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ABSTRACT

Unobstructed free space is a pervasive goal in the design of structures intended to provide
shelter and protection. This is especially essential for venues such as athletics, spectator
activities, and large congregations. The need for such space is constrained by structural
feasibility and costs of material and construction. Space structures, and more specifically,
the dome structural system is an efficient way to achieve this desired goal. The benefit of
domes is that it can be shaped in such a way so that the members are only under axial
stresses. Typical construction materials for large span braced domes are dominated by
metallic alloys such as steel and aluminum due to their relatively high strength to weight
ratio. Timber domes are observed much less frequently. However, recently there is a
development of an increase in the use of timber as a structural material due to its potential
as a sustainable and more environmental option. Trees can be harvested in a much more
sustainable manner than materials such as steel. The aim of this thesis is to compare the
advantages and disadvantages of the design and construction of a typical dome structure
using differing structural materials of timber and steel. A lamella dome system with the
same dimensions and layout was used for the analysis and design of both options.
Parameters such as the total self-weight of the structural members, cost, deflection,
durability, and sustainability were compared and discussed.
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1 INTRODUCTION

In current times, steel and concrete have become the dominant construction materials for large-

scale structural projects. In this age of increasing concerns over the environment, there is an

increasing shift towards the utilization of more sustainable options. Timber is one of these

alternatives

Timber is one of the most ancient construction materials and continues to enjoy widespread use

today. It has many benefits in structural design, such as a high strength-to-weight ratio, easy on-

site alteration and connections, and good thermal insulating properties. In addition, it is a

sustainable resource with low carbon emissions throughout its production and use in comparison

with steel and concrete (Timber Construction Manual). Although it may have disadvantages due

to its non-uniformity because of its organic nature, these can be avoided through careful design

considerations. Despite its wide-spread use and advantages, many structural designers lack the

knowledge to design for wooden structures. The aim of this thesis is to promote the use of timber

in large-scale structural applications by comparing the design of a dome with differing materials

of wood and steel.

The following thesis is structured as follows; Section 2 provides general background information

on dome structures. Section 3 gives a broad overview of braced dome types. The relevant

structural properties of timber are described in Section 4 due to the author's opinion that it is not

at all well understood by most structural engineers and students of the discipline. Section 5

describes the computer model of the dome that will be used, as well as providing the loading to

be applied. Section 6 details the results of the analysis and design, while providing a discussion

of important points of comparison. Section 7 contains the key points derived from this study as

well as significant concluding remarks.
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2 GENERAL OVERVIEW - SPACE STRUCTURES/DOMES

Long-span structural systems are necessary for venues that require large column-free spaces.

Usages include locations such as sports structures, auditoriums, hangars, exhibition centers, and

assembly halls. Space structures are one type of efficient long-span structural system

(Ramaswamy, 2002). The terms "space frame" and "space truss" are often used interchangeably

linguistically. While both have similar 3-dimensional properties, in this thesis, space frames shall

be regarded as having fixed joints while space trusses are pin connected.

Space structures are unique in that they carry loads in a three-dimensional manner rather than

planar. In a conventional structural scheme, forces are transferred through a certain hierarchy of

members from secondary beams to primary beams and then to columns which ultimately

transmit the forces to the ground (Ramaswamy, 2002). The forces that these members carry rise

in magnitude progressively. The force transferred increases along with the cross-section size of

the members. For space structures however, a loading at a certain location causes forces to be

distributed to a large number of members. There is no clear order in which the forces are

transmitted (Ramaswamy, 2002). There are several advantages due to this.

Space truss members transfer forces primarily through either compression or tension, with little

bending. As a result of this and the fact that forces are transmitted three-dimensionally, the

members are lighter. Therefore the self-weight of space structures are relatively small compared

to other structural systems (Ramaswamy, 2002). In addition to this, the inherent stiffness of

space trusses is high due to its three-dimensional nature, since all members contribute to each

other's stiffness. The high stiffness results in low deflections, which is important for long-span

structures, due to their lack of interior supports (Ramaswamy, 2002).

Economically, space structures are cheaper since they are easier to construct and fabricate. Due

to the fact that many members help to carry a certain load, the number of different size members

is minimized (Ramaswamy, 2002). In many cases, a space frame will consist of only one or two

size members. This allows the mass-production of space frames and consequently allows easier
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construction due to its factory production (Ramaswamy, 2002). Because most of the parts are

similar, on-site assembly is possible with only semi-skilled workers (Ramaswamy, 2002).

Some types of space structures include various grid structures, domes, and shells. The main

focus of this thesis is on the dome structure.

2.1 DOMES

Domes are an ideal structural system for covering long span distances without any requiring any

support obstructions. Some of the main usages for domes include sport stadiums, convention

centers, exhibition halls, and assembly places. The dome provides wide column free spaces.

The dome is able to enclose a maximum amount of space while requiring a minimum amount of

surface area. (Makowski, 1984) Therefore, this results in the ability to cover an extremely large

area while requiring minimum material and thus usually proves to be an economical structural

system.

2.1.1 HISTORY OF DOMES

Domes are among the oldest forms of three-dimensional structural systems. The earliest record

of the existence of a dome was found on an Assyrian bas-relief discovered in the ruins of a

palace of Senna-cheribbo in Nineveln around 705 - 681 B.C. (Makowski, 1984) This relief

showed a group of buildings covered with both sharply pointed and circular dome structures.

(Makowski, 1984) There have been many famous domes in antiquity, such as the Pantheon dome

located in Rome and built in approximately 120 A.D (Makowski, 1984). Other notable domes

include St. Sophia's dome in Istanbul, St. Peter's dome in Rome, Los Invalidos dome in Paris,

St. Paul's Cathedral in London, and the National Capitol Dome in Washington D.C. (Makowski,

1984). The preferred material for the construction of domes evolved from the usage of stone in

olden times and then gradually to brickwork. During the Middle Ages, the construction of domes

shifted to predominantly timber (Makowski, 1984). The advent of iron brought many new
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advances in dome construction, particularly in the spans that were able to be constructed. The

first iron dome was constructed in 1811 by Belanger and Brunet, who built it to cover over the

central portion of the Corn Market in Paris (Makowski, 1984). However, in these early iron

domes, the designers and builders merely adapted timber construction techniques to iron

(Makowski, 1984). For examples, connections used were mostly traditional timber types such as

the dovetail. Therefore, it could not be properly or truly called "iron construction". The

introduction of steel brought about a material that has extremely high strength and effective in

both compression and tension. Steel allowed even longer spans and thinner thicknesses for dome

structures. The later development of reinforced concrete with the combination of concrete and

steel reinforcement bars allowed the construction of new types of shell dome structures

(Makowski, 1984).

The earliest domes were mostly all based on a circular floor plan and appeared as roofing

systems (Makowski, 1984). The domes of antiquity developed to become religious symbols for

pagans, Christians, and Islamic believers. It is popular for usage in structures such as tombs,

tabernacles, baptisteries, churches, and mosques. It has served as a special symbol for the

architectural styles of the Byzantines, Islam, and Indian traditions (Makowski, 1984).

In middle and late Latin, the word "doma" meant "house" or "roof'. During the Middle Ages and

the Renaissance periods, the term "domus dei" became the term for an important or revered

house. This idea has persisted to this day. For example, the Italian word "duomo" means

cathedral or church (Makowski, 1984). In the German, Icelandic and Danish languages, the word

"dom" means cathedral as well. In old English, the word "dome" was equivalent to indicate

structures serving as town house, guild hall or an important meeting house (Makowski, 1984).

All of these linguistic terminologies all point to the symbolic significance that the dome has

developed into. It is regarded as representative of either a place of religious, civic, or communal

importance.
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2.1.2 NOTABLE ANCIENT DOMES

Figure 1: The Pantheon (Gergeley Vass)

base of almost 7 m (23 ft) thickness was required

1984).

The Pantheon in Rome was built around 120 -

124 A.D and shown in Figure 1. It is

constructed on a circular plan with a diameter

of 44 m (144 ft) (Makowski, 1984). Its

structural and architectural importance cannot

be understated since it held the record of being

the largest dome for over 1800 years

(Makowski, 1984). It was originally thought to

be constructed out of concrete but recently

was discovered to be built out of mortar and

bricks (Makowski, 1984). A large concrete

to withstand the high hoop stresses (Makowski,

The Church of St. Sophia in

Constantinople was built in between 532 -

537 A.D. An example of Byzantine

architecture, it is a somewhat shallow

dome, with the main dome having a

spherical shape, shown in Figure 2

(Makowski, 1984). The dome spans 32.6

m and possesses a height of 14 m

(Makowski, 1984). Due to the shallowness
Figure 2: St. Sophia (Hello Turkey)

of the dome, there are high horizontal thrust

reactions at the base of the dome. The thrust at the base is counteracted by huge buttresses and

semi domes. The main dome is constructed mostly from bricks which are almost all in

compression, due to the structural nature of the dome. Both the horizontal and vertical reaction

forces are transferred to four large pendentives and then subsequently to four large arches

(Makowski, 1984). The horizontal reactions from the central dome are transferred to two semi-

domes along one axis and to four large buttresses on the other axis. Even though the overall clear
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span of St. Sophia's is less than the Pantheon, the impression of space that it gives off is much

greater due to the semi-domes and buttresses (Makowski, 1984).

During the Renaissance period, the most representative dome is probably that of St. Peter's in

Rome. This particular structure went through a series of different designers beginning with

Donato Bramonte, then Raphael, Peruzzi, and Sangallo. (Makowski, 1984) The fifth design was

by Michelangelo but he died before the dome was completed. However, based on his design

drawings and model, the final product was completed in 1590 by Giacomo della Porta.

(Makowski, 1984) The St. Peter's dome is a good indicator of how most early domes were

designed and constructed based on the experience of the masons and construction workers and

the intuition of the designer. (Makowski, 1984) That explains why the St. Peter's dome required

significant repair work due to cracking. In 1744, additional tie rings were required to be

incorporated to the dome in order to prevent its collapse. (Makowski, 1984)The development of

modem structural theory and its application to dome structures became more advanced and

recognizable in its current form during the advent of braced domes in the 19th century

(Makowski, 1984).

