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Abstract

Silicon-on-insulator (SOI) MOSFET's are an attractive alternative to bulk-silicon
MOSFET's in the sub-100 nm gate length regime due to improved performance and/or scalability.
The SOI layer thickness in SOI MOSFET's can be sized so that the channel is either partially- or
fully-depletedof majority carriers. Partially-depleted (PD) SOI MOSFET's are easier to manufacture
than fully-depleted (FD) SOI MOSFET's because a thicker SOI film can be used. However, PD-
SOI MOSFET's are difficult to design due to floating-body effects. FD-SOI MOSFET's are easier
to design and are more scalable than PD-SOI MOSFET's. However, in the sub- 100 nm gate length
regime, fully-depleted SOI MOSFET's are difficult to manufacture because a bottom gate is required
for electrostatic integrity. In this thesis, floating-body effects in PD-SOI MOSFET's and process
technology for fabrication of double-gate FD-SOI MOSFET's will be investigated.

Floating-body effects in PD-SOI MOSFET's result from floating-body voltage
modulation by AC and DC changes in source, drain, gate, and substrate terminal voltages. This
modulation of the floating-body voltage results in modulation of the drain current. AC modulation
of the floating-body voltage occurs through capacitive coupling to rapidly switching terminal
voltages. DC modulation of the floating-body voltage occurs through diode currents and impact
ionization. Because the time constants of these processes are very different, the DC and AC I-V
behavior of floating-body PD-SOI MOSFET's are very different from each other, as well as very
different from body-contacted SOI MOSFET's or bulk MOSFET's with the body tied to a fixed
voltage. Floating-body effects on I- Vbehavior, how they are important in CMOS digital operation,
and how they are affected by device design are described and modeled.

Another consequence of floating-body behavior is history dependence in I-V behavior.
Rapid switching of terminal voltages induce nearly-negligible changes in body majority carrier
content since body majority carriers are trapped by body-source/drain junction diodes. However,
the change in body majority carrier content can become significant over many switching cycles,
eventually reaching a "switching-steady-state" value if kept switching (different value for different
switching patterns), and can return to the initial value if the terminal voltages are returned to the
initial settings and enough time is allowed to reach equilibrium. This "hysteretic" variation of the
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body majority hole content is problematic because device I-V behavior changes with changing
body majority carrier content. Device design to minimize hysteretic behavior will be presented.

Once the hysteretic I-V behavior of floating-body PD-SOI MOSFET's has been
understood, floating-body PD-SOI CMOS technology can be optimized to maximize drive current
while minimizing hysteresis. This optimized PD-SOI technology can then be compared to bulk
CMOS technology. This was done using the 2-D numerical simulator MEDICI in a optimization
framework based on the International Technology Roadmap for Semiconductors for the 100 nm-,
70 nm-, and 50 nm-technology nodes.

And finally, double-gate fully-depleted SOI MOSFET's technology was explored. A
method to fabricate bury a bottom-gate under a FD-SOI MOSFET was developed based on a flip-
bond-transfer technique. This technique is based on chemical-mechanical-polish and wafer fusion
bonding. Double-gate SOI MOSFET's were fabricated based with this technique, and a self-
alignment scheme for alignment of the bottom-gate which to the top-gate was explored.

Thesis Supervisor: Dimitri A. Antoniadis
Title: Professor
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Chapter 1

Introduction

The main advantage of silicon-on-insulator (SOI) CMOS technology versus conventional

bulk-silicon CMOS technology is the potential for higher speed operation at the same power or

lower power dissipation at the same speed [1]. These advantages are more important as scaling of

CMOS technologies becomes more difficult to implement. However, on the transistor- and circuit-

level, SOI MOSFET's behave differently than bulk-silicon MOSFET's. These differences in device

operation and subsequent differences in device design and scaling are studied in this thesis.

1.1 Silicon-on-Insulator (SOI) MOSFET's

SOI MOSFET's are fabricated on a film of single-crystalline silicon which is separated

from the silicon substrate by a layer of silicon dioxide. Figure 1-1 compares a cross sectional

representation of bulk MOSFET's to SOI MOSFET's. The buried oxide layer, in conjunction with

device isolation, fully isolates the SOI MOSFET with dielectric material.

Three common techniques are used to form the buried oxide layer in SOI wafers. The first

is the bond and etchback technique (BESOI) illustrated in Figure 1-2 [2]. A bulk-silicon wafer with

I_
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Figure 1-1. Schematic cross section of MOSFET's fabricated on (a) bulk-silicon and (b) silicon-
on-insulator, SOI.

thermally-grown oxide is fusion bonded to a bare bulk-silicon wafer. One wafer is etched back and

polished to the desired silicon film thickness. This process can produce a large range of buried

oxide and silicon film thicknesses, but at the cost of two silicon wafers. The second common

techniques involves bond and delaminated, in which a piece of one bulk-silicon wafer is transferred

to another wafer with an oxide on top. Such processes include Canon's ELTRAN process [3] and

SOITEC's Smart-Cut process [4]. The Smart-Cut process is illustrated in Figure 1-3. Again, two

bulk-silicon wafer are required, one bare and one with thermally-grown oxide. One wafer has
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Bulk Si Wafer I

Thermal Oxide

I

Bond and Anneal

Bulk Si Wafer 1

Bulk Si Wafer 2

Etch and Polish

- SOI
Buried Oxide

Bulk Si Wafer 2 Substrate

Figure 1-2. Bond and Etchback SOI (BESOI) process for fabricating SOI wafers. Two bulk-
silicon wafers, one of which has a thermally-grown oxide, are fusion bonded. The SOI layer is
formed by a combination of mechanical grinding, chemical etchback, and mechanical polish.

hydrogen ions implanted at a depth approximately equal to the desired silicon film thickness. The

two wafers are bonded at room temperature. The wafer pair is then annealed at a temperature

where the expansion of hydrogen into gas fractures the bonded pair at the hydrogen implant peak.

It is then annealed at high temperature to complete the fusion bond. The surfaces at the point of

fracture are rough and require polishing. After polishing, the bonded pair of wafers produces one

SOI wafer and one bulk wafer. In principle, the bulk wafer can be recycled to process more Smart-

Cut wafers. Like BESOI, this process can produce a large range of buried oxide thicknesses but

Bulk Si Wafer 2
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Figure 1-3. Smart-Cut process for fabricating UNIBOND SOI wafers. One bulk-silicon wafer is
implanted with hydrogen ions. The SOI layer is formed by fusion bonding the wafer to another
wafer with a thermally-grown oxide, at which time the implanted wafer fractures at the hydrogen
implant peak. After touch polish of the rough fractured surface, this process produces a SOI wafer
and a bulk wafer. The bulk wafer can be recycled to fabricate more SOI wafers.
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Figure 1-4. Separation by Implantation of Oxygen (SIMOX) process for fabricating SOI wafers.
One bulk-silicon wafers is implanted with oxygen ions. The SOI layer is formed by thermal treatment.

silicon film thicknesses are limited by the maximum depth of hydrogen implantation. The third

common process, Separation by Implantation of Oxygen (SIMOX), uses only one silicon wafer

[5]. As shown in Figure 1-4, the buried oxide layer is formed by a high energy high dose oxygen

implant, and high temperature anneal. Due to oxygen implant limitations, silicon film and buried

oxide thicknesses are limited [4].

1.2 SOI MOSFET Advantages

Figure 1-5 compares cross sections and layouts of a CMOS inverter on bulk-silicon to a

__I~__ __:__ 1
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CMOS inverter on SOI. In bulk CMOS, the NMOS and PMOS are built in a p-well and n-well,

respectively. Parasitic bipolar action between the transistors and the wells can cause a race condition

known as latch-up. The transistors and wells must be appropriately spaced and doped to reduce the

probability of latch-up. SOI MOSFET's are fabricated on islands of silicon in oxide and thus do

not require separate wells for NMOS and PMOS. The NMOS and PMOS can be built in the same

silicon island because the drains of the NMOS and PMOS are at the same potential. Thus SOI

potentially offers reduced layout complexity, process complexity, and increased packing density

[6].

SOI also offers increased performance on a transistor- and circuit-level. The increased

performance is due to much reduced parasitic capacitance between the source/drain and the substrate.

Further performance gains can be obtained when the body of the SOI MOSFET is floating. This

results in increased drive current due to capacitive coupling to the gate [7]. The floating body also

improves pass-gates and logic gates with stacked transistors by reducing the instances of reverse

body-source biases [8]. It has been demonstrated that the increased performance of SOI CMOS

translates to as much as 30% improvement in CPU speed at the same power consumption of an

equivalent bulk CMOS CPU, or a 50% decrease in power consumption at the same speed of an

equivalent bulk CMOS CPU [1].

1.3 Historical Perspective

SOI has not been adopted for mainstream CMOS digital logic until just prior to the writing

of this thesis [9]. There was a reluctance to adopt SOI technology for mainstream CMOS applications

because the performance benefits mentioned above could be obtained by scaling bulk CMOS one

generation. Given the historic ease of scaling bulk CMOS, redesign of circuit libraries to take full

advantage of SOI as well as the increased substrate cost of SOI could not be justified. As scaling of

CMOS has become more difficult due to material and lithography limitations, the potential advantages

of SOI are now worthy of consideration for mainstream products.
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Figure 1-5. (a) Cross section and corresponding layout of a CMOS inverter built on bulk-silicon in
a twin-well process. (b) Cross section and corresponding layout of a CMOS inverter built on SOI.
Dimensions are drawn to scale.
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Figure 1-6. Schematic representation of depletion regions in a NMOSFET. Shown is (a) a bulk
MOSFET, (b) a partially-depleted SOI MOSFET, and (c) a fully-depleted SOI MOSFET.

Prior to current adoption of SOI for mainstream CMOS production, SOI had been

manufactured only for niche applications such as radiation-hard electronics and high-temperature

electronics. The full dielectric isolation of SOI MOSFET's reduces single-event upsets by shielding

the channel region from excess electron-hole pairs generated by alpha particle penetration into the

substrate [6]. Similarly, full dielectric isolation limits the source/drain junction area thereby limiting

junction leakage currents in high-temperature electronics [6].

Such applications fueled development of SOI material, which in the 1960's and 1970's

included techniques such as heteroepitaxial growth of silicon film on a single-crystalline insulator

(silicon-on-sapphire, SOS), laser or e-beam recrystallization of polysilicon on oxides (zone-melt-

recrystallization, ZMR), or homoepitaxial growth of silicon on oxides (epitaxial lateral overgrowth,

ELO). These techniques usually resulted in less than perfect silicon films. SOI MOSFET's thus

had inferior performance compared to bulk MOSFET's due to inferior mobilities, high interface

trap density at the silicon-insulator interface, high dislocation densities, stacking faults, or grain

boundaries. Because of these limitations, SOI MOSFET's were only manufactured for niche

applications where bulk MOSFET's could not be used.

In 1977, Izumi, et al., proposed the SIMOX technique of creating the buried oxide layer [5].

Subsequently, the BESOI technique was developed and in recent years the Smart-Cut and ELTRAN
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Figure 1-7. Examples of NMOS DC drain current versus gate voltage characteristics for (a) bulk
MOSFET's, (b) partially-depleted SOI MOSFET's, and (c) fully-depleted SOI MOSFET's. The I-
V's shown represent values of IDS for VDs=0.05 V to 2.05 V by 0.5 V steps. The subthreshold swing,
S, is indicated on each plot.

techniques were developed. All these techniques produce SOI wafers with a high quality silicon

film which can yield ULSI electronics on par with bulk-silicon wafers [10]. Thus, SOI CMOS for

mainstream ULSI applications became a reality, and has become competitive with bulk-silicon

CMOS as scaling CMOS technologies becomes more difficult. However, SOI CMOS is not without

its problems. Differences in how the SOI MOSFET's operate and scale compared to bulk MOSFET's

result in different transistor- and circuit-level design issues.

1.4 SOI MOSFET Design Issues

The buried oxide layer truncates the depth of the MOSFET built on SOI. Thus, SOI

MOSFET's can have channels which are either fully depleted or partially depleted of majority

carriers, depending on body doping and silicon film thickness. This concept is schematically shown

in Figure 1-6 for NMOSFET's. Figure 1-7 shows sample DC subthreshold gate I-V characteristics

for a bulk, partially-depleted (PD) SOI, and fully-depleted (FD) SOI NMOSFET.
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1.4.1 Partially-Depleted SOI MOSFET's: Floating-Body

Effects

The buried oxide layer leaves the body of the SOI MOSFET floating. While this can be a

performance benefit, as noted above, the floating body also introduces anomalous device behavior.

For example, the "kink" in the DC subthreshold I-V characteristics of the PD-SOI NMOSFET in

Figure 1-7 (b) is due to impact-ionization-generated holes which are trapped in the floating quasi-

neutral body region by the potential barrier of the body-source p-n junction [11]. Impact-ionization-

generated excess holes raise the body voltage which lowers the threshold voltage.

All other "floating-body effects" arise from the same principle of majority carriers trapped

in the body by the potential barrier between the body and source/drain [12-19]. Rather than freely

moving in and out of the body through the body contact, the only path for majority carriers in and

out of the floating body is through forward bias p-n junction conduction, reverse bias p-n junction

space charge region generation, and impact ionization generation. The time constants of these

paths are much slower compared to device switching timescales. Thus, when the terminal voltages

are changed instantaneously (AC), the body majority carrier content cannot change instantaneously.

Over time, currents flowing through the body-source/drain junction diodes and impact ionization

generation will change the body majority carrier content as the device settles towards equilibrium

(DC) behavior [20].

This difference between AC and DC behavior results in hysteretic behavior, where the

instantaneous MOSFET behavior depends on the switching history of the device. For example, the

threshold voltage can start from equilibrium at one value and change over several switching cycles.

This makes the floating-body PD-SOI MOSFET difficult to characterize, model, and design. The

body of the PD-SOI MOSFET can be contacted, as shown in Figure 1-8. Body-contacted PD-SOI

MOSFET's behave exactly like a bulk MOSFET. However, for the same device width, a body

contact consumes extra layout area and increases process complexity. So, while body contacts may

be selectively used in parts of circuits which cannot tolerate hysteretic behavior, a majority of
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(b)

Figure 1-8. Comparison of floating-body and body-contacted SOI MOSFET layouts. (a) Floating-
body. (b) Body-contacted. Due to high body resistance, the body contact may become too resistive
with increasing device width. Two body contacts are required for wider devices as shown in (c).
(c) Asymmetric body tie with body tied to source. The source and drain are not interchangeable.
For very wide devices, this structure can be extended with multiple body-ties.
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devices should operate with the body floating. Thus, floating-body effects in PD-SOI MOSFET's

are an important design issue.

1.4.2 Fully-Depleted SOI MOSFET's: Scalability

FD-SOI MOSFET's display minimized floating-body effects [21,22]. Full-depletion of the

body significantly reduces the potential barrier between the body and the source, so majority carriers

are not as easily trapped in the body. FD-SOI MOSFET's also have a major advantage because the

fully-depleted body allows the surface potential to be directly coupled to the gate voltage [23].

This results in a near-ideal 60 mV/dec subthreshold swing as shown in Figure 1-7 (c). Typical bulk

MOSFET's have a subthreshold swing of 80 mV/dec. The subthreshold swing of PD-SOI MOSFET's

varies with device design and switching history due to floating-body effects, but is typically between

70 to 85 mV/dec. At the same OFF-state leakage current, improved subthreshold swing allows the

FD-SOI MOSFET to operate at a lower threshold voltage, Vr, and achieve increased drain current

due to higher gate overdrive (VDD-VT).

Thus, while a FD-SOI MOSFET is superior to bulk and PD-SOI MOSFET's, it is difficult

to scale and manufacture because thin silicon films are required to maintain full depletion of the

body. Obviously, a FD-SOI MOSFET without a sufficiently thin silicon film is a PD-SOI MOSFET

with all the associated floating-body effects. Maintaining full-depletion of the body is achieved by

reducing the silicon film thickness, as shown in Figure 1-9 and can be described as follows: An

ideal transistor behaves as a gate-controlled current source. A well-behaved MOSFET should have

saturation drain current which is greatly affected by changes in the gate voltage (high

transconductance, gm=dIs/dVGs), but minutely affected by changes in the drain voltage (low output

conductance, go=dI/dVDS). The level of gate control versus drain control of the drain current is

directly related to the relative level of gate control to drain control of body majority carriers and

channel charge. For a long channel device with a thin silicon film, the gate controls most of the

channel charge compared to the drain. As the channel becomes shorter, the portion of channel
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Figure 1-9. Simplified schematic demonstrating fully-depleted SOI film thickness scaling. Shown
in the light dashed line is charge controlled by the gate, and in the bold dashed line charge controlled
by the drain. Reduction of SOI film thickness is necessary to maintain full depletion of the channel.
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VDD

B ried A e

Figure 1-10. Schematic representation of 2-D channel charge sharing through the buried oxide in

fully-depleted SOI NMOSFET.

charge controlled by the drain versus the gate increases. To counteract this "short-channel effect",

the channel doping is increased. This reduces the depletion depth from the gate. As a result, the

silicon film thickness must be reduced when the channel length is reduced in order to maintain a

fully-depleted channel.

Now, as the gate length is reduced, maintaining a suitable threshold voltage requires higher

channel doping densities which in turn requires thinner silicon films in order to achieve full depletion.

This is problematic because high channel dopings reduce carrier mobility and thin silicon films are

difficult to isolate and contact. In addition, these problems are exacerbated by drain control of

channel charge through the buried oxide region, as shown in Figure 1-10 [24]. The field lines from

the drain favorably terminate on channel charge rather than on substrate charge due to lower dielectric

constant of oxide, and low substrate doping. This "2-D charge-sharing" effect increases drain

control of channel charge versus gate control which forces the use of even higher channel doping

and even thinner silicon film.

These scaling problems can be alleviated by reducing the buried oxide thickness and inserting

a highly doped substrate region beneath the channel region [25]. This highly doped substrate
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Oxide

(a) (b)

Figure 1-11. Schematic representation of (a) a scaled fully-depleted SOI NMOSFET with thin
buried oxide, highly doped substrate region, and salicided raised source/drain. Parasitic capacitances
can be further reduced with the structure shown in (b).

region also reduces the channel doping level because of the workfunction difference. A raised

source drain can be grown epitaxially to form good electrical contact to the source and drain, and

thus low parasitic series resistance [26]. A schematic of an optimized short-channel FD-SOI

MOSFET structure is shown in Figure 1-11 (a). This structure can be further optimized to reduce

the parasitic source/drain-substrate capacitance by replacing the substrate with oxide and aligning

the doped region underneath the channel to the top gate, as shown in Figure 1-11 (b).

If the highly doped region under the channel is contacted, the optimized fully-depleted SOI

MOSFET becomes a double-gate MOSFET. A double-gate MOSFET can exhibit increased

performance over a single-gate MOSFET if the bottom-gate is used to modulate the MOSFET

threshold voltage so that it is low during active periods and high during idle periods [27]. Such a

device can be implemented in an asymmetric gate structure shown in Figure 1-12 (a). Further

improvement in device performance can be obtained with a symmetric double gate structure by

operating both gates simultaneously on an undoped channel region, where the gate material
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Oxide Oxide

Substrate Substrate

(a) (b)
Figure 1-12. Schematic representation of (a) a double-gate fully-depleted SOI NMOSFET with
asymmetric gates and (b) with symmetric gates. The gate workfunctions of the symmetric double-
gate device are shown as design variables.

workfunction is used to obtain a proper threshold voltage, as shown in Figure 1-12 (b).

It is difficult to fabricate two gates well-aligned to each other with planar fabrication

technology, however. New methods must be developed to place a gate below the a FD-SOI MOSFET

in a self-aligned manner.

1.5 Scaling into the Sub-100 nm Regime

To put SOI MOSFET design, fabrication, and scaling into perspective, Table 1-1 shows

proposed scaling trends as outlined by the International Technology Roadmap for Semiconductors

(ITRS) [28]. Performance is expected to increase based on a decreasing gate delay metric. This is

achieved by maintaining drive current at approximately 750 gA/Im NMOS and 350 A/gm for

PMOS, while intrinsic capacitances are reduced with shrinking of device dimensions. Meanwhile,

scaled transistors maintain electrostatic integrity by decreases in gate oxide thickness and source/
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Technology

LGATE [nm]

VDD [V]

tox,eq [nm]

xi [nm]

loFF [nA/m]

Gate Delay [ps]

180 nm 130 nm 100 nm 70 nm 50 nm 35 nm

140 85 65 45 32 22

1.5-1.8 1.2-1.5 0.9-1.2 0.6-0.9 0.5-0.6 0.3-0.6

1.9-2.5 1.5-1.9 1.0-1.5 0.8-1.2 0.6-0.8 0.5-0.6

45-70 30-50 25-40 20-28 13-20 10-14

5 10 20 40 80 160

9.4 7.3 5.7 3.7 2.6 2.4

Table 1-1. High-performance logic technology requirements from the International Technology
Roadmap for Semiconductors.

drain junction depth. Maximum electric fields in the gate oxide and reduced power levels in circuits

dictate a decrease in the power supply, VDD, with each generation, and VT must be decreased (OFF-

state leakage, IOFF, increases) to maintain sufficient gate overdrive (VDD-VT).

1.6 Thesis Goals

PD-SOI MOSFET's are potentially more scalable than bulk MOSFET's if the floating-

body effects are properly controlled on a transistor level and properly exploited on a circuit level.

FD-SOI, in the guise of a double-gate MOSFET, can potentially scale even better than PD-SOI

MOSFET's. However, a double-gate MOSFET is difficult to fabricate. This thesis addresses device

design of floating-body PD-SOI MOSFET's and fabrication technology for FD-SOI MOSFET's.

While many of the floating-body effects have been reported in [19], this thesis will look into these

effects in depth, treating them in the context of digital logic. In Chapter 2, the floating body of a

PD-SOI MOSFET will be modeled as an equivalent network of diodes, current sources, and
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capacitors. The effect of device design on floating-body effects will be demonstrated. In Chapter

3, hysteretic floating-body effects will be described. Simulation methodologies which can predict

bounds of hysteretic behavior will be demonstrated. Methods to minimize hysteretic floating-body

effects will be discussed. With the understanding of floating-body effects, PD-SOI MOSFET's

will be compared to bulk-silicon MOSFET's in Chapter 4. Optimization to maximize device

performance and scalability while minimizing floating-body effects will be studied at sub-100 nm

technology nodes based on criteria shown in the 1999 International Technology Roadmap for

Semiconductors. In Chapter 5, a fabrication technology for double-gate FD-SOI MOSFET's will

be demonstrated. Chapter 6 presents a summary of the main conclusions of this thesis and discusses

and recommends topics for future work. Appendix A compiles sample MEDICI floating-body

simulation input decks, and Appendix B lists the steps used to fabricate the double-gate MOSFET

presented in Chapter 5.

_ _;i__ _ _~_I
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Chapter 2

The Floating Body

To maximize layout density, the body of the SOI MOSFET is typically left uncontacted and

is therefore electrically floating. In a partially-depleted (PD) SOI MOSFET, the floating-body

voltage can be modulated by DC and AC changes in source, drain; gate, and substrate terminal

voltages. This modulation of the floating-body voltage results in modulation of the drain current.

This makes the DC and AC I-V behavior of floating-body SOI MOSFET's different from body-

contacted SOI MOSFET's or bulk MOSFET's, which have the body tied to a fixed voltage. These

differences are collectively called "floating-body effects". This chapter describes floating-body

effects in I-Vbehavior, how they are important in CMOS digital operation, and how they are affected

by device design. (For simplicity, "bulk MOSFET's" will refer to both bulk and body-contacted

SOI MOSFET's, and only NMOSFET's will be described - PMOSFET behavior is similar).

2.1 Bulk vs PD-SOI MOSFET Switching Behavior

Figure 2-1 defines the NMOSFET OFF-state and ON-state with respect to digital logic

applications. The OFF-state is defined drain voltage (VD) at the supply voltage (VDD) and the gate

_ ~li__ ___
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VDD VDD VDD

..... . VDD 0 V-VDD VDD-O V VDD O V

OFF ON

OUT-HI TURN-ON OUT-LO

(a) (b) (c)

Figure 2-1. Definition of (a) OFF-state and (c) ON-state of a NMOSFET in a CMOS inverter in
relation to the logic state OUT-HI and OUT-LO of the CMOS inverter. (b) shows the NMOSFET
turning ON with the gate voltage rising and, after a delay due to load capacitance, the drain voltage
falling.

voltage at 0 V. The ON-state is defined as VD=O V and VG=VDD. In between these two is the TURN-

ON-state where VG rises from 0 V to VDD . After discharging a load capacitance, V, falls from VDD

to 0 V.

Figure 2-2 shows the currents which flow in a bulk NMOSFET in the OFF-state (VG=O V,

VD=VDD, and Vs=VB=GND). OFF-state subthreshold drain current is made up of electrons in the

source diffusing to the drain. These electrons generate electron-hole pairs by impact ionization in

the high electric field region of the reverse biased body-drain junction. The generated electrons are

instantaneously swept towards the highest potential into the drain contact, and the generated holes

are instantaneously swept toward the lowest potential into the body contact. Thermal generation in

the reverse-biased body-drain junction depletion region and in the channel region depleted by the

gate also generates electron-hole pairs. Again, the electrons are instantaneously swept into the

drain and holes are instantaneously swept into body contact.

Figure 2-3 shows the currents which flow when the bulk NMOSFET is turning ON (VG=0 to

VDD, VD=VDD, and Vs=V=GND -- VD will fall after the NMOSFET discharges a load capacitance).

~_ _ _ ~__~ _C_
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Figure 2-2. Schematic cross section of a bulk NMOSFET in the OFF-state. Arrows show impact
ionization current and drain-body depletion region generation current flowing to the body contact.

As the gate voltage rises, the body region depleted by the gate expands until the surface potential

favors formation of an inversion layer made of electrons. The excess gate-body depletion-region

holes are instantaneously removed from the body through the body contact. TURN-ON-state drain

current is made up of inversion layer electrons carried by drift from the source to the drain. These

electrons generate electron-hole pairs by impact ionization in the high field region of the reverse

biased body-drain junction. Due to much higher drain current, TURN-ON impact ionization

generation is much greater than OFF-state impact ionization generation. Thermal generation of

electron-hole pairs in the depletion regions is slightly higher than the OFF-state due to increased

gate-depletion width. Again, all generated electrons go to the drain and all generated holes are

instantaneously removed from the body through the body contact.

Without a body contact, the behavior of the SOI MOSFET is significantly different from

the bulk MOSFET. Figure 2-4 shows the currents in a SOI MOSFET in the OFF-state. As in the

bulk MOSFET there is subthreshold drain current causing impact ionization generation of electron

hole pairs and there is thermal generation of electron-hole pairs in the reverse biased body-drain
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0 -- VDD

VDD

Figure 2-3. Schematic cross section of a bulk NMOSFET switching from the OFF-state to the ON-
state. Arrows show gate-depleted body charge, impact ionization current, and drain-body depletion
region generation current flowing to the body contact.

junction. The electrons are swept into the drain and the holes are swept into the body. The holes,

however, are trapped in the body region because of the potential barrier of the body-source junction.

The excess hole content raises the body voltage, forward biasing the body-source junction to remove

holes from the body to be recombined in the source. In equilibrium, generation of holes must equal

recombination of holes. Thus, the equilibrium OFF-state floating-body voltage (VB ,OFF) is greater

than zero. VOFF forward biases the body-source junction diode enough to remove holes generated

by thermal generation and impact ionization.

