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Abstract

In this thesis, I study propagation of gravitons in the shock wave geometry in the

context of the AdS/CFT correspondence, with the goal to uncover some constraint

on the supergravity action in the AdS space. In studying the shock wave geometry

in an anti-deSitter (AdS) space, I find that the functional form of the shock wave

metric does not receive a' correction, but the wave profile does. Then I study the

propagation of gravitons in the shock wave geometry and show that the wave function

has a finite jump at the shock wave frontier, and this corresponds to a shift in position

of the graviton in the semi-classical picture.
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Chapter 1

Introduction

The AdS/CFT correspondence proposed by J. Maldacena[4] states that a certain

type of string theory on the anti de-Sitter space (the AdS space) is equivalent to the

conformal field theory (CFT) on the boundary of the AdS space. Roughly speaking,

the strong-coupling and large N (to be explained later) limit of the CFT corresponds

to the weak coupling, or classical, limit of the string theory, which reduces to a

supergravity theory. This correspondence turns out to be important in understanding

both the string theory and the conformal field theory.

A conformal field theory is invariant under all the transformations under which

the standard Minkowski metric rq, becomes h(x)rq, for some (space-time dependent)

scalar factor h. If h(x) = 1 everywhere, then the transformation becomes a Poincare

transformation, but conformal transformations allow for arbitrary scalar factors. An

example of conformal field theory in 4d is the A/ = 4 supersymmetric U(N) Yang-

Mills theory with the following Lagrangian:

r= Tr[F 2 + (DO)2 + %y"D,x + Z[OIJ] 2 + XI'X] +0 Tr(F A F), (1.0.1)
g y

where X denotes four Majorana spinor fields and 1, I = 1, ..., 6 denotes six scalar

fields.

A d-dimensional AdS space, denoted by AdSd, can be defined as a hypersurface in

a (d + 1)-dimensional flat space with signature (-, -, +, ..., +) given by the quadratic



equation

- T - I + A- + ... + x_, = -Lz. (1.0.2)

After choosing the following coordinates

r = Xd-l - T2 , xo = TL/y, and xi = XiL/yfor i = 1, 2, d - 2,

the metric of the AdS space can be written as

d2 L2

ds 2 = (-L27,,dx"dx + 2 dr2). (1.0.3)

Now the AdS/CFT correspondence can be stated as follows[1]:

Proposition 1.0.4. The Type IIB string theory on AdS 5 x S5 with common radius

L of AdS 5 and the five-dimensional sphere S5 , string coupling constant g9 and 5-form

flux fS, F+ = N is equivalent to the 4-dimensional N = 4 supersymmetric conformal

U(N) Yang Mills theory with coupling constant gyM with the following identification

A = gMN = gN. (1.0.5)

The parameters gs and N are related to the important parameter a', which is the

square of the typical string length, as follows:

g5N = 2 . (1.0.6)

This proposition remains a conjecture, but there has now existed a vast literature

to support it. The precise meaning of "equivalence" is as follows. For any field -

in AdS 5 x S5 , there exists an operator 0 in the conformal field theory, such that

the partition function of q in the string theory is equal to the moment generating

functional of 0 in the conformal field theory:

Jf Dqexp(-S[]) = (exp J d 4Xo()O(X))CFT, (1.0.7)



where S[0] is the action and ¢0 is the boundary value of q. The left hand side is the

analogy of the partition function x,p e-H(x,P) in statistical mechanics, except that

the sum over the phase space is replaced by a path integral. The right hand side is

the expectation of the exponential, and the derivatives of its logarithm with respect

to o(xl), ..., 0o(x,) gives the n-point correlation function (O(xl)...O(xx)).

An interesting aspect of the correspondence is the strong coupling limit of the field

theory corresponds to the weak coupling limit of the string theory. For simplicity,

consider the case where N is large. In fact, string theory is organized as a Taylor

expansion in the parameters a'/L2 = 1/ V44w and gs, so when A is large, the string

theory is dominated by the lowest orders in a'/L2 . On the other hand, the Feynman

diagram expansion in the conformal field theory is an expansion in 1/N and A, so this

limit is the strong coupling limit of the field theory. Similarly, the weak coupling limit

of the conformal field theory (the limit A -- 0) corresponds to the strong coupling

limit of the string theory. More details about this duality will be given in Section 2.

In the large A and large N limit, the contribution with the lowest power of a',

namely the classical contribution, dominates, so any quantum field q reduces to its

classical value that solves its equation of motion. For questions in which we are

interested, it is enough to focus on the fields in the AdS space and ignore the S5

part in this limit. Therefore, as A -+ o the theory reduces to a supergravity theory

in AdS5 with the Einstein-Hilbert Lagrangian R - 2A, where A is the cosmological

constant. For large but finite A, one can use the external field method to write down

the effective classical action of the theory, in which the quantum correction enters

as higher order terms in a'. However, a', as the square of the typical string length,

has energy dimension -2, and the only ways to construct scalars with higher positive

dimensions are to take product of curvature tensors (each has dimension +2) and to

take covariant derivatives. Therefore, the a' corrections must be terms that contain

higher power in the curvature tensor and/or its derivatives. The goal of this paper is

to discover a way to obtain some constraint on these a' corrections.

In general, people know little about the specific form of the a' correction to the

action. However, useful constraints on the correction can be obtained. Indeed, M



Brigante, H Liu et al find that in the black-hole metric of the AdS space with the

Gauss-Bonnet o' correction

A£ = L(R 2 - 4RIR " l + RUpaRvPO), (1.0.8)
2

the unitarity bound of the CFT is violated when AGB > 9/100[3]. They obtain this

result by studying the propagation of gravitons in the AdS theory near its boundary.

The graviton field corresponds to the energy-momentum tensor operator on the CFT

side, and the values of the operator at two points with space-like correlation must be

uncorrelated. However, it is shown in [3] that when AGB > 9/100, two points with

space-like separation on the boundary can be connected by a trajectory of a graviton,

which violates causality.

However, the constraint on the a' correction, such as the contraint on the AGB

in Eq. (1.0.8), should be a fundamental constraint on the theory, and thus indepen-

dent of specific models. Therefore, more or tighter constraints might be obtained

by studying other specific geometries. In this paper, the shock wave geometry and

the propagation of gravitons are considered. The shock wave geometry is a geometry

that looks like the original AdS geometry Eq. (1.0.3) everywhere except at the shock

wave frontier xl = -t, where the wave profile is given by a function f. Therefore,

the wave propagates in the speed of light and scatters graviton when it meets it.

The scattering will change the trajectory of the graviton and potentially make the

trajectory connect two points on the boundary with space-like separation, when the

scattering is sufficiently strong and in the right direction.