The development of braced domes was a direct consequence of the new use of iron as a

structural material. In the early examples of domes, most were spherical and the rise-to-span

ratio was fairly high, resulting in mostly vertical reactions acting on the supports (Makowski,

1984). Increasingly however, attempts to decrease the rise-to-span directly led to higher

horizontal thrust reactions at the base of the dome. Consequently, newer and better bracing

schemes for domes were needed in order to account for the high thrust reactions. During this

time period, most of the development of braced domes occurred in countries such as Germany,

France, and Switzerland (Makowski, 1984). Major contributors to the structural theory and

understanding of dome behavior included Schwedler, Henneberg, Mohr, Ritter, Muller-Breslau,

Scharowsky, and Zimmerman (Makowski, 1984). There was heightened interest in dome

structures after World War II. One major stimulus for this was Buckminister Fuller, the main

developer of the geodesic domes, which influenced many architects into becoming interested in

the structural efficiency of the dome structure. However, structural developments in the area of
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domes were led by researchers and practitioners such as Lederer, Kiewitt, Soare, Wright, du

Chateau, Kadar, Tsuboi, and Matsushita (Makowski, 1984).

2.1.3 PROPERTIES OF DOMES

The dome is a synclastic surface (Makowski, 1984). This means that the curvature at any point

on the dome is the same sign in all directions. The dome is also a non-developable surface. That

is, the dome surface cannot be flattened into a plane without distortion or stretching the surface

(Makowski, 1984). In still other terms, the dome is a surface of positive Gaussian curvature

(Makowski, 1984). All of these characteristics indicate why the dome cannot be built out of only

members of one length. The benefit of the dome is that it is essentially a three-dimensional arch.

If the dome is properly formed and shaped for the applied loading, it can be designed so that all

of the members carry the loadings in only axial action, without bending or torsional moments.

This is an extremely attractive and effective structural system if the form of the structure could

be determined to achieve only axial stresses (Makowski, 1984).

2.1.4 OVERVIEW OF TYPICAL DOME CONSTRUCTION MATERIALS

Currently, the most common types of construction materials used for domes include various steel

and aluminum alloys, reinforced concrete, and timber (Narayanan, 2006). High strength steel

alloys allow for the construction of larger and lighter dome structures. Other advantages for steel

include ease of fabrication. The ease of connections for steel is also a bonus since welding and

bolting are relatively conventional, and therefore inexpensive. The ease of prefabrication,

assembly and mass production are other major advantages of steel structural members

(Narayanan, 2006). Aluminum alloys are a more recent addition as a structural material. New

heat-treated and tempered aluminum alloys provide engineers with a structural material that is

light and corrosion resistant (Narayanan, 2006). The construction of concrete domes has

diminished due to several reasons. The most important is probably the requirement of the use of

expensive formwork as well as the difficulty and long time duration of construction. In addition,
the dead load for reinforced concrete domes is much more substantial than other types of

material. All of these factors result in the reinforced concrete dome in not being an economical
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structural material choice (Makowski, 1984). Timber domes are occasionally still built, despite

their lower strength than materials such as steel and aluminum and perceived lower durability.

Unknown to the general public is that timber actually has a high strength-to-weight ratio. It also

has good acoustical properties for venues such as music and assembly halls. In addition, wood

serves as a good natural insulator in comparison to other major structural materials which results

in cost savings for insulation (Narayanan, 2006). A renewed interest in wood construction has

also developed due to issues of environmental awareness since timber is a renewable resource if

the procurement process is conducted in a rational and sustainable manner.
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3. BRACED DOMES

There are four main groups of braced domes as follows: (Narayanan, 2006)

1) Frame/Skeleton Single Layer Domes

2) Truss/Double Layer Domes

3) Stressed Skin Type

4) Formed Surface

Most domes constructed in the world belong to the first category of frame or skeletal type of

single layer domes. These types of domes are generally for relatively shorter spans, typically up

to 100 m (328 ft). The second types of braced domes are the double layer domes, which are

essentially stiffer forms of the single layer type. The stressed skin dome is where the covering or

cladding material actually serves as a structural part of the system. For the formed surface dome,

sheets of materials such as steel, or aluminum are interconnected in sheets to form the main

framework of the dome (Narayanan, 2006).

A general overview of the contemporary domes constructed indicates that the same few types of

domes are being constructed. These are mostly skeleton type domes and include ribbed,

Schwedler, braced, parallel-lamella, and geodesic domes. Since all of these are of the skeleton

category, a brief overview of the various types of frame/skeleton domes will be provided

(Narayanan, 2006).

3.1 RIBBED DOMES

Ribbed domes consist of a series of either solid or truss ribs that are connected radially at the top

or crown of the dome (Narayanan, 2006). There are two main types.
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3.1.1 BRACED RIB DOME

Braced rib dome consists of radially bracing ribs that are usually formed by various types of

trusses such as the Pratt or Warren (Narayanan, 2006). There are many variations on these ribs

depending on whether the stresses are high. Figure 3 shows some typical sections used for the

ribs of a braced rib dome. Larger depths can be used for the trusses or additional bracing

elements such as struts and ties may be added for high stress areas (Narayanan, 2006).

Hfdiametical span

Figure 3: Typical Braced Dome Sections (Narayanan, 2006)

This type of ribbed dome generally requires the incorporation of a tension ring at the base to

account for the thrust reactions at the bottom. These tension rings are typically made of

prestressed concrete, reinforced concrete or steel sections. When the ribs are pin connected to the

foundation, then the dome is regarded as unstiffened (Narayanan, 2006). When the ribs are

connected to the tension ring of the dome, then it is regarded as stiffened. In this latter case, the

reaction from the ribs to the ground consists only of vertical forces. The horizontal reaction in

the dome is taken entirely by the tension ring. The geometry of some typical braced rib domes

can be seen in Figure 4. The disadvantage for this dome system is that there may be too many rib

members connecting at the crown. Therefore, a compression near the crown may be needed for

the ribs to connect to, while only a few of the major ribs connect at the top of the crown. An
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example of the braced rib dome is the Bell's Sports Centre in Perth. It is the largest laminated

timber dome in the UK and has a diameter of 67 m, and covers a total area of 2973 sq. m.

(Narayanan, 2006).

(a) (b) (c) (d)

Figure 4: Typical Braced Rib Dome Configurations (Narayanan, 2006)

3.1.2 SOLID RIB DOME

Solid rib domes consist of an arrangement similar to the braced rib dome. However, the

difference is that the ribs running along the longitudinal directional are not truss members but are

instead shallower solid, rolled, built-up or boxed sections (Narayanan, 2006). Usually, there are

intermediate rings circling the dome in between the crown compression ring and the base tension

ring as shown in Figure 5. For the solid rib dome, most types have all of the ribs terminating at

the compression ring at the top rather than the crown (Narayanan, 2006). The appearance from

below presented by this type of configuration is generally regarded as more aesthetically

pleasing. Therefore, no architectural or secondary cover may be required which results in cost in

savings for material and labor (Narayanan, 2006).
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Compression ring

Icerdiate ring

Rib Elevation Tension ring

Plan

Figure 5: Typical Solid Rib Dome (Narayanan, 2006)

3.2 SCHWEDLER DOMES

The Schwedler Dome is named after the German engineer J.W. Schwedler who introduced the

structural system in 1863 when the first of its kind was constructed over a gas tank in Berlin

(Narayanan, 2006). Schwedler also erected many other similar domes over his lifetime, the

largest being in Vienna, in 1874 with a maximum span of 63 m (Narayanan, 2006). The

Schwedler dome is essentially a form of the braced ribbed dome. It consists of straight or curved

ribs lying on a surface of revolution connected by polygonal rings which divide sections into

different bays (Narayanan, 2006).

(a) (N (c)

(d)

Figure 6: Typical Schwedler Dome Geometry (Narayanan, 2006)
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Each of these bays may contain 1 or 2 diagonals that serve as bracing elements. Some typical

geometrical configurations are illustrated in Figure 6. The benefit of the Schwedler is that it may

be simplified to allow for easier analysis. The Schwedler dome becomes statically determinate if

several simplifications are made. First, the connections are assumed to be pin connected. The

second assumption pertains to the diagonals (Narayanan, 2006). Without diagonals, the structure

is unstable. However, the lengths of these diagonals are usually very long and susceptible to

buckling under compression. Therefore, when there are 2 diagonals in each bay, it can be

assumed that one is under tension and the other under compression. The compression member is

assumed to fail under buckling. Therefore, for analysis, only 1 diagonal (under tension) is left for

each bay (Narayanan, 2006). These two assumptions allow the Schwedler to be analyzed much

more easily since it is now statically determinate. The largest Schwedler dome built spans over

the Civic Centre at Charlotte, North Carolina. Built in 1955, it has a 100 m. diameter and a

maximum height of 18 m. (Narayanan, 2006).

3.3 STIFF-JOINTED FRAMED DOMES

Stiff-jointed framed domes are similar to the Schwedler dome in all respects except that the ribs

are continuous members and all the connections are rigid (Narayanan, 2006). The geometry and

layout of the dome itself is the same as the Schwedler as can be seen from Figure 7. Therefore, it

is also known as the rigidly jointed Schwedler dome. In other terms, it is also called the three

dimensional form of the vierendeel truss (Narayanan, 2006).

(a) (b)

Plan

Figure 7: Stiff-Jointed Framed Dome Geometry (Narayanan, 2006)
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There are several main differences between the stiff-jointed framed dome and the Schwedler

dome. First, the members of the Schwedler dome carries the external load via axial stresses while

for the stiff jointed framed dome, axial forces as well as bending and torsional moments are

present (Narayanan, 2006). Secondly, the Schwedler dome requires diagonal members in order

to be stable. Otherwise, it forms a mechanism for instability (Narayanan, 2006). The stiff-jointed

framed dome however is highly redundant and do not need diagonals to be stable (Narayanan,

2006). The third major difference is that while the Schwedler dome may be analyzed relatively

easily by hand, complex matrix algebra and computer solutions are required for the consideration

of the stiff-jointed framed dome (Narayanan, 2006).

3.4 PLATE TYPE DOMES

Plate type domes are basically the equivalent of the Schwedler domes except that it may be used
to cover a rectangular area or any layout (Narayanan, 2006). The layout of some types of plate

domes in rectangular and other polygonal shapes are demonstrated in Figure 8. There are higher

numbers of small sizes with side planes filled by bars in the same plane which creates a

triangular network bracing system (Narayanan, 2006).

