.55%%7 TQO -0.39998
M - -0.239SS TC -0,79995€E-01
P = 0.79996E-01 TO 0.23999
R - ©.365S8 TC C.55957
S = 0.71996 TO C.87995

CONTOUR PLOT OF U
TIME STEP 64

FOR CASE A
TIME =  945,0

FIGURE S, 1E
MKS UNITS

X AXIS

0.12E 04 0.22L 04 0e42E 04 0.52E 04

0.28E 049-9

Ce 32F 04

N

Lt
LLeLLLetLt

e X >
—

tLeeeeeeee
LLeLeeeeeet
Leeteeetee
[SESRS SRS
et
LLeLeeett

Co22E O4¢---
1
1
1 1 | 4 1
1 I i 1 14
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121
Case B (Low Richardson Number)

This case has the same parameters as case A except
that zgy = 2z, = 2400m, Ri = 0,13, and z, = 2622m,

This case terminated at 2430s. Figures 5.2 and tables 5.2
indicate how this case developed. Figures 5.2B,D extend
from 2412,5m to 2787,.5m, and the axis values of 2562.5m
and 2637.5n have both been rounded to 2600m.

From the tables it is clear that in this case the
critical level is transmitting almost all of the.incident
wave., The growth of the second and third harmonics 1is
much faster here than it is in case A, so that by 2310s
the third harronic is too large for the model to be con-
sidered reliable, Note that in addition to a decrease in
the wind above z,, in this case there 1is an increase below

z Because case B is the only case run wnen the progranm

C'
was using a less satisfactory method of handling the
boundsries of the expanded region, and to examine the

stability question further, case C was run.



TABLE 5,.,2A FOURIER TRANSFORM OF RHO BY ROWS
FOR CASE B TIME STEP 155 TIME = 2310,0
MAGNITUDE AND HPS 1IN MKS UNITS ANGLEF IN RADIANS

HPS IS THE HCRIZONTAL PHASE SPEED CALCULATED FROM THE CHANGE IN THE PHASE.ANGLE IN THE LAST 60.00 SECONDS

CONSTANT FUNDAMENTAL SECOND HARMONIC THIRD HARMONIC
J b4 MAGNITUDE ANGLE HPS MAGNITUDE ANGL S HPS MAGNI TUDE ANGLE HPS
2 200,0 -0, 000007 0.00Nn237 =2,1351 11,617 0, 000N0"3 1,233 002 0, 700001 =-N.T77 -1.08
3 &N0,0 -0,N00NN0A 0,I0067Q =2,206 11,57 0, 000020 1.343 0.45 7.022323207 =-1,428 -0, 61
4 1900, 0 -0.0000002 0.,0310%Y =2,172 11.54 0,0N0NY11L =1 ,543 -3,13R N, NONN 19 =2, K45 ~1,4,08
5 164170 0 =0, 02191% N,NN1270 =2,000 11. 41 0.0N0' 09 ?2.,N45 1.04 N.NJINK9 1.147 -0.00
A 1200.0 0.00000° 0.,001345 -1, 87> 10,91 nN,N00077 7.5A43 11,73 2. 000058 <=0.9855 ~0.90
7 270N,0n =-0.000157 N,9301256 =1, AKS 11 .55 N.J330113) 1.596 22.59 0, 000100 N.632 2450
A 26412,5 0.070487 0,N01117 <2.214 7. 21 0. 000700 2,113 2.84%4 N. 000564 1.5R4 0.96
Q 2437,5 0.0n0N73 0.NN131Y -1,.8581 13.15 1,3%331?2 1.107 23,12 N, NONKAR? 0.144 2,22
1" 264672 .5 -0.000114 N.NN10RT  =-1.777 14,67 0, 00025A 1.016 32.13 1.322295 0.223 1.84
1 2407 ,.5 =-N.N00N351 0.NN16Y2 =1,701 12.17 N.INND1RZ Ne Q64 26,17 N, 0001N3 =-0,112 3.70
12 2512.5 =N, NONKAR N ON2N43  =1,T714 13.00 0,000343 1.343 15,38 N, 00N224 =N,413% 4460
12 2637,.5 -N.NJ1475 00072343 =1,4Kk 10,24 N.2N00K7 ~=1,294 -0. 74 7. 0000720 -1,510 Abb
14 2562.5 -0.0n1812 N NN3014 ~1,01R1 10,19 0.230512 =~=2.,845 7.N9 N.NNN125 n.1on N, 77
15 ?25R7,5 -2.,732911 0.,004324 <2,03) 11.25 0.,0N079> 2,017 9,27 0n,000309 =0,5%34 5.13
16 2612, 5 -0. 0N?22R0 0.,00%46R7 =2,311 12. 56 . 0,002092 -2,09] 11.10 1,000668 0.122 15,15
17 2637.5 -0,N014R7 0,002934 20379 16, 71 0.0n1463 =-7,507 15,74 2.717)558 N, 34 17.37
1R 266245 N.0N1A3Q N, NNGENN 2. 602 Re,45 0.297347 1.6R9 726,13 0.NNNT18 =0,.654 Q, T4
19 2648T7,5 -NeND1452 N,0NK247 0, 994 14,78 0.0nN9)1 7 -1,21% 5,81 N.001052 -2.810 ReH?
20 2712,5 0. N02013 0.003143 2,281 f,an %,335%47 1.161 11.51 NeNO10A9 N,NR4 heR2
21 2737,.,5 -0, N0ON187 0.NN3344 0, Ne3 1510 0,0N2369 =2,263 13,30 M.721728% n,oTt 16,38
27 ?27A2.5 0. 0042A0 0,0NAA% G 1./613 14,02 0.003312 N,432 11.25 1, 001788 N. 291 4,36
23 2787,5 -0, NN1A03 NeND1S44 N, O 19, 218 N,0049446 <) 852 11,57 Y.721679 -1.303 6,14
24 3NN, 0 0,0NNR4LQ 0,701 288 1. 784 9.1 0. 0N1 12?2 N,940 11.R9 N, D002464 7.101 532
’5 3400.0 N, NINO02 & 0., 0N 757 1.814 In,02 N,000742 2.506 11,00 N, N00237 1,070 Sel7
24 3190.N nN.020011 n,NON7?23 2. 254 R, 68 0.00N1 45 Ne?213 11,18 N. 000047 <=1,2%4 8,20
27 4200,0 -0.,N00N57T N,ON1470 =1,04172 11,95 0, 000395 1.0%Q 11,31 3.907170  =3,1013 be61
29 4500,0 -0.00Nn020 0,00N26405 <=1,7130 11,99 0. 000351 =-=3,Nn0% 1n.49 " 20NN 726 2, /A28 AeRS
29 5NAC, N 0. NIDNK nN,ON2187 =1,635 11.53 N0.0NN374 <1 ,900 9,42 1.0070n4 N, 241 10.51
3n 5400, N 0.000N30 N,N1Y9841 =1, 454 Q, A3 N, 0N01R8"Y  =1,n4N Se%9 2.203323 -0,258 10,95
31 s20Nn,N -0.N00250 Ny NONALD 1,213 15,37 0,J90134 Ne715 20,57 N, 000014 -n,39} 11.55
22 AN, N 0.NAD262 0., NN1178 Y, 262 13,9 N,000?R1 2.410 15. 88 N, 000005 =1,010 9,728

(AN



TABLE 5.2B FOURIER TRANSFORM OF W
FOR CASE B TIME STEP 155 TIME = 2310.0

MAGNITUDE AND HPS IN MKS UNITS ANGLE IN RADIANS

HPS IS THE HORIZONTAL PHASE SPEED CALCULATED FROM THE CHANGE IN THE PHASE ANGLE IN THE LAST

BY ROWS

60,00 SECONOS

CONSTANT FUNDAMENTAL SECCND HARMCNIC THIRD HARMONIC
J b4 MAGNITUDE ANGL E HPS MAGNITUDE ANGL E HP S MAGNI TUDE ANGLE HPS
2 400.0 04000000 Ne163774 2,598 10.?0 0.370751 -V, 6R? 16,95 N.00N37R n,R1A =222
3 AN0eN 2.2 n.,32n01? ?.6A5 10,23 N.004R2A 0,420 A, 84 1.0M15%1 -1,158 -0.27
4 120Ce 0 0.00NO00 N 4653313 2.771 10,95 N.N1INGGL =N, %54 24,135 Y1.0NRIBKA =2, 144 0.26
5 1690,0 0. 000000 NeG4TH?D 2.887 o, 81 0.N3146hk4 1.2M 7.79 3,%743131 1,704 -1,48
6 290040 0.01700930 0,54A5413 3,0N4 a,75 0,05R092 1.159 10. 046 N.N1R3304 -1,573 5.70
7 24N00,0 Ne N Na4h1211 -3, 137 A, 44 0,155%589 0,187 10,63 N.N21737 =0.604 .64
a 242 5.0 n, 0NONOND N,459620 =1,127 0,43 N, 1684AQ N.363 10.44 N.N13334 =0,548 3.40
o 264850,0 -0.00000N0 04500172  =3,1N4 9,43 N,175574% Y.346 17.54 0,015AN0 -n,45% 3,35
10 247540 =D2.0332)) 0.43A312 -3, 0RK Q.46 J.1827n05% N, ?K7 10. 74 0,012946 =0,107 2.51
n 2500,0 0. 000000 n,alonst -3, 0AK0 0,81 N, 1RAN74 N,R4RA 13.3? V1.N127A7 N, 140 135
12 25258,N =0,.000000 N, 31939345 -1, 030 0,K5 N.13%595 7.939 11,10 N,N15164 0, 459 N.19
13 2550," 2.9 0.37387%4 =3,0Nn7 9,75 0.2n4818 n, 811 11,34 7,171 7% 0,532 -0,59
14 26878.,0 0.N00N00 0e 364985  <=2,924% 10,33 Ne?215152 NeThb 11,64 N, 0194692 N. RSN -1l.13
15 264100, 2.9 N,317739 -2,817 11.37 0.22 0841 n,7n1 11.94 N,N28458% 1.04%456 ~1le66
14 2638, N N. 0NONIN 0310343 =D 434 12,232 N.?225472 n,509 12.38 1.713305% 1,230 -2,90
17 2650, N 0.Nn0NNAN n,131185 -2,5R0 14,00 N, 23R411 1,513 12.70 7.044773 1,339 -4,02
AR ] PATE, N -N,039730 Ne3663INT -?2,581 14,75 N,249751 N.517 12.654 N, NSNHEH3R 1.1A73 -3.2?
19 27N0.0 - 0,0 N, 3I8RRAK =2,5647 13, RA N.2643324 N.585 12,647 N, NhK4108 1.056 -1.82
2N 2726, 0 =0.,0000030 Ne#sN5387 =2,504 13.464 0. 261383 N.H(SS 12.51 N, NRLA4 Y 1.n41 =053
21 2750.0 -0.00000n0 Ny4257T39 =2, 625 131,41 N.225280 N.539 13,03 N, 099291 1,nN9 -0.33
22 ?2775,0 =-N."233)) Neb4A4A0 =2,6A0 12,26 n,24nnac N.563 13.17 N, 117013 1.127 Ne3S
23 220n0,0n =0,N00000 N.A75133 -2,703 12,93 N.23043" NL.a04 12.75% N,128892 1.154 l1e76
24 3200,n 0.n00N0N NeAS4288 =2,80N8% 12,5 N.330262 =>,07) F,55 7,.080280 1,540 6.07
25 24NN, 0 N.N0%0)9 Ny 548214 -2 ,804 13,75 N.142778 -1 ,104 4,71 N,N3IKJ4L1 =-2,742 R.05
724 4900,0 n, 000NON N, 2034R9 -1,345 17.34 3,3321335 ?.6A48 f,28 . N,N37449 2,019 ], 07
27 460N, 0 -0,000000 N,hAA7742 =, PR& 0,58 Ns103124  =2,474 9,55 7,001314 =-1,1Nn6 Ne17
na 48N0.N =-7.9%17)3n 0,926190 -0, N04 2,729 1,1553686 =N,674 9,649 T.NVT76542 «N,5%385 ,01
21 820N,N -0,000000 N,6R83IN73 =n,n10 a,N7 N, 1948484 =0,010 11.32 N, 0N7874 ~n_, 832 1n,20
20 5400,9 N, 0N N,0854R) nN,a321 =272 N.141347 0.380 13.85 NyNN3I436 -0,379 11.98
k3] 6NN0 N 0:09%3%)) Ne&7?2R00 2, 02aQ 16,18 0,0K8577 0,872 15, 27 N, NON3GA N, 4%%% 12,92
32 6600, 0 N.0NONDN Na 603177 3, N4 18,14 1. 768711) Veh?3 15.27 Y4723 342 0,645 18,9}

