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ABSTRACT

Mathematical Relations for MHD shocks in the interplanetary plas-
ma are investigated. The possibility for the presence of the thermal
anisotropy is allowed for. The obtained set of equations represents a
generalization of the MHD Rankine-Hugon t relations for isotropic
plasma. The so-called "coplanarity theorem" is proven to be valid
also for anisotropic plasmas. The experimental data from Pioneer 6,
Pioneer 7 and Mariner 7Preferring to both the positive ions of the solar
wind and the interplanetary magnetic field have been searched through
for a combined period of about ten months for shock-like discontinuities,
Seven discontinuities have been discovered and analyzed in detail.
Advantage was taken of the following two facts: (a) experimental know-
ledge of all three components of the magnetic field and the solar wind
velocity on both sides of the shock, as well as the knowledge of the
density jump across the shock; (b) The simultaneous presence of other
satellites in the interplanetary space at the time of observation of the
seven shocks. The first fact implies that the data are more complete
than those available to other investigators of the interplanetary shocks,
and render, for the first time, an opportunity for testing the validity
of MHD shock relations. The second fact permit us to develop a new
method for determining the shock normal and the shock speed. The
transit time of the shock between two spacecraft, offers an additional
test for the validity of shock relations. All seven discontinuities are
demonstrated as MHD shocks: five of them turn out to be "fast" and
two "slow" shocks. The slow shocks are believed to be the first exp-
erimental examples ever observed. Finally, the effects of the thermal
anisotropies on the shock relations and differences between electron
and ion temperatures are discussed. It is found that the plasma behind
the shock is more isotropic than that ahead of the shock.

Thesis Supervisor: Stanislaw Olbert
Title: Professor of Physics
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Chapter 1

INTRODUCTION

It is well known that compressional waves in ordinary fluids can

develop into shock waves when the velocity of the fluid exceeds the speed

of propagation of these waves (Landau & Lifshitz, 1959). If one studies

the shock from its own frame of reference, then, on each side of the

shock, the density, the velocity and the pressure may be treated as

steady and uniform. The part of the fluid streaming toward the shock

surface is usually referred to as being in a "pre-shock state" ; the part

on the other side of the shock surface is correspondingly referred to as

being in a "post-shock state". Between the two states there exists a

very thin transition layer of the order of one mean free path for colli-

sions between molecules of the fluids. The density, pressure and velo-

city may be considered as discontinuous across this layer. The conser-

vation laws of mass, momentum, and energy lead to the Rankine-

Hugoniot relations, which relate the density, pressure, and velocity on

one side of the shock to those on the other.

The existence of shocks in a fully ionized gas with a mean free

path for particle-particle collisions much smaller than the length scale

of the system (collision-dominated plasma) can be inferred along similar

lines of reasoning as in ordinary fluids. However, the presence of the

magnetic field may modify and complicate the character of the plasma
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shock waves considerably in comparison with ordinary shocks. Nonethe-

less, generalized Rankine-Hugoniot relations may still be derived. Most

standard textbooks on Magnetohydrodynamics (e. g. Shercliff, 1965,

Hughes & Young, 1966, etc. ) discuss VMD shock waves.

The recent discovery of the phenomenon of solarpind by means of

direct satellite and deep space probe observations offers an excellent

opportunity for the search of shocks in the interplanetary medium. In an

attempt to describe quantitatively the behavior of solar wind, it is temp-

ting to approach the problem via simplest possible model ; E. N. Parker

(1963) has done this using macroscopic description in the MHD approxima-

tion. Although, the application of MHD approximation for the case of the

solar wind is not readily justifiable, the hydromagnetic equations have

proven useful for predicting the supersonic behavior of the solar wind

(Parker, 1963), the existence of the bow shock (Axford, 1962; Spreiter,

1963; etc.). In the more recent years, large-as well as small- scale

properties of the solar wind have been studied using a more accurate

forms of the magnetohydrodynamic equation (Colburn & Sonett, 1966) and

the kinetic equation for collisionless plasmas (Scarf, 1969). Although the

kinetic plasma equations give a more precise description of the reality,

the mathematical difficulties associated with their solutions prevent us

from obtaining useful experimentally verifiable results. On the other

hand, a fluid description in the magnetohydrodynamic approximation

gives us,I in general, fewer mathematical difficulties. In addition, the

Ir--- -L--C.-"Y--~-~-LI'-I~eYYM~-L-L-* I ~----
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fluid equations have been utilized in various branches of sciences for a

long time, so that techniques of their solutions are better understood.

In the solar wind, the mean free path for the binary Coulomb

interactions between particles may be comparable to, or larger than

the scale length. Therefore, the interplanetary plasma in contrast to

collision-dominated plasma, is practically collisionless. The relation-

ships derived for ordinary MVHD shocks may not be applicable here.

Thus, a careful re-examination of the problem is necessary.

The usual collision mechanism which generates randomness and

allows a description of the system in terms of the fluid variables,

(pressure, density and velocity) in a collision-dominated plasma is

absent in a collisionless plasma. However, Chew, Goldberger and Low

(1956) have shown that the presence of a strong magnetic field replaces

to some degree the randomizing tendency of collisions so that fluid

concepts again are valid. More generally, if the scale length is much

larger than the characteristic lengths such as the Debye length, electron

and ion gyroradius of the plasma, then the fluid concepts are applicable

(Rossi and Olbert, 1970). In the solar wind, the scale length of interest

is much larger than these characteristic lengths. Therefore, the

macroscopic fluid variables of the solar sind (see Chapter 2) may be

considered as meaningful.

The solar wind is fully ionized, containing mainly electrons and

protons with about 5 per cent (by number) of helium ions. It streams

--"- -~X ---ill-- -i-r.,.-.-



-4-

radially from the sun into interplanetary space. The stream velocity

near the earth ranges from 300 km/sec to 700 km/sec, with densities

from 1 to 10 ions per cm3 (Lazarus et al. 1966). The'temperatures or

pressures (as defined in Chapter 2) have been observed to be anisotropic

(Hundhausen, 1967). More specifically, the ion temperature (TII; )

parallel to the magnetic field differs from the ion temperature (Ti )

transverse to the magnetic field. The commonly observed value of

T,11 / T; is about 2. 5 (Hundhansen, 1968). The sound velocity (using the

avarage temperature between TII; and T . ) and Alfven velocity are about

of the same order of magnitude, ranging from 20 to 60 km/sec. Hence,

the solar wind represents a supersonic flow. The mean Coulomb colli-

sion time between electrons and protons of the solar Wind is of the order

104 to 10 sec. The strength of the interplanetary magnetic field at 1
-5

A. U. lies in the neighborhood of 5 gamma (1 gamma = 10-5 gauss) during

quiet solar conditions and may be intensified up to a few tens of gammas

during active, solar conditions (Ness, 1967).

The large-scale interplanetary magnic field has an Archimedes

spiral configuration (Wilcox, 1968). The density decreases radially

from the sun approximately as an inverse square dependence.

During distrubed conitions on the sun, bursts of plasma are ejected

into the interplanetary space. The bursts comprise the so-called

"enhanced solar wind". They interact not only with the quiet solar wind

component, but also with each other. These interactions may generate
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propagating shock waves in the interplanetary space.

Gold (1955) and Parker (1963) suggested that solar flares generate

interplanetary shocks. Using the hydrodynamic equation, Parker (1963)

computed how a blast wave would propagate in an interplanetary medium

under various model conditions. The effect of magnetic field was

neglected for simplicity. Colburn and Sonett (1966), and Wilkerson (1969)

discuss the MHD shocks propagating in the interplanetary space. Sonett

et al. (1964) have applied the MHD model to one event in deep inter-

planetary space where both plasma and field information were available.

They found very good agreement between the computed and measured

parameters. However, they measured the solar wind velocity only in

the antisolar direction. In order to check experimentally the computed

parameters from the MHD model of shocks, more measurements are

needed. Ogilvie and Burlaga (1969) found that six shock-like discon-

tinuities obey the MHD Rankine-Hugoniot relation within the accuracy

of the observations. Again, their measurements lack the directions of

solar-wind velocity; additional information is needed to check the

computed values. All the computations given by these authors are based

on the assumption of an isotropic pressure. Observations of events

where either the plasma parameters or the magnetic field were available,

have been reported by Gosling et al. (1967 a, b), Taylor (1968), Ness

(1967). Shock velocities have been deduced using conservation relations

by several of these authors.
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Anisotropic pressures were incorporated into the MHD model of

collisionless shocks by Abrahar-Shranner (1967), and Lynn (1967).

However, CGL (Chew, Goldberger and Low) double-adiabatic-hypothesis

was used for those studies. It is very difficult to justify the CGL

approximation across the shock layer.

In order to study the effect of the anisotropic pressure on the MHD

shocks without any ad hoc assumptions, it is necessary to reformulate

the conservation laws for momentum, and energy. The available system

of equations is no longer closed. It turns out (see Chapter 2) that the

number of unknowns exceeds the number of equations by one. However,

when we are able to measure necessary physical parameters on both

sides of the shock then we can use this "over-determined" set of equa-

tions to check the validity of the "theoretical" solutions. We can also

determine parameters, which are not accessible by measurements but

are important from the theoretical point of view.

We have at our disposal the plasma data from various satellite

experiments conducted by the MIT space physics group. The direction

of the bulk velocity of solar wind as well as the bulk speed, the density

and the thermal speed of positive ions are available on both sides of the

shock surface, together with the complete magnetic fields provided by

Goddard Space Fleight Center (GSFC) (Ness et al. ) and Jet Propulsion

Laboratory (JPL) (Davis et al. ). A complete check of the validity of

MHD model of collisionless shock waves in the interplanetary space is
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thus now possible. When discontinuities satisfying MHD shock model

are verified, the solutions, such as the electron pressure, anisotropy

of the plasmas both in the pre- and post-shock states, can be also ob-

tained.

In Chapter 2, the mathematical model of the MHD shock for iso -

tropic pressures is reviewed. Shock jump conditions are derived with

the consideration of anisotropic pressures. In Chapter 3, a detailed

study of the developed theory and the numerical results are presented.

The ratios of the densities across the shock are given as families of

curves in terms of various parameters. In Chapter 4, a new method for

finding the shock normal and the shock speed without the knowledge of the

total pressures of plasma is developed in detail. In Chapter 5, the ex-

perimental data are used to test the validity of the shock equations de-

rived in Chapters 2 and 4. The possible shock-like discontinuities

have been searched from the data of Pioneer 6, 7 and Marinar V during

the period of 1966 to 1967. Among many candidates, seven have been

identified as shocks. They satisfy the generalized Rankine-Hugonoit

relations. The results are presented in the form of tables and graphs.

In Chapter 6, the necessity of the two-fluid description of the solar wind

for more precise interpretation of the data is discussed. The differen-

ces between the electron pressures and ion pressures across the shocks

are studied. Some rough estimates of the expected values for the elec-

tron pressures are given. In Chapter 7, a summary of all the findings
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is given. The discussion of the results and suggestions for further

future studies are presented.
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Chapter 2

MAGNETOHYDRO DYNAMIC MODEL OF

THE COLLISIONLESS SHOCK WAVES

2. 1 Basic Equations of Collisionless Shocks -- Fluid Description

To begin with, let us discuss in general the laws of conservation of

mass, momentum and energy for an ionized gas.

Starting from the microscopic point of view, we write down the

Boltzmann Equation (Chapman & Cowing, 1961; Spitzer, 1962) for each

species of ions and electrons using the Einstein summation convention over

(j = 1, 2, 3)

+ )- - (2.1)

where f (r, v, t) is the distribution function in six-dimensional phase

space composed of the velocity space v, the ordinary space r and the time

t; m is the mass of species c ; F is the j th component of force acting

on the particles of species o( ;(L.represents the rate of change of

f. due to collisions between particles.

For a collisionless plasma, such as the solar wind, the collision

term may be neglected. The equation (2. 1) may be interpreted as the

rate of change of f (r, v, t) along the trajectory of a particle in phase

space(Liouville Theorem).

If the region has a scale length L which is very large compared
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with the various characteristic lengths of the plasmas, a one fluid model

can be applied to the collisionless plasmas under the quasi-stationary

condition (Rossi & Olbert, 1970).

The characteristic lengths of a given plasma depend on such quan-

tities as the number density, pressure, magnetic field strength, mass of

the ions etc. In solar wind, the largest characteristic length is of the

order of the gyroradius of ions (based on their thermal speed), and the

scale lengths we are interested in are much larger than this characteris-

tic length. Therefore, we may use the one-fluid equations for approxi-

mate macroscopic description of the solar wind.

The macroscopic equations of continuity, momentum and energy can

be obtained by moment formation of Boltzmann equation, i. e. by multi-

plying the Boltzmann equation separately by - l, if Y11 L and 7trn

then integrating each equation over the velocity space respectively. (

denotes the summation over species o( .) For detail derivation of these

equations, see Rossi and Olbert (1970), Spitzer (1962).

Let us define the following macroscopic quantities:

(1) The density: The total mass of all species in unit volume

(2 The average streaming (2.2)

(2) The average streaming velocity of the plasma as a whole

--_^_______ -~u_
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V (_, t)
(m r )

(3) The average kinetic energy density of the particles

*j(jr,t) ± t 1 m>Jr~f,~ di2

(4) The kinetic stress tensor'J
ZJ(L ZnO( - c 1

7-

Define the velocity v* of a particle in a system

plasma streaming velocity V . Hence;

: moving with the

'I (2.6)

Substituting v*

following form

----wr=

into (2. 5), the kinetic tensor can be written in the

±

(5) The pressure tensor is defined as

=J OC U.L C

c04(f

P thus represents the kinetic tensor in the system Z. In the case of

ordinary gases, P.. is isotropic and represents the ordinary thermal

pressure. In the case of collision dominated plasma the assumption of a

(2.3)

(2.4)

(2.5)

(2.7)

(2.8)

-r--a -l~.i--^~PvY* ---~^~-L~-- l---~ --- ---

Vp V.
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scalar pressure is well justified. When the mean free path for coulomb

interactions between particles is comparable to the scale length of the

problem, P.. is, in general, an-isotropic. In the presence of a strong
13

magnetic field, one can show that the pressure tensor has the following

form (Rossi and Olbert, 1969)

f = P b + ( -+ PL) tb (2.9)

where the subscripts "parallel" ( 1( ) and "perpendicular" ( 1 ) refer to

the direction with respect to the magnetic field vector. b. , b. are the1 3

projection of the unit vector, B / B, in the i, j, axes, respectively. (i. e.

b. - .)
i B

In solar wind, the distribution functions of ions in the system Z

may be roughly approximated by a "bi-Maxwellian form" (Hundhausen,

1968): 2

.f-L Y1.
TTj/,tJ (2.10)

Substituting this form of the distribution function, and using the normal-

ization condition of f (r, v*, t), into (2. 8), the following relations can

be found:

2t, 2 nk ,, 2 nke
n 6is the number density of species 0( , and n is the total number den-



- 13 -

sity (i. e., n = nd ). k is the Boltzmann's Constant (k = 1. 380x 10

-1C
erg deg- ). Pressure tensor, P , has the form of (2. 9), and relates

to temperature tensor, (ij . by the relation

. k 0 (2. 11)

IJ J

If we rotate the coordinate system in such a way that the z-axis is

parallel to the magnetic field B , the pressure tensor becomes

= 0 1 (2. 12)

0 o /

(6) The thermal energy

T 
(2.13)

equals one half of the trace of P

(7) The heat flux

f4 (2. 14)

This quantity has been measured (Hundhausen, 1968). in the solar wind, and

has been shown to be very small, thus justifying the approximate validity

of Eq. (2. 10). (Note that Eq. (2. 10) makes the heat flux vanish identi-

cally.)