(b) 8

(d) (e) f)

(c)

Figure 8: Plate Domes (Narayanan, 2006)

- 28-



3.5 NETWORK DOMES

The network dome is another variation off of the Schwedler type. The geometry is formed by

rotating each bay of a particular Schwedler dome by an angle of - with respect to the
n

latitudinally running ring below, where n is equal to the number of sides (Narayanan, 2006). As

evident in Figure 9, this transformation creates 2 triangles lying in different planes.

Elevation

Plan

Figure 9: Network Dome (Narayanan, 2006)

This way, all of the members of the dome become stressed due to a point load exerted on any

arbitrary location on the surface of the dome (Narayanan, 2006). Thus, this system is a more

effective use of the structure. Although the network dome is theoretically more efficient than the

Schwedler dome, it is difficult to construct (Narayanan, 2006). An interesting note of the

network dome is that it is only stable with an odd number of pin jointed connections (Narayanan,

2006). Currently, there are several companies that sell prefabricated domes of this type such as

triodetic tubular domes and MERO from Germany (Narayanan, 2006).

3.6 ZIMMERMAN DOMES

This type of braced dome is named after Zimmerman who first built one of this type over the

German Parliament (Narayanan, 2006). It is unique because it provided an effective method to
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support the large horizontal thrust reactions of shallow domes (Narayanan, 2006). The structure

can be treated as statically determinate if the joints are considered to be pins. In addition, half of

the supports should be modeled as ball bearings which are free to move in the horizontal

direction and providing only vertical reactions. The other half of the supports are modeled as pin

supports, being restrained in the horizontal direction (Narayanan, 2006). Ball bearing supports

are placed at the corners while the midpoints of the bars consisting of the tension ring are fixed

to wall supports so that the horizontal thrust is counteracted by the wall along its stronger

longitudinal axis. This removes the reactions against the wall at a perpendicular direction to the

wall. Therefore, this allows support even by fairly slim walls (Narayanan, 2006). Some examples

of Zimmerman dome configurations are demonstrated in Figure 10.

Elevation

(a)

Plan

/ --

(b) (c)

Plan

(d) (e)

'

Figure 10: Zimmerman Dome (Narayanan, 2006)

3.7 LAMELLA DOMES

The lamella system was invented in 1906 in Europe by Zollinger, a city architect from Dessau,

Germany (Narayanan, 2006). The lamella dome was very popular in Germany before World War

II and spread in usage to countries such as Sweden, Norway, Holland, and Switzerland
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(Narayanan, 2006). The structural system was brought to the United States in 1925 by G.R.

Kiewitt who constructed hundreds of these lamella systems in both timber and steel. It became

popular in the U.S because it is a good structural system in resisting wind, fire and seismic

effects (Narayanan, 2006). The lamella system is formed from a number of similar types of units

called lamellas arranged in a diamond or rhombus pattern. These lamella units can be clearly

seen from the six sample configurations displayed in Figure 11. The advantage of the lamella

system is that there is less crowding of rib members at the top of the dome (Narayanan, 2006).

The geometry of the lamella dome is such that the panel loads at the rib intersection points are all

almost equal in magnitude. The lamella units only need light struts. In addition, there is almost

uniform stress distribution throughout the dome (Narayanan, 2006).

(a) (b) (C)

(d) (e) (t

Figure 11: Lamella Dome Geometries (Narayanan, 2006)

3.7.1 CURVILINEAR LAMELLA

The construction materials for curvilinear lamella domes may be steel, aluminum, or laminated

wood (Narayanan, 2006). The members themselves may be either straight or curved. If the

connections are all welded, then it is essentially a rigid frame and there is no need to balance

thrust reactions at the base of the dome. However, if it is pin connected as for laminated wood
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members, then a tension ring is required (Narayanan, 2006). The curvilinear lamella dome

consists of using compression ring at the crown with intermediate rings. Ribs run from the

bottom tension ring and end at the top compression ring. This system allows for higher

interlocking stiffness. It also provides for similar lengths for diagonal members between any 2

latitudinal rings as well as the same type of connections (Narayanan, 2006).

3.7.2 PARALLEL LAMELLA

The parallel lamella dome consists of division into many symmetrical sectors (lamellas) each of

which are braced by 2 diagonal struts (Narayanan, 2006). Each of these diagonals is parallel to a

major radial rib. It is also known as the Kiewitt dome (Narayanan, 2006). An example of the

parallel lamella geometry is schematic (f) in Figure 11. Timber lamella domes are usually bolted

with bolts and plate. Some notable parallel lamella domes include the Houston Astrodome and

the Louisiana Superdome. The Houston Astrodome is one of the biggest steel frame domes in the

world, spanning about 200 m with a maximum height of 63 m (Narayanan, 2006). The Louisiana

Superdome, located in New Orleans has a diameter of 207 m and a maximum height of 83 m. It

covers a total area of 5700 cu. m (Narayanan, 2006).

3.8 GEODESIC DOMES

The geodesic dome is the more developed form of the lamella class of domes (Narayanan, 2006).

Its use has become widespread mainly due to the influence of R. Buckminister Fuller

(Narayanan, 2006). Many advances and features of the geodesic dome were patented by either

him or his company, Synergetics Inc (Narayanan, 2006). The traditional geodesic dome is

formed by the creation of grids on the surface of spherical icosahedrons (Narayanan, 2006).

Other types of shapes of polyhedra have now been also applied. The geometry intricacies of the

geodesic dome are shown in Figure 12. There are several advantages for utilizing the geodesic

geometry. It allows easy prefabrication since the lengths of the different members do not vary by

much, even for domes of relatively long spans and for different bracing systems. Therefore, it

has the benefit of being easily mass produced. In addition, the grid layout is very regular and
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there is generally uniform stress distribution when loaded. The components or members of a

geodesic dome is usually light and thus, easy to handle and transport. All of these factors

contribute to its ease in erection when compared to other structural dome types. The geodesic

dome in general is strong and stiff and can be adapted to very large sizes (Narayanan, 2006). The

disadvantages of the geodesic dome include its irregular base and layout of its perimeter units.

There may be architectural problems if certain shapes are used. Structurally, the geodesic dome

is highly indeterminate and computer analysis methods are required (Narayanan, 2006).

lcosahedron Icosahedron
exploded on a sphere

(a) Geodesic circles

Frequency 4

(h) Geodesic subdivision of
the faces of icosahedron

-Frequency 4--

'\

Spherical three-way
great circle gridding

(c) Variation in the method of
subdivision

FrequetKCy 8

Figure 12: Geodesic Dome Geometry (Narayanan, 2006)
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4 TIMBER

Timber design and construction has traditionally been conducted based on experience of artisans

and crafters. Only in recent times has design procedures been established based on engineering

principles akin to steel and concrete design. The advent of such design procedures has allowed

more efficient structural designs and construction. As a result, less material is required for a

similar structure as compared to when construction was conducted purely based on empirical

means. Generally, more economical designs can be accomplished.

The contemporary structural materials used for construction are typically steel, reinforced

concrete, and wood. In comparison by weight, more wood is used in construction than either

steel or cement in the world (Stalnaker, 1997). Table 1 shows the consumption and production of

glued laminated timber (glulams) in North America from 2002 to 2006.

Glulam consumptivn and prtxuction in North Anric, 2002-2006

% change
2002 203 2004 2005 2006 2002- 2006

United States

Constimption

Residenrial 324.6 332. 415.4 466.2 453.8 40%

Non-residcntial 115.4 138.5 146.2 176.9 172.3 27%

Indiustrial, other 18.5 18.5 20.0 33.8 33.8 8 3%

Total 478.5 489.2 581.5 676.9 660.0 38%

Exports 21.5 15.4 10.8 15.4 29.2 36%

Imports 6 2 77 13.8 10.8 10.8 75%

Production 493.8 496.9 578.5 681.5 676.5 37%

Table 1: Glulam Consumption and Production in North America, 2002-2006 (Forest Products Annual

Market Review, 2005-2006)

As can be seen, there has been a substantial increase in the consumption of glulams in all sectors

as well as in imports and production. This indicates the rising trend for the use of timber as

structural materials. Figure 13 shows the breakdown of material used for newly raised floors in

North America. It can be seen that the use of wooden members in the form of I-beams, open

wood web, and sawn wood dominate the market. This indicates the wide prevalence of the use of

timber in construction applications.
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New residential raised floors in North America, 2005

42%, 44%

13% 1%

N i-beam 44% OSteel 1%

IOpen w('xwl web 13% lMSawnwood 42%

Note: Types of Ixarns suppxorttrig raised floors (as opp sed to,
concrete slabs).

Source: APA - The Engineered WoVeV Assciation, 2006.

Figure 13: Composition of New Residential Raised Floors in North America in 2005 (Forest Products Annual

Market Review 2005-2006)

The use of timber as a construction material does not need to be only restricted to residential

types of construction. With proper design and care of timber members, it has great potential in

use for large scale projects, such as for dome applications as proposed in this paper.
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4.1 STRUCTURAL TIMBER

Proper design of timber requires an intimate knowledge of its relevant properties.

4.1.1 DISADVANTAGES OF WOOD

There are several main disadvantages to the use of wood as a construction material which is

primarily due to the organic nature of timber.

1) Variability of wood - there are no clearly reliable engineering data for wood due to the

many differences between wood species, within species, from tree to tree, and even

between different parts of the same tree. Timbers from different locales generate lumber

of extremely variable nature. There are increasing attempts to obtain more uniform wood

sections by developing methods for faster growing and straighter growing trees than

naturally grown types (Stalnaker, 1997).

2) Dimensional Instability - wood is easily affected by variables such as the change of

moisture content and which can result in shrinking, swelling, and warping (Stalnaker,

1997).

3) Duration of loading - as wood is loaded for increased time periods, the strength of a

wooden member decreases due to problems such as creep effects (Stalnaker, 1997).

4) Durability - timber is generally susceptible to environmental effects such as weathering,

decay, insect attacks and fire (Stalnaker, 1997).

Although there are many unfavorable characteristics attributed to timber, most or all of these can

be controlled if the wood sections used are properly selected and treated to account for the

environmental and loading conditions.

4.1.2 ADVANTAGES OF WOOD

There are many key benefits to the usage of timber as a structural material.