€21
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TABLE 5,2C FOURTER TRANSFORM OF U BY ROWS
FOR CASE B TIME STEP 155 TIME = 2310.0
MAGNITUDE AND HPS IN MKS UNITS ANGLE IN RADIANS

HPS IS THE HORIZONTAL PHASE SPEED CALCULATED FROM THE CHANGE IN THE PHASE ANGLE IN THE LAST 60,00 SECONDS

CONSTANT FUNDAMENTAL SECCND HARMONIC THIRD HARMONIC
J 2 MAGNITUDE ANGLE HPS MAGNITUDE ANGLE HP S MAGNITUDE ANGLE HPS
2 200,0 n.0NNA3Q NPa32A613 =1, 778 10,20 n,000211 1.774 15,95 7.909312 -2.716  25.56
2 400, N 0.N04721 Ne?97535 =1,874 10,22 0.004815 2,075 £.57 N.001418 1,377  =0.11
4 1070.n 0.010257 N.2533160 -1,257 2,61 0.011379 ,1.5724 32,94 1.90A283 0,429 0. N4
5 14110,0 n.n1a230 N.182073  =n, 774 2,01 0.039143 -2,1313p 4,61 0. 009847  =2,247  <0.A7
A 12an0,0 N.N214660 N0.149039 0,570 13,19 N.N28137 =2,822 12,65 N, 018779 1.742 7¢69
7 2300.0 . N.353561 Ne?262236 1,290 13,51 0,107997 3,021 10, 22 7.014612 3,047 0.07
a 2412,5 -0.0N8A%4 0.338834 1,307 146,32 0.130475 -2,3n09 7.29 0, 058065 =1,801 =~0.9]
Q 2437,5 ~7.034322 NGB A4 1,336 12,45 N.11685> ->,09% 11,94 N,N51451  -1,327 1.09
1n 2457,5 ~0,975551 n,56282 1,811 11,18 0.119342 2,77 15,08 n.N54342 -1,.873 3.75
1M 2487,.5 -0,05547N N.480A5T7 1,857 10,08 0.107212 2,923 15,53 ~7.1752750  =1.730 3.35
12 2517, 5 0, D643 0 N,7RARRE 1,610 11,04 0,07%04601 2,375 15.39 N.N67457 =2,145 3. 58
13 25317,.5 0.249375 N,972513n 1,437 10,27 N2001 86 2,666 15,72 V. N4KHNT  -2,032  -1,28
16 2562, 5 n,329310 1,787845 1,426 10,27 0.255187 2,402  16.38 0. 063547 ~1,768 0.27
15 2597, % D.62R430 1.584605 1,279 11,15% 0.25A57) 1.3 17,99 1,133270  -2.02n 2.34
14 7512, 5 N, 351784 1.263R834 n,0p3 17,54 N.6NH323  1.603  16.59 N.152536 =1,R21 16,52
7 2637,5 -N, 151240 1.210312 0,332 14,09 0, 414560 1,890 14,39 71.107990  <1.649 14,08
18 2662,5 -0.592675 1.135434 =0 ,22) 13,27 0. 191372  »,a59 11,85 1,1727927 3,133 5,61
1n 2487, 8- -0, 7756465 0,765542 =N,512 a,n1 'n.326400 1,303 7,58 N.200564 =2,064 3, 36
k) 2712, 5 -0,798037 N.49KKR8  -1,371 12,99 A, 312777 -1,540 R.9% 3.,277336 =-2.537 6e97
21 2737,8 -1.100175 N.R26438  -1,3A5 15,49 7.149571 D.406 =143 1.271373  -2.154 4412
22 2747, 5 -1, 365154 D,RALGHS  ~1,110 14,139 0.076133 -°,087 15,39 1.18R193  =2,149 2.93
23 3787,% -1.03625% N,212281 =1,49 13,61 0.709772 -1,3n8 12,22 7, 192088 =2.167 5.72
24 20NN, N.114055 Ne342728  =1,140 13,92 n,592965 -n,7291 11,71 N, NS4T26 0,287 0.66
25 1400,0 0. 084765 0.320727% 1,454 7.94 N.2971 2,135 12,12 N.08A752 0,823 f.11%
26 3an0, 0 0.033435 1.108459 1,096  10n, 80 N,2N06430 <2,237 11,79 1.N19296 =-1,014 7.35
27 43500, 0.076130 1.2161738 2,136 11,36 N, 124400 A, 3907 10,47 2.N33326 2,801 B. 09
29 4ann, N ~D.N140135 N0,51%2933 2,420 12,01 N.220640 2,227 10.32 N.N08228 2,153 9,27
20 SN0 N -0.NNSR40 NeAL16R83  ~1.466 11,74 0.12557% -2,8a% 11,57 N,0918%% 0,253 1.77
3n 540040 0, 025364 1,7533%1  =1,232 11,45 N. 090711 ~1,499 .40 N.103520 =1, 142 9.8 |,
N 580040 n.s5RN&D 1.1084462 =1,214 11,07 0.022824  -n,589 11,97 N.002967 =1.356 11.68 &
32 67 10,0 1.030%42 N.078777  -1,085 14,27 N.0N0%233  -1,179 13,88 n,NONONT  -1,004 2,74
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Case C (Low Richardson Number, Critical Level in Near

Field of the Source)

This case had no expanded region in order that the
effect of the boundarles of the expanded region @n case’

B might be assessed, The parameters which differ from
those of case A are: h = 1150m, z = 25m, 2z, = 400m,

Zet = 800m, zg = 1137.5m, z, = 622m, and Ri = 0.13. Since
the critical level 1s in the near field of the source

the wave will be only slightly smaller below the critical
level than it is above it. Since this was the case at the
termination of case B, this case is to some extent a
continuation of case B, but the second and third harmonics
which were large at the termination of case B are small

at the start of case C.

The large changes of u, that occur near z,, and Zyt
in table 5.2C do not appear here so 1t is concluded that
they are spurious effects of the vertical spacing change.
In this case at 1485s u, averages about -0.55m/s between
h and z,, about +0.40m/s for the 125m below z,, and is
small below that. By this time the third harmonics are
one third the size of the fundamental, and the model blew
up shortly thereafter., The blowinz up 1s associated with
large changes in ug which appear just below the source.
This localized jet creates values of Ri around 0,05 and
several inflection points., This jet develops in only
180s at a height where there was no indication that

anything was going to happen. It 1is not possible to say
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whether this blowing up was due to the instability of
the flow since the Richardson number was less than 0,25
or was due to the unreliability of the model when.the

third harmonics are large,

Case D (High Richardson Number)

This case has the same parameters as case A except
that z,y, = zgy = 1200m, z, = 2089m, and Ri = 2,12, The
slowing down of the density and horizontal motion per-
turbations as the wave nears a critical level becomes more
pronounced- at higher Richardson numbers. The stretching
out of the pattern is seen to be greater in figure 5.3B
than in figure 5.1F, The horizontal phaée speeds. for
/o,w and u are plotted in figure 5.3C as functions pf
height. U has been plotted instead of T + ug because the
extremum of u, at 2025s is only -0.24, This minimum is
located about 300m above z,. By the time the program
terminated at 3000s the extremum had doubled, and the
second harmonics for/o and u were about 10% of the
fundamental and as large as 100%Z of the fundamental for
W near the critical level,

(Note that if the wave were approaching the singular
level from the low speed side, the wave speed would

increase rather than decrease as the wave approaches Zc)
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Figure 5.3C. Horizontal phase speed for/a, u, and w, and

the original wind speed, u, as functions of height for case
D (Ri = 2.12) at 2025s. Only the expanded region is shown.
vpx is the horizontal phase speed of the source. z, is the

height of the critical level for a wave whose horizontal

phase speed is Vpx'
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Case E (Negative Shear)

In.this case the wave approached the singulax level
from the low speed side rather than the high speed side.
The parameters which differ from those for case A are
Uy, = 20n/s, U = 0, and z, = 2356m. The transforms at
3465s for this case are contained in tables 5.3, which
should be compared with table 5.1G,H.I. The primary
differences between cases A and E are that u, above

Z, 1s positive here, and that the second harmonic for

u is largest above z, in case A and below z, is case E.



Case P (High Viscosity) 133 3

A = 0,02 = K has been used in all the other cases,
and while these values are about 1000 times greater than
the molecular values, they are still less than the commonly
quoted eddy values. Since the two damping terms seemed
to have little effect in other cases, thls case with
M =1,0 =K was run. All the other paraﬁeters are the
same as in case A, )

This case blew up at about 2500s due to the generation
of large values for the third harmonics at zet. Evidently
the manner in which the finite difference analog of the
Laplacian operator in equation 4,2-LA,B, treats the
vertical spacing change generates large spurious values
of the third harmonic. Until the third harmonic becomes
large enough to make the model unreliable the results of
this case are practically identical to case A, Therefore
it is concluded that the viscosity and thermal conduction
play a very small part in critical level phenomenon. This
is confirmed by the finding that the rates of wviscous
energy dissipation in other cases would be negligible

even with the large values of A and K used here,.

Case G (Small Amplitude)

‘The only change from case A here was that a source one
fifth the magnitude of that for case A was used: sg = 0,225,
As might be expected, the magnitudes of the second harmonics

and uy are about 1/25 the size that they are in case A.
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Case H (Large Amplitude)

This case is the same as case A except that the

source is five times larger: sg = 5.625m/s. The magnitudes
of the wave motions are over 20% of u at the source, so that
the second and third harmonics increase in size rarpidly,

By 1665s the third harmonic was more than 10% of the funda-
mental and the model blew up shortly thereafter. This

is the only case in which the incident wave contained a
significant amount of second harmonic before it reached

the shear layer.

Case I (Source at the critical level)

The parameters which differ from case A are: (A= 516s,
Vox = 9.69, and Zg = Zg = 2387.5. Row transforms for this
case may be found in table 5.4, The line vorticity
source normally is associated with a minimum for u and
a maximum for w, but here a maximum for u and a minimum
for w occur about 100m below the source., The energy
going downward from the source 1s reflected by the ground
and a standing wave is evident below the source. Note
that the wave which propagates upward has a 1argér w/u
ratio than the wave generated by the same source 1n other

cases, and that the wave magnitudes above the shear layer

are about one fourth their values in case A.



TABLE 5.4A FCURIER TRANSFORM OF RHO BY RUWS FUR CASE I TIFE SYEP 88 TIME = 1305,0
MAGNITUDt AND HPS IN MKS UNITS ANGLE IN RADIANS
WPS 1S THE MCRIZCNTAL PHASE SPEEDU CALCULATED FROM THE CHANGE IN THE FPHASE ANGLE IN THE LAST 180.00 SECONDS