In terms of the above defined quantities, the laws of conservation of

mass, momentum and energy are summarized as follows (Rossi and
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Olbert, 1970):

(1) Equation of Continuity

+ aix.

(2) Equation of Momentum

aiev~)
+a 1*

where Y(z
0(C o oof

is the charge dnnsity of the plasma, g is the gra-

vitational acceleration, E is the electric field and j is the current den-

sity. Applying the Maxwell's Equations, the above equation can be

written in the following form:

-o 0 (2. 17)

Define

St
C2

(2. 18)

And

where

- p-i

xB

v v T7 (2. 19)

(2.20)

is the Poynting vector,

-- 0 O (2. 15)

(2. 16)

__~/_ --PII~PI~X~ IICIII~ LI-UI I III~- I~
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e 6E- + 8
(2.21)

is the Maxwell's stress tensor, Go is the dielectric permittivity and

the magnetic permeability of vacuum. S / c2 represents the electromag-

netic momentum density. When the Alfven speed is much smaller than

the speed of light c, this term can be neglected in comparison with the

V in (2. 18)

(3) Equation of Energy

- v (2.2 2)
'j X

Again by virtue of Maxwell's eql

written as

where

uations, the energy equation can be re-

0-

Sand

and

Fl' j )=P V(/ i + v - +
S.

1 is the gravitational potential (g = - 7) which may be assumed to be

time independent. From a scale analysis, one can show (Rossi and

(2.23)

(2. 24)

(2. 25)

1_III__I1II___L~_L_ I~IC-- -Y.~~--~-- .~I
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Olbert, 1970) that, in solar wind, the electric field may be adequately

approximated by

E -V x . (2, 26)

Using this approximation one can show that the ratio of magnetic field

z C 2

stress to the electric field stress 2 is of the order of -z

Hence, one can neglect the influence of the electric field stress in (2. 21)

and (2. 24).

Maxwell's equations allow us to state two additional relations which

are necessary for the study of the shock jump conditions:

(A) The divergent free character of the magnetic field

O (2.27)

(B) In a steady state ( ~  ), the curl free character of the electric

field

S(2. 28)

(2. 15), (2. 17), (2. 23), (2. 26), (2. 27) and (2. 28) form the basic

equations for the fluid description of the collisionless shock waves.

2.2 General Jump Conditions in MHD Discontinuities

The solar plasma streams radially from the Sun; past a critical

distance of several solar radii, the wind velocity, V, is supersonic.

Shocks or discontinuities may propagate in this plasma; their speed of
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propagation, V , as seen by satellites, will be different from V. In
-s

order to apply the conservation equations given in the previous section,

it is convenient to define the reference frame moving with the shock or

discontinuity. Then, the bulk velocities of the solar wind with respect to

the shock or discontinuity frame of reference are called V , where

V = V - V . In the non-relativistic case, the magnetic fields and solar
- -s

wind densities are invariant with respect to the Galilean transformation.

In the following, we will consider an infinite plane shock propagating in

the solar wind. All the parameters are defined with respect to this shock

frame. (i. e. V= V- V)
- - -s

Let us assume that the infinite shock plane in Zis parallel to the

x 2 , x 3 plane, and its normal is in the xl-direction. The plasma state on

one side of the shock front is called the pre-shock state where the plasma

flows toward the shock front, and the state on the other side of the front

is called the post-shock state where the plasma flows away from it. Both

the pre- and post- shock states are assumed uniform and steady. The

effect of gravitation will cancel out because the gravitational force doesn't

change across the shock front.

Let us consider a "pill box" as shown in Figure 2-1, the thickness

of this "pill box" , S , is much smaller than the size, L , in the x 2

and x3 directions. The flux of mass, momentum, or energy into

the "pill box" must balance the respective flux out of the "pill box",

provided there is no source or sink in the box. Since is much

smaller than L , we can saaume that all the flux through the "pill box"



Sa

2 2

S...... dotted vectors are the projection of

velocity vectors onto the (x1 ,x3 ) plane

Figure 2-1
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involves only the lateral face surfaces. (i. e. there is no flux leak in the

x 2 , x 3 directions.)

We take the volume integral of the following equations in the steady

state. (i. e. - o .)

(1) The zero divergence of the magnetic field (2. 27).

(2) The curl free character of the electric field (2. 28).

(3) Equation of continuity (2. 15).

(4) Equation of momentum (2. 16) which consists of the equations for the

three components.

(5) Equation of energy (2. 23).

Using Gauss's theorem, the volume integral can be transformed into the

surface integral over the "pill box". Then, we obtain the following equa-

tions:

[ 01  = O (2. 29)

O0O (2. 30)

[ v;1 ,- V' 13 = O (2.31)

S'J- \B1 O (2. 32)

V , 1 0  (2.33)

V A 0 (2. 34)



- 20 -

3 (2.35)

VI*- A O (2 . 3 6 )

where the bracket [ ] indicates the difference of the enclosed quantity

on the two sides of the shock. Equations (2. 29), (2. 30), and (2. 36) are

derived from (2. 27), (2. 15), and (2. 23), respectively, (2. 31), (2. 32) are

derived from (2. 28) with the MHD approximation (2. 26),and (2. 33), (2. 34),

(2. 35) are derived from (2. 16).

Note that these eight equations contain nine variables: the density

, the three components of the velocity, V , and the magnetic field,

B, and the two pressures, PI and PL , for both the pre- and the post-

shock states. Note also that instead of PII and PL we have introduced

two related quantities:

f 2 I- PL
Z (2. 37)

and

P 3P P1) (2. 38)

We can see that P equals one third of the trace of P.., and thus is a

scalar quantity independent of the rotation of coordinate axes. $ is a

I____^_^_I___II1_ __- i--L~OI--- ^
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dimensionless parameter measuring the degree of "thermal" anisotropy

in plasma. Notice also the relation

T -f (2. 39)

We see from (2. 37), that when P.. is a scalar, (i. e. PI = P )

becomes unity. Then, the above eight equations reduce to the ordinary

MHD shock wave relations, (Anderson, 1963). There are then only eight

variables, namely , V, B, and P and eight equations (2. 29) to (2. 36).

Thus, for scalar pressure, these equations form a closed system, where

the state on one side of the shock can be computed from the state on the

other side. However, for the case of solar plasma P.. is known not

always to be a scalar. The knowledge of P.. introduces two parameters

(i. e. P]i and PL ) for the eight equations. Then, the system of the

equations is not closed because the unknowns exceed the equations by one.

This difficulty is discussed later (see Chapter 5).

2. 2. 1 The coplanarity theorem

For an isotropic pressure plasma, the coplanarity theorem is well

known and can be stated as follows: the magnetic field vectors on both

sides of the shock and the normal to the shock lie in the same plane. In

this section, we shall show that the coplanarity theorem still holds for

anisotropic plasmas.

Let us write explicitly the jump conditions that are needed to prove

the general coplanarity theorem. Unprimed and primed quantities refer

--~a~-- -C---- -~ I--I--^*-~- I---CC-~--Y -~" ~"LIC---- --
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to the pre- and post- shock states respectively. The subscripts,

and 3, refer to the directions x 1 ,x 2 ,x 3 , respectively.

PV"iv C

- V,33

pv,"

V7L3

V, vz

- 53

V3 '

vv-''3

<3

VI /1'a.

Substituting (2. 40), (2.41) into (2. 42), we obtain

( B
/,0

-- P7)C 3' V'-3

where C is a constant defined by (2. 41)

Substituting (2. 40), (2.41) into (2. 43), we obtain

C (V-

By eliminating (V3

2 3

./U V

between (2.46) and (2. 47) we obtain
3

1, 2,

(2.40)

(2. 41)

(2.42)

S 
/

/4
(2.43)

(2.44)

-

A Ji (2.45)

- V3 (2.46)

(2.47)

_LII ~

D,

, J

3B

--P

V2'-- If -,
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( P1 h 3c

10 131
~L5;

(2. 48) can be written in the following form:

/,2

A

Define

MA

3
z(A"

vi
and

VA
J"I
/L-D

where VA

magnetic fi

is the Alfven speed based on the normal component of the

eld
1 ' and MA is the Alfven Mach number based on VA .

Similarly, we obtain the following equation for B2
and B' from (2. 41),2

(2. 45), and (2. 44)

NA-3I /

S2

NA 52 (2. 52)

As long as
2(M'A
A -y 2

) and (MA
M

do not vanish, we can

divide (2. 49) by (2. 52), and obtain:

-3
3

(2. 53)

-B2

This is the mathematical expression of the coplanarity theorem for

an anisotropic pressure plasma. Let us define the vector B t , and BI a!
Ett

1,
AUC (2.48)

53
(2.49)

(2. 50)

(2. 51)

-- 4)

5j
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the projection of the magnetic field vectors, B and B' , respectively

on the shock plane. Equation (2. 53) implies that B and B' point in the
-t -t

same direction. Therefore, we can always choose a coordinate system

such that the B 2 component on both sides of the shock front vanishes.

This simplifies the original system of the jump conditions across the

shock front considerably.

In the case of the isotropic pressure plasma (i. e. 1 = = 1), the

equation (2. 49) and (2. 52) still hold. This leads to the same equation

(2. 53). Thus, as we have indicated previously the coplanarity theorem

is valid for the isotropic as well as the anisotropic pressure plasmas.

2. 2. 2 Simplified shock equations for scalar pressures

Using the coplanarity theorem, we may choose B = B 2 = 0 ; then

the system of equations (2. 29) to (2. 36) simplifies into :

0 (2. 54)

V3 O (2.55)

[ 0v] 0 (2.56)

[ y - V,, J o (2. 57)

Q V 3 O (2. 58)f Pv~v; £Y3
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2 L302

z ,/ 
(2. 59)

(i ;v J1o (2. 60)

, It is convenient in the analysis of the shock to use the ratio

, , and instead of the actual variables (, V

etc. These five ratios can be solved for in terms of the non-dimensional

quantities characteristic of the pre-shock state (see Appendix A). These

non-dimensional quantities are : the Alfven Mach number M A (2. 50), the

sound Mach number, M , is defined as

V

(2.61)

V

where

--- (2.62)

In what follows, we shall assume that the polytropic index is 5/3.

The two angles and are formed respectively by B and V with

the shock normal in the pre-shock state.
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V and

V
/

P
if

We find from the equations (2. 54) through (2. 60) :

Ii 1

4an O.
ta4 l O

MI-

(2.66)
2
MAI

a 4r.

M;+ A
141?2Q

Bn6
z

+ C3 cz 2

M

- AMA

Jt

t s

r4 2
4 af &-7 %

Putting for short :

n/ //

(2.63)

(2.64)

± 1. (2.65)

)+ I(- 1) (2.67)

where

I, Co (2.68)

C4

C3

C

f 2
LA

'an 1 +
20 /0 . A

(2.69)

1z4)

_~~~____-^-~-ri-i-

=_

C ~*
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2 2 O +

2. 2. 3 Review of various discontinuities in isotropic plasmas

For an isotropic pressure plasma, the theory and jump conditions

of the hydromagnetic shocks have been studied extensively (Anderson,

1963 ; Bazer and Ericson, 1959). We do not intend to give the mathemati-

cal derivation nor a detailed review on this subject. However, we feel

that a brief summary of the results which are pertinent to our analysis of

the interplanetary shocks is advisable at this point.

Let us classify the discontinuities into two categories resulting from

the solutions of the conservation equations (2. 29) to (2. 36). The first

class refers to the discontinuities which are identified by the condition

that there is no flow across the surface of discontinuity, i. e. V1

vanishes. These again can be divided into contact and tangential dis-

continuities depending on whether there is a normal component of magnetic

field B or not. The second class refers to the case when e V # 0, and

is called shock. The shocks can be divided again into three kinds :

(1) Alfven shock, or the so-called rotational discontinuity. This shock

is not a true shock because there is no density change across it. It repre-

2 2
sents the singular case when M = M = . From this condition it

follows immediately that the Alfven shock propagates at the Alfven velocity

11 1111 ,I . '- - M" . " iAl 11,10
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and can be thought of as a large au:;piitude Alfven wave. A reversal of

B may occur across a rotational discontinuity.

(2) Fast shock. This shock is closely related to the fast -mode of the

MHD wave propagating in an infinite homogeneous plasma with infinite

conductivity. Across the fast shock not only the density but also the

magnetic field strength increases.

(3) Slow shock. This shock is closely related to the slow mode of the

MUH1D wave. Across the slow shock the density increases but the magnetic

field strength decreases.

Among the three kinds of shock waves, only the fast and slow shocks

obey the coplanarity theorem.

Neither the fast nor the slow shock will : exist if the plasma is

incompressible. There are good reasons to expect that the fast and slow

mode of the MHD waves can develop into the corresponding fast and slow

shocks. Kantrowitz and Petschek (1966) give a detail explanation of this

matt er.

We do not intend to make further remarks on the subject of the

tangential and contact discontinuities. Burlaga (1968), Burlaga & Ness

(1969), have given a detail description on this subject related to the

observations in interplanetary space. Certain properties of these

discontinuities and of the shocks are summarized in Table 2-1.