1) Economy- in comparison with structures constructed out of steel or reinforced concrete,

wood construction is often cheaper to construct, especially for applications such as low-

rise buildings (Stalnaker, 1997).
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2) Aesthetics - wooden structures provide buildings with a more organic-looking

appearance as compared to the cold countenance of steel and concrete. (Stalnaker, 1997).

3) Ease of Working/Reworking - compared to steel and concrete, wood is much more easily

cut, shaped and connected on site. Prefabrication needs do not control the design of

wooden members as it does for steel sections. For existing wooden structures, it is

extremely easy to add additional components or make repairs (Stalnaker, 1997).

4) Durability - if proper consideration is used at the initial design stages, then wood can be

a long-lasting structural material. As long as the proper timber species and grade is

selected, wood may be extremely durable. It is important to avoid environmental

conditions detrimental to wood, to use correct design details and necessary treatment

required. (Stalnaker, 1997).

5) High Strength to Weight Ratio - this is especially true for structures that are constructed

out of a single uniform material. A comparable building constructed out of timber is

much lighter than one made of reinforced concrete. This characteristic is especially

important for structures with large dead loading attributed to it (Stalnaker, 1997).

6) Beneficial thermal insulating properties - wood has a low thermal conductivity compared

to other structural materials. The large number of voids in the structure of wood help to

reduce the rate of heat transfer (Timber Construction Manual). Therefore, it is well-suited

for preventing heat loss and serves as a good natural insulator. As a result, less additional

insulation is generally required, leading to economic savings (Stalnaker, 1997).

4.2 PROPERTIES OF WOOD

Timber is divided into two main families of either hardwood or softwood. Their classification

into either category depends on what type of species the tree belongs to. The names of hardwood

and softwood are misleading because it does not necessarily indicate that one is particularly

harder or softer. Hardwood trees are angiosperms, with most having the properties of broad

leaves and are often deciduous. Softwoods are mostly gymnosperms and have needle-like leaves,

and consist of types such as conifers and evergreens (Timber Construction Manual).
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Wood is an orthotropic material. The physical and mechanical properties of wood differ in all

three dimensions, radially, longitudinally, and tangentially (Stalnaker, 1997). These different

axes are illustrated in Figure 14 .Some examples of the properties that vary along 3 dimensions

include the strength, the modulus of elasticity, and the ratio of shrinkage and swelling. There are

six different Poisson's ratios for the various directions of wood (Stalnaker, 1997).

RADIAL AXIS

ANNUAL RINGS

(RAI AL

LONGITUDINAL
AXIS TANGENTIAL AXIS

Figure 14: Wood Axes and Reference Planes (Stalnaker, 1997)

Wood is made up of many wood cells. These cells are essentially hollow tubes that run along the

direction of the grain (Stalnaker, 1997). Typically, hollow tubes are effective in resisting

compressive loads, which explains why wood has high resistance to longitudinal compression

loading along the direction of the grain of the wood. The compressive strength of wood in the

direction perpendicular to the grain is significantly weaker. This is because the hollow tube wood

cells have no compressive resistance in that direction. Their thin walls are easily flattened when a

load is applied perpendicular to its long direction. The longitudinal tensile strength may be

stronger than its longitudinal compressive strength if there are no defects. This is true for many

materials since under tension, there is no need to worry about effects such as buckling in

compression. The longitudinal shear strength and transverse tensile strength is much weaker than

the typical compressive and tensile strengths (Stalnaker, 1997).
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4.3 FACTORS AFFECTING STRENGTH AND STIFFNESS

The major factors that affect the strength and stiffness of wood include moisture content, specific

gravity, duration of loading, species, wood member size and shape, and the presence of defects

(Stalnaker, 1997).

4.3.1 MOISTURE CONTENT

The moisture content of a wood sample is determined by the following equation:

(orig.weight - dryweight)
MC = 100 (orig.wegh - The strength properties of wood decreases as the

dryweight

moisture content increases until the point of moisture percent equals the fiber saturation point

(Stalnaker, 1997). The reason behind the weakness of moist wood is that water is adsorbed

onto the surface of the cell wall which weakens it (Stalnaker, 1997). The moisture content of

wood changes depending on the local atmosphere in which it is located. The wood's moisture

content adjusts until it reaches equilibrium with the local temperature and relative humidity

(Stalnaker, 1997). Wood shrinks as it loses moisture and swells as it gains moisture. The

orthotropic nature of wood causes the rate of swelling and shrinking to be different along the

3 dimensions which results in warping of the wood (Stalnaker, 1997).

4.3.2 SPECIFIC GRAVITY

Both the strength and stiffness of wood depends on the amount of cellulose material that it

possesses (Stalnaker, 1997). The specific gravity is a good measure of this property. Heavier

woods, which usually has a higher specific gravity is stronger and stiffer than lighter woods

(Stalnaker, 1997).
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4.3.3 DURATION OF LOADING

The structural properties of wood are dependent on the load duration.

1) Creep - creep deflection occurs after loading has been sustained for a long time

after immediate deflection (Stalnaker, 1997). The general creep deflection is

shown schematically in Figure 15 which occurs after point A, the initial

deflection.

*D

B C .o

z
0

-J
U-

o A INITIAL DEFLECTION
SA--

TIME

Figure 15: Creep in Deflection of Wood Beam (Stalnaker, 1997)

Primary creep is an increase in deflection after load has been applied beyond

immediate deflection (Stalnaker, 1997). Secondary creep is the horizontal part of

the curve, in which no further deflection occurs for a while (Stalnaker, 1997).

Tertiary creep is characteristic of a much steeper increase in rate of deflection

which leads to failure (Stalnaker, 1997). Tertiary creep usually only occurs for

members under extremely high stress, which is not observed in most structures'

lifetime. Depending on the intensity of loading, a structure may never reach

tertiary creep or experience failure due to creep during the expected lifespan of

the structure (Stalnaker, 1997).

2) Load duration factor- a factor introduced in the design of wood members in order

to account for the effect that a sustained loading has on a wooden member
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(Stalnaker, 1997). Figure 16 illustrates the influence of the duration of loading on

the strength of wooden members.

IM PACT-

PERMANENT --
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7 DAYS

SNOW1
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SI 0 > uJ

DURATION OF LOAD

Figure 16: Effect of Load Duration on Strength of Timber Members (Stalnaker, 1997)

4.3.4 DEFECTS

Types of significant defects include the following:

1) Knots cause tensile stress components normal to the grain of knot, which is

especially bad for wood since the tensile strength normal to the grain is low

(Stalnaker, 1997). The presence of knots reduces tensile, compressive and

bending strength of wood members as illustrated in Figure 17.
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AWAY FROM KNOT, AVERAGE TENSILE STRESS P/A
(A PRINCIPAL STRESS)

AT KNOT, TENSILE STRESS PERPENDICULAR TO GRAIN

(IN COMBINATION WITH SHEARING STRESSES AND

TENSILE STRESS PARALLEL TO GRAIN)

Figure 17: Effect of Knot on Stresses (Stalnaker, 1997)

2) Cross-grains occur when the direction of grain is not parallel to the edge of a

piece of wood (Stalnaker, 1997). Almost all wood members have cross-grain

present to a certain degree. The effect of cross-grain on beams and columns are

shown in Figure 18.

fb - Melt

CROSS GRAIN
BENDING FAILURE 2a

MOHR'S CIRCLE

(a) BENDING

-V

(h) COMPRESSION

Figure 18: Effect of Cross-grain on Strength of Wood Members (Stalnaker, 1997)
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3) Checks and shakes are cracks in the wood in any one of the planes. Figure 19 and

Figure 20 show some typical types of checks and shakes. These defects mainly

reduce the longitudinal shear strength of wood (Stalnaker, 1997).

SURFACE THROUGH CHECKS

CHECK

Figure 19: Types of Checks (Stalnaker, 1997)

/

SURFACE THROUGH RING PITH
SHAKE SHAKE SHAKE SHAKE

Figure 20: Types of Shakes (Stalnaker, 1997)

4) Compression wood or otherwise known as "reaction wood" results from the

unsymmetrical growth of trees due to the long term bending stresses in a living

tree (Stalnaker, 1997). For example, a tree that does not grow straight is subjected

to eccentric dead loading. Large bending moments are induced on the tree as a

result. At the compression side, thicker rings will grow in order to compensate for

the higher stresses (Stalnaker, 1997). The wood also grows thicker and the

specific gravity results in being higher. However, this is not necessarily beneficial

since the longitudinal shrinkage and swelling may be significantly higher than

typical wood (Stalnaker, 1997).

5) Wane refers to missing wood in certain locations (Stalnaker, 1997).

6) Decayed portions of wood are considered to have no strength.
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4.3.5 TEMPERATURE EFFECTS

The change in temperature for wood results in effects on the dimension stability and the

strength of wood. Higher temperatures cause wood to expand, at a different rate in each

direction due to the orthotropic nature of wood. In addition, exposure to high temperatures

(i.e. >150'F ) for long periods of time weakens wood. In between the temperature range of

11
0 to 150 0F, the strength of 70 F dry wood changes by - % per degree (Stalnaker,

3 2

1997). Wood is stronger at lower temperatures and weaker at higher temperatures

(Stalnaker, 1997). If the exposure to higher or lower temperature is only for a short time,

the strength of the wood returns to a normal level (Stalnaker, 1997).

4.4 DURABILITY OF WOOD

The general conception of wood as a construction material is that it is not as long-lasting or

permanent as other types of materials such as steel or concrete. While wooden structures may be

indeed susceptible to certain environmental factors, proper design and construction can reduce or

eliminate most of these concerns.

4.4.1 DECAY, MOLDS, AND STAINS

The decay of wood occurs due to the attack of fungi originating from microscopic spores. Wood

serves as a viable source of food for fungi. Fungi need several essential factors in order to

survive. These are nutrients, air, moisture, and acceptable temperatures (Timber Construction

Material). The lack of suitable conditions for any of these will prevent decay from fungi. The

parameters that can be typically controlled out of the four are moisture and temperature. Wood

will not decay if it is submerged in water and thus no air available, if the moisture content is kept

below approximately 20%, or if the temperature is maintained below freezing or above 1000 F

(Timber Construction Material). If these factors cannot be controlled, then wooden structural

members must be treated with preservatives which make the wood poisonous to fungi. Another

option is to select wood that is naturally resistant to decay (Timber Construction Material).
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Molds and stains occur mostly to sapwoods. Molds are generally surface discolorings or

blemishes that can be cleaned (Timber Construction Manual). Fungal stains are more serious, in

that it can physically enter into the wood and may not be easily removed by sanding or scraping

(Timber Construction Manual). Neither molds nor stains affect the strength or load bearing

capacity of timber to any significant degree. It is mostly an aesthetic issue. The most serious

effects are on shock resistance and toughness, and the tendency to hide decay under its disfigured

appearance (Timber Construction Manual).