Figure 2-5 shows the SOI MOSFET turning ON. As the gate voltage rises, the excess gate-

body depletion region holes are trapped in the body by the potential barrier of the body-source

junction. The body voltage instantaneously rises to reflect the excess of holes in the body. This

increased forward bias of the body-source diode begins to remove the excess holes from the body

to be recombined in the source. As excess holes are removed over time, the body voltage tends to

decrease. However, while holes are being removed through the body-source diode, TURN-ON-

state impact ionization generation and thermal generation in depletion regions are adding holes to

_~I~Y__ __IL ~
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0

VDD

Buried Oxide

Figure 2-4. Schematic cross section of a SOI NMOSFET in the OFF-state. Arrows show impact
ionization current and drain-body depletion region generation current flowing into the floating
body to forward bias the body-source diode.

the body, tending to increase the body voltage. If the drain voltage stays at VDD, as is done when

measuring the DC gate transfer I-V characteristics, the body voltage will eventually reach an

equilibrium DC value where the body-source diode removes the holes added the body by impact

ionization and thermal generation. When the MOSFET is switching, however, the drain voltage

actually falls so only the instantaneous value of drain current during TURN-ON switches the

MOSFET from OFF to ON.

Figure 2-6 (a) shows this difference between the DC I- V characteristics and the instantaneous

I-V characteristics. An example of the transient evolution from the instantaneous drain current

value to the equilibrium DC value is shown in Figure 2-6 (b). Thus, due to the floating body, every

time the terminal voltages are set to a bias point on an I-V characteristic, there will be an instantaneous

value of drain current which over time changes and settles to an equilibrium DC value. The time-

transient evolution of drain current from instantaneous to equilibrium DC values will be different

for each bias point, since the instantaneous body voltage will be different at each bias point and the

impact ionization and thermal generation rates will also be different at each bias point.

-'-- - --- --- i~L11~-
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0 -> VDD

VDD

Buried Oxide

Figure 2-5. Schematic cross section of a SOI NMOSFET switching from the OFF-state to the ON-
state. Arrows show gate-depleted body charge, impact ionization current, and drain-body depletion
region generation current flowing into the floating body to forward bias the body-source diode.

This idea is made more clear by representing the SOI MOSFET floating body as an equivalent

network as shown in Figure 2-7 (a). Rather than a body-contact connecting the body to the outside

world, the floating body is in effect "connected" to the terminals by this network of capacitors,

diodes, and current sources. The instantaneous AC value of the floating-body voltage is determined

by the body-terminal and terminal-terminal capacitances shown in Figure 2-7 (b). The equilibrium

DC body voltage and body hole content is determined by the network of body-source/drain diodes

and dependent current sources representing impact ionization generation, gate-body space charge

region thermal generation, and, if present, gate-body tunneling current, shown in Figure 2-7 (c).

From this representation of the floating body, three points are obvious. 1) Changing device

design changes the capacitances, diodes, and generation sources. Thus, floating-body effects can

significantly vary with device design. 2) Transient I-t characteristics are different depending on

how the terminal voltages are switched. For example, the instantaneous body voltage obtained by

fixing the drain voltage and pulsing the gate voltage will be different than fixing the gate voltage

-- -- -- ---n
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Figure 2-6. (a) Example of instantaneous transient (dashed lines) and DC (solid lines) gate
subthreshold I-V characteristics for a partially-depleted SOI MOSFET. (b) Schematic showing a
the transient drain current changing from the instantaneous value to the DC value for the bias point
VD=1.5 V and V=0.5 V in (a).
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(c)

Figure 2-7. (a) Equivalent representation of the SOI MOSFET floating body. (b) AC network to
determine the instantaneous floating-body voltage. (c) DC network to determine the steady-state
floating-body voltage.
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and pulsing the drain voltage. The DC body voltage will be the same for the two cases, but the

instantaneous I-V characteristics and the transient behavior to reach DC will be different between

the two cases. 3) There will be hysteresis in device operation.

For example, imagine a NMOSFET in the OFF-state for a long time having established an

equilibrium. It has a certain body hole content related to VBOFF. While VBF, is a single value

related to being in OFF-state equilibrium, VB in the OFF-state can change with switching. Thus,

when discussing switching, VBOFF will be renamed the preswitch body voltage (VB,pre) to indicate

that it is not a singular value, with V pr=VoF for the first switch from equilibrium. Now, switch

the MOSFET ON and, as described above, the body hole content begins to change during TURN-

ON and in the ON-state. When the MOSFET returns to the OFF-state, the body hole content has

changed, thus the preswitch body voltage has changed as well. The MOSFET will switch ON

differently the next time due to a different preswitch body voltage and hole content. If it is left OFF

for a long period of time, the body hole content and preswitch body voltage will return to V, orFF If

it is continually switched ON and OFF, the body hole content and preswitch body voltage will

continually change until a "switching-steady-state" is established.

The following address these three points. First, section 2.2 will show how the body-terminal

connections change with device design. Second, section 2.3 will treat transient I-V's in the context

of CMOS digital operation, in which only the instantaneous I-V's are important. This section will

then show how the body-terminal connections determine instantaneous I-V's and how they vary

with device design. And third, hysteretic switching behavior will be discussed in chapter 3.

2.2 Body-Terminal Connections

SOI MOSFET design variables include the gate length (LG), gate oxide thickness (to), silicon

film thickness (ti), buried oxide thickness (tbox), power supply voltage (VDD), and body and source/

drain doping profiles (NA and ND). Carrier lifetimes can also be a variable in SOI MOSFET's as

they have been engineered with beneficial results. Temperature may be an addition design variable
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because devices may operate at various temperatures across a chip. The following sections describe

each type of body-terminal connection in Figure 2-7, and shows how they vary versus device design

variables.

2.2.1 Terminal-Body Capacitances

As shown in Figure 2-7 (b), the instantaneous floating-body voltage is capacitively coupled

to the gate, source, drain, and substrate terminal voltages. Out of the capacitance network, the gate-

body, source-body, and drain-body capacitances are the most important and can be easily described.

Terminal-terminal capacitances are parasitic capacitances which indirectly affect the body through

the gate-body, source-body, drain-body, and substrate-body capacitances. Note that all the

capacitances in Figure 2-7 (b) are non-recriprocal, e.g. gate-body does not equal body-gate

capacitance [29]. The following describes the physics of each capacitance and how design variables

and applied bias affect the relative size of the capacitance, per unit width.

The gate-body capacitance is made up of the gate oxide capacitance (Cx) and the capacitance

of the depletion region underneath the gate oxide (Cdepl). The oxide capacitance increases with

decreasing gate oxide thickness. The depletion capacitance increases with increasing body doping,

due to a decrease in depletion layer thickness. Both capacitances increase with increased gate

length. In the subthreshold region, the gate-body capacitance is the series combination of these two

capacitances. At or above the threshold voltage, formation of the inversion layer tends to screen the

body node from the gate node, thereby reducing the total value of the series combination.

The body-source/drain capacitances are made up of a capacitance associated with the junction

depletion region, and a capacitance associated with diffusion of minority carriers through the junction

(Cdf). The depletion capacitance increases with increased body and/or source/drain doping, due to

a decrease in depletion layer thickness. The depletion capacitance also increases with increased

silicon film thickness. The diffusion capacitance can be though of as the small signal response of

majority carriers to injection of minority carriers. Because it is directly related to the injection of
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Figure 2-8. Schematic of diode I-V characteristics representing an ideal diode (n=1), a nonideal
diode with generation-recombination current (n=2), and a nonideal diode with tunneling current
(n=3). Each vertical division represents a factor of ten.

minority carriers, it increases with decreasing body doping (assuming the source doping fixed and

much greater than the body doping) and increases exponentially by the factor qV/kT, where q is

coulombic charge, VB is the body voltage, k is Boltzmann's constant, and T is the temperature. At

small forward bias the diffusion capacitance is typically smaller than the depletion capacitance.

However, at high forward bias the diffusion capacitance can be much greater than the depletion

capacitance [30].

The depletion capacitances described above have a weak temperature dependence, increasing

slightly with increasing temperature. The diffusion capacitance, however, has strong temperature

dependence and increases with temperature because injected minority carriers (diode current)

increases with temperature. None of the capacitances vary with carrier lifetime.

2.2.2 Body-Source/Drain Diodes

Body-source/drain diode I-V characteristics are greatly affected by channel and source/

drain doping, operating temperature, and carrier lifetime. Both the forward and reverse diode
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Figure 2-9. Diode I-Vcharacteristics of the n= 1 diode in figure 2-8, show at T=25, 85, and 120 'C.
Each vertical division represents a factor of ten.

characteristics are important in SOI MOSFET operation.

Forward and reverse diode currents are made up of three components, the ideal diode current,

Shockley-Read-Hall (SRH) current which accounts for thermal generation-recombination (R-G) in

the junction depletion region, and a tunneling current component. This is shown schematically in

Figure 2-8, which shows I- V's of diode with only ideal diode current (n= 1), a diode with ideal diode

current and SRH current (n=2), and a diode with ideal diode current, SRH current, and tunneling

current (n=3). n is the "ideality factor" of the diode, and is related to the diode current components

as follows.

Ideal diode current is characterized by forward current increasing exponentially with applied

forward voltage in the form IDO,,=Is[exp(qV/nkT)-1], where Is is the saturation current which

depends on doping, and n= 1 for ideal. For negative applied bias, the ideal diode reverse current is

approximately the saturation current, -Is. Assuming the source/drain doping is fixed and greater

than the body doping, Is decreases for increasing body doping. Is increases with increasing

temperature as shown in Figure 2-9, but is not dependent of carrier lifetime.

Forward bias SRH current is made up of recombination current due to an excess of carriers
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Figure 2-10. Diode I-V characteristics of the n=2 diode in figure 2-8. Shown in (a) at fixed
temperature with t= 10 -1°, 10-9 , 10-8 , 10-7 , and 10-6 seconds, and in (b) with fixed carrier lifetime at
T=25, 85, and 120 'C. Each vertical division represents a factor of ten.
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Figure 2-11. Diode I-V characteristics of the n=3 diode in figure 2-8. Shown in (a) at fixed
temperature with "=10-10, 10-9, 10-8, 10-7, and 10-6 seconds, and in (b) with fixed carrier lifetime at
T=25, 85, and 120 oC. Each vertical division represents a factor of ten.
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Figure 2-12. Measured body-source/drain diode I-V characteristics. Diode current is measured in
body-contacted SOI MOSFET's with VG=-1 V. Three devices with three different body doping
levels are shown. Higher doping levels exhibit more nonideal behavior resulting in higher ideality
factor n. The NA=lxl0 8 and 6x10 7 cm "3 have ts=66 nm, and the NA= 5 x10 16 cm-3 devices has ti=115
nm.

in the forward biased depletion region. It is of the form IDIODE,recomb =R[exp(qVa/nkT)], where IR is

the recombination saturation current. Because forward SRH current depends on carrier

recombination, IR and n depend the location of R-G centers in the bandgap, electron and hole capture

cross sections, and doping. Due to these variables, 1<n<2. n=2 assuming the R-G centers are at

midgap and equal hole and electron capture cross sections. Reverse bias SRH current is made up of

generation current due to deficit of carriers in the reverse biased depletion region. Reverse bias

SRH current is -IR at zero bias, and increases with increasing reverse bias due to increased depletion

width.

Since SRH currents result from thermal generation-recombination processes, they are greatly

affected by carrier distributions, carrier lifetime, and temperature. Assuming the source/drain doping

is fixed and greater than the body doping, I, increases with increasing body doping because this

increases the area in the depletion region where the hole concentration is nearly equal to the electron
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concentration (p--n ), which maximizes recombination [30]. Carrier lifetime and temperature also

determines the value of I, . The n=2 diode from Figure 2-8 is shown at five different carrier lifetimes

in Figure 2-10 (a), and at three temperatures in Figure 2-10 (b). For a fixed carrier lifetime, however,

forward ideal diode current increases faster than forward SRH current, as shown in Figure 2-10 (b).

Tunneling current occurs at high doping levels. At high doping levels, the depletion region

width is sufficiently thin such that under zero bias and forward bias conditions, electrons can tunnel

from the conduction band to traps in the depletion region, and recombine with holes. This forward

bias trap-assisted recombination current is characterized by forward diode current ideality factor

n>2 [31]. Reverse tunneling current (Zener breakdown due to band-band tunneling) also occurs at

high doping levels where the depletion region is sufficiently narrow for an electron in the valence

band to tunnel to the conduction band on the other side, thus creating electron-hole pairs which

make up reverse bias generation current. Tunneling current increases with reverse bias despite an

increase in depletion width because the increased electric field decreases the tunneling barrier [32].

Assuming the source/drain doping is fixed at 1020 cmn3 and the junction is fairly abrupt,

body doping levels of 1018 cm-3 begin to show tunneling characteristics. Above 2x10 18 cm 3 , the

tunneling current component begins to increase rapidly [33], to the point where at high enough

body doping levels the forward and reverse diode I-V characteristics may be nearly symmetric at

low current values. This is shown in Figure 2-11 (a), which shows the diode with n=3 in Figure 2-

8 at five values of carrier lifetime. At the longest carrier lifetime, SRH current is suppressed and

the forward and reverse diode characteristics are nearly symmetric at low current values. At shorter

carrier lifetimes, the SRH current becomes much greater than the tunneling current component.

Figure 2-11 (b) shows the temperature dependence of the tunneling current. For carrier lifetimes

long enough for tunneling current to be greater than SRH current, the tunneling current component

retains its characteristic shape as the temperature is increased.

The above diode I-V's in Figures 2-8 to 2-11 were created in the 2-D numerical simulator

MEDICI with nearly abrupt junctions representative of modem MOSFET body-source/drain

junctions. The trends described above are observed in measured body-source/drain diodes as shown
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Figure 2-13. Measured gate transfer I-Vcharacteristics and substrate current due to impact ionization
generation. IDs-VGs and IsuB-VGS curves correspond from top to bottom to VD= 2 .01, 1.81, 1.61, 1.41,
1.21, 1.01, 0.81, and 0.01 V. The measured device is a bulk MOSFET with Lf=O0.1 gm. The
saturation threshold voltage defined at a constant current of 10-7/LeffA/m is shown.

in Figure 2-12. These diode I- V characteristics were measured from the body to the source/drain in

body-contacted SOI NMOSFET's with substrate ground and the gate biased at -1 V.

And one final note: due to ion implantation, body doping levels can be highly nonuniform.

Carrier lifetimes can vary along the junction by varying the tilt angle of a lifetime-killing ion

implant [34]. The body-source/drain diode behavior reflects the physical makeup of the junction,

i.e. the tunneling current component will flow near the peak of the body doping, the SRH current

component will flow mostly in the area of the junction with shortest carrier lifetime, and the ideal

component will be highest in the lowest doped body regions of the junction. This is an important

point to remember when looking at how body-source/drain diode currents scale with silicon film

thickness.
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2.2.3 Impact Ionization Current Source

In the high electric field of the reverse biased body-drain junction, carriers can gain enough

energy to cause ionization of atoms upon impact with that atom, creating an electron-hole pair.

This process is characterized by an impact ionization rate. This rate multiplied by the drain current

determines how many electron-hole pairs are generated. Thus the TURN-ON-state impact ionization

current is much higher than the OFF-state impact ionization current. The impact ionization rate

changes with drain-body voltage, gate-body voltage, and body-source/drain doping profile since

these variables determine the peak electric field in the drain-body depletion region.

Figure 2-13 shows impact ionization current measured in a bulk MOSFET versus gate voltage

for various drain voltages. Again, the total impact ionization current is the product of the impact

ionization rate and the drain current. The peak impact ionization rate occurs at zero gate voltage,

but there is little subthreshold drain current. As the gate voltage increases, the peak electric field at

the surface decreases as the vertical field from the gate to body affects the tangential field from the

drain to body. However, drain current is increasing as the gate voltage is increasing. Thus, the peak

impact ionization current occurs at the onset of strong inversion slightly above the threshold voltage

as shown in Figure 2-13 [35].

Also keep in mind that impact ionization current can vary with body voltage as well. Increased

body voltage decreases the reverse bias of the drain-body junction thereby decreasing the peak

electric field and impact ionization rate. However, drain current increases with increased body

voltage thereby increasing impact ionization current.

In general, the impact ionization rate increases with increased body doping since this makes

the electric field higher. The impact ionization rate is a weak function of temperature, but the

impact ionization current decreases with increasing temperature because the drain current decreases

due to mobility degradation. The magnitude of impact ionization current is not affected by changes

in carrier lifetime.
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2.2.4 Gate-Body Current Source

The body-gate current source represents SRH generation of electron-hole pairs in the

depletion region under the gate. It also represents direct tunneling of carriers through the gate

oxide, if the gate oxide is sufficiently thin (less than 2 nm) [32].

Without direct tunneling of carriers through the gate oxide, the gate-body current source is

much smaller than the reverse bias diode SRH generation current. This is because the depletion

region under the gate does not have a region where p=n, which maximizes R-G statistics. With

direct tunneling of carriers through the gate oxide, the gate-body current source can be significant

because the gate-polysilicon-oxide-body can display diode-like behavior.

2.3 Floating-Body Effects in CMOS Digital Operation

The above description of the floating body suggests an endless list of possible transient

floating-body effects. However, the focus of this thesis is how the floating body affects the design

of SOI CMOS technologies for logic applications. The following begins this assessment by treating

SOI MOSFET I-V characteristics in the context of CMOS digital operation, where only the

instantaneous I-V's are important.

2.3.1 CMOS Digital Operation

CMOS digital circuits are made up of combinations of pull-up networks, pull-down networks,

and pass-gates. For given logic inputs, these networks either pull-up or pull-down the voltage of

the output node. To illustrate MOSFET digital operation, the following analysis will be based on

the simplest pull-down network: a NMOSFET in a CMOS inverter. Figure 2-14 shows a simplified

schematic of the CMOS inverter switching from OUT-HI to OUT-LO. This occurs because the

input gate voltage of the NMOSFET rises, the drain current rises, discharging the load capacitor

(CL) at the output node causing the drain voltage to fall. The timescale of this gate-rise and drain-



CHAPTER 2. THE FLOATING BODY 59

VDD

VDD ------- IN(VG)

IN (VG) .. OUT(VD)
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Figure 2-14. (a) Schematic showing the NMOSFET in a CMOS inverter. (b) Schematic showing
the switching waveforms on the NMOSFET during a CMOS inverter switch from OUT-HI to OUT-
LO which turns the NMOSFET from OFF to ON.

fall is very short. For example, one half-period of a 1 GHz clock is 500 ps. In high performance

designs, an order of ten logic transitions can be expected to occur in this half-period. This results in

logic rise and fall transitions on the order of tens to hundreds of picoseconds, depending on output

load. Thus, only the instantaneous I-V's are important for SOI MOSFET's when considering a

single switching event (multiple switching events will be discussed in chapter 3).

To illustrate the relationship of CMOS switching to device I- V characteristics, the switching

event in Figure 2-14 is schematically superimposed on the MOSFET I-V characteristics in Figure

2-15. Figure 2-15 (a) shows the gate transfer I-V characteristics, with the I-VG locus illustrating

the rise in gate voltage shown in bold. Figure 2-15 (b) shows the output characteristics, with the ID-

V, locus illustrating the fall of the drain voltage shown in bold. Highlighted in Figure 2-15 (a) are

the important MOSFET parameters in digital logic. They are the OFF-state leakage current (IOFF),

the inverse subthreshold slope (S), which together determine the threshold voltage (VT), which in

turn determines the maximum drain current during TURN-ON (ION) and thus switching speed. Io,

the output resistance (Ro0 ), and the channel resistance (RcH) are the important MOSFET parameters

which determine the speed at which the drain voltage can fall. In digital logic, the speed at which
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Figure 2-15. (a) Schematic NMOSFET gate transfer I- Vcharacteristic and the corresponding ID- VG
locus corresponding to figure 2-14. (b) Schematic NMOSFET output I-V characteristic and the
corresponding ID-V locus corresponding to figure 2-14.

the drain voltage can fall determines the rate of change of the output node voltage, which is connected

to an input of the next logic stage.

A well designed MOSFET should possess minimum IoFF, maximum IoN, minimum VT and S,

minimum RCH and maximum Row. Minimizing IOFF reduces standby power consumption while

minimizing VT and S increases IoNand the speed at which the MOSFET turns ON. Maximizing ION

and Ro and minimizing RCH maximizes the speed of the fall of the drain voltage, and thus maximizes

the speed of switching the next stage.

Due to the short switching timescale, it is the IOFF, S, Vr I,, o Ro and RCH from the

instantaneous I-V's which are of interest in SOI MOSFET's. Any change in body hole content will

be assumed negligible (non-negligible changes in body hole content over many switches will be

discussed in chapter 3). Figure 2-16 contrasts how the floating body SOI MOSFET reacts to

switching compared to a bulk or body-contacted MOSFET also shows the floating-body. Figure 2-

16 (a) shows the switching waveforms applied at the gate and drain. Also shown is the floating-

body voltage, which starts off at VBOFF. Due to VBOF,,>O V, IOFF is higher when the body is floating

_1 __1 11_1~ _1
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Figure 2-16. (a) Schematic showing the switching waveforms on a SOI NMOSFET during a CMOS
inverter switch from OUT-HI to OUT-LO and corresponding floating-body voltage. (b) Sample
gate transfer characteristic showing the difference between floating-body and body-contacted
operation. (c) Sample drain output characteristic showing the difference between floating-body
and body-contacted operation.
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as shown in Figure 2-16 (b). The body voltage is capacitively pulled up by the gate as the gate

voltage increases. This tends to decrease S, decrease V, and increase IoN. When the drain falls,

however, the body voltage is capacitively pulled down which decreases ROUT compared to the body-

contacted case. As will be shown in the following sections, the diode and impact ionization

characteristics determine VB, OFF and IOFF while the magnitude of capacitive coupling determines S,

V , ION, and ROUT. The following sections discuss how device design changes these parameters.

2.3.2 OFF-Current

As shown in Figure 2-15 (a), IOFF is the subthreshold current in the OFF-state at VG=O V and

VD= VDD. MOSFET subthreshold drain current is strong function of the applied body-source voltage,

VBs . Thus, in the OFF-state, IOFF is a strong function of VBS=VB OF,,. In general, IFF increases with

increased VB,OFF, and decreases with increased NA.

In the SOI MOSFET, VB,OFF is set by the back-to-back body-source/drain diodes and impact

ionization and gate-body currents. Figure 2-17 shows how VB,, is determined graphically. If

impact ionization and gate-body currents are not significant, VB, FFis simply the body voltage

which makes the current through the body-source diode biased at VAOFF equal to the current through

the body-drain diode reverse biased at (VDD-VBOFF), as shown in Figure 2-17 (a). If impact ionization

and/or gate currents are significant, they can be added to the reverse bias diode characteristics and

VBOFF can be determined similarly as shown in Figure 2-17 (b). Note that significant impact ionization

increases VBOFF. From Figure 2-17, it is also clear that decreased VDD reduces VBOF, due to reduction

of voltage to drop across the back-to-back diodes and reduction of impact ionization current.

From Figure 2-17, it is also clear that the current levels of the diodes and the symmetry of

the forward to reverse diodes are also important in determining VBOF,. Higher currents flowing

through the body-source/drain diodes tend to make impact ionization current less significant, thereby

reducing VB,OFF. As shown in Figures 2-9 through 2-11, higher diode current levels are achieved at

higher temperature (which also decreases impact ionization current) and shorter carrier lifetimes.
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Figure 2-17. Graphical representation of the OFF-state floating body voltage without significant
impact ionization (a), and with significant impact ionization (b). Note the increase in V,B,, with
significant impact ionization.
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Figure 2-18. Schematic showing the dependence of VB, FF on the symmetry between forward and
reverse bias diode characteristics. n refers to forward bias diode ideality factor.

Increasing body doping also raises diode current with tunneling current, but increased

symmetry between forward and reverse diode I-Vcharacteristics. Figure 2-18 shows that increasing

diode symmetry increases V,OFF. This makes SOI MOSFET's require more body doping to control

IOFF, because while IOFF tends to decrease with increasing body doping, diode symmetry increases

thereby increasing VBOFF and IFF,. But as shown in Figure 2-11 (b), diode symmetry can be made

more independent of body doping by decreasing the carrier lifetime.

2.3.3 Gate Transfer and Output Characteristics

The subthreshold slope, S, is defined as the slope of subthreshold current versus gate voltage

in a semilog gate transfer I-V plot. S is in the units of inverse slope, millivolts per decade of

subthreshold current (mV/dec). For the same IFFr , steepening the subthreshold slope (minimizing

S) decreases Vthereby increasing IN.

Figure 2-19 compares the capacitance networks for bulk and SOI MOSFET's which are
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Figure 2-19. Relevant capacitive divider for determination of subthreshold slope for a bulk or
body-contacted SOI MOSFET (a), and for a floating-body SOI MOSFET (b).

relevant for determination of subthreshold current. Recall that the subthreshold current is due to

diffusion of electrons across the channel from source to drain. The number of available electrons

depends on the surface potential, V, which can be modulated by the gate voltage resulting in the

expression for subthreshold current shown in equation 2-3. Upon first inspection, SOI MOSFET's

should always have steeper slope than a bulk MOSFET starting at the same VB=VBFF, because the

floating-body voltage is capacitively coupled to the gate voltage. As the gate voltage increases, the

body voltage increases thereby increasing the subthreshold current. This results in a steeper

subthreshold slope.

However, SOI MOSFET's do not necessarily have steeper subthreshold slope compared to

bulk MOSFET's with VB set to zero by the body contact. This is because VB>O degrades subthreshold

slope (increases S) by increasing Cdep, thereby decreasing y. SOI MOSFET gate-body capacitive

coupling is only guaranteed to enhance the subthreshold slope compared to a bulk MOSFET with

I~YY_ i -. - ____
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the same VB=VB, FF applied to the body contact. At VB, OFF, the subthreshold slope depends on the

values of the capacitances in the network shown in Figure 2-19 (b). In particular, the relative

magnitude of the gate-body capacitance versus the body-source capacitance, along with VB, OFF

mainly determine S. This is because the floating-body voltage above VBOF, is mainly determined

by the capacitive divider between the gate-body capacitance and the body-source capacitance.

Given an Ior and S, the threshold voltage, V, can be determined. VT delineates the transition

from moderate to strong inversion current. It is convenient to define VT for all devices with a

constant current level near the transition from subthreshold current to inversion current. The constant

current used in this thesis will be of (10-7/L) A per micron of width.

As shown in Figure 2-15 (b), the output characteristics should reflect I-V's during the fall of

the drain voltage immediately after the rise in gate voltage. Recall from Figure 2-16 that the rising

gate voltage has the effect of pulling up the body voltage. This tends to steepen the subthreshold

slope, lowering the threshold voltage, and increasing IoN compared to a bulk MOSFET. This is a

desirable effect since this increases switching speed. As the drain voltage falls, however, the body

voltage is pulled down. This has effectively increases the threshold voltage as the drain voltage

falls. This results in a steeper output characteristic, decreasing RoU and increasing RCH compared

to a bulk MOSFET. This is undesirable because it reduces the rate at which the drain voltage can

fall thereby reducing the speed of the next stage.