--- ^-- I- -XICI*-C"-----F1-~-C -I-O?- -~yl~-
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Table 2-1

Basic MIHD Shocks and Discontinuities

Velocity Density Field

Fast Shock V' o [P] >° [1] >0

Slow Shock []O [B <0
Alfven Shock or 4e

Rotational Discontinuity VI Ij0 -7o

Tangential Discontinuity 04 =  O .fo0

Contact Discontinuity V& c P-O r1=o ) O

It can be shown that the fast and slow shocks are "evolutional"

(Kulikovskiy and Lyubimov, 1965). Shocks are called "evolutional" if

they are stable against small perturbations. Denoting by 0. fast and

slow the propagation velocity of the fast and slow magnetosonic waves

in the direction of the shock wave, respectively, we have the following

criteria :

(i) For a fast shockk :

a. Pre-shock state

V: fast (2. 70)

b. Post-shock state

a > V >V (2.71)
fast . A

(ii) For a slow shock* :

a. Pre-shock state

VA > Vl > Oslow (2.72)
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b. Post-shock state

1' ow > V (2. 73)

For a detailed deritvation of the above inequalities, we refer the

reader to the works by Bazer and Ericson, (1959) and Shercliff, (1960).

We see that in a fast shock the normal velocity jumps from supersonic

to subsonic relative to the fast magnetosonic velocity and that in a slow

shock it jumps from supersonic to subsonic relative to the slow mag-

netosonic velocity. In the fast shock the values of Vand V are both

"super-Alfvenic" and in the slow shock Vand \/are both "sub-Alfvenic".

Across a fast shock the direction of B is rotated away from the

normal and in a slow shock B is rotated toward the normal.

The magnitudes of the magnetic field B rise across a fast shock

and drop across a slow shock. It can be shown that across both a fast

and slow shock the component B of B tangent to the shock front does not
:-t

change sign.

When B is created or wiped out across a shock, we have the ex-

treme cases of a fast and slow shock, respectively, named "switch-on"

and "switch-off" shocks, respectively.

2.2.4 Anisotropic plasma

In analogy the isotropic pressure plasma, the three kinds of shock

waves as well as the tangential and contact discontinuity are also expected

to exiit in the case of anisotropic plasmas. However, the anisotropy of

the plasma will modify the various kinds of discontinuities reviewed in

.._. rrrrxrlur--~- --. i.-I.~.^-. ~r.. r----rr~YL~~I IIIP ISIIIIII~---
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the preceding section. It is also possible that new kinds of discontinuities

may appear.

Since, only the shock waves are of the main interest to us here,

we will restrict ourselves to the problems related to the shock solutions

and investigate how the anisotropy of the plasma will modify the solu-

tions of an isotropic plasma.

As mentioned before in the case of anisotropic pressures we have

nine unknowns but only eight equations, the solution of this system of

equations is therefore not unique. We may specify one of the unknowns

as a " free parameter". For a given value of this parameter the remain-

ing eight unknowns can be computed with the help of equations (2. 29) to

(2. 36).

As in the case of isotropic pressures the eight equations can be

reduced into five equations by choosing an appropriately orientated

coordinate system. From the coplanarity theorem derived in section

2. 2. 1, we always can orient our coordinate system such that B2 vanished

on both sides of the shock.

As in the previous case, it is required from equation (2. 32) and

(2. 33), that V is continuous (i. e. V = V ), and from (2. 29) that B2 2 2 1

is continuous (i. e. B1 
= B1 ) across the shock front. There are now six

unknowns: ' V B3 P' and ', they can be reduced

to dimensionless variables if one measures in terms of their given

values in the pre-shock state.

Replacine IP' and P' by anisotropy parameter and the scalar

-- --------~---~- ---- ui~- ----. ~wl. ~- ~.~-~-~uP4yePCI-srrs~----~ --- II --------- ---------~
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pressure P'

F

i. e., putting , accordiny to equations (2. 37) and (2. 38),

F /

o2

A.+

13I8----
/

(2. 74)

(2.75)

and using the symbols defined by (2. 63). We find now (for details, see

Appendix A) :

(2.76)

-- = .( ..8 - (2.77)

(2.78)

1)-'

I

frd

(25+') =M2

C, + , cd C !, +

(2.81)C

2

m/VT
-

(21 1) (2.79)

where

Co =o (2.80)

----- -XII-.-- I-Y~L3"L-P-- T~I ~C~I^I~I-L IIIYF- --l-~---~ 1~CI~III~~II_~ I-. -_I_
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C3 /0 Mt I ~ll Ac = /o4'r, '° f.,v7__',A- MA -,. ,)(2.82)
3 '' IIa i L H'A3

C 20 " (2. 83)

"( ' M kL-N I~fz) t4~ji 5'- 'l(. -ti)

2 , ,,

/2 ~/PI 4 (2. 85)Co 5 - '4,-z( -- -

If one treats not only ' but also P as a known parameter, then

(2. 80) determines unambiguously. (One may note that by putting

- = I/ = 1 , the above equations reduce to the ordinary MHD shock

relations as given in section 2. 2. 2 ).

~-rr~- -~-- ~- ~----**--Lli~xliiilPsspsY I
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Chapter 3

DETAILED STUDY OF THE JUMP CONDITIONS

FOR ANISOTROPIC PRESSURE

3. 1 On the Choice of the Proper Root of Shock Equations

Equations (2. 76), (2. 77), (2. 78), (2. 79) and (2. 80) represent a

complete set if the quantities MA, MS ,  ,E B and ev of the pre-

shock state as well as the anisotropy parameter 3" of the post-shock

are assumed to be given. The first four equations are simple, single-

valued functions of y. Once, the normal component of velocity jump, y,

or the inverse of the density jump, 1/x, is known, the values of u, v,

and z can be evaluated easily provided the denominator (M y - ) of u

and z does not vanish. The case (MAy - ) = 0 is singular and it is

possible to prove that the solutions correspond to the so called "switch-

on" or "switch-off" shocks. These two kinds of singular shocks will

not be discussed here. Theoretical studies on this subject can be found

in Anderson, (1963) and Bazer & Ericson, (1959).

Equation (2. 80) allow us to determine the value of y. The com-

plete set of solutions of (2. 80) lead to four roots. One has to decide by

independent arguments which of these four roots is physically meaning-

ful. The necessary condition for the solutions to be physically meaning-

ful is that they be real and positive.

In ordinary gas-dynamic and MHD shocks, the density increase
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across the shock follows directly from the requirement that the entropy

increases across the shock. However, in the case of collisionless plas-

mas, the plasma, in general, is not in the state of thermal equilibrium,

the entropy cannot be defined in the same fashion as ordinary gases. We

require that the density increases across the collisionless shock as the

basic criterion to choose the proper y. In order to fulfill the require-

ment that the density increases across the shock, the solution y has to

be less than one. Therefore, only those solutions for which y lies be-

tween zero and one are physically meaningful. For certain given pre-

shock states there may be no solution of (2. 80) which is physically mean-

ingful. In such cases we will not expect any shock to exist in nature. On

the other hand, it is not possible to have more than one physically mean-

ingful root which would lie between zero and one, because the post-shock

state has to be uniquely determined in terms of a given pre-shock state.

If there is more than one root of (2. 80) which lie between zero and one,

usually it is possible to distinguish the one which is physically meaning-

ful from the condition that z, u, and v are positive, and the system of

equations (2. 76) to (2. 80) is evolutional (i. e. stable against perturba-

tions). Therefore, if the shock exists we will have one and only one root

of y which is physically meaningful.

The chosen root of y may correspond to a fast or a slow shock

depending on the numerical values of pre-shock parameters. Strictly

speaking, the terms "fast" and "slow" shock have been defined precisely
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only for isotropic pressure. In that case, for the fast shock, the Alfven

Mach numbers M and M' have to be greater than one on both sides ofA A

the shock, while for slow shock, M and M' have to be less than one on
A A

both sides of the shock. These conditions come from the evolutional re-

quirements and were discussed in section 2. 2. 3. As can be seen from

(2. 66) this implies also that the ratio of tangential component of the mag-

netic field u is greater than one for a fast shock and less than one for a

slow shock. Consequently, the values of MA and u give us a direct in-

formation whether we deal with a fast or a slow shock.

For an anisotropic pressure plasma, the identification of fast and

slow shocks is not so obvious because the problem of evolutional condi-

tion for the anisotropic shocks has not yet been solved. Rather than to at-

tempt a general solution to this problem within the scope of the present

work, we introduce the following hypothetical criteria for distinguishing

a fast shock from a slow one for the anisotropic plasma.

(1) We shall call shocks "fast" when u and MA are larger than one

and (M y - r') is positive, and (2) we shall call the shocks "slow", when

u and MA are less than one and (MA y - 5 ) is negative. These condi-

tions are believed to be necessary but not sufficient for precise identifi-

cation of fast and slow shocks in anisotropic plasmas. Note that if

= = 1, then our criteria coincide with the familiar MHD case dis-

cussed above.

There is still another way of identification of the fast and slow
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shocks. Equation (2. 68) can be factored in the following fashion:

c -1) [ C +c, + C ) + C + C,) t C C, (3. 1)

ct C, O

The identity root of (3. 1) (i. e. y = 1) is the trivial solution, the re-

maining cubic equation of y, if looked upon as a function of the Alfven

Mach number, can be written in the following way:

(3.2)

where

72  3

_5 Re 24 -n2

/4 + ( -t ~e a n4 /4 e)

o ei

In the above equations we have put for short:

Re

(3.3)

(3.4)

(3.5)

(3.6)

M;

In the limit of weak shocks (i. e. y = 1), (3. 2) reduces to

( e6± f e 2)(37S= 0O

~111111.111. ....-.__ ._*- -.1^.1_1--1^-1111~ 11~11^_~

6 +
e, + A, M*

i!
e, M, ) e, ro

(3.7)(m-i)[em. (e, + m z fA A A '
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It is apparent that the first factor represents the Alfven wave and the

second represents the fast and slow magnetoacoustic waves. This shows

that three finite-amplitude shocks are possible, corresponding, respec-

tively, to the slow, intermediate and fast shocks discussed in 2. 2. 3.

In the case of anisotropic plasma, (2. 80) if looked upon as a func-

2
tion of Alfven Mach number, is a bicubic equation for MA . As in the

case for isotropic pressures, we have three roots of MA which may be

defined as the slow, Alfven and fast shocks for the anisotropic plasmas.

Therefore, the equation (2. 80) shows that there are no more than three

kinds of shocks in the case of anisotropic plasmas as well.

3. 2 The Concept and the Role of the Anisotropy Parameter in the Jump

Conditions

The anisotropy parameter r has been defined by (2. 37); its value

is predicted by the structure of the velocity distribution of plasma (see

Eq. 2. 8). The more the deviates from unity, the more anisotropic is

the plasma.

An important problem for the collisionless shock is how to obtain

the anisotropy changes across the shock front. The conservation equa-

tions alone are of no help in this respect. As mentioned before, there

are nine unknowns but eight equations. If one takes higher moments

from the Vlasov Equation, one still ends up with an underdetermined

system of equations, because each next moment formation introduces
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more unknowns. Some authors made special ad hoc assumptions on

and in order to obtain a closed system. In contrast to these early

attempts we will try to obtain the values of r and ~ by empirical

means.

Without adopting any special assumption to close the system, it is

still possible to obtain some information about the anisotropy change

across the shock by studying the equations of the underdetermining sys-

tem in a different light.

In the case of the actual experimental situation, when the para-

'" meters, p , V, B and Pi (where Pi is the ion pressure) are measured

on both sides of the shock,then, we have to our disposal an over-speci-

fied set of equations. In principle, we can use this set to draw some

quantitative or at least qualitative conclusions on those parameters

which are not directly measured, such as the anisotropy parameter,,

the electron pressure, P e, and the shock velocity, V se ' -S

3. 3 The Numerical Solutions

It is clear from (2. 80) that the quantity y depends on the quanti-

ties MA , M S , B and _' but is independent of the angle Ev

The only quantity that depends on e is z.

In the following analysis, only the solution of (2. 80) for y will be

studied in detail. The values of the other variables can be readily com-

puted from (2. 76), (2. 77), (2. 78) and (2. 79).
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In the calculation, the numerical range of the constants MA , M S

EB , and / have been selected in such a way as to cover their

probable values expected from observations in interplanetary space,

they are:

Table 3-1

The Numerical Ranges of Constants MA, MS , B', and

constant The ranges of the constants

used in our calculations

MA 0. 5- 10

M S  0. 5 - 10

48 00 - 90

-0. 5-2.5

f/ -0. 5- 2.5

For a given set of values of MA , MS , B , and f the quan-

tity y has been calculated as a function of ' ; was allowed to

vary from -0. 5 to +2. 5 at an interval of 0. 1. If we fix the quantities

MA , MS , and in a given plot, a family of curves of y vs. for

different O B are obtained. Figure 3-1 shows the plot of y vs. 5/for

various B at fixed MA  MS and r . The numerical values cho-

sen for MA , MS and are 6. 3, 12. 0 and 1. 0, respectively.

Closer examination of Figure 3-1 permits us to draw the following con-
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clusions:

(1) All curves referring to various values of e B intersect at one point

in the vicinity of 5 = 0. 15. This implies that for = 0. 15 the density

ratios (or normal velocity ratios) are independent of the tangential com-

ponent of the magnetic field with respect to the shock normal. The occur-

rence of common intersection points is not accidental and can be shown

to exist in general. For detail study of these interesting special values

of 5 , see Appendix B.

(2) The values of y are rather sensitive functions of EB for f = 1.

(i. e. isotropic pressure in the post-shock state. ) This implies that mag-

netic field orientation has important influence on the shock relations for

this .

(3) Each curve of y vs. is a monotomically increasing function of

(4) For certain range of values of f' , y may become less than 0. 25,

that is, the density ratio across the shock front may be larger than 4,

which is the largest density jump allowed for isotropic MIHD shock.

(5) The values of y become less dependent on " when the angles eB
0

become less than 45 . In the extreme case when EB approaches zero,

the y values become independent of 7 .

A large number of families of curves for different values of MA , MS

and have been investigated and most of them show similar character

to that of Figure 3-1.
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Let us discuss now the dependence of y on the remaining quanti-

ties, namely, , MA and M S . Varying only one quantity at the

time, we arrive at the following conclusions;

(A) Varying I

Figure 3-2 shows four plots cf y vs. with constant MA and

MS but for different values of the anisotropy parameter . The set

refers to MA 
= 8.6, MS = 2.25, and = 1.0, 0.8, 0.4, and0.2 re-

spectively. It is found that y is almost independent of j , provided the

angle O B is not very large. For OB less than 600, no appreciable

difference between various y's for different J 's is found.