This paper is organized as follows. In Section 2, we briefly review the basics of

the AdS/CFT correspondence. In Section 3, we study the shock wave geometry in a

general d-dimensional AdS space. The propagation of gravitons will be the subject of

Section 4, where we will restrict to AdS 5 , for which the correspondence was proposed.



Chapter 2

Background

This section contains a brief review of the background in conformal field theories,

string theories and the AdS/CFT correspondence, mainly following [4] and [1].

2.1 Conformal Field Theories and the Supersym-

metric Yang-Mills theory

In some sense, quantum field theories are defined by their symmetries. The commonly

used relativistic quantum field theories are invariant under the Poincare group, the

group that preserves the Minkowski metric. It turns out that one can also construct

quantum field theories that are invariant under all the transformations that preserve

the angles between any two vectors, known as conformal transformations. A quantum

field theory that is invariant under all conformal transformations is called a conformal

field theory.

Intuitively, the chief additional symmetry that the conformal symmetry group

has is scale transformations. We will see that this is indeed the case, at least at the

classical level, following [5]. The general definition of the energy-momentum tensor

T"' is

TP" _ S (2.1.1)

where SM is the matter action. Under an infinitesimal coordinate transformation



:P = x" + "(x), we have

g9,(x)dxldx ' = g,,()diJ'dZ"

= (gy,(x) + Ojg ) (dx" + OpWdxP) (dx + &('"dx')

= 9 (x)dx1dx+ (g, + g, + A,/ + gYAjv)dx~zdx" + 0( 2)

= g,,(x)dxt dx "  + [(9g,, - 01g, - -Hp9, ) + j,&, + o,a,]dx dxu' + 0( ( 2 )

= ,,(x)dxI'dx" + (-2FpA( + a +,, + ao,,,)dx1dx" + 0( 12)

= (g,,(x) + Vp( + V4)dxtdx" + 0(£ 2).

Therefore,

6g,, = -VV - V,,p. (2.1.2)

Now for a scale transformation, 7 = 6Ax', so 6g,, = -26Ag,,. Hence, the action is

scale invariant when

T1, = TP ,,v = 0. (2.1.3)

A general infinitesimal conformal transformation satisfies bg, = h(x)g,, for some

function h, so the action is invariant under this transformation as long as Eq. (2.1.3)

is satisfied.

However, quantum mechanics may bring in anomalies so that a conformally in-

variant classical theory may not be conformally invariant as a quantum theory. The

reason is that during the renormalization process the parameters in the action may

acquire anomalous dimensions, and transform nontrivially under scaling. Therefore,

the proper requirement for a quantum theory to be conformally invariant is that the

renormalization group (RG) flows of the parameters are zero.

The AdS/CFT correspondence was originally proposed and has been more ex-

tensively studied for a particular conformal field theory, namely the AN = 4 U(N)

supersymmetric Yang Mills theory in 4 dimensions. A supersymmetry is a sym-

metry whose currents are fermionic. Therefore, supersymmetries relate bosonic and

fermionic fields together [8]. Supersymmetries are compatible with gauge symmetries,

so one can have a gauge theory (Yang Mills theory) that also have supersymmetries.



Such theories are called super Yang Mills theories, and are labeled by the number of

supersymmetry generators A( and the gauge group.

In the / = 4 U(N) super Yang Mills theory, we have a gauge field A,, six scalars

I, I = 1, ..., 6 and four fermions Xi, i = 1, 2, 3, 4. Here we have suppressed the gauge

indices, with the understanding that all the scalars and spinors live in the adjoint

representation of the gauge group. The Lagrangian of the theory is [5]

S= Tr[F2 + (DO)2 + XPDx + E[oIJ]2 I I~IX] + OTr(F A F). (2.1.4)

The last term is a topological term, meaning that its integral over the bulk only

depends on the topological properties of the space. For simplicity, we assume that

0 = 0 from now on. Here, gYM is the coupling constant of the theory. It can be shown

that the theory has an SU(4) symmetry. The simply connected Lie group SU(4) is

the universal covering group of SO(6), so the group has two special representations,

the vector representation of SU(4) and the vector representation of SO(6). Here, 4i

lives in the vector representation of SU(4) and 0c lives in the vector representation of

SO(6). These symmetries do not commute with the supersymmetries and are called

the "R-symmetries".

It is easy to see that the Lagrangian Eq. (2.1.4) is conformally invariant, since

the only parameter gyM is dimensionless. Furthermore, it is shown in [1] that the RG

flows are indeed zero. Therefore, this theory is conformally invariant. Two important

parameters of the theory is the coupling constant gyM and the "size" of the gauge

group N, whose roles will be seen later in this chapter.

2.2 String Theory and D3 branes

String theory is a promising theory that can potentially unifies gravity and quantum

field theory. The basic objects of string theory are strings. The time evolution

of a string forms a two-dimensional surface, known as a world sheet. Therefore, a

string theory involves two geometries, the world sheet geometry and the space-time



geometry. In order to include fermions in the theory, it is necessary to combind string

theory and supersymmetry, which leads to the so-called superstring theory.

In general, the string theory amplitudes are organized as an expansion over a

parameter a', which is the square of the Planck length 1p = v/hG/c3  _ 1.62 x 10- 3 5 m.

In the limit ' --+ 0, the quantum corrections can be neglected, and the theory reduces

to a classical theory. The classical theory is governed by an action, in which the

dynamic variables are tensor fields, so it is a supergravity theory. For example, the

D = 11 supergravity theory has the following action[i]

1 1F 4 ) 1
S11 2 2  [-G(RG -- F,_2 - A3 A F4 A F4] + fermions, (2.2.1)

where G,,, is the metric of the space-time, Ra is the scalar curvature corresponding to

this metric, A 3 is a 3-form (or an antisymmetric tensor of rank 3), and F4 = dA 3. In

general, the action of a supergravity theory contains curvature tensors of the geometry

as well as some differential forms built from p-forms Ap and its exterior differential.