The effect of the floating body on SOI MOSFET switching can be summarized in Figures

2-20 and 2-21. For a given gate length, gate oxide thickness, and supply voltage, only VBOFF and

the gate-body versus body-source/drain capacitance ratio can be varied. Assuming the same gate-

body versus body-source/drain capacitance ratio, Figure 2-20 shows that decreased VB,OF decreases

IOFF and decreases S. Assuming the same VB, OF , Figure 2-21 shows that changing the body-source/

drain capacitance can greatly affect the I-V characteristics. Figure 2-21 (a) compares the body

voltage through on switch cycle as defined in Figures 2-14 and 2-16. For lower body-source/drain

capacitance, the body voltage can be pulled higher when the gate rises and is pulled down less

L ~ i_____ ~I



CHAPTER 2. THE FLOATING BODY

-0.5 0 0.5 1 1.5 2
Gate Voltage [V]

Figure 2-20. Schematic showing gate transfer I-Vcharacteristic changing versus VBFF independent
of changes in body-source/drain capacitance.
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Figure 2-21. Schematic showing what happens to I-V's when body-source/drain capacitance changes
independent of VBOFF. Decreasing body-source/drain capacitance increases the gate-body current
boost and decreases drain-body current drag. (a) shows the affect on the body voltage through a
switch as defined in figure 2-16, (b) shows the effect on gate transfer I-V's, and (c) shows the effect
on the output characteristics.
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when the drain falls. As shown in Figure 2-21 (b) and (c), this translates into steeper subthreshold

slope (decreases S), lower Vr higher Io,, higher Ro , and lower RCH.

Keeping VBOFF low and reducing the body-source/drain capacitance tends to produce better

MOSFET parameters. Thinning the silicon film and reducing the body and source/drain doping

concentrations reduce the capacitances between the body-source/drain. In addition, reduction of

body-source/drain doping concentrations tends to reduce VBO,, further enhancing the subthreshold

slope.

Unfortunately, MOSFET scaling trends run counter to many of the desirable design aspects

listed above. As the gate length shrinks, the body-source/drain doping concentrations must increase

to maintain electrostatic integrity. This tends to decrease the magnitude of gate-body capacitive

coupling relative to body-source/drain capacitive coupling. The silicon film thickness is still a

variable, but as the power supply decreases with MOSFET scaling, hysteretic floating-body effects

become more significant and limit the range of silicon film thicknesses which can be used. This

will be discussed in more detail in the next chapter.

2.4 Summary

This chapter showed the effect of the floating body on SOI MOSFET I-V's with respect to

CMOS switching behavior. An equivalent model of the floating body was presented. This model

was used to qualitatively analyze the effect of the floating body on NMOSFET switching behavior

in a CMOS inverter (the PMOSFET behavior is complementary) in terms of MOSFET parameters

IOFF,,, S, V , Io, Rou, and RCH.

These MOSFET parameters were shown to vary with device design due to the floating

body. In summary, let us review how these MOSFET parameters vary as devices are designed in

accordance with scaling trends. The shorter gate length requires higher body doping to maintain

electrostatic integrity. Higher body doping increases diode currents and diode symmetry due to

tunneling in body-source/drain diodes. The increase in diode symmetry tends to increase VBOFF
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(however, reduction of VD will reduce VB, OFF slightly). Increased VBOFF and reduced gate-body

capacitance relative to body-source capacitance degrades the subthreshold swing S. Reduced body-

gate capacitance relative to drain-body capacitance degrades Roo. Reduction of silicon film thickness

can minimize the degradation of S and Rou, but hysteretic floating-body effects will limit the range

of silicon film thicknesses which can be used.
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Chapter 3

Hysteretic Floating-Body Effects

As discussed in the previous chapter, the equilibrium floating-body majority carrier content

of a PD-SOI MOSFET depends on the applied gate, source, drain, and substrate terminal voltages.

Rapid switching of terminal voltages induce nearly-negligible changes in body majority carrier

content since body majority carriers are trapped by body-source/drain junction potential barriers.

However, the change in body majority carrier content can become significant over many switching

cycles, eventually reaching a "switching-steady-state" value if kept switching (different value for

different switching patterns). However, it can just as well returning to the initial value if the terminal

voltages are returned to the initial settings and enough time is allowed for to reach equilibrium. Or,

if left at another set of terminal voltages for a long period of time, the body majority carrier content

will reach another equilibrium value associated with that set of terminal voltages.

This "hysteretic" variation of the body majority carrier content is problematic because many

of the MOSFET parameters discussed in the previous chapter change with changing body majority

carrier content. In particular, hysteretic threshold voltage variation is of serious concern in SOI

CMOS circuit design because it can lead to propagation delay variation, particularly as the power

supply is reduced. This chapter focuses on hysteretic behavior of PD-SOI MOSFET's. Again, the



CHAPTER 3. HYSTERETIC FLOATING-BODY EFFECTS 71

main example used will be the NMOS in a CMOS inverter. It will be shown that much of the

threshold voltage variation can be minimized by proper design of the silicon film thickness and that

device scaling trends tend to minimize hysteretic behavior.

3.1 Logic State Threshold Voltage Variation

The relationship between logic states, body hole content (NH), preswitch body voltage (VB pre),

and threshold voltage (VT) is illustrated in Figure 3-1. Figure 3-1 (a) shows a cascade of two CMOS

inverters in equilibrium with the input at 0 V. The first-stage inverter is in the OUT-HI logic state

with its NMOS is in the OFF-state ready to switch ON. We replace the OFF-state body voltage,

VB, OFF, terminology used in chapter 2, with a more general term, the preswitch body voltage, Vs,pre

which is the floating-body voltage in the OFF-state just prior to switching (VB,pre= VB, FF for the first

switch from equilibrium). In OFF-state equilibrium, the body hole content is determined by how

many holes are depleted with VD=VDD, VG=Vs=O V, and VB=VBpre, as shown in Figure 3-1 (b). Recall

that Vp e is the body voltage which forward biases the body-source junction enough to remove

holes generated by impact ionization and in the reverse biased body-drain junction.

The second-stage inverter is in the OUT-LO logic state with its NMOS in ON-state

equilibrium. The body hole content of this device is determined how many holes are depleted by

VG=VDD, VD=Vs=VB=O V as shown in Figure 3-1 (c). VB is 0 V because the source and drain are both

at 0 V. The equilibrium body hole content in the second-stage OUT-LO NMOS will most likely be

different than that of the first-stage OUT-HI NMOS. When the input to the cascade of inverters

rises, the first stage NMOS switches ON as the gate voltage rises. The drain voltage falls discharging

the gate capacitance of the second stage, switching OFF the second stage NMOS.

The body hole content of the first- and second-stage NMOSFET's change a negligible amount

during this rapid switch. The second-stage NMOS is now ready to switch ON. However, it has a

different body hole content compared to the first-stage NMOS when it was ready to switch ON.

Thus, the second-stage NMOS will switch ON differently than the first-stage NMOS as follows: if
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Figure 3-1. (a) Two stages in a CMOS invert chain, with NMOSFET's highlighted, in steady-state
then switching from input-LO to input-HI. The first stage begins output-HI and switches to output-
LO. The second stage begins in output-LO and switches to output-HI. (b) Schematic showing the
preswitch voltage, VBprel, and hole content in the first-stage NMOS in the OFF-state (OUT-HI),
before switching-ON. (c) Schematic showing the second-stage NMOS hole content and body
voltage in the ON-state (OUT-LO). When the first stage switches, the second-stage NMOS switches
to the OFF-state (OUT-HI). Due to near-instantaneous switching, the second-stage NMOS maintains
the body hole content it had in the ON-state (OUT-LO). The second-stage preswitch voltage,
VB ,re2 reflects the body hole content from the OUT-LO condition.

the body hole content in the equilibrium OUT-HI first-stage NMOS is greater/less than the body

hole content in the equilibrium OUT-LO second-stage NMOS, then the first-stage NMOS will

switch faster/slower than the second-stage NMOS due to it having a lower/higher threshold voltage.

An equally valid way to look at this is through the preswitch body voltage. The first-stage
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OUT-HI NMOS has a preswitch body voltage, V,prel, set by the diodes and impact ionization. The

second-stage OUT-LO NMOS starts at VB=O V, but when it switches to the OUT-HI logic state, the

body voltage is capacitively coupled to the gate voltage fall and drain voltage rise. The resulting

body voltage is the preswitch body voltage for the second-stage NMOS, VBpre2 . Because the body

hole content between the first- and second-stage is different, VBprelVBpre2. Recall that the threshold

voltage changes with VB,pre. Thus, the second-stage NMOS will switch ON differently than the

first-stage NMOS as follows: if VB,pre is greater/less than VBpre2 , then the first-stage NMOS will

switch faster/slower than the second-stage NMOS due to it having a lower/higher threshold voltage.

Note that if the example under discussion began with input into the cascade of inverters HI

rather than LO, all the comparative terms in the above analysis will need to be reversed. Thus, to

simplify terminology for the rest of the thesis, MOSFET's will be discussed independent of the

circuit with the following terminology: "starting OUT-HI" will refer to a MOSFET which is in

equilibrium in a CMOS inverter in the OUT-HI logic state and "starting OUT-LO" will refer to a

MOSFET which is in equilibrium in a CMOS inverter in the OUT-LO logic state. "OUT-HI" and

"OUT-LO" will be used to denote the current logic state of the CMOS inverter which contains the

MOSFET(s) under discussion. With this terminology we can say that for a given NMOSFET, the

threshold voltage starting OUT-HI is lower/higher than starting OUT-LO if the body hole content

starting OUT-HI is greater/less than starting OUT-LO. Thus, the NMOSFET starting OUT-HI will

switch faster/slower than starting OUT-LO. However, a MOSFET starting OUT-LO must switch

OUT-HI before it can be compared to a MOSFET starting OUT-HI, as is shown in Figure 3-1 (b)-

(d).

3.2 Silicon Film Thickness

Figure 3-2 shows why a MOSFET starting OUT-HI most likely has different body hole

content compared to starting OUT-LO. It is simply because deletion regions starting OUT-HI are

different than the depletion regions starting OUT-LO, usually resulting in a different body hole

____. _II_ _ ____ _ ___~
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Figure 3-2. Schematic showing major NMOS body depletion regions in OUT-LO and OUT-HI
logic states. (a) Body-contacted devices are shown for reference. The floating-body case is shown
in (b). In OUT-HI, there are more holes than when body-contacted due to VB=VB pre>O shrinking the
depletion regions. OUT-LO is the same as the body-contacted case since the body voltage floats to
0V.

content as shown for a NMOSFET in Figure 3-2. Starting OUT-HI, body hole depletion is due to

the workfunction difference between the n -doped gate polysilicon and p-doped body and junction

depletion of the body from the drain biased at VDD. Starting OUT-LO, body hole depletion is due to

the gate voltage at VDD, which depletes the body to a maximum depletion depth Xdmax, at which point
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Figure 3-3. (a) Body hole content and (b) preswitch body voltage versus silicon film thickness for
a NMOSFET starting OUT-HI and starting OUT-LO. Note that the silicon film thickness where
OUT-HI and OUT-LO are equal denotes "charge-balance".

an inversion layer forms at the surface.

If the silicon film thickness, t!, is greater than Xd , , the same number of holes are depleted

starting OUT-LO regardless of film thickness. This is not true starting OUT-HI, because the number

of holes the drain depletes from the body increases with increasing film thickness. Thus, any

imbalance in hole content between starting OUT-HI and starting OUT-LO will change with silicon

film thickness.

This is shown in more detail in Figure 3-3 (a) which compares the body hole content starting

OUT-HI and starting OUT-LO for NMOSFET with LGAT=0.1 8 gm, L =0. 12 gm, tox=4.5 nm, body

doping NA=4x1017 cm "3 , tbox=200 nm, and VDD=1.5 V. Note that Xdma is 50 nm in this example. At

thinner films, the body hole content is greater starting OUT-HI than starting OUT-LO. The body

hole content difference changes with increasing silicon film thickness, converging to a point at

which the body hole content is equal starting OUT-HI and starting OUT-LO. This point is called

the "charge-balance" silicon film thickness. At silicon film thicknesses above the charge-balance

thickness, ti C, the body hole content starting OUT-HI becomes less than starting OUT-LO. Figure

3-3 (b) shows that the preswitch body voltage exhibits the same behavior, as should be expected



CHAPTER 3. HYSTERETIC FLOATING-BODY EFFECTS

r -4- o.o
SE0.30-.....

-5- OUT-LO .M -
-6 0.28
-6- OUT-HI 0OUT-HI

-7- - 0.26-

-- .
0 .9=

,-I

-10 I I I I I 0.22
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 40 60 80 100 120 140

Gate Voltage [V] Silicon Film Thickness [nm]

(a) (b)

Figure 3-4. (a) Subthreshold gate transfer characteristics for a NMOSFET starting OUT-HI and
starting OUT-LO. In this example ts,= 140 nm. (b) Threshold voltage versus silicon film thickness
for a NMOSFET starting OUT-HI and starting OUT-LO. Note that the silicon film thickness where
OUT-HI and OUT-LO are equal denotes "charge-balance".

since the body hole content is directly related to the preswitch body voltage by the AC capacitive

network in Figure 2-7 (b).

When there is a difference in the body hole content starting OUT-HI versus starting OUT-

LO, there will be a difference in threshold voltage. This is shown in Figure 3-4. 3-4 (a) shows an

example of the gate transfer I-V characteristics for the NMOSFET structure under discussion with

ti= 140 nm. Recall from Figure 3-3 that the body hole content and preswitch body voltage starting

OUT-LO is greater than starting OUT-HI at ti= 140 nm. This translates to the threshold voltage

starting OUT-LO being less than starting OUT-HI, as shown in Figure 3-4 (a). The threshold

voltage versus film thickness for this structure starting OUT-HI and starting OUT-LO is shown in

Figure 3-4 (b). Indeed, the threshold voltage starting OUT-HI is equal to starting OUT-LO at the

charge-balance silicon film thickness. Note that the bigger the difference in body hole content

between starting OUT-HI and starting OUT-LO, the larger difference in threshold voltage. Thus,

design at or near the charge-balance silicon film thickness minimizes threshold voltage variation

with logic-state. (Also note that between ti=50 nm to 40 nm, the threshold voltage begins to
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(a) NH(OUT-HI) > NH(OUT-LO)
VT(OUT-HI)< VT(OUT-LO)

CB N(OUT-HI) = N(OUT-LO)------------ - I) N ( U-LO )

VT(OUT-HI) = VT(OUT-LO)

(c) NH(OUT-HI) < NH(OUT-LO)
(c) VT(OUT-HI) > VT(OUT-LO)

Figure 3-5. Schematic showing NMOS body hole content trend versus silicon film thickness. For
a given gate length and power supply voltage, the silicon film thickness determines whether (a)
OUT-HI has more holes than OUT-LO, (b) OUT-HI and OUT-LO are charge-balanced, or (c) OUT-
HI has fewer holes than OUT-LO.

converge because MOSFET is in transition between partially-depleted and fully-depleted).

Figure 3-5 summarizes the body hole content and threshold voltage trend versus silicon

film thickness. For silicon film thickness less than the charge-balance thickness, the body hole

content starting OUT-HI is greater than starting OUT-LO, the threshold voltage starting OUT-HI is

less than starting OUT-LO. For silicon film thickness greater than the charge-balance thickness,

the body hole content starting OUT-HI is less than starting OUT-LO, the threshold voltage starting

OUT-HI is greater than starting OUT-LO. Recall that lower threshold voltage will result in a

"faster" switching device, whereas a higher threshold voltage will result in a "slower" switching

device.

t~- ---



CHAPTER 3. HYSTERETIC FLOATING-BODY EFFECTS

0

VDD VDD

s~~~~~z~ ~ ~ b ,~------ ------------

Buried Oxide

(a)

VDD

0 VDD

Buried Oxide

(b)

Figure 3-6. Schematic showing NMOS and PMOS equilibrium body majority carrier content in a
CMOS inverter with (a) OUT-HI and (b) OUT-LO. NMOS and PMOS are complementary.

3.3 NMOS versus PMOS

As usual, NMOS and PMOS behave in a complementary manner in a CMOS inverter. As

shown in Figure 3-6, the NMOS body depletion regions starting OUT-HI are similar to the PMOS

body depletion regions starting OUT-LO because these devices are in the OFF-state. The NMOS

body depletion regions starting OUT-LO are similar to the PMOS body depletion regions starting

OUT-HI, because these devices are in the ON-state.
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NMOS PMOS
OUT-HI OUT-LO OUT-HI OUT-LO

(a) faster slower slower faster

(b) same same same same

(c) slower faster faster slower

Figure 3-7. Relative device switching speed starting from equilibrium with silicon film thickness
(a) less than charge-balanced, (b) charge-balanced, and (c) thicker than charge-balanced for NMOS
and PMOS. Note that NMOS charge-balanced silicon film thickness may be different than PMOS
charge-balanced silicon film thickness.

For exactly complementary doping profiles between NMOS and PMOS, the body majority

carrier content will be the same for the ON-state devices (NMOS starting OUT-LO and PMOS

starting OUT-HI). However, the body majority carrier content may be different in the OFF-state

devices (less in PMOS starting OUT-LO compared to NMOS starting OUT-HI) due to much reduced

OFF-state impact ionization generation in PMOSFET's. This results in the PMOS having less

body majority carrier content in the OFF-state compared to NMOS (equivalently, VB,preP shown in

Figure 3-6 will be less than VB,preN). Thus, the silicon film thickness for charge balance will tend to

be less than the silicon film thickness for charge balance for NMOS.

As devices are scaled, OFF-state impact ionization will be mitigated by increased reverse

diode tunneling current due to the high peak body dopings required to maintain electrostatic integrity.

Also, the power supply may the reduce the peak electric field resulting in lower impact ionization

generation. Thus, device scaling trends will make simultaneous charge balance of NMOSFET's

and PMOSFET's more probable. Figure 3-7 summarizes relative NMOS speed for starting OUT-

HI and starting OUT-LO versus silicon film thickness relative to the NMOS charge balance film

thickness, and relative PMOS speed for starting OUT-HI and starting OUT-LO versus silicon film
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Figure 3-8. CMOS inverter chain showing which devices propagate the (a) rising edge of the input
pulse and (b) the falling edge of the input pulse.

thickness relative to the PMOS charge balance film thickness.

3.4 Pulse Stretching

Figure 3-7 showed that due to the floating body, devices may be faster or slower depending

on starting logic-state. This will affect propagation delays through circuits because different parts

of an input signal propagate through groups of devices which may be collectively faster or slower.

Figure 3-8 shows that the rising edge of a pulse into a CMOS inverter propagates through the

NMOSFET's which start OUT-HI and PMOSFET's which start OUT-LO. The falling edge

propagates through NMOSFET's which start OUT-LO and PMOSFET's which start OUT-HI. Thus,

starting from equilibrium with the input LO and with MOSFET's where the silicon film thickness
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Figure 3-9. Output pulse stretching versus silicon film thickness relative to charge-balance. This
figure assumes that all devices are in equilibrium prior to the input pulse. (a) The output pulse
stretches if both NMOS and PMOS silicon film thicknesses are less than the charge-balanced
thickness. (b) The output pulsewidth is equal to the input pulsewidth if NMOS and PMOS are both
charge-balanced. (c) The output pulse compresses if both NMOS and PMOS silicon film thicknesses
are greater than charge-balanced. Given enough stages, the pulse will cease to propagate and
disappear. Note that NMOS charge-balanced silicon film thickness may be different than PMOS
charge-balanced silicon film thickness.

is less than charge-balanced, the rising edge of the input pulse propagate through devices which are

collectively faster. The falling edge of the input pulse propagates through devices which are

collectively slower. The result is that the rising edge will arrive at the output faster than expected

and the falling edge will arrive at the output slower than expected - the output pulse will "stretch".

If both NMOS and PMOS are charge-balanced, then the output pulse will have the same

width as the input pulse due to lack of logic-state dependent speed variation. If the silicon film
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Figure 3-10. Pulse stretching measured in a 480-stage CMOS inverter chain at various supply
voltages. The input pulse is 10 ns wide. The output pulse is shown in bold. The input pulse
frequency is 10 Hz. This low frequency is equivalent to starting from equilibrium since there
sufficient time between pulses to restore equilibrium.

thickness of the devices in the CMOS inverter chain are greater than the charge-balance thickness,

then the rising edge will arrive at the output slower than expected and the falling edge will arrive at

the output faster than expected - the output pulse will "compress". If the chain is long enough, the

pulse will disappear because at some point the rising edge slows down enough and the falling edge

speeds up enough for the transition between rising and falling edge to be too rapid for the CMOS

inverters to respond. Figure 3-9 summarizes pulse stretching trends versus silicon film thickness

relative to both NMOS and PMOS being charge-balanced.

The pulse stretching effect was measured at Digital Equipment Corporation in a 480-stage

inverter chain with LGATE=0.5 m, L F-0.35 gm, t,=8.5 nm, ti= 125 nm, N=4x10 7 cm -3 , and tbox= 3 8 0

nm [36]. The aspect ratio of the gate length to silicon film thickness suggests that the silicon film
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Figure 3-11. Measured pulse stretching per stage for a 480-stage PD-SOI CMOS inverter chain
versus supply voltage at input pulse frequency of 10 Hz. Also plotted is the initial difference in
threshold voltage between slower and faster devices, as extracted from SPICE simulation assuming
nominal IV=0.3 V. Note that devices are more charge-balanced at higher supply voltage.

thickness is less than the charge-balance thickness. Therefore, as Figure 3-10 shows, the output

pulse stretches relative to the input pulse, particularly at low supply voltages. As VDD increases,

pulse stretching decreases for two reasons. First, higher VDD is less sensitive to threshold voltage

variation, AV, since IDSATa(VDD-VT). Second, as VDD increases, the devices become more charge-

balanced because the body majority carriers depleted by the drain increases with VDD, whereas the

body majority carriers depleted by the gate is fixed at xd,, times the doping, regardless of VDD. This

decrease in AV, with increasing VDD is shown in Figure 3-11 which extracts AV, between starting

OUT-HI and starting OUT-LO from SPICE simulation of the inverter chain under discussion.

3.5 Frequency Dependence

The inverter chain reaches a switching-steady-state for each switching pattern. The input

pulse frequency shown in Figure 3-10 was 10 Hz. This low frequency is equivalent to starting from

equilibrium since there is sufficient time between pulses to restore equilibrium. Thus, the switching-

steady-state for this switching waveform is equivalent to equilibrium. As the input pulse frequency

increases however, there will not be sufficient time between pulses to restore equilibrium. Therefore,

propagation delays change with input pulse frequency, changing the amount of pulse stretch. This

__ 1___~_
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Figure 3-12. Pulse stretching measured in a 480-stage CMOS inverter chain for VDD= 0 .8 V at
various input pulse frequencies. The input pulse is 10 ns wide. The ouput pulse is shown in bold.
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is shown for the measured inverter chain at VDD= 0 .8 V at various frequencies. As the input pulse

frequency increases, the rising edge of the output pulse slows down and the falling edge speeds up.

This indicates that the faster devices in the inverter chain slow down by losing body majority

carriers and the slower devices in the inverter chain speed up by gaining body majority carriers.

The asymmetry in the slow down of the rising edge to the speed up in the falling edge

indicates that it is easier to lose body majority carriers than it is to gain body majority carriers. This

should be no surprise because the forward bias diode current responsible for loss of body majority

carrier content is typically much greater than the reverse bias diode current responsible for gain in

body majority carrier content. Impact ionization current is also responsible for gain in body majority

carrier content, but the example shown in Figure 3-12 was measured at VDD=0. 8 V where impact

ionization should be minimal for both NMOS and PMOS. At higher supply voltages, it is possible

for both initially slower and faster NMOSFET's to speed up if impact ionization generation is

significant.

As shown schematically in Figure 3-12, at high enough frequency the output pulse will no

longer be wider than the input pulse frequency. This condition is defined as "worst-case switching-

steady-state" and is a result of all the NMOSFET's having the same body hole content, regardless

of starting OUT-HI or OUT-LO, and all PMOSFET's having the same body electron contents,

regardless of starting OUT-HI or OUT-LO. Recall from Figure 3-9 that this results in zero pulse

stretching. Therefore, the maximum range of threshold voltage variation is between the threshold

voltage either starting OUT-HI or OUT-LO, to the threshold voltage at worst-case switching-steady-

state.

Figure 3-13 shows that the frequency at which worst-case switching-steady-state is

established decreases with increasing supply voltage. This is shown in more detail in Figure 3-14,

which shows the rising and falling edges of the output pulse relative to the midpoint in the output

pulse. As the supply voltage is increased, there is more forward diode current per switch period to

decrease the body majority carrier content and more reverse diode current per switch period to

increase body majority carrier content. This is due to capacitive coupling of the body voltage to the

CHAPTER 3. HYSTERETIC FLOATING-BODY EFFECTS
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Figure 3-13. Pulse stretching per stage measured in a 480-stage CMOS inverter chain versus input
pulse frequency at various supply voltages. The input pulse is 10 ns wide. Note that switching-
steady-state (zero pulse stretch when output pulse width equals input pulse width of 10 ns) occurs
at lower frequencies as supply voltage increases.

terminal voltages - the higher the terminal voltages, the higher the changes in body voltage, and

hence the higher levels of body-source/drain diode currents. As noted above, impact ionization

currents, particularly in NMOSFET's, increase exponentially with higher supply voltage, and higher

levels help establish worst-case switching-steady-state at lower input pulse frequencies.

3.6 Hysteresis versus Device Design

Figures 3-15 and 3-16 look in more detail at what occurs in the NMOSFET of a CMOS

inverter during switching. The figures show results of MEDICI 2-D numerical simulation for two

sample devices switching as if in a CMOS inverter. The only difference between the two devices is

the silicon film thickness. However, it will be shown that such slight changes in device design can

have a great affect on the response of the floating body to switching. Figure 3-15 shows a NMOSFET
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inverter chain versus input frequency at various supply voltages. The input pulse is 10 ns wide.
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with ti=70 nm, which is thinner than charge-balanced, and Figure 3-16 shows a NMOSFET with

t.=210 nm, which is thicker than charge-balanced.

Shown in Figure 3-15 (a) and (b) are the gate and drain waveforms as if the CMOS inverter

is switching between OUT-HI and OUT-LO at 50 % duty cycle over a period of 2 ns. The fall and

rise times of the gate and drain voltage waveforms is 50 ps, with a 40 ps delay between the gate and

drain transitions. Also shown is the floating body voltage, the net recombination rate throughout

the device on a logrithmic scale, USRH (UsRH=R-G, where R is the thermal recombination rate

throughout the structure, including recombination at the source/drain contacts, and G is the thermal

generation rate), the impact ionization generation rate on a logrithmic scale, G, and the body hole

content, NH. Starting OUT-HI, the body voltage VBp,, is greater than zero. As the gate voltage rises,

the body voltage is pulled up by capacitive coupling, increasing the forward bias on the body-

source diode, which removes holes from the body. At the same time, drain current flows causing

impact ionization generation of holes. Impact ionization generation is greater than body-source

diode recombination during this transition so there is an increase in the body hole content. Now the

NMOSFET is in OUT-LO for half a period. Note that the body voltage is pulled down, but not

below 0 V. Thus the body-source and body-drain diodes are now forward biased, although with

little recombination of the excess holes generated during the transition from OUT-HI to OUT-LO.

The NMOSFET then switches back to OUT-HI. Vpn,, has increased due to the increase in body

hole content. As switching continues, the body hole content continues to increase during each

switching period until the body voltage is sufficiently high that forward bias of the body-source/

drain diodes over one switching period is sufficient to remove the holes generated by impact

ionization. It may take many thousands of switches to reach this switching-steady-state.

