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Abstract

A record of carbon dioxide for the last 400,000 years revealed that atmospheric CO 2 decreased
from a pre-industrial concentration of 280 ppmV to approximately 200 ppmV during the last glacial
maximum (Petit et al., 1999). Several hypotheses as to why this happened have been suggested yet no

one explanation has been able to fully account for this decrease. Deep water is the main sink for carbon
in the ocean through the biological pump, where the organic matter and CaCO 3 shells of dead surface

biota sink. The stored carbon in the deep ocean is 'aired' in the southern polar ocean, where large

amounts of deep water are upwelled to the surface. Stephens and Keeling (2000) have proposed that if
the southern polar ocean was covered with ice during the last glacial maximum, this would have
prevented carbon stored in the deep ocean to be released into the atmosphere, thereby reducing the
concentration of atmospheric CO 2. Stephens and Keeling (2000) created a six-box ocean to test this

hypothesis and were able to produce a 67 ppmV decrease of atmospheric CO 2 from the pre-industrial
concentration when only the gas exchange between the southern polar ocean and the atmosphere was
limited. Based on the Toggweiler and Sarmiento (1985) three-box ocean model, a four-box ocean model

that splits the Toggiweiler and Sarmiento polar ocean box in to a northern and southern component was

created. The four-box ocean model examined the sensitivity of atmospheric CO 2 to limitations in the air-

sea gas exchange for the southern polar ocean. The four-box ocean was able to produce seventy percent of
Stephens and Keeling's decrease in atmospheric CO2 when the air-sea gas exchange was limited in the
southern polar ocean. In addition, the four-box ocean model calculated carbon-14 concentrations in the
ocean, which provide a useful constraint on model results that was not presented in the Stephens and
Keeling model. The atmospheric carbon dioxide in the four box model was found to be more sensitive to
increasing biological productivity in the southern polar ocean than to the growth of the Antarctic ice
sheet.
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I. Introduction

One hundred years ago, the pre-industrial concentration of carbon dioxide in the

atmosphere was approximately 280 parts per million by volume (ppmV) (Petit et al.,

1999). About 18,000 years ago, at the last glacial maximum, the concentration of

atmospheric CO2 was between 180 and 200 ppmV (Petit et al., 1999). The cause of this

80 ppmV decrease in atmospheric CO2 has yet to be explained. Several hypotheses have

been suggested, yet no one explanation has been able to fully account for this decrease.

Sigman and Boyle (2000) have presented these different hypotheses in a review article.

Despite the differing hypotheses about the mechanism that caused atmospheric

CO2 to decrease during the last glacial maximum, almost all hypotheses point to changes

in the behavior of the ocean as the cause. The ocean utilizes a 'biological pump' where

carbon is sequestered in the deep ocean through a particulate flux of carbon created by

the sinking of organic matter and CaCO3 shells from dead surface organisms (Sigman

and Boyle, 2000). The deepest layers of the ocean are responsible for large-scale CO 2

regulation through these particulate fluxes of organic and carbonate particles from the

warm surface ocean to the deep (Siegenthaler and Wenk, 1984). Since the deep waters of

the ocean are exposed every 1000 years, the ocean serves as the largest of carbon

reservoirs and controls atmospheric CO2 on time scales of less than 105 years

(Siegenthaler and Wenk, 1984).

i I K
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Figure 1: Record of temperature anomalies and carbon dioxide for the last
400,000 years. (Petit et al., 1999).



The measurements from Petit et al. have shown that there is a relationship

between changes in temperature and changes in atmospheric carbon dioxide for the last

400,000 years (Petit et al, 1999). Figure 1 shows this relationship between temperature

and CO2.

In addition figure 1 shows that CO2 and temperature follow a cyclic pattern with a

period of 100,000 years. Temperature decreases every 100,000 years can be explained by

the Milankovich cycles and feedbacks associated with those cycles. However, since CO2

and temperature are closely related and CO 2 is currently increasing due to biomass

burning and the burning of fossil fuels, it is important that we gain an understanding of

the factors controlling long-term atmospheric CO 2 concentrations.

II. Background: Ocean Circulation, Antarctic Sea Ice and Atmospheric CO 2

Large-scale ocean circulation has been described as a 'conveyor-belt' pattern

(Broecker, 1991). In the north polar ocean, surface water becomes dense enough to sink

due to decreased temperature and increased salinity. As the denser water sinks, it is

replaced by pole-ward moving water rising from immediate depths (Broecker, 1991). The

dense North Atlantic Deep Water (NADW) moves southward along the ocean bottom,

where it upwells in the South Polar Ocean (Broecker, 1991). This upwelling in the

southern polar ocean is responsible for the airing of the deep waters of the ocean by

exposing large quantities of this water to the atmosphere (Broecker, 1991).