One might naively think that we need to consider antisymmetric tensors of all ranks,

but this is not necessary since the (D - p)-forms and the p- forms are related by

the Hodge star operator[7]

1
( )i =...in-k - j jk V /Cjl...1kil...in-k, (2.2.2)

where r is any k- form and ejkil ... ... is the totally antisymmetric tensor. The

physical significance of the Hodge operator can be illustrated with an example. Con-

sider the electromagnetism in 4 dimensions. The field tensor F,, = O,A, - 0h,A, is a

2-form, and is related to E and B through

Ei = Fi ;

Bi = 1 Eijkjk-

20



Now by Eq. (2.2.2), (*F)oi = cijkFjk/2 and (*F)jk = EijkFi. Hence,

Bi = (*F)oi;

E = E6ijk(*F)jk-

Therefore, the Hodge star operator interchanges the electric and magnetic fields, and

thus it is also called the magnetic dual operator. The magnetic dual relates field

tensors of rank p to those of rank D - p and thus the gauge tensors A or rank p to

those of rank (D - p - 2). Therefore, it suffices to consider the gauge tensors up to

rank (D - 2)/2. The superstring theory that concerns us is the Type IIB superstring

theory, which lives in D = 10. Therefore, for a 5-form field strength F, its magnetic

dual is also a 5-form, so it makes sense to talk about self-dual form F, or the form

A 4 from which it is derived.

An important family of solutions to supergravity are the p-branes. A p-brane

is a solution to supergravity with a nontrivial (p + 1)-gauge form Ap+l living on it.

However, we know from differential geometry that (p + 1)-dimensional sheets can be

paired with (p + 1)-forms through integral

A ) 1. (2.2.3)

Hence, a p-brane is geometrically a (p+ 1)-dimensional sheet with Minkowski metric

on it, and p is the space dimension of the brane. Transversal to the brane is a

(D - p - 1) dimensional space, and it can be shown that the solution can always be

chosen so that the transversal space has the full rotational symmetry SO(D - p - 1)

[1]. The brane itself has the generalized Poincare symmetry to (p + 1)- dimensions,

namely RP+1 x SO(1, p), where RP+l parametrizes the translational symmetries and

SO(1,p) is the group of rotations and boosts that leave the (p + 1)- dimensional

Minkowski metric fixed. In summary, the full symmetry group of a p-brane is Rp+ ' x

SO(1, p) x SO(D - p - 1). By this symmetry, the most general form of the metric is



thus[l]

ds 2 = H(W)-l/2r~vdxtdx + H()l1/2 ,dydyv, (2.2.4)

where x is the coordinate on the brane and y is the coordinate on the transversal

space. The function H can be obtained by solving the equation of motion derived

from the supergravity action.

One needs a further refinement of the concept of branes. Consider a space with

N parallel branes in it. The excitations on the branes correspond to strings that

origins from one brane and ends at another, allowing the two branes to be identical.

To find the possible vibrational modes of a string, one needs to specify its boundary

condition at the two end points, which depends in turn on the type of the branes.

The type that concerns us is called the D branes, at which the boundary conditions

are Dirichlet conditions, namely, the two ends of the strings are fixed. A D brane

that has a nontrivial gauge (p + 1)-form Ap+ will be called a Dp brane. According

to which branes a string begins and ends with, there are N 2 types of strings.

The strings among the branes have positive tension. Therefore, a string has energy

roughly equal to the product of the tension and its length. It is thus important to

distinguish between the strings that begin and end at the same brane and those

that connect two different branes. For the former type, the length of the string can

be shrunk to zero continuously, meaning that these strings can have arbitrarily low

energy. In contrast, the minimal length of a string between two different branes is the

distance between the two branes, and thus the energy of these strings has a positive

lower bound. In terms of the energy spectrum, the strings that begin and end at the

same brane are massless, and those connecting different branes have positive mass.

However, the mass of strings between two branes approach zero when the distance

between these two branes approach zero. In the limit case that all the branes coincide

in space, all strings become massless.

More details of the brane dynamics have been worked out, for example in [6]. It

turns out that the effective action of the strings among N D3 branes contains N 2

gauge fields corresponding to moving the ends of the strings along and among the



branes, and these gauge fields generate a U(N) gauge group. When all the branes

coincide, all the gauge bosons remain massless, and the system has the full U(N)

gauge symmetry. However, as mentioned above, when the branes are pulled apart,

some strings acquire masses. Consequently, the corresponding gauge bosons in the

low energy effective theory also acquire masses, as through the Higgs mechanism in

the conventional quantum field theory when gauge symmetries are simultaneously

broken. Therefore, the separation of branes correspond to simultaneous broken of the

gauge symmetry, and in the case when all the branes are separated, only the U(1)N

gauge symmetries remains unbroken, one U(1) for each brane.

2.3 The AdS/CFT Correspondence

As seen in the previous subsection, the low energy limit of the dynamics of N coin-

cident D3 branes is a U(N) gauge theory on the branes. (Note that the D3 brane

is 4-dimensional and has the Minkowski metric.) Furthermore, as [1] points out, the

gauge theory also has X = 4 supersymmetries and is conformally invariant, and for

N D3 branes, the gauge theory that is obtained in this way is precisely the KN = 4

U(N) super Yang Mills theory introduced in Section 1.1. Hence, it should corre-

spond to some supergravity theory, and it remains to work out the geometry of the

N coincident D3 branes.

The metric of the D3 branes obeys the general form Eq. (2.3), and the function

H(Y) has a simple form[l]

H( =1+ 4 (2.3.1)
y4

where

L 4 = 4irgsNa'2 , (2.3.2)

and g, is the string coupling constant. Note that L4 is proportional to N, the number

of branes. The metric can be further simplified in the limit N -+ o0: substituting

Eq. into Eq. and using the spherical coordinate on the transverse space, we obtain



that, for L > y,

ds 2  Ylndxdx + Ldy 2 ) + L 2dQ, (2.3.3)

where dQf is the spherical metric on the intersection of the transverse space with

constant y. Now we recognize the first two terms as the AdS metric Eq. (1.0.3).

Note that the D = 4 Minkowski metric is restored as y --+ 00 with the substitution

, = y,, which corresponds to the intersection of the locus Eq. (1.0.2) with the

infinity hyperplane

-T T + X 2 + ... + X2 = 0. (2.3.4)

The infinity hyperplane of the 6-dimensional space has no scale, so it can be viewed

as a projective space. From this perspective, the above equation becomes a compact-

ification of the Minkowski space [9]: generically T2 + X 4 4 0 so we can set that equal

to 1, and then T2 - X4 can be solved from the equation, leaving the independent co-

ordinates (TI, X 1, X 2 , X 3 ) with a Minkowski metric. This shows that the Minkowski

space is an affine chart of the quadric surface Eq. (2.3.4), and adding the points with

T2 + X4 = 0 to the affine piece makes the surface compact. Therefore, the surface Eq.

(2.3.4) is the space in which the supersymmetric gauge theory lives. In summary, the

D3 geometry becomes a product AdS 5 x S, where the radius of both the AdS 5 and

the five-dimensional sphere S5 is L, in the limit L > y.