Figure 3-15 (b) shows what happens to the same NMOSFET if it starts OUT-LO. Starting

OUT-LO, the initial body voltage is zero. It switches to OUT-HI, but to a Vpr less than if it starts

OUT-HI. As shown in Figure 3-15 (b), the body hole content increases with switching during the

transition from OUT-HI to OUT-LO due to impact ionization hole generation being greater than

diode hole recombination. This continues until a switching-steady-state is reached, the same
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Figure 3-15. MEDICI-simulated example of PD-SOI NMOSFET (L f=0.12 tm, NA=6x10 '7 cm-3,
ND=Ix10' 9 cm3 , tox=4.5 nm, ti=70 nm, tbox=200 nm) switching in CMOS inverter. (a) Switching
starting from OUT-HI logic state. Shown are gate and drain terminal voltage waveforms, body
voltage, impact ionization generation rate, hole recombination rate, and body hole content versus
time. (b) Switching starting from OUT-LO. (c) Change in body hole content per switch period
versus initial body hole content for the device used in this example. Note that the device is not
charge-balanced so OUT-HI and OUT-LO initial conditions begin with different initial body hole
content. Switching-steady-state is reached when the change in body hole content per switch period
equals zero.

switching steady as starting OUT-HI. Figure 3-15 (c) summarizes the floating-body hole content

behavior of this NMOSFET switching with the waveform pattern under discussion. Figure 3-15

(c) shows the change in body hole content over a switch period versus the initial body hole content

at the beginning of the switch period. It shows that there are more holes in the body starting OUT-
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HI than starting OUT-LO, hence when starting OUT-LO and switching to OUT-HI, VBpre is less

than VBpre starting OUT-HI. The curve shows that starting OUT-HI and starting OUT-LO, the body

hole content increases over every switch period until the body hole content is sufficiently high to

reach switching-steady-state, where there is net zero change in body hole content over one switching

period. This increase in body hole content means that the NMOSFET has decreased threshold

voltage in switching-steady-state. It now switches faster than it did starting OUT-HI, and even

faster than it did starting OUT-LO.

Figure 3-16 shows the floating-body behavior for a NMOSFET which is identical to that in

Figure 3-15, except for a thicker silicon film. The thicker silicon film results in larger body-source/
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Figure 3-16. MEDICI-simulated example of PD-SOI NMOSFET (L =0.12 Lm, NA= 6 x1017 cm- 3,

N=lxl019 cm-3, t o=4.5 nm, tsi=210 nm, tbox=200 nm) switching in CMOS inverter. (a) Switching
starting from OUT-HI logic state. Shown are gate and drain terminal voltage waveforms, body
voltage, impact ionization generation rate, hole recombination rate, and body hole content versus
time. (b) Switching starting from OUT-LO. (c) Change in body hole content per switch period
versus initial body hole content for the device used in this example. Only the silicon film thickness
is different between this example and the example in figure 3-14. Note the different switching-
steady-state behavior.

drain capacitance, which reduces body voltage coupling to the gate voltage, and increases body

voltage coupling to the drain voltage. Starting OUT-HI, as shown in Figure 3-16 (a), the body

voltage is pulled up by the gate much less than the thinner film device shown in Figure 3-15 (a).

Impact ionization generation is not much different than in 3-15 (a), but recombination is much
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reduced. Thus, the body hole content increases during the transition from OUT-HI to OUT-LO.

When the drain voltage falls, the body voltage is pulled down to -0.2 V. Thus, the body-source/

drain diodes are reverse biased in OUT-LO resulting in further generation of holes into the body.

This is negative net recombination and thus does not appear on the plot of log(UsRH). The body hole

content continues to increase during each switching period until the body voltage is sufficiently

high that forward bias of the body-source/drain diodes over one switching period is sufficient to

remove the holes generated by impact ionization and thermal generation, thus establishing switching-

steady-state.

This device behaves quite differently starting OUT-LO as shown in Figure 3-16 (b). The
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Figure 3-17. Schematic showing NMOS body voltage behavior during the first switching period
starting from OUT-HI and OUT-LO for (a) silicon film thickness less than charge-balanced thickness,
(b) charge-balanced, and (c) silicon film thickness greater than charge-balanced thickness. Please
refer to figure 3-16 (a) and (b) for definition of the switching period starting from OUT-HI and
OUT-LO, respectively. Note the charge-balanced body voltage waveforms are the same whether
OUT-HI or OUT-LO, just offset by one half period.

body voltage is initially 0 V starting OUT-LO. When the NMOSFET switches to OUT-HI, the

body voltage is pulled up by the drain voltage to a high value of VBpre. This high body voltage

forward biases the body-source junction and removes holes form the body. This removal increases

during the transition from OUT-HI to OUT-LO as the body voltage is pulled higher due to gate-

body capacitive coupling. Recall that diode current is exponential with applied voltage so because

VB, pre is already so high, the peak body voltage during the OUT-HI to OUT-LO transition is sufficiently

high to remove all the holes generated by impact ionization during this transition. Thus, there is net

loss of holes over one switching period, which continues until the body hole content and body

voltage decreases such that hole generation and hole recombination are equal over a switch period.

Again, it may take many thousands of switches to establish this switching-steady-state.

Figure 3-16 (c) summarizes the floating-body behavior of this device. Note the difference

in behavior compared to Figure 3-15 (c). In this case, there are more holes in the body starting in

OUT-LO than starting OUT-HI, and switching steady state is somewhere in between. This means
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that a device starting OUT-HI will get faster while switching, and a device starting OUT-LO will

slow down while switching. Recall that the only difference between the devices in Figure 3-15 and

3-16 is the silicon film thickness.

Switching behavior can be summarized with schematics of body voltage behavior versus

silicon film thickness shown in Figure 3-17. The body voltage is shown over one switch period

starting OUT-HI and starting OUT-LO for three MOSFET's. The first device has tsi less than

charge-balanced, the second is charge-balanced, and the third has t i. greater than charge-balanced.

The preswitch body voltage is greater starting OUT-HI than starting OUT-LO for the thinner film

device, while it is greater starting OUT-LO than starting OUT-HI for the thicker film device. This

indicates a AVT between starting OUT-HI and starting OUT-LO. Over many switching periods, the

OUT-HI and OUT-LO waveforms either increase or decrease in overall levels, and will both converge

to a switching-steady-state waveform. Notice that when the charge-balanced device has the same

preswitch body voltage starting OUT-HI and OUT-LO. In fact, the OUT-HI and OUT-LO body

voltage waveforms are identical, just offset by a half switch period. This indicates zero AV between

starting OUT-HI and starting OUT-LO. Over many switching periods the body voltage levels will

either increase or decrease until switching-steady-state, but AVT between logic states remains zero.

This is minimizes threshold variation and eliminates pulse stretching, as shown in Figure 3-9.

3.7 Simulation Methodology to Determine Threshold Voltage

Variation

The 2-D numerical simulator MEDICI can be used to determine the threshold voltage starting

OUT-HI, starting OUT-LO, and at switching-steady-state. In each case, transient simulations are

used to produce the instantaneous gate transfer I-V characteristics from which VT can be extracted.

The minimum set of models used are what are required to describe a MOSFET, diodes, and impact

ionization generation. These include low-field, perpendicular-field, and high-field mobility models,

L _ ___ ~L
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Figure 3-18. MEDICI simulation example of finding switching-steady-state body hole content for
a NMOSFET. Each symbol represents the same simulation structure at a different initial body hole
content, run through a switching cycle. Each curve represents simulations where the switch cycle
starts at OUT-HI or OUT-LO. The body hole content which yields zero change in body hole content
after a switching cycle is the switching-steady-state body hole content.

and 2-carrier solution, Shockley-Read-Hall generation-recombination statistics, Auger

recombination, bandgap narrowing, and impact ionization [37].

Simulation for threshold voltage starting OUT-HI is the most straightforward. The first

step is to solve for a DC solution with VG=Vs=O V and VD=VDD. It is not possible to simply ramp the

gate voltage because the displacement current and the drain current cannot be easily separated.

Instead, multiple simulations quickly ramp the gate to a particular voltage. For example, to trace

out IDs-VGs with data points at 0.1 V gate voltage intervals up to VGs=0.7 V, seven separate transient

simulations are done. The first ramps the gate to 0.1 V, the second ramps the gate to 0.2 V, etc. This

is done with a ramp rise time of 10 ps. This is short enough time for the drain current to be the

instantaneous value. This risetime can be shorter if necessary. Once the gate reaches the end of the

ramp, the displacement current settles within one or two timesteps leaving only the drain current.

The results for various VG ramps are compiled, plotted, and VT is extracted at a constant current.

Simulation for threshold voltage starting OUT-LO has one added step. First, solve for a DC
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Figure 3-19. MEDICI simulation methodology for finding switching-steady-state. The MOSFET
is simulated with external SPICE elements used to mimic NMOS switching in a CMOS inverter.
The waveforms are shown to the right of the circuit. Initial body hole content is set prior to the
switching cycle by (a) photogeneration into a floating body or (b) an ideal current source into a
contacted body.

solution with VD=Vs=O V and VG=VDD. This NMOSFET is in OUT-LO. It must be switched to

OUT-HI. This is done with a rapid ramp of VG to 0 V, then a rapid ramp of V, up to VDD. Note that

it is important to keep the order of terminal voltage ramps because pulling the drain voltage up with

the gate voltage still up may cause significant changes in body hole content due to the body voltage

being pulled up enough to strongly forward bias the body-source diode, and due to significant

impact ionization generation because the device is turning ON. Once switched to OUT-HI, the

hu
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same procedure used for starting OUT-HI is used to extract Vr

Simulation for the threshold voltage of a device in switching-steady-state is not that much

more difficult. First, the switching-steady-state body hole content must be found. It is impractical

to simply run a transient simulation with the switching waveform pattern over many thousands of

switching periods. Thus, the following method is used. Starting with a OUT-HI or OUT-LO DC

solution, the body hole content in this solution is changed, as disucssed below, and the body hole

content is integrated. This is the initial body hole content before switching. The simulated device

is then subjected to one period of the switching waveform, after which the body hole content is

again integrated. A plot is made of the change in body hole content per switch period versus the

initial holes in the body. The initial body hole content which results in zero change in body hole

content over a switch period is the switching-steady-state body hole content. An example is shown

in Figure 3-18. Curves are shown for a starting OUT-HI DC solution and a starting OUT-LO DC

solution. Both solutions end up at a switching-steady-state solution which is unique to the switching

waveform. Once this solution is found, a starting OUT-HI DC solution has it's body hole content

modified to the switching-steady-state body hole content and the same procedure used starting

OUT-HI is used to extract Vr

There are two methods to modify the body hole content of a DC solution. The first is shown

in Figure 3-19 (a) and involves a photogeneration module in MEDICI which allows for either

electrons or holes to be generated versus time. The generated carriers incorporate themselves into

the solution on the order of the dielectric relaxation time allowing the device to be in equilibrium

prior to application of the switching waveforms.

The one disadvantage of photogeneration is that while it allows for increase in body majority

carrier content, it does not allow for decrease. The second method allows for both increase and

decrease in body majority carrier content. It involves use of the Circuit Advanced Application

Module (CAAM) in MEDICI which allows ideal SPICE elements to be connected to a 2-D numerical

simulation mesh for "mixed-mode" simulation. To mimic a floating-body and allow the body

majority carrier content to be set, a body-contacted version of the simulation structure is created

_~__I ____I____
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Figure 3-20. (a) Switching period definition starting from OUT-HI and body voltage response. (b)
Body voltage relationship to MOSFET logic state and transitions between logic states OUT-HI and
OUT-LO. (c) Schematic showing charge-balanced body voltage response to one switching period
in which there is no change, a loss of body hole content, or a gain in body hole content (loss and
gain are not to scale).

with an ideal current source at the body contact, as shown in Figure 3-19 (b). Positive current is

used to add holes and negative current is used to remove holes form the DC solution.

3.8 Minimizing Threshold Voltage Variation

As has been shown, designing the silicon film thickness for charge-balance minimizes

threshold voltage variation because the two logic states OUT-HI and OUT-LO have the same

equilibrium body hole content. However, the body hole content is out of equilibrium during

transitions between OUT-HI and OUT-LO, and can change during these transitions. Figure 3-20

shows schematically the change in preswitch body voltage for no change, loss of holes, or a gain in

holes through one switch period. The majority of the change occurs during the OFF to ON transition

shown in Figure 3-20 (b) when impact ionization generation tends to increase body hole content
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Figure 3-21. Schematic cross section of SOI MOSFET's with (a) uniform body doping and (b)
nonuniform body doping retrograde channel doping and source/drain halos. The nonuniformly
doped body has a higher peak doping resulting in higher diode ideality factor.

and the body-source diode conduction tends to decrease body hole content.

It is impractical to try to balance the precise number holes generated by impact ionization

with the number recombined by diode conduction through the body-source diode. This is because

switching loads vary in size and therefore the precise waveforms for which this balance is achieved

is not common to every device. A better way to address both NMOS and PMOS threshold voltage

variation is to raise diode current levels so that they make impact ionization current less significant

in NMOSFET's. Also, making the forward diode and reverse diode currents more symmetric should

allow for any loss of holes through forward biased diodes to be more easily recovered from the

reverse biased diodes. And probably the best way to minimize threshold voltage variation in both

NMOS and PMOS is to reduce to power supply voltage. Reduction of power supply voltage reduces

TURN-ON impact ionization and reduces capacitive coupling of the body to the gate voltage during

TURN-ON, minimizing both gain and loss of body majority carriers.

To demonstrate these concepts, the threshold voltage variation in NMOSFET's and

PMOSFET's is simulated in MEDICI. A silicon film thickness which is closest to charge-balancing

both NMOS and PMOS is chosen in each case. Uniform and nonuniform body doping profiles are
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Figure 3-22. Sample body-source/drain diode I-V characteristics simulated in MEDICI used as
reference for figure 3-23. The labels refer to forward diode ideality factor.

compared, as shown schematically in Figure 3-21. The body doping was designed so that the DC

threshold voltage at VDS=100 mV is 0.35 V. The uniformly doped devices have diode I-V

characteristics which look like the diode 2 in Figure 3-22. The nonuniformly doped devices have

higher peak doping and thus look more like diode 3, with higher current levels and more diode

symmetry. Note that in both cases the reverse bias diode current is greater than NMOS OFF-state

impact ionization.

Figure 3-23 (a) shows the threshold voltage variation for devices designed with 0.18 RLm

technology dimensions (LGATE=0.1 8 lm, L =0.12 gm, t =2.5 nm, x.=60 nm) at a power supply of

1.5 V. The threshold voltage starting OUT-HI and starting OUT-LO is equal due to charge-balance.

The switching-steady-state threshold voltage reflects an applied waveform of a CMOS inverter

switching between OUT-HI and OUT-LO at 50 % duty cycle over a period of 2 ns. The fall and rise

times of the gate and drain voltage waveforms is 50 ps, with a 40 ps delay between the gate and

drain transitions. The nonuniformly doped NMOS has smaller VT variation than the uniformly

doped NMOS because of higher diode current levels keeping impact ionization in check. The

PMOS VT variation is only slightly smaller for the nonuniformly doped devices indicating small

contribution from diode symmetry. In fact, most of the difference may be due to the larger body-

source/drain capacitance of the nonuniformly doped devices keeping the body voltage from increasing

100



CHAPTER 3. HYSTERETIC FLOATING-BODY EFFECTS 101
0.3

0.25 tsi=110 nm ts=160 nm L=.2m
VDD1.5V

- 0.2-

A OUT-HI
0.15- O SSS

uniform halo + SSR L OUT-LO
0.1 I I

NMOS PMOS NMOS PMOS

(a)

0.3

0.25- t,=70 nm ti=70 nm Leff=0.07 m0.25SI I
SVDo=0.8 V

- 0.2
A OUT-HI

- O SSS
0.15- uniform halo + SSR V OUT-LO

0.1 I
NMOS PMOS NMOS PMOS

(b)

Figure 3-23. MEDICI simulated threshold voltage hysteresis for different doping profile types for
(a) 0.18 pm technology and (b) 0.13 plm technology designs. The nonuniformly doped halo+SSR
profiles show reduced threshold voltage hysteresis compared to uniformly doped profiles. Lower
supply voltage dramatically reduces threshold voltage hysteresis.

as much as in the uniformly doped devices. This limits the loss of majority carriers through forward

diode bias. Had the switching waveform had time between switching transitions, increased diode

symmetry would be more important as there would be sufficient time between switches for reverse-

biased diodes to help replenish the deficit of majority carriers.

Figure 3-23 (b) shows the threshold voltage variation for devices designed with 0.13 p.m

technology dimensions (LGATE=0.1 3 pm, L e0.07 plm, t =2 nm, x.=40 nm) at a power supply of 0.8

V. The reduced power supply greatly reduces threshold voltage variation. Again, the nonuniformly

doped devices have reduced threshold voltage variation. This is due to a combination of higher

body-source/drain capacitance keeping the body from being pulled up by the gate and perhaps

more symmetric diodes.

__II ~
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Overall, MOSFET scaling tends to help reduce hysteretic threshold voltage variation. Higher

doping levels are required for electrostatic integrity leading to increased diode current levels, diode

symmetry, and increased body-source/drain capacitance. The latter along with reduced power supply

decreases impact ionization and decreases changes in body voltage during TURN-ON responsible

for loss of body majority carrier content. Reduced power supply also decreases impact ionization.

Note however that reduced body voltage coupling to the gate decreases current boost and degrades

performance, as does reducing power supply. Ultimately, silicon film thickness design for charge-

balance is still the most beneficial method to reduce threshold voltage variation induced pulse

stretching and like effects. Without charge-balance, the threshold voltage variation in Figure 3-23

(b) can be substantially more than is shown.

3.9 Summary

This chapter showed hysteretic behavior of floating-body majority carrier content in PD-

SOI MOSFET's. This floating-body-induced hysteresis leads to threshold voltage variation which

becomes very important to circuit operation as power supplies are reduced. This was demonstrated

in measurements of threshold voltage variation leading to stretching of the input pulse length as it

propagated through a CMOS inverter chain. A simple guideline for designing the silicon film

thickness for "charge-balance", that is, equal majority carrier content in equilibrium regardless of

logic state was demonstrated to be effective in reduction of pulse stretching.

Figure 3-24 summarizes the conclusions made in both this chapter and the previous chapter.

It does so by showing pulse propagation trends in CMOS inverter chains where the MOSFET's

have silicon films thinner than charge-balanced, and thicker than charge-balanced. When thinner

than charge-balanced, the first pulse stretches as it propagates. In worst-case switching-steady-

state, the pulse width is recovered but the rising edge slows down more than the falling edge speeds

up, due to a greater tendency for devices to slow down rather than speed up. This is due to the

asymmetry between forward and reverse diode characteristics which make it easier for the body to

lose majority carriers than gain majority carriers. Impact ionization contributes to gain of body
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Figure 3-24. Schematic showing pulse propagation through a CMOS inverter chain versus silicon
film thickness relative to charge-balance. (a) When the silicon film thickness is less than charge-
balanced, the first pulse through the inverter chain stretches. In worst-case switching-steady-state
the output pulse recovers the input pulsewidth, but the midpoint of the pulse has slowed down
relative to the first pulse. (b) When charge-balanced, the output pulse is always the same width as
the input pulse, but slows down once it reaches worst-case switching-steady-state. (c) When the
silicon film thickness is greater than charge-balanced, the first pulse through the inverter chain
compresses, provided that the inverter chain is not long enough for the pulse to disappear altogether.
In worst-case switching-steady-state the output pulse recovers the input pulsewidth, but the midpoint
of the pulse has slowed down relative to the first pulse.

majority carriers, particularly in NMOSFET's, but no published measured pulse stretching data has

shown a definitive speed up due to impact ionization [12-18]. For charge-balanced devices, the

pulse does not stretch, but pulse propagation should slow down at worst-case switching-steady-

state. And finally, for thicker than charge-balanced, the first pulse compresses. The pulsewidth is

recovered at worst-case switching-steady-state, but rising edge should tend to speed up less than

the falling edge slows down, again due the tendency for devices to lose body majority carriers.

The worst-case switching-steady-state propagation delay for the thinner than charge-balanced
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case is shown to be faster than for charge-balanced, and even faster than the thicker than charge-

balanced case. As was noted in chapter 2, the thinner silicon films should produce faster MOSFET's

due to reduced body-source/drain capacitance allowing more gate-body pull-up of the body voltage

thereby boosting the drain current, and less drain-body pull-down of body voltage which loads

down the next switching transition. It can be concluded that overall, thinner silicon films can

produce increases in circuit speed, as shown in both the first pulse and worst-case switching-steady-

state. But this comes at the expense of hysteresis in propagation delays. Thus, designing the

silicon film thickness for charge-balance is perhaps the best strategy. The next chapter will show

how design of other dimensions can be optimized to maximize switching speed while maintaining

charge-balance.
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Chapter 4

PD-SOI CMOS Technology Optimization

The behavior of partially-depleted SOI MOSFET's with the body floating has been discussed

in the previous chapters. Understanding of the floating body in a PD-SOI MOSFET allows design

which exploits its advantages and minimizes its drawbacks. In this chapter, floating-body SOI

CMOS technology, which is optimized to maximize drive current while minimizing threshold voltage

hysteresis, is compared to bulk CMOS technology using the 2-D numerical simulator MEDICI. As

before, the focus is on NMOSFET's, but recall (from section 3.4) that PD-SOI PMOSFET design is

similar,particularly if OFF-state impact ionization is mitigated by reverse diode leakage.

4.1 OFF-Current versus ON-Current Figure of Merit

Of all the MOSFET parameters discussed in chapter 2, the most important are the OFF-

current, IoFF, and the saturated ON-current, ION IOFF and IoN are defined in Figure 4-1 (a). At a

given gate length, a MOSFET built with a CMOS technology is said to be superior to a MOSFET

built with another CMOS technology if it possesses higher IoN for the same IOF,, lower IOFF for the

same ION, or higher IoN and lower IOFF.
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Figure 4-1. (a) Definition of OFF-current and ON-current on a gate transfer I-V characteristic. (b)
Log OFF-current versus ON-current example for two hypothetical technologies. From left to right,
each symbol on each curve represents a gate length. For example, the first symbol on the left of
each curve represents LGATE=L,, the next on each curve represents LGATE=L 2, etc.

In this context, "CMOS technology" needs more definition. A CMOS technology is

characterized by a set of intrinsic device design variables, such as power supply voltage (which

determines the maximum internal electric fields), gate oxide thickness, source/drain junction depth,

doping profiles, OFF-current limit, etc. The physical size of the transistor, and hence the size of

extrinsic parasitic capacitances, is characterized by layout design rules based on a feature size [38].

A figure of merit for a CMOS technology is to plot IOFF on a logarithmic scale versus IoN on a linear

scale, for various gate lengths. Due to variations in manufacturing, the gate length varies around a

nominal value. Thus, the IOFF versus IoN curve shows this variation of ION and IoFF around a nominal

gate length. The better the CMOS technology, the more it minimizes 'lo F, maximizes IoN while

minimizing the slope of log IOFF versus IoN.

An example is shown in Figure 4-1 (b), which compares two hypothetical CMOS

technologies. Each symbol on each technology curve corresponds to the same physical gate length,

L,, L2, L3, etc., from left to right. Technology B is superior because its log IOFF to IoN curve is lower,

farther right, and has a shallower slope than the curve representing Technology A. At each gate
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length, Technology B devices have less IOFF. Technology B IoN is not always greater than Technology

A, but is greater at each gate length for devices below the Io,,-limit, above which devices cannot be

used anyway. The shallower slope of the right part of the Technology B curve is indicative of better

electrostatic integrity, since IOFF degrades less with shrinking gate length.

The "hook" shown on the left side of each curve is a result of the reverse short-channel

effect. This typically occurs in short-channel MOSFET's designed with source/drain halos. As the

channel length decreases, the halo dopings overlap, increasing the channel doping, thereby decreasing

IOF, with decreasing gate length. Less "hook" is desirable since this results in less variation of IOFF

with gate length. Figure 4-1 (b) shows that Technology B has less "hook" than Technology A.

4.2 Design Variables and Optimization Framework

Optimization of the intrinsic bulk MOSFET is fairly straightforward. The International

Technology Roadmap for Semiconductors publishes guidelines for the gate oxide thickness, junction

depth, IoFF limit, and threshold voltage variation with gate length, for given ranges of gate lengths

grouped into a technology [28]. Selected 100 nm-, 70 nm-, and 50 nm-technology guidelines

which will be used in this study are listed in Table 4-1. These guidelines include the maximum,

nominal, and minimum gate lengths for the technology (LMAx , LNo, LMN), gate-source/drain overlap

Technology 100 nm 70 nm 50 nm

LMAx 78 nm 54 nm 38 nm

LNOM 65 nm 45 nm 32 nm

LMIN 52 nm 36 nm 26 nm

AL 21 nm 15 nm 10 nm

VDD 1.0 V 0.9 V 0.7 V

tox,eq 1.25 nm 1 nm 0.7 nm

x, 32.5 nm 24 nm 16.5 nm

oFF@LMIN 20 nAWpm 40 nA/W m 80 nAWgm

AVT(NOM-MIN) 33 mV 25 mV 17 mV

Table 4-1. International Technology Roadmap for Semiconductors criteria used to create doping
profiles.
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(a) (b)

Figure 4-2. (a) Definition of terms in scaled MOSFET's. Diagram shows a bulk MOSFET. (b)
Definition of design variables in MOSFET's. Diagram shows a SOI MOSFET. Lext is the source/
drain extension length (or the spacer width), NPT is the punchthrough doping density, and tsi is the
silicon film thickness.

(AL), power supply voltage (VDD), equivalent gate oxide thickness (tox,eq), source/drain extension

junction depth (x), loFF-limit for the minimum gate length device, and threshold voltage variation

between the nominal and minimum gate length devices. With these guidelines in place, only the

doping profiles remain to be optimized. As shown in Figure 4-2 (a), these doping profiles consist

of the channel doping, source/drain extension doping, deep source/drain doping, and the

punchthrough doping. Of these, only the channel and source/drain extension doping affect the

intrinsic bulk MOSFET. The deep source/drain only serves to allow good contact formation to the

source/drain extensions, and the punchthrough doping only serves to eliminate leakage from the

deep source to the deep drain.

The optimized bulk MOSFET can be directly transferred to SOI. However, because of the

floating body, the electrostatics for SOI MOSFET's are modified by VBooFF, and IoN is modified by

the body voltage boost due to capacitive coupling from the gate to the body, as shown in Figure 4-

3. Recall from chapter 2 that changes in the body-source/drain diodes affect the value of VBOFF.

Also recall from chapter 2 that VB OFF and the body-source/drain capacitance affect gate-body

capacitive coupling. Because the body-source/drain diodes and capacitances depend on the
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Figure 4-3. Comparison of body voltage during switching for (a) bulk NMOSFET's and (b) SOI
NMOSFET's. The SOI NMOSFET has VB= V, in the OFF-state, and turns ON with extra body
voltage boost due to capacitive coupling.

dimensions and dopings of the entire body-source/drain junction, the deep source/drains,

punchthrough doping, source/drain extension length, and the silicon film thickness all contribute to

intrinsic SOI MOSFET behavior.

SOI MOSFET's will require further redesign for a fair comparison between bulk and SOI.

Io, will increase in SOI MOSFET's due to the body voltage floating to VB, FFin the OFF-state. IoN

increases because VBF, lowers the threshold voltage. This change in IOF, and ION due to VBOFF can

be eliminated by reoptimizing the channel doping profile of the SOI MOSFET's so that OFF, is

matched to bulk MOSFET Io,, at the nominal gate length.

