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Abstract

We study the electromagnetic Casimir interaction of a metallic compact object with

a compact and bounded metallic surface in which it is contained. We express the

interaction energy in terms of the objects' scattering matrices and translation matrices

that relate the coordinate systems appropriate to each object. When the external

conductor is a sphere and much larger than the internal conductor, the Casimir force

can be expressed in terms of the static electric and magnetic multi-pole polarizabilities
of the inner object, which is the interior analog of the Casimir-Polder result. Although

it is not a simple power law, the dependence of the force on the separation of the

object from the containing sphere is universal. Additionally, we compute the exact

Casimir force between two metallic spheres contained one inside the other for arbitrary

separations. Finally, we combine our results with earlier work on the Casimir force

between two spheres to obtain data on the first order correction to the Proximity
Force Approximation for two metallic spheres both outside and within one another.
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Title: Jane and Otto Morningstar Professor of Physics
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Chapter 1

Introduction

Casimir forces arise due to vacuum fluctuations of electromagnetic fields in the pres-

ence of static or slowly moving conductors, or more generally, dielectric or magnetic

materials [1]. The fields obey appropriate boundary conditions on the conductors

or appropriate constitutive conditions on other electromagnetically active objects,

which result in induced charges and currents. Due to the quantum nature of the

field, the induced charges fluctuate, shifting the energy of the vacuum by a finite

amount. This difference manifests itself as an interaction - the Casimir force -

between neutral objects that depends on their sizes, shapes, material properties, and

relative orientations. The case of perfect conductors is particularly simple: the forces

depend only on the geometry of the configuration. Analogous Casimir forces can

arise from fluctuating scalar or fermion fields in the presence of objects on which they

obey boundary or constitutive conditions. The electromagnetic Casimir force is a

quantum effect observable at macroscopic scales. It has been shown to be significant

in sub-micron scale devices as well as in the description of the interactions of atoms

and/or molecules with surfaces, prompting substantial theoretical and experimental

investigation over the last decade or so.

In this paper, we present the first exact calculation of the force on a small po-

larizable object inside a conducting spherical shell as a function of its displacement

from the shell's center - the analog of the Casimir-Polder result for this geometry.

We further give the first exact calculation of the force between a metallic sphere



inside a spherical shell as a function of their radii and displacement. Finally, we com-

bine our results with earlier work on spheres [2, 3] to obtain first order corrections

to the Proximity Force Approximation (PFA) for two metallic spheres both outside

and within one another. This follows many attempts to calculate the Casimir force

beyond PFA [4] and lends closure to this question in the case of conducting spheres.

In the past, there have not been many studies of the Casimir force in closed

cavities despite the fact that cavity configurations are experimentally realizable.

Dalvit et al. [5] studied the interaction of a cylinder inside a cylinder and recently,

Marachevsky [6] has calculated the interaction of parallel plates inside a cylinder.

Recent theoretical advances [2, 7] (see also Ref. [8]) in the study of the Casimir force

have made it possible to analyze a wide variety of geometries and our attempt to

study the interior case is one such example.

Our analysis is based on the formalism that combines path integral and scattering

theory techniques, developed in Refs. [2, 9, 7]. For further references, see Ref. [7].

Based on well known scattering techniques, this method is exact for arbitrary compact

objects, both conductors and dielectrics. As demonstrated in Chapters 2 and 3,

the methods used in Refs. [2, 9] lend themselves very naturally to an analogous

examination of our problem. In this paper, we shall not repeat formal details of the

path integral method already discussed at length in Refs. [2, 9, 7, 10, 3]. Nevertheless,

we summarize the formalism as it applies to conductors qualitatively to serve as a

reminder for the reader. For a thorough derivation, see Ref. [7].

For a quantum field T, the Casimir energy of an arbitrary configuration of objects

is understood to be the difference between the vacuum energy at that configuration

and at another convenient configuration where the Casimir force vanishes (in the

interior problem, the force vanishes by symmetry when the objects' centers coincide

if they are appropriately chosen). Formally, this can be expressed in terms of the

partition function, [9]

S [C]= hc dr In 3C( i(1.1)
27 0 3o0(i a)



where 3 c(iK), a function of imaginary frequency, is a functional of the euclidean

action, [9]

3c(iK) = J[[D (x, i)]c exp [- S[(x, i)l] (1.2)

The subscript C denotes the spatial configuration of conductors and physically man-

ifests itself as a boundary condition that the fluctuating field obeys on the conduc-

tors' surfaces. It is possible to trade the constraints for fluctuating sources on the

constraining surfaces [2, 11]. Thus, the functional integral over the fields becomes

free of constraints and can be performed up to a multiplicative constant that gets

cancelled by an identical term from 30. This leaves a functional integral over the fluc-

tuating sources on the surfaces E,, in which the action is expressed as a functional

of the sources and the classical field xal they produce. By superposition, we write

T,1 = CZ 'J,cl, which allows the action to be written as a sum over the self- and

inter-actions of all the objects in our system.

With the choice of convenient bases, we can expand Jo,c1 in terms of multipole

fields, generated by the multipole moments of the sources induced on E,. Using

methods from scattering theory, we can express these multipole fields in terms of the

transition matrix T = (5 - 1I)/2 of the object under consideration (where S is its

scattering matrix) and the multipole sources. The self-action of the sources on each

object can, therefore, be written entirely in terms of the multipole moments and its

T-matrix. Similarly, we can express the inter-action of two different objects in terms

of their multipoles and a translation matrix which relates their coordinate systems in

the appropriate bases. Finally, the functional integral over the multipole moments of

the sources can be performed, leaving an expression for the Casimir energy in terms

of the objects' T matrices and the translation matrices.

We are interested in the situation in which one object, the inner (subscript i), is

enclosed entirely within a perfect conductor, the outer object (subscript o). Because

we take the outer object to be a perfect conductor, the presence of the inner object

and its position or orientation have no effect at all on fluctuations outside the outer



object, so we may effectively ignore the space outside the inner surface of the outer

object, and can therefore take the outer object to be a perfectly conducting shell of

negligible thickness. The methods of Refs. [2, 9, 7] can be adapted to this interior

problem. The polarizable inner object interacts with fields scattered inside as opposed

to outside the outer cavity. Thus, the T-matrix of the outer cavity relevant to the

interior case differs from the T' matrix that describes scattered waves external to

the outer surface. Fortunately, it turns out for a conducting cavity that the required

interior T-matrix is the just inverse of its standard (exterior) T-matrix. Additionally,

since we are interested in the fields internal to the cavity and external to the inner

object, the translation matrices in the interior problem are different (V instead of U)

from those employed in Refs. [2, 9]. With these modifications it is not surprising that,

following Refs. [2, 9], Eq. (1.1) evaluates to

h e = " det(Iff - To1lVo,iTiVi,o) (1.3)
S[a] -= dln dV (1.3)

27 o det(ff - To Ti)

where a denotes the displacement of centers and appears as an independent variable

in the V-matrices. The denominator subtracts the energy when the centers of the

two objects coincide (as opposed to infinitely separated in an exterior problem [2, 9]).