CUNSTANT FUNUAMENT AL SECCND HARMCNIC THIRD HARMONIC

J 2 MAGNITUUE ANGLE HPS MAGNITUDE ANGLE KPS MAGNITUDE = ANGLE HPS
2 2CC.C 0.000000 0.000109 ~1.711 8,10 0,000000 -2.CH8 8,88 0.000000 =2,854 4,26
3 600.0 ~0.,000903 0.000438 -1.766 8452 C. 000009 0.658 1.34 0.000001 1.177 <017
4 1¢Co0.0 -0,CC000% V000722 -1,936 10.70 €.000C16 0.502 Be67 0,000001 3.052 1.31
5 1400.0 =C.L (D04 0.000851 =-1,891 11.04 0.000020 1.109 6,08 0.000001 2,348 3.82
6 180C.C 0.900C00 0.000854 -1.808 10.94 0.000030 1.172 8,58 0, 000005 3,046 1.13
7 2012.5 =0.00000% 0.000726¢ =1,876 12.56 C.000031 1.117 8,77 - 0.000010 1.752 ~1.18
8 2037.5 -0.000012 0.000705 =~1.675 1C. 94 €.000128 1.Ce3 8.73 0.000026 2.386 1.45
9 206245 -C.00C059 0.000776 ~1,543 9.59 C.000117 04600 8.58 0.000010 1.765 2.19
10 2087.5 -0.,0C€007% 0.,00C896 -1,539 8.81 G.00010C2 0.152 0.69 0.000007 1.485 3.70
11 211245 -C. 000038 J+000977 =1.66Y 8.90 0.000C68 ~0.397 C. 96 0.000001 0,243 5.64
12 2137.5 C.c00026 0.000992 =1.b40 9.82 0.000029 ~1,284 2,01 0.000009 =~2.245 -0.19
13 216245 L 000060 0.000935 -1,947 1l.44 0.000C2s 2.536 6. 68 0.000021 =-2,822 0.66
14 2l7.5 0.00( 044 0.000844 <=1.892 12.35 0. 000C80 1.598 8404 0.0CC035 2.988 1.72
15 221245 -0.9000035 V000834 -1.662 11454 €.00012% 1.C42 8.57 0. 000044 2.601 2,42
16 2231.5 =-0.C00120 0.0CC¥72 ~1.474" 10.25 0.000149 0.564 8.95 0.000044 2,268 2.78
17 226245 -C.000139 04001153 ~1,408 9.50 c.000123 0.097 9.55 0.000037 2.000 3.2
18 2281.5 =0.LL0081L 0.001229 =1.%90 9.35 0.,000C6T <=0.400 11.31 0.000024 l.913 3.61
19 2312.5 C.CO0CT79 0.00121% =1.722 Ge66 0.000C32 -1.S76 3.29 0.000013 2.858 2.75
20 2337.5 Ced0OC1 > 0,001083 =-1.915 10.89 0.000168 1.561 Be49 0. 000072 2,826 2.45
21 2362.5 C.0GCO I 0.000973 "=0,939 10,42 €. 000Cs1 0.422 11.18 0.000055 1.980 3.08
22 23417.5 -0, 90Ccc00 0.001654 -0,899 9.T4 0.,00)Cls ~-1,%16 2452 0.000061 2,059 3.12
23 2412.5 =C.L000CC 0.,001797 =-1.316 Y.91 0.007C91 3.038 6.18 0.000068 2.079 3.15
24 2437.5 0.0CC398 0.001549 ~-1.907 10.12 C.006GCS? 0.840 8,27 0.000079 0.98% 3.22
25 2462.5 0. 0001436 7.001100 =2,57C 10.52 . 0.000105 0.544 8.20 0.000045 0.970 3.30
26 2487.5 C.CJ0147 0.000546 3.col t1.30 0.,000102 -0.430 9.29 0.000047 1.602 2.65
27 2512.5 3. 003008 0.000307 1. 689 13.9% 0.000117 =-1,223 9.81 0.000060 1.557 3.01
28 2537.5 =0e( 20047 0.000371 0. 305 14,24 0.000127 ~1.S540 9.94 0.000058 1.339 3.51
29 2562.5 -C.0cCo31 0.000471 <~0.530 12.33 0.000128 ~2.685 9.83 0.000046 1.129 3.99
30 2547.% 0.00G999 J¢0004b2 =-1.1866 12.17 0.000123 2.799 9.85 0.0000136 1.054 4,21
31 2612.5 0., 000031 Q.000473 -1.736 12.23 0.,000113 1.55%4 10.07 0,000031 1.111 4.08
32 2637.5 0.000021 0.000176 =-2.480 13,16 0.000085 1.060 10.49 0.000030 1.085 3.86
33 266245 ~L. 000003 0,000116 1,645 19,177 0.000066 0.C18 11.13 0. 000024 0.877 3.74
34 26817.9 =0.000018 0.000247 0. 044 20,62 0.007C5C ~1.582 -1.13 0.000015 Ce494 3.73
35 2712.5 =-C. 200014 0.0001310 v.023 18.50 C.0017076 =3.C12 13,52 7.000004 =-0.013 3.81
36 2737.5 C.CNC002 0,000311 =-0.531 l4a44 0.000103 2,280 -l.ll 0.000006 2.739 -0.98
37 2762.5 C.0000113 V000246 <-0.82% 12.43 C.000126 1.427 ~1.23 0.000025 1.671 4.98
38 2781.5 0. L0C002 0.000125 =1.102 11.04 u.Q00077 0,132 -1.20 0.000011 1.050 4,10
39 3000.0 =0.000001 0.000174 =0.067 6.C7 0.000C17 2,718 4,47 0,000003 1.779 2.54
4«0 34CC.C -0,00Cc000 0.000202 0.028 7.18 0.000020 1.869 6466 0.000008 3.07% «0.53
41 3830.0 0.000000 0.000233 0,457 4.88 C.000CCs 0.218 10.78 0.000004 2.532 =0.74
“2 4230.C C.00cC001 0.000207 0.377 Tel4 0.000026 2.260 4022 0.000002 1.779 ~l.16
43 46CC.0 0.200000 0.000039 -1,537 16.19 C.000018 0.865 10,69 0.000001 1.326 Te62
44 5C2C.0 -0.,000001 0.000128 =3.042 16,61 0.002C14 2,478 6,89 0.000000 =0,246 1465
45 543C, 0 =0.003002 0.000233 =-2.81% 8,75 0.000013 2.360 2034 0.000000 =1.591 3.93
46 5800.0 -0.000002 0.000390 =2,455 6.74 C.C0o0(CC8 C, 949 4.83 0.000000 2,904 3.95

47 6230.0 0. 000002 0.000448 =-2,315 6.00 0.000010 0.434 ~1.92 0.000000 1747 6.80

8€tT



TABLE 5.4B

MAGNITUUE AND FPS IN MKS UNITS
HPS IS THE RCRIZCNTAL PHASE SPLED CALCULATED FROM THE CHANGE IN THE PHASE ANGLE IN THE LAST

WS WN <

—
oVvxT N

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

3l
32
33
34
35

36
37
38
39
«0

41
4“2
“3
4Lé4
&5

46
47

z

400,0
800.0
1290.0
16€C. 0

2CcC, C
202%,C
204%0.0
2CI%,0
2100.0

2125.0
2150.0
211¢.C
2230.0
2225.0

2250,C
2271%.0
2300,0
2325.0
235C,C

2375.0
24¢C. 0
242%.0
2450.C
2475.0

25C0.0
2525.0
2550.0
25715.0
269000

2625.0
20650.0
2675.0
2790.0
212%.0

275u,0
2771%.0
2800.0
3200.0
360C.0

403C.0
44CC.0
«800.0
5200.0
5¢J30.0

6C0V. 0
6400.0

FCURIER TRANSFORM OF W

CONSTANY

=C.CCco00
C. 000000
0.0

0.000000

=0,00C0000
0, 000000
=C.000C00
~0.J00C00
C.0C0C00

0.C00000
=0.000000
=C. 000000
0.LI0000
=0.000000

C.000000
-0.006000
-0. 000000
-0.200000

C.CCC000

0.000000
0. 09C000
0.0
0.90€000
=0. 000000

0.000000
0.000000
0.00C000
0,000600
C.000000

0. 000000
0.000000
U, 000C00
0.9C00CO
=0.¢00C00

=0.,00C000
-0, 0C0000
0. 000000
-0.030000
C. 000000

=0.C00C00
=-0.000000
0.000000
=0, 000000
=-C.000000

0.0C0000
-0.0CXC00

ANGLE IN RADIANS
FUNUAMENTAL
MAGN I TUDE ANGLE
04113045 2.488
0.180255 24,669
0.221806 2.820
0.219957 2.885
N.16488487 3.034
Oe l6T 745 3. 063
0.164050 1,044
0.158690 31, 044
0s151844 3,053
Oelé4bTl 3.082
V.1348138 3.126
0,133969 =3,112
J.129010 =-3,084
0.121502 =-3,073
Q.110391 -3,(57
0.096%92 -3,003
0.,082694 <=2,817%
0.070716 =2,6617
0.059%50 =2,40%
0.044750 <~-1.,982
0.025065 =1,354
0.027098 =-0.135
Q.0544136 0032
0.,075114 =-0,080
0.084177 ~0.219
0.033037 =-0,317
0.,076755 =0.335
0.072276 -0.2606
Qe0734929 =0.172
0.079221 -0,130
0.,083409 ~0,.141
0.083589 =-0,166
0.080553 =-0.169
0.077417 =-0.134
0.,076773 -0.079
0,078627 =-0,033
0.081%32 =0.008
0.048003 0.232
0.111744 0,435
0.128959 0,400
0.126211 0.368
0.147539 0.271
0.151234 =0.141
0.153901 =-0.752
0.182222 ~-1.145
0.150910 =1.275

AY ROWS FOR CASE I

HPS

11.40
10. 21
9,29
915

8.85
He 83
8,864
Be9%
8,99

8,97
Be 84
8,67
8,54
8,49

B.47
8,38
8.05
T.36
6,33

4.43
0.80
21.61
19,28
18.2H

17.75
17.87
19,2«
2C.16
19,52

18.50
17.65
17.05
16.73
16.80

17.23
17.58
17.58
15.12
20.61

1.48
3.11
2.72
4.85
8.67

11.35
12.29

TIME STEP 88

SECCAD HARMCNIC

MAGNI TUDE

0.003326
C.003428
0.006421
€.009503

0.008626
0. 000216
0,008099
C.009500
0.012045

0.014717
C.016%61
0.0l16981
G.0l6175
0.015652

0.,017334
0.020936
0.024212
C. 025086
0.022983

CeC2C16€3
0.017973
C.013732
0.,007859
C. 003802

C.004491
0.007282
0.009¢%26
0.010606
C.Cl02C?