From the discussion above, the following simulation strategy is used to compare bulk to

SOI. Since only IOF, and ION are being compared, the SOI simulations are done with the same

models, structure, and grid as bulk, except for modified doping profiles to match IOF at the nominal

gate length and modified body voltage to include VBF, and body voltage boost. This ensures that

the simulation models, structure, and grid are consistent between bulk and SOI, which is important

because variations in the simulation grid or use of different models can create quantitative differences

even when simulating the exact same structure [37]. VB, OFF, body voltage boost, and charge-balance

are calculated in a separate SOI grid with models, structure, and grid spacing optimized for calculating

diode tunneling currents, impact ionization, and integrating for body hole content (grid spacing
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should not scale with dimensions because this leads to artifacts in diode tunneling and charge

integration). This methodology requires the following steps. 1) Create a bulk MOSFET structure

and optimize bulk doping profiles to meet specifications in Table 4-1. This can be done by using

gaussian profiles for the source/drain extensions and halos, as shown in Figure 4-4. The depth of

the halo doping can be varied. 2) Create a SOI MOSFET structure using the optimized bulk doping

profile. Add deep source/drains and punchthrough doping. 3) Optimize the source/drain extension

length, punchthrough doping, and silicon film thickness to maximize body voltage boost and

minimize threshold voltage hysteresis through charge-balance. 4) Assess VB,OFF for the nominal

gate length device. 5) Apply VBOF to nominal gate length bulk structure and modify the halo

doping so that OF,, matches IOFF with VB=O V at the nominal gate length. 6) Re-optimize SOI

MOSFET structure using modified doping profile and assess VBOFF and body voltage boost for each

gate length device.

At this point it is possible to calculate IOFF and ION for bulk MOSFET's at various gate

lengths using the original optimized doping profile from step 1. Then, using the modified doping

profile from step 5 and VB, FFfrom step 6, calculate IOF, for SOI MOSFET's at various gate lengths.

IoN for SOI MOSFET's can be calculated for each gate length by adding the body voltage boost of

each gate length to the simulation. The result is a fair comparison of IOF versus IoN curves for bulk

and SOI of the same technology and using the same simulation models, structure, and grid. The

following sections detail the above steps and show simulation results.

4.3 Simulation Details

Figure 4-4 shows the left half of the simulation structure used to optimize source/drain

extension and halo dopings. The doping profiles are characterized by a peak value and gaussian

rolloff parameters sx and sy in the depthwise and lateral directions, respectively. An optimization

routine is run which varies the gate length, peak halo doping, gaussian parameters for the halo, and

gaussian parameters for the source/drain extension until the specifications of Table 4-1 are met.
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LGATE 2

ND=2x1 020 cm-3

AL /2 - *. tox,eq

NA,halo

Figure 4-4. Left half of simulation structure used to optimize doping profiles to meet specifications
in table 4-1. Doping profile parameterization variables are shown. The halo is to be optimized at
the junction depth in this example.

Figure 4-5 shows an sample doping profile optimized with the halo at the source/drain extension

junction depth.

Two sets of optimizations were done for each technology node in Table 4-1. The first

optimized the doping profiles for the halo peak at the source/drain extension junction depth, x. The

second optimized the doping profile for the halo peak at half the source/drain extension junction

depth, x/2. Table 4-2 lists the resultant optimized doping profile parameters for the 100 nm-, 70

nm-, and 50 nm-technology nodes. Note that to simplify doping profile optimization, sx for the

source/drain extension profile is set equal to AL/U3.

NMOSFET IoF, and IoN were calculated in MEDICI with hydrodynamic modeling which

simultaneously solved for potential, electron continuity, and electron temperature at each node.

The models used are as follows: Fermi-Dirac statistics, band-gap narrowing, concentration dependent

mobility for low-fields, a mobility model consistent with the universal mobility curve [39] for

perpendicular fields, and an electron-temperature dependent mobility model was used for high

lateral fields, with the energy relaxation time set at 0.2 ps. Poly-depletion is accounted for with a

_ II ~Cc~e -r C - ~- --L~-i-------;I-~ _ i _~._C C - ---d
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Figure 4-5. Sample net doping profile for a 100 nm technology NMOSFET with LGATE= 6 5 nm. In
this example the halo was optimized at the junction depth.

physical polysilicon gate structure doped at 9x1019 cm-3 , and inversion layer quantization is accounted

for by adding 0.3 nm to the equivalent gate oxide thickness [40].

SOI VB, oFP body voltage boost, and charge-balance were calculated in a similar structure,

but with the addition of a deep source/drain and punchthrough doping. The deep source/drain is

placed as deep as the silicon film thickness, with its lateral gaussian doping parameter set equal to

that of the source/drain extension. Solutions were found using drift-diffusion modeling which

simultaneously solved for potential, electron continuity, and hole continuity at each node. The

models used reflect what is necessary to solve for floating-body related effects and are as follows:

concentration dependent mobility for low-fields, a concentration dependent Shockley-Read-Hall

model for generation and recombination with carrier lifetime set at 0.1 gs, trap-assisted band-to-

band tunneling, band-gap narrowing, Auger recombination, and impact ionization. The impact
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(b)

Table 4-2. Optimized doping profile parameters for 100, 70, and 50 nm technologies with halo set
at (a) the junction depth and (b) half the junction depth.

ionization coefficients have been calibrated on the bulk MOSFET with I- V's shown in Figure 2-13.

The measured substrate current is matched in simulation at VDD= 1.01 V in a MEDICI structure

where the doping profile have been inverse-modeled [41].

Note that solving for SOI VB, F , body voltage boost, and charge-balance requires quite a

different model set and solution method than solving for IoFF and Io. Thus, simultaneously solving

for SOI IOFF, ION, VB,OFF, and body voltage boost is much more difficult and time consuming,

particularly when trying to optimize a device design. Thus, the above methodology as been developed

which separates electrostatics and floating-body effects from carrier transport.

Technology S/D sy [nm] NA,halo [cm- ]  Halo s x [nm] Halo sy [nm]

100 nm 15.4 6.14x1018 20.6 16.6

70 nm 13 9.26x10 18  12 21.9

50 nm 9.3 1.19x10 19 9.3 14.8

113



CHAPTER 4. PD-SOI CMOS TECHNOLOGY OPTIMIZATION

Table 4-3. Peak halo doping concentration used to match IFF, at VB to IOF, at VB=O V for the 100
nm-technology LGATE= 6 5 nm device with the halo optimized at the junction depth and at half the
junction depth.

4.4 Electrostatics

As noted above, the floating body in PD-SOI MOSFET's introduces a positive body bias in

the OFF-state, VBOFF, Thus, the electrostatic behavior of a PD-SOI MOSFET is the same as for a

bulk MOSFET with applied VB= VB OFF. Figure 4-6 shows IOFF versus IoN for various VB, in the range

of typical VB, OFF values, for devices designed with 100 nm-technology parameters in Table 4-1. The

VB=O V curve in each plot represents various LGATE' with the leftmost symbol representing LGATE= 100

nm, and moving right, 78, 72, 65, 58, 52, and 45 nm. The shorter LGATE's exhibit increased IoN at the

cost of increased Io F , with the reverse short channel effect displayed in the longer LGATE's. Applied

V decreases threshold voltage, thereby increasing IOF, and IoN, shifting each point on the VB=0 V

curve up and to the right. However, the subthreshold slope is degraded due to decrease in depletion

width under the gate. When the channel doping is increased (see Table 4-3) at each VB so that

IOFF(V)=IoFF(VB=0) at the 100 nm-technology nominal gate length, LGATE 65 nm, the VB>0 curves

collapse into the VB=O curve as shown in Figure 4-7.
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Figure 4-6. 100 nm-technology IOFF versus I, for various body voltages. The peak halo doping is
placed at the junction depth in (a) and at half the junction depth in (b). From left to right, the
symbols on each curve correspond to LGATE= 100, 78,72,65,58,52, and 45 nm.
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Figure 4-7. 100 nm-technology IOFF versus IN for various body voltages. The peak halo doping is
placed at the junction depth in (a) and at half the junction depth in (b). Doping has been modified
at each body voltage so that IOFF matches at the nominal gate length 65 nm. From left to right,
symbols on each curve correspond to LGATE=100, 78,72,65,58,52, and 45 nm.
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Figure 4-8. IoN vs VB for LGATE= 6 5 nm devices in figure 4-4. At each VB, the halo doping has been
increased to match IOF, at VB=O V. IoN is degraded by increased subthreshold slope and decreased
mobility due to positive body voltage and increased channel doping, respectively.

Closer inspection of the plots in Figure 4-7 shows that as each of the VB>0 curves collapse

into the VB=O curve, the individual points shift to the left indicating a degradation in IoN. Figure 4-

8 shows IoN degradation in the nominal gate length device in Figure 4-7 (a). Recall that IOFF for

V,>O V is matched to IOFF for VB=O V at the nominal gate length, LGATE= 6 5 nm. Figure 4-8 shows

that IoN is degraded by subthreshold slope degradation due to applied V, and mobility degradation

due to the increasing channel doping to match IOFF. So, from an electrostatic standpoint, positive

body voltage is a disadvantage for SOI versus bulk. But for VB<0.3 V, the Io oIFF curve is similar

to V,=0 V and technology performance can be recovered by using shorter LGATE, as positive body

voltage provides better IOFF control. Figure 4-9 plots IOFF versus LGATE showing that devices redesigned

to match IOFF at LGATE= 6 5 nm with applied VB>O V show better IOFF control at shorter gate lengths.

This is due to increased electrostatic integrity from positive body bias and increased channel doping.

Figure 4-10 summarizes what has been discussed by showing gate transfer I- V characteristics

for a 100 nm-technology nominal gate length LGATE=65 nm device with the doping profiles optimized

with the halo at the source/drain extension junction depth. Figure 4-10 (a) shows that when VB=0.3

V is applied, the subthreshold slope is degraded, and IOFF and IoN increase relative to VB=O V, as
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Figure 4-9. 100 nm-technology IOFF vs LGATE at various body voltages from figure 4-4. Short
channel effects (loss of IOFF control with decreasing gate length) are reduced by a combination of
body voltage and increased channel doping to match IOFF at the nominal gate length.

shown in Figure 4-6 (a). Figure 4-10 (b) shows that when the device at VB=0.3 V is redesigned so

that IOFF at VB= 0 .3 V matches the original device IOFF at VB=O V, the I- V curve is degraded. IOFF is

has been matched, but IoNis degraded, as shown in Figure 4-7 (a). When this device is simulated as

an SOI structure and optimized as detailed above, VBOFF=0.3 V. Figure 4-10 (c) shows the I-Vof the

SOI version of this device versus the bulk. Because the body voltage is boosted by gate-body

capacitive coupling in SOI, the IoN is slightly better than the bulk device at VB=0.3 V, as shown in

Figure 4-10 (d). The next section details how to optimize the SOI MOSFET to maximize body

voltage boost while minimizing threshold voltage hysteresis.

4.5 SOI Optimization

Floating-body-induced capacitive boost of ION (through body voltage boost) and threshold

voltage hysteresis are strongly affected by peak halo doping depth, source/drain dimensions, and

silicon film thickness. These dimensions determine the relative size of the gate-body versus body-
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Figure 4-10. Gate transfer I-V characteristics for a 100 nm-technology NMOSFET with LGATE= 6 5

nm. (a) Bulk with VB=0 V versus VB=0.3 V at the same doping. (b) Bulk with VB=0 V versus
V,=0.3 V, where the doping has been increased for the VB=0.3 V case to match VB=0 V IoFF (c)
Bulk with VB=O V versus SOI which as VBOFF=0.3 V with doping adjusted in the SOI case to match
bulk VB=0 V Io,, Capacitive coupling makes SOI slightly better than bulk at VB=0.3 V, as shown in
more detail in (d).
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source/drain capacitances and determine charge-balance. Within a technology, design optimization

requires that these variables, shown in Figure 4-2 (b), be designed to maximize current boost and

minimize hysteresis at the nominal gate length. This will minimize sensitivity to process variations.

The three variables which can be designed in the SOI structure are the source/drain extension

length, the punchthrough doping level, and the silicon film thickness. They are interrelated, however.

The punchthrough doping level depends on the source/drain extension length. The closer the deep

source/drains are to each other, the higher the punchthrough doping required to minimize leakage

from deep source to drain. The silicon film thickness for charge-balance depends on doping

distribution, which is obviously affected by the source/drain extension length and punchthrough

doping level. Thus, optimizing the SOI MOSFET starting from a bulk doping profile requires the

following step: 1) choose a source/drain extension length, Lx, and add deep source/drain, 2) optimize

channel doping profile with punchthrough doping, N,, to maintain the loFF-limit at LMJ, 3) design

the silicon film thickness for charge-balance, tsiCB, at LNoM. Note that the punchthrough doping

needs to be higher in SOI compared to bulk because of 2-D charge sharing through the buried

oxide, as was shown in Figure 1-10.

Results of this procedure are shown in Figures 4-11 and 4-12, which show the result of

choosing the initial halo depth at the junction depth x, and at half the junction depth x/2, respectively.

For each L, chosen, a minimum value of N,, which eliminated punchthrough leakage was found

and the silicon film thickness was designed for charge-balance. Figures 4-11 and 4-12 tabulate the

design parameters and show the body voltage boost versus gate length for each design. Maximized

body voltage boost occurs at different L, due to the interrelationship of Lex,, Np, and t siB for

charge-balance. This interrelationship is made more clear in Figure 4-13 which shows body voltage

boost and threshold voltage hysteresis versus silicon film thickness for the nominal gate length

designs with maximum body voltage boost in Figures 4-11 and 4-12. It shows that the body voltage

boost is limited by the silicon film thickness for charge-balance. Recall that charge-balance at the

nominal gate length minimizes threshold voltage hystersis. However, for the threshold voltage will

vary between OUT-HI and OUT-LO for gate lengths which are not nominal, as shown in Figures 4-
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Figure 4-11. PD-SOI 100 nm-technology V,-hysteresis and VB,boost,
shown in above table. Peak halo doping is at the junction depth, x.
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Figure 4-12. PD-SOI 100 nm-technology V,-hysteresis and VB, vs LT for various designs

shown in above table. Peak halo doping is at half the junction depth, x/2.J

Design (xi) Lext  NPT tsi,CB
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Figure 4-13. PD-SOI 100 nm-technology V,-hysteresis and VBboost vs tsi for peak halo doping at the
junction depth (Design B in figure 4-11) and at half the junction depth (Design E in figure 4-12).

11 and 4-12.

In general, halo at x/2 designs tend to have greater body voltage boost and thus greater ION

than halo at x. designs, due to decreased peak halo doping for the former. Also, as shown in Figure

4-13, x/2 designs have less sensitivity to silicon film thickness variation around the tsiCB compared

to halo at x, again due to lower peak halo doping in the former.

4.6 Sub-100 nm Technologies: Bulk versus SOI

With optimized PD-SOI designs, IFF versus IN for bulk and SOI can be compared. The

results are shown for 100 nm-technology in Figure 4-14. Figure 4-14 (a) shows that for bulk,

placing the peak halo doping at half the source/drain extension junction depth is better than at the

junction depth. This is because lower peak halo doping reduces the surface doping thereby providing

higher low-field mobility and higher effective channel mobility due to lower effective perpendicular

field [39]. Figure 4-14 (b) compares optimized bulk to optimized SOI in which the doping profiles

have been optimized with the halo at the junction depth. In this case, SOI VB, F=0.3 V. Thus the
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Figure 4-14. 100 nm-technology IOFF versus IoN for (a) bulk with halo at the junction depth versus
bulk with halo at half the junction depth, (b) bulk versus SOI (Design B in figure 4-11, VBOFF=0.30
V) with halo at the junction depth, (c) bulk versus SOI (Design E in figure 4-12, VBOFF=0.27 V)
with halo at half the junction depth, and (d) SOI with halo at the junction depth versus SOI with
halo at the junction depth. From left to right, symbols on each curve correspond to LGATE=100,
78,72,65,58,52, and 45 nm.
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Figure 4-15. 70 nm-technology IOFF versus I, for (a) bulk with halo at the junction depth versus
bulk with halo at half the junction depth, (b) bulk versus SOI (Lext=35 nm, N =3x10 8 cm 3, tsi, B=

3 8

nm, VB,FF=0 .2 8 V) with halo at the junction depth, (c) bulk versus SOI (Le=25 nm, N,P= 3 x101'8 cm
3, ti, =70 nm, V, OFF=0.2 6 V) with halo at half the junction depth, and (d) SOI with halo at the
junction depth versus SOI with halo at the junction depth. From left to right, symbols on each
curve correspond to LGATE= 7 0, 54,50,45,41,36, and 27 nm.
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Figure 4-16. 50 nm-technology IOF, versus IoN for (a) bulk with halo at the junction depth versus
bulk with halo at half the junction depth, (b) bulk versus SOI (Lex=25 nm, NP=--4 x10'8 cm3 , ti,CB=30
nm, VB,OF=0. 2 3 V) with halo at the junction depth, (c) bulk versus SOI (L~,=20 nm, N,=5x10'8 cm-
3, t CB=65 nm, V,OFF =0.21 V) with halo at half the junction depth, and (d) SOI with halo at the

junction depth versus SOI with halo at the junction depth. From left to right, symbols on each
curve correspond to LGATE=50, 38,35,32,29,26, and 22 nm.
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SOI IoN is degraded compared to bulk which the body voltage boost cannot recover. The added

electrostatic integrity for SOI with VBoFF=0. 3 V, however, means that the nominal gate length can

be made shorter, because shortest SOI devices shown is still near the IOFF-limit. In this way, SOI

can recover IoN. In addition, using shorter gate lengths reduces capacitive load. Thus, using the

common metric CVDD/ION [42], SOI can achieve similar performance to bulk by using shorter gate

lengths.

Figure 4-14 (c) shows a similar result, comparing bulk and SOI optimized with the halo at

half the junction depth. Figure 4-14 (d) compares SOI with the halo placed at the junction depth

and at half the junction depth. The two curves are similar, although the SOI with halo at half the

junction depth has more ION, due to greater body voltage boost, as shown in Figure 4-13. The same

optimization is applied to the 70 nm- and 50 nm-technology nodes and the results are shown in

Figures 4-15 and 4-16. These results show that PD-SOI IoJIFF is similar to bulk and that shallower

halo placement increases IoN current boost and requires thicker and therefore more manufacturable

silicon film thicknesses. In general, as the power supply is reduce, VBoF, is reduced which makes

SOI yet more similar to bulk.

4.7 Summary

This chapter presented a PD-SOI design and optimization framework which showed that

with proper design, PD-SOI IoIoFFis comparable to bulk in sub-100 nm CMOS technologies. IoN

at each LGATE is degraded due to nonzero body bias but performance metrics for the technology as a

whole (such as CVDD/ION) can be recovered by using shorter LGATE as LNo. In this way, intrinsic

SOI MOSFET performance can be similar to bulk. In addition, PD-SOI still has the advantage over

bulk with reduced parasitic source/drain capacitance and circuit-level advantages. While it has

been noted that the reduced-parasitics advantage decreases with scaling [43], circuit-level advantages

such as reduction of and reverse body effect in stacked transistors will increase as power supplies

are scaled and gate overdrive is reduced [38].
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Chapter 5

Double-Gate MOSFET Technology

As noted in Chapter 1, double-gate fully-depleted SOI MOSFET's are expected to scale to

shorter gate lengths than both partially-depleted SOI or bulk-silicon MOSFET's. However,

fabrication of a bottom-gate which is well-aligned to the top-gate is challenging. The test vehicle

for investigating double-gate fabrication technology is an optimized version of SOIAS (silicon-on-

insulator with active substrate) CMOS technology. This technology was developed by Yang, et al.,

and uses the bottom-gate to shift the threshold voltage low during periods of operation, and high

during idle periods [44].

The bottom-gate in SOIAS technology was patterned into a buried undoped polysilicon

layer through the active region. This resulted in a large parasitic capacitance from source/drain to

the bottom-gate. The optimized SOIAS technology studied in this chapter, aligns MOSFET's to

buried patterned bottom-gates, as illustrated in Figure 5-1. This significantly reduces the source/

drain-bottom-gate capacitance. The bottom-gates are oversized with respect to the top-gates by

alignment tolerances. A counterdoping implant can be done through the MOSFET top-gate to

minimize the parasitic capacitance from the source/drain to the oversized bottom-gate, thereby

self-aligning the bottom-gate to the top-gate.
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Oxide

Substrate

Figure 5-1. Schematic cross section of proposed self-aligned double-gate CMOS. Black represents
metal and salicide and the dashed lines denote epitaxially grown raised source/drain.

5.1 Process Flow

Process development focused on the NMOSFET. The process flow to fabricate NMOSFET's

discussed in section 5.3 is shown in Figure 5-2 (a)-(m). The starting material is a SOI wafer.

SIMOX wafers with silicon film thickness of 200 nm and buried oxide thickness of 380 nm were

used. After thinning the silicon film by dry oxidation and HF-dip, the bottom-gate is formed as

shown in Figure 5-2 (b). The bottom-gate material is deposited as amorphous silicon at 560 'C,

implanted with boron, patterned and etched, covered with LTO, and then recrystallized at 600 oC

for 14 hours into large-grain polysilicon [45]. The LTO is then densified at 1000 oC for 10 minutes

before chemical-mechanical-polish (CMP), which will planarize the LTO as shown in Figure 5-2

(c).

The SOI wafer is then flipped and bonded to a bulk-silicon handle wafer as shown in Figure

5-2 (d). The handle wafer has 500 nm thermal oxide grown on it, so this is an oxide-oxide bond.

The bond is annealed at 950 "C for 40 minutes. Note that the bonding temperature and all subsequent

temperatures in the process should be below the LTO densification temperature to insure no further

outgassing from the LTO, which may affect bond integrity. The substrate of the SOI wafer is then
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Buried Oxide
Buried Oxide

Sol

Figure 5-2 (a) Cross section and side view of starting starting SOI wafer.

Riirind OAidar

Figure 5-2 (b) Cross section and side view. The bottom-gate oxide is grown on the SOI.
bottom-gate is formed by deposition of polysilicon, boron implant, patterning, and etching.

The

Rvariad lvirla

Figure 5-2 (c) Cross section and side view. LTO is deposited over the bottom-gate and is densified.
The LTO is then chemically-mechanically-polished flat.

LIU

Figure 5-2 (d) Cross section and side view. The SOI wafer is flipped and bonded to a handle wafer.
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-M Bond Interface
.. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . .

Figure 5-2 (e) Cross section and side view. The SOI wafers substrate and buried oxide are removed.

Oxide Oxide

Figure 5-2 (f) Cross section and side view. LOCOS isolation definition.
nitride is deposited, patterned, and etched. A field implant is performed.

Oxide

A SRO is grown and

Oxide

Figure 5-2 (g) Cross section and side view. LOCOS oxide is grown and the nitride and SRO are
stripped. A dummy gate oxide is grown followed by a threshold voltage adjust implant. The
dummy gate oxide is the stripped.
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Oxide Oxide

Figure 5-2 (h) Cross section and side view. The gate oxide is grown and polysilicon is deposited.
The polysilicon is patterned and etched to form the top-gate.

Oxide Oxide

Substrate Substrate

Figure 5-2 (i) Cross section and side view. The top-gate and source drain are implanted. A contact
cut to the bottom-gate is patterned and etched. The bottom-gate contact cut is implanted to assure
ohmic behavior.

Oxide

Substrate

Oxide

Figure 5-2 (j) Cross section and side view. The bottom-gate is counterdoped to reduce parasitic
source/drain-bottom-gate capacitance. Note that a resist mask protects the bottom-gate contact
regions during the counterdoping.
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/ \

Oxide

Substrate

Figure 5-2 (k) Cross section and side view.
UHVCVD selective epitaxial growth.

Oxide

Substrate

Oxide

A spacer is formed. A raised source/drain is grown by

Oxide

Figure 5-2 (1). Cross section and side view. The raised source/drain is salicided.

Oxide

Substrate

Oxide

Figure 5-2 (m) Cross section and side view. LTO is deposited and contact cuts are patterned and
etched. Metal is deposited, patterend, and etched.
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removed by mechanical grinding and chemical silicon etch, with the buried oxide layer serving as

an etchstop. Once the buried oxide layer is removed, a NMOSFET process can be run with alignment

to the bottom-gate, now buried, as shown in Figure 5-2 (e).

The standard NMOSFET process includes LOCOS isolation to define active areas, as shown

in Figures 5-2 (f) and (g). The top-gate stack is formed and patterned, aligned to the bottom-gate,

as shown in Figure 5-2 (h). The top-gate and source/drain are implanted with arsenic and annealed

at 900 'C for 20 minutes, as shown in Figure 5-2 (i). This is followed by an arsenic implant at

higher energy which will counterdope the bottom-gate regions which overlap the source/drain as

shown in Figure 5-2 (j). The counterdope implant is annealed at 600 oC to minimize lateral diffusion

of the implant. Also shown in Figure 5-2 (j) is the formation of a contact cut to the bottom-gate. At

this point, the device can be finished with LTO passivation, contact cuts, metal deposition, and

metal patterning.

For very thin silicon films, a raised source/drain will be necessary to reduce parasitic source/

drain series resistance [26]. Epitaxial silicon can be grown in a UHVCVD system selective to the

spacer and the field oxide to form the raised source/drain, as shown in Figure 5-2 (k). Once the

raised source/drain is grown, it can be silicided as shown in Figure 5-2 (1). The device can then be

finished with LTO passivation, contact cuts, metal deposition, and metal patterning.

For full details of each process step, please refer to Appendix B. The raised source/drain

process was not completed for this work because the silicon epitaxial growth available was not

selective to silicon nitride spacer material. Oxide spacers can be used, but are difficult to fabricate

and are not compatible with thin-film silicon processing because oxide etch selectivity to silicon is

difficult to establish [26]. The double-gate MOSFET's presented in section 5.3 were fabricated by

completing the process after the step illustrated in Figure 5-2 (j). This result demonstrates successful

flip-bond-transfer with prepatterned features, as discussed below.

5.2 Flip-Bond-Transfer Process
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L20 nm

1500 nm LTO

gg1 g200nm

Silicon Film
Buried Oxide

Figure 5-3. Cross section of bottom-gate stack prior to CMP. The CMP process was optimized to
flatten a polysilicon step-height of 200 nm. Deposition of 1.5 gm LTO resulted in a step-height of
220 nm.

The flip-bond-transfer process presented here is used to transfer patterned features from a

SOI wafer to another wafer. The patterned stack for which this process was optimized is shown in

Figure 5-3. It consists of patterned 200 nm thick polysilicon bottom-gates on bottom-gate oxide on

SOI. These are covered by 1.5 gtm LTO, which has a resulting feature step height of 220 nm. Flip-

bond-transfer has three steps, the first of which is to flatten the features on the LTO by chemical-

mechanical-polish. The second step is to bond the SOI wafer to a handle wafer, and the third step

is to remove the SOI wafer substrate.

5.2.1 Chemical-Mechanical-Polishing (CMP)

Chemical-mechanical-polishing (CMP) uses mechanical motion of a polishing pad in

combination with a slurry of chemicals and particles to polish surfaces. This technology has been

extensively used throughout history to polish glass. CMP was introduced to ULSI manufacturing

as a method to planarize dielectrics between levels of metal. This allowed more metal layers to be

integrated into multilevel metal processes. Since then, CMP has found its way into polishing

dielectrics for isolation between devices (shallow trench isolation), and into polishing of metal to

- -- - ------
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(a)

Polishing Arm

Wafer
Pad Waferuill Wafer Carrier

Table

(b)

Figure 5-4. (a) Schematic top view of the Strausbaugh 6EC CMP machine. Black dots indicate
axes of rotation. Arrows indicate direction of rotation. Double-headed arrows indicate directions
of movement. (b) Side view of the wafer carrier, wafer, table, and pad. The wafer carrier rotates
round the quill.
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define metal lines in multilevel interconnect (damascene metal process) [46].