The problem with replacing the D3-metric with the AdS 5 x S 5 metric is that

the important parameter N, the number of branes, disappears if we view L as an

independent parameter, as we will do in later sections. However, N can be restored

as a topological quantity as follows. By the magnetic duality, for the Type IIB

superstring theory which live in D = 10, the gauge forms of rank (p + 1) are dual

to the gauge forms of rank (D - p - 3), so for a D3 brane, the gauge form is dual
to itself. The gauge field and the field strength are denoted by A+ and F+ = dA+,

respectively. The integral fS F+ is well-defined, and each D3 brane contributes an

equal share. Therefore, the integral is proportional to N. It is shown in [1] that the

integral is exactly N.

Given the KN = 4 U(N) super Yang Mills theory in 4-dimensional Minkowski space



and the string theory on AdS 5 x S5 , there is a hint that the two theories should be

equivalent, namely they have the same symmetry. The super Yang Mills theory has

a conformal symmetry in the Minkowski space, which is the same as the symmetry of

the quadric surface Eq. (2.3.4), namely S0(2, 4). Also, the theory has an SO(6) R-

symmetry as mentioned in Section 1.1, so the symmetry group is SO(2, 4) x SO(6).

On the other hand, the AdS5 has the SO(2,4) symmetry as can be seen from its

definition Eq. (3.1.1), and the symmetry of S5 is SO(6). Hence, the two theories

have the same ordinary symmetries. With some computation in string theory, one

can also show that they have the same supersymmetries [1]. Now that they have the

same symmetry, it is reasonable to guess that these two theories are equivalent, and

the result was given in Proposition 1.0.4 and Eq. (1.0.7).

The equivalence of these two theories are best understood in the 't Hooft limit

N -+ oo, while keeping the parameter A fixed. The parameter A was defined in Eq.

(1.0.5). In the string theory, we have

A = gsN = 2 (2.3.5)

where the second equality follows from Eq. (2.3.2). Hence, the limit N --+ oc with A

fixed corresponds to the limit g, --+ 0. In the gauge theory, we have

A = gyM N .  (2.3.6)

The physical significance is as follows [4]. Since the matter fields live in the adjoint

representation of U(N), they can be viewed as N x N matrices, and the general form

of the matter Lagrangian is as follows

£, 2 Tr[(M)2  M 2 + M 3 +

In terms of the Feynman diagrams, the propagator is proportional to g2, each vertex

contains a factor of g-2, and each closed loop indicates taking traces of the matrices

and thus produces a factor of N. Let f, e, v be the number of faces (or loops), edges



and vertices in a Feynman diagrams, respectively. Then the contribution from the

diagram is proportional to

(9
2 )e-vNf = Nf-e+vvAe - v. (2.3.7)

Now the exponent of N is a topological quantity known as the Euler characteristic, and

for a closed surface with genus h, the Euler characteristic equals 2 - 2h. Therefore,

the limit N - oc with fixed A corresponds to the contribution only from graphs

with h = 0, or planar graphs. Note also that each vertex is associated with more

than 2 edges, so e - v increases with the number of vertices, and thus higher order

Feynman diagrams have higher power in A. This discussion clarifies the idea of

duality mentioned in Chapter 1: the strong coupling limit of the field theory A -- 00

corresponds to the limit a' -- 0, the weak coupling limit of the string theory.

To apply the AdS/CFT correspondence, one needs to find the operator 0 in Eq.

(1.0.7), given the field 0. In general, this is nontrivial. However, in some special

cases, it is possible to guess the operator O. As an example, consider a scalar field in

the large A limit, whose equation of motion is -0 - m2 ¢ = 0. The discussion below

follows [5]. In the AdS part of the metric Eq. (2.3.3),

] -- Oa (gabv)Ob5

-- ( Y2 3 a) L 2  , 2 0

y30 y L 2 L 3 y Y2 OXIOxv

1 d 5d) L 2 020

y3L2 ay (Y Oy2 0p v

Hence, in the Fourier space for the Minkowski part (parametrized by x"), the equation

of motion becomes
1 0 8¢ L 2

y (yL 5 y ) + Lp2-p _ m20 = 0. (2.3.8)
y3L2 y d 2

As y - o, the second term vanishes, and the boundary behavior of the solution is



given by 0(y) = y', where a solves the index equation

a(a + 4) - m2 L2 = 0.

The roots are

a± = -2 ± V4 + m 2 L 2 . (2.3.9)

Clearly, the branch y'+ dominates. However, 0(y) diverges as y --+ o0, so one needs

to renormalize the boundary value 0o(Y) through

(x, y) I=v = Y+ 0(x), (2.3.10)

where "r" means renormalized. The metric Eq. (2.3.3) is invariant under the confor-

mal transformation x -+ Ax and y -+ A-ly, which restricts to the standard conformal

transformation on the boundary. Hence, in this transformation, q(x, y) does not scale,

so the renormalized boundary value ~ (x) scale as Ao+ , and thus thus the operator 0 has

mass dimension

A = 4 + a+ = 2 + v4 + m 2L 2 . (2.3.11)

Therefore, the massless scalar field corresponds to an operator 0 with mass dimension

4. The massless scalar may appear in the metric as 6ds2 = d,,dxv" where the

indices p and v are not summed over. This type of scalar fields are called gravitons.

One can show that the equation of motion of 0,, is precisely DO,, = 0. (We will

demonstrate a particular case in Section 3.) Therefore, ,v corresponds to an operator

0/" with mass dimension 4 in the conformal field theory. Hence, one can guess that

0"" = T", the stress tensor [5]. Therefore, the study of graviton propagation is

equivalent to the study of the correlation function of the stress tensor in the conformal

field theory.
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Chapter 3

The Shock Wave Geometry

In this section, the AdS space and the shock wave on it are studied from a geometric

perspective.

3.1 The AdS metric

A general d-dimensional AdS space can be embedded in a (d + 1)-dimensional flat

space with signature (-I, 1, 1, ..., 1) as follows:

where L is a measure of the curvature of the AdS space, and is determined, through

the equation of motion, by the cosmological constant A. The computation is made

easy by the following choice of coordinate system of the AdS space,

o = L + T2
Xi

Y i = for i = l,..., d -1.
L + T2

(3.1.2)

(3.1.3)

By the substitution principle, the metric can be written as

(3.1.4)ds2 4L2 2v dy"dy,(1 - n.'3yP)2

(3.1.1)



where Tr,, is the Minkowski metric. One can work out the curvature tensor, the Ricci

tensor and the scalar curvature, and the results are

R,,p = (gXgp - gpg,)L-2; (3.1.5)

R, = (1 - d)g,, L-2; (3.1.6)

R = d(- d)L -2 . (3.1.7)

It is clear then that this metric solves the Einstein equation

R,, - -S 9R = -Agj, (3.1.8)

with

(d - 1)(d - 2) (3.19)A= 2 L-2. (3.1.9)

This equation can be used to determine L. In fact, the functional form Eq. (3.1.4)

can solve the equation of motion derived from actions with a' corrections:

S = ddy v-(R - 2A) + higher order terms,

The proof proceeds as follows. The curvature tensor Eq. (3.1.5) can be written

entirely in terms of the metric tensor, so covariant derivatives of the curvature tensor

produced by variational calculus all vanish and any powers and contractions of the

curvature tensor and the metric tensor contain only 6g,, and contractions of metric

tensors, with appropriate powers of L. However, all such contractions must reduce

to a constant multiple of g"6g,,,. Therefore, substituting Eq. (3.1.4) into the most

general form of the equation of motion leads to

p(L2)g Ag, (3.1.10)

where p(L 2) is a polynomial in L 2 . We see that Eq. (3.1.4) solves the equation of

motion as long as p(L 2) = A.