Stephens and Keeling (2000) suggest that if the southern polar ocean were

covered with sea ice during the last glacial maximum, it would have limited the amount

of CO2 released from the deep ocean into the atmosphere thereby reducing the amount of

atmospheric CO2 'leaking' out of the biological pump. This investigation will focus on

testing this hypothesis via the construction of a four-box ocean model and will analyze

the effects of limiting air-sea gas exchange in the southern polar ocean. The results will

then be compared to Stephens and Keeling's result from their six-box ocean model. The

four-box ocean model will also extend Stephens and Keeling's calculations to look at the

sensitivity of carbon-14 to limiting gas exchange in the southern polar ocean. Carbon-14

can provide a useful constraint on model results due to its ability to provide relative ages

for different areas of the ocean.



III. Statement of the Problem

Develop a four-box model of the ocean and atmosphere to explore the sensitivities

of the following parameters to the growth of the Antarctic ice sheet as a mechanism to

explain the decrease of atmospheric CO2 during the last glacial maximum:

1. Atmospheric carbon dioxide

2. High-latitude southern ocean surface water '13C concentration

3. Deep water 02 concentration

4. A14C concentration of the atmosphere, deep ocean and southern polar ocean

5. A 4C age of the deep ocean and the warm surface ocean

IV. Methodology

A four-box ocean model was developed based on the Toggweiler and Sarmiento

three-box ocean model to test the hypothesis of Stephens and Keeling. The Toggweiler

and Sarmiento three-box ocean model combined the southern and northern polar oceans

into one box. However, when the piston velocity was reduced in the polar box to simulate

growth of the ice sheets, atmospheric CO2 was not sensitive to these changes. Figure 2

shows the structure of the Toggweiler and Sarmiento three-box model. Open arrows

indicate water fluxes between each box, solid arrows indicate particulate fluxes from the

surface boxes to the deep ocean and dashed lines indicate gas fluxes when the ocean is

coupled with the atmosphere.

Figure 2: Toggweiler and Sarmiento (1985) three-box ocean .Model



To circumvent the problem with the three-box model, a four-box ocean model

was created to separate the polar ocean into two boxes: a high-latitude northern ocean and

a high-latitude southern ocean. Figure 3 shows the divisions of the ocean into four boxes.

As in figure 2, open arrows indicate water fluxes between each box, solid arrows indicate

particulate fluxes from the surface boxes to the deep ocean and dashed lines indicate gas

fluxes when ocean is coupled with the atmosphere.

Box AT: Atmosphere

Box 4: Southern ---- Box 1: Warm Surface Ocean -- Box 2: Northern
Polar Ocean Polar Ocean

Box 3: Deep Ocean

900 S 00 900 N

Figure 3: Four-box ocean model

To simulate the growth of the Antarctic ice sheet, the air-sea gas exchange was

limited in the high-latitude southern ocean by decreasing the piston velocity. The

sensitivities of atmospheric carbon dioxide to varying amounts of gas exchange

limitations were explored. In addition, model sensitivity to air-sea gas exchange was also

tested for deep 02, high latitude southern ocean 6 '3C concentration and A14C.

V. Construction of the Four-Box Ocean Model

Through the equations and approach used in the Toggweiler and Sarmiento

(1985), Siegenthaler and Wenk (1984), and Knox and McElroy (1984) models, the four-

box ocean model calculates, in order, the following constituents listed below. The model

is designed such that each of the constituents is dependent on the constituents previously



solved for in the model. For example, carbon dioxide is dependent on salinity,

temperature, phosphorus and alkalinity. However, the solutions for carbon dioxide are

not dependent on the values for carbon-13, carbon-14, and oxygen. For each of these

constituents, an explanation of the methodology is described in further detail.

1. Salinity and Temperature

2. Phosphorus

3. Alkalinity

4. Total Carbon and Carbon Dioxide

5. Carbon-13

6. Carbon-14

7. Oxygen

1. Salinity and Temperature

The water fluxes between each box are defined and a flux of water is also

included that accounts for moisture flux from low latitudes which results in

precipitation at higher latitudes (Broecker, 1991). This additional flux allows for a

more realistic salinity distribution, where the high latitude ocean boxes are less salty

than the low latitude box. Using the water fluxes and mass balance, the salinity is

solved for using simultaneous equations that have been presented in matrix format, as

shown in equation (1). Since salinity is conservative, note that row three of the matrix

is a mass balance equation.

-(Q,4 + Q,13 + Q,2)21 31 Q41 S, o

Q 2 -( +Q23) Q32  0 S2  o
V, V2 V3 V4 S, Soa

4 0 Q34  (Q41 + 43 ) S4 0

A x b

where: Qab = flux of water from box a to box b
Sa = concentration of salinity in box a
Sto~t = total amount of salt in the ocean
Va = volume of water in box a



A = water flux exchanges between the four boxes
x = concentration of salinity in each of the four boxes
b = fluxes not accounted for in the A matrix
x = A-'b

Since water fluxes in and out of each box are defined, temperature is merely assigned

in this portion of the model and is not a parameter that is solved for. These temperature

values will be used later in the model when the ocean is coupled with an atmosphere and

gas solubility is calculated.