4.4.2 INSECT ATTACKS

On land, the insects with the most potential of damage to timber structures are termites. The

more damaging type is subterranean termites that live in nests located in the ground. In the

United States, the subterranean types of termites are mostly limited to the south (Timber

Construction Manual). Subterranean termites enter buildings after they have been constructed.

Subterranean termites require a source of moisture, such as from soil (Timber Construction

Manual). By consuming wood, they can cause substantial damage to structural members leading

to failure or instability. The best way to prevent subterranean termite damage is to make the

structure inaccessible to them (Timber Construction Manual).

Non-subterranean or dry-wood termites have an impact along a narrow strip of territory from

approximately central California to Virginia (Timber Construction Manual). The number of non-

subterranean termites is generally fewer in number and therefore poses less of a threat on

wooden structures (Timber Construction Manual). However, negligent care towards buildings

exposed to these termites can also lead to major damages. Chemical treatment of the wooden

members is required to prevent attacks. Other types of insects that may cause damage to timber

include wood-boring beetles, wood wasps, and carpenter ants (Timber Construction Manual). In

each case, specialized procedures for prevention and cure are required.
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4.4.3 CHEMICAL RESISTANCE

Timber generally has a higher resistance to chemical environments than other types of structural

materials. Therefore, it is used in many applications for chemical storage and any chemical

exposure (Timber Construction Manual).

4.4.4 FIRE CONCERNS

Even though timber is a combustible material, it can be designed so that it remains structurally

sound in order to prevent immediate or sudden collapses. Protection of wooden members for fire

includes application of fire-rated gypsum. Wood naturally develops a layer of protective char

once it is subjected to flames (Timber Construction Manual). Even if the top layer of a wooden

member chars, the wood underneath which is undisturbed still possesses strength and is able to

bear loads. Its remaining strength capacity depends on how much of the wooden member is

untouched by fire (Timber Construction Manual). The degree of structural strength left in the

member depends on the size of the member and the rate at which that particular type of timber

chars. A benefit of utilizing wood under fire exposure is that while timber distorts due to radical

temperature changes, it doesn't distort as much as other construction materials such as steel.

Therefore, there is less of a risk of inducing stress on adjacent structural members due to high

temperatures (Timber Construction Manual).

All of the above factors must be considered when designing for timber structures. Many are

unique to timber. Therefore, a designing engineer must be familiar with all of the properties that

will affect the strength and durability of wood.
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5 MODEL DEFINITION

The goal of this thesis is to analyze and evaluate the designs of a dome with a particular set of

geometry and dimensions using different structural materials. The two different structural

materials that will be compared are wood and steel. The structural behavior of the two differing

schemes will be considered, as well as other factors such as economics, feasibility, and overall

efficiency.

Timber is a traditionally-utilized construction material that has recently received revitalized

interest due to environmental concerns. Although timber is still a widely used structural material,

domes are not often constructed out of wood. Steel, however is widely used for braced dome

schemes due to its high strength in compression and tension, as well as its relatively low weight

for its high strength. The goal of this study is to compare the advantages and disadvantages of

both models and to propose the more efficient scheme based on factors such as material weight,

cost, and sustainability.

5.1 MODEL TYPE AND GEOMETRY

The braced dome scheme selected for consideration in this thesis is that of a skeleton single layer

dome. The reason for this choice was primarily driven by the fact that this is the most common

type of braced dome being constructed. More specifically, the dome will be of the lamella type.

An isotropic view of the geometry of the dome that will be analyzed is shown in Figure 21.
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Figure 21: View of Model Geometry

The lamella system allows duplicate member lengths and connections for each section between

the latitudinal rings. The lamella dome also has high inherent stiffness characteristics. These are

the reasons why the lamella system was chosen for this study.

The model used for the analysis has a diameter of 300 ft. and a maximum height of 100 ft. These

dimensions provide a rise-to-span ratio of 0.33, which is comparative with many other wooden

domes in existence. These dimensions were chosen after considering the typical size of dome

structures. The purpose of the study is to determine the more efficient structural material

between wood and steel for a reasonably sized dome. The diameter of 300 ft. is approximately

the average size of large scale domes for intentions of sporting events and exhibition halls. The

height was then obtained by also using an average rise-to-span ratio of 0.33. This ratio is a

reasonable number because it produces a geometry that is not too shallow, which would cause

high horizontal thrust at the base of the dome. At the same time, it is not too high which would

detract from the visual aesthetics of the geometry. In addition, a larger height value would also

cause inefficiency in material. Figure 22 illustrates the main relevant dimensions for the dome

structure, such as the diameter and various heights for intermediate rings. The plan view of the

lamella dome is displayed in Figure 23.

-50-



5,-3.

Figure 22: Side View of Dome Model with Typical Dimensions

Figure 23: Dome Model - Plan View
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The members between intermediate concentric rings all have identical lengths, which is an
advantage for the lamella dome since it results in easier production and assembly. The lengths of
the diagonal members for each level of intermediate ring are shown in Figure 24.

6"

22'-8" 6'-8"

25'-10"
29'-10

Figure 24: Dome - Diagonal Dimensions

5.2 SAP2000 MODEL ANALYSIS

The geometry of the dome was defined in the program Rhinoceros 4.0. Although the dome is
curved in appearance, all of the members were actually drawn as straight members. This is to
allow easier facilitation of the fabrication and construction processes. It will also allow the
members to be only under axial stress since the model also incorporates only pin connections.
Moment will be induced in the members if they are curved, even if the connections are pin-
connected. The model was then imported into the structural analysis program SAP2000 for
further analysis.

Figure 25 shown below is a display of the axial stresses of the dome model when placed under
the dead load due to the self-weight of the members themselves. The members in red are under
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compression while the yellow members are in tension. As can be seen, the dome has a tendency

to want to splay out and expand at the bottom. Therefore, a tension ring is required in order to

keep the dome from expanding. At the crown of the dome, the diagonal members connect to a

compression ring.

Figure 25: Axial Stress Diagram of Dome Model Under Self-Weight

Since all of the members will be subjected to axial stresses, the steel and timber sections

proposed for design will have circular cross-sections. For steel, HSS pipe sections will be

utilized. For timber, round wooden logs will be used. The circular cross-section provides a very

efficient geometry for compression loadings.
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5.3 LOADINGS

The dominant loads considered for analysis includes: self-weight of the members, dead weight of

cladding, roof live load, snow load, wind load, and seismic load. The structure was considered to

be located in Boston, Massachusetts. Therefore, the snow load, wind load, and seismic load were

designed based on the data given for that locale.

5.3.1 DEAD LOADS

The dead load for the dome structure is primarily the cladding and any types of MEP/HVAC

equipment that will be hung under the roof cover. Evidently, the type of cladding used may be

different depending on whether it is the steel or timber model. However, since it is desired to

place the same type of loading on both models, a uniform load of 30 psf is assumed for the

cladding and 15 psf for MEP/HVAC allowance. This results in a total dead loading of 45 psf.

5.3.2 LIVE LOADS

The uniform live loading for ordinary flat, pitched and curved roofs is given by ASCE 7-05 to be

20 psf.

5.3.3 SNOW LOAD

The snow loading was determined using ASCE 7-05. The values for the flat roof case were

adjusted in order to account for the curved surface of the dome roof. Both the balanced and

unbalanced case of snow loading was considered. The unbalanced case is simply the application

of the snow load while accounting for wind effects which will cause snow drift off of the roof

surface, resulting in unbalanced snow loading.

The pitch of the dome roof was determined at each location between intermediate rings. The

values for these angles are shown in Figure 26.
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Figure 26: Pitch of Dome Roof Surface at Various Levels

Detailed calculations for the snow loading and curved roof factors are located in Appendix A.

The snow loading applied are summarized in Table 2.

Angle (decrees) Cs Values Pf (psf) Ps (psf)
10 0.94 20.8 19.5
21 0.77 20.8 16.0
31 0.6 20.8 12.5
42 0.45 20.8 9.4
51 0.28 20.8 5.8
63 0.11 20.8 2.3

Table 2: Snow Loading Values

5.3.4 WIND LOAD

The wind loading on a dome varies depending on the direction of the wind and the location of

interest. Typically, the windward side of the dome suffers from positive pressure while the

windward areas are subjected to negative pressure or suction. The curved surface of the domes

makes wind analysis much more complicated than typical structures. In essence, wind tunnel

testing is often required to determine the more accurate behavior of a dome under a wind

loading. Empirical data has provided methods in which to approximate the forces under which a

dome is exerted under certain winds. Figure 27 is a schematic displaying the main relevant

dimensions of a circular based dome which has an effect on the external pressure coefficients

due to wind loading. These include the height of the dome itself (y), the diameter of the base of

the dome, (d) and the height of the base supporting the dome (h) (Newberry, 1974).
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Figure 27: Elevation Schematic of Dome (Newberry, 1974)

The distribution of the external pressure coefficient for a dome with a ratio of 0.5 and- = 0.5
d d

is shown in Figure 28. The plan view of the dome is exhibited. It can be seen that at the

windward face of the dome, the pressure is initially positive but then slowly decreases in value

until negative pressure is reached. The maximum suction for this certain geometry occurs at the

top of the dome.

-124/ \-1-2* 0-8

0 b4\ \ -0-4
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The distribution of external pressure coefficients for a dome with a ratio of 0. 1 and h 1 is
d d

shown in Figure 29. It can be seen that the pressure distribution is extremely different with a

change in geometry.