The above argument shows that with a' corrections the functional form Eq. (3.1.4)



remains a solution to the equation of motion, but the value of L may be modified by

those corrections. As an example, we will work out a particular case explicitly which

will be important later in the paper. Consider the following action

S = ddyI-[R - 2A + A(R 2 - 4RRa + R R )]. (3.1.11)

This particular form of a' correction is called the Gauss-Bonnet term. By the sym-

metry of the curvature and Ricci tensors, the variation of the action can be written

as

63 = J d y -/(lg"/6g,, )[R - 2A + A(R 2 - 4RceRc + R,,RaRYR)] +

,/,[6R + 2A(R6R - 4R,06R,3 + Ro"as6RaPy)].

Substituting in Eqs. (3.1.5), (3.1.6) and (3.1.7), we obtain that

S = d ( "g,)L-2{d(1 - d) - 2AL 2 + AL-2[d 2 (d - 1)2 - 4(d - 1)2d + 2d(d - 1)]} +

v {1 + 2AL-2[d(1 - d) - 4(1 - d) - 2]}6R

Lld(l - d) += L - 2  d dy u g,,{-AL 2 + d - )

A d(d - 1)(d 2 - 5d + 6) - (d - 1)[-1 + 2AL-2(d 2 - 5d + 6)]}
2L 2

= L - 2  d dy,' 6g,[-AL2 (d -2)(d - 1) + (d - 4)(d - 1)(d 2 -5d+ 6)].

Therefore,

(d - 2)(d - 1) (d - 1)(d - 2)(d - 3)(d - 4)
A =2 + A 2(3.112)2L2  2L 4

3.2 The Shock Wave Metric

As mentioned before, a shock wave is a wave that travels with the speed of light and

affects matters only near its frontier yl = -yo. Therefore, the metric in the shock

wave geometry should be the same as the AdS metric away from the frontier. Then



for the shock wave to be nontrivial, it must be a delta function centered at the frontier
6 (yo + yl). However, the profile of the shock wave, namely a multiplicative factor of

the delta function cannot be determined by the general consideration and must be

solved from the equation of motion.

By the above consideration, the shock wave metric can be defined with the coor-

dinate system introduced in Eqs. (3.1.2) and (3.1.3) as:

ds2  4 L2 2 L2d(Y+)f () dy, (3.2.1)
=(1 - rl yy) 2 ddy +  +1yy

where y± = yo ± Y, is an abbreviation of Y2, .. , Yd-1 and f (Y) is a scalar function to

be determined by the equation of motion. This metric is the same as the AdS metric

away from the shock wave frontier y+ = 0. At the frontier, however, there will be a

jump specified by the function f. To further simplify our notation, let

1, = a,y+, (3.2.2)

so lo0 = 11 = 1 and Ii = 0 for i > 1. Now the shock wave metric (3.2.1) can be written

as ds 2 = g,,dyudyv where

4L2=, L 2 F(y)9 4L2 L2F(Y) 1,1,, (3.2.3)
=(1 - ?7CyayQ)2 1 - Tl7ay3L(2

where

F(y) = (y+ ) f ().

Clearly, the contravariant counterpart of the above metric is

v - 1 21 _ 71""3 Z)2 q,, _1I (I - n70Y1)37rl A p 'FlPA. (3.2.4)4L 16L2

Carrying out the calculation of curvature tensors, actions and equations of motion

by hand is tedious. Fortunately, these tensor computation can be done by computer

routines. Such a computation can be implemented as algebraic computation based



on the following set of symbols, up to renaming the indices:

X = ({ ,, 1", V~, y , 1,, F, F91.2-,. d, I}, (3.2.5)

where d is the dimension of the AdS space. Some of the important relations among

these symbols are restated in the following proposition:

Proposition 3.2.6. The symbols in X satisfy the following properties:

7l7[IVFl 1\2 = 0;

rl" ll,, = 0;

Iy " F = 0.

Proof The first identity holds since F is independent of y_. The second identity

follows from the definition of l,. The third identity holds since F contains a factor of

6(y+) -E

We denote by F[X] the set of all polynomials of symbols in X, in which repeated

indices are summed over and every monomial has the same free indices. Here F de-

notes an arbitrary coefficient field (with characteristic 0), which may be the rationals,

the reals or the complexes. A rational expression on X is defined as the ratio of two

elements of F[X]. We denote the set of rational expression on X by F(X). A new

relation among symbols in X can be stated using the above notations:

Proposition 3.2.7.

dd yly " F A ... E = - dd y kF

k=1

for any E F(X).

Proof. Integration by parts yields that

d ylyF.,e = (-1)n ddy lkFl + (-1)n ddylyFE,l...A.
k=1



By Proposition 3.2.6, the second term on the right hand side vanishes, and applying

integration by parts to the first term completes the proof. O

A nice property of F[X] is that it is closed under differentiation. Indeed, this is

trivial except for V/p, but in the shockwave geometry 8, = 2drip,yv. . It follows

that F(X) is also closed under differentiation. Now, apart from the constant L, the

metric g,, and its contravariant counterpart g"" are elements of R(X). Therefore,

all tensors constructed from the metric through differentiation and contraction are

elements of R(X). In particular, the curvature tensor, the Lagrangian. Further more,

the equation of motion is obtained from variational calculus and integration by parts,

so it can be written as

1/1, = A gq,, (3.2.8)

where II,, is a tensor constructed from the metric and independent of A, and thus

II, E R(X). With the above algebraic preparation, the equation of motion Eq.

(3.2.8) can be computed with computer programs in a straight forward way. Moreover,

the algebraic properties also constrain the general form of the equation of motion.