(B) Varying M^

Figure 3-3 is similar to Figure 3-2 but the Alfven Mach number

MA is allowed to vary instead. The set refers to J = 0. 75 and M =

2.45, and MA = 10, 2. 85, 1. 5 and 0. 85, respectively. The plots show

the similar features as Figure 3-1 for MA larger than 2. 85. The slope

of y vs. / at the same OB and the y-value of the intersection point

decrease as the Alfven Mach number MA increases. Note that for

MA = 1. 5, the shape of the curves is quite different from those for

which MA are larger than 2. 85. For a certain range of j , y be-

comes double-valued. Thus, additional conditions have to be introduced

to choose the physically proper solution. Note further that for MA

0. 85, the y - vs. - - curve becomes again a monotonic, decreasing

function of . Thses curves represent examples for slow shocks.
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(C) Varying MS

Figure 3-4 is similar to the previous Figures, but now the sound

Mach number MS is varied. The set refers to 0= , MA = 3. 7, and

MS = 10, 4. I1, 1. 5 and 0. 8, respectively. The plots show again features

similar to those in Figure 3-1 provided MS is larger than 1. 5. When

MS = 0. 85, the general shape of the curves changes completely. As in

Figure 3-4 (d), the y - vs. - V- curves become highly dependent on 5

for eB larger than 700 and, moreover, y becomes quite small for cer-

tain values of / when EB is larger than 800.

Finally, we should like to present results in two limiting cases:

one involving very large Alfven Mach number and the other, very.large

sound Mach number. The results are shown in Figure 3-5. It is inter-

esting to note that y does not approach the limiting value of 0. 25 as is

the case in very strong shocks in isotropic plasmas. For large MA '

the values of y are almost independent of / and EB. On the other

hand, for large MS , the values of y depend strongly on /' and mod-

erately on EB . As both MS and MA become very large, one can

show from (2. 80) that the values y approach 0. 25 for any given EB

and .

The results concerning y obtained in this chapter and the associa-

ted results concerning x, z, u and v, will be utilized in Chapters 5 and

6, where we undertake to analyze actual shocks observed in the inter-

planetary space.
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Chapter 4

A METHOD OF IDENTIFICATION OF THE SHOCK FRAMES

WITH THE HELP OF THE TRANSIT TIME

4. 1 Analytical Expressions for Shock Normal

Since the velocity vector of the interplanetary shocks is unknown, it

is necessary first to compute this vector in order to define the shock

frame. All the measured velocities, then, can be transformed into the

shock frame. The magnetic field is the same in both the shock frame and

the satellite frame (as long as the shock velocity stays non-relativistic).

Hence, the magnetic field measured in the satellite frame may be used un-

modified by the observer in the shock frame. The coplanarity theorem

proven in section 2. 2. 1 requires that the magnetic fields on both sides of

the shock and the shock normal vector lie in the same plane. Thus, when

the shock is not propagating along the magnetic field nor perpendicular to

it, the vectors (B' - B ) and (B' x B) must stay in the plane of the shock.

Therefore, the shock normal, n , is given by

,^ + ( S- x ( X B )

The sign of the shock normal has to be determined from the measured

plasma data. Thus, the coplanarity theorem enables us to determine the

shock normal from the magnetic field data on both sides of the shock
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alone; in other words, no additional information on other plasma para-

meters is needed in principle.

A
The determination of the shock normal n , by this method is se-

verly restricted due to two kinds of errors. The first kind of error is

due to the fact that the magnetic fields are often observed to fluctuate,

especially in the post-shock state. The shock normal n determined

from such unsteady magnetic fields will be subjected to large uncertainty.

The second kind of error is due to the fact that the angle between B and

B' is often very small. The above formula for n shows that a few de-

grees of uncertainty in the direction of B' or B causes a large uncer-

tainty in n. In the extreme case when the shock propagates along or per-

pendicular to the magnetic field B , the equation (4. 1) is of no use for de-

termining the shock normal.

Because of these practical difficulties, equation (4. 1) can often be

used only for guiding purposes as to the very approximate behavior of n .

A
In order to improve the determination on n, one must resolve to itera-

tion procedures which employ not only equation (4. 1) but various other

available shock equations. In other words, one uses (4. 1) as a first step

in the iteration processes and insists that not only (4. 1) but also other

pertinent shock equations be simultaneously satisfied. This procedure is

quite involved and requires help of digital computers. The details of the

iteration methods for the determining n are present in the Appendix C

Due to the complexity of the above mentioned process, it is impor-
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tant to search for other means to determine the shock normal. Such op-

portunity offers itself in the interplanetary space when it so happens that,

simultaneously with the primary satellite, there is present another satel-

lite or a deep space probe capable of detecting, at least qualitatively the

passage of the same shock. In practice, one always has precise informa-

tion as to the position of the secondary vehicle relative to the primary

one. In addition, one also knows well the time interval which the shock

needs for the passage from the primary to the secondary vehicle. We

shall refer, in what follows, to this time interval as the transit time, 1

If the distance between the two vehicles in question is not excessively

large, say relatively small fraction of one astronomical unit ( 1 A. U. ),

then, it is plausible to assume that the shock front is planar and is propa-

gating at a constant speed.

It is interesting to note that the earth itself can often replace the

role of the secondary vehicle. This is so due to the fact that the passage

of the interplanetary shock through the earth's magnetosphere causes ob-

servable sudden changes in the magnetic field measured on the surface of

the earth (the so-called "storm sudden commencement, " often abbrevia-

ted as ssc.) This functional relation between ssc-events and interplan-

etary shocks is a fairly well established fact, both on theoretical and ex-

perimental ground (Nishida, 1969; Hirshberg, 1963). Of course, the

earth may be used as such a secondary detector only if the primary satel-

lite is located well ahead of the earth magnetosphere. More specifically,
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we must require that the transit time of the shock between the primary

vehicle and the earth is substantially greater than the transit time for the

passage of that shock through the frontal part of the magnetosphere.

[Since the distance from the subsolar point of the bow shock (or of the

magnetopause) to the earth surface is of the order of ten earth radii,

and, since the shock speed is typically of the order 500 km/sec, the

transit time through the magnetosphere may be expected to be of the order

of 3 minutes, i. e. " >> 3 min. .]

We now proceed to discuss in detail how the availability of the

secondary satellite can be utilized to derive an analytical expression for

the shock normal. For this purpose, we will find convenient to make use

of the following directly measurable quantities:

(1)

SB B (4.2)

eB represents the unit vector of the magnetic field in the pre-shock

state. This quantity is assumed to be given directly from the data. As it

will become clear later on, this is the only information about the magnetic

field which we shall need for the present procedure. In other words, we

do not require the knowledge of either the magnitude of the magnetic

field in the pre-shock state or any of the three components of the magne-

tic field in the post-shock state.
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(2)

\Al/ - -V -V (4.3)

W represents the difference between the solar wind velocity before and

after the shock. If the plasma measurements are complete, W is a

known vector (i. e. completely specified by three numbers) and is inde-

pendent of any specific frame of references in which it was determined.

In all the cases discussed in Chapter 5, this vector is known with a rela-

tively high accuracy. Associated with this vector is the unit vector

A V /w - (4.4)

In the MHD approximation, either for isotropic or anisotropic pressures,

the vector W has the following important property: it lies in the plane

containing n , B and B' , i. e. , it has no component at right angles to

the plane formed by (e, n ). The proof of this follows directly from

(2. 45). Because of this property of W , we have evidently

) . A o

(3)

/

(A = _ -_ (4.6)

where y represents the instantaneous position vector of the secondary

'satellite measured from the primary satellite. (By the "primary



satellite" we mean that satellite which provides the detailed information

about W, and e .) The eight quantities , , V and V' are all
B'

measured in the frame of reference of the primary satellite and may, for

our purposes, be considered as given. Note that the quantity defined by

(4. 6) has the dimensions of a velocity and it possesses the important

property that its component normal to the shock front vanishes. i. e.,

U n 0 (4.7)

To prove this, consider first that, by virtue of the law of mass conserva-

tion (2. 30), the expression for the shock speed, Vs is given by:

_ PV (V A (4.8)

Secondly, if we recall our assumption of the uniform propagation of the
Y .-1

planar shock within the time interval q , the expression also

represents. (empirically) the shock speed. These two fact imply (4. 7).

Associated with U is the known unit vector:

^U

U = (4.9)

which identifies the direction of U.

The usefulness of the above defined quantities for the construction

of the shock normal is now apparent. Since, according to equations (4. 5)

- 54 -
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and (4. 7), n is perpendicular to both e x e and e , it follows

that:

^ eW x e8) x e v
A1 (4.10)

e w B,) X e,

or, written out in a more explicit form:

A A

] -(4.11)

where we have put for short

W (4. 12)

A A

(4. 13)

Thus, we have obtained the shock normal in terms of two unit vectors eB

and eW , and two scalars k and .

Once the spatial orientation of the shock plane has been determined,

the identification of the frame of reference moving with the shock, , is

trivial. One simply has to recall (4. 8) which is readily computable from

the data and (4. 11).

The explicit specification of the remaining two axes of the Cartesian

coordinates of I , is now very simple. For example, the unit vector,

* The above derivation of n kla b~en suggested to me by Professor S..
Olbert.
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m , indicating the

shock plane, is evi

/Ix

or written out expl:

--M

A
direction of the component of eB tangential to the

dently given by:

A A

__ _(4.14)

Xi~x~1 Yj

icitly, after simple algebra,

/1 ri

(4.15)

4. 2 Analytical Expressions for Magnetic Field Components in

Shock Frame of Reference

Once the speed and the orientation of are known, as mentioned

already previously, we may convert various physical quantities measured

in the frame of the satellite to the corresponding quantities referring to

Here we are particularly interested in the computation of the magni-

tude of B field in the pre-shock state, the normal component of B and

the tangential component of B' after the shock. Recall that, out of the

available information on the magnetic fields across the shock (six mea-

sured numbers in all), we have used up so far only two (eB ). Thus, the

remaining four numbers, (i. e., B and three components of B') are now

overdetermined. The comparison of the theoretical results with the ob-

served one s gives us the opportunity of testing the validity of the MHD
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shocks.

For this purpose, let us recall equations (2. 30), (2. 34) and (2. 31).

Adjusting to notation so that the subscripts 1 and 3 of Chapter 2 are re-

placed by the subscripts n

[ v] 0

evv -11 rn

Vn13 Br

and m, respectively, we have:

(4.16)

~-O0 (4. 17)

(4. 18)V]- om n'

Using the definition of W , we can write (4. 17) and (4. 18) also as:

= 'I V

3W (- V) (4.19)

A

ea

A
ufl

A

Y7
1

'pi

Wm13 n

Sinc e,

1, W,

1n

(4.20)

V
71Vr

V

(V\ - )

AO I

U /

..- 8 -6 If, A
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VW

WWrv
A/

we obtain, by virtue of (4. 11) through (4. 15),

, w (-D))(-

Yn o W(6 ~ ia)

IrD)I

( ) y W2

W~-'" JAPXt&

where, for the sake of brevity, we have put:

)1 2 I

.A Y1- n

2-
= /- 2 11

4 (-8) (

In (4. 24) and (4. 25), n and n' are defined as the number densities of

,Lo '<p 1 ,

(4.21)

(4.22)

(4.23)

(4.24)

(4. 25)

(4.26)

(4. 27)'- -0

w(t ~)

r.n

53
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ions in the pre- and post-shock states, respectively.

It is interesting to note that the ratios B' / B and B' 2/B2
m m

which according to (4. 19) through (4. 23) are given by:

yI + (4.28)

22) tpi/)2. (4.29)

are independent of and

Thus, we can predict the above two ratios in terms of the experi-

mentally known quantities A , 4 and 16 alone, without any knowledge

of the degree of the anisotropy present in the plasma.

One may start the test of the theoretical results with the simplest

assumption that the plasma is isotropic (i. e. , = = 1). If,under this

assumption, the value of B as computed on the basis of (4. 21) agrees

with the observed one, we may tentatively conclude that the plasma is

isotropic. On the other hand, if the assumption of isotropy leads to dis-

agreements between the predicted and observed value of B, we have

strong indication for an anisotropic character of the plasma.

When the assumption on isotropy is abandoned, and can be

looked upon as varying parameters, determined in such a way as to

bring the computed B and B' into agreement with the measured values.
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This procedure, which leads to empirical determination of the pressure

anisotropies on both sides of the shock will be discussed in detail in

Chapter 6.

Closer inspection of the equations (4. 21), (4. 22), and (4.23) shows

that the analytical results can be conveniently represented in a graphical

form, Among various representations, the following seems to be com-

pact and useful.

To this end, introduce the dimensionless quantity: (B2/( mpDW ),

look upon it as a function of two variables k and 6 and, treat and f

as fixed parameters. Let us define

TM w

Figures 4-1 and 4-2 show the results.

We notice from Figure 4-1 that D1 decreases monotonically as one

travels radially away from the origin of the P -k plane for all quoted

combinations of and . Note also the steepness of this relief is

much more pronounced for the physically implausible case when the

pre-shock plasma is more isotropic than the post-shock plasma.

Figure 4-2 shows, in addition to Dl, also two other dimensionless

quantities, namely z
nnD2

k 0 fl ,D WL

given by equation (4. 22) and (4. 23) for the case Of isotropy. D1 behaves

in a very similar manner to those discussed in Figure 4-1.
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Chapter 5

EXPERIMENTAL EVIDENCE OF THE

INTERPLANETARY COLLISIONLESS SHOCKS

5. 1 Introductory Remarks

The plasma measurements in the interplanetary medium by means

of deep space probes underwent substantial quantitative improvement

in recent years. In particular, the MIT detectors onboard Mariner V,

Pioneers 6 and 7 were capable of measuring reliably not only the densi-

ties of positive ions, n , but also all three components of their stream-

ing velocities, V . In addition, the MIT detectors were able to pro-

vide some information about the thermal motion of the ions. The des-

cription of the mode of operation and of the method of data reduction can

be found by the reader elsewhere (Lazarus, et. al., 1966; Vasyliunas,

1969). The data from the above quoted spacecrafts have been made

available in the reduced form to this author by Dr. A. Lazarus. In addi-

tion to the MIT plasma data, we were fortunate to have available also

the magnetic field data. Thus, we have measurements of the magnetic

fields simultaneous with our plasma measurements on Mariner V from

the Jet Propulsion Laboratory (JPL) (under the supervision of Drs.