-16 I 1 /
Wn I1-e1 1 -I - -41

Wind

y h
Figure 29: External Pressure Coefficient Distribution for Wind Loading for Dome of - 0.1 and - = 1

d d

(Newberry, 1974)

Since no empirical testing is available in order to find the actual pressure distribution, a

simplified method was used to obtain the likely distribution for the model. The dome was

divided at different angles with respect to the horizontal base as shown in Figure 30. The

external pressure coefficient for the semi-circular axis of each was assumed to have the same

pressure.
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Figure 30: Wind Load Interpolation Angles for Determination of External Pressure Coefficients

These angles of division were then used to interpolate between the points provided in the ASCE

7-05 in order to determine a general pressure distribution. The resulting distribution is shown in

Figure 31. The detailed calculations for the wind forces are located in Appendix B.
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Figure 31: Pressure Distribution on Dome due to Wind Loading (Plan View - All Values in psf)

As can be readily seen, the immediate areas subjected to the wind are under positive pressure.

Gradually, as one moves up and away from the windward surface, the pressure becomes suction,

reaching its maximum negative value at the top of the dome. The suction then decreases in

magnitude as one moves from the top of the dome to the leeward surface at the other end. These

results correspond similarly to the distribution shown in Figure 28 and Figure 29 of real

empirical results of domes of similar geometry.

The dome is modeled as having a cladding surface upon which the wind will act. The cladding is

assumed to be attached to the framework of the dome at the joint locations. Therefore, the

pressure load will be transferred to the dome at the joint locations as well in the form of point

loads as listed in Table 3. Thus, this was the method used to model the wind loading in

SAP2000.
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Windward
Area (ft2) Height Pressure

(ft) (psf)(psf)

426.5
387.9
335.9
273.1
201.8
123.3
42.3
97.5

0-15
30
40
50
60
70
80
100

8.32
7.8
5.6

2.91
-0.957
-11.86
-10.41
-22.2

Force per
Joint,

Windward
Face (kip)

1.18
1.01
0.63
0.26
-0.06
-0.49
-0.15
-4.33

Leeward
Pressure

(psf)

-3.06
-5.21
-7.39
-9.71
-12.60
-15.72
-19.42
-22.20

Force per
Joint, Leeward

Face (kip)

-0.44
-0.67
-0.83
-0.88
-0.85
-0.65
-0.27
-4.33

Table 3: Summary of Wind Loads

5.3.5 SEISMIC LOAD

The seismic loading for the model was calculated for a structure located in Boston,

Massachusetts. Detailed calculations are shown in Appendix C. The summary of the forces per

level of the structure and per joint at each level are listed in Table 4.

Weight Number of K K Force per
Floor (kips) Joints Height (ft) W*HK  Cvx Fx (kip) Joint (kip)

(kips) Joints Joint (kip)
1 144.3 32 1 144.3 0.0276 48.90 1.52
2 86.0 32 26 2236.5 0.4270 20.89 0.653
3 55.5 32 23.1 1281.8 0.2447 11.97 0.374
4 41.8 32 19.4 811.7 0.1550 7.58 0.237
5 31.6 32 15.2 478.7 0.0914 4.47 0.140
6 25.9 32 10.4 270.1 0.0516 2.52 0.0788
7 2.8 32 5.3 14.9 0.0028 0.14 0.0044

Total 5238

Table 4: Summary of Equivalent Seismic Loading

- 60-

Level

Bottom (1)
2
3
4
5
6
7

Top (8)



6 DESIGN AND ANALYSIS

6.1 TIMBER DESIGN

The type of timber selected for the analysis and design of the wood version of the dome model

was Douglas fir. This species was selected due to its availability and widespread use for

structural purposes in the United States.

Modulus Compression Compression Shear Tension

Species Moisture Specific of of parallel to perpendicular parallel perpendicularElasticitSpecies Moisture Specific ofto grain
Name Content Gravity Rupture xa grain to grain to gram to gram

(lbfin2) (x106 (lbf/in^2) (lbf/in^2) (lbf/in^2) (lbf/in^2)(lbin2) lbf/in^2)

Douglas
Fir

Coast Green 0.45 7700 1.56 3780 380 900 300

12% 0.48 12400 1.95 7230 800 1130 340

Interior Green 0.46 7700 1.51 3870 420 940 290

West
12% 0.5 12600 1.83 7430 760 1290 350

Interior Green 0.45 7400 1.41 3470 360 950 340

North
12% 0.48 13100 1.79 6900 770 1400 390

Interior Green 0.43 6800 1.16 3110 340 950 250
South

12% 0.46 11900 1.49 6230 740 1510 330

Table 5: Mechanical Properties of Douglas Fir (Wood Handbook)

The relevant structural properties of several common types of Douglas Fir are listed in Table 5.

The properties of each species are given for both green and those with moisture content of 12%.

A moisture content of 12% for wood is a typical value provided since as mentioned in Section

4.3.1, higher levels of moisture content weakens the strength of wood. In addition, for certain

applications of lumber such as for glulams, the joining of wooden members is optimum at 12%

moisture content (Wood Handbook). Also, 12% is an average value of local interior air

conditions in the United States (Wood Handbook). Therefore, less distortion or warping of wood

due to moisture content differences would result.
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For the purposes of this paper, the structural wood material used for the design for the timber

version of the dome is Douglas Fir from the interior north region. Thus, the wooden members

were designed according to the strength properties of the Douglas Fir from the interior north.

Note that the strength properties are specifically defined for particular orientations of the wood.

The sections used for the design of the individual members are round timbers. These were

selected because they require minimal processing when compared to sawn lumber or glulams.

The member only has to be peeled of its bark, seasoned, and then if necessary treated with

preservatives before it can be used as a

structural member (Wood Handbook). An

example of a space truss structure

constructed with round timbers is the Gujo

Hachiman Sogo Sports Center in Japan. It

was constructed with approximately 600

natural cypress logs as shown in Figure 32
Figure 32: Gujo Hachiman Sogo Sports Center
(Takenada Corporation) (Takenada Corporation). In addition, for the

dome modeled in this thesis, since most of

the forces will be axial, a circular cross-section is beneficial for compression.

A brief description of the methodology in the design of timber compression and tension members

is provided in the following two sections. These are the dominant forces available in the model

due to the pin-jointed connections. Design equations are provided for wood but not for steel

because timber design is much less prevalent.

6.1.1 DESIGN OF TIMBER COMPRESSION MEMBERS

There are two main concerns for the design of wooden members subjected to axial

compression loading. They are as follows:

1) Short and thick wood columns- typical failure by crushing of the wood fibers

2) Long and slender wood columns - typical failure by buckling due to lateral instability

(Stalnaker, 1997)
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Timber members usually used for compression loads are square or round in cross-section.

Although steel in general has higher strength than wood, timber columns may actually

outperform steel column sections with the same weight. When comparing steel and wooden

column sections of equal weight and geometrically similar properties, the radius of gyration

varies inversely with the square root of the specific gravity (Stalnaker, 1997). Therefore, the

strength of columns with relatively longer unbraced length depends increasingly on the square of

the radius of gyration. Consequently, for longer columns, wood, even with its lower specific

gravity than steel, has a higher specific strength over steel. Figure 33 shows a graph comparing

the allowable compression capacity of steel and wood columns of the same weight over a range

of lengths. The steel columns have an advantage only for short lengths while the wooden

columns actually perform better for longer lengths. (Stalnaker, 1997)

120

100-

11" DIAM. WOOD POLE
0

o

60-

STEEL W 6 X 20
S40-

20-

5 10 15 20 25

LENGTH OF COLUMN (FT)

Figure 33: Comparison of Compressive Strength of Timber vs. Steel Column (Timber Construction Manual)

The effective length of a column (kL) tries to account for the bracing effect of the column. The

values of k depends on the type of end supports provided (Timber Construction Manual).

Theoretical and recommended values for k are shown in Figure 34 for various end support

conditions. In the case of the dome model, the end supports are modeled as pins. Therefore the k

factor is equivalent to 1.
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Figure 34: Effective Length Coefficients for Columns of Various End Support Conditions (Timber

Construction Manual)

The LRFD (Load and Resistance Factor Design) was used to design for the allowable capacity of

the timber column sections based on the following equation:

Pu < A4cP' = AbcCPo'

The variables are described as follows:

Euler Load

7r2 E'o I
PE (KL)2

where, E'5 = adjusted 5th percentile value of modulus of elasticity (value that 95% of typical

pieces meet or exceed)

E0 5 = 1.03E'(1 -(1.645XCOVE))

where, CO VE = 0.25 for visually graded lumber

COVE = 0.11 for glued laminated timber and 1.03 factor becomes 1.05
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P = resisting load of a short (zero length) column

Po = A Fc

where, Fc = reference compressive strength

For wood column design, a C, factor is introduced in order to account for column stability.

where, = 0.85 = resistance factor for stability

c = 0.9 = resistance factor for compression

S= time factor associated with various load combinations

Column stability factor, C, =
1+ oc  cc
2c c

L+ c

where, c = 0.8 for sawn lumber

c = 0.9 for glulams

c = 0.85 for round timber piles
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6.1.2 DESIGN OF TIMBER TENSION MEMBERS

The design of tension members only depends on the allowable strength of the material and the

area available to resist the tension (Timber Construction Manual).

T

A,

where f = allowable tensile strength, T = tension force, A.,= nominal area

6.1.3 DESIGN OF TIMBER DOME IN RISA 3-D

The geometry of the dome was imported from Rhinoceros 4.0 into RISA 3-D for the design of

the timber version. The dome was initially modeled as pin supported at all joint locations at the

base. This is so that sufficient horizontal restraint is provided at the base in order to prevent the

dome from splaying outwards and collapsing. However, this provided an incorrect set-up since

for a pin connection, translation is prevented and the forces in the horizontal plane are taken up

by the support. Therefore, there will be no stresses in the base tension ring. As a result,

subsequently, the dome was defined as shown in Figure 35. Four pin supports located

symmetrically from each other were placed at the base of the dome in order to provide sufficient

restraint. All of the other supports were modeled as roller supports so that the ring at the dome

base is still under tension.
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ALL OTHER ROLLER SUPPORTS 11

Figure 35: Modeling of Base Support Conditions (RISA 3-D)

Full moment releases were applied for all of the members below the second intermediate ring

counting from the top. For these members, two bending moments and torsion was released at one

end while only the bending moments were released at the opposite end. No moment releases

were applied for the members within the top two rings in order to avoid instability of the

structure.

All of the loads were applied as described in section 4.3 and were all inputted as joint loads. The

dynamic loads such as wind and seismic were treated as static loads as well according to ASCE

7-05.