For further discussion, we refer the reader to Chapter 2.

The matrix identity In det M = Tr In M, allows for a simple physical interpretation

of Eq. (1.3). We can express the Casimir energy as a series, S - Tr (N + N2 + ...),

over the matrix N = ToI1Vo,iTiVi,o where N describes a wave that travels from one

object to the other and back [2]. In general, all terms in this series are important,

illustrating the fundamentally non-two-body nature of the Casimir force. The rate

of convergence of this series depends on the size of the inner object relative to the

separation of its surface from that of the cavity. If the inner object is small compared

to the size of the cavity, the first term in the series expansion of Eq. (1.3), E - Tr N,

already gives an excellent approximation to the energy. Furthermore, in this limit the

Casimir energy is dominated by the lowest frequency contributions from the lowest

partial waves in Ti. In a spherical basis, the leading terms in the electromagnetic



T-matrix are, Im, -, +'+l and ,O _ Kl+.'+2 for A Z o. Therefore the leading

contribution to the Casimir force comes from the orientation dependent response of

the inner object to a dipole field, where the inner object can be characterized by its

polarizability tensor, M/E (see Ref. [12]). The orientation dependence

of the interior Casimir problem will be studied in a future publication.

The electromagnetic T-matrix is diagonal for a spherically symmetric dielectric

object. Therefore, for an inner sphere of radius s, the leading contributions to the

Casimir force come from its static electric and magnetic polarizabilities aM E . The

next corrections come from its static quadrupole electric and magnetic polarizabilities,

2M,E. This allows us to write the Casimir energy of a small dielectric sphere, not too

close to the walls of a large spherical cavity, in a series in s/R, where R is the radius

of the enclosing spherical shell, and the multipole polarizabilities of the small object

are assumed to be of order aE,M 82f+1

c (+a) = fm(a/R) + fE(a gM(alR)+ gE(a/R). (1.4)

Note that the coefficients of 1/RP are non-trivial functions of a/R, where a is the dis-

tance that the small object is displaced from the center of the cavity. The underlying

reason for this is that all partial waves of the cavity T-matrix, To1, contribute for all

values of a/R. The expansion is asymptotic in s/R at fixed a/R.

Eq. (1.4) describes the interaction of a polarizable object (an atom for instance)

inside a conducting spherical shell, which is analogous to the well-known Casimir-

Polder equation [13] (and its extensions to subdominant 1/R dependence [2, 3]) that

describes an atom's interaction with a conducting plane and with another atom.

Therefore, we refer to Eq. (1.4) as the interior Casimir-Polder result (ICP) for the

general interior problem. The Casimir force can be calculated by differentiating the

ICP coefficient functions f, g with respect to a. The derivatives of the ICP coefficient

functions fM/E gM/E are plotted in Figs. 2-4 and 2-5, and their functional forms are

given in Appendix A.

The opposite extreme from the Casimir-Polder limit is when the interior object



is nearly touching the cavity wall. The leading behavior of the Casimir force in this

limit is given by the Proximity Force Approximation [14]. The PFA prediction for

the Casimir force between two conducting spheres, whether they are separate or one

is inside the other is given by,

7r3 hc s R
lim d3 -(d, s, R) = - (1.5)
d-0 360 R + s

where s and R are the radii of the inner and outer spheres respectively and d is the

minimum distance between their surfaces. By convention we keep s fixed and let

R vary. R > 0 corresponds to the exterior problem, two separated spheres; R < 0

corresponds to the interior problem (see Fig. 4-1); and the R -+ oo limit corresponds

to a sphere opposite a plane. The constraint IRI > s avoids double counting. This

result is known to be exact. Ref. [16] derives the result for R > 0 by semi-classical

methods and the extension to R < 0 is straightforward, but the corrections have up to

now not been known. The planar and exterior problems have recently been studied in

Ref. [2] and Ref. [3] respectively. Since most experiments up to now have considered

spherical conductors separated by distances much smaller than their radii, the first

correction in d/Rin,out to the PFA is the geometric correction of greatest immediate

interest. As discussed in Chapter 4, we parameterize the first correction to the PFA

by

+F(d, s, R) d 3 R 01 (s/f)- 02  R) + (d 3)... (1.6)
360d R + s 2s 2s

Our analysis of the interior case has allowed us to combine our results with those of

Refs. [2, 3] to predict an estimate of the PFA correction coefficient 01 (s/R) appearing

in Eq. (1.6) for -1 < s/R < 1. For further discussion, we refer the reader to

Chapter 4.

The rest of this thesis is organized as follows: Chapter 2 begins by briefly out-

lining the derivation of the Casimir energy for an electromagnetic field. The vector

transition and translation matrices relevant to the interior case are given, followed by



an exact computation of the Casimir force between metallic spheres in Section 2.2.

In Section 2.3, we derive the interior Casimir-Polder result, and study its comparison

with the exact results of Section 2.2. Chapter 3 repeats the analysis of Chapter 2 for

a complex scalar field but only important results are included since they are direct

analogs of the vector case. In Chapter 4, we discuss first order corrections to the

Proximity Force Approximation for two metallic spheres of arbitrary size based on

numerical results in this paper and in Refs. [2, 3]. After a short concluding section,

the interior Casimir-Polder coefficients are given in the Appendix.
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Chapter

Electromagnetic Field

In this chapter, we calculate the electromagnetic Casimir energy for the geometry

illustrated in Fig. 2-1. We begin by briefly outlining the derivation of the action

leading up to Eq. (1.3) and conclude with a detailed discussion of our results.

Figure 2-1: Interior Geometry: EZ denote the surfaces of the two objects. E1 is shown

with a bounding sphere. We assume that it is possible to choose a bounding sphere

that does not overlap with E2. Coordinate vectors xl and x 2 to an arbitrary point

are shown. The distance between the two origins is labeled X 12 = x2 - Xl = a.



2.1 Evaluation of the integral over sources

As remarked earlier, we can write the Casimir energy of a system of objects in terms

of a functional integral over charges fluctuating on their surfaces. For an electro-

magnetic field, the fluctuating charges are the currents Ja(x). Following Ref. [2], the

constrained partition function for the two objects in Fig. 2-1 can be written as

3c [, 1J21 IDJ][J2 c exp(iS[Ji, J2 ]) (2.1)

And the electromagnetic action in terms of sources is given by, [2]

1 1 1
S[J1, J(] = 1 JdxJ k(xa) EP(xC - xo) + dx * (x)(x x' k)J,(x') + c.c.

(2.2)

where xeo = xc - xO separates the origins 0, and O, and Go is the tensor Green's

function for the vector Helmholtz equation with outgoing wave boundary conditions.