L. Davis Jr. and E. Smith ). Similarly complete magnetic field data

are available to us in the case of Pioneers 6 and 7 from Drs. N. Ness
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and L. Burlaga of Goddard Space Flight Center.

All data were available either on graphs or on magnetic tapes

in the reduced form, i. e., in the form yielding directly the physical para-

meters of interest to us (for examples, three Cartesian components of

the magnetic fields, ion number densities, etc. ).

Pioneers 6 and 7, and Mariner V were launched respectively, on

December 16, 1965, August 17, 1966, and June 14, 1967. The time

spans with almost continuous data records for each of these spacecraft,

which we searched through are as follows:

Pioneer 6: From December, 1965 to April,1966

Pioneer 7: From August, 1966 to October, 1966

Mariner 8: From June, 1967 to September, 1967

As a result of this extensive search we were able to identify seven well

defined discontinuities which appeared to be plausible candidates for

MHD shocks. These events identified by the universal time of their

occurrence and their association with the given spacecraft (the "pri-

mary" spacecraft), are listed in Table 5-1. The secondary spacecraft

as well as the approximate distance (in A. U. ) between the primary and

the secondary spacecraft (or the Earth), denoted by Y , are also

given in Tables 5-1 for each shock.



Table 5-1

The Primary and Secondary Spacecraft, and the Identified Shock-like Discontinuities

Spacecraft
( Primary )

Shock
Number

Universal Time Secondary
Spacecraft or

sSC

20:58, March 22, '66

Pioneer 6

04:20, March 23, '66 SSC 1/10A. U.

14:16, August 29, '66Pioneer 7

Mariner V

13:46,

05:25,

07:10,

13:24,

June 26, '67

July 20, '67

August 29, '67

August 30, '67

Explorer 33

Explorer 34

no ssc

Explorer 34

no ssc

1/100 A. U.

1/50 A. U.

none

1/8A. U.

none

Relative
Distance

no ssc none
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Before we embark on a detailed discussion of these discontinuities

we should like to make a few comments about the rates of data acquisition.

These rates are different for different detectors and for different loca-

tions of the spacecraft relative to the earth. For example, as far as the

magnetic field data are concerned, the time intervals between two con-

secutive measurements range from 1 up to 5 seconds depending on the

distance of the spacecraft from the earth. On the other hand, the time

span between two plasma measurements is much wider: For the initial

flight period of Pioneers 6 and 7 this time span was 1 minute. Later in

the flight, when the spacecraft were far from the earth, this time span

jumped to as much as 20 minutes. For the initial flight period of Mariner

V, the time span was 5 minutes, but for the later part of the flight, the

time span became 20 minutes.

For the convenience of the reader we show in Figures 5-1 and

5-2 the trajectories of the three spacecraft as viewed by the observer on

earth.

5. 2 Results of the Analysis of the Seven Shock-Like Events

To begin with, let us define two alternate coordinate systems to be

used in what follows. They are shown in Figure 5-3. The first one is

the so-called RTN coordinate system, in which the R-axis is out from

the sun and parallel to the sun-earth line, the T-axis is in the direction

of the motion of the earth, and the R-T plane is parallel to the ecliptic

_~~i ~l _;(~~_ __IX__1Cm__l __I__Il__l
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plane. The N-axis is perpendicular to the ecliptic plane. The second one

is the so-called solar Ecliptic coordinate system, in which the directions

of a given vector are identified by the angle, e , between the vector and

the ecliptic plane, and the angle, 9 , between the projection of the

given vector onto the ecliptic plane and the R-axis. The angle e ranges

from 900 to -900 and is positive when the vector points northward from

the ecliptic plane. P equals 900 when the vector is along the T-axis,

and ranges from -1800 to 1800

Figure 5- 3

The RTN and Solar Ecliptic Coordinates

N

TO
SUN
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There are three vectors whose orientation in space is of interest to

us: the magnetic field vector, the wind velocity vector and the shock

normal. According to the above definition, we can represent the B and

A
V and n vectors alternately as:

B = B (e , p B) or B = (BR , B BN )

V = V (e ,  
)  or V = (VR , V T , V )

and

n (e ,) or = (n R  n T n

The primed (unprimed) symbols shall refer, as previously, to

the post- (pre-) shock conditions.

In this chapter, for the sake of simplicity, we shall analyze all the

shocks under the assumption that the plasma pressures are isotropic.

This assumption can be justified only aposteriori, i. e., only when the

analysis demonstrates a reasonable agreement between observations and

theory with = 1. As we shall see from the quoted results

this assumption is quite tenable to the first approximation. As explained

in the Appendix C, this simplified assumption leads to three-fold or four-

fold overdeterminicity between the measured and computed parameters,

depending on whether or not the transit time is available.

With these preliminaries, we are now ready to discuss the indivi-

dual events.

Fast Shocks of March 22 and March 23, 1966

No geomagnetic storm resulting from the shock of March 22 could
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be identified, therefore, there was no transit time available for this par-

ticular shock. On the other hand, there was a geomagnetic storm that

could be associated with the shock of March 23.

Figures 5-4 and 5-5 show the actual behavior of physical parameters

as functions of time within a time interval of 90 minutes involving actual

discontinuities.

Each figure contains eight separate graphs. The first column on

the left, going from top to bottom, represents, respectively, the thermal

velocity (km/sec), the magnitude of the wind velocity (km/sec) and the

ion number density (per c. c.). The second column shows the angles PV

and e V as defined in Figure 5-3, and measured in degrees. Finally the

third column, again from top to bottom, shows respectively, the magnitude

of the magnetic field (gamma) and the two angles 9 B and 8B mea-

sured in degrees and identifying the direction of B-vector in the Solar

Ecliptic Coordinates. All quantities are plotted vs. time measured in

minutes (with arbitrary origin). The data points are connected by

straight lines simply to facilitate the following of the temporal trends.

The plasma parameters are taken at the rate of 1 minute per measure-

ment. The observed shock jumps occur between two adjacent plasma

measurements. In contrast, the curves for the magnetic field refer to

intervals between measurements of 30 seconds. The vertical bars on

both sides of the discontinuities indicate the combined error (more

precisely, the r. m. s. deviation) due both to the experimental uncertain-



S b aw a m . . uo m . o 76am a oW a.

TIME8

8

ac ao b .m o a m s0 .6. moo ob msoTIME

TIME

20:58 MARCH 22, 66

m a ao a m ago ao0 7m6 w a
TIME

.o tim o m 6 im bm o m no So 7 0 a m wm
TIME

. a a 16 o 2i 0 31 on a V. m sh 0 p I m mm o oM ao~ID g ., , ,, T I MEs

Figure 5-4



04:20 MARCH 23, 66

8

Figure 5-5



- 74 -

ties and to the statistical fluctuations.

Tables 5-2 and 5-3 show the average values of the plasma para-

meters and the magnetic field on both sides of a given shock, based on the

above two figures. The numbers quoted in the tables refer to straight

averages involving 30 minutes of data points on either side of the shock.

Making use of the information contained in Tables 5-2 and 5-3, we

can now apply our "best-fit matching procedure" for testing these events

as MHD shocks. Following the method described in detail in Appendix C,

we arrive with the help of digital computers at the results shown in

Tables 5-4 and 5-5.

These tables contain the best-fit values of n, V V , B and n,

as well as some other computed physical quantities that will be useful in

the discussion of our results. VA and MA have been defined already

in Chapter 2 (see equations (2. 50) and (2. 51) ). B, and nB, n V, n

are the angles formed in by B and V* with the shock normal, re-

spectively. The underlined numbers are different from the correspond-

ing quantities given in Tables 5-2 and 5-3. However, these differences

are small as compared with the r. m. s. deviations of these quantities

shown in Figures 5-4 and 5-5. Therefore, we are confident that our

measured quantities satisfy the MHD shock conditions.

For the convenience of the reader, the best-fit values of V, B,

and n quoted in Tables 5-4 and 5-5 are also indicated by dashed lines

in Figures 5-4 and 5-5.



Table 5-2

Measured Averages of Magnetic Field and Plasma Parameters Across

The Shock of March 22, 1966

Parameter

Bulk Velocity, V

in RTN Coordinate, (km/sec)

Magnetic Field

in RTN Coordinate, (gamma)

Pre- Shock Post-Shock

448 (-5. 00 - 5. 00)

(445, - 39, - 39)

6. 0 (-320, 150)

(4. 9, 1. 3, - 3. 2)

(489, - 56, 9)

10. O0 (- 44o, 200 )

(6. 8, 2. 5, - 7.0)

Ion Density, n,

Transit Time,

(nimber / cc) 4. O0

T , (sec)

9.2

501 (1. 00, - 6. 50)

none



Table 5- 3

Measured Averages of Magnetic Field and Plasma Parameters Across

The Shock of March 23, 1966

Parameter

Bulk Velocity, V

in RTN Coordinate, (km/sec)

Magnetic Field

in RTN Coordinate, (gamma)

Pre-Shock Post-Shock

630 (- 7.00,535 (-3.00, -6.00)

(531, -56, -28)

5. 8 (200, 1500)

(-4. 7, 2. 7, 2. 0)

(625, 22, -78)

(-8.4, 11.9,

Ion Density, n,

Transit Time,

(number / cc)

V- , (sec)

Relative Position Vector Between
Pioneer 6 and the Earth in RTN
Coordinates

(18. 7900, -8. 4434, 0. 3716) x 10 6

2.00 )

150 (140, 1250)

4.4

3.6)

12561

3.1

km



Table 5-4

Physical Parameters Associated with March 22, 1966 Shock

and Obtained from the "Best-Fit Matching Procedure"

Transit Time, 7Z ,.(sec) not available

(32. 60 , - 6. 7 )
Shock Normal [ (E s , ) and (nR, nT nN) (0. 84, -0. 10, 0. 54)

Shock Velocity in.RTN Coordinates (km/sec)

Best-Fit Values of V , B, n (see dotte

Pre-Shock

V 448 (- 6. 20, - 5. 30)

B 6.0 (- 320, 150)

4.0

Physical

(405, - 47, 261)

d lines in Figure 5-4)

Post-Shock

506 (0. 40, - 6. 0)

13. 2 (- 440, 210)

9.2

the Above

Post-Shock

Quantities Referring to and Computed Parameters from

Pre-Shock

24. 7 16. 3

3. 65. 5

, 64. 3 80.0 , 77.30

MA.

m

67.8B, n



Table 5- 5

Physical Parameters Associated with March 23, 1966 Shock

and Obtained from the "Best-Fit Matching Procedure"

Transit Time, 't , (sec) 12354

Shock Normal [ (E s , 9s ) and (nR, nT, nN) ]

Shock Velocity in RTN Coordinates (km/sec)

Best-Fit Values of V, B, n

Pr e- Sho ci

V 535 (-3. 0'

B 5.8 (200,

'n 4.4

(-26.50, 43.00)

(367, 343, -251)

(0.65, 0.61, -0.45)

(see dotted lines in Figure 5-5)

k Post-Shock

0, -6.00) 633 (-8.30, -4.00)

16.4 (140

13.1

Physical Quantities Referring to * and Computed Parameters from the Above

Pre-Shock

23.9

Post-Shock

13. 6

5. 39. 2MA,A

B,n' V*, n
67.00 , 58..00

1350)

83.00 , 77.80
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This surprisingly good matching leads us to believe that plasma

was, at least in these two cases nearly isotropic (for a more critical

discussion of this conclusion see Chapter 6). This implies that we have a

three-fold overdeterminicity among the fourteen numbers for B , V , and

n quoted in Table 5-4. In other words, any three of these numbers can

be used as a test for the validity of the MHD shock. The remaining nine

numbers have been "used up" for the determination of the shock speed,

the shock orientation, etc.

As already mentioned, we have for the shock of March 23, 1966, an

additional information, namely that of the transit time. This permits us

to employ the results obtained in Chapter 4 for an independent test of this

event as a MHD shock.

For this purpose, we take EB and 2 B defining the direction

of the magnetic field in the pre-shock state, and the angles e V  and

V , defining the direction of the solar wind velocity in the post-shock

state, as independent variables. For given values of EB, B V

and TV the magnetic field strength B in the pre-shock state and mag-

n etic field vector B' in the post-shack state are computed. Various sets

of eB, 9 B' t and 9' -- allclose to their measured values, i. e.,

within the error bars of Figures 5-4 and 5- 5 -- are used to compute the

corresponding B and B'. It was found that the set of EB B V '

V 0 B and B' given in Table 5-5, is in an exellent agreement with

equations (4-21) to (4-23). Hence, the two methods lead to the same iden-
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tification of the shock of March 23, 1966.

It is worth noting from Tables 5-4 and 5-5 that the Mach numbers

based on the normal Alfven velocity, MA , on both sides of the shock

are greater than one. This is required from the evolutional condition

for the fast MHD shock. The Alfven Mach numbers are 5. 5 and 3. 6 for

the pre- and post-shock states, respectively, on March 22, and 9. 2 and

5. 3 for the pre- and post-shock states, respectively, on March 23. The

magnitude of the magnetic fields increases across the shock front (i. e.

B < B') as it should.

To visualize more clearly how the wind velocities and magnetic

fields change suddenly, both in directions and magnitudes, as viewed by

an observer in the shock frame Z , we show the above discussed re-

sults also in a graphical form (see Figures 5-6 and 5-7). The solid lines

indicate velocities and the dashed lines magnetic fields. The magnetic

field vectors and the shock normal lie in the same plane (plane of the

page). However, there is a component of the velocity perpendicular to

the page on both sides of the shock. As already pointed out in Chapters

2 and 4, this component, labeled in the figures by V' , is continuous

across the shock.

So far we have analyzed the shocks utilizing purposefully only

those MHD shock equations which do not contain any reference to the

plasma pressures. The problem of the pressure jumps and the aniso-
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tropy changes across the shock will be discussed in Chapter 6.

We used the shocks of March 22 and 23 as typical examples for

detail presentation of our results. The same type of presentation as

far as figures and tables are concerned will be adopted for all the re-

maining shocks.