The flip-bond-transfer process requires the CMP system to polish LTO features flat for

wafer bonding. The wafer must be both locally (feature-level) and globally (die- and wafer-level)

flat. If it is not locally flat, the wafers will not bond. If it is not globally flat, air pockets can form

during bonding. In addition, wafer bonding requires that the surface be as smooth and clean as

possible for the strongest possible bond, especially at lower bonding temperatures, <1100 'C for

oxide-oxide bond [47]. These wafer bonding requirements are more stringent than those of typical

CMP applications listed above. Thus, very careful attention must be paid when planarizing and/or

polishing for wafer bonding.

The machine used is in this work a Strasbaugh Model 6EC Laboratory Planarizer [48]. The

pad used is a Rodel P05677 and the slurry used is Cabot Semi-Sperse 25. This pad and slurry

combination is designed for polishing of oxide surfaces [48]. The pad is of polyethylene, softer

than the oxide being polished. The slurry is made of 100 nm sized silica particles suspended in a

KOH-based solution. The pad by itself cannot polish or planarize the oxide without the slurry,

hence the chemical-mechanical process.

Figure 4-5 shows a top-view of the machine and a side-view of the polishing system. The

wafer is placed with the side to be polished facedown into the load station. The polish arm picks up

the wafer into the wafer carrier and moves it to the polishing table, but is tilted slightly to keep the

wafer suspended above the table. At this point the table begins to rotate and the wafer carrier

begins to rotate around the quill. The direction of rotation is shown in Figure 5-4 (a). Slurry also

starts being dispensed onto the polishing table as soon as the table and wafer carrier begin rotating.

The polishing arm then pushes the wafer into contact with the polishing pad. While polishing, the

polishing arm moves from side to side as indicated in Figure 5-4 (a). Also while polishing, the pad

conditioner is activated to keep the pad from being clogged with slurry particles. The pad conditioner

is a spinning abrasive disc and the pad conditioning arm moves back and forth on the pad in the

direction indicated in Figure 5-4 (a).

Thus, the main variables involved in CMP polishing are the speed of table rotation (table
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speed [rpm]), the speed of wafer carrier rotation (quill speed [rpm]), and the force of the polish arm

on the wafer (down force [psi]). In addition, jets of air from the wafer carrier push the wafer down.

This is called back pressure (back pressure [psi]). It can be used to change the bow of the wafer

when polishing in order to change global polish uniformity. For 4-inch wafers, back pressure has a

small effect since the wafer is rather stiff. For 6- and especially for 8-inch and greater, back pressure

is an important parameter [48].

Many experiments were done on unpatterned wafers with 1 gtm thick thermal oxide to

determine optimum polishing conditions. It was found that for greatest uniformity on this CMP

system, the quill speed should be offset faster than the table speed. Increased down force increases

the polish rate, although uniformity suffers with this system when the down force is over 5 psi.

Some nonzero back pressure must be applied to keep the wafer from slipping off the wafer carrier.

For patterned features things are a bit more complicated. The patterns themselves can interact with

the polishing system and have a great effect on polishing results. This is discussed in more detail

below.

5.2.2 CMP Mask Design

Global and local CMP polish uniformity is highly dependent on the feature size and

distribution, as defined by the patterning mask [49]. This is due to the use of a soft pad which bends

around the features when a down force is applied. A harder more abrasive pad can be used to

remove features, but this results in poor global uniformity [49]. As shown in Figure 5-5 (a), the

spacing between features is important because the soft pad bends into grooves between features

and begins to polish into these areas while planarizing the features. And, of the features to be

planarized, the smaller features will be removed faster than the larger features since there is more

pressure per area on a small feature than a large feature. This results in a global nonuniformity

where no matter how much is polished, the areas with larger and/or denser features will remain

higher than the areas with smaller and/or sparser features [49]. The amount of nonuniformity can
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Figure 5-5. Schematic demonstrating CMP pattern dependency when using a "soft" pad. (a) When
the features are nonuniformly sized and spaced, down force forces the pad into grooves which.
Also, the down force per unit area on the larger features is less than for smaller features resulting in
removal of smaller features faster than larger features. (b) These effects are reduced with uniformly
spaced and sized patterns.

be decreased with more polishing, but it cannot be removed altogether [49].

Thus, the layout of the features is very important. Better uniformity can be obtained with

denser and more uniformly spaced features, as shown schematically in Figure 5-5 (b). Pattern-

dependent CMP was a problem in initial bonding experiments with the maskset designed for the

double-gate NMOS process. This mask, as shown in Figure 5-6 (a), had dense regions with large

features and also sparse regions with small features. The nonuniformity of this mask was
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characterized as shown in Figure 5-6 (b)-(e), which show measurements of 12 points in a die,

averaged from the center 4 die of the wafer. Nonuniformity is calculated relative to the point in

each die with the least amount of oxide remaining after polishing. Areas with the large dense

features did not polish as much and remained higher than the areas with the small sparse features,

resulting in a 60 nm global step after removal of 800 nm of oxide. Bonding of wafers with this

mask was either unsuccessful or showed regions where the transfered film did not adhere after

etchback, consistent with the pattern dependence. In comparison, another maskset with more

uniformly sized and spaced features was characterized, as shown in Figure 5-7. This mask shows

much improved uniformity. Polishing, bonding, and etchback of wafers patterned with this mask

was successful.

Thus, the mask in Figure 5-6 (a) was redesigned. The large features which were not necessary

for the NMOS process were removed. Areas without features were replaced with dummy lines at

50 % density as shown in Figure 5-8. This use of dummy features is common in current industry

practice [46].

Lastly, due to the "flip", the mask for the flip-bond-transfer process must be the mirror

image of the desired image. In order to align to this image after flip-bond-transfer, the flats of the

bonded wafers must be well aligned during bonding, and the original image must be well centered

and have no rotational skew.

5.2.3 CMP Process

The CMP process was optimized to planarize features resulting form 200 nm thick bottom-

gates, as shown in Figure 5-3. The amount of LTO deposited depends on how much needs to be

removed in order to planarize the surface. This was dependent on the recipe used, as shown in

Figure 5-9, which shows the average step height at 12 points within a die versus how much oxide is

removed from areas without features (e.g. scribe lines between dice). Higher speed lower pressure

polish is better for uniformity since it minimizes the amount of pad which is bent into grooves
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Figure 5-6. Pattern dependency of original bottom-gate ' 8o
0

mask used for double-gate process. (a) The mask has a
great range of feature sizes and spacings. The large "
features are mainly to the right. (b)-(e) show
nonumiformity versus position for 12 points within a o
die. Nonuniformity is referenced to the point with the
thinnest remaining LTO after LTO polish. As LTO is (e)
removed, the pattern dependence becomes apparent.
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Figure 5-7. Comparison to results of figure 5-6. Shown
is the pattern dependency of a mask from another
process. (a) This mask has a much smaller range of
feature sizes and more uniform spacing. (b)-(e) show
nonumiformity versus position for 12 points within a
die. Nonuniformity is referenced to the point with the
thinnest remaining LTO after LTO polish. As LTO is
removed, the pattern dependence is much less than the
results in figure 5-6.
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Figure 5-8. A section from final bottom-gate mask optimized for CMP showing the addition of
dummy CMP lines in between small features. Large features which are not necessary for the
NMOS process were removed and replace with dummy lines.

between features [49]. However, higher speed lower pressure polishing planarizes less than lower

speed higher pressure recipes, as shown in Figure 5-9. Thus, for a higher speed lower pressure

polish, more LTO must be deposited because more must be polished off to obtain the same

planarization as a lower speed higher pressure polish.

It was determined that since the maskset has been optimized for CMP, depositing and

polishing less LTO was preferable. The lower speed higher pressure recipe was chosen, and requires

removal of about 500 nm of oxide for areas to be planarized, although an additional 400 nm should

be removed to ensure local planarization, as shown in Figure 5-10. Thus, for planarization of 200

nm thick bottom-gates, 1.5 pm LTO was deposited and 900 nm to 1 gtm was polished away.

After polishing, it is important to remove slurry particles which adhere to the oxide surface

during polish. Otherwise, these particles will interfere with wafer bonding. Slurry particles are

removed by polishing the wafers without slurry, with only DI water flowing onto the pad. This

"water polish" is done in a separate step following the main polish, after the pad has been flushed

with DI water for at least 15 minutes to ensure all the slurry particles have been removed. In the

-- i-----~Y~~-~-i^l__ __A
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Figure 5-9. Measured CMP planarization characteristics. Shown is the LTO step height versus the
amount of oxide removed, which is measured in regions without a step. Two recipes are compared
with the down force/back pressure and quill speed/table speed indicated in the legend. In this CMP
system, higher down force and lower speeds are better for planarization.

meantime, it is important to keep wafers wet in a tub of DI water because the slurry particles cannot

be removed by the water polish if the slurry dries on the wafer (if the slurry does dry on the wafer,

more main polish can be done to loosen these particles). This water polish can be optimized to

further smooth the surface. As shown in Figure 5-11, 2 psi down force for 40-60 seconds results in

a smoother surface.

The CMP recipe is listed in Table 5-1. The polish time is variable. To remove 900 nm of

LTO, a time of 390 seconds is typical. Note that this recipe is optimized for planarizing densified

LTO. Undensified LTO polishes at a faster rate and planarizes with different characteristics with

this recipe. The LTO used in the process was densified at 1000 'C for 10 minutes. Other temperatures

and times can be used for densification, so long as the same level of densification is achieved. The

method used to measure whether temperature and time combinations lead to densification is

measurement of wet etch rate in BOE. The LTO etch rate is approximately 400 nm/min without

densification, decreases with increasing densification temperature and time to a minimum of
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(a) (b)

Figure 5-10. Schematic showing the need to overpolish. (a) Shows a wafer polished to where the
step height is unmeasureable. However, small voids form in regions where dummy CMP lines
were discontinuous. (b) This sample was over-polished and shows no voids.

approximately 160 nm/min.

After the main polish and water polish, the wafers are cleaned in an Evergreen wafer leaning

system. This machine rinses the wafers with ammonia and DI water. After this, a piranah clean is

performed prior to reintroduction into the cleanroom. Prior to wafer bonding, the wafers are run

through a full RCA clean.
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Figure 5-11. AFM measurement of LTO surface roughness after water polish versus (a) down
force, and (b) time. These measurements were performed on 1.5 gm LTO which had been densified
at 1000 'C for 10 minutes and CMP-ed to remove 500 nm LTO.

Main Polish Water Polish

Time [s] variable 60

Down Force [psi] 4.0 2.0

Back Pressure [psi] 2.5 0

Quill Speed [rpm] 25 60

Table Speed [rpm] 15 60

Slurry [mVmin] 150 0

Table 5-1. CMP recipe used for planarization. Note that the pad conditioner is used in-situ during
the main polish. The pad must be flushed out with DI water to remove slurry from the pad. Typically,
the main polish is performed on a set of wafers which are kept in a DI water bucket after they are
polished. The pad is flushed with running DI water for at least 15 minutes, then each wafer is water
polished.

time=60 s
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5.2.4 Wafer Bonding

Bonding phenomena between two flat smooth surfaces have been known for a long time.

The first widespread use with silicon wafers was for fabrication of SOI wafers with the bond-

etchback BESOI technology as discussed in chapter 1. Since then, it has been used extensively for

fabrication of micro-electro-mechanical devices and systems (MEMS) [50].

Bonding of two cleaned, smooth, flat, bare, prime-grade silicon wafers can occur via two

mechanisms. The first results in an oxide-oxide bond, and the second results in a silicon-silicon

bond. An oxide-oxide bond occurs because a native oxide exists on bare silicon wafers or is formed

during cleaning. The cleaning process saturates the surface with several monolayers of hydroxyl

groups (OH-), resulting in a hydrophilic surface. When two wafers are brought together, these

hydroxyl groups are attracted to each other by van der Waals forces and hence form a weak bond at

room temperature. At elevated temperatures, covalent bonds are formed between the two wafers

by the reaction =Si-OH- + OH--Si- -4 =Si-O-Si- + H20, where "-" denotes a covalent bond and

"-" denotes three satisfied covalent bonds of the silicon surface atoms [47].

A silicon-silicon bond is formed if the wafers are stripped of oxide by HF treatment after the

clean step. This leaves the surface silicon atoms terminated with hydrogen. However, exposure to

air allows some hydroxyl groups and hydrocarbons to be absorbed. It has been proposed that these

are responsible for the initial van der Waals bonding at room temperature between the two otherwise

hydrophobic wafers at room temperature [47]. However, the bond has been measured to be at least

2-3 times weaker than a room temperature bond between hydrophilic wafers [47]. At elevated

temperatures, direct Si-Si bonding occurs and elevates the bond strength of the bonded pair to the

silicon fracture strength. A plot of surface energy versus anneal temperature is reproduced from

[47] and shown in Figure 5-12. Silicon-silicon bonding produces a much stronger bond at lower

temperatures than does oxide-oxide bonding.

Regardless of the bonding mechanism, the actual quality of the wafer-wafer bond depends

greatly on surface smoothness, surface treatment, bonding procedure, anneal temperature, and anneal
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Figure 5-12. Bond strength versus anneal temperature for hydrophilic SiO 2-SiO2 bonding, and for
hydrophobic Si-Si bonding, reproduced from [47].

time. Recall that the bond of interest is between polished densified LTO and thermal oxide. The

surface roughness of the LTO through the CMP process, and of the thermal oxide is listed in Table

5-2. The wafers are bonded with the jig shown in Figure 5-13. This bonding jig consists of 3/4 inch

thick teflon board with two flat alignment bars at the bottom (one fixed, one removable). Three

2x1/4 inch by 7 mil thick teflon shims are used to keep the handle wafer and SOI wafer apart before

bonding. A teflon alignment guide, shown near the top of 5-13 (a) is used to push the handle wafer

and SOI wafer against the alignment bars at the bottom of the board for flat-flat alignment. A teflon

roller, shown in Figure 5-13 (b), is used to make the initial contact of the wafers in the center, and

to roll out any voids due to trapped air.

The optimum cleaning procedure for this process is as follows: 1) 10 minute SC-1 clean, 2)

full dump rinse, leave the DI water running, 3) 20 second 50:1 HF dip, 4) 13 second rinse in the

running DI water, and 5) finally a 45 second spin dry with the spin dryer set at 3000 rpm (note, this

does not mean 45 seconds at 3000 rpm, just a total of 45 seconds -- it is important not to overdry
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Roughness [nm]

Bare Si (p-prime) 0.217

Thermal Oxide (100 nm) 0.253

LTO (120 nm) 1.094

LTO (1.5 gm) 5.202

LTO after main polisht 0.531

LTO after water polish 0.439

Table 5-2. AFM measurement of surface roughness. A bare p-prime wafer is used as reference.
tLTO after main polish surface roughness does not include imbedded slurry particles, which were
measured to be approximately 200 to 700 nm in size.

wafers -- running a full 5 minute spin dry did not produce good bonding results). Typically, two

wafer pairs are cleaned and bonded at a time. The handle wafer is placed face up on the bonding jig

with the flat on the alignment bar at the bottom of the board. The three shims are put in place as

shown in Figure 5-13 (a). The SOI wafer is placed face down the three shims. The top alignment

guide is pushed down on the two wafers so that both are flush to the bottom alignment bar. At this

point, the roller is pushed on the middle of the wafers and the shims are removed as quickly as

possible. Keeping the roller depressed, the alignment guide and bar are removed and manual

pressure in a slight rocking motion is applied on the roller to make sure there is sufficient contact

between the two wafers. The bonded wafer pair is then inspected with an IR inspection system for

voids [50]. The wafer pairs typically are void-free, but in the event of a void due to trapped air

(irregularly shaped voids), the roller can be used to press it out. Voids due to particles (voids

shaped like concentric circles) cannot be rolled out. These wafer pairs must be split apart with the

edge of a teflon tweezer while immersed in water, then recleaned before rebonding.

The anneal temperature, anneal time, corresponding surface clean and HF dip, and relative

bond strength are listed for several processes in Table 5-3. This is a tabulation of results for a series

of bonding experiments undertaken with both thermal-thermal and thermal-polished-LTO wafer

pairs to 1) find the optimum bonding procedure and 2) to see how low in temperature wafers can be
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(b)

(a)

Figure 5-13. (a) Wafer bonding jig shown with a handle wafer, 3 shims, and flat alignment guides.
The SOI wafer is placed face down onto the shims. The alignment guides align the flat. The roller
shown in (b) is used to make contact at the center of the wafer, at which time the 3 shims are
removed.

well bonded. Note that the polished-LTO wafers have dummy features under the LTO consisting of

patterned 200 nm thick polysilicon on 500 nm thick thermal oxide. Each tabulated process is a

result of at least three separate bonding experiments, each with at least two pairs of each type of

bond. The thermal-thermal and thermal-polished-LTO bonds did not differ much, although the

thermal-polished-LTO tended to chip a little more when a "strong" bond was present.

Bond strength was measured by inserting a razor blade between the two wafers of the bonded

pair [47]. This is repeated around the entire perimeter of the bonded pair. The razor blade cannot

be inserted into a "strong" bond without immediately chipping the wafers. Chips which fall off are

sometimes discolored, indicating a transfer of an oxide layer from one wafer to another. When

these bonded pairs are shattered, they break as if they were one wafer. The razor blade can be

I
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Clean HF Anneal Anneal Bond
dip Temperature Time Strength

P no 950 oC 40 min weak

P yes 950 OC 40 min moderate

SC-1 no 950 OC 40 min moderate

SC-1 yes 950 oC 40 min strong

SC-1 yes 800 oC 1 hr moderate

SC-1 yes 800 oC 2 hr strong

SC-1 yes 600 OC 1 hr weak

SC-1 yes 600 oC 4 hr strong

Table 5-3. Relative bond strength versus surface treatment and thermal anneal in N2 ambient.

inserted into a wafer pair with a "moderate" bond, and pieces of one wafer can be broken off with

twists of the razor blade. However, pieces toward the center stay adhered. The pieces which do

break off are not discolored. Finally, the razor blade can be inserted into a wafer pair with a "weak"

bond, and when worked around the perimeter, the razor blade can be used to completely separate

the two wafers intact.

From Table 5-3, note that the SC-1 clean is better than piranah clean. The SC-1 clean

removes more particulates than the piranah clean because it etches the surface of the wafer during

the clean, particularly at high temperatures near or at 80 oC, whereas the piranah clean does not

[51]. The HF dip also improves the oxide-oxide bond strength. This result is previously unreported

and was learned by personal correspondence with staff at Lincoln Laboratories [52]. Dilute solutions

of HF are known to further remove any surface particulates [51]., and this may explain the difference

in oxide-oxide bond strength with and without HF. However, it is suspected that a different surface

chemistry may occur because this process can be pushed down to 600 OC with results similar to a

silicon-silicon bond. However, without quantitate bond strength measurements and rigorous surface

analysis, it is not possible to know the exact nature of this observed improvement in bond strength.

In any case, reliable polished-LTO to thermal oxide bonds were achieved at anneal

__ ii
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temperatures down to 600 °C. This pushes the minimum process temperature down to 650 'C

(recall that LTO should be densified at least 50 'C above the bonding temperature and that all

subsequent processing be 50 'C less than the densification temperature). This is important if the

flip-bond-transfer process is to be used for back-end applications, as will be described in chapter 6.

To test whether these bonds can produce the desired film transfer, the test wafers with

polished-LTO on patterned dummy poly gates were subjected to chemical etchback with 10% KOH

solution at 90 oC using the 500 nm oxide as an etchstop [53]. "Strong" and "moderate" bonds

survived the substrate removal process, but "weak" bonds do not - the transfered LTO layer does

not adhere to the handle wafer after etchback.

5.2.5 Substrate Removal

The substrate removal process with KOH is not CMOS compatible due to ionic

contamination. A more compatible etchback chemistry is etching with in tetramethyl ammonium

hydroxide, TMAH, 25 % weight in water, at 80 'C. TMAH is CMOS compatible. In dilute form it

is used as a photoresist developer. At 80 'C, it etches silicon at a rate of 23 gm/hour with excellent

selectivity to thermal oxide 9,200:1, deposited oxide 2950:1, and silicon nitride 33,000:1 [54].

Because the etch rate is rather slow, mechanical grinding is used to remove most of the substrate

before TMAH etch. With 4-inch wafers which are 525 to 550 Lm thick, 450 jim are removed by

grinding. The nonuniformity of the mechanical grinding can be tolerated because the TMAH stops

well on the buried oxide of the SOI wafer.

Recall that the handle wafer has 500 nm thermal oxide. This should protect the handle

wafer from TMAH during etchback. Figure 5-14 shows a successfully transfered SOI layer on the

handle wafer. However, the edges were attacked by the TMAH. This is perhaps due to the poor

quality thermal oxide which grows on the edge of wafers. To fix this problem, the etchback process

was modified as shown in Figure 5-15. Immediately after bond anneal, the wafer pairs are coated

with 120 nm LPCVD nitride. This is done twice (for a total of 240 nm), where on the second run
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Figure 5-14. Photograph of a successfully delaminated SOI layer. However, the edge of the a
wafer was attacked by TMAH etch. The handle wafer thermal oxide at the edge is not a sufficient
mask against TMAH.

nitride

(a) SOI Wafer
Handle Wafer

(b) Handle

(c) Handle Wafer

TEOS

Figure 5-15. Method to protect the edge of the wafer from TMAH. (a) After bond anneal, the
wafer pair is put in LPCVD nitride. (b) The SOI wafer substrate is ground back. (c) An additional
layer of PECVD TEOS is deposited just in case the nitride is damaged during grindback.
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the wafers are rotated 180 0 to make sure that parts of the wafer sitting in the rails also receive a coat

of LPCVD nitride. The nitride-sealed wafer pair is then ground back. To insure that the edges and

back of the wafer have not been scratched during mechanical grinding, a 5 Lm layer of PECVD

TEOS is deposited on the back prior to TMAH etchback.

If the SOI wafers used are SIMOX, there is one extra step needed during TMAH etchback.

SIMOX wafers have silicon inclusions near the bottom of the buried oxide layer [55]. These

islands of silicon in the buried oxide, at most 50 nm away from the bottom of the buried oxide.

These may interfere with removal of the buried oxide in BOE. Thus, the TMAH etch process is as

follows: 1) 2 second BOE dip to remove native oxide, 2) DI rinse, 3) TMAH etch at 80 'C until

wafer clears and SOI layer is visible, 4) DI rinse, 5) BOE dip to remove 50 nm buried oxide,

enough to expose silicon inclusions, 6) DI rinse, 7) 30 second TMAH etch to remove silicon

inclusions, and 8) DI rinse. When not using SIMOX wafers, steps 5) through 8) should be omitted.

Following TMAH etchback, the wafers are cleaned in piranah before reintroduction into the

cleanroom, at which point the remainder of the buried oxide is removed in BOE.

5.3 Device Fabrication

For demonstration, double-gate NMOSFET's were fabricated on successfully transfered

SOI layers. The silicon film thickness for these NMOSFET's was 45 nm, the top-gate oxide thickness

was 6 nm, and the bottom-gate oxide thickness was 20 nm. Gate lengths ranging from 5 jLm down

to an Lf of 0.24 jm were fabricated. The gate transfer I-V characteristics of the top- and bottom-

gate are shown in Figure 5-16 (b). The kink effect present in the top-gate I-V's indicate that the

devices are partially-depleted. The bottom-gate can be used to adjust the threshold voltage, as

shown in Figure 5-16 (c), and can be used to change the device from partially- to fully-depleted.

This is shown in Figure 5-16 (d), where application of the bottom-gate voltage removes the kink in

output characteristic I- V curves.

A split of these devices also received a bottom-gate counterdoping implant through the top-
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Figure 5-16. (a) Thickness dimensions of fabricated devices. The following plots are for a device
with Le=0.2 4 Lm. (b) Top-gate and bottom-gate I-V characteristics. Each is measured with the
other gate at 0 V. Each curve represents VDS=0.05, 0.55, 1.05, 1.55, and 2.05 V. (c) Top-Gate I-V
chacteristic for VDs=0.05 V versus bottom-gate voltage from -0.5, 0, 0.5, 1.0, 1.5, and 2.0 V. (d)
Top-gate output characteristics with bottom-gate voltage at 0 and 1.5 V. Each curve represents
VGs=0.5, 1.0, 1.5, 2.0, and 2.5 V.

gate. These devices did not work. It appears as if the top-gate poly was not a sufficiently thick

masking layer to prevent the tail of the counterdoping implant from doping the channel. The source

and drain was shorted out by a n-type channel. This problem can be corrected for NMOSFET's by

using insitu-doped polysilicon and etching it with a tall oxide hardmask, which makes the top-gate

stack a better mask against the counterdoping implant. In reality, the specifics of this problem are

.. 7----~l~lL::.7T -r_- - :-----~ -- -- -- -- a . - - - ---
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not important because the thickness of the layers in this experiment are not typical of scaled devices.

A study of counterdoping for scaled dimensions is presented below.

5.4 Top-Bottom-Gate Self-Alignment

Counterdoping the bottom-gate reduces the source/drain to bottom-gate parasitic capacitance.

This also minimizes any layout-dependent parasitic capacitances which can occur if the top-gate is

misaligned to the bottom-gate. In effect, self-alignment is achieved if the counterdoping is effective.

Figure 5-17 schematically compares the source/drain to bottom-gate overlap capacitance for various

doping configurations of the bottom-gate. In Figure 5-17 (a), the bottom gate has not been

counterdoped, thus the capacitance is high, as indicated by the close proximity of the dashed lines,

which represent depletion region edges on either side of the capacitance. If the bottom-gate region

underneath the source/drain is counterdoped and the doping is lowered by several orders of

magnitude, then the capacitance can decrease significantly as shown in Figure 5-17 (b). If the

region underneath the source/drain is counterdoped n-type, it is then electrically floating in the p-

type bottom-gate. When the source/drain voltage changes, this region is capacitively coupled to

the source/drain voltage. Therefore, the resulting source/drain to bottom-gate capacitance is between

the n-type counterdoped region and the rest of the p-type bottom-gate, as shown in Figure 5-17 (c).

So long as the counterdoped region is not too high in concentration, this should still be effective in

reducing capacitance. However, counterdoping and producing a highly doped n-type region results

in high capacitance, as shown in Figure 5-17 (d).

Thus, an effective counterdoping implant is not an easy task, mainly because the bottom-

gate should be highly doped in order to minimize gate resistance. It can be silicided, but if the

bottom-gate doping is too low, the polysilicon will deplete, reducing bottom-gate control. The

problem with high doping is that it is difficult to bring the doping level down by orders of magnitude.

For example, reducing a doping concentration from 1x1019 cmr3 to 1x1016 cm-3 requires a change of

9.999x10's cm-3 . Such accuracy is possible, as shown in Figure 5-18, which shows SUPREM4
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Figure 5-17. Schematics of source/drain to bottom-gate overlap demonstrating the effectiveness of
counterdoping. The dashed lines represent depletion region edges. The farther apart the depletion
region edges, the smaller the capacitance. (a) Without counterdoping the parasitic source/drain-
bottom-gate capacitance is large. (b) Ideal reduction of capacitance occurs when the overlapping
region is counterdoped p-. (c) If the counterdope region becomes n, it is capacitively coupled to the
source/drain. Thus, the capacitance is between the p-n region in the bottom-gate. (d) If the
counterdope is heavy n , the capacitance is as bad or worse than no counterdoping.
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Figure 5-18. SUPREM4 as-implanted profiles in the structure with the bottom-gate doped 2x10 19

cm-3 , as shown in (a). (b) shows the counterdoped lateral doping profile referenced to the top-gate
edge. Note the lateral straggle of the counterdoping implant. (c) shows the counterdoped profile

into the bottom-gate.

simulation of as-implanted doping profiles in a structure with thickness typical of scaled fully-

depleted SOI MOSFET's [24].