The dependence of the fields and source on the wave number k is suppressed for

simplicity. In a vector spherical basis, this Green's function is given as, [7] (we use

the substitution K = -ik to obtain Wick-rotated formulae for this problem),

Go(X, x', K) = K M{ M t (x) ( M (x + Nu I(x>) N0rg )
Im

K ~M/rout(x>) ® M y(x<) + N t (x>) o N tx<)} (2.3)
Im

where M/N denote the two polarizations of vector wave functions. The superscripts

"out" and "reg" refer to the outgoing and regular solutions, which for imaginary

frequency correspond to modified spherical Bessel functions, k,(Kr) and i,(Kr) re-

spectively. Their functional forms are discussed in detail in Ref. [7]. The electric field

induced on Ec due to J,(x) can be read off Eq. (2.2) in terms of the Green's function,

Ea(x) = - dx (x, x, k)(x' (2.4)



For the interior problem, we are interested in the fields external to the inner object and

internal to the conducting cavity. Therefore, we expand El(xi) and E 2 (x2) in terms

of their outgoing and regular multipole fields respectively, in contrast to the exterior

problem where all fields are expanded in terms of outgoing waves. Substituting the

representation of go from Eq. (2.3) into Eq. (2.4),

El(xl)= -K {Q mMM1t (Xl) + Q,imNut(X) (2.5)

Im

E 2 (x 2) = - {QMi,1mM 1 (X 2) + Q~E,mN (X 2 )} (2.6)
Im

where the multipole moments are defined to be,

m = d M (x)J(x) QEm = dx Ne(x)J(x) (2.7)

Q2, = ' (x) J (x), Qd*x = dx NUt(x) J(x) (2.8)

s2 E2

Again, the definitions of Q2 and Q, are different from those in the exterior case (see

Ref. [2]).

Now, we proceed to calculate the self- and inter-action terms in Eq. (2.2). For the

inter-action terms, we need to re-express the fields Ea(x,) in terms of the coordinates

of E0, which can be accomplished by the following translation coefficients for vector

spherical waves,

M reg/out (xl) = (BLImlImMregeg/t (x) - out (x) (2.9)

' 'm'

N reg/out eg/=out (Xct ' (2.10)
N /out(xO) = E (3l3mmN$out (xa) + iC'm I'mMeout (xa)) (2.10)

l m'

Notice that in distinction to the exterior problem, we need to translate regular to

regular and outgoing to outgoing waves. The translation coefficients must approach

a limiting value of 1 when the two coordinate system coincide. For the geometry in

Fig. (2-1) with 01 and 02 aligned so that they share a common z-axis, the translation



coefficients are given by, [17]

Lm',lm(K, a) =-6m,(1)m (21 + 1)(21' 1) (2A + 1) (411'(l + 1)(l'+ 1) A 0

x (l(1 + 1) + l'(l' + 1) - A(A + 1))iA(Ka)

Clm'lm(K, a) = 6mm'mia(-1)m 1'(1 + 1)(l' + 1)1)

Consequently, the inter-action terms are written in a compact form in

multipoles Q and a translation matrix V as,

1
Sa = -Qt VQ + c.c.

terms of the

(2.12)

where Q= (Q m Ei) and

(iClml'm'

To calculate the self-interaction terms, S,,, we need to relate the self-induced charges

Q, to the transition matrix T, of the object E,. In scattering from a surface on which

a field ¢ obeys a boundary condition, the T-matrix is defined as the amplitude of the

outgoing wave that is generated by a scatterer in response to a specified regular

solution to the wave equation. The sum of the two,

0 = Oreg + T out,

must obey a boundary condition on surface. In the electromagnetic case ¢ is replaced

by the vector field, E, and the resulting T-matrix has extra matrix structure due to

the two polarizations of E. In the present, interior configuration, a specified outgoing

solution that is generated by sources on the inner object induces currents on the outer

1

m --m 0

1 l'

m -m2

(2.11)

A
0 ix(,a)
0

-iClml'm'

3Iml'm'



object which, in turn give rise to a field inside the cavity that is regular at the origin

of the inner object. Therefore, for a field q, we are interested in solutions of the form

0 = Oout + T inreg.

As in the exterior case the Tin matrix is determined by the boundary condition that

0 must obey on the surface (of the outer conductor). Comparing these two equations

it is not surprising that Tin = T -1 , a result that is derived more formally in Ref. [7].

With these considerations in mind, we repeat the above procedure formally for an

electromagnetic field. Recall from Eqs. (2.2) and (2.4) that we can write the self-

action as

Sa =- Ei dxJ*(x)E(x,,K),

where we have derived E 1 and E2 in terms of the "out" and "reg" solutions and their

respective multipoles in Eqs. (2.5) and (2.6) respectively. We can then employ the

T-matrix coefficients defined above to relate the outgoing solutions of El to its regular

solutions to find for the action,

S1 ml'' ,

- Q Tl1Q1 + c.c.

Similarly, we relate the regular solutions of E2 to its outgoing

relevant T-matrix coefficients as,

S22 - 1 2 2 2 T2,1'm'lm
Eimlm

,  dX2J *(X2) 1M I

= Q T2Q2 + c.c.
2K

Mreg

N reg I + c.c

(2.13)

solutions using the

1IOUt N
m + C.C

(2.14)



where

ra,lmlm' -
TMN
a,1ml'm'

'a,ml'm'

NN
a,Iml'm'

With Eqs. (2.12), (2.13), and (2.14) we can write Eq. (2.2) compactly as,

1
S = -QtIQ + c.c.

2K

where Q = (Qi

(2.15)

Q2 ), and

1-1

-V
)V

T2

The functional integral in Eq. (1.2) can then be performed over charges Q to give for

the Casimir energy,

[a] = c d In det(I - T2V1T1V) (2.16)

2.2 Numerical Results For Metallic Spheres

In this section, we present results for the Casimir force and energy between a con-

ducting sphere and a conducting spherical shell within which it is contained. The

T-matrix for a conducting sphere of radius R is diagonal in both 1 and m, and its

coefficients are given in terms of modified spherical bessel functions as,

7MM1 il (R)

(2.17)N lmm' t(1)l(nR) + Ri(R)
Ti m m( 1 (iR) + KRk(rR)

The interaction energy of this system is obtained by numerical integration of Eq. (2.16).

It depends on the ratio of the radii, s/R, and varies with the displacement of the

centers, conveniently parameterized by x = a/(R - s). To be specific, we choose

s/R = 0.5 and plot the energy in Fig. 2-2. The Casimir force, plotted in Fig. 2-3, is



obtained by numerically differentiating sample points in Fig. 2-2 spaced at Ax = 0.025

along the x-axis. Since the Casimir energy grows rapidly in the limit x -+ 1, the dif-

ferentiation in this region must be performed by fitting numerical data points to

a suitable function. The numerical integration and differentiation were performed

with MATLAB while all fitting and extrapolation procedures were performed with

GNUPLOT.

Both the Casimir force and the Casimir energy vary over many orders of magnitude

as x varies from 0 to 1. In order to display our results in a compact form, we

have divided both the force and the energy by an interpolating formula obtained by

taking the proximity force approximation seriously for all x. For reasons discussed

in Chapter 4 we call this the full PFA or fPFA, and the expression for EfPFA can be

found in Eq. (4.3). There is no reason to believe that this extension of the PFA gives

an accurate representation of the Casimir energy or force except as x -- 1, and indeed

our results differ from the fPFA estimate except near x = 1, where they approach the

PFA as they should.