0.008445
0.006387
C.0006384
0.00816C
C.009028

C.007873
0.00534C
0.004655
C. 007778
0.003266

C.0086¢S
0.002439
0.005717¢C
0.002492
0.007479

0.003£35
0.004217

ANGLE

-1,475
~0.8606
~0.324
<0.176

-0.005
-0.013
0.C5%
0,154
0.130

C.C09
-0.138
=0.252
-0.27¢
-0.176

-0.C31

0.C18
~0.Cl9
-0.C69
=0.047

0.C29
0.C93
0,126
0,143
0.540

1.373
1.421
1.206
0.9¢6
C.¢e46

C.450
0.5C6
0.814
0.85¢6
0.661

0, 446
0.542
l.146
t.282
1.220

2.C17
1.110
«2.957
-0.912
=0.451

-1.458
=2.602

TIME = 1305.0

HPS

9.50
6,08
6,09
T7.29

T.73
T.85
.78
T.58
7.99

T.75
T.97
8.20
4,39
be b4

8.36
8. 36
8,43
B.68
6.38

8.04
1.29
422
2.00
0.50

~1.85
11.44
11,40
11.53
-2.12

~1.78
=l.47
~1.60
-1.68
=159

~1.%2
~1.89
10.92
11.48
9. 04

0.23
11.26
12.80

8424

5.82

3,45
6,04

180,00 SECONDS

THIRD HARMONIC

MAGNITUDE

0. 000049
0000165
0,000235
0.001388

0.002069
0.003024
0,003489
0.004264
0.005064

0.005719
0.006041
0.005945
0.005678
0.005892

0.006953
0,008360
0.0C9270
0,009085
0.008216

0.007627
0.,007540
0.008063
0.008878
0.008911

0.007938
0.,006677
0.005930
0.005731
0.005615

0.005446
0.005456
0.,005742
0.005974
0.005781

0.005193
0,004778
0.004713
0.002676
0.000993

0.000543
0.000252
0,000195
0.000134
0.000056

0,000114
0.000074

ANGLE

24714
1.343
0.853
1.254

1.330
1.%42
1.394
1,420
1.384

1.321
1.262
le24A
1.328
le494

1.620
1.637
1.59¢
1.559
l.636

1.838
2. 065
2.285
24366
2.256

2.188
2.227
2.366
2.491
2.557

2.614
24690
2.737
2.713
2,650

2.628
2.663
2,699
2,785
le843

0,700
-0.,353
=1.379
=1.651
-0.289

Ce419
0.409

HeS

2.19
3,45
457
2.81

2,31
2,29
2.19
2,11
2.13

2.23
2.37
2.45
2.37
2.1

1.94
1.87
1.88
1.90
1.93

1.97
2.06
2.18
2.33
2467

2,50
2,37
2.10
1.85
1.68

1.53
1,645
1,66
2.12
2346

2.20
1.96
1.82
6.93
Tebb

-1.02
-0,02
~le4l
-0.44
-1.38

7.13
T.20

6€T



TABLE 5.4C

MAGNITUDE AND HPS [N MKS UNITS
IS THE HUERTZCNTAL PHASE SPEED CALCULATEU FHCM THE CHANGE IN THE PHASE ANGLE IN THME LASY

MPS

vErwN o

-
oOvx~N0

11
12
13
14
15

16
17
13
19
20

21
22
23
24
2%

26
21
28
29

30

31
32
33
34
35

36
37
kL]
39
40

41
4“2
43
44
4“5

46
47

z

20040
6CC.0
1000.C
l4vu.t

1800.0
2012.5
20137.5
2062.5
20817,5

211245
2137,%
2162.5
2187.5%
2212.5

2237.5
228245
22487.5
2312.5
2337.%

23€2.5
2387.,%
241245
2437,5
2462.5

2481.5
2512.%
2937.5
25062.4
2581.%

261245
2611.5
26062.5
2637,5
271245

27131.%5
276249
2187.5
3CJCe0
3400.C

3800,0
4200.0
“6CC.0
5CiI.0
5400,¢

533C.0
6200.0

FCURItR TRANSFCHK™ OF y

CCASTANT

0200511
06001811
0003417
CeI0%200

0.00C0083}
04009482
0.021%04
Ued311794
0.01492 39

-0.0082C6
=CaQ31937
-0.026737
UeCOHUBG
Cevbl49064

0.0701y3
0.049293
Qe.21t0d7
Ue 019581
Ga 110491

O lua9ce
Ue 1844905
ValBeyns
Oellclel
0,025%001

V022177
Ced23T73Y
Qs G4 1903
Ue JAHTCH
Q. 27506

“0.002403
-0.0CHbTo
-0.0C%442
0.002830
0eN04374

-0.001268
“0e U104l
=0.01%2117
-U. 015540
-0.0133%4

=0. 013469
=V.017%1 34
=0.01280%
=N.G1e8L?
=0.214%00

~0.016544
~0.0l6141

BY RCWS FUR CASE I

P S

11.40
8. 48
5.61%
1. 81

d. 98
9.80
7.89
6.93
T.12

1.96
9.40
11.58
11.50
9, 36
AN
B.43
Bebb
He 85
9.50
1C.17

9,48
9,57
9.79
Lo.1C
10.30

10. 87
12.29
14.37
14,18
12.86

12.61
13.02
15, 86
18.62
18.54

18,42
17,60
15.56
-0.1h
22.72

5.00
15, 3¢
466
12614
17.94

22.31

ANGLE IN RADIANS
FUNUAMENTAL
MAGNITUOE ANGL E
0e225443 =-1.832
NDel33918 =-1.327
0,089919 =0,816
Q.038577 0.813
Delidler lo 318
04126293 1e449
Do 136958 1.809
U.190713 l,87b
0e2432 34 le0lY
QelB42172 1.3383
d.295112 1.151
a2517828 1.C94
De211979 le40C4
D.201717 1.844
0.314762 l.884
Je 495995 1.695
Ve 593493 le4d7
Jeb54340 1e413
V. 6669175 1,583
Cstd600063 l.930
Q.927329 2¢5065
4947023 24105
Do vl 3504 2194
JeT38933 14999
Q.401319 0.917
0272867 =0.042
Je2l8lab =1,28%
Ve228812 =2.314
De221714 3al¢3
Ve199220 2.374
N.1321381 1,606
0. C6Y94548 Ve 208
Vel07251 <~1.212
0.l4e24406 =2.016
Qslaldd =2.053
Qa127725 3.050
J.0936170 2707
0.041676 =2,748
D.056496 Jella
0.024972 2.038
JeCl9309 =0, 358
Q.040622 1.554
Je1251303 04404
Delviall -0,001
Je139421 =-0.409
0.091403 =1,881

Bel3

TIME STEP 88

SECCND HARMCAIC

MAGNI TUDE

€.003%90
0.002237
0.004127
C.003250

0.002184
C.00949¢
0.010101
C.C28747
Oe04b6eE2

Ue 054519
0.,05145%5
0.034577
C.0168¢0
0.030362

0.05117¢
0.064759
0.0536¢1
U.025709
C.039533

0.05855%
0.045130
G.076342
0.104442
C.081502

0.0601330
C. 049270
0.050327
0, 052671
C.051€27

Ce 045172
0.037501
C.034604
0.013147¢
0.033152

0.033176
0.046434
0.053835
0.003310
0.005288

0.007268
Ca00H443
0.00419C
0.0048118
0.005687

0,007188
0.004654

ANGLE

0.881
2. 184
2.%39
2.515

-1l.788
-0.669
-2.CA7
3.C26
2.794

1.875
1.3¢5
0.7€0
=0.593
=2.24%

-3.C57
2.6C6
2.C98
1.324
-1.C79

-1.310
-1.22¢0
-0, 798
~0,683
-0.967

-1.582
-2.430
2.9806
2,206
l.426

0.562
-0.507
-l.685
-2.%18

2.007

Ce 765
~0.535
-1.275
~2.430

0.538

~-1,538
1.480
~0.328
20262
2.128

-0.771
=1.165

TIME = 1305.,0

HPS

9.50
2.12
7.56
T7.22

3.88
2.26
4,80
6.71
T.13

6.50
S5.14
4,56
5. 70
T.56

8.12
8.61
8.75
o175
9.22

9.81
YeH&
B.69
B.10
4,01

8.19
B.71
9.33
9.79
10.1¢

10.50
11.19
~2.07
11.92
~1.53

-1.04
-0.50
~0.24
24 34
0,08

=0.52
1.26
~1.29
6,406
v.C7

6445
0.86

180,00 SECONDS

THIRD HARMONIC

MAGNITUDE

0,000041
0.000134
0000096
0,000962

0.001201
0,001615
C.006569
0.0104113
0.010885

0.009770
0.006252
0.001945
0.007363
0.013246

0.017810
N.018816
0.0130013
9.005223
0.015068

0.023103
0.023322
Ne 026102
0.012643
0.010%80

0.015572
0.017777
0.015728
0.010279
C.0051356

04004954
0.005619
0.005082
0.003472
0.,005781

0.008328
0.006271
0.002894
0.001844
0.001952

0.000788
0.000410
0.000193
0.000069
0.000116

0.000065
0.000038

ANGLE

-0.820
-2.507

2,827
-2.198

-2.128
-1.885
~l.814
=1.995
=2, 345

~2+.667
-3.089

1.49¢
-0.127
-0.754

-1.318
-1.809
=2.322
2.17
0.566

Ce138
0,051
-0.071
~0.65%6
=2.7197

2.352
1.595
1.051
0.753
0.9013

1.152
0.702
-0,047
~1.390
-2.938

2.439
‘1.870
1.371
2,203
2.739

1,995
0.766
0,051
-1.329
=2.450

=2.605
0.042

HPS

2.19
1.99
5.95
1.84

2.11
1.81
l.34
1.6}
1.96

1,03
414
6,68

-0.35
0.36

0.95
1.37
1.59
1.19
1.87

2.12
2.21
2.33
2,71
4.75

4,69
4,01
4.20
4445
4. 11

3447
3,67
4.18
5.37
6.29

4.63
3.96
3.68
2.18
=1.22

7.39
=1.46
=0.93

4,93

7.39

0,69
T.06

oNT
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From the results of this finite difference model for
these nine cases we will now procede to determihe what may
be concluded gbout such things of geophysical interest as
wave absorption and transmission at singular levels,
changes in the wind, and the sources of gravity waves,

One of the most important questions 1s how much of the
wave's energy and momentum is absorbed by the wind, and
where this absorption takes place. Although previous
researchers have considered this problem (Hazel, 1967;
Jones,1968; Lindzen, 1968), the linearized equations do
not contain any terms which are capable of generating a
change in the wind., So most of these workers have assumed
that the wave's horizontal momenfum density flux is attenuated

by the factor given by Booker and Bretherton (1967),
1
f = ‘exp(-Z)r(Ri - 0.25)2) | 5.2-1

at the theoretical critical level Zgo and that the absorption
took place in a thin layer. 1In thls study no such

assumption need be made because the proper nonlinear terms
are included., Instead it is found that this absorption
occurs over a height range of one hundred meters or more,
This is showﬁ by the wind speed changes in figure 5,44,

Three of the cases in which u, was greater than 0.5m/s

have been plotted, Note that the large changes in the

shear are always decreases and are close to z,. The



142

500 }—
H
E A z
NU O
o
>
0
Q
]
P
Xe]
)
H_%00 |-<
e
o]

Figure 5.4A. Wind speed near the critical level. The
straight lines are u, the original wind. The total wind
is shown at 4185s for case A (Reference), at 3465s for
case E (Negative shear), and at 1665s for case H (Large
Amplitude). The plot for case E has been inverted, so

that it is as if the wave was incident from below.
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increases in the shear are more smoothly distributed and

extend one to two hundred meters from the critical level.
Many of the qualitative features of the changes in

the wind speéd can be predicted from the momentum and energy

relations of the linear theory, and a slight digression to

present the needed equations will be made. The equation

for the conservation of horizontal momentum is

D Au — A QP
—5 T T VAW - A, o

where §7'(,3'§) = 0 has been used, and the vertical flux

of horizontal momentum is

FHM, = P Uw 5.2-3.

where U is the total horizontal motion. Ignoring the
internal energy, viscous losses, etc., conservation of
energy is

)

— (A VeV/2) + gpw = - vf,ﬁ’/’(ﬁ VV/2 + p) ) 5.2-4

Now'§f§ = (0 + Ua)2 + 2(a + ua)u + u2 + w2

where U + u, is the total wind and u contains all the
oscillatory motion. The ﬁz term is constant*with respect
to time and is not of interest. The term with only one
oscillatory factor will average to zero, and of the three

terms remaining after averaging over x, the 2“uua term
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will dominate the others if u, is the sane order of masnitude
as u,

Writing

t
g:low = g%[ I/O wdty ]

this term czan be seen to be a potential energy term,
Generally more of the wave energy 1is contained in this
term than in the oscillatory kinetic energy. (In the linear
theory this term czn te shown to be ,E(Lqu/IL)Z (Claerbout
and ladden, 1968), Also, in Lagrange coordinates this
potential enercy terrm would be the gravitational potential
energy of a fluid varcel, but here w refers to a fixed
position, so this identification is not possible.)

The vertical energy flux density is

FZ, = DW + 95/2) W'[(ﬁ + ua)2 + 2u(u + ua) + u2 + w?]

5.2~5

Averaging over X

Fi, =/ﬁ(ﬁ + ua) <wu> + <ow>

and applyineg analytic relations from the simple linear
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FHV, = (-mp/2%) |w]?
E, = (-m/3/2k) iw[z (w/% + uy)

where the factor of one half apvears because peak-to-peak

amplitudes are being used, Since w/% 1is greater than u,

for all cases of interest we may conclude that Fz, is
always in the sanme direction as FHIY, and in the opposite

direction to the vertical vphase velocity sz = w/m, The

vertical group velocity is

Voo = dw/ d m = - mf/ (m? + %2)

ez

and the verticsl phase and group velocities have the same
direction only when L. is negative,
So for case A, above the shear layer, L, n, vy, and

Vy, are negative and FHMz and FE, are positlve. That n is

nezative may be confirmed from tables 5.1. The wave 1s
carryings nesative nomentum and negative energy downward, and
>

the absorotion of both is in accordance with the negative

values of ug Just above z, in figure 5.4A. For case E the

wind 1s zero above the shear layer and £, m, and vpz are

ve, v, is negative, and FHMZ and FEZ are negative,

[

posit
The wave is carryving positive horizontal momentum and

vositive enersy downward, and the positive values for vy
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around zc show that the nomentum and energy are being
absorbed there,

Thus the chanzes in the wind indicate that a portion
of the wave's energy and momerntun are beinsg absorbed near
the critical level, The actual mechanism by which the
wave is absorbed is nonlinear, and cur inslight into non-
linear interactions is not sufficient at this time to say
why the wave is absorbed farther from the critical level
in case A than in case I,