However, counterdoping may be impractical given the optimization required and the possible

sensitivities to process variations. Actual doping activation depends highly on implanted species,
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implant conditions, process temperatures and times, and the polysilicon material used [45]. Also of

concern is limiting the lateral subdiffusion of the counterdoping implant, since this will limit the

scalability of this technology. As shown in Figure 5-18 (b), the as-implanted lateral straggle already

encroaches the top-gate edge by 30 nm. The following experiment was performed to assess the

variables involved in counterdoping the bottom-gate for self-alignment.

5.4.1 Counterdoping Experiment

Counterdoping the bottom-gate is made difficult by the need reduce the bottom-gate doping

concentration with an implanted doping profile through thin layers. The resulting as-implanted

profile is sharply peaked, due to the relatively small implant range [45]. Ideally, this should be

annealed until the profile is flat, but this results in lateral subdiffusion which reduces bottom-gate

control. This experiment clarifies this point by using a low-temperature 600 oC anneal to reveal the

approximate as-implanted profile. These profiles are characterized electrically in the resistive test

structures shown in Figure 5-19. Figure 5-19 (a) shows that an array of bottom-gates are implanted

through various top-gate lengths. This results in a variable resistance which can be used to separate

lower-doped counterdoped regions from the highly-doped bottom-gate regions.

A simplified process is employed to fabricate these test structures. A bulk wafer is used.

Oxide is grown, and then the bottom-gate material is deposited. A split was done were both

amorphous-silicon was deposited at 560 'C and fine-grain polysilicon was deposited at 600 OC.

The bottom-gate is implanted with boron, patterned, and etched. A 20 nm LTO layer was deposited

to mimic the device layer of scaled fully-depleted SOI MOSFET's. The wafers then receive a 14

hour recrystallization anneal at 600 OC. This transforms the amorphous silicon into large-grained

polysilicon, but does not affect the grain size of the fine-grain polysilicon [45]. A top-gate polysilicon

is then deposited, patterned, and etched, followed by an arsenic counterdoping implant. The final

dimensions of the test structures is shown in Figure 5-19 (b). LGAN's down to 0.2 gm, as measured

in SEM, were fabricated.
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Figure 5-19. (a) Resistor array used to experimentally characterize counterdoping implants. (b)
Dimensions of fabricated resistor arrays. The shortest fabricated LGAE was 0.2 gm.
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Figure 5-20. (a) Sample resistor I- V for a bottom-gate which has p-type counterdoped regions. (b)
Curvature in the resistor I-V measurement is indicative of the n-type counterdoped regions.

For various implant splits, the resistor I-V's indicated whether the counterdope implant

converted the counterdoped regions to a higher resistance p-type, or to n-type. This is shown

schematically in Figure 5-20. Curvature in the resistor I-V's indicate diode-like injection of holes

into the floating of n-type regions. These holes are eventually recombined in the 100 gm-long n-

type region. At low voltages however, the diode-action is not significant, so the low voltage portions

of the I-V curves are used to extract the resistance which is to be used to characterize the effective
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Figure 5-21. Using the low voltage resistance, the geometry of the counterdoped region can be
modeled as a box with depth xd. Lateral subdiffusion, Isd, does not affect long top-gate resistor
devices so it is fixed at 0 nm when fitting xd to measured data as shown in (a). Once the top-gate
lengths get shorter, the curve fit is degraded indicating lateral subdiffusion is becoming important.
(b) shows resistance versus top-gate length for shorter top-gate lengths for 3 values of lateral
subdiffusion.
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Bottom-Gate

recrystal

recrystal

recrystal

recrystal

polysilicon

polysilicon

polysilicon

B Dose [cm-2] As CD Dose [cm2] B Conc. [cm-3] % B Activation Curvature
Curvature

B Dose [cm-2]  As CD Dose [cm-2 ]  B Conc. [cm" ] % B Activation ? Xd [nm] Isd [nm]

3x10 14  1.5x10 14  4x1018 20 Y 125 30

3x10 14  3x10 14  4x10 18  20 Y 122 60

1x10 15  5x1014  1.5x10 19  23 Y 125 30

1x1015  1x10 15  1.5x1019  23 Y 115 90

3x10 14  1.5x1014  3x1017  1.5 N 110 30

3x10' 4  3x10 14  3x10 17  1.5 Y 102 60

1x10 15 5x1014 5x10 18 7.5 N 120 30

polysilicon 1x10 15  1x10 15  5x10 18  7.5 Y 115 40

Table 5-4. Summary of counterdoping experiment. Listed from left to right are the type of bottom-
gate polysilicon, initial boron dose, arsenic counterdope dose, measured boron concentration, percent
activation of boron, whether the resistor I-V's show curvature, the extracted depth of counterdoping,
and the extracted lateral subdiffusion length.

geometry of the counterdoped regions.

The model used is shown in Figure 5-21. The higher resistance counterdoped region is

modeled as boxes of infinite resistance with depth xd and width which is the difference between the

bottom-gate and top-gate lengths. A lateral subdiffusion parameter, Isd, is added. For longer top-

gate lengths, small Isd should not affect the fit of the model. Thus, the model is initially fitted by

varying xd while keeping lsd zero, as shown in Figure 5-21 (a). For short top-gate lengths, lsd

becomes important, as shown in Figure 5-21 (b). The extracted xd and lsd parameters are tabulated

in Table 5-4, along with the original implant conditions, the polysilicon type, and whether the I-V

curves had curvature indicative of n-type regions. Also calculated was the % activation of boron in

the bottom-gate.

The resulting approximate as-implanted profiles show predictable trends. Boron activation

is much higher in the recrystallized amorphous silicon than in fine-grain polysilicon and the

counterdope implant depth is shallower in the fine-grain polysilicon than in the recrystallized

amorphous silicon. Most of the samples showed evidence of n-type counterdoped regions, so the

arsenic dose should be reduced. The lsd parameter is typically 30 nm. The higher numbers are for
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Extra Layer
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S E

o o on+

Figure 5-22. Doping concentration versus depth into the bottom-gate. (a) Ideal counterdoping
implant profile is flat. (b) Ion implanted profiles are not flat. (c) Adding an extra layer into the
implant can flatten out the ion implant profile.

higher doses which should not be used anyway given the counterdoped regions are already converted

to n-type.

5.4.2 Discussion

Ideally, the implant should have zero lateral subdiffusion into the bottom-gate past the top-

gate edge. It should be as flat as possible and as deep as possible, as shown in Figure 5-22 (a). In

reality, the implant is sharply peaked as shown in Figure 5-22 (b). An extra layer, such as LTO, can

be used to flatten out the implant profile, as shown in Figure 5-22 (c). This is still nowhere near

ideal, so some sort of diffusion must be used to flatten out this profile. However, diffusion means

there will be lateral subdiffusion. The approximate as-implanted profile characteristics extracted

above already suggest that the devices are not scalable. With an approximate 30 nm lateral

subdiffusion per side, a 60 nm top-gate length device would have little to no bottom-gate control.

Thus, any diffusion will not work unless spacers are used, as shown in Figure 5-23. This

figure schematically compares the as-implanted counterdope depth and lateral profiles for a device

without a spacer, with a spacer, and with an extra layer before spacer formation. In fact, this extra

layer can be used to form the spacer itself. The spacer and the extra layer move the lateral profile

away from the top-gate edge. The extra layer also flattens the depth profile. Thus, with either a

= ~Ps~-I-U~-~--LLIY, I=3Cd
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With Spacer With Extra Layer

(b)

Figure 5-23. Schematic showing counterdoping species profiles. The vertical doping profile of the
counterdoping species is shown on the left and the lateral doping profile is shown on the on the
right for (a) just counterdoping through the device layers, (b) counterdoping with a spacer, and (c)
counterdoping through an extra layer.

LTO

Thermal Oxide

Figure 5-24. Proposed test structure cross section which can characterize the counterdoping profile
with the resistor structure shown on the right, and characterize the effectiveness of counterdoping
in reducing capacitance with the capacitor shown on the left.
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spacer or an extra layer, a near ideal profile can be obtained which does not encroach laterally past

the top-gate edge. However, much optimization is required, and this optimization will be rigorous

since the extra layer thickness or spacer width become an additional variable. Test structures which

combine direct capacitance measurement with the resistor counterdope profile characterization

measurements described above should be used for such optimization. A cross section of possible

test structure is illustrated in Figure 5-24.

5.5 Summary

A double-gate MOSFET fabrication technology was presented. The highlight of this

fabrication technology was incorporation of a flip-bond-transfer process which buried patterned

bottom-gates beneath an active silicon layer. NMOSFET's were fabricated as demonstration, and

a method to self-align the top-gate to the bottom-gate by counterdoping the bottom-gate was explored.

_ __ __ _ __ _U1_
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Chapter 6

Conclusion

This thesis covered SOI MOSFET's scaled into the sub-100 nm technologies. It focused on

partially-depleted SOI MOSFET design for sub-100 nm technologies. While many of the floating-

body effects in SOI MOSFET's have been previously reported [11-19], much of this work was

done on long channel devices and/or for the purpose of SPICE modeling. This thesis gives an in-

depth treatment of device design based on understanding floating-body effects in the context of

scaled CMOS, and in the context of digital logic. This treatment lead to the understanding of the

"pulse stretching" phenomena, which was previously unknown. From this understanding, it was

possible to establish design criteria for silicon film thickness. The silicon film thickness should be

designed for "charge-balance" between devices starting in different logic states. With the silicon

film thickness fixed by "charge-balance" for any combination of other design variables, it is possible

to optimized PD-SOI MOSFET performance while minimizing floating-body hysteresis. And,

with optimized PD-SOI MOSFET's, it was finally possible to fairly compare the intrinsic device

performance of scaled bulk CMOS versus scaled SOI CMOS.
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This thesis also presented a flip-bond-transfer process which was developed to fabricate

double-gate SOI MOSFET's, which are essentially scaled fully-depleted SOI MOSFET's. This

flip-bond-transfer process can be used for many other applications, as will be described below,

particularly since the temperature of this process was pushed down to 600 OC. The following

summarizes the key points of this thesis and discusses possible future applications of SOI technology.

6.1 Summary

The floating body voltage in partially-depleted SOI MOSFET's is capacitively coupled to

transitions of the gate, source, drain, and substrate terminal voltages. The floating-body voltage

changes instantaneously with changes in terminal voltage because the floating-body majority carrier

content cannot change instantaneously, because there is no body contact. Over time however, the

floating body majority carrier content will change from its equilibrium value due to impact ionization

and reverse diode thermal generation, and forward bias diode and thermal recombination. Transient

changes in body majority carrier content, and therefore body voltage, occurs until an equilibrium is

established in which generation of body majority carriers is equal to recombination.

Because of the floating body, the instantaneous AC behavior of PD-SOI MOSFET's can be

quite different from equilibrium DC behavior. This results in an equivalent model representing the

PD-SOI MOSFET floating body which consists of body-source/drain diodes and impact ionization

current which account for transient changes in body majority carrier content and body voltage, and

body-terminal capacitances which account for instantaneous changes in body voltage. From this

equivalent model, it was shown that only the instantaneous I-V characteristics are important for

characterizing PD-SOI MOSFET switching behavior in digital circuits.

The instantaneous I-V behavior of PD-SOI MOSFET's are mainly characterized by the

floating-body voltage in the OFF-state, and by capacitive coupling which boosts the body voltage

during turn-ON of the MOSFET. Every time the MOSFET switches, the body majority carrier

content changes, which changes the floating-body voltage in the OFF-state. While this is a minute

~ ~_j_ _PP~~ ---- i

170



CHAPTER 6. CONCLUSION 171

change per switch cycle, over many switching cycles the cumulative changes can be significant

enough to noticeably alter instantaneous I-V behavior. This behavior of changing floating-body

majority carrier content can be hysteretic, resulting in threshold voltage variation which becomes

very important to circuit operation as power supplies are reduced -- it was shown that threshold

voltage variation lead to an input pulse stretching or compressing as it propagated through a CMOS

inverter chain, particularly at low power supply voltage. A simple guideline for designing the

silicon film thickness for "charge-balance", that is, equal majority carrier content in equilibrium

regardless of logic state was demonstrated to be effective in reduction of pulse stretching and

minimizing hysteretic threshold voltage variation.

Once floating-body effects on I-V behavior and floating-body hysteresis were understood,

it was possible to create an optimization framework for PD-SOI MOSFET design. It was shown

that properly designed PD-SOI and bulk MOSFET's have comparable ON-currents and OFF-currents

in sub-100 nm CMOS technologies. The ON-current at each gate length is degraded in SOI due to

nonzero OFF-state floating-body voltage. However, this nonzero body bias reduces short-channel

effects and allows SOI technologies to use shorter gate lengths as the nominal gate length. The

shorter gate length SOI devices will have similar ON-current as bulk devices at a longer gate

length, but the shorter gate length devices will have smaller gate capacitance. Thus, performance

metrics for SOI technologies (such as CVdIiN) can be similar to or better than bulk technologies.

In addition, PD-SOI still has the advantage over bulk with reduced parasitic source/drain capacitance

and circuit-level advantages.

Fully-depleted SOI MOSFET's are expected to be even better than PD-SOI or bulk

MOSFET's, provided a bottom-gate is in place to either maintain electrostatic integrity or act as the

second gate in a double-gate MOSFET. A flip-bond-transfer process was demonstrated which can

bury a prepatterned bottom-gate underneath a fully-depleted SOI MOSFET. The prepatterned

bottom-gate process minimizes source/drain-bottom-gate capacitance. The prepatterned bottom-

gate can be made self-aligned to the top-gate if it is doped the opposite type as the top-gate and then

counterdoped through the top-gate. It was demonstrated, however, this counterdoping self-alignment
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Figure 6-1. Self-aligned double-gate process proposed in [60]. (a) A chemically-modified buried

layer is formed from the shadow of a gate. The top of the MOSFET is processed to metal, LTO is

deposited and polished, and the wafer is flipped, bonded, and transfered onto a handle wafer. (b)

The other gate is formed using the chemically-modified buried layer as a mask. (c) The second side

of the MOSFET is processed.
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Figure 6-2. Schematic representation of layer transfer principles. This example is as follows: (a)
one half of double-gate SOI devices been fabricated, a tungsten plug has been formed, and additional
LTO has been deposited as a bonding layer. (b) the wafer is then flipped and bonded to a handle
wafer. (c) the substrate and buried oxide are removed, and the other half of the double-gate SOI
device is fabricated.
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Figure 6-3. Schematic representation of double-sided interconnects fabricated with the flip-bond-
delaminate process.
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Figure 6-4. Schematic depiction of one "stratum" within a multi-strata 3-D integration. Shown is
a device layer, i-levels of top interconnect, and j-levels of bottom interconnect.
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scheme does not scale well since lateral encroachment of the counterdoping species due to diffusion

and ion-implantation straggle does not scale.

6.2 Self-Aligned Double-Gate MOSFET's

A good topic for future work is fabrication of truly self-aligned double-gate MOSFET's.

Several methods have been proposed. The first involve simultaneous etch of the top- and bottom-

gates and then epitaxial growth to reform the source/drain [56], or epitaxial growth of the source/

drain and channel [57]. The flip-bond-transfer process can be used to create the multiple layers

needed for self-aligned double-gate fabrication, as was done in [44]. In general, these structures

are quite difficult to fabricate.

The second type of process flips the MOSFET on its side producing either the FINFET

[58], which is limited in gate width by the height of the structure, or a vertical MOSFET process,

for which it is difficult to simultaneously build NMOS and PMOS [59]. Some process, which is

inherently planar and which does not require re-forming parts of the MOSFET is preferable to

those listed above. One such process, shown in Figure 6-1, shows some promise [60]. It involves

implantation of some species which will form a masking layer after the flip-bond-delamination

process. Details and variants of this process are still to be explored.

6.3 3-D SOI Integration

The flip-bond-transfer process shows promise for 3-D integration of SOI technologies. If a

self-aligned double-gate process can incorporation metal layers into the flip-bond-transfer process

as shown in Figure 6-2, then this process is the first step towards 3-D integration of 2-D planar

processes. As shown in Figure 6-3, even if a self-aligned double-gate process is not used, the flip-

bond-transfer process can be used to create double-sided interconnects. This will ease the wiring of

transistors in future microprocessors. Ultimately, if layers can be stacked with flip-bond-transfer,

L II ~I
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1

Figure 6-5. Schematic of 3-D "semiconductor in insulator" integration showing strata of device
and interconnect layers.

or some other process, then we enter a new era of 3-D integration. A layer, or "stratum" can have

multiple levels of interconnects as shown in Figure 6-4. Multiple strata of different technologies

and materials can be integrated together, as shown in Figure 6-5. This integration of planar processes

into 3-D systems will be better termed "semiconductor-in-insulator", and is ideal for system-on-a-

chip applications.
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Appendix A

Sample MEDICI Input Decks

The following are examples of input decks for the 2-D numerical simulator MEDICI.
Descriptions of each file are shown in bold.

This input deck generates a simulation grid for 100 nm-technology bulk NMOSFET.

$ generates 100 nm technology bulk mesh with halo at xj
$ note Lgate is commented out because following file varies Lgate
$ filename=bulkgrid.mesh

$ doping paramters
assign name=SYsd n.val= 1.954235e-02
assign name=Ah n.val=1.258574e+19
assign name=CYh n.val=3.250000e-02
assign name=SXh n.val=1.770361e-02
assign name=SYh n.val=2.577906e-02

assign name=pdope n.val=9el9
assign name=bdope n.val=lel5

$ physical dimensions
$$$$assign name=Lgate n.val=0.065
assign name=Lud n.val=0.0105
assign name=Lsd n.val=0.150- @Lgate/2

assign name=Tpoly n.val=0.090
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assign name=Tlto n.val=0.025
assign name=Tox n.val=0.00155
assign name=Tsi n.val=0.200

$ tags
assign name=xmin n.val=-@Lgate/2-@Lsd
assign name=xmax n.val=@Lgate/2+@Lsd
assign name=ymin n.val=-@Tox-@Tpoly
assign name=ymax n.val=@Tsi

$ *********************************************************** $

mesh RECTANGU smooth.k= 1

$ lateral mesh
x.mesh x.min= @xmin width=@Lsd hl= @Lsd/5 h2= @Lsd/25
x.mesh width=@Lgate/4 hl=@Lsd/25 h2=@Lgate/50
x.mesh width=@Lgate/4 hl=@Lgate/50 h2=@Lgate/25
x.mesh width= @Lgate/4 hl= @Lgate/25 h2=@Lgate/50
x.mesh width=@Lgate/4 hl=@Lgate/50 h2=@Lsd/25
x.mesh width=@Lsd hl= @Lsd/25 h2= @Lsd/5

$ depth mesh
y.mesh y.min=@ymin depth=@Tpoly hl=@Tpoly/3 h2=@Tox/3
y.mesh depth= @Tox hl=@Tox/2
y.mesh depth=@Tsi/4 hl=@Tox/4 h2=@Tsi/60
y.mesh y.max=@ymax hl=@Tsi/60 h2= @Tsi/10

eliminate columns
+ x.min=@xmin x.max=-@Lgate/2 y.min= @ymin y.max=-@Tox
eliminate columns
+ x.min=@Lgate/2 x.max=@xmax y.min=@ymin y.max=-@Tox

eliminate columns
+ x.min=@xmin x.max=@xmax y.min=@ymax/2 y.max=@ymax

$ ************************************************************* $

$ left LTO and nitride
REGION num-42 oxide
+ x.min=@xmin x.max=-@Lgate/2 y.min=-@Tox-@Tlto y.max=-@Tox
REGION num--41 oxide
+ x.min=-@Lgate/2-@Tlto x.max=-@Lgate/2 y.min=@ymin y.max=-@Tox-@Tlto
REGION num-43 nitride
+ x.min=@xmin x.max=-@Lgate/2-@Tlto y.min=@ymin y.max=-@Tox-@Tlto

ICfl ....... ~ t
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$ right LTO and nitride
REGION num=52 oxide
+ x.min=@Lgate/2 x.max=@xmax y.min=-@Tox-@Tlto y.max=-@Tox
REGION num=51 oxide
+ x.min=@Lgate/2 x.max=@Lgate/2+@Tlto y.min=@ymin y.max=- @Tox-@ Tlto
REGION num=53 nitride
+ x.min=@Lgate/2+@Tlto x.max=@xmax y.min=@ymin y.max=-@Tox-@Tlto

$ gate polysilicon
region num=1 silicon x.min=-@Lgate/2 x.max=@Lgate/2 y.min=@ymin y.max=-@Tox

$ gate oxide
region num=2 oxide x.min=@xmin x.max=@xmax y.min=-@Tox y.max=0

$ bulk silicon
region num=3 silicon x.min=@xmin x.max=@xmax y.min=0 y.max=@ymax

$ eeee************************************************************* $

$ contacts
electrode name=drain x.min=@xmax-@Lsd/2 x.max=@xmax y.min=0 y.max=0

electrode name=gate x.min=-@Lgate/2 x.max=@Lgate/2
+ y.min=@ymin y.max=@ymin+@Tpoly/3

electrode name=source x.min=@xmin x.max=@xmin+@Lsd/2 y.min=0 y.max=0

electrode name=bulk bottom

$ ************************************************************* $

$ poly depletion
profile n-type region= 1 uniform n.peak=@pdope

$ background doping
profile p-type region=3 uniform n.peak=@bdope

$ S/D 2D doping
profile n-type n.peak=2.00e+20 region=3
+ y.min=0.00e-02 y.max=0.00e-02 y.char=@SYsd
+ x.min=@xmin x.max=-@Lgate/2 x.char=-@Lud/1.5

profile n-type n.peak=2.00e+20 region=3
+ y.min=0.00e-02 y.max=0.00e-02 y.char= @SYsd
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+ x.min=@Lgate/2 x.max=@xmax x.char= @Lud/1.5

$ Halo 2D doping
profile p-type n.peak=@Ah region=3
+ y.min=@CYh y.max=@CYh y.char=@SYh
+ x.min=@xmin x.max=-@Lgate/2+@Lud x.char=@SXh

profile p-type n.peak=@Ah region=3
+ y.min=@CYh y.max=@CYh y.char=@SYh
+ x.min=@Lgate/2-@Lud x.max= @xmax x.char= @ SXh

$ ************************************************************* $

contact name=gate neutral resistan=0
contact name=bulk neutral resistan=0

$ ************************************************* $

extract mos.para

This input deck takes the grid generated above and generates gate transfer I-V
characteristics for various gate lengths. The solution is based on hydrodynamic modeling.

$ runs hydro idvgs sweep at vds=vdd for various gate lengths
$ this file calls bulkgrid.mesh

loop steps=8

assign name=Lgate
+ n.val=(0.039,0.045,0.052,0.058,0.065,0.0 078,0. 100)

assign name=logfil cl=onoff039.log c2=onoff045.log c3=onoff052.log
+ c4=onoff058.log c5=onoff065.log c6=onoff072.log c7=onoff078.log
+ c8=onoffl00.log

$ get grid
call file=bulkgrid.mesh

symb gummel carriers=0
solve init

$ models
models conmob unimob tmpmob ef.tmp auger
+ fermidir bgn
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$ calibrated mobility for electrons, holes are defaults
mobility silicon betan=2.00 vsatn=1.00e7

$ energy relaxation time
material silicon ele.tauw=0.200e-12

symb gummel carriers= 1 electrons ele.temp
method iccg damped itlimit=40
solve
symb newton carriers=l electrons ele.temp coup.ele
method autonr n.damp
solve v(drain)=0.01 vstep=0.01 nstep=3 elec=drain
solve v(drain)=0.05 elec=drain
solve v(drain)=0.06 vstep=0.01 nstep=3 elec=drain
solve v(drain)=0.10 elec=drain
solve v(drain)=0.125 vstep=0.025 nstep=2 elec=drain
solve v(drain)=0.20 elec=drain
solve v(drain)=0.25 elec=drain
solve v(drain)=0.30 elec=drain
solve v(drain)=0.35 elec=drain
solve v(drain)=0.40 elec=drain
solve v(drain)=0.45 elec=drain
solve v(drain)=0.50 elec=drain
solve v(drain)=0.55 elec=drain
solve v(drain)=0.60 elec=drain
solve v(drain)=0.65 elec=drain
solve v(drain)=0.70 elec=drain
solve v(drain)=0.75 elec=drain
solve v(drain)=0.80 elec=drain
solve v(drain)=0.85 elec=drain
solve v(drain)=0.90 elec=drain
solve v(drain)=0.95 elec=drain
solve v(drain)= 1.00 elec=drain
log out.file=@logfil
solve
solve v(gate)=0.01 vstep=0.01 nstep=3 elec=gate
solve v(gate)=0.05 elec=gate
solve v(gate)=0.06 vstep=0.01 nstep=3 elec=gate
solve v(gate)=0. 10 elec=gate
solve v(gate)=0.125 vstep=0.025 nstep=2 elec=gate
solve v(gate)=0.20 elec=gate
solve v(gate)=0.25 elec=gate
solve v(gate)=0.30 elec=gate
solve v(gate)=0.35 elec=gate
solve v(gate)=0.40 elec=gate
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solve v(gate)=0.45 elec=gate
solve v(gate)=0.50 elec=gate
solve v(gate)=0.55 elec=gate
solve v(gate)=0.60 elec=gate
solve v(gate)=0.65 elec=gate
solve v(gate)=0.70 elec=gate
solve v(gate)=0.75 elec=gate
solve v(gate)=0.80 elec=gate
solve v(gate)=0.85 elec=gate
solve v(gate)=0.90 elec=gate
solve v(gate)=0.95 elec=gate
solve v(gate)= 1.00 elec=gate

1.end

end

This input deck generates a grid to simulate a 100 nm-technology SOI NMOSFET.