Although the Casimir energy gets contributions from all partial waves bouncing

back back and forth between the conducting spheres, it is dominated by partial waves

1 < Imax, where Imax depends on the spheres' relative sizes and separation and grows

rapidly as the separation gets small. It turns out, as shown by the blue curve in

Fig. 2-2, that lmax < 25 for x < 0.7 in the case of s/R = 0.5. For x > 0.7 in

this configuration, the numerical evaluation of Eq. (2.16) is limited by our ability to

manipulate large matrices. For example, the Inset in Fig. 2-2 shows that Imax > 65

at x - 0.9. Therefore, we fix x in this region and integrate Eq. (2.16) at various 1

to obtain contributions S(l) and obtain the 1 -- oc limit by fitting the various S(1)

to a decaying exponential (which seems to capture the leading behavior at large 1)

of the form S(1) = 8(oc) - ae-  , where a and / are constants. This convergence is

depicted pictorially in the Inset of Fig. 2-2.

At even closer separations, z > 0.925 in Fig. 2-2, the leading contribution to the

Casimir energy comes from even larger values of I which means that the integra-

tion of Eq. (2.16) requires manipulating very large matrices. This is an extremely
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Figure 2-2: Casimir energy between two conducting spheres. The red line shows the

Casimir energy, (S(x) - E(0))/(SfPFA(X) - SfPFA(0)), as a function of x = a/(R - s)

where a is the displacement of centers. The radius of the inner sphere is fixed at

s = 0.5R, where R is the radius of the outer sphere. In the limit x -4 1, the Casimir

energy approaches the PFA energy, which is marked by the gray horizontal line. EfPFA

denotes the 'full' form of the PFA energy discussed in Chapter 4. At intermediate

separations, the Casimir energy is dominated by lower partial waves. For example,

the blue line shows that the energy obtained by integrating Eq. (2.16) to partial wave

order 1 = 25 is accurate up to x - 0.7. The red line is obtained by extrapolating to

I = 00. Inset: Convergence at close separations, 0.7 < x < 1.

computationally intensive problem. We are, however, remedied by the fact that the

Casimir energy approaches the PFA limit as x -4 1. Therefore, we extrapolate from

the exact data calculated at points x < 0.925 to estimate the Casimir energy for

0.925 < x < 1. For Fig. 2-2, this was achieved by extrapolating the four data points

between 0.85 < x < 0.925 to a function, f(d/s) = 1 + Old/s + 02 log(d/s)d2/s 2,

where d = R - s - a. Notice that the form of f(d/s) corresponds to the PFA predic-

tion for the Casimir force in Eq. (1.6). For a detailed discussion on the sub-leading

contributions to the PFA, we refer the reader to Chapter 4.

The Casimir force between two conducting spheres depicted in Fig. 2-3 is calcu-

lated by numerical differentiation of the sample data points spaced at Ax = 0.025

along the red curve R(x) in Fig. 2-2. We remind the reader that Fig. 2-2 plots

R(x) = (E(x) - (0))/(SfPFA(X) - fPFA(0)) as a function of x. The curve appearing
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Figure 2-3: Casimir force between two conducting spheres. The black line shows
the Casimir force, F/FfPFA, between two conducting spheres as a function of x =
a/(R - s) where a is the displacement of their centers. The radius of the inner sphere
is fixed at s = 0.5R, where R is the radius of the outer sphere. In the limit x -4 1,
the Casimir force approaches the PFA, which is marked by the red horizontal line.
TfPFA denotes the 'full' form of the PFA discussed in Chapter 4.

in Fig. 2-3 is calculated using R(x) as follows,

F(x) = R(x) + (f PFA(X) - 8 f PFA (0)) R'(x)
.FfPFA (X) TfPFA (X)

The differentiation of R(x) is performed using centered differences for 35 data points

between 0.05 and 0.9 with a step size of Ax = 0.025. For x > 0.9, F/IFfPFA is

calculated by differentiating the extrapolation function f(d/s) defined above with

the coefficients 01, 92 determined in Fig. 2-2. This achieves two goals: it makes

contact with the PFA prediction in Eq. (1.6) and demonstrates that the function

f(d/s) used to extrapolate R(x) at values of x close to 1 was the correct 'ansatz' for

the sub-leading PFA behavior for the energy in Fig. 2-2.

Our discussion of the numerical results has been restricted to the case s/R = 0.5.

However, the same techniques may be applied to determine the Casimir force and

energy by numerically integrating Eq. (2.16) for all configurations, 0 < s/R < 1.



In Chapter 4, we apply the methods demonstrated in this section to study various

s/R configurations in the limit x -4 1 to determine the PFA correction coefficients

01 corresponding to those configurations. On the other hand, the Casimir force for

intermediate values of a/R is studied completely analytically for the range of interior

configurations s/R -4 0 in the following Section.

2.3 The Interior Casimir-Polder Result

In this section, we derive the Casimir energy of and Casimir force on a small po-

larizable object contained inside a conducting spherical shell. The matrix identity

In det M = Tr in I, allows for an expansion of the integrand in Eq. (2.16) as a series,

S - Tr (N + N2 + ...), over the matrix N = TIlVo,iTiVi,o where N describes a wave

that travels from one object to the other and back [2]. Although it is tempting to try to

extract the low frequency behavior in Tr N, we are cautioned by Eqs. (2.17) that To1

diverges at low frequencies. Instead we treat the inner sphere as a small object and

expand Tr N in terms of the lower partial waves in Ti. In a spherical basis, the leading

terms in the electromagnetic T-matrix are, T fm, r 1+1'+1 and Tl, m ,  Kl+I'+ 2 for

A A o. Therefore the leading contribution to the Casimir force comes from the orien-

tation dependent response of the inner object to a dipole field, where the inner object

can be characterized by its polarizability tensor, tf J n l , (see Ref. [12]).

The orientation dependence of the interior Casimir problem will be studied in a future

publication.

For a spherically symmetric dielectric object, the electromagnetic T-matrix is di-

agonal in partial wave indices, I and m, and the polarizations A. Therefore, the

leading order terms in T i are characterized by the static magnetic and electric multi-

pole polarizabilties a-M/E of the inner object [2], which can be computed or measured

easily for any compact conductor. At low frequencies, the T-matrix can be written



, ,m (--1)- 1 (l + 1)c4' M 3 M (218)
, =ml -- mmK 1(21 + 1)!! (21- 1)! Is + 74 + ... (2.18)

and Ti ~ m , is obtained by the substitution ac --+ aE and 7M --+ 7-E. Substituting

Eqs. (2.17) and (2.11) in Tr N we find the Casimir energy up to O(R -5 ) to be,

2 MR o E A E

2c S(a) = - -fM(a/R) + - fE(a/R) + R2 gM(a/R) + a gE(a/R) (2.19)

Eq. (2.19) describes the interaction of a polarizable object (an atom for instance)

inside a conducting spherical shell, which is analogous to the well-known Casimir-

Polder equation [13] (and its extensions to subdominant 1/R dependence calculated

in Refs. [2, 3]) that describes an atom's interaction with a conducting plane or with

another atom.