It is difficult to give a quantitative figure for
the portion of the incident wave's energy and momentunm
which is absorbed near the critical level because the
incident and reflected wave cannot be easily separated
above the shear layer. Some conclusions can be reached
about the transmitted enersy and momentum, and these will
be presented shortly. A further difficulty is that, unlike
the linear approximation, the relative phases between the
various wave variables is not fixed, and there is no simple
way of evaluating the wave pressure, so that we do not
know exactly how much energy and momentum has bee
supvlied by the source. It is noted that the phase angles
above the shear layer in case A show that a vartial standing
wave is present, while there is less sign of a standine
wave in cass =, The ratio of the energy change to the
horizontal momerntur chance for a chance in the wind speed 1is
u, and in the linear aporoximation, the ratio of the eneray

flux to the momentum flux of the wave is W /%, so that the
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wave must be absorbed rigsht at Zg if btoth momentum and
energy are to be conserved in such an absorption.
Reflecticns will not helv create an energy/momentum balance
because the incident, transmitted, and reflected wave all
have the sane energy/momentum ratio. For case £ the
absorption is roughly symmetrical around Z and, the
reflected wave and the transmitted wave are fairly small;
all of which 1is in reasonable agrecment with this linear
sketch,

In this model, however, the phase relationshios are
not fixed, and the incident, transmitted, and reflected
waves may all have different energy/romentum ratios. In
addition, these ratios may be functions of height. In
case A the wave absorption is not symmetrical about Zc’
so no wholly linear explanation can be offered, Evidently
the phase relationships zre such that a reflected wave
is necassary to conserve momentun and energy. The presence
of a reflected wave might explain why the wave magnitudes

are larezer above the shear layer in case A than they are in

case I,
In case = it is qguite clear that large reflections are
precent, Ry 2310s in fact, the reflected wave is larger

than the incident wave, and the net transvort of energy
and nmonentum is in the ovposlite direction from case A, so
over-reflection is oresent. That the vertical phase
velocity Voz is indeed positive may be seen from the

phase anclecs in table 5.2, v,, ¥as downward in the early
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stares of this case and reversed about 2000s, so the critical
level went from unier reflecting throusgh total reflectines
to over reflectings about this time, The wave below the
critical level is larzely a standine wave by 2310s, so
little energv is beins transmitted at this time and the
wind need suoply only the excess nceded by the over-
reflected wave,

The vertical flux of horizontal momentum density, also
called the Reynolds stress, is plotted in figure 5.43 as
a function of heizht for cases A and 2, The time rate of
change of th¢ horizontal momerntum density is the negative
vertical derivative of the Reynolds stress, so ths rate of
momwentum galn in the height ranze shown is proportional
to the chance in the Reynolds stress betwesn the top
and bottor of the graph., It is clear that most of the
incident morentum flux is absorbed near the critical
level, Cf course the incident flux shown in this manner
between the downzoing and upgoing flux,

is the differenc

0]
®

so no conclusions about the size of the reflected wave may

=

be drawn, he changzges in these curves within the shear
layer represent the shifting of momentum locally near the
critical level, In particular, the large nezative splke

for case A represents the shifting of some negative momentum
upwards a few tens of meters. This shift has been con-
firmed by compzrinz values of u, at the preceding and
following time steps.

The vertical enercy flux has not been analyzed
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similarly to the monentun flux because p is not available,
but the transmission of the wave through the sincular level
can be shown by plotting the ratio of the kinetic energy
density of the oscillatory motion below the shear layer
to that above the shear leyer. This is done as a function
of time in figure 5.5.

Case ¥ 1s not shown because it was essentially identi-
cal to case A. The cause of the fluctuations in cases
A and G 1s not clear. The wave kinetic energy 1s not going
into the kinetic energy associated with u,. The total
kinetic energy in the bottom 2000m is so small, however,
that it could easily be accounted for by small changes in
the few hundred meters around the critical level,

There is no apparent dependence of energy transmission
on the wave amplitude, Cases A and G are quite similar,
but there is no way of being certain that the large
amplitude case would continue to give like results if
it had run longer. There does seem to be considerable
dependence on whether or not the wave approaches the sincular
level from the hizgh speed or the low sveed side. Case E
develops quite differently from case A. Further, it is
noted that the second harronics are generated on the side
of the critical level away from the source in case Z, and
1f the sccond harnonic had been provasatine below the
snear layer instead of evanescent there, the energy ratio
would be higher than it is.

Energy transmission is strongly dependent on the
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Figure 5.5. The energy ratio as a function of time. The
energy ratio is the average oscillatory kinetic energy den-
sity below the shear layer divided by the average oscilla-
tory kinetic energy density between 3600m and 5600m. The
values for case B (Ri = 0.13) have had to be divided by ten
to fit on this graph. Case F (High viscosity) is identical
to case A (Reference, Ri = 0.53). Ri = 2.12 for case D.
Case E is the negative shear case. Cases G and H are the

low and high amplitude cases, respectively.
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Richardson number as a comparison of cases B,A, and D will
show, These values are plotted on figure 5.6 in compvarison
with f, the exponential factor determined from the linear
theory by Booker and Bretherton. This factor was
derived for the Reynolds stress or momentum density flux,
but the energy density has nearly the same expression in
the linear case, so it seems appropriate to apply it here
also. The value for case D is higher than 1t should be
for the steady state becsuse f is so sm=ll that the little
encrgy that gets through the critical level in the transient
stages when the wave arrives at the shear layer is enough
to cause the energy ratio to exceed f,.

The value plotted for case A is an average value,

The value plotted for case B is the final value, and there
is no reason to expect that, barring instability, the energy
ratio would not have reached unity in this case. Had

a voint for case Z been vlotted, it would have been slichtly
above f., Since there is no sign that a steady state had
been reached in case B, it must be concluded that
underestimates the amount of energy transmitted when the
wave avproaches from the low speed sides.

It is of interest for source considerations to know
how ravidly hicher harmonics are generated., This informa-
tion can not be obtained from the linear theory. Figures
5.7 show how the constant and the second harmonic for u
developad in time with respect to the fundamental, The

values plotted are for a single row about one hundred
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meters above Zgyo

If averages over several rows had been used, the
curves would be much smoother, and the lowest poilnts would
be moved up.

The dependence of the ratios on source magnitude
is clear, but there seems to be no dependence on Richardson
number as long as it is greater than 0,25, These cases,
with the possible excevtion of case H, show a definite
approach to steady state, The initial growth rate seems
quite similar for all cases, but the S/F ratio in the
cases with Ri less than 0.25 show no sign of decressing.
Presumably this is a manifestation of the basic instability
of the flow,

In figures 5.7 the curves for case E are lower than
they might be. In all the other cases the height about
100m above Z coincides with the maximum for Uy S, and ¥
while in case E S has its maxinum below Zs and u, reaches
its greatest magnitude rizht at Zg o

In figures 5.8 values from figures 5.7 have been
plotted as functions of Ri and source (or wave) amplitude.
It may be presumptious to have included the point for Ri
= 0,13 since there is no indication that a steady state has
been reached in this case,

Although the exact mechanism of internal gravity wave
generation has not been investigated, if the source is

locelized and is nearly at zero frequency with respect to

ths air around it some idea of the masgnitudes of the motions
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at the source needed to vroduce observed macnitudes of the

motions at the ground can be obtained from case I. TFor the
parameters used in this case, u near the ground is about
one fourth of the size of the horizontal motions near

the source,
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5.3 General conclusions

It has been shown that an internal gravity wave 1s
largely absorbed by the wind at a singoular level when the
important nonlinear terms are included if the Hichardson
number is greater than 0.295, When the Richardson number
is less than 0,25 the incident wave is transmitted practically
unattenuvated. The factor f = lexp(~27T(Ri - 0.25)%)
(Rooker and Bretherton, 1957) gives a reasonable idea of
what attenuation to expect for the Reynolds tress, and of
what the ratio of the oscillatory kinetic energy denslty
on the side away from the source will be to that on the
side near the source. Only cases in which the energy
transnitted through the singular level was travped
by 2 solid boundary bevond it were considered.

The model used does not permit easy separation of any
reflected wave from the incident wave, but there are
indications that some reflection takes place for Ri
greater than 0.25., For R1 less than 0.25, the reflected
wave became larger than the incident wave, which was clearly
evident, The excess energy for this over-reflection is
supplied by the wind. In the stable cases the wind
absorbed much of the horizontal momentun and energy of
the incident wave, and this abscrption toox place in a
layer a few hundred meters high,

The lincar predictions concernine wave behavior hold

to within a few hundred meters of the simgular level for
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a horizontal wavelength of five thousand meters, The
nonlinear terms become important inside this region and
change the character of the waves., w decreases as predicted
by linear theory but does not go to zero, /2 and u stop
increasing and start decreasing before the critical level

is reachsd. The nonlinear terms also allow the wave to
generate wind changes and higher harmonics. These wind
changes absorb most of the momentum and energy of the
incident wave for Ri greater than 0.25.

When Ri is less than 0,25 most of the wave passed
through the critical level and over-reflections later
develoved. When the singular level was overlain by an
evanescent region, Jones (1968) found that over-refiections
may occur for Richardson numbers equal to or less than
0.25. Since the rigid surface used in this work totally
reflects the incident wave as does the boundary with the
evanescent layer, it is not surprisinag that over-reflection
is observed here for BRI = 0,13.

There are great differences in the interaction of
the waves and the wind depending on the relative velocity
of the waves to the wind as the singular level is approached,
The sien of the energy and momentum changes of the wind
are as predicted from linear theory. Slow waves decrease
the ensrev and momentur of the wind while fast waves increase
these values, Other differences which cannot be predicted
by linear theory involve the detalils of the interaction,

The fast wave's momentum 1s absorbed symmetrically around
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the criticel level znd its secornd harmonics are generated

on the side of the sinsular level away from the source, If
these harmonics are able to rropazate out of the shear

layer they may carry a sienificant amount of energy. The
slow wave 1s absorbed about a hundred meters before it
reaches the singular level, and the second harmonics are
generated on the side near the source., Also, it appears that
the reflected wave is larger for these waves than 1t is

for the fast waves,

It has been observed in this work that the wave's
frequency and horizontal phase velocity are not constant.
The chanege of the horizontal phase speed with heigsht and
the consequent shearineg of the wave pattern accompany the
decrease of the vertical wavelength near the critical
level., The changes of the horizontal phase speed with
heizht can also result in moving the actual critical level
several hundred neters from the original critical level,

Inclusion of the nonlinear terms in the equations
allows the different wave variables to travel at different

ds, Figure 5,3C shows that the

)

apparent phase s»e
phase speeds can be less than half the phase speed of

the source, so the sgpvroximation that the horizontal phase

o

spzed is constant near a singular level is invalid.

heat conduction terms have been showm

o7

The wviscous an
to te unimportant. Even with larze eddy wvalues for the
coefficients the effect of these terms was not significant.

As enercy continues to be absorbed near the critical level,
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of course, the generation of higher harmonics will
take place and eventually the wavelength will be short
enouzh that viscous dissivation will occur, but the
basic critical level behavior 1s avvarently independent
of viscosity.

This model was run only for simulated times of
fifteen 2runt periods or less so 1t is not possible to
say definitely what might develop over much longer periods,
In figure 5.5 case D has certainly reached a steady state,
and cases A and G may have done so. In figures 5.7 cases
A, E, E, and G appear to be exponentially apvroaching
constant values, so extensions of these results to nmuch
longer times could be exvected to give reasonable results
for these cases,

The momentur absorotion described by Lindzen (1968)
is in qualitative agreement with the results here, Eowever
the absorption of the incident wave over a broad area here
acts to decrease the shear markedly near the criticsal
level and to increase it slightly elséwhere. The hicgh
shear zones predicted by Lindzen did not develop, but
Lindzen considered very long times, and continued absorption
of momentum as in this study could lead to such zones in

time,
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Appondlix a

Inclusion of Heat Conduction

Frem Bckart (1960, pp. 9, 10)

D / z —
£ - =3 ~ M/<éﬂ1fi> = _ 2)
24 ¢% D% 7£“CFT 55—

D =
‘Djf‘ ‘;f*\/' (¥ 7 7)

where j is defined to be the thermal energy per unlt mass
and‘/§¢/71;/; has been used. The first equation is con-
servation of heat energy and the second 1s heat flow by
conduction, Conduction is here used to include convection
by eddies of a scale smaller than the scale of interest for
the grevity waves. Assume that K 1s independent of position
and time. Let T = T + T/ where T 1s the total teaperature
and T = T(z) 1 tne mean temperature. Assume that the mean

quantities satisfy

D=5 R7T
and that the density and temperature perturbations are
independent of pressure so that

- —~ = !

p = (/+/0)K('r + 1)

To first order

/

i =-T/¢O/
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Assuming that T satisfles the baslc eguatlons in the absence

of any perturbations:

Dt C

2,2.-_1.229._-”(__549

)

This is close to the equation Hazel (1967) uses.