The members were assigned to be round timber sections with the material properties of Douglas

Fir from the interior north. The list of sections used for the design is located in Appendix D. The

total weight of the timber version of the dome amounts to 313 kips.
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6.2 STEEL DESIGN

The geometry and configuration of the steel dome model was the same as that for the timber

dome. The only difference was the material and sections used for each member.

Standard 50 ksi steel HSS round tube sections was used for the analysis and design of the steel

version of the dome model. The steel design in SAP2000 was used for the selection of members

according the different load combinations as listed.

The member sizes designed were checked manually by exporting the stresses obtained from

SAP2000 after running the analysis for the worst case combination.

The members designed and the stress check from SAP2000 is shown in Figure 36.

Figure 36: Steel Member Check (SAP2000)
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A summary of all the steel member sizes designed are shown in Appendix E. The total weight of

all the steel members amount to 343 kips. This value is based on a design without grouping

members together. If members of a certain level are confined to have the same size, then the

weight of the structure would increase substantially. It would be reasonable to use such a

grouping scheme since the loads, especially of the lateral nature may act in any direction. For

comparison purposes of this thesis however, it is not a major concern since the goal is to observe

the relative advantages and disadvantages.

6.3 COMPARISONS

6.3.1 WEIGHT

The total structural member dead weight of the two models are listed in Table 6

Total Weight of Structural Members (kips)
Timber 313
Steel 343

Table 6: Summary of Self-Weight of Timber vs. Steel Dome

As can be seen, the self-weight of the timber dome is approximately 10% lower than that of the

steel design.

6.3.2 DEFLECTION

The deflections under various loadings were determined for each dome. The maximum

deflection for different types of load cases is listed in Table 7. All of these deflection values are

below the respective deflection limits imposed by standard codes and practices.
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Dome Model

Timber (in.) Steel (in.)

Vertical Deflections Dead Loads 1.55 1.29
Live 0.33 0.17
Snow 0.51 0.32

Horizontal Deflections Wind 0.77 0.35
Seismic 0.59 0.21

Table 7: Maximum Deflections of Models

L
The more stringent deflection criteria of was used to judge the significance of the vertical

360

deflections. The total span of the dome models were 300 ft. Therefore, a maximum deflection

value of 10 in. is permissible for serviceability. When compared to the values in Table 7, it can

be seen that the vertical deflections due to dead, live and snow loads are much less than this

restriction. This can be attributed to the high inherent stiffness of the dome structure.

The interstory displacement or story drift is an indication of the relative displacement of a

structure. It is defined by:

u 2 -u _ 1
h a

where u = displacement, h = height

The typical a. value for short buildings with an aspect ratio on the order of 1 is usually taken to

be between 400 - 500 for moderate loadings and 50 - 100 for extreme loadings. In the case of

this dome structure, the aspect ratio is greater than 1 since the width is much greater than the

height. Therefore, the smaller a. values were used in checking the interstory drift. Therefore, the

1
allowable interstory drift for an extreme loading was taken to be - or 0.02. For the dome,

50

which has an average interstory height of 20 ft, this indicates that the maximum interstory

displacement should be 4.8 in. The drift for the dome determined from the analysis of both the

timber and steel domes are below this value. Therefore, drift is not a concern for either scheme.
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The deflections due to various loading conditions are higher for the timber model than for steel.

This was expected since the modulus of elasticity of steel is much greater than for Douglas Fir,

being 29,000 ksi and 1790 ksi respectively. The steel value is larger than wood by a factor of 16.

However, despite the deflections for the timber dome being larger, they are still significantly

smaller in magnitude than the serviceability requirements proposed above. Therefore, deflection

is not a concern for these particular loadings. This is due to the fact that the dome is essentially a

three-dimensional truss since most members are only under axial stresses. Members are always

much stiffer in axial action.

6.3.3 MATERIAL COST

The cost considerations used for the comparison of the two dome schemes were based solely on

the material weight and immediate labor. The labor involved is based on that for typical

construction methods. However, it may substantially change since dome construction requires

higher degrees of difficulty in terms of coordination and time.

The cost data for timber structural members were determined based on values from RSMeans:

Building Construction Cost Data. Since prices were not provided for round timbers, the cost was

estimated based on typical sawn timber sizes. The estimation procedure used was deemed to be

conservative by the author because round timber actually requires less processing than sawn

timber. Therefore, the cost of producing round timber should be less than the values used here.

The process to estimate the costs of the timber members is summarized in Table 8. The costs for

typical structural timber columns and girders were used to find an average price in dollars per

linear foot. The total linear footage of members required was determined from RISA 3-D to be

15,940 ft. Therefore, the total material and labor cost for the timber dome amounted to

approximately $320,000. It must be noted that many other costs for the timber members were not

accounted for such as special preservatives and treatments, transportation, connections, as well

as cranes and other special equipments, among many other factors.
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Columns, Structural Grade
Sizes Dollars per MBF Dollars per Cubic Foot Dollars per Linear Foot
4" x 4" $2,700.00 $32.40 $3.60
6" x 6" $2,365.00 $28.38 $7.10
8" x 8" $3,120.00 $37.44 $16.64

10" x 10" $2,940.00 $35.28 $24.50
12" x 12" $2,910.00 $34.92 $34.92

Girders, Structural Grade
Sizes Dollars per MBF Dollars per Cubic Foot Dollars per Linear Foot

12"x 12" $2,785.00 $33.42 $33.42

Average Cost per Linear Foot $20.03

Total Linear Feet of Round Timber 15940

Total Cost $319,265
Table 8: Cost Determination of Timber Dome (RSMeans, 2008)

The typical cost for the material and installation of steel trusses is $3960 per ton (Gregory Hsu).

The total steel tonnage obtained from the analysis and design of the steel version of the dome is

172 tons. Therefore, the total material and labor cost for the structural steel members of the dome

amounts to approximately $680,000. As for the timber dome, it must also be noted that

additional costs such as fireproofing and crane and other miscellaneous equipment are not

included. The cost comparison is summarized in Table 9.

Dome Type Total Cost of Structural Members

Timber $320,000

Steel $680,000

Table 9: Comparison of Costs of Timber and Steel Domes

The cost of the timber dome is 50% less than that of the steel dome. Although this is a

preliminary cost estimate that neglects many other factors, it can still be seen that there is a clear

economic advantage in the use of timber over steel.
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6.3.4 SUSTAINABILITY/I ENVIRONMENTAL IMPACT

The utilization of timber as a construction material brings numerous advantages in terms of

mitigating harmful effects on the environment. A major concern in today's world is the effect of

carbon emission which helps facilitate the greenhouse effect and global warming. In a

comparison of typical construction materials, it can be seen that the production of timber actually

has a negative net emission of carbon dioxide, as seen in Figure 37. By contrast, materials such

as steel and aluminum produce a substantial amount of carbon dioxide that is released into the

atmosphere. The large difference results from the fact that during the living life-time of a tree, it

is able to remove carbon dioxide from the atmosphere. In addition, the processes through which

lumber is cut and shaped require less energy than for example the production processes needed

to obtain structural steel shapes. ("Tackle Climate Changes: Use Wood").

Rigid PVC
Steel

Recycled steel
Aluminlum
Red brick

Light concrete block
Sawn timber

-5

Net emissions of CO. including carbon sink effect

2 A

000 0 500O 10000 15000 20000

kgs COe/ms

Figure 37: Comparison of the CO 2 Emission due to Production of Common Construction Materials ("Tackle

Climate Changes: Use Wood")

Aside from considering the emission of carbon due to the production of various construction

materials, the overall construction process of a house can also be evaluated. Figure 38 illustrates

the large difference in carbon dioxide emissions between the construction and operation of a

timber, concrete, and steel structure of similar size and build.
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Figure 38: Comparison of CO2 Emission for a Typical Timber, Concrete, and Steel House due to
Construction and Operation ("Energy and the Environment")

In addition to merely evaluating the effects of construction, wood also provides benefits to the
environment over the duration of its lifespan. One of the most attractive features of wood in
structural applications is its thermal properties. Wood is a very good natural insulator and can
result in savings in energy and insulation costs for housing projects. Timber-framed structures
help maintain heat within a structure in cooler climates and also help to dissipate heat during
night-time in warmer environments ("Energy and the Environment"). Figure 39 compares the
environmental impact of a typical timber vs. steel house and a typical timber vs. concrete house.
The timber house outperforms the steel and concrete houses in all categories except for one.
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Figure 39: Comparison of Environmental Impacts due to 1-Story Wood, Steel, and Concrete House ("Tackle

Climate Changes: Use Wood")

According to the ATHENA Sustainable Materials Institute, over a lifespan of 20 years, steel and

concrete structures when compared to timber options, release 15% and 29% more greenhouse

gases, and embody and consume 12% and 20% more energy respectively ("Energy and the

Environment").

The results of these studies clearly highlight the sustainability advantages of wood over steel and

concrete as structural materials. It must be noted that most of these statistics were based on

studies on residential housing and not for large-scale commercial or in the case of the dome,

large assembly halls. However, by all accounts, these results indicate that similar behavioral

trends should still be expected.
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7 CONCLUSIONS

Steel and concrete have become the prevalent construction material for structural engineers in

large-scale project applications. While timber still enjoys widespread application, it is not often

utilized for major structural projects. Increasing concerns of human impact on the environment

force us to consider alternative ways to construct while minimizing harmful effects on the planet.

Wood is a structural material that fulfills this goal.

The dome structure was used as the basis in this thesis to determine the comparative advantages

and disadvantages between using timber and steel as the construction material. The lamella

braced dome scheme was selected and both materials were used to produce a feasible structural

design.

The main parameters of interest in this study were the weight of the structural member of the two

different dome schemes, the deflections, cost, and sustainability. In the categories of weight,

economics, and sustainability, timber held a distinctive advantage. The timber model had a lower

overall structural weight, significantly lower cost, and by all accounts, is more sustainable in

production, construction, and operation when compared to materials such as steel and concrete.

The tradeoff is that the timber dome produced more substantial deflection values due to various

types of loadings. However, they were still below the typical serviceability requirements

proposed in this thesis. Therefore, timber resulted in being the better structural material for the

particular set of conditions imposed in this thesis.