We have calculated exact functional forms of the interior Casimir-Polder coeffi-

cients f and g in terms of modified Bessel functions I, and K,. They can be expanded

as a power series in a2/R 2 which converges for a2/R 2 < 1. The Casimir force can be

calculated by differentiating the ICP coefficient functions f, g with respect to a. We

have plotted their derivatives f', g' in Figs. 2-4 and 2-5 while their exact functional

forms are given in Appendix A.

To examine the usefulness of the interior Casimir-Polder expansion, we compare

the accuracy of Eq. (2.19) with the exact prediction of Eq. (2.16) for the case of an

interior sphere, for which am = -1/(1 + 1)s21+ 1 and a E 
= 8 21+ 1 . Fig. 2-6 plots the

fractional errors AS = (8 - EcP)/ 8 vs. x = a/(R - s) for various s. ScP denotes

the energy calculated using Eq. (2.19). The 1st-order data include contributions from

O(R -3 ) terms only, while the 2nd-order data include coefficients from gE and gM

at O(R - 5 ) in Eq. (2.19). Many trends are visible in this graph, for example the

interior Casimir-Polder result through second order differs from the exact result by

less than 1 part in a 100 for all s/R < 0.1 for 0 < x < 0.34. Another interesting

feature is that for a given value of s/R, limxo AS appears to be non-zero. Both the
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Figure 2-4: Interior Casimir-Polder coefficients for the Casimir force between dielec-
tric spheres at leading order O(R-3 ). The ICP coefficient functions fM and fE are
given in Appendix A. The derivatives f&M and fE are computed by numerically differ-
entiating fM and fE, which are calculated at sample points spaced at Aa/R = 0.01.
The ICP coefficient functions were calculated using MATHEMATICA.

exact Casimir energy and the interior Casimir-Polder approximation vanish like a2 as

a -4 0 (remember the value of each at a = 0 has been subtracted). Notice, however,

that the CP approximation is an expansion in s/R, not a/R, and therefore each term

contributes, albeit with smaller magnitude, at a = 0. Therefore, we conclude that

the ICP expansion is exact for a small polarizable object (an atom or a molecule)

inside a conducting spherical shell.
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Figure 2-5: Interior Casimir-Polder coefficients for the Casimir force between di-
electric spheres at next-to-leading order O(R-5). The ICP coefficient functions gm
and 9E are given in Appendix A. The derivatives g/ and g'E are computed by nu-
merically differentiating gM and 9E, which are calculated at sample points spaced at
Aa/R = 0.01. The ICP coefficient functions were calculated using MATHEMATICA.
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Figure 2-6: Fractional ICP comparison with the exact answer predicted by Eq. (2.16)

for conducting spheres in three different configurations: siR = 0.2, 0.1, 0.01. Along

the y-axis is the fractional error ( - cp)/E plotted as a percentage, where Scp is the

ICP prediction from Eq. (2.19). For each value of s/R, we have plotted the fractional

difference between 9 and Scp at the leading order O(R -3 ) and next-to-leading order

O(R-5). The two gray horizontal lines mark the 5% and 1% differences.



Chapter 3

Scalar Field

In this chapter, we repeat the analysis of Chapter 2 for a complex scalar field obeying

Dirichlet or Neumann boundary conditions on a sphere contained inside a spherical

shell. This chapter is organized on the pattern of the previous chapter, but we

restrict our discussion to important results and skip formal derivations since they

follow analogously from Chapter 2. The analog of the interior Casimir-Polder result

for a scalar field obeying Dirichlet boundary conditions is also derived in Section 3.3.

3.1 Interaction Energy

The derivation of the interaction energy for the interior geometry in Fig. (2-1) for

a complex scalar field obeying Dirichlet and Neumann boundary conditions is com-

pletely analogous to the electromagnetic case. Therefore, we include only important

results which are, of course, simpler analogs of the electromagnetic case.

The translation coefficients for spherical (regular -- regular) and (outgoing --

outgoing) wave solutions to the Helmholtz equation are given as, [17] (where A =

21 + 1),

Yv'/m', 7 = rAil-'(-1)m il~ I 1 ) Jl"(kd)Y"m"(X)
Um"0 O 0 0 / m --in -m"

(3.1)



The T-matrix for a sphere of radius R is expressed in terms of modified spherical

bessel functions i, and k, as,

S(R) i (R)
k(R)' Tm m , = 611mm'(-1ki(R) (3.2)

6mm'( 1)' i(KR) I ml'm' = rnR)

where D and N denote Dirichlet and Neumann boundary conditions respectively.

The functional integral in Eq. (1.2) can then be performed over induced charges Q

to obtain for the Casimir energy,

[] c = " h In det(I - T2 1V 2 1 1V1 2 ) (3.3)
$[a] = dKlnu t(] -n2 (3.3)

27r fo det(IE - TiT1)

which is analogous to Eq. (2.16) derived for the electromagnetic field in Chapter 2.

3.2 Numerical Results

In this section, we present results for the Casimir energy of a sphere inside a spherical

shell for a scalar field obeying Dirichlet (DBC) or Neumann boundary conditions

(NBC) on the surfaces of the spheres. The interaction energy of this system, plotted

in Figs. 3-1 and 3-2, is obtained by numerical integration of Eq. (3.3) for DBCs and

NBCs respectively using the relevant T-matrices from Eq. (3.2). The sample points

in Figs. 3-1 and 3-2 are spaced at Ax = 0.025 along the x-axis. Both Figs. 3-1 and 3-2

display the exact energy divided by the 'full' form of the energy, SfPFA, predicted by

the proximity force theorem [14].

The discussion of results in this section is completely analogous to Section 2.2. For

a scalar field obeying either Dirichlet or Neumann boundary conditions, the Casimir

energy gets contributions from all partial waves bouncing back and forth between the

two spheres. At intermediate separations, it is dominated by partial waves 1 < Imax

where /max depends on the spheres' relative size and separation and grows rapidly at

infinitesimal separations. For 0.65 < x < 0.9 in both Figs. 3-1 and 3-2, we truncate

the matrices appearing in Eq. (3.3) at various 1 and obtain the 1 -+ oc limit by

fitting to a decaying exponential of the form S(1) = S(oo) - ae - , where a and 13
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Figure 3-1: Casimir energy between two spheres for a scalar field obeying Dirich-

let boundary conditions on their surfaces. The red line shows the Casimir energy,

(E(x) - E(0))/(EfPFA(X) - EfPFA(0)), as a function of x = a/(R - s) where a is the

displacement of centers. The radius of the inner sphere is fixed at s = 0.5R, where R

is the radius of the outer sphere. In the limit x --, 1, the Casimir energy approaches

the PFA energy, which is marked by the gray horizontal line. EfPFA denotes the

'full' form of the PFA energy discussed in Chapter 4. At intermediate separations,

the Casimir energy is dominated by lower partial waves. For example, the blue line

shows that the energy obtained by integrating Eq. (3.3) for DBCs to partial wave

order 1 = 25 is accurate up to x - 0.65. The red line is obtained by extrapolating to

1 = oc. Inset: Convergence at close separations, 0.7 < x < 1.

are constants. This convergence is also depicted in Figs. 3-1 and 3-2 for the scalar

case in analogy to Fig. 2-2 for the EM case. In the limit x -+ 1, the Casimir energy

for a scalar field obeying DBCs on the two spheres is obtained by extrapolating from

the six data points between x = 0.75 and x = 0.9 with a fitting function of the

form, f(d/s) = 1 + O1d/s + 02 log(d/s)d2/s 2 + 03d2/s 2. Similarly, for a scalar field

obeying NBCs on the spheres, the Casimir energy in the x -- 1 limit is obtained by

extrapolating from the five data points between x = 0.8 and x = 0.9 with a fitting

function of the form, f (d/s) = 1 + O1d/s + 02 log(d/s)d2/s 2.