Theorem 3.2.9. Assume that the Lagrangian is a polynomial in the curvature and

metric tensors. Then the equation of motion Eq. (3.2.8) is equivalent to Eq. (3.1.10),

the equation of motion without the shock wave, and a linear differential equation of

the function f in Eq. (3.2.1).

Proof. We write I, = II) + r 1  , where II (° ) is independent of f, and II (1 = 0

when f = 0. Since all the contribution to II,, from the shock wave part of the

metric contains f, II ( ) should be the same as the contribution from the AdS metric,

namely p(L 2)g, in (3.1.10). On the other hand, I (I is produced from the integral

f d /yISg. One can simplify IT(') so that in each term in the numerator, the

number of symbols that appear in the term is minimal. In particular, rI(l ) contains

no 6 symbols, and lpyP cannot appear simultaneously with derivatives of f since in

such cases the term can be further reduced by using Proposition 3.2.7. Now suppose

a term in 1I(1) contains 1, for some index p - p, v. Then 1, either contracts with a



yP in which case the term vanishes by Proposition 3.2.6, or contracts with rPA for

some A, in which case rPA cannot contract with another r symbol by irreducibility, so

it contracts with I\ or FA..., but both contractions are zero. Therefore, a nontrivial

reduced term in I1,i cannot contain any 1, for p f/ p, v. Now each term must contain

f or its derivative, so it contains at least two 1 symbols. By the above argument, the

two 1 symbols must be 1, and l, and there cannot any other 1 symbols. Therefore,

PII = l,l,Df (6(y +),

where D is some linear operator. Therefore, the equation of motion Eq. (3.2.8) can

be written as

p(L 2)g,, + 1,1,D f()6(y+) = Ag,,.

Clearly, the above equation is equivalent to Eq. (3.1.10) and the linear differential

equation Df = 0. 

Under the Einstein-Hilbert action, I,= ,R - . The computer routine

yields the following equation of motion

V 2 f - (d - 2)f = 0, (3.2.10)

where the Laplacian in the transverse space is defined as

1 1
V 2 F (1 - 2 y y)y ruFIIi,,, + (2d - 2)(1 - rlpyBy3)ytF (3.2.11)

This recovers the equation of motion given by other authors [2].

Horowitz argues in [2] that the equation of motion Eq. (3.2.10) should not receive

a' corrections, which does not follow from Theorem 3.2.9. In fact, the equation of

motion does become more complicated as the a' corrections are included, and it may

also contain higher order derivatives. To illustrate this, we will show that the fourth

order derivative of f appears in the equation of motion when we include the correction

aR,,RP".



We will need the following expression for the Ricci curvature in a general (pseudo)Riemannian

manifold:

1 cde 1 d ce 1 c 1 ff

Rab fc g debc,d9ae,fJ+g fd cebc,dae,f+ 9ec df gcd,agef,b- gfcgdegba,cde,f+ 9 fcgdegac,bgde2 2 4 4 4

1 cd 1 1  ecdf 1
+ g fc degbc,agdef cd gcd,ba ecg df gcd,egba,ff - dcba,cd- ec gdfgcd,egaf,b+ 1 gac,bd

1 1c
gec df gcd,egbf,a 

-+ 1dcgbc,ad,
2 2

and the Ricci tensor in this Shock Wave geometry:

Rab I dlblaF+lblFy c dc 1 1 1 -rAyaP'1 cd- I dlbIaj-lap(c ) -1 a bF
4 8  2

-4d7ab(1 - 0 Qy )-2 + 4 rab(1 - a"yY3-2 dlalbFcyC

Example 3.2.12. The 4th order derivative of F appears on the LHS of the EOM

when a correction term aRabRab to the Lagrangian is included, where a is a constant.

Proof. The correction to the Lagrangian can be rewritten as aRacgbRbdgad, SO its

contribution to the variation of the action is

/ ddyv/-( 1gcdg69cdRabR b + 2aRacgbc6 ((bdgad)).

The fourth order derivative of F can appear only if the variation operator hits a second

derivative of the metric and the result is multiplied by the only term containing the

second derivative of F in the Ricci tensor. However, the term in the Ricci tensor

containing F4,,, also contains 2 1,'s, so the other factors in the same term cannot

contain any more ,L's by our previous remark. Therefore, the terms containing the

fourth derivatives of F are contained in the following (where we have written (1 -

r7 a0 y YO) as (1 - y2) for simplicity):

ddy2a (- lalcrlef (I _ y2 Fef) I - b2 2 g ,hd + 9dghbJ ddy2i/(- - e y2)F4)(4 (1 -bc -dabdgh gbdgh -- ,hd gdg,hb ggh,bd)

-- 12 Y ) lalcT] ' Fef TI 7] 7] (gbd,gh - gbg,hd - gdg,hb + ggh,bd).512



After integrating by parts, to obtain the fourth order derivatives of F, the derivatives

must hit Fef, but a derivative of F is annihilated by l,r7"v if v is a direction in

which the derivative is taken, so the only nontrivial contribution comes from gbd,gh.

Therefore, the desired term is

I ddy (1 - y 2 7 c efgh?7 Fefghda bc6bd.

Nevertheless, the equation of motion Eq. (3.2.10) remains the same when the a'

correction is of the Gauss-Bonnet form, as can be shown by computer programs. This

result will be important in studying the propagation of gravitons in the shock wave

geometry.
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Chapter 4

Gravitons in the Shock Wave

Geometry

4.1 Action with a Graviton Field

In what follows, we will work in the particular case d = 5; in other words, the AdS

space is 5-dimensional. The study of gravitons is most convenient in the coordinate

that we used in Chapter 1:

r = Xd-_1 - T2 ,t = T1L/r, and xi = XiL/r,

for i = 1, ..., d - 2. Whenever we write xixi, xidxi or dxidxi, the summation over i

from 1 to d - 2 is always implied unless otherwise indicated.

Since

d-2

(-_t2 2 + X)L = _T2 + E X 2 = -L 2 + T 2 - = -L 2 - r(T 2 + Xd-l),

i=1

we have

L 2  r r
Xd-l - 2 ( t2  +  iXi) ; and

2r 2L2 2
L 2  r rT - - (_t2 + xXi)r
2r 2L2 2



By the substitution rule, the AdS metric becomes

ds =-dT2 - dT2
d-1 2 L2

+ dX = L(-dt2 + idi) 2d
i=1r

(4.1.1)

which recovers Eq. (1.0.3). To compute the shockwave correction, we note that

1 - rla/Oyly
= T2 1 ~d1 X -I 2L

L + T2 L + T2
S+r

L(L + T2)"

L 26(y+)f 2

1- lapy "
2= r6(+)fd+, (4.1.2)

where we have for convenience introduced x± = t xl. Combining (4.1.1) and (4.1.2),

we have the full shockwave metric

Tr2 L 2  1
ds2 = (-dt + dxidxi) + dr2 + -r(x+)fdx2

L2 r 2 + (4.1.3)

Furthermore,
O(L + T 2 ) r

Ox- 2L2

so 6(x+)dyi/Ox_ = 0 for all i > 1 and thus by the chain rule

6(x+)Of
Ox_

d-1

(x+) ay &of = 0.
Ox- &yj

The EOM of f in this coordinate system can be obtained by computing the Ricci

tensor using RGTC, or by performing the change of coordinate from Eq.

and the result is

42f 3 Of
r + 3r

OT2 Or
- 3r2 f + L4( f

; +2

02f
O2) = 0.