= %»Fi is the specifiec heat capacity at constant
pressure. K 1s called the thermal conductlvity by Eckart
end has units of watts/(nk). K = K/(Cp?*) is called the
coefficient of thermonmetric conductivity by Chandrasekhar
(1961, p.18) and had units of me/s,

If one keeps all terans throughout, one gets

(@) b 9 [37-2]

From the linear theory p/a = %B'P/a y» so0 the neglect

o

¢

-1
a2
-

of the pressure term ls reasonable, The approximation

that Y/ 2(/;2> =; Vjp is also & falrly good one,
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Appendix B

Boundary Conditions for Poisson's Equation

In this appendix the equations analogous to 4,4-3
are obtained for the model in which the finite difference
region is overlain by an infinitely high region in which
the wind 1s constant, Let the subscript r denote the
variables in the region extending from the ground to some
height z = h, and let the subscript u denote the variables
in the region from h to infinity. Since there is no shear
in the upper region, analytic solutions exist and we may
assume exp(-iw t+ikx+imz) dependence for the wave variables,
It is assumed that the ambient pressure and density are
continuous at the boundary between the two regions. The
group velocity and energy flow in the upper region should
be upward, so m is taken to be positive if 9> Von and

negative otherwise, where v n = w/k is the horizontal phase

p
speed. This choice results from the fact that the vertical
vhase and group veloéities are in oppositie directions
1f1%1<vph and in the same direction if uu) vph.

The boundary conditions at the interface of the two
regions (at the tev of the finite difference region) are
that the pressure p and the ratio w/( be continuous.

The pressure is not readily available in the finite differ-

ence region, but if it is assuned that the simple linear

approximation to the complete horizontal momentum equation

-1 B + 0,7+ ikp= 0
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-—i_ﬂ.ﬂ + 0, 5 + 1kp = 0

z

1s valid Jjust below the boundary, the boundary conditions

are:

U; - X;
11-( Nu

-ﬂ-r/gr + L, X’-n-u,ga

at z h

where a subscript r is not needed on the wind shear Hz
since a shear exists only in region r,

The neglect of the nonlinear and viscous terms in
the equation for the continuity of pressure at the boundary
is probably valid if the critical level is not near the
boundary., 1In any event the inclusion of these terms is
not feasible computationally.

The angular frequency W used in forming the intrinsic
frequencies Sl .. and JSL  is that specified for the source.
This would appear reasonable since the source is usually
quite close to the top boundary. The value used for the
wind u in £) . 1s that at the top of region r.

The momentum variables in region u are related by
equation 4,2-3D and by its use these variables may be

eliminated from equations B-l:to give

/gr=_c at z = h B-24
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where
Ny )2 L U
Cqy = IN_ =ty - LUz B-2B
‘ K _n.r -(LP

In obtaining an equation in Y from B-2, the expression
for H; in b, L.l cennot be used as it is because we are
now working in the (k,m) domain, not in the (k,z) domain.
From the z dependence it may be concluded that at the
upper boundary Gy and e¥XZ are upzoing terms and

e~KZ i g downgoing term, Thus 4.4-7 becomes

a% imr[GJ(k.h) - Aekh + Be—khJ
Pz ¢, = B3
2 ¥y 1kfe;(x,h) + Ae¥? + Be-Xn]

d X

where m,, 1s the vertical wavenumber at the top of region r

and is found from the simple dispersion relation
2
nZ = ¥? [(wp/a )" - 1]

with the assumption that the shear is zero. In the

cases when the shear at the top of region r is nonzero,

the error introduced by this assumption is not significant.
Equation B-3 may now be solved with the equation

resulting from setting Xg== 0 at z = 0 with the result:
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A= B-4A
Cbexp(kh) - exp(-kh)

B = GJ(k,O) - A B-43
where
kC_ + o,
Cb = 2 B-LPC
kCa - D

From this point on the solution i1s the same as in the case
of a rigid surface at z = h except that B-U4 are used instead
of 4, L3,

Note that for leu‘ = sy Cr, = 1 and the boundary
condition just derived becomes identical to that for a
rigid surface as would be expected, At the other extreme,
when the wind is continuvous at the boundary and there is
no shear in the lower region, Cp =2 and A = 0 which
agrees with what is expected for a reglion r of infinite

height,
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Apvpendix C

The Z2oussinesq Approximation

The term "Roussinesq approximation” has been
associated with a number of approximations which, in
different circumstances, amount to assuming that the
density is constant to a certain degree. Some of the
history and a discussion of the Boussinesq approximation
in the study of thermal convective motions is given by
Spiegel and Veronis (1960). In general any approximation
in which the density is considered constant in the inertial
(acceleration) term in Newton's law but not in the
buoyancy (gravity) term is a Boussinesq approximation.
Here the dropping of a term involving derivatives of the
ambient density in the vorticity equation in section 4,2
will be jJustified,

Let B be the absolute value of the ratio of the

neglected term to the buoyancy term:

| syPr ]
75

i

If B is small the neglected term is insignificant.
); =/3'Oexp(~z/H) is a good approximation for the height
ranzes in which we are interested, where the scale height

H is about 8km. Eliminating/p from the expression for B
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by using 4.2-3E with the linear and adiabatic assumptions:

N /v
P wy (Bws

). is always less than a)B because we wish to deal only

with waves which will propagate vertically, so that

factor in B is less than unity. HOJB is about 100m/s, so
that as long as u is small with respect to this épeed the
neglect of the term in question is valid. The linear
theory vpredicts that L. will approach zero at twice the
rate that u approaches infinity as a critical level is
neared, so B 1is certainly small near a critical level

no matter what the size of u., No conditions have been
found in this entire project when the neglected term was

of significant slize.
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Appendix D

Importance of various terns

In this appendix the complete basic equations will
be examined as a singular level is approached in order to
determine which terms are important at various distances
from the singular level. Since the primary interest here
1s in the region near the singular level, the conplete
equations may be simplified by neglecting terms which are
shown to have little effect in this region. If large
terms must be dropped to make the equations tractable,
their importance and possible effect may be estimated.
Also this analysis will help in understanding the validity
of the various assumptions which have been made in previous
works.

Two parameters will be necessary for this analysis,
€ will represent the relationship between the magnitude
of the perturbation quantities and the magnitude of the
ambient quantities in e region far from a critical level,
at the ground for example, The variation of the magnitude
of the perturbation variables with distance from the
critical level will be contained in a second paremeter 9 .

Analysis of the basic equations as written in the
usuzal variables with MKS units is difficult because of
the different magnitudes of the quantities involved,
Identification of the important terms is faciliated by

the introduction of dimensionless variables of order one.
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The normalization factors needed to accomplish this change
of variables can be grouped into numerical coefficients
for each term in the equation and the magnitude of each
term seen at once.

The baslic equations to be considered will include
the nonlinear, viscous, thermal conduction, and Coriolis
terms, The effect of the curvature of the Earth has not
been included. Convection cells and turbulence on the
same scale as the gravity waves are not included.either,
but the average effect of these random phenomena with
smaller scales has been taken into account by the use of
‘eddy' values for the viscosity and thermal conductivity.

Let the MKS perturbation pressure, density, and

’ /
7 — 4

velocity be revresented by p:/o , and v ='§xu +'3yv’+'gzw.
2;, gy. 32 are the unit vectors in a Carteslan coordinate
systen with the positive x7 direction eastward, the positive
y/ direction northward, and the positive z ‘ direction up-
ward, Time is t’'. The ambient or time-independent pressure,
density, temperature, and fluid flow are denoted EL’;SZ
T/, and T . It is assumed that the backeround fluid flow
or mean wind is in the x’ direction only. The total

pressure, density and velocity are (MKS units):

-y J— J :) - ’ - ¢
ax(u + u + ayv + agw .

]
o
»
<
+
<
]
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In all the other sections of this work the dimension-

al variables with MKS units are represented by unprimed

quantities. 1In this appendix, however, the final equations

will include only nondimensional variables, and for ease
of notation it is desirable that these nondimensionzal
quantities be unprimed., For this reason the dimensional

quantities are represented by primed variables at this

point. The following differential operators are defined:

‘7 2 2,
V__a,.—é—-}—-af?-a—g,'/‘a-z o=

X oK'

—> =7 4

D =2, V-V
Dtl at

Under the assumptions that:
1. the curvature of the Earth can be neglected;
2. there are no sources or sinks of heat;
3. the mean wind T, ambient density‘/T: and ambient
temperature T’ are functions of height, =z ﬂ only;

the basic equations are:

'bD'c'/or' +07 V- V' =0 D-1D
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where /4D is the dynamic viscoslty and KD is the coefficient
of thermometric conductivity. The other constants, with

average values for the lowest 10 km of the atmosphere, are:

gy = acceleration due to gravity = 9.8m/s2

1t

ep speed of sound = 320m/s

Wgp = radian frequency of the Earth's rotation =

27 /day = O.?BxlO“”/s.

Quantities with a subscript D are constants with MKS
units. If the above equations are unfamiliar, elther
Eckart (1960) or Lamb (1945) may be consulted for their
derivation. The extension to include the heat conduction
term is presented in Appendix A.

The next step 1s to rewrite equations D-1 using
dimensionless variables of order one. First the parameters
€ and § must be defined and the normalization factors
introduced. Although only three normalization factors
are strictly necessary, it has been found easier to use
seven normalization factors and inter-relate them later.

Because of the way in which the temperature enters the
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equations, the normalization factor for the temperature
will never appear and therefore need not be defined,

Let ¢ be defined by the equation
€= 'ul, / vg

with the stipulations that |u', is the magnitude of the
perturbation horizontal motion in a reglion far from a
critical level and that uy is typical or average mean wind
speed, In general ]u'lwill be taken to be the value

at the ground and U, will be taken to be half the maximum
mean wind speed., € 1is a dimensionless quantity of order
102 which is independent of time and position. Since

its magnitude dépends on the size of the wave perturba-
tion, its value may change from case to case,

Let § Dbe defined by the equation

é;)_—(}_'JZ___ Iw'—k’@’}@: |1— kjg,’ -

w'! w' /s

where W’ is the radian frequency of the wave perturbation,
%’/ 4s the horizontal wavenumber, and 0'=w-%x’U  is the
intrinsic or Doppler frequency. It will be shown

later that 82 cen be thought of as a normalized, dimension-
less distance from the critical level, S is a dimension-
less parameter which is independent of the magnitude of

the perturbations, It depends on the helght through the

mean wind, and varies in value from near unity far from

a singular level to zero right at a singular level,
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Five of the normalization factors can be defined at

once:
7, = 600s
'VD = LPOIH/S
LD = VD ’Z'D = 2L¥xm

Bp = SXloun/m2
Zp = 0.6ke/ro

The D subscript indicates that these quantities are
constants with MKS units. T:D is approximately equal
to the Brunt period for the standard 6.5°/km lapse rate.
vp 1is half of a typical maximun Jet stream speed, and LD’
in addition to being the product indicated, 1s a typical

wavelength for gravity waves. and/iD are average

Pp
values of the ambient pressure and density for the tropo-
sphere,

The factors ED andlﬁD are not convenient for normalizing

the perturbation pressure and density. Therefore two

additional normalization factors

0.25x10%n/m?

]

Pp
PD

]

0.05%g/n3

are introduced. These magnitudes were selected in the
following manner: Because of the definition of € and because
the horizontal motion and vertical motion of a gravity wave

are of the same order of magnitude far from a singular level,
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4 /
one can‘write ]u.] = évD and [w [ = évD. Similarly
l — Pl
we wish to be able to write ]p , = €pp and lP1" nefb'
but iD and Z;D do not allow this., For a small amplitude

wave the magnitudes of the perturbation variables are

|o’] = 5n/n’
[v'] = 0.08wm/s
|w’| = 0.04m/s

lp'l

where the pressure is a value measured in Cambridge and

1l

i

0.12x10" kg /m>

the other values are calculated from the value for the
ﬁressure using the relationships given by the linear theory
(Mines, 1960).

It was assumed for these calcuations that there was
no mean wind, and W'= 21Y/900s and kX' = 21V/24kn were
used for the radian frequency and the horizontal wave-~
nunber, This gives € = 0,002, and Py = )p’l 4: and
Pp = Vﬂ[ /¢ are used to obtain the values given.