As in Section 2.2, the numerical integration of Eq. (3.3) was performed with MAT-

LAB while all fitting and extrapolation procedures were performed with GNUPLOT.
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Figure 3-2: Casimir energy between two spheres for a scalar field obeying Neu-

mann boundary conditions on their surfaces. The red line shows the Casimir energy,

(E(x) - S(0))/(EfPFA(X) - SfPFA(0)), as a function of x = a/(R - s) where a is the

displacement of centers. The radius of the inner sphere is fixed at s = 0.5R, where R

is the radius of the outer sphere. In the limit x -- 1, the Casimir energy approaches

the PFA energy, which is marked by the gray horizontal line. EfPFA denotes the

'full' form of the PFA energy discussed in Chapter 4. At intermediate separations,

the Casimir energy is dominated by lower partial waves. For example, the blue line

shows that the energy obtained by integrating Eq. (3.3) for NBCs to partial wave

order I = 25 is accurate up to x - 0.65. The red line is obtained by extrapolating to

1 = oo. Inset: Convergence at close separations, 0.7 < x < 1.

3.3 The Scalar Interior Casimir-Polder Result

In this section, we derive the analog of the interior Casimir-Polder result for a scalar

field obeying Dirichlet boundary conditions on the inner surface of a spherical shell

and on the outer surface of a small arbitrary shaped object. In analogy with Sec-

tion 2.3, we use the matrix identity In det M = Tr In M, to expand the integrand in

Eq. (3.3) as a series over the matrix N = TolVo,iTiVi,o. We treat the inner sphere

as a small object and expand Tr N in terms of the lower partial waves in Ti. This

allows us to treat the inner object as arbitrarily shaped because at low frequencies

for Dirichlet Boundary conditions, the scalar T-matrix of a compact object is related



to tensor generalizations of its capacitance, C, as [9]

Tlmq'lm (2/ 1 1 +1'+1+q (3.4)
(21 + 1)!!(21 - 1)!! q;mm

q=0

In contrast to the electromagnetic case, where T begins at O(K3), the scalar T'-matrix

begins at O(K), so higher terms in the expansion of Tr In N contribute at lower orders

in the ICP expansion. O(k) in T maps to O(1/R) in the expansion of RE, so if we

keep terms through 0(1/R 4) in the Casimir energy, we will encounter contributions

involving up to four "reflections", proportional to C4. Some special cases are, Co;oooo =

-C, C1;oooo = C2, C2;0000o = -C 3, C0;lmlm' = Am' where D and Amm, are the effective

range and the polarizability tensor respectively. The effective range D is related to

the S-wave phase shift 6 by the relation, kcot6 = C- 1 - Dk2/C 2 , where k2 is the

energy of the wave [19]. In our normalization, the S-wave term in the T-matrix can

be written as, To = i/(cot 6 - i), which for imaginary frequency r = -ik becomes

To = -C( + C2 2 + (V - C3)K3 + O(r 4). Additionally, we use the freedom to choose

the origin of the coordinate system centered on the object so that the dipole response

to a constant potential vanishes i.e. C0;1 m00 = Co;oolm = 0.

With the assumption that C/R <K 1, we can expand Eq. (3.3) in powers of C/R

as,

27rR C C2  C3  D Aoo00
h S[a] = Rfi(a/R) - -f2(a/R) + -f 3 (a/R) - f 3,D(a/R) - 3 f 3,Ao(a/R)

All + A_1- 1  C4  2CD CAoo
- R (a/R) - f4(a ) + -- f4,D (a/R) + ,f4,A(a/R)

(3.5)

where the functions fi are calculated in terms of modified bessel functions and given

in Appendix B.

Next, we examine the accuracy of Eq. (3.5) as compared with the exact prediction

of Eq. (3.3). Since we can solve Eq. (3.3) exactly for spheres of all sizes, we compare

the two results for various s/R, where C = -s, D = -s" and Amm = s3/3 for the

inner sphere. Fig. (3-3) plots the fractional errors AE = (E - $cp)/S as a percentage



versus x = a/(R - s) for various s. $cP denotes the energy calculated using Eq. (3.5)

up to O(R- 3 ). Many trends are visible in this graph, for example the scalar interior

Casimir-Polder result through third order differs from the exact result by less than

3 parts in a 100 for all s/R < 0.05 for 0 < x < 0.6. Another interesting feature is

that for a given value of s/R, limx-o AS appears to be non-zero. Both the exact

Casimir energy and the scalar ICP approximation vanish like a2 as a -- 0 (recall

that the value of each at a = 0 has been subtracted). Notice, however, that the CP

approximation is an expansion in s/R, not a/R, and therefore each term contributes,

albeit with smaller magnitude, at a = 0.
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Figure 3-3: Fractional ICP comparison with the exact answer predicted by Eq. (3.3)

for a scalar field obeying Dirichlet Boundary Conditions on two spheres in three

different configurations: s/R = 0.1, 0.05, 0.01. Along the y-axis is the fractional error

(8 - ScP)/S plotted as a percentage, where Scp is the scalar ICP prediction from

Eq. (3.5). For each value of s/R, we have plotted the fractional difference between £

and Ecp at the first three leading orders in Eq. (3.5): O(R-1), O(R-2 ) and O(R-3 ).

The three gray horizontal lines mark the 10%, 5% and 1% differences.
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Chapter 4

Corrections to the PFA

As mentioned in the Introduction, one of the most interesting quantities accessible

to us is the first non-trivial correction to the Proximity Force Approximation. In

this chapter we extract these corrections for the case of one sphere within another,

and combine it with data from the case of two separated spheres and a sphere op-

posite a plane, to survey the situation over the full range of possible sphere-sphere

configurations.

The leading term in the PFA is given by Eq. (1.5) as discussed in the Introduction.

The analytic form of the corrections to the PFA is unknown. We find that our data

can be fitted very well by the first few terms in a power series expansion of the Casimir

force in d/s,

37r 3C SR (+l/R) d d2

J7 d-0 - 3  +R ) 02(s/R) + ... (4.1)
360d3 s + R 2s 2s2

as d -+ 0. A power series expansion of the force requires that the energy include a

log(d/s) term,

7r3hJC sR d  d2 d2 d3
S d-o 1 + (sR)- + 0(slR) log + 7/R) +0720d2 s +R s s2 S )

(4.2)

where we have adjusted signs in Eq. (4.1) so that the corrections to the PFA energy



in Eq. (4.2) correspond to the extrapolation function f(d/s) defined in Section 2.2.