(3.2.10),

(4.1.4)

Now we are ready to write down the action including the shock wave and the

The graviton field 0, assumed to be independent of x2 and X3 for

Therefore,

and

graviton fields.



simplicity, enters the metric as

2

ds2 iton  (2(r, t, xl)dx 2d3 ).

The action with the Gauss-Bonnet term Eq. (3.1.11) can now be written as

S =- d5xv(c i + 2)+O 4];

S= - (1- _ 2);
P3 2

8 1 [L4
L2 2L 2r2 xZ+ Dx_

96 2
£2 =L 4  L4r2

L 6 0)
2 (f4r Ox-

d4 0& 0
Ox+ ax_

4 2+
(r

1L f (x+)( )2
2r Ox-

+ r4( )2 + 24rT2 2
dr

Df 2 2f
dr r2

where we have substituted in (3.1.12) as we are only interested in the dynamics of ¢.

4.2 The Equation of Motion and Its Solution

By taking the variation of S with respect to 0, we find the equation of motion as

- 20

2(1-2A)(L 4r
88x

- 5r4 5 2
dr 8r2

L2(
+ L66( ) [f ~fr 2

2f
r2 )

(4.2.1)

where A = 2A/L 2. We can see that the EOM receives no corrections from the Gauss-

Bonnet Lagrangian away from the shock wave frontier.

However, this is not the whole story. By looking at other components of the

Einstein tensor, we find other equations to be satisfied by 0. Three independent

- 8r2 2];



equations are obtained in this way:

(g 2 2 0 2f
[ + (2 + 3r + r2 O 6(x+) = 0;

Or Or2 O20£3

(1 - 2 ) 0 (0Of -6 (x ( - )o()2 f = 0_ox 3(x)- -7(-x 2(o )6(x+) 0 ;

(1 - 2) f6(x) - r 02 ( Of 02 )( 0.
_ 6O2 - 0 (x+)

All the above equations are only concerned with the value of q and its derivatives at

the shock wave frontier. However, the behavior of 0 there has already be prescribed

in (4.2.1), so in general, no non-trivial solutions exist. This is because we assume that

O is independent of X2 and 3a. Therefore, the non-existence of solution precisely tells

us that when the shock depends on £2 and X3, the graviton field is forced to be x2, X3-

dependent. However, all the three equations become trivial when f is independent of

X2 and x3, which will be the only case that concerns us.

Away from the shock wave frontier x+ = 0, the equation of motion of the graviton

is relatively simple and independent of A:

L4  5r3  r = 0. (4.2.2)
OX+Oz_ Or Or2

One can solve this equation in the Fourier space in t and xl:

(r, t ) dkdww,k(r)eikx
l - iwt

47i-2

Then different modes decouple and one obtains

4 2 w,k + 5 T 3w,k (w 2 - k2 )L ~ ,k = 0. (4.2.3)
Or2 Or

The solutions are the Bessel functions. Specifically, for w2 - k2 < 0, the solutions

are the modified Bessel functions r- 2 (L 2  - w 2 /r) and r-K 2 (L 2 k2 - W2/r).

However, I2(L2 k 2 - w2/r) blows up exponentially as r -- 0, so only the K 2 solution



is sensible. The asymptotic behavior of the solution is

(r) N r 2  exp(-L 2 /k 2 - w2/r), for r < L2 /k 2 - 2

2L2/k2 - W2

r)2 for r > L 2 vk 2 - 2 .
ONr L4(k 2 _ W2)1

Therefore, the solution decays exponentially with 1/r and approaches a constant near

the boundary. This shows that when w2 - k 2 < 0, the graviton cannot propagate in

the bulk of the AdS space.

For w2 - k2 > 0, the solutions to Eq. (4.2.3) can be expressed as the superposition

of the Hankel functions r-2H(l)(L2 w2 - k2/r) and r-2H22 )(L2 w2 - k 2/r). For

r < L 2 vw 2 - k2 , their asymptotic behaviors are

T-2H2)(L2 J2 - k2/r) 1
2  w exp(iL 2 w2 - k 2/r); (4.2.4)

2H)(2L2 2 V2- k 2

rH2(L - k2/ r- exp(-iL2 w2 _ k2/r).(4.2.5)
r-"H )(L"/r) r 2Lv/ 2 - k2

The factor r-2 is dictated by the conservation of energy, since in the AdS space

cx r3 . It can be seen that H21) corresponds to a wave that leaves the boundary,

and H22) corresponds to a wave that returns to the boundary. Near the boundary,

both solutions approach a constant.

Now we turn to the study of the scattering between the graviton and the shock

wave at x+ = 0. For simplicity, we will focus on the plane wave limit, the limit where

w2 - k2 is large, from now on. Then the asymptotic behaviors Eqs. (4.2.4) and (4.2.5)

applies everywhere except for a small region very close to the boundary. The jump

condition at the frontier can be derived from Eq. (4.2.1):

So + ,20 af 2 12 f2(1 - 2A)(r-_ ) x+= + L2 2 x+=O[f - (f + r-) = 0, (4.2.6)

with the understanding that the average over x+ = 0+ and x+ = 0- is taken in the



second term. For the simplicity of presentation, we define

L2[f - (f + raf + -2 a2f(.L 2 [f A(f ar ar2D
A(r)= (4.2.7)2(1 - 2A)r

Then Eq. (4.2.6) can be written as

( ) II+=0 = -A(r) 2x+=0 (4.2.8)

In the typical scattering picture, we assume a form of incidental gravitational

wave in the half space x+ < 0, and determine the scattered wave in the half space

x+ > 0 from the jump condition Eq. (4.2.8). The gravitional waves propagating

in the bulk of a half space behaves like Eqs. (4.2.4) and (4.2.5). In general, this

scattering problem can be solved as follows. We take a Fourier expansion of q on

both half spaces x+ < 0 and x+ > 0 and match their values at x+ = 0:

dodk () L2 L2
(r, t, x1) = Jd (c(1) i -C~ )-3/2 ikxl-iwt, for x+ > 0; and

(r, t, Xl) = ddk (c(2)il e e k2 )r3/2eikxl-iwt

Substituting these into Eq. (4.2.8), we obtain that

J w- (w + k)[(c- c ( 1
))ei + (c2)- _ (2)e - i  ]ei(kw)

dwdk 2A() eiL2 (2) (2) L2dwdk (w + k) 2 Ar) [(c~ ++ c -- iiL ]ei (k+w)x l

(27r) 2 + c+

Notice that due to the constraint x1 + t = 0, the Fourier factor only depends on w + k.