Fast Shocks of August 29, 1966, June 26, 1967 and August 29, 1967

Figures 5-8, 5-9, 5-10 and Tables 5-6, 5-7, 5-8 display three

additional shocks found on Pioneer 7 (August 29, 1966) and Mariner

V (June 26, 1967, and August 29, 1967). An analysis of this, data

completely analogous to that described for the two previous shocks,

revealed that all three events were fast shocks. Tables 5-9, 5-10, and

5-11 show the results of our best-fit matching procedure outlined in

Appendix C. A comparison of Tables 5-6 to 5-8 with Tables 5-9 to

5-11 shows a very good agreement between measured and computed

quantities, thus giving us confidence as to proper identification of

these events as fast MHD shocks.

As indicated previously in Table 5-1, two events of August 29,

1966 and June 26, 1967 were observed also on other satellites (for

details, see Tables 5-6, 5-7). This allowed us to use the "method

of transit time" outlined in Chapter 4 to double-check our best-fit

procedure. Both methods lead to essentially identical results.
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Table 5- 6

Measured Averages of Magnetic Field and Plasma Parameters Across

The Shock of August 29, 1966

Parameter Pre-Shock Post-Shock

Bulk Velocity, V

in RTN Coordinate, (km/sec)

Magnetic Field

in RTN Coordinate, (gamma)

Ion Density, n , (number / cc)

Transit Time, / , (sec)

Relative Position Vector Between
Pioneer 7 and Explorer 33 in RTN
Coordinates

356 (3. 00, -3. 50)

(355, -22, 19)

3. 7 (-400, 1740)

(-2. 8, 0. 3, -2.4)

4. 7

434 (1. 00, 1.00)

(434, 8, 8)

9. 5 (-600, 1450)

(-3.9, 2.7, -8.2)

14. 5

2970

6
(1. 2772, 0. 5880, 0. 0489) x 10 km



Table 5- 7

Measured Averages of Magnetic Field and Plasma Parameters Across

The Shock of June 26, 1967

Parameter

Bulk Velocity, V

in RTN Coordinate, (km/sec)

Magnetic Field

in RTN Coordinate, (gamma)

Ion Density, n, (number/ cc)

Transit Time, Z' , (sec)

Relative Position Vector Between
Mariner V and Explorer 34 in RTN
Coordinates

Pre-Shock

405 (-0. 50, -4. 4)

(404, -31, -4)

2. 1 (-250, - 1660)

(-1.8, -0.5, -0.9)

Post- Shock

445 (-3. 20, -1. 5)

(445, -12, -25)

5.6 (-610, 175 )

(-2. 6, 0. 3, -4. 8)

38. 7

4130

(1. 7300 x 106 2. 1386 x 106 1. 3926 x 106) km



Table 5-8

Measured Averages of Magnetic Field and Plasma Parameters Across

The Shock of August 29, 1967

Pre-Shock

Bulk Velocity, V

in RTN Coordinate

Magnetic Field

in RTN Coordinate, (gamma)

Ion Density, n , (number/cc)

Transit Time, /& , (sec)

Relative Position Vector Between
Mariner V and Explorer 34 in RTN
Coordinates

414 (-0. 50, -8. 0 )

(410, -58, -4)

6. 6 (120, -1340)

(-4.5, -4.6, 1.4)

4. 5

Post-Shock

422 (3.00, -9. 00)

(416, -66, 22)

9.2 (340, -1400)

(-5.8, -4.9, 5. 1)

6.2

37320

(23. 7033, -8. 7495, 5. 7404) x 106 km

Parameter

I



Table 5- 9

Physical Parameters Associated with August 29, 1966 Shock

and Obtained from the "Best- Fit Matching Procedure"

Transit Time, /' , (sec) 2939

Shock Normal [ (e s , s ) and (nR, nT, nN)]

Shock Velocity in RTN Coordinates (km/sec)

(-2. 50, 14. 50)

(453, 117, -21)

(0.97, 0.25, -0.04)

Best-Fit Values of V, B, n (see dotted lines in Figure 5-8)

Pre-Shock

356 (3.00, -3. 50)

3.7 (-40° , 174 )

4.7

Post-Shock

434 (0. 30, 0. 50)

.9. 5 (-62 , 145 )

14.5

Physical Quantities Referring to I and Computed Parameters from the Above

Pre-Shock

25. 6

4. 8

46. 50 26. 40
B, n ' V*, n

Post-Shock

14. 6

2. 7

74.40 , 50. 30

B

VA

MA



Table 5-10

Physical Parameters Associated with June 26, 1967 Shock

and Obtained from the "Best-Fit Matching Procedure"

Transit Time, 7"? , (sec) 4131

Shock Normal [ (Es ,Csf) and (nR, nT, nN) I

Shock Velocity in RTN Coordinates (km/sec)

(-230, 24.90)

(349, 162, -164)

(0.84, 0.39, -0.39)

Best-Fit Values of V, B, n (see dotted lines in Figure 5-9)

Pre-Shock

405 (-0.50, -4.40)

2.7 (-250, -1660)

15.0

Post-Shock

445 (-3.20, -1. 50

5.6 (-470, 188 )

38.7

Physical Quantities Referring to C and Computed Parameters from the Above

Pre-Shock Post-Shock

6.159. 7

8.4

49.50 , 64.80.Bn , n' V*, n

5.2

71.9 ° , 79. 5

V

VA

r-1

MA



Table 5- 11

Physical Parameters Associated With August 29, 1967 Shock

and Obtained from the "Best- Fit Matching Procedure'

Transit Time, 4 , (sec) 37232

Shock Normal [ (Os , Ps) and (nR, nT , nN) ]

Shock Velocity in RTN Coordinates (km/sec)

(20. 30 4 3. 00)

(234, 218, 118)

(0. 69, 0. 64, 0. 35)

Best- Fit Values of V , B , n (see dotted lines in Figure 5-10)

Pre-Shock

414 (-0.50, -8.00)

6.1 (140, -1340)

4. 5

Post-Shock

421 (3. 50, -7. 00 )

8. 54 (340, -1320) 

6.2

Physical Quantities Referring to Z and Computed Parameters from the Above

Pre-Shock

51. 6

I '1.48
A

B, n V*, n
B, n 'V, n

Post-Shock

44. O0

1.26

54.00 , 42.0034.60 , 44. 0

B
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The shock of August 29, 1967 requires a special explanation. At the

time this shock was observed, Mariner V was at a distance of about 1/8

A. U. from the earth. This distance is so great as to render the assump-

tion on a plane shock propagation at constant speed questionable. Hence,

to begin with, the information of this transit time must be considered of

secondary importance. Using the shock velocity based on this matching

process we still may compute the propagation time for this shock to

reach Fxplorer 34. The detectors on Explorer 34 (Ogilvie & Burlaga,

1969) observed a shock at 17:32 U.T., August 29; 10 hours and 22 min-

utes after Mariner V "saw" a shock. At that moment Explorer 34 was

outside the earth's bow shock and at a distance of about 24 radii from the

earth. It turns out that the observed transit time agrees well with the

computed one, assuming plane shock propagating from Mariner V to

Explorer 34. (No ssc can be associated with this shock.)

The investigators on Explorer 34 have identified independently this

event as a shock and quote their measured values of ion densities. Thus,

in this case we have an opportunity to compare our number densities

(on Mariner V) with their's.

Because of the large distance between Mariner V and Explorer 34

scaling corrections for the plasma density must be employed. If such

corrections, based on the 1/r 2 - law for the heliocentric density decrease

are applied to our densities, the measurements on both satellites

turn out to be in an excellent agreement. Figures 5-11, 5-12, and 5-13

__lllll__r__LUg__Ll ____IU-ll Il--^-l_--ilL---~-- _IC
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show graphically the behavior of V' and B in for the three above

quoted shocks. Note,in particular, that the behavior of the B-field is in

accord with that expected on theoretical grounds.

Slow Shocks of July 20 and August 30, 1967

Figures 5-14 and 5-15, together with Tables 5-12 and 5-13, sum-

marize two additional events found on board Mariner V. The analysis of

these discontinuities deserves special attention. The behavior of the

magnetic field indicates that they are not fast shocks. In fact, the de-

crease of the field strength across the surface of discontinuity suggests

qualitatively that these events may be slow shocks. A careful quantita-

tive analysis supports this contention. Tables 5-14 and 5-15 show the re-

sults of our'best-fit matching procedure" to this end. We notice a fairly

good agreement between observations and the computations.

Slow shock has been studied extensively theoretically by Kantrowitz

& Petschek (1966), Anderson (1963), Bazer & Ericson (1959), and others.

However, to the best of this author's knowledge, no slow shocks have

been observed experimentally.

In the MHD case, theoretically, a slow shock should satisfy,

among others, the following conditions: First, the normal Alfven Mach

numbers, M A , in both the pre- and post-shock states must be less

than unity. Secondly, the magnetic field strength must decrease across

the shock frout. (The magnetic energy is converted to the thermal

energy. ) The measured discontinuities associated with the events on

Y-^- I(.-~~' C"II-- L. W^~ -_ FII*-~--L- 1 11 Wb , I1- I--^_ I I
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Table 5-12

Measured Averages of Magnetic Field and Plasma Parameters Across

The Shock of July 20, 1967

Parameter Pre-Shock Post-Shock

Bulk Velocity, V

in RTN Coordinate, (km/sec)

Magnetic Field

in RTN Coordinate, (gamma)

Ion Density, n, (number / cc)

Transit Time, V , (sec)

283 (0. 50, -5. 50)

(281, -27, 3)

6.7 (-180, 1710)

(-6.3, 1.0, -2.1)

9. O0

301 (1. 80, -5. 10)

(300, -26, 10)

5.0 (-140, 150 )

(-4. 2, 2. 4,- 1. 2)

15.0

not available



Table 5-13

Measured Averages of Magnetic Field and Plasma Parameters Across

The Shock of August 30, 1967

Pre-Shock

Bulk Velocity, V

in RTN Coordinate, (km/sec)

Magnetic Field

in RTN Coordinate, (gamma)

Ion Density, n , (number / cc)

Transit Time, t , (sec)

Post-Shock

345 (-1. 00, -2. 0)

(345, -12, -6)

8.4 (30, 1500)

(-7. 3, 4. 2, 0. 4)

5. 5

429 (-0. 50, -5. 0)

(427, -37, -4)

5. O0 (-2o, 1200)

(-2. 5, 4. 3, -0. 2)

13. O0

not available

Parameter



Table 5-14

Physical Parameters Associated with July 20, 1967 Shock

and Obtained from the "Best- Fit Matching Procedure"

Transit Time, T , (sec)

Shock Normal [ (Es s. CS) and (nR, nT' nN ) ]

Shock Velocity in RTN Coordinates (km/sec)

not available

(-1.60, -54.8 0 )

(107, -152, -5)

(0.58, -0.82, -0.03)

Best-Fit Values of V , B , n (see dotted lines in Figure 5-14)

Pre-Shock

283 (0. 50, -5. 50)

6.7 (-180, 1710)

9.0

Po st- Shock

300 (1. 80, -5.00)

5. 5 (-140, 1590

15. O0

Physical Quantities Referring to Z and Computed Parameters from the Above

Pre-Shock

32.0

0.8

Post- Shock

24.8

0.6

36.90 86.3048.70 , 83.40
B, n V' *, n

B



Table 5-15

Physical Parameters Associated with August 30, 1967 Shock

and Obtained from the "Best- Fit Matching Procedure"

Transit Time, '7 , (sec)

Shock Normal [ ( , , s ) and (nRa nT , nN)]

Shock Velocity in RTN Coordinates (km/sec)

not available

(4.2 0, -87.00) (0.05, -0. 99, 0.07)

(2, -40, 3)

Best-Fit Values of V, B, n (see dotted lines in Figure 5-15)

Pre-Shock

345 (-1. 00 , -3. 00 )

8.4 (-20, 1200)

5. 5

Physical Quantities Referring to

Post- Shock

402 (-1. 50, -5. 45 )

4.7 (-20, 1100)

13. O0

and Computed Parameters from the Above

Pre-Shock

41. 6

0. 9

Post-Shock

27.1

0.6

B, n V*, n
57.0 0 83. 5 26.0 , 87.8 °
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July 20 and August 30 satisfy the two conditions given above as well as the

MHD Rankine-Hugoniot relations used by us in the matching procedure.

We thus have a fair degree of confidence (especially for the event of July

20, 1967, that we are dealing, for the first time, with the slow shocks. )

No transit time can be identified for these slow shocks. This cir-

cumstance may not be totally accidental. Because the strength of slow

shock is much weaker than that of a fast one, it is perhaps not surprising

that no ssc on earth and no similar discontinuity on other spacecraft were

observed that could be correlated with ours.

Comparing Figures 5-14 and 5-15 with those of the fast shocks, we

see that the parameters of the slow shocks are much more fluctuating

than those of the fast shocks. Thus, the discontinuities tend to be more

obscured in the case of slow shock than that in the case of the fast ones.

Such pronounced fluctuations may be understood from the fact that the

normal Alfven Mach numbers are less than unity for both pre- and post-

shock states. This, in turn, implies that the Alfven waves can propagate

both up- and downstream of the slow shock and thus enhance the possi-

bility of the occurrence of fluctuations.

We see also from Tables 5-14 and 5-15 that the direction of propa-

gation of these shocks makes a large angle with the direction of sun-

earth line. This may mean that these shocks are associated more dir -

ectly with the inhomogenities in the interplanetary space such as sector

boundaries etc. rather than with the flare events themselves.
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Figures 5-16 and 5-17 show the solar wind velocities and magnetic

fields plotted in the frame of the given shock. The magnetic fields dis-

play clearly the characteristics of a slow shock.

In this chapter, we have shown that fast and slow shocks do exist in

the solar wind. In MHD-approximation, as mentioned in section (2. 2. 3),

there are five kinds of discontinuities: the fast, the slow and the rota-

tional shocks, and the tangential and contact discontinuities. The most

important difference between a shock and a discontinuity is that a shock

has a mass flow across itself while other discontinuities have not. For

the fast shocks presented in this chapter, the mass flows across the

shock front at the rate of the order of a hundred kilometers per second.

Hence, there is no difficulty in concluding that these events are not

tangential or contact discontinuities. On the other hand, for the slow

shocks, the mass flows across the shock front only at the rate of 25 and

37 kilometers per second for the July 20 and August 30 shocks, respec-

tively. Fortunately, the experimental uncertainties of the flows

across the shock are sufficiently small to render the assumption of no

mass flow across the discontinuity as unlikely.