The case just described with € = 0,002 is the main
case which will be considered. The other is that of a
falrly large amplitude wave for which €= 0,02 will be
used, The relationships btetween the magnitudes of the
wave varlables are of course independent of their magnitude
since they are derived from the linear theory. They do
depend on the frequency and wavelength, however, The
values used in the calculation of pp and pp above have

been chosen so that these normalization factors will
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suffice for almost all gravity waves of interest. As
long as the frequency and wavelength are not changed too
drasfically. a change in perturbation magnitude can be
expressed by chang;ng only the value of ¢ without adjus-
ment of the normalization factors,

Before the new dimensionless variables or order one
can be defined it is necessary to consider how the dimension-
al variables deﬁend on S , that is, how they behave as a
singular level is approached. Since W'/k’ is the horizontal
phase speed, it can be seen from the definition of the
intrinsic frequency L' that Q' and thus $ approach zero
with decreasing distance from a critical level, A number
of researchers (Bretherton and Garrett, 1968; Eliassen
and Palm, 1960; and Claerbout, 1967) have analyzed in
detail how the various quantitites associated with the
wave perturbation vary as.ﬂfapproaches zero. They
concluded that the simplified linear equations predict
that the vertical wavelength X,'z will vary as 5"2. that
the pressure p’ and vertical motion w’ will'vary as S,
and that the horizontal motions u’ and v’and the density
P2’ will vary as & -1 Inclusion of the proper dependence
of S is the definition of the new variables insures that
they remain of order one as the critical level is neared,
This dependence cannot be éxpected to hold very close to
the singular level, but it 1s the only guilde avallable,

The new dimensionless variables of order one are

defined by the following equations:
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X = X'/LD v = y//LD z = z’/LD t = t’/LD
S=870, p=p/pp uw=1u/vy u=ublevy
p=0'/eloy p=p'8lepy  v=vi/levy w=w'/e§vy

P=TP+r PP+

<4l

=3Xu+'a'yv+gzw V=a,0+7v
By analogy with the dimensional variables, P 1s the total
pressure, p is the ambient pressure, D is the wave per-
turbation pressure, and so on for the others,

There is one last step before the equation can be
rewritten in the new variables and that is to make certain
that all the derivatives are of order one, Since the

wavelength is assumed to be of the order of LD'

)

3¢ =(3) 5% (¢5po)

29 _

é%i; (6 g’?1;>

Wi
NP
N
QQN
Q;\:%
4

where the additional factor of 8 -2 in the z derivative

is introduced to account for the shortening of the vertical
wavelength which the linear theory predicts. The

operator .Q,_;.&f§§;> is analogous to the Doppler frequency

so w2 have
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2,z '3)p s é’ﬂ-é-(-wv $)p (e Spy)

For the variation of the amblent quantities, the relevant
distance 1s the scale height Hp = 8knm, so

25" - Po._ 27
32' - HD 32

The derivatives of the pressure have been presented as
examples, the other variables are treated simiarly,
In order that the equations may be written more

compactly, the following notation 1s defined:

-3 - - -

vq = au/§ + ayv/S + 3w ) D-24
-0 = -2 a

Va = axg'i + ay% + azS o2 D-28
Dd=52(.<3- +02-) + ' Va D-2C

—
i7’retains its usual meaning

—

ﬂ]d will be used on perturbation quantities, and V on
-—
ambient quantities, but note that V4 'v4 = -3/§ and
— —
Vd'v da = v+ V/S. The basic equations can now be

rewritten in terms of the new variables,
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where
__ZA_[ >g
5 Az c; 375-’]

defines the Brunt frequency, and the latitude has been
taken to be 45° for simplicity. The complete dependence
on € and S in the above equations is not apparent due
to the presence of € and é in equations D-2.

In the absence of perturbations, the following zero

order in <€ eguations relating the ambient variables result:

8@_ Q% dz~ =0

D-La
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5 5o Ve, Won Py —
a,p + 22 nv_m» D/Qa = O D-4B

From the wvalues alresady given for the constants with D

subscript:

y J

/JDvaRDHD/ ﬁp_D = 2x10-%
It is evident that the effect of the Coriolis term in the
hydrostatic relation will be very slight and that the
north-south pressure gradient will be much smaller than
the vertical pressure gradient.

To find the magnitude of the east-west pressure
gradient a value for A , 1s needed. This brings up the

eugation of whether the molecular (laminar flow) or eddy
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(turbulent flow) values are the appropriate ones to use.

Since the same problem applies to the conduction coefficients
as well, they will be inclvded in this discussion.

The molecular values for the dynamic viscosity /QD'
the kinematic viscosity vD 2*/*D//51' and the thermal

conductivity K_ may be found in the U. S. Standard Atmosphere

D
(1962). Both Mp and ;<D decrease slightly with height,

The coefficient of thermometric conductivity is defined by

Kp = /(D/CPIJ

where Cp 1s the specific heat capacity at constant pressure.
Since /5 increases with height faster than iy andlkb
decrease, ‘)D and KD decrease with height, The change of
all four coefficients with height in the troposphere is
small enough that the most conveniént two are often taken
to be constant. Average values for the lowest 10km of

the atmosphere are A = l.6x10”5kg/ms, Vp = 2.2x10"5m2/s,
KD = 0,023watt/n°K, and Kp = 3.5x10°5m2/s. These values
would be appropriate for still ailr or purely laminar

motion,

In actuzlity the atmosphere is quite turbulent on
scales smaller than those of interest for internal gravity
waves, Therefore heat is transmitted by convective cells
in eddition to conduction, and motion is retarded by the

formation of turbulence in addition to molecular viscosity.
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These additional processes are many tines more efficient
than the molecular level procesgses, Since these random
phenorena arc indeed present, thelr effect will be included
insofar as possible., For gravity waves the average effect
of many convection cells of different scales may be ade-
quately described by using a new, ‘'eddy' value for the
coefficlent of thermometric conductivity. The eddy values
for the viscosity and conductivity are determined by

actual measuremnents, We will use

Ap

i

0.1lkg/nms

1m2/s

n

Kp

(Sutton, 1953, p. 264; Sutton, 1955, p. 31, 211, 214)
which are approximately lOu times the molecular values,

Using this value for A4y
oy - -8
jvaD/pDHD = 10

and the east-west pressure gradlent is also nuch smaller

than the vertical gradient., For our purposes the ambient

pressure'ﬁl nay be taken to be a function of height only.
Eqﬁations D-3 will now be yewritten with equations D-4

subtracted out and each equation multiplied by an appropriate

factor of dimensional constants so that the largest term

1s of order one if the € and & are not included. Al-

though a common factor of € could have been removed, it

has been retained to indicate that thege are the perturba-
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tion equations, The various factors of dimensional con-

stants which are formed a2re dimensionless and have been

replaced by numbers,

(7o [PV + 2 () G2V
D-54,B,C

oo/(a + @) x v‘,(} il ( e>ﬁ

+2.bed \_ZLP 10" GP" VA (V_? V) (vot> Vo(.] o

L Vup o E2 G W

d z D-5D
[7+#,1(Z)VV -
Dffp-Ep]- 2w
0.65 x 167 (’%’)L\:/: >Z‘/>
+/5>z/o"(§>(7%4—> ( ) O

where the follouing expressions have been used:

D-5E
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Wpp = zﬁ’/’afo fo = 1/12
7o
o =172 12 @ Th = 0.01
ZﬂVA% z 7
Z; = 2 _Pa = 2.6
_ — z
21””@/0> S» Vo
27h My = 1076 '—zi“27' =1/2
Po % 4o /> >
2 _
o Win o =12 2t Xp = 6.5x107°
24/93/03 ZJ,z
G A 2150076
27 Hf

The devendence of equations D-5 on € and 5‘18 not
explicit because of the definlitions in equations D-2.

The next step is to consider gall the terms which
have the same dependence on § and to discard those whose
magnitude, includinzg € , is considerably smaller than
some other term. Ry keeving the largest terms for ever
vower of & there is no possibility that a term is being
discarded which might become important near a singular level.
To make the € and 6 dependence comnletely exvlicit the vector

equation will be written out as three scalar equations.,
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The x momentum equation willl be treated in detail as
an illustration. First D-54 is written out with the

terms grouped according to their dependence on 5 H

5(2— +70 2 _ 5 L€ 22
S[é/o(aé +u’3x w + .lé,f&%—zi-w-,no.ole/ou/fz “’ﬁax

=R dZ . z
[ é uaxuvbzwﬂd W+ool/éZ£W]

S-;l'oolg/oy../o 6{3 5 ?_}324 Dzm}]

> X2

S

Of the four terms which vary as X , it is seen that the
third is one percent of the lareest, so it will be

neglected. Likewise, the third of the three terms which
have no 8 dependence, the second of the two terms which
vary as 8 ’1, and the second of the two terms which vary

as & -2 may be discarded.
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It develops that there are no terms which may be
neglected in equations D-5D and D-5E, so these equations

are just written out with the € and 8 dependence made

explicit.
7 [2- 2 o dix
Sé[fét mz;-x—)a A vx/+2,(t,_§_,%] 4

Slp Ge o m 2w £ 48] —w'e[p]

D-6A

[p(v D |+ £ [ ) u]
) o

selp o ez)vrze3p] s & PGend)y]

D-6B
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Equations D-5 will now be exanined as 5 approaches

zero so that the variation in magnitude of the various
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terms may be assessed as a critical level is neared.

This could be done using only values of § , but § 1is
hard to relate to the physical situation. It has been
found helpful to express 5 in terms of an actual distance
from the critical level, To do this it is assumed that
the mean wind 1s a linear function of height:

7z%) = ﬁé + G;z'

’

-— o— ——’
where Ug and uz are constants. u, is the wind shear

and has units of s'l. Let the origin of the coordinate
system be at the critical level, then §= 0 for z = 0 and

from the definition of §:

PR 4 ’ ]
v, = w /x

Ib'z’l

82

-/

with b’ = ¥'§,/W. For the case with ®’'= 2 7°/900s,

k'= 27/Ly, end T, = 2vy/H,, b'= 3/Hp. This gives

1 and 1s

1z) = $2(2667m). b has the units of m~
the ratio of the wind shear to the wave's horizontal
phase speed,

By equating the magnitudes of two terms we wish to
compare, and solving for 62 and then for |z'| using the
value of b' above, the crossover distance is obtained.

This distance, denoted zaﬁ is the distance from the critical

level to the height where the two terms are of equal
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magnitude. The term which has the lower (including sign)
power of 5 will be the larger in that region which is
within z; of the critical level, and the other term
will be the larger elsewhere. By taking the 5 dependence
of the terms into account, one may get an idea of how far
from the crossover distance a term may be of significant
size in comparison to the other. For many tyvical cases
where b’ 1is not too different from 3/HD this method
allows conmparison of the terms in a way which relates to
they physical scale of the problemn,

i z. '

a s small enough, the term with the lower power

of 8 can be considered negligible for all regions of
interest. How small is small enovenh? Since internal
gravity waves are on the scale of kilometers to tens of
kilometers, and since the atmosphere becomes increasingly
randonr as the scale decreases, events on scales of less
than a meter are probably not relevant. The predictions
concerning the behavior of the magnitudes of the per-
turbation variables is based on the linear, inviscid,
irrotational approximation, and by the time the one meter
scale is reached these neglected terms will be seen to

be large, so that the predictions on which this analysis
is based can not be expected to hold for that scale in
eny event, Therefore, if a value for za’ of less than
one meter is obtained, the term with the lower power of

6 is considered to be negligibly small for all regions of
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interest.

Equation D-6A will be treated in detail as an
example, The first term is called the linear term even
though the Coriolis term (the third term) and the ¥viscous
term (the last term) are also linear. The first term is
the only one retained in the simple linear approximation.
The fourth term, which does not contain the perturbation
density, 1s called the nonlinear term. The second and
fifth terms are called the nonlinear density terms and
they will be seen to be considerably less imvortant than
the nonlinear term which does not contain the density.