An important implication of the above equation is that k - w may change across the

shock wave frontier, though (k + w) is still conserved. The goal is to solve c+ from the

above equation in terms of c_. This can be done by taking the Fourier transform over

1/r on both sides, but the Fourier transform of the function A(r), depending on \ and

the shock wave profile f, can be complicated, so the result can also be cumbersome.

One can obtain a better physical picture by using the WKB approximation and thus



transforming the wave problem into a geometric problem.

4.3 The Geodesic Picture

In order to derive the WKB approximation, we first need to introduce an effective

metric in which we can write Eq. (4.2.2) in a covariant form. The effective metric is

2 r 6

ds 2 = dr2 - (dt2 d2), (4.3.1)
L2 L6

and we denote the effective metric tensor by 9,,. It is easy to verify that Eq. (4.2.2)

now can be written as

tV"" V,, = 0, (4.3.2)

where V denotes the covariant derivatives in the effective metric.

In the WKB approximation, we write 0 = pei', where p and O are real, and

identify /"v,,0 with dxv/ds[3]. Then we have

dt L 6dt - (4.3.3)
ds r6

dxl L6
- - k (4.3.4)

ds r 6

in our earlier notation, and w and k are conserved away from the shock wave frontier.

From Eq. (4.3.2) we see that

dr2 L 4

(ds 2 =4 4( 2 k 2 ). (4.3.5)

Note that the right hand side is positive since we have shown that the Fourier com-

ponents with w2 - k 2 < 0 cannot propagate in the bulk of the AdS space.

Now we study the singularity at the shock wave frontier. For this purpose, we

write
S dxik

O(rt,xI) 2 - ¢k,r(X+)e ik + -, (4.3.6)



where k± = k ± w. Now the jump condition Eq. (4.2.8) can be written as

(4.3.7)

where A(r) is defined in Eq. (4.2.7). Now this equation holds for every k+ and r, so

we may regard k+,r as a function of only one variable, x+.

Applying the Fourier transform on both sides of Eq. (4.3.7), we

ik_)k+,r(k_) = ik+A(r)k+,r(x+ = 0),

obtain that

(4.3.8)

where / denotes the Fourier transform of 7. This equation only applies to large k_

since we are focusing on the behavior of <k+,r near x+ = 0. Now the right hand side

is a constant, so k+,r(k-) - 1/k_ for large k_. In mathematics, if a function f over

R satisfies

J dk(1 + k 2) l(k)1 2 < ,

then f is said to be an element of the Sobolev space H(R). From this definition, we

know that bk+,r, as a function of x+, is an element of Ho(R). However, if we define

JX+
'k,r (X+) = (4.3.9)

then Wk+,r E HI(R). By the Sobolev lemma, elements of H 1((R) represent continuous

functions, so Tk+,r is continuous, and k+,r may have a jump in x+ at the shock wave

frontier, and it does according to Eq. (4.3.7).

Knowing that 'bk+,r only has a finite jump at x+ = 0, Eq. (4.3.7) is not hard to

solve. In fact, we have

(4.3.10)2 + iA(r)k+
+,r2- = 0+) = i k +,r( + = 0- )

The inverse Fourier transform of the prefactor is

dk+ 2 + iA(r)k+ -ik+x- =
2wT 2 - iA(r)k+r)
27r~ 2 - iA(r)k,

4 2

A r) e A()
A(r)

0k, x+= ik+A(r)6(x+)#k,,r +),
Ox+



where 0(.) is the step function. The wave function q can thus be written as a convo-

lution:

4 2C

(r, x_, x+ = 0+) = -2 dO(A(r))A(r)e A(r) (r,x_ - ,x+ = 0-). (4.3.11)

In particular, when ¢(r, t, xl - () is a Gaussian wave packet centered at some z(r)

(2-_ -z(r))
2

0(r, x_, Z+ = 0-) = C(r)e 2a2 (4.3.12)

for some arbitrary amplitude C(r), the convolution Eq. (4.3.11)

0 4 2 (x_-sgn(A(r))C-z(r))2

(r X = 0+) = d e JA(r)j 2a
2  (4.3.13)

(,=2+)= - o |A(r) I

The integral is an error function, whose peak cannot be solved in a closed form.

However, from the integrand one can see that the center of the wave packet will be

shifted, and the direction of the shift depends on the sign of A(r): it shifts to a greater

x_ when A(r) is positive and a smaller value when A(r) is negative.
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Chapter 5

Conclusion

In this paper, we study the shock wave geometry in the context of the AdS/CFT cor-

respondence, and the propagation of gravitons in this geometry. Though a constraint

on the a' correction to the supergravity action is not obtained, several important

aspects of the physics are unveiled.

First of all, we find that the shock wave geometry Eq. (3.2.1) is always a solution

to the equation of motion of the supergravity theory no matter what a' correction is

included in the action, as long as the shock wave profile f is chosen appropriately.

Moreover, the equation of f derived from the supergravity action is always a linear

partial differential equation of f, though the specific form of the differential operator

may depend on the a' correction. Also, when the a' correction is present, the relation

between the curvature of the AdS space, measured by L - 1, and the cosmological con-

stant may change. Finally, by explicit computation, we show that if the a' correction

is of the Gauss-Bonnet form Eq. (3.1.11), then the a' correction does not enter the

equation of f.

Secondly, we show in Eq. (4.2.3) that the propagation of the graviton away from

the shock wave frontier receives no correction from the Gauss-Bonnet term in the

supergravity action, but the scattering between the graviton and the shock wave does

depend on the a' correction. The wave function of the graviton is a combination of

Bessel functions. In the Fourier space, only components of the graviton field with

w > k can propagate in the bulk of the AdS space, and its propagation is simple



harmonic in 1/r when the graviton is sufficiently far from the boundary, as shown in

Eqs. (4.2.4) and (4.2.5). Finally, the scattering with the shock wave shifts the position

of the graviton according to Eq. (4.3.13), and changes the "integral of motion" k -w,

which would remain constant without the shock wave.
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