Note that the term proportional to d2/s 2 in Eq. (4.2) does not contribute to the force.

As previously remarked in Sections 2.2 and 3.2, this is the form we have used to fit

our numerical results to in order to obtain the first correction, 01(s/R) to the PFA.

It is useful to have an estimate, however crude, of the interior Casimir energy over

the whole range of d/R in order to scale out the rapid variation that makes it difficult

to display 8 graphically. To this end we extend the PFA over the whole range of d, s,

and R. The PFA estimate of S can be calculated by assuming that each interacting

surface is assembled out of infinitesimal mirrors spaced at a distance l(x, y) from the

other surface, where (x, y) are the coordinates of the surface chosen as a convenient

reference. This algorithm is ambiguous beyond the leading term in 1/d because there

is no unique way to specify the separation between the surfaces. For definiteness,

we extend the PFA by taking the distance between the surfaces to be the distance

measured radially outward from the smaller sphere and integrate over the surface of

the smaller sphere. For reference, see Fig. 4-1. The result, which we refer to as the

full PFA, is given by,

fPFA 7r3hc 2 3(R 2 -a 2 ) log (R + a) (R + s - a)
720 s as2  (R - a) (R + s + a)

4(R 2 - a2 ) 2(R + s)(R 2 -a 2 + s2) (4.3)
s((R 2 - a2) ((R )2 - a2)2

The form that we have used to normalize the Casimir energy in the results displayed

in Sections 2.2 and 3.2 can be obtained by substituting R -- -R in Eq. (4.3). We

remind the reader that, in this chapter, R < 0 corresponds to the 'interior' problem.

The full PFA also yields a "prediction" for 01(s/R),

fPFA() -x - - 3 (4.4)

where x = s/R. Note that the PFA predicts a smooth continuation from the interior

to the exterior problem.



Figure 4-1: On the left side are two spheres of radii s and R where s < R. On

the right side are two spheres of radii s and R, where the larger sphere's radius is

labeled R. The new variable x = s/R defined over the range -1 < x < 1 covers all

sphere-sphere configurations.

We emphasize that there is no reason to expect Eq. 4.4 to provide an accurate rep-

resentation for the first order correction to the PFA. Nevertheless it provides a result

with which we can combine our exact 'interior' analysis with the 'exterior' analysis of

Ref. [2] and the sphere-plane calculation in Ref. [3] to compare 0 1,PFA with the exact

01. Fig. 4-2 shows such a comparison for x = s/R = -0.75, -0.6, -0.5, -0.3, 0, 1, and

the numerical values of 01 are listed in Table 4.1.

X 01 A0 1

1.0 -2.7400 0.04000
0.0 -1.4100 0.02000
-0.3 -0.5468 0.03824
-0.5 0.3164 0.01400
-0.6 0.8483 0.01502

-0.75 2.6122 0.02962

Table 4.1: PFA correction coefficients 01 for two conducting spheres at various con-

figurations x determined from fitting the exact Casimir energy at small separations d

to a function, EfPFAf(d/8) = 1 + 0ld/s + 02 log(d/s)d2/ 2 . A01 are the fitting errors

on our numerical data.

It is evident from Fig. 4-2 that the leading order PFA correction, 01(x) 01fPFA +

1.8 to a very good approximation. Thus, we have predicted exact leading order

corrections to the PFA for all possible interior and exterior configurations of two

conducting spheres.
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Figure 4-2: PFA correction coefficients for spheres. The x-axis covers the full range
of sphere-sphere configurations. x < 0 corresponds to the 'interior' geometry, x > 0
corresponds to the 'exterior' geometry and x = 0 corresponds to a sphere facing a
plane. The red curve is the 'naive' prediction of 01 from fPFA, given in Eq. (4.4).
The Exact data points correspond to the numerical values listed in Table 4.1. They
are calculated using the methods discussed in Section 2.2.



Chapter 5

Conclusions

We have studied the electromagnetic Casimir problem for a metallic compact object

contained inside a compact metallic surface. Using the path integral formalism, we

express the Casimir energy between the two objects in terms of their transition matri-

ces, and translation matrices that relate the coordinate systems appropriate to each

object. Then we specialize to the case when both objects are conducting spheres, and

evaluate the Casimir energy for the specific configuration, s/R = 0.5. The Casimir

force for this sphere configuration is calculated by numerically differentiating the

energy with respect to the spheres' separation.

We have also calculated the analog of the Casimir-Polder expansion for the interior

case. When the outer object is a conducting spherical shell, the Casimir energy of the

inner object can be expanded as an asymptotic series in sP/RP where R is the radius

of the outer sphere, and s is a length parameter characterizing the inner object. In the

large R limit, the Casimir energy of the inner object is dominated by leading terms

in this expansion. We have calculated the coefficient functions for the leading two

terms exactly for the case when the inner object is a dielectric sphere. Comparing the

interior Casimir-Polder expansion (up to O(R-5)) with the exact energy (calculated

numerically) for various sphere configurations, we find that the ICP result is accurate

to more than 99 parts in a 100 for a/R < 0.3 through s/R < 0.1 where a is the

displacement of their centers. Therefore, the ICP expansion is exact for a small

polarizable object (an atom or a molecule) inside a conducting spherical shell.



The above analysis was repeated for a scalar field obeying Dirichlet or Neumann

boundary conditions on spheres inside one another. The ICP expansion for a scalar

field obeying Dirichlet boundary conditions on an arbitrary shaped object inside a

spherical shell was calculated in a manner analogous to the electromagnetic case.

The methods demonstrated in this paper can be applied very easily to calculate

the Casimir force between dielectric spheres at all separations, but they become com-

putationally intensive at close separations of spheres. In this limit, we make contact

with the Proximity Force Approximation (PFA). By studying various interior sphere

configurations at close separations, we are able to calculate leading order corrections

to the PFA. Furthermore, we combine our interior results with previous work on con-

ducting spheres exterior to each other and a conducting sphere facing a mirror to

predict leading order PFA corrections for all sphere-sphere configurations.