It should be noted that the selection criterion for choosing a construction material for different

structures vary greatly from project to project. Therefore, while the results of this thesis indicate

that timber is the better option, it might not hold true in all situations. Furthermore, many other

factors were not considered, such as the connection aspects of the structural members. It is hoped

that future studies will be more wide-encompassing.
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Appendix A: Snow Loading

Per ASCE 7-05

General equation for flat roof snow load:

Determination of factors:

pf = 0.7cec,tIp

Exposure Factor, ce
From Table 7-2

Assume Terrain Category B (6.5.6)
Assume fully exposed

-- ce = 0.9

Thermal Factor, c,
From Table 7-3

No thermal control or intentional thermal adjustment for roof of dome structure

-> Ct =1

Importance Factor, I
From Table 7-4

Structure belongs to category III from Table 1-1 with substantial hazard to human life
since dome structure will be location of congregation.

--> I =1.1

Ground Snow Load, pg
From Figure 7-1

Assume design for Boston area.

-- pg = 30 psf

For sloped roofs - need to modify the pf equation for the flat case by a certain factor, in this

case, the curved roof factor.

Ps = cspf
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Roof Slope Factor for Curved Roofs
From Section 7.4.3



Note: For a roof slope greater than 700, that portion of the roof can be assumed to be free of
snow load so in this case, the c = 0.

There are two general conditions for the snow loading of a curved roof, both balanced and
unbalanced load. In the case of a balanced load, no wind is assumed and all of the roof is loaded
according to the curved roof factors. In the case of unbalanced load, wind is assumed to be
blowing in a certain direction which causes drift of snow.

Balanced Load Condition

Interpolation from Figure 7-2a was used in order to determine the c, values for different values

of slope angles. The table below lists the interpolated values:

Angle Cs
(denrees) Values

10 0.94
21 0.77
31 0.6
42 0.45
51 0.28
63 0.11

Case I - Slope at eaves < 30"

Balanced Load

Eaves

Portion of roof where
Cs = 1.0 rom Figure 7-2
(may include entire roof)

I
Crown

Winr

Unbalanced Load
.. 0.5 pF

i
Eaves

2 pf C*/ C,

a 0

EavesCrown

(ASCE 7-05)
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Case 2 - Slope at eaves 30 to 70

Balanced Load

Eaves 300
Point

Portion of roof where
C= 1.0 from Figure 7-2
I,, a

Pf C "

T T
Crown 30P

Point

Unbalanced Load

Wind no 0.5 p

Eaves 30P Cr
Point

own 300
Point

2 pf C,'*/ Ce
2 pt C'/ C
0

Eaves

(ASCE 7-05)

Angle (degrees) Cs Values Pf (psf) Ps (psf)
10 0.94 20.8 19.5
21 0.77 20.8 16.0
31 0.6 20.8 12.5
42 0.45 20.8 9.4
51 0.28 20.8 5.8
63 0.11 20.8 2.3

Unbalanced Load Condition

The snow load exerted for unbalanced condition to a dome or rounded structure will be applied
to downwind 900 in plan view. This load decreases to zero over sectors of 22.50 on both sides.
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Appendix B: Wind Loading

Per ASCE 7-05

Design Procedure:

Basic Wind Speed, V
Section 6.5.4
From Figure 6-1

Assume location is in Boston area

V = 120 mph

Directionality Factor, kd
From Table 6-4
Only applied when used with load combinations from section 2.3 and 2.4

-> kd = 0.85 for arched roofs

Importance Factor, I
Section 6.5.5
Structure listed as category III from Table 1-1
From Table 6-1

-- I = 0.77
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Exposure Category
Section 6.5.6

From Section 6.5.6.2 --> Surface Roughness B: For urban areas, numerous closely spaced
obstructions

From Section 6.5.6.3 -- Exposure B

Exposure B
Height

(ft_) Case 1 Case 2
0-15 0.7 0.57
20 0.7 0.62
25 0.7 0.66
30 0.7 0.7
40 0.76 0.76
50 0.81 0.81
60 0.85 0.85
70 0.89 0.89
80 0.93 0.93
90 0.96 0.96
100 0.99 0.99
120 1.04 1.04

Topographic Factor, kzt
Section 6.5.7

-4 k, = 1 Don't meet all conditions

Gust Effect Factor, G
Section 6.5.8.1

-4 G = 0.85 Structure is rigid since natural frequency is greater than 1 sec.

Enclosure Classification
Section 6.5.9

-->Building Enclosed

Internal Pressure Coefficient, GCP
Section 6.5.11.1
From Figure 6-5

-+ GCP = ±0.18 for enclosed building

Both positive and negative cases applied to all internal surfaces to determine critical load.
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External Pressure Coefficients, Cp
Refer to Section 5.3.4

Velocity Pressure, q,
Section 6.5.10

qz = 0.00256kzkztkdV 2I (psf)

Design Wind Pressure, p
Section 6.5.12.2.1

p = qGCp - qi(GCp) (psf)
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Appendix C: Seismic Loading

Per ASCE 7-05

Site Class
Chapter 20

Assume stiff soil -- Site Class D

Site Coefficients and Adjusted Maximum Considered Earthquake (MCE) Spectral
Response Acceleration Parameters
From Section 11.4.3

SM = F Ss

Smt = FS

Ss = the mapped MCE spectral response acceleration at short periods from section 11.4.1

->Use Ss = 0.3 from Figure 22-1

S = the mapped MCE spectral response acceleration at long periods from section 11.4.1

-->Use St = 0.7 from Figure 22-2

For Site Class D: Interpolate for Fa since Ss = 0.3

-> F = 1.56 (Table 11.4-1)

-> F = 1.5 for S, = 0.7 (Table 11.4-2)

SMS = FaS s = 1.56(0.3) = 0.468

SM, = FS, =1.5(0.07) = 0.105

Design Spectral Acceleration Parameters
From Section 11.4.4

2SDS = - MS
3
2

SDI S,,M3

2
= (0.468)= 0.312
3
2

= (0.105)= 0.07
3

Design Response Spectrum
From Section 11.4.5

To = 0.2 D =0.2 0.07 0.0449 sec
SDS 0.312)
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S

SDS
( 0.07 = 0.224 sec

= 0.312)

TL = 6 sec from Figure 22-15

Fundamental period of structure, T from SAP2000 = 0.593 sec

- Case 3 since Ts < T < TL

SDI 0.07
Sa= DI = 07 =0.118

T 0.593

Importance Factor, I

Category III Structure - From Table 1-1
I = 1.25 for Category III

SinceSDS= 0.312 -

Check for Ta (Approximate Fundamental Period) -+ Ta = Ch from Section 12.8.2.1

Ta = 0.02(100ft)0. 75 = 0.632

0.8Ts = 0.8(0.224)= 0.1792

Ta < 0.8Ts NOT FULFILLED

Ta < 0.8T

T = 0.368 determined from SAP2000

From Table 11.6-1 and Table 11.6-2
Since 0.1 6 7 < SDS 0.3 3 and 0.067 _ SDI 0.133

-> Seismic Category B

Equivalent Lateral Force Procedure
From Section 12.8

Seismic Base Shear
From Section 12.8.1
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V =CsW

Seismic Response Coefficient

SDS

I
SDs = 0.312

T = 0.368 and TL = 6 sec

Since T < TL , -- Cs

S DI

TCRJ

0.07 0.07 0.0793

(0.368sec 12

-> Cs = 0.0793

For weight, W = 617 kips

Base Shear, V = CsW = (0.0793X617kips)= 49kips

Vertical Distribution of Seismic Forces
From Section 12.8.3

Lateral Seismic Force at Respective Level, Fx = Cx V

W hVertical Distribution Factor, Cx = ,

i=1

k = 1, for structures with period of 0.5 sec or less
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Appendix D: Timber Design Members (RISA 3-D)

10 79 2433.9 46.5

11 77 2347.3 54.2

12 56 1753.9 48.2
13 34 620.3 20
14 46 937.2 35.1
15 8 260.3 11.2
16 8 260.3 12.7

2 5 162.7 0.1
3 23 603.6 1

4 34 435.8 1.3
5 6 51.2 0.2
6 6 121.7 0.8

7 54 1023 9.6
8 57 1334.5 16.3
9 119 3587.8 55.5

Total Wood 612 15933.7 312.8
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Appendix E: Steel Design Members (SAP2000)

Number of Total Total

Text Unitiess ft Kip
HSS4X.125 9 290 1.4
HSS4X.250 1 23 0.2
HSS4X.313 1 27 0.3
HSS5X.125 2 53 0.3
HSS5X.188 1 27 0.2
HSS5X.250 2 53 0.6
HSS5X.375 1 29 0.5
HSS6X.125 5 141 1.0
HSS6X.188 2 46 0.5
HSS7X.125 3 76 0.6
HSS7X.188 2 48 0.6
HSS10X.188 28 574 10.5
HSS10X.250 25 709 17.3
HSS10X.312 3 92 2.8
HSS1OX.375 2 59 2.1
HSS14X.250 16 513 17.6
HSS14X.312 4 112 4.8
HSS16X.250 10 314 12.3
HSS16X.312 15 466 22.8
HSS18X.500 2 65 5.7
HSS20X.500 6 195 18.9
HSS2.875X.125 6 139 0.5
HSS3.500X.125 16 428 1.8
HSS3.500X.313 2 53 0.5
HSS4.500X. 125 5 129 0.7
HSS4.500X.188 2 53 0.4
HSS5.500X.258 3 86 1.2
HSS5.50X.375 2 65 1.3
HSS5.563X.134 22 658 4.7
HSS5.563X.188 3 76 0.8
HSS6.625X.125 12 328 2.6
HSS6.625X. 188 11 265 3.2
HSS6.625X.312 1 33 0.6
HSS6.875X. 188 13 347 4.3
HSS6.875X.250 1 29 0.5
HSS7.500X.188 40 971 13.2
HSS7.500X.312 4 82 1.8
HSS8.625X.188 91 2353 37.0
HSS8.625X.250 13 137 2.9
HSS9.625X.188 80 2165 38.1
HSS9.625X.250 68 1211 28.3
HSS9.625X.312 2 59 1.7
HSS9.625X.500 2 59 2.7
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HSS10.750X.375 4 118 4.6

HSS10.750X.500 2 59 3.0

HSS12.750X.250 54 1712 53.3

HSS12.750X.375 2 59 2.7
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