$ generates 100 nm technology SOI mesh with halo at xj
$ filename=soigrid.mesh

assign name=Lext n.val=0.050
assign name=Tsi n.val=0.1200
assign name=ptdope n.val=6el7
assign name=pttop n.val=0.0600

assign name=Lgate n.val=0.065
assign name=Lscale n.value=@Lgate/0.005

assign name=SYsd n.val=1.954235e-02
assign name=Ah n.val=1.258574e+19
assign name=CYh n.val=3.250000e-02
assign name=SXh n.val=1.770361e-02
assign name=SYh n.val=2.577906e-02

assign name=bdope n.val=lel5
assign name=pdope n.val=9e19

$ physical dimensions
assign name=Ldsd n.val=0.050

$ Lud is Lgate-Lmet, it is the underdiffusion, the offset between the halo
$ edge and the extension edge
assign name=Lud n.val=0.0105
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assign name=Tpoly n.val=0.090
assign name=Tlto n.val=0.025
assign name=Tox n.val=0.00155
assign name=Tbox n.val=0.1000

$ tags
assign name=xmin n.val=-@Lgate/2-@Lext-@Ldsd
assign name=xmax n.val=@Lgate/2+@Lext+@Ldsd
assign name=ymin n.val=-@Tox-@Tpoly
assign name=ymax n.val=@Tsi

$ ************************************************************* $

mesh RECTANGU smooth.k= 1 ̂ diag.flip

$$$$$ for Lext > 0 nm $$$$$$
if cond=(@Lext>0)
x.mesh x.min=@xmin width=@Ldsd/2 hl=0.01 h2=0.01
x.mesh width=@Ldsd/2+@Lext/2 hl=0.01 h2=0.005
x.mesh width=@Lext/2 hl=0.005 h2=@Lgate/@Lscale
x.mesh width=@Lgate/2 hl=@Lgate/@Lscale h2=@Lgate/@Lscale
x.mesh width=@Lgate/2 hl=@Lgate/@Lscale h2=@Lgate/@Lscale
x.mesh width=@Lext/2 hl=@Lgate/@Lscale h2=0.005
x.mesh width=@Ldsd/2+@Lext/2 hl=0.005 h2=0.01
x.mesh width=@Ldsd/2 hl=0.01 h2=0.01
if.end

$$$$$ for Lext = 0 nm $$$$$$
if cond=(@Lext=0)
x.mesh x.min=@xmin width=@Ldsd/2 hl=0.01 h2=0.01
x.mesh width=@Ldsd/2 hl=0.01 h2=0.005
x.mesh width=@Lgate/2 hl=@Lgate/@Lscale h2=@Lgate/@Lscale
x.mesh width=@Lgate/2 hl=@Lgate/@Lscale h2=@Lgate/@Lscale
x.mesh width=@Ldsd/2 hl=0.005 h2=0.01
x.mesh width=@Ldsd/2 hl=0.01 h2=0.01
if.end

$$$$$ for Tsi < 500 A $$$$$$
if cond=(@Tsi<0.0500)
y.mesh y.min=@ymin depth=@Tpoly hl=@Tpoly/3 h2=@Tox/3
y.mesh depth=@Tox hl=@Tox/2
y.mesh depth=@Tsi hl=0.002 h2=0.002
y.mesh depth=@Tbox hl=0.01 h2=0.05
if.end
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$$$$$ for 800 A > Tsi >= 500 A $$$$$$
if cond=(@ Tsi<0.0800)&( @Tsi>=0.0500)
y.mesh y.min=@ymin depth=@Tpoly hl=@Tpoly/3 h2=@Tox/3
y.mesh depth=@Tox hl=@Tox/2
y.mesh depth=0.0350 hl=0.002 h2=0.003
y.mesh depth= @Tsi-0.0350 hl=0.003 h2=0.002
y.mesh depth=@Tbox hl=0.01 h2=0.05
if.end

$$$$$ for Tsi >= 800 A $$$$$$
if cond=(@Tsi>=0.0800)
y.mesh y.min=@ymin depth=@Tpoly hl=@Tpoly/3 h2=@Tox/3
y.mesh depth=@Tox hl=@Tox/2
y.mesh depth=0.0350 hl=0.002 h2=0.003
y.mesh depth= @Tsi-0.0700 hl=0.003 h2=0.003
y.mesh depth=0.0350 hl=0.003 h2=0.002
y.mesh depth=@Tbox hl=0.01 h2=0.05
if.end

$ **************** ******************************** $

$ gate polysilicon
region num=1 silicon x.min=-@Lgate/2 x.max=@Lgate/2 y.min=@ymin y.max=-@Tox

$ gate oxide
region num=2 oxide x.min=@xmin x.max=@xmax y.min=-@Tox y.max=0

$ SOI silicon
region num=3 silicon x.min=@xmin x.max=@xmax y.min=0 y.max=@ymax

$ buried oxide
region num=4 oxide x.min=@xmin x.max=@xmax y.min=@Tsi

$ left LTO
REGION num=5 oxide
+ x.min=@xmin x.max=-@Lgate/2 y.min=@ymin y.max=-@Tox

$ right LTO and nitride
REGION num=6 oxide
+ x.min=@Lgate/2 x.max=@xmax y.min=@ymin y.max=-@Tox

$ ************************************ ************ $

$ contacts
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electrode name=gate x.min=-@Lgate/2 x.max=@Lgate/2
+ y.min=@ymin y.max=@ymin+@Tpoly/3
electrode name=source x.min=@xmin x.max=@xmin y.min=0 y.max=@Tsi
electrode name=drain x.min=@xmax x.max=@xmax y.min=0 y.max=@Tsi
electrode name=substrate bottom

$ body contact
$electrode name=body x.min=-@Lgate/8 x.max=@Lgate/8 y.min= @Tsi y.max= @Tsi

$ poly depletion
profile n-type region= 1 uniform n.peak=@pdope

$ background doping
profile p-type region=3 uniform n.peak=@bdope

$ punchthrough doping
if cond=(@Tsi>@pttop)
profile p-type region=3 n.peak=@ptdope x.char=-@SXh y.char=@SYh
+ x.min=@xmin x.max=@xmax y.min=@pttop y.max=@ymax
if.end

$ Left Deep S/D, Extension S/D, and Halo
profile n-type n.peak=2.000000e+20 region=3
+ y.min=0.000000e+00 y.max=@Tsi y.char=@Lud/1.5
+ x.min=@xmin x.max= @xmin+@Ldsd x.char= @Lud/1.5

profile n-type n.peak=2.000000e+20 region=3
+ y.min=0.000000e+00 y.max=0.000000e+00 y.char=-@SYsd
+ x.min=@xmin x.max=-@Lgate/2 x.char=@Lud/1.5

profile p-type n.peak=@Ah region=3
+ y.min=@CYh y.max=@CYh y.char=@SYh
+ x.min=@xmin x.max=-@Lgate/2+@Lud x.char=@SXh

$ Right Halo, Extension S/D, Deep S/D
profile p-type n.peak=@Ah region=3
+ y.min=@CYh y.max=@CYh y.char=@SYh
+ x.min=@Lgate/2-@Lud x.max=@xmax x.char=@SXh

profile n-type n.peak=2.000000e+20 region=3
+ y.min=0.000000e+00 y.max=0.000000e+00 y.char- @ SYsd
+ x.min=@Lgate/2 x.max=@xmax x.char=--@Lud/1.5
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profile n-type n.peak=2.000000e+20 region=3
+ y.min=0.000000e+00 y.max=@Tsi y.char=-@Lud/1.5
+ x.min=@xmax-@Ldsd x.max=@xmax x.char= @Lud/1.5

$ *******e*************************** ***** ************** $

contact name=gate neutral resistan=0
contactname=substrate neutral resistan=0

$ ************************************************************ $

regrid reg=3 doping ratio=2 log smooth.k=l

extract mos.para

This input deck takes the SOI grid generated above, steps the drain voltage to VDD, then
rapidly ramps the gate voltage. Solutions are saved at each timestep. The body voltage can
be extracted from each solution.

$ this file calculates transient body voltage boost

$ get grid
call file=soigrid.mesh
save mesh out.file=mesh.mesh

extract mos.para

$ models
models fermidir conmob unimob fldmob consrh bgn auger r.tunnel

$ calibrated mobility for electrons; holes are defaults
mobility silicon betan=2.00 vsatn= 1.00e7

symb gummel carriers=0
solve init
symb newton carriers=2
method autonr n.damp
solve v(drain)=0.01 vstep=0.01 nstep=3 elec=drain
solve v(drain)=0.05 elec=drain
solve v(drain)=0.06 vstep=0.01 nstep=3 elec=drain
solve v(drain)=0.10 elec=drain
solve v(drain)=0.125 vstep=0.025 nstep=2 elec=drain
solve v(drain)=0.20 elec=drain
solve v(drain)=0.25 elec=drain
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solve v(drain)=0.30 elec=drain
solve v(drain)=0.35 elec=drain
solve v(drain)=0.40 elec=drain
solve v(drain)=0.45 elec=drain
solve v(drain)=0.50 elec=drain
solve v(drain)=0.55 elec=drain
solve v(drain)=0.60 elec=drain
solve v(drain)=0.65 elec=drain
solve v(drain)=0.70 elec=drain
solve v(drain)=0.75 elec=drain
solve v(drain)=0.80 elec=drain
solve v(drain)=0.85 elec=drain
solve v(drain)=0.90 elec=drain
solve v(drain)=0.95 elec=drain
solve v(drain)=1.00 elec=drain

solve v(gate)= 1.0 elec=gate ramptime=50e- 12 dt= le- 14 tstop= 100e-9
+ out.file=soln.aa

end

This input deck extracts the body voltage from each solution generated above.

$ this file extracts the body voltage from the transient solutions

$****** Silicon Film Thickness *************
assign name=Tsi n.value=0.1200

mesh in.file=mesh.mesh
loop step= 100
assign name=solnfile c.value=soln.aa delta= 1
load in.file= @ solnfile
print solution x.min=0.0 x.max=0.0 y.min=@Tsi y.max=@Tsi
l.end

end

This input deck generates the DC solution starting OUT-HI. It takes the SOI grid above
and steps the drain voltage to VDD while the gate voltage is 0 V.

$ this file generates initial DC solution starting OUT-HI

$ get grid
call file=soigrid.mesh

___I_~_ _jql ~_
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save mesh out.file=mesh.mesh

extract mos.para

$ models
models fermidir conmob unimob fldmob consrh bgn auger r.tunnel

$ calibrated mobility for electrons, holes are defaults
mobility silicon betan=2.00 vsatn=1.00e7

symb gummel carriers=0
solve init
symb newton carriers=2
method autonr n.damp
solve v(drain)=0.01 vstep=0.01 nstep=3 elec=drain
solve v(drain)=0.05 elec=drain
solve v(drain)=0.06 vstep=0.01 nstep=3 elec=drain
solve v(drain)=0.10 elec=drain
solve v(drain)=0.125 vstep=0.025 nstep=2 elec=drain
solve v(drain)=0.20 elec=drain
solve v(drain)=0.25 elec=drain
solve v(drain)=0.30 elec=drain
solve v(drain)=0.35 elec=drain
solve v(drain)=0.40 elec=drain
solve v(drain)=0.45 elec=drain
solve v(drain)=0.50 elec=drain
solve v(drain)=0.55 elec=drain
solve v(drain)=0.60 elec=drain
solve v(drain)=0.65 elec=drain
solve v(drain)=0.70 elec=drain
solve v(drain)=0.75 elec=drain
solve v(drain)=0.80 elec=drain
solve v(drain)=0.85 elec=drain
solve v(drain)=0.90 elec=drain
solve v(drain)=0.95 elec=drain
solve v(drain)=1.00 elec=drain
save solution out.file=outhi.soln

end

This input deck runs a transient I-V sweep using the OUT-HI solution generated above. A
transient I-V sweep is done by ramping the gate voltage. The transient drain current is
picked off the logfile a few timesteps after the end of the ramp, after the displacement
current has disappeared.

L _____ ~C
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$ this file runs transient I-V for starting OUT-HI
title does OUT-HI (VDD= 1.0) trans-iv sweep

mesh in.file=mesh.mesh

loop steps=7

assign name=vg n.value=(0.01,0.1,0.2,0.3,0.4,0.5,0.6)
assign name=logfil cl=outhivg001.log c2=outhivg010.log c3=outhivg020.log
+ c4=outhivg030.log c5=outhivg040.log c6=outhivg050.log c7=outhivg060.log
+ c8=outhivg070.log c9=outhivg 150.log

load in.file=outhi.soln
models fermidir conmob unimob fldmob consrh bgn auger r.tunnel
symb newton carriers=2
log out.file=@logfil
solve v(gate)=@vg elec=gate ramptime=50e-12 dt=le-14 tstop=100e-9

l.end

end

This input deck takes the SOI grid above and generates a OUT-HI solution, but starting
from a OUT-LO initial DC solution. The gate is stepped to VDD with the drain at 0 V. The
gate voltage is then quickly ramped to 0 V and the drain is quickly ramped to VDD. This
results in negligible change in body hole content.

$ this file generates initial DC solution starting OUT-LO, then flips to OUT-HI

$ get grid
call file=soigrid.mesh
save mesh out.file=mesh.mesh

extract mos.para

$ models
models fermidir conmob unimob fldmob consrh bgn auger r.tunnel

$ calibrated mobility for electrons, holes are defaults
mobility silicon betan=2.00 vsatn= 1.00e7

symb gummel carriers=0
solve init
solve v(gate)=0.01 vstep=0.01 nstep=3 elec=gate
solve v(gate)=0.0 5 elec=gate
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solve v(gate)=0.06 vstep=0.01 nstep=3 elec=gate
solve v(gate)=0. 10 elec=gate
solve v(gate)=0.125 vstep=0.025 nstep=2 elec=gate
solve v(gate)=0.20 elec=gate
solve v(gate)=0.25 elec=gate
solve v(gate)=0.30 elec=gate
solve v(gate)=0.35 elec=gate
solve v(gate)=0.40 elec=gate
solve v(gate)=0.45 elec=gate
solve v(gate)=0.50 elec=gate
solve v(gate)=0.55 elec=gate
solve v(gate)=0.60 elec=gate
solve v(gate)=0.65 elec=gate
solve v(gate)=0.70 elec=gate
solve v(gate)=0.75 elec=gate
solve v(gate)=0.80 elec=gate
solve v(gate)=0.85 elec=gate
solve v(gate)=0.90 elec=gate
solve v(gate)=0.95 elec=gate
solve v(gate)= 1.00 elec=gate

symb newton carriers=2
method autonr n.damp
solve v(drain)= 1.0 elec=gate ramptime= 10e- 12 dt= le- 14 tstop=20e- 12
solve v(gate)=0 elec=gate ramptime=10e-12 dt=le-14 tstop=40e-12
save solution out.file=outlo.soln

end

This input deck runs a transient I-V on the solution starting OUT-LO, as generated above.

$ this file runs transient I-V for starting OUT-LO, right after flipping OUT-HI
title does OUT-LO (VDD= 1.0) trans-iv sweep

mesh in.file=mesh.mesh

loop steps=7

assign name=vg n.value=(0.01,0. 1,0.2,0.3,0.4,0.5,0.6)
assign name=logfil cl=outlovg001.log c2=outlovg010.log c3=outlovg020.log
+ c4=outlovg030.log c5=outlovg040.log c6=outlovg050.log c7=outlovg060.log
+ c8=outlovg070.1og c9=outlovgl50.log

load in.file=outlo.soln
models fermidir conmob unimob fldmob consrh bgn auger r.tunnel



symb newton carriers=2
log out.file=@logfil
solve v(gate)=@vg elec=gate ramptime=50e-12 dt=le-14 tstop=100e-9

1.end

end

This is a sample MEDICI Circuit Advanced Application Module (CAAM) file in which the
gate and drain voltage change simulatneously. This is done by defining the gate and drain
voltages as SPICE elements connected to the simulation mesh. The body hole content can
be increased if the simulation mesh has a floating body by using the "photogen" statement.
A SPICE current source can be added to the body terminal if the simulation mesh is
defined with a body contact. This file generates solutions versus time. Body voltage, hole
content, etc., can be extracted from these solutions.

$ this is a sample CAAM file in which gate and drain voltages are varied
$ simultaneously to mimic switching in a CMOS inverter
$ C-AAM Deck for PD SOI CMOS Inverter
$assign name=tsi n.value=
$assign name=tox n.value=
$assign name=leff n.value=
$assign name=na n.value=
$assign name=gfac n.value=
call file=channel

start circuit

$ nodes: 0-ground
$ 1-Vin (gate)
$ 2-Vout (drain)

$ pulse: I v01 val tdl trl tfl tpl perl
vin 10pulse 0 1.2 0 50p 50p In 2n
vd 20pulse 1.2 0 30p 50p 50p In 2n

$ node=electrode name
pnmos 1=gate 0=source 2=drain O=substrate file=mesh.mesh width= 1.0

$ set up initial conditions on the nodes
.nodeset v(1)=0 v(2)= 1.2

$ set maximum voltage step to be less than default
.option delvmax=0.2
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finish circuit

material print
save mesh out.file=caam.mesh

load in.file=outhil20.transsoln structure=pnmos
extract holes structure=pnmos
+ x.min=0.235 x.max=0.235+@leff y.min=0.0 y.max= @tsi/le4

models arora hpmob consrh auger bgn impact.i
symbol newton carr=2
log ivfile=log.log
solve dt=le-14 tstop=1.2e-9 out.file=soln.aa impact.i

end

The following is a section of an input deck which extracts holes content from solutions
generated by MEDICI CAAM.

$ this is a sample CAAM file in which extract holes from CAAM solutions
$assign name=tsi n.value=
$assign name=tox n.value=
$assign name=leff n.value=
$assign name=na n.value=
$assign name=gfac n.value=
call file=channel

start circuit
.load mesh=caam.mesh solution=soln.aa
finish circuit
extract structure=pnmos holes
+ x.min=0.235 x.max=0.235+@leff y.min=0.0 y.max=@tsi/le4

start circuit
.load mesh=caam.mesh solution=soln.ab
finish circuit
extract structure=pnmos holes
+ x.min=0.235 x.max=0.235+@leff y.min=0.0 y.max=@tsi/le4

etc.

Pi.PP-~--I--- ~-L-- :i
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Appendix B

Double-Gate MOSFET Process Traveler

Below is the detailed process traveler for the double-gate MOSFET process described in
section 5.1. Each enumerated step is divided into detailed substeps, each with the appropriate
MTL machine name in parentheses. This traveler is presented as reference only. Many of the
machines listed and many of the corresponding recipes may no longer be in use due to conversion
of the fabrication facilities from 4-inch equipment to 6-inch equipment.

-----------------------------------------------------------------------------------
Lot Name: NVTMOS4

Description: Self-aligned double-gate NMOS process with prepatterned backgate
and self-alignment through counterdoping of the backgate.

Maskset: COMPBG1
CMP-CPB(clear)-backpoly
CD(clear)-active
CP(clear)-poly
CCB(dark)-back contact cuts
CC(dark)-contact cuts
CI(clear)-implant mask (blocks n+)
CI-comp(dark)-implant mask (blocks p+)
CNC(clear)-implant mask (blocks n+ counterdoping implant)
CM(clear)-metal mask

C i~SL--
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2. Back-Gate Stack and Make Handle Wafers

grow back-gate oxide on SIMOX wafers and deposit back-poly
a) rca add 2 blanks (rca) device wafers and handle wafers

b) grow -5k wet thermal oxide on handle wafers (tubeB 1, rec. 122 FF= hr35min)

c) back-gate oxidation 200A 900C dry oxide (tubeA2 rec. 226 FF= hrl6min)

d) deposit 1750A a-Si (tubeA6 rec. 705 FF=lhr50min) add 4 monitors

******************

3. Implant Back-Gate
********************

a) blanket implant back gate poly p+ dose=1.5e15 (Ion Implant Services)

b) piranah clean (pre-metal strip)

*4. Bac****k-Gate*** **********

4. Back-Gate Definition
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1. Thin SOI Wafers
****************

Starting 1950A, we want to finish with 400A. Assume 0.5 consumption to be
safe; also, SOI oxidizes on the back interface a little too. Oxidation steps
in the process include backgateoxide(200A), SRO(250A), sacox(60A),
frontgateoxide(50A), reox(-30A on top of gateox that's already there), so the
total consumed is 590A*0.5=295A.
1950-400-295=1255A/0.5=2510A oxide grown to thin wafers.
a) rca add 2 blanks (rca)

b) grow 0.5*2510A oxide, add 2 blanks (tubeB 1 rec. 139, FF=2hr07min)
***load in tube in order, unload in order

c) BOE dip to remove oxide (oxide)
MACHINE: ICL oxide DATE: 02/26/99 10:34:22 USER: wei

d) rca add 2 blanks (rca)
MACHINE: ICL rca DATE: 02/26/99 11:50:20 USER: wei

e) grow 0.5*2510A oxide (tubeB1 rec. 139, FF=2hr01lmin)
***load in tube in opposite order to even out positional variation in boat

f) BOE dip to remove oxide (oxide)

i
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stepper2 pattern CMP-CPB job WEI CPB 1st level, shoot 9x9
---------------------------------------
b) coat (coater)
---------------------------------------
c) shoot 9x9 (stepper2)
---------------------------------------
d) develop (developer)
---------------------------------------
e) BOE dip before poly etch (oxide)
---------------------------------------
f) etch back-poly (AME5000 chamberB recipe UNDOPED PC
---------------------------------------
g) dump rinse in undoped oxide dump rinser to remove chlorin
h) ash resist (asher)
h) ash resist (asher)

)LY NOD)

Le (oxide)

5. Prepare Wafers for Bonding

a) rca NO HF DIP (rca)

b) deposit 1.5um LTO (tubeA7, rec. 462 FF=2hr25min)

c) poly recrystallization anneal (tubeB4 rec. 176 600C FF=14hr)

d) densify LTO 1000C (tubeA3, rec. 322, FF=10min)

e) CMP SOI wafers (CMP)

f) post-CMP clean (pre-metal strip)

6. Bond Wafers

a) rca clean (rca)

b) SC-1 clean and bond (rca and bonding jig)

c) anneal bond 950C (tubeA3, rec. 208, FF=40min)

d) deposit -1100A nitride (tubeA5, rec. 460 FF=43min)

e) deposit --1100A nitride (tubeA5, rec. 460 FF=43min), rotate wafers 180
degrees so the parts in the rail are not exposed

~I---- - I
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7. Etchback Bonded Wafers

a) thin wafers (grind and polish, Skip Hoyt, Lincoln Labs, 181-4433)

b) piranah and 50:1 HF dip in yellow flourowre in TRL, then piranah
in green flouroware (acid-hood)

c) piranah clean (pre-metal clean)

d) deposit 5um 25% If pwr TEOS on backside (conceptl)

e) coat back handle wafer (coater) program 33 no EBR

f) BOE dip off TEOS that spilled over to TMAH side (oxide)

g) ash resist (asher)

h) TMAH wet etch of SIMOX substrate (KOHhood)

i) post-TMAH piranah with HF dip (TRL acid-hood yellow flouroware, then green)
this is to clean wafers and knock loose particles off of void edges

j) coat frontside (coater) program 11, want EBR to remove TEOS off edges

k) BOE dip to strip TEOS off backside (oxide)

1) scribe wafers (scribe in TRL)

m) piranah strip resist (pre-metal)

n) BOE dip SOI wafers to remove remaining SIMOX BOX (oxide)

o) rca clean alignment dummies (rca)

p) deposit 1k a-Si (tubeA6 rec. 705 FF=59min, based on last run rate=17A/min)

q) inspect

8. SRO/Nitride

a) rca clean (rca)

__ IUL_ _ _I__I_~_; _;_ __
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b) grow 220A SRO (tubeAl rec. 230) add 2 blanks and 2 blanks as etch dummies

c) deposit 1450A nitride (tubeA5 rec. 410) add 4 blanks as etch dummies and
1 1000A monitor in case we have to stip nitride

9. Define Active Area

stepper2 pattern CD, align to back poly
a) HMDS (HMDS)

b) coat (coater)

c) shoot (stepper2) job WEI FILL,1

d) develop (developer)

e) nitride plasma etch (AME5000 chamberA, recipe NITRIDE ETCH CF4)

f) field implant (Ion Implant Services)
5E13 Boron 10keV tilt=7 on machine 6001 for double-gate wafers
5E13 Boron 25keV tilt=7 on standard CF machine for bulk wafers

g) piranah clean (pre-metal strip)

h) ash resist (asher)
resist stripped in piranah

10. Field Oxide

a) rca clean (rca)

b) field oxidation (tubeB 1 rec. 114 FF=27min for SOI, 1hr35min for bulk)
tsi based on 50% consumption thus far is 485A, thus FOX needed based on 44%
consumption+20% is 1323A, aim high at 1350A, FOX for bulk wafers will be 3400A,
based on dummy run SOI gets FF=27min in tubeB 1 and bulk gets FF=lhr35min in
tubeB2

11. Strip Nitride/SRO and Grow SacOx

a) 5sec BOE dip before nitride wet etch (oxide) minimize dip to miminize
loss of FOX

-4 --4Y~L'-i-Wb. ~IP~llls~
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b) nitride wet etch (nitride)

c) BOE dip off SRO (oxide) minimize dip to miminize loss of FOX

d) rca clean (rca)

e) grow -60A dummy gate oxide at 900C (tubeA2 rec. 226 FF=8min)

12. Vt Adjust Implants (for short channel Vt=O. 1V)

a) implant channel BF2 1.5E12 25keV tilt=7 (Ion Implant Services)
bulk wafers also got Boron 5E12 50keV tilt=7

b) piranah clean (pre-metal strip)

c) BOE dip to remove dummy gate oxide (oxide)

13. Form Gate Stack

a) rca clean (rca)

b) grow 60A gate oxide at 900C (tubeA2 rec. 226 FF=7min30sec)

c) depsoit as polysilicon (tubeA6 rec. 461 FF=30min)

14. Poly Definition

stepper2 pattern CP job WEI FILL align to backgate

b) coat (coater)

c) shoot (stepper2)

d) develop (developer)

15. Etch Poly

a) BOE dip 5sec to clear native oxide (oxide)

b) poly plasma etch (AME5000 chamberB recipe UNDOPED POLY NOD)



APPENDIX B 199

c) dump rinse after chlorine etch (oxide)

d) ash resist (asher)

16. Reox

a) rca NO HF DIP (rca) add 2 blanks

b) grow 900C 60A oxide (tubeB2 rec. 226 FF=6min)

17. Back Contact Cuts

stepper2 pattern CCB, align to back poly

b) coat (coater)

c) shoot (stepper2)

d) develop (developer)

e) BOE dip to open back contacts (oxide)

f) back contact implant Boron 3E15 10keV 7 degree tilt (Ion Implant Services)

g) piranah clean (pre-metal strip)

i) ash resist (asher)

18. Source/Drain/Top-Gate Implants

stepper2 pattern CI, align to back poly, shoot SOI wafers only
a) HMDS (HMDS)

b) coat (coater)

c) shoot (stepper2)

d) develop (developer)

e) implant top poly and S/D (Ion Implant Services) send out SOI and bulk wafers
Arsenic, 4E15, 25keV, 0 degree tilt
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f) piranah clean (pre-metal strip)

g) ash resist (asher)

19. Source/Drain Top-Gate and Bottom-Gate Contact Activation

a) rca NO HF DIP (rca)

b) anneal 900C 15min (tubeB2 rec. 171 FF=15min)

20. Back-Gate Compensation Implant (splits)

stepper2 pattern CNC job WEI FILL align to back poly

b) coat (coater)

c) shoot (stepper2)

d) develop (developer)

e) counterdoping implants machine 6001 (Ion Implant Services)

f) piranah clean (pre-metal strip)

g) ash resist (asher)

21. Back-Gate Activation

a) rca NO HF DIP (rca)

b) anneal 600C (tubeB4 rec. 176 FF=lhr)

22. Deposit LTO Passivation

a) rca NO HF DIP (rca)

b) deposit 4k LTO (tubeA7 rec. 462 FF=40min)

23. Backside Wafer Strip
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24. Contact Cuts

stepper2 pattern CC job WEI FILL align to poly
a) HMDS (HMDS)

b) coat (coater)

c) shoot (stepper2)

d) develop (developer)

e) oxide plasma etch (AME5000 chamberA, KEITH CD, modify etch step to 5sccm 02)

f) HF dip to open contact cuts (oxide)

g) ash resist (asher)

25. Metal Deposition

a) pre-metal clean (pre-metal)

b) Al-Si deposition (endura)

26. Metal Definition

stepper2 pattern CM job WEI FILL align to backgate
a) HMDS (HMDS)
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a) HMDS (HMDS)

b) coat (coater)

c) hardbake (developer program 82)

d) HF dip to remove 4kA LTO plus reox (oxide)

e) plasma etch (AME500 chamberB, BACKSIDE ETCH B)

f) BOE dip to make sure all clear (oxide)

g) ash resist (asher)
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b) coat (coater)

c) shoot (stepper2)

d) develop (developer)

e) hardbake (developer program 43 reprogram bake module 86 for 150C)

f) metal plasma etch (etcher-3 rec. 32)

g) dump rinse in panetch rinser to get rid of chlorine so resit will ash
(panetch)

h) ash resist (asher)

i) dump rinse in panetch rinser (panetch)

j) metal sinter (tubeB8 rec. 710)
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