The linear term is seen to be the largest for‘§= 1,
so the other five terms are first compared to it. Each
line below represents the comparison of two terms. The
first equation on the line is the equation of the two
magnitudes, the second gives the wvalue for 5»2 which the
first implies, and the last equation gives the crossover
distance using the value of b ! given above,

For the case where €= 0.002:

Se= €2/12 62 = .2.8)(10"8 zé = 7.4x10"5n
Se= 0.01 5 ¢ 5% = o0.01 z,) = 27m
5&=§‘2(._2 $2 = 0,016 zé: 43m

Se=53¢312  §2= s.9x10" 2= 1.5

(&= 10-6 5’56 $2 = 0,01 z,/ = 27m
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The first line is the comparison of the linear tern
and the first nonlinear density term. It is obvious that
this nonlinear density term is never large enough to be of
interest. The other nonlinear density term is compared to
the linear term on the fourth line and it appears that it
may be important since the crossover distance 1s over one
meter. If this second nonlinear density term is compared

to the nonlinear term:
-22_¢-3 ,3 2 _ -8 r_ -5
§%=§ 3 ¢?/12 §° = 2.8x10 z, = 7.4x107°m,

So this nonlinear density term bears the same relation to
the nonlinear term end the other does to the linear term,
For the case with € = 0,02 the values of z; are increased
by a factor of 100, but z; is still so small that the
nonlinear density terms need not be considered further.
From the second, third and fifth lines we see that the
Coriolis, nonlinear, and viscous terms all become larger
than the linear term in the region between ten and fifty

meters from the critical level, It is of interest to

compare these three terms with each other:
0.0 57 = 67%2¢?2 §2-0.08 z'/=1l07m
0,0157% =10%55% 8%2-0.00 zf=2m
$-2¢2 . 10-6 §0¢ §2

0.0063 z/= 16m

Since all the terms still being considered as first

power in € except the nonlincar term, only the comparisons



195

involving the nonlinear term need to be recalculated for

the large amplitude case where €= 0,02

Se=5"2¢? §2 = 0,073  z/=195m
0,016 =§2e?8%=u z,/ = 10700m

It

$5-2¢2 1076 5-5¢ 62 = 0.0013 z, 3.4m

Before making definite conclusions about the size of
the various terms, the factors evaluated just after equations
3.1-5 must be examined to see how these numbers depend
on the specific wave parsmeters chosen. While the values
used were chosen to be representative and are adequate for
most comparisons, here the nonlinear, viscous and Coriolis
terms are very nearly the same size, and the wave period
and wavelength do make a difference. It is seen that the
factor containing QJRD will be increased for waves of
longer veriod, and that the viscous factor contains the
ratio 1/Lpvy =‘%b/L§. The period of the wave considered
was taken to be about the Brunt period because it is
simpler and because the primary interest here 1is 1in waves
of twenty minutes or less,

The figures above show that the Coriolis term 1is not
too important since it is zalready smaller than the non-
linear term when it becomes as larce as the linear tern.
For €= 0.002 the values are close enough that the period

of the wave is quite important. 1In this case the Coriolis



197

term will be of the same importance as the nonlinear ternm
for a periocd of about twice the Brunt period, and will
completely dominate the nonlinear term for a one hour
reriod, 1In the large amplitude case, the nonlinear tern
remains significantly greater than the Coriolis term for
all periods of interest.

Due to its 5"5 dependence the viscous term passes
from insignificance to dominance within a small region
around the crossover height. Thus the viscous effect
will not extend as far from its crossover point with the
linear term as will the Coriolis or nonlinear effects.
The period and wavelength can be adjusted so that the vis-
cous term 1s the most important of the three, but generally
it is of secondary imvortance., If the nonlinear term is
larger, the behavior of the wave may be altered so that
the viscous term never becomes significant., This is
unlikely if the larger term is the Coriolis term because
the inclusion of the Coriolis force does not alter the
basic nature of the singularity. Note that only the
viscous term involving the z derivative appears. This
1s due to the shortening of the vertical wavelength which
enhances the values of the vertical derivative with
respect to the horizontal derivatives, If the molecular
value for the viscosity had been used the viscous terms
would have been completely negligible,

In both the large and the small amplitude cases, the

nonlinear term is the most important of the additional
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terms. This ter:n reaches one tenth of the magnitude of
the linear term 200m from the critical level for €= 0.002
and 900m from the eritical level for €= 0,02. In the
large amplitude case, the viscous force as well as the
Coriolis effect 1s dominated by the nonlinearities,

In conclusion, for the x momentum eguation, the linear,
inviscid approximation is wvalld to within a kilometer or
so of a critical level, The exact distance will of course
depend on the wave parameters such as wavelength and
magnitude. Of the neglected terms, the nonlinear term is
the most importent, For small amplitudes, the viscous
force may be important if the nonlinearities do not alter
the linear predictions concerning the behavior of the per-
turbation variables as a critical level is approached.

For a large amplitude wave the nonlinear term is much
larger than the viscous as well as the Coriolis term,

Comparison of equations D-6B and D-6A shows that the
two are analogous except for the lack of a y component
of the mean wind. Since the magnitudes of the corresvonding
terms are 4identical, the conclusions reached for the
x momentum equation hold for the y momentum eguation as
well,

In equation D-6C the first and fourth terms are the
only ones retained in the simple linear approximation.
These terme are the largest for 8 = 1, but since the
fourth term, called the gravity term, increases with

decreasing $ while the other decreases, all of the other
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terms will be compared to the gravity term. For €= 0.002:

286-1¢ =53¢ §2 - 1.1 z! = 3730m

2 S"le = 10”686 62 = 2x10° z; = 5,3z10%m
293¢ = €? §2 - 106 2! = 2.7x10%
2$7Ye = 0.0092e212 5% - 0.60x10712 2/ = 18x10~%n

25-1¢ ==10'68‘3e 52

0.5%x10-6 z! = 0,0013m

For { = 0,02 the two comvarisons involving 62 terms are

recalculated:
L
26le = 2 §2 =10 z/ = 2.7x10"n
257 e = 0.0 §72¢2/12 6% = 0.69x10"10 /= 18x1077m

One viscosity term, the second term in D-6C, 1is
small with respect to the gravity term for § = 1 and growvs
more so as §<iecreases. The other viscosity term, the
last term, has a crossover distance, with respect to the
gravity term, of about a millimeter, so the viscosity is
entirely negligible for this equation. The crossover
distance of the Coriolis term is also very small so that
this term 1s also insignificant. The largest of the
nonlinear terms, the third term, does not increase with

decreasing as the gravity term, does, so it, too, need
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not be included. The first term, which being linear is

usually included ényway. 1s less than ten percent of the

gravity term for the region within 1700m of the critical
~level. So, within a kilometer or so of a critical level,

only the two quantities comprising the gravity tern need

be retained in the vertical momentum equation,

The continuity equation, D-6D, has only three éifferent
S dependencies, so for ¢= 0,002

5‘1€ = Ser2 82 = 2 za’.—. 5300m
§-1¢ =5%¢%n2 §2 = 2.8x1078 2= 7.4x10"5n
and for €= 0.02 the second comparison becomes:

—5"16 = 8-2¢ 2/12 62 = 2.85(10"'6 za' = 7.4%10"3m

The nonlinear term is clearly negligible for all regions
--of interest. If the first term 1s also neglected the
continuity equation become ii'f?"= 0, which is the
equation usually used for an incompressible fluid. The
first term contains the change of density with time and
position, and becomes less than one tenth of the second
term for the region within 500m of the ceritical level.
These distances are calculated using the values of b’
discussed above.,

The expression of the incompressibility of a fluid is
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sometimes written g (/O 0 when the fluid is
stratified. By writing the equation this way the more

usual incompressibility equation is extended by the addition
of w’ (d/gtﬂiz’). This extension takes into account the
fact that fluid parcels at different heights were originally
of different densities and includes the effect of vertical
motion 1n changing the density at a given location. Change
of density with time or with horizontal position continues
to be excluded from consideration. To obtain this ex-
tended equation of incompressibility from 3.1-6D the third
term and the first of the two quantities in the first term
are to be neglected. The second quantity in the first

term 1s retained. The third term has already been seen

to be négligible. When the first quantity in the first

term is compared to the second term, one gets:
d0-le = §¢ 12 52 - 12 z. = 32,500m

It may easily be calculated that the magnitude of this
first quantity is less than ten percent of the second
term for the region within 3250m of the singular level.
Thus by using ﬁ? /5"”W = 0 as the expression of
incompressibility, the continuity equation can be consider-
ed to be the incompressibility equation over a much larger
region than if f?u??ﬁz 0 were used to express the in-
compressibility. Since both expressions allow the stream

function-vorticity formulation to be adopted, this is a
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signifiqant point.

For the heat transfer equation, D-6E, only the first
two terms are retained in the simplest linear approximation.
The second term, called the linear density term, decreases
in magnitude as the critical level 1s neared slower than
does the first term, the linear pressure term, so that the
linear density term is used for the comparisons. For

€ = 0.002:

S¢c = §3c /2 $2 = 2 zJ = 5300m
S¢ = ¢ 2/2 52 . 10'6 zé = 0,0027m
S¢ = 6.5x10°08-2¢  §2 = 6.5x10"6 z/ = 0.017n
Se= §-2¢2 §2 = 0,016 g = 43m
S¢=6.5x10685€¢  §2 = 0.019 z! = 50m
and for & = 0,02

de= €2/2 §2 = 107 za'= 0.27m
Se= 6722 §2 = 0.073 2! = 195m

From these figures it may be concluded that the non-
linear pressure term is entirely negligible. The linesr
pressure term is equal to one tenth of the linear density
term at 530m from the critical level, so none of the terms

involving pressure is likely to play an important role in

-
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determining the wave's behavior near a critical level.
This 1s~equ1valent to saylng that the speed of sound is
nearly infinite, or that this equation becomes nearly that
for an incompressible medium near the singular level, It
should be noted, however, that the second quantity in

the linear density term involves the Brunt fregquency (the
Brunt frequency disappeared when numbers were substituted
for dimensional quantities) and that the sound speed
cannot be taken to be infinite in the calculation of the
Brunt frequency because the ambient pressure is involved
in that calculation, and the ambient pressure is not
affected by the presence of a singular level as 1is the
perturbation pressure,

For the small amplitude case the nonlinear density
term and the larger conduction term have nearly the same
crossover distance, but for the large amplitude case the
nonlinear term has a much larger crossover distance. Com-

parison of these two terms gives, for the case € = 0,002:

5-2¢2 - g, 510106 §-5< 52 = 0,022 2,/ = 58n

§-2¢2 - 6,5x10°0 §-5¢ 52

]
il

0.0047 zg = 12m

As in the x nmomentum equation some of the additionsl
terms are nearly equal in importance and the variation of
the wave parameters must be considered. The ratio

Tp/L2 can be made large enough so that the thermal
5 .
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conduvction term dominates the nonlinear term in the small
amplitude case and is of ebout equal importance in the
large amplitude case. From the numbers above it 1s seen
that the conduction is probably unimportant in the large
amplitude case. Thus either the nonlinear density term
or the conduction term must be kept, depending on the wave
parameters, and, in general and for many cases, both terms
must be retained, Only the conduction term involving

the vertical derivative is important, and the conduction
term can be dropped completely if the molecular value for
the thermometric conductivity 1s used, It is a valid
approximation to neglect the terms involving the wave
pressure within a kilometer or so of & critical level,.

In this section the linear, inviscid, adiabatic,
irrotational predictions concerning the variation of the
perturbation variables as a function of the proximity to
a critical level have been used to determine which terms
are important st different distances from the critical
level, Small and large amplitude waves were considered
for a typical value of b, the wind shear - horizontal phase
speed ratio. Values of ‘52 have been given to facilitate
consideration of other cases,

Two of the equations, it was shown, not only remain
linear, but become simpler near the critical level,

!
/

2P’ |
gD/o_ +Bz' 0
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1s a good approximation for the vertical momentum equation

within a kilometer or so of a critical level, es is
—
Ve p'#h =0

for the continuity equation. Within a few hundred meters,
the more usual expression of incompressibility, §7C'7'= 0
is & good approximation.

The other equations, however, become increasingly
complicated with proxinity to a singular level. Only the
nonlinear density terms in the horizontal momentum eguation
and the nonlinear pressure term in the heat transfer
equation can be generally neglected. Within a kilometer
or so of & critical level the linear pressure term in
the heat transfer equation is unimportant. In general
the Coriolis, viscous, and nonlinear terms must be kept
in the x momentum equation. According to the cholce of
wave parameters each can be the most important of the
three, although the nonlinear term is the largest for most
of the cases of interest., Likewise in the heat transfer
equation, either the conduction or nonlinear density term
may be the largest, but the nonlinear term is more in-
portant for a majority of intereszting cases.

The damping terms are large enough to be significant
with respect to the nonlinezr terms only if the eddy
rather than the molecular values are used for the viscosity

and conductivity. Also, dus to the predicted wavelength
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shortening, only the terms involving the vertical derivatives

are lmportant.
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