5. 3 Spatial Distribution of the Shock Normals

The upper portion of Figure 5-18 shows the projections of the polar

angle Es of the shock normals for all seven shocks. The shorter line

segments refer to the slow shocks. One sees from this figure that the
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Figure 5-18
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Es are evenly distributed in the plane perpendicular to the ecliptic with

about as many shocks travelling northward as southward. The lower

portion of the figure shows the distribution of the azimuth angles, s of

the shock normals. Here we see that more shocks propagate toward

the West (i. e. in the positive T direction) than toward the East of the

sun. The normals of the two slow shocks lie close to the ecliptical

plane and form large angles with the sun-earth line. In fact, they seem

to be at right angles to the azimuths of the fast shock. However, obvi-

ously the number of shocks is far too small to draw any statistically

significant conclusion from these intriguing results.

Table 5-16 summarizes the distribution of the shock normals and

lists solar flares which may be associated with the observed shocks.

These flares are identified by the time of their occurrance and their posi-

tion on the sun. The last column indicates the class of their importance.

There seems to be no. correlation between the distribution of these

flares on the surface of the sun and the distribution of the shock normals.

Akasofu and Yoshida (1967) studied the relationship between the positions

of the flares and the shock transit time associated with ssc and they

also found no correlations.



Table 5-16

Shock Normals and Possible Solar Flares Associated with Them

Shocks Observed

21:00, March 22,

04:20, March 23,

'66

'66

Shock Normal

(32. 6, -6. 7)

(-26. 5, 43. 0)

Possible Flares

i 9:50, March 20

Position

N20 0 E 20 0

Importance

3B

14:16, August 29, '66

13:46, June 26, '67

05:25, July 20, '67

07:10, August 29,

(-2. 5, 14. 5) {
(-23.0, 24. 9)

(-1.6, -54.8)

(20.3, 43.0)

(4.2 , -87.0)

'67

13:34, August 30, '67

15:30,
21:30,

August 28
August 26

12:00, August 28

N210

N230
E 050
E 260

S230 W 32 0

4B, 3B
2B

0O!

2B
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Chapter 6

THE TWO- FLUID CHARACTER AND PRESSURE ANTISOTROPY

OF THE INTERPLANETARY SHOCKS

6.1 General Remarks about Differences between Positive-Ion and

Electron Anisotropies

A high temperature and low density plasma, such as that of the

interplanetary medium, may be treated as "collisionless" with respect

to the binary Coulomb interactions. The "collisionless" plasma is not in

thermal equillibrium, because the relaxation times for "isotropization"

and "maxwelization" are very long. For a two-species plasma of ions

and electrons, neither the electrons nor the ions have Maxwellian distri-

bution. In such a case, we have to treat the plasma starting from the

kinetic Vlasov equation. The usual collision mechanism which leads to

randomness and allows a description of the system in terms of the hydro-

dynamic variables, (pressure, density, bulk velocity etc. ) is absent.

Thus, it would seem that one should use the Vlasov equation to find an

adequate description of the motion of the plasma. However, it was

shown by Chew, Goldberger, and Low (1956) that when the heat transport

is neglected, the pres ence of a strong magnetic field replaces to some

degree the randomizing tendency of collisions, so that fluid concepts may

be retained. This set of equations is commonly known as the Chew-

Goldberger-Low, double-adiabatic system. The essential assumption of

this model is that the Ohm's law be of the form E = -V x B , where V



is the macroscopic velocity of the plasma as a whole (or, to a good

approximation, the streaming velocity of positive ions).

Buneman (1961) has treated the electrons and ions as separate inter-

penetrating fluids which interact with each other only via their combined

electromagnetic field (collective interaction). A two-fluid model of the

collisionless plasma was thus derived. If we study the interplanetary

shocks with the "two-fluid" model, detailed information of the ion and

electron pressure tensors would be needed for comparison with theory.

Unfortunately, at the present stage of experimental developement,

we do not have at our disposal such detailed information. In fact, within

the frame of this work, we have no information about the behavior of

electrons. Consequently, our theoretical test of the interplanetary shocks

can not be considered as complete in a strict sense.

The basic equations (2. 15), (2. 16), (2. 22) of Chapter 2 refer to the

plasma as a whole. Since these equations express the fundamental laws

of mass, momentum and energy, they are of course formally rigorous

However, one has to remember that the physical parameters entering into

these equations contain combined effects of both the positive ions and

electrons. For example, the pressure tensor P.. stands for the sum of

(e) (i)
the partial pressures of electrons and ions (Pij + P. = Pi. I

(e) (i)
where P.. and Pj are the pressure tensors for electrons and ions,

(i)
respectively ). If it so happens that we know P , say, from measure-

(e)ments, then we can derive an information on P from the conservationij

- III-
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equations (2. 36) and (2. 8). As mentioned previously in Chapter 5, we do

have some information about the thermal motion of the ions, namely, the

so-called "most probable thermal speed" of proton, w 0 (Lazarus et. al,

1966). The meaning of this scalar quantity, available from the MIT data

records, would be well understood if protons had Maxwellian distribution

in their own frame of reference. Then, we would have

w - T, (6.1)

where T is the proton temperature. Unfortunately, we know today that

the protons have anisotropic distributions, so that the above statement is

only correct to a crude approximation. The information on the anisotropy

of the proton distribution has not yet been extracted from the MIT data.

In what follows, we shall make the ad hoc assumption that the quoted w 0

is related to the mean kinetic temperature T by the same formula as

given by (6. 1), even in the anisotropic case, provided one interprets

n k T as 1/3 of the trace of the proton pressure tensor.

On the base of the solar corona, the collision frequency of particles

of the solar plasma is high enough so that the pressures for both elec-

trons and ions can be assumed to be isotropic. As the solar wind streams

outward from the sun, the pressures become anisotropic. If one were to

use the CGL double-adiabatic hypothesis to compute the changes in pres-

sure anisotropies, one would obtain much too high anisotropies of both
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electrons and ions at the orbit of the earth, as compared with observa-

tions. Hundhausen (1968) found that the anisotropy of ions are substan-

tially higher than that of the electrons. He found during the quiet periods

of the sun, that the ratio of pressure parallel to the magnetic field to the

pressure perpendicular to the magnetic field, PI / PL , is of the order

2 to 2. 4 for ions, and 1 to 1. 2 for electrons. On the other hand, the pre-

dicted ratio, P1 / P1 , according to the CGL hypothesis, would be of the

order 80 for both the electrons and ions.

Note that the empirical results of Hundhausen indicate that the

electrons are essentially isotropic, i. e., that we can put to a good approx-

imation:

() C)(e)
1 L .P P (6.2)

Various kinds of fluctuations found in the solar wind are believed to

be responsible for the isotropization of the solar plasma. (For most re-

cent comments on this subject, see Nishida, 1969).

Hundhausen (1969) has discussed the role of the heat flux in the

solar wind. He found that the observed heat conduction in the solar wind

is much smaller than that predicted (Whang, 1965). The problem of the

discrepancy between the observed and predicted pressure anisotropies of

electrons and ions and the heat conduction of the solar wind at the earth's

orbit has not yet been completely resolved,

In the present study, we are not concerned how the pressure aniso-
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tropies developed during the solar wind expansion. We are interested in

the sudden change of the anizotropy in connection with the shocks. When

a shock propagates through the undisturbed solar wind, one should expect

it to modify the anisotropy of plasma. In the following sections we shall

attempt to investigate semi-quantitatively this question using the experi-

mental data given in the previous chapter.

6.2 Relations Between M,, P'/P , and 5 derivable from Equations

(2. 79), (2. 80),(4. 27) and Experimental Data of a Given Shock

In the previous chapter, we have shown that the measured para-

meters, B, V, and n satisfy the Rankine-Hugoniot relations. However,

the study of the pressures and the anisotropies of the solar wind in the

pre- and post-shock states have been postponed. We hope to obtain some

information about these unknown parameters by making use of the normal

momentum and energy equations (see equations (2. 35) and (2. 36) or the

resulting equation (2. 80) ). Since there are only three equations (see

(2. 34), (2. 35), and (2. 36) involving the four parameters f , , P and

P', it is impossible to determine all four parameters at once. We have

to assume that one of the four parameters is given or "free". In what

follows, we choose as such a "free" parameter.

To begin with, we can gain the information on 5", without making

any reference to equations (2. 35) and (2. 36), if we have available a

secondary satellite (i. e. the transit time). In this case, we can utilize

relations obtained in Chapter 4. As already pointed out in section 4. 2,
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the observed magnitude of the magnetic field depends on and .

This dependence comes about via the factor , defined by (4. 27). Note

that, considering 7 as given, (4. 27) represents a linear relation be-

tween and , viz.

(6. 3)

Thus, we can predict

of .

as a function of from the measured value

When the ion pressures are isotropic (i. e. = = 1), 7 is

one. Conversely, when 7 is one, it does not follow that the pressures

are isotropic. As long as and satisfy the equation (4. 27) and

= 1, our matching procedures employed in Chapter 5 and Appendix

C are valid.

It had been found in Chapter 5, that the analyzed events satisfied

the shock conditions quite well under the assumption of isotropic pres-

sures. It is more general to state that the observed events satisfy the

shock conditions quite well when " = 1". (The shock of June 26, '67

was the only exception; = 1. 7 produce better results.)

We would like to point out again that the shock normal, n , the

normal Alfven Mach number, MA , and the angles 8 and 8
A Bn V*,n

determined by the method given in Chapter 4 are independent of the aniso

tropy parameters.

I-

n~ 7?+-Rii-p) 5

a~'ii(p-p)
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Let us return to (2. 80) and let us assume again that is "free".

Substituting (6. 3) in to (2. 80), we find an equation that contains the

measured parameters, the anisotropy parameter 5 , and the sound

Mach number, M S , defined by (2. 61). Solving this equation for M S

we can look upon M S as a function of alone for a given shock, be-

cause all the other parameters entering into the equation for M S are

uniquely determined by the measurements (and thus can be treated as

fixed numbers known for each shock). Next, substituting the equation

for M S and (6. 3) into the equation for normal momentum (2. 76), we can

derive P'/ P as a function of 3 (and a given set of measured para-

meters such as M A B, , and y).

In the three cases, when the transit time was not available, the

equations given in Chapter 4 are not applicable, and the procedure dis-

cussed above is not useful. However, also in these cases, we were able

to determine the shock velocities by the "best-fit matching procedure".

Using these results and the formulas in Chapter 4 we can derive an

artificial transit time, 'T , and the related position vector i . Once

we have a relative position vector and an artificial transit time, an equa-

tion similar to (6. 3) can be constructed. Therefore, the curves of M S

vs. and P'/P vs. can also be produced in these three cases.

6. 3 Results of Numerical Computations of , M, and P'/P as Functions

of
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Following the above outline procedures and using the results

quoted in Chapter 5, we can plot, for each shock, three separate curves,

namely, P'/P (or T'/T) vs. MS vs. , and vs. (we

thus have all together 21 curves). These plots are shown in Figures

6-1 through 6-7, each figure referring in a chronological order to a

given shock.

The ordinates and tie abscissas are self-explanatory. As to the

behavior of these curves we should like to make the following comments:

(1) In all seven cases, for a fairly wide range of which we may

consider as empirically reasonable, P'/P is very insensitive to the

assumed values of 3 . In other words, the pressure ratios seem to

depend very weakly on the degree of anisotropy of plasma in the pre-

shock state.

(2) The dependence of MS on seems to be more pronounced than

that of P'/P ; in fact one notices that in some cases MS may change

by even more than a fagtAof two within a relatively narrow range of

(3) We believe that the results for vs. are most informative.

We note that in all cases except for the shock of August 30, '67, the pre-

dicted values of are larger than the corresponding values of ,

for wide range of . In other words, we arrive at the important

conclusion that all shocks (with the exception of the case of August 30,

'67) cause the interplanetary plasma to change suddenly from the state of

higher anisotropy to the state of lower anisotropy. This result is very
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satisfying because on theoretical grounds, one would expect physical

shocks to lead to strong randomization of plasma. Let us recall that

the shocks are manifestations of highly irreversible, dissipative physi-

cal processes. As far as the exceptional case of the slow shock of

August 30 is concerned, we should like to comment that both and

may very well be close to unity. In other words, we might deal in this

case with an isotropic plasma on both sides of the shock.

6.4 Attempts to Estimate the Electron Temperature from Available Data

As we have mentioned in the beginning of this chapter, in addition

to all physical parameters used thus far, we have available the thermal

speed of protons on both sides of the shock. Table 6-1 shows the aver-

age values of the most probable thermal speed of proton, w 0 and w0

on both sides of the shock. The table contains also the corresponding

values of the proton pressures (measure in terms of the magnetic pres-

sure). The last column of the table indicates the empirical values of the

parameter 7 (see 4. 27) found to produce the best-fit in our matching

procedure.

Using the above quoted values for proton pressure we should be

able, in principle, with the help of Figures 6-1 through 6-7, to deter-

mine the electron pressures on both sides of the shock as functions of

. We simply have to recall that:
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Shock
(denoted by

m

Table 6-1

Best-Fit Values of 7 and the Measured Parameters, w C and P )/ (B 2/ 2/ 0)

(i) (i)'

s Most Probable (B2/ ) (B'/2// 0 )
the date Thermal Speed / /" 0
easured) (km/sec)

Pre-Shock Pos
w

0

t-Shock

w 0

Pre-Shock Post-Shock

March 22, '66

March 23, '66

August 29, '66

June 26, '67

July 20, '67

August 29, '67

August 30, '67

60

50

24

28

22

40

19

0. 2

0. 1

0. 1

1.4

0.05

0.08

0.02

1. 7

IN,



128 -

V"2.
(e) 3 2 - (6. 4)

5-

and

(e) _ 3 (6.5)
o-5- M 5

We have performed such calculations of P (e)and P (e)for various

values of , and , to our surprise, we have found that in all cases

(except the shock of June 26, '67), that the obtained values of P (e) and

P(e) turn out to be very small in comparison with the corresponding

values of ion pressures. The exceptional case of June 26, '67 leads to

values of electron pressure comparable to that of ions.