Appendix A

Casimir Polder Coefficient

Functions: Electromagnetic Field

The interior Casimir Polder coefficient functions can be calculated easily using Eqs. (2.11), (2.17)

and (2.18). They are expressed as integrals over the frequency n in terms of sums

of modified bessel functions I, and K,. Note that we have made the substitutions,

y = aiR and x = KR where R is the radius of the conducting spherical shell. The

ICP coefficient functions are given as,

flu(Y)= m00 dxx 3  K+1/2() 1 2 I+3/2

x =y 2 Kl+l/2(x) + 2xK,+1/2 )

21 1 (1 1 2 (X) - I+ 3 1/2( ) +/(+ 21 +/2 ( -I2l+()1 xI~/ 2 x
00 4X3 K 3/ 2 (x)

0 (A .1)

(A.1)

fE(Y) dxx 3  
(1 + 1)I2-1/2 1 2+3/2(1=1 I1 + 1/ 2(X) ± 2xIj'+112) Xy (I

y I ()- I+31() 2Kl+/ 2 (x) 4x3 K3/ 2(R) + 2RK3/2( i)

21 + 1 I1/2) 7r 13/2(R) + 21RI ;/ 2(KR)

(A.2)



gM(Y) = j dxx5
1 00

30xy i-i

1 Kl+l/2 (x)

21 + 1 1 +1/2 (x)

151(1+ 1)
2

1- 1 1-3/2(XY)21- 1

21+1 1+2 

41(1 + 1) - 3 /2  21 +3

5 4(l + 1)(1 - 1) + 6(21+ 1) 41(1+ 2) 1
8 21- 1 41(1+ 1)- 3 21 + 3

5(1- 1)(1 + 2) 2(1 + 1) 6(21+ 1) 21
8 2 II-3/2(xy) - (1 + 1 / 2 (y) - 1+8 21 - 1 41(1+ 1) - 3 21 + / }

5 / 2 (X) 1

/2(x) 3 /=1

Xy Kl+1 2 (x) + 2xK 1+1/2()

21 + 1 1 +1/2 (x) + 2x 1 +1/2(x)

1-I 21-1 1+2
1 - 3/ 2 (xy) + - 1  1 2 (Xy) + 2 +5/ 2(Xy)

21-1 41(1 1)-3 21 +3

1  21+13

2(21 - 1) -3/2( Y -41(1 + 1) - 311+1/ 2

21 I ( )
2(21 +3) J

(A.3)

005 dxx5 1
9E )o 30xy =1

21+ 1
+ 1+ 1/ 2( Y)

41(1+ 1) -3

1 K l+112 (x) + 2xK+1/2 (x)

21 + 1 I+ 112(x) + 2xI1 +112(x)
2 + 2

1±221 I+5/23 (y)2l+3

5 4(l + 1)(1 - 1 ) 6(21+ 1) 41(1+ 2) 

8 21- 1 41(1+ 1)- 3  21 + 3

5(1- 1)(1 + 2) 2(1 + 1) 6(21+ 1) 21
+ - 1 3/2 (xy)- ~ +1

/ 2(xy) - 1+
8 21-1 41(1+ 1)- 3 21 + 2 }

1 K5/ 2(x) + 2xK/2(x)

37 15 / 2 (x) + 2xl'/2 (x)

1 Ky K+1/2(X)
3 21 + 1 II+112 (x)I=1 4

i-1
11 - 3/ 2(Xy)

21- 1

21-1 1+2
- 112(Xy) + 2 +2 1+5/2 (y)

41(1+ 1)-3 21 +3

S 1 21+1 1

+ (1 - 1)( + 2) I-3 2(XY) I11 2 (XY) + 2(21 1+5/2 XY
2(21 - 1) 41(1+ 1) - 3 2(2 + 3)

(A.4)

1 K

3r 15

x
4

+ (1-1
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1 I-11 3/2(xy){ 21- 1
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Appendix B

Casimir Polder Coefficient

Functions: Scalar Field

The interior Casimir Polder coefficient functions for a scalar field obeying Dirichlet

boundary conditions can be calculated easily using Eqs. (3.1), (3.2) and (3.4). They

are expressed as integrals over the frequency n in terms of sums of modified bessel

functions I, and K,. Again, we make the substitutions y = a/R and x = KR where

R is the radius of the conducting spherical shell. The scalar ICP coefficient functions

are given as,

fi(Y) = dx x 21 +- 21 1Kl+1/2(x) 2 2 K1/2(x) (B.1)

l I xy Iil/ 2 (X) I+I/2(xY) 1/2(X)

f( / f 27 21 + 1 K+1/2 (x) 2 2 K1/ 2 (x)
f2 (Y -2dx x 12+1/2

o x II+1/21/2 2 (
Sd 2{ (21+ 1)( 2 + 1) Kl+/2() K+1/22 K/2(x }

S2 2 +1/2(X) p+1/2(X /2 +1/2 r 2 12/2(

(B.2)



S dx 1 +11K+ 1/2()i 2 2 K 1/2(x)

f(y) = dx xy I+1/2 (X) 1+1/2 (Xy) 1112(X)

+ dx 2x 3
(21 + 1)(2/p + 1) Kl+1/2 (x) K+ 1/2(x) 2 2 Kj / 2(x)

2 y2  l+1/ 2 () +1/2() 1+1/2 ( I 1 2  72 / 2 ()141

+ dxZ ( 21
0A,/AV 3y ,t,

1) 1+1/2(X 1+1/2Y
8x3 K 1/2()

- J /()

f 3,(Y) 0 dx x3{

f3,-D~~~~ (Y od

21 +1 Kl+1/ 2 () i 2  2 K 1/2(X)

y I+/2() 1+1/2 (y - 1/2()

f3,Ao (Y) = j dx X3
1 K 1+1)/2()[( +3/2(XY)+ -

xy(21 + 1) I+ 1 12(x)
-1/2 2 K 3/2()

37 1 3 /2 (X)

(B.5)

f3,A (Y) = 0dx x 3
1(1 + 1)

2xy(21 + 1)
Kl+1 / 2 (x) [Il+3 2 (xy) - 11-1/2 (xy)]2
1l+1/2 (X)

f4) j4f4(Y) ="-- dx x 4 21+ 1Kl+l/2 () 2 (

xy 1+1/2(X)

0 dx 3x4 (21 + 1)(2p + 1) K 1+1/ 2 (x) K +1/2 (X) i
+ 1x 3 7 2x22  l+ 1/2(X) bt+1/2(x) 1+1(l 1 /+i)Il 2 X)1 r)

+ dx

+ dxZ~+~Y X -C~zt,:

Ii11 2 (X)

I I (21 + 1) 1 1 1 2 (Xy)
( l= +,1, + 2 2 1+1 /( X)

12(XY)12-+112 (XY)-

4 K 3/2 +1/2 W

3/22

2 K /2(x2 /2()

4 X4  
12 (X)

4 4 41 2 (x) f
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(B.4)

2 K 3/2(x)

37r 13/ 2(X)
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2 K/2 ()x)

1r 11 /2(x)
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S 4 21 + 1 K+1/2(X) 2 2 K 1 /2(X)
f4,D(Y) - dx x 4 E 2l -_____ 1 2(x Y) - /1/ 2 (X)

[fo 4 (21+ 1)(21 + 1) Kl+ 1/2 (x) Kt+1/2 (X) 2 Il2 2
+ 4l 2x 2 y 2  

1l+1/ 2(X) I 1 +1/ 2 (X) +i/ 2( 1 / 2 2 2

(B.8)

f4,A (Y) dx y2 h+11/2(x) i2+1/2 (x) +1/2(xy)Ip+l/2 (xy) [(l 1)Il+312 (xy) + 1-1/ 2(Xy)]

x [(-t + 1)Ip+3/ 2 (xy) + tI-1/ 2 (xy)] (B.9)
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