Because of these unexpected results we concerned ourselves with

the questions whether our interpretation of w 0 was tenable and how

seneitive were our results to w 0 . For this purpose, as a tentative

exercise, we have reduced all the observed values of w 0 by 30% and then

repeated the processes of the electron pressure estimates. Under this

ad hoc assumption the electron pressures in the pre- shock state could

be brought to be equal to ion pressures in the pre-shock state for

reasonable values of j . The results of this exercise are shown in

Table 6-2. The first column shows the ratio of measured ion
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Table 6-2

The Ion and Electron Temperature

(under the assumption that P e) =

Ratios

p(i)

T(i) /T () T(e)' /T(e)

(with w 0 reduced by 30%)-0

March 22,

March 23,

'66

'66

August 29, '66

July 20, '67

August 29, '67

2. 6

9. 6

0. 8

2. 3

4. 5

2.1

1.4

August 30, '67 4.2

-0.4 0.4

0.1 0.7

0.5 0.8

1.3 1.0

0.5 0.7

1.0 0.9

12. 2

0. 5

0. 9

4. 3

Shocks

Ill l~---li---C- ------ I I-I
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temperatures across the shock. elie re-,-ainiu7 columns show, respec--

tively, the ratio of the electron temperatures, and 5 , all

quantities being computed with the value of w 0 reducced by 30% and under

the assumption that P (e)--(i) . The results in Table 6-2 seem to be

physically reasonable.

We should not like to attach any precise physical significance to the

tesults obtained in Table 6-2. All they demonstrate is the fact that the

estimates of the electron temperature by our procedure are quite sensi-

tive to the assumed values of w 0 . A glance at Figures 5-4, 5-5, 5-8,

5-9, 5-10, 5-14, and 5-15 shows that the fluctuations of w 0 are quite

severe. It is not obvious that the average values of physical quantities,

rather than the instantaneous values at the occurrence of the shock,

should be used in analyzing the shock.
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Chapter 7

SUMMANRY OF THE RESULTS

7. 1 Critical Review of Observational Findings

Let us review first the results obtained in Chapters 5 and 6.

We found seven events which have been identified as shocks: five

fast and two slow shocks.

The experimental data were taken from three satellites: Pioneer

6, 7 and Mariner V. The rate of data collection was different for dif-

ferent physical quantities (and different satellites). The plasma data

rates associated with the shocks found on Pioneer 6 and 7 happened to

be the same; at about one minute intervals. The magnetic field

measurements were taken at a faster rate but have been averaged over

30 second intervals. The measurements of Mariner V were taken at

a slower rate than those on Pioneer 6 and 7. The data for the June 26

and July 20 shocks were taken at a rate of one measurement per five

minutes. When the satellite was further away from the earth, the data

rate, such as during the August 29 and 30 shocks, was one point per

twenty minutes.

Our confidence in the shock identification depends on the rate the

data are taken. Therefore, the August 29 and 30 shocks of Mariner V

should be treated with less confidence than the other shocks. The

fitting results for these two shocks do not appear as good as for the

I~LIIIIL^-IIII--I ~.--1--.1_I--.I .-.----i( lil-_-~.-^^- I-.-IX_~~.CIII~-
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others.

The June 26 and July 20 shocks display better fits than the August

29 and 30 shocks of Mariner V, but not as good as the fits for Pioneer

6 and 7. (The latter shocks have higher data collection rates.)

The data rate for the study of interplanetary shocks should be

greater than one point per 5 minutes to achieve a more precise agree-

ment between the measured and computed parameters, than we have

obtained.

The strength of the slow shocks is weaker than that of the fast

shocks. The normal Alfven Mach number of slow shocks in both the

pre- and post-shock states is less than one. Hence, the Alfven waves

may propagate both up- and downstream from the shock. The pre- and

post-shock states appear to fluctuate more. This may be the main rea-

son why the fitting of slow shocks is not as good as that of the fast

shocks. In order to obtain a better fitting and more trust worthy re-

sults for slow shocks, we suggest that the data rate used should be no

less than one point per 2 minutes.

The errors of the measured parameters result from a combinatinn

of the instrumental uncertainties and actual fluctuations of these para-

meters in space and time. The instrumental errors in the case if the

fields are much smaller than their fluctuations; the latter often are

quite severe. As far as the plasma data are concerned, the instrumen-

tal uncertainties and fluctuations are comparable; however, the plasma
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fluctuations are substantially smaller than those of the magnetic fields.

There are four shocks (June 26, August 29 of Mariner V, March

23 of Pioneer 6 and August 29.of Pioneer 7) which have the additional

information on the transit time, (secondary satellite available). These

shocks should be taken as more significant than those without a transit

time. However, information concerning transit time is useful only

when the distance between two satellites or between the satellite and the

earth is less than "l/10 A. U. but larger than 106 km. When the

separation between the primary and the secondary vehicles is outside

this range, the transit time information should be considered of secon-

dary importance.

In spite of the above quoted restrictions, we found the information

on the transit time very valuable. It permitted us to impose upon the data

an additional quantitative test for their shock properties. We believe

that any data that survive this test and satisfy the MHD Rankine-Hugoniot

relations given by equations (2. 64), (2. 65), (2. 66), indeed demonstrate

unambiguously the existence of MHD shocks in collisionless plasma.

More specifically, we believe that we have demonstrated, for the first

time, the existence of slow shocks.

In Chapter 6 we have attempted to gain some information on the

changes of the thermal anisotropies across the shock. Although the

conclusions that we could draw were only qualitative, we believe that

they are valuable: our analysis showed that, as anticipated on physical
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ground, the anisotropy of plasma pressure decreases suddenly when

the plasma passes from pre- to post-shock state, (i. e. T j f ).

We also attempted in Chapter 6 to estimate the partial pressures

for electrons on both sides of the shock, using all available shock

equations and experimental information on positive ions. We are per-

plexed with our findings. Except for the shock of June 26, 1967 where

the computed electron pressures appear to be "reasonable", the fitting

of the data on all other spacecraft seem to require very cold electrons.

We fear that such a conclusion may be fallacious; however, we cannot

either prove it or disprove it. We are mindful of the surprising re-

sults obtained in IMP-1 (Olbert, 1968) where it was found that the

elections behind the earth's bow shock failed to heat up to any appreci-

able degree as compared with protons. The difficulties here are en-

hanced by the fact that we are not certain if our interpretation of w 0

is valid. The entire issue of the meaning of w0 and the behavior of

electron pressures across the shock should be investigated more care-

fully in the future.

7. 2 Resume of Analytical Investigations

To summarize our analytical effort of Chapters 2 to 4, we should

like to bring out the following points:

(1) In Chapter 2, we have derived the shock equations for plasma with

anisotropic pressures. These equations represent the generalization of
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the known MHD Rankine-Hugoniot relations for isotropic plasmas.

(2) We have shown that the coplanarity theorem for the magnetic field

and the continuity theorem for the velocity component perpendicular to

the (n* , B) plane still hold for anisotropic plasmas.

(3) In Chapter 3, we have investigated extensively the dependence of

the shock relations on the assumed values of the anisotropic parameters

and . The results are presented in graphical form.

(4) In Chapter 4 we took advantage of occasional presence of secondary

satellites capable of detecting the passage of the shock. We have shown

that in this case we could derive simple analytical expressions deter-

mining the orientation of the shock in the interplanetary space. The re-

sults of Chapter 4 played an important role for an independent test

whether the observed events were indeed MHD shocks.
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Appendix A

SHOCK EQUATIONS FOR ANISOTROPIC PLASMAS

By virtue of the coplanarity theorem derived in section 2. 2.1, we

always can orient the shock coordinate system in such a way that B2

vanishes on both sides of the shock. From (2. 32) and (2. 33), we obtain

V V'. And from (2. 29), we obtain B = B Therefore, eight
2 2 1

equations (2. 29) to (2. 36) reduce to five equations, namely, (2. 30),

(2. 31), (2. 34), (2. 35) and (2. 36). We have now six Unknowns: ,V

B , V , P' and .

Equation (2. 30) can be written as:

pV*= / (A. 1)

If we divide (A. 1) by V1 , we obtain equation (2. 76).

Equation (2. 31) can be written as:

3 3  -e bi - V1 " , "

If we divide (A. 2) by V 3 B3 and use the fact that tanB B and

VItaneV* , and obtain:

- -I 3,f l v
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Equation (2. 34) can be written as:

V X V*v1v 3

If we divide (A. 4) by

13, 133

'

v3-

5, /
/ 1,33

/10o

and use (A. 3) and (2. 50)

(A. 4)

and obtain

equation (2. 78). Substituting (2. 78) into (A. 3 ), we obtain equation

(2. 77).

Equation (2. 35) can be written as:

If we divide (A. 5) by

If we divide (A. 5,) by

2.-3(We) I /A
' 'I\ 1

CV and use (2. 61) we obtain equation (2. 79).1

Equation (2. 36) can be written as:

F __o

dUO0

132)

where according to (2. 39),

2

T

(2. 74) and (2. 75), we have:

(A. 7)

(A. 8)
2

Pv 2If we divide (A. 6) by and multiple by
2

(MA
2 )) , and obtain

with the help of (2. 76) through (2. 79), equation (2. 80).

2

/ l3IZ
-C/f'

(A. 5)

2LuP
Eje

2
ft E

*

V.

V=3

*" (A. 6)
ye*i- ,V L 3o

2- ) B',iA 0-j- 
-L

I

3(3;2)
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Appendix B

PROOF FOR COMMON INTERSECTION POINT IN

THE FAMILY OF CURVES.SHOWN IN FIGURES (3.1 ) TO (3.5)

We should like to prove analytically, that the family of curves

y vs. I/ for various values of'e B

) pass through a common point.

(at fixed values of MA , MS

This can be shown by using

(2. 80) to (2. 85).

The coefficients C.'s can be written as:
1

C -C t C Az 8 1 = /2 3. q)

where, neither C. nor C, depend on E
1 IT B

Substituting the relations ( B. 1) into (2. 80), we obtain:

C3 i 7- + ,' + 0) + -i/ 4e, (C3T y3

C, -t cO)

where we made use of the fact that C4 r

C. and CiT are functions of ,
1 iT

= 0. Note that the coefficients

SMA and M S only. Let us

investigate the case when the factor multiplying tan2 B vanishes, i. e.,

r 3 - z CT
- O (B. 3)

If we solve ( B. 3) for y in terms of , MA and M S and

substitute it into the first paranthesis of (B. 2), we obtain an expression

for

and

(B. 1)

SCT 2+

(B. 2)

147"
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of the form

(B. 4)

which for fixed values of , MA and MIS may be considered as a

function of f alone. In general, one expects that there exists at least

one value of / , which make the function given by ( B. 4) vanished.

Explicit numerical calculations show (see Figures 3. 1 to 3. 5) that in

most cases studied there is only one such special value of 5 / for a

fixed set of , MA and M S . The range of the numerical values for

this special f is surpringly narrow ( 0 < < 0. 5).

If the anisotropy parameter r / equals the value associated with

the intersection point, the jump parameters x, y and u are independent

of B i. e., of the orientation of the B - field in .
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Appendix C

THE "BEST-FIT" PROCEDURE FOR MATCHING

THE MHD SHOCK RELATIONS WITH THE DATA

There are eight shock equations: (2. 29) through (2. 36). Five of

these equations are based on the conservation laws: one equation from

the law of mass conservation, three equations from the law of momen-

tum conservation, and one equation from the law of energy conservation.

The remaining three equations are derived from the requirements of

Maxwell's equations that, across the shock, the tangential component

of the electric field be continuous (2 equations) and that the normal

component of the magnetic field be continuous (1 equation). Together;

these eight equations, if written out in an arbitrary frame of references,

contain twenty-one parameters. Fifteen of these parameters refer to

the following vectors: the magnetic field and the solar-wind velocity,

in the pre- and post-shock states, as well as the shock velocity. The

remaining six are scalar parameters, namely, the density, the prer-

ssure, and anisotropy parameters on both sides of the shock.

Out of the twenty-one parameters only fourteen are measured;

the measured parameters are: B , V , and n , (on both sides of the

shock). Thus, in general, by using the eight conservation equations,

one should be able to predict any eight out of twenty -one parameters,

provided the remaining thirteen are known. Thus, in our case, one of
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the fourteen measured parameters is overdetermined and its predicted

value can be tested against observations.

If we have the additional information on the transit time of the

shock wave from one satellite to another or if the shock wave causes a

storm sudden commencement on earth, the number of the overdeter-

mined parameters increases to two.. In more specialized case when the

pressures are isotropic (i. e. = = 1), the number of overdeter-

mined parameters increases to four.

Let us trun our attention to the details of our best-fit procedure.

We shall restrict our discussion to the isotropic case (i. e. = 10= 1).

The method deseribed below can be readily generilized to the case when

the anisotropy parameters ' and " differ from unity, however, this

more involved case is beyond the scope of our thesis.

As the first step, we find the shock normal n by means of (4. 1).

As already pointed out, the results based on this equation will be, in

general, very inaccurate. In order to improve this accuracy, we make

use of the equations (2. 55), (2. 77) and (2. 78) which are part the basic

shock relations. In other words, we require, first of all, that according

to (2. 55):

V= v,

Recalling the definition of our Cartesian coordinates in , the above

equation can be also w:iitten as:

- V) (c. 2)
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Secondly, we require that,

"aB (

-f on 5'

(for = ?'= 1) according to (2. 77) that

-1-

and recall that according to the definition of (see Eq. (2. 63))

'A • v
ii33X V~n~v ( C. 4)

Thirdly, we require that, according to (2. 78) (for = 1)

(c. 5)

and recall that according to the definition of u (see Eq. (2. 63))

Al /

N tn13L

Note that the quantities 5 , and u defihed by (C. 1),

(C. 6)

(C. 4)

and (C. 6) can be looked upon as given from experimental data. Since

A
they depend on n, they, in general, will be burdened with large errors.

Consequently, their values computed from the data and (4. 1) will not,

as a rule, satisfy (C. 2), ( C. 3) and ( C. 5) rigorously. Labeling these

first-step experimental values of , , u , respectively, by 5 exl

(C. 3)

Ma~-i

A

A.-
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,exp , and uexp , we can define the following differences between their

measured and the theoretically expected values:

- F 3R / / - (C. 7)

)L'rA ;z - i /(C8)

-O (C. 9)

These differences can be obtained in their entirely from the

available data, provided one first computes not only n but also the shock

speed VS (see 4. 8). (Note that one has to transform first various data

to the shock frame of reference in order to obtain EV) and MA

Our tast is to minimize d , du , and dS ir order to obtain the

best fit values of the physical parameters. For this purpose, we have

employed standard minimization procedures with the aid of the computer.

The method involves simultaneous variation of the experimental para-

meters within the allowed range of observation uncertainties. It is

essentially an iteration process in which, as the first step, the average

values of the physical parameters on both sides of the shock are used.
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