2. Phosphorus

Since the observational values are better known for phosphorus than for

particulate fluxes, the concentrations of phosphorus in the surface boxes are assigned

and the particulate flux of phosphorus from the surface boxes to the deep ocean is

solved for using mass conservation and simultaneous equations. The A matrix

contains the same fluxes used to solve for salinity. However, since there are now

particulate fluxes in addition to the water fluxes, the b matrix no longer contains

zeroes and these particulate fluxes have been placed there. Equation (2) illustrates

these equations. Since phosphorus is also conserved, row three of the matrices is a

mass balance equation.

(Q14 + Q13 
+ Q 12 ) Q21 031 Q41 1 PF13

2 -(21 +23) 32 0 P2 PFP2393 0 II ,o j (2)
v V V V4 P [Ptotal

Q14 0 Q34 -(Q 4 
+ Q43) P,4 P43

A x b

where: Pa = concentration of phosphorus in box a
Pota= total amount of phosphorus in the ocean

PFa3 = particulate flux of phosphorus from box a to box 3
b = Ax

3. Alkalinity

The total alkalinity and normalized alkalinity is calculated as well as the

particulate flux of alkalinity to the deep ocean using the Redfield ratio of alkalinity to



phosphorus suggested in the Toggweiler and Sarmiento model. The concentration of

alkalinity is solved for using the same technique as salinity. Equation (3) presents

these equations.

-(Q14 + Q13 +Q12  Q21  31 41 AL, PFAL13

Q2 -(Q 21 +Q23) Q32  0 AL 2  AL23 (3)

V1  V 2  V3  V4  AL Aotal

Q14 0 Q34 -(Q 41 +Q43  AL PFAL43

A x b

where: ALa = concentration of phosphorus in box a
ALtotl = total amount of phosphorus in the ocean

PFALa3 = particulate flux of phosphorus from box a to box 3
= (PFa3) (RedfieldRatioAIL)

x = A''b

The normalized alkalinity was calculated using equation (4):

35 x AL
NA = 3 (4)

Sa

Since variations in alkalinity are mainly due to changes in salinity, calculating the

normalized alkalinity provides a way to confirm that the model calculations for alkalinity

are consistent with the solutions for salinity in each box (Chester, 1990).

4. Total Carbon and Carbon Dioxide

Carbon dioxide is transported through the atmosphere, so the four-box ocean

model is now coupled with an atmosphere. Furthermore, since carbon dioxide is not

related to alkalinity by a linear relationship, iteration must be used to solve for the

concentration of total inorganic carbon in the ocean based on the solubility of carbon

dioxide and the gas fluxes between the surface boxes and the atmosphere (Toggweiler

and Sarmiento, 1985). The iteration process guesses the concentration of carbon

dioxide in the atmosphere based on the gas fluxes in and out of each surface box and



continues until a solution converges. Since the gas fluxes are dependent on the

concentration of carbon dioxide in the atmosphere and the solubility of carbon dioxide

in the surface ocean boxes (which is, in turn, dependent on temperature), the following

calculations are performed in each iteration until a solution converges:

1. Initial gas fluxes for each surface box are chosen. Total inorganic carbon in

each of the surface boxes is solved for through equation (5). Carbon is

conservative, so a mass balance equation is used in row three of the matrices.

-( 14 + 3 +2) 21 31 C41 CO2 1  PFc,13 + GF

2(Q 21+Q23) Q32  CO22  C 23 G (5)
V V V4  2CO23  Ctotal - (pCO2, X VA IT)

04 0 Q34 -(Q41+Q43)JCO24 L PFc43 + GF4
A x b

where: ZCO2 a = concentration of inorganic carbon in box a
Ctotal= total amount of carbon in the ocean

PFa3 = particulate flux of carbon from box a to box 3
GFa = gas flux between box a and the atmosphere
pCO2 AT = concentration of CO2 in the atmosphere
VAT total = total volume of the atmosphere
x = A-'b

NOTE: The carbon particulate flux was calculated using the Redfield Ratio for

organic carbon to phosphorus as suggested in the Toggweiler and Sarmiento

(1985) model. The Redfield ratio of total inorganic carbon was then calculated

from equation (6):

. [ ALRRco?= o,,c + 2 (6)

2. The program guesses a value for atmospheric carbon dioxide.

3. Gas fluxes for each surface box are calculated using the formula (Pilson, 1998):

GF = Areaa x PV, x (CO2. - (pCO2, xa)) (7)



where: PVa = piston velocity for box a
CO2 a= concentration of dissolved C02 in box a
a a = equilibrium constant of solubility for box a

4. The midpoint of the initial gas flux and the calculated gas flux for each box is

calculated.

5. The midpoint of each surface flux is used to determine the new gas flux that

will be input back into Step 1. Since the difference between the initial gas

fluxes and the calculated fluxes can be very large, the new gas flux values

inserted into Step 1 for the next iteration are changed by only 10% of the

midpoint to insure a smooth convergence. Equation (8) illustrates this

calculation:

NewGasFluxa = (0.1 x Midpta)+(0.9x ValuefromStepla) (8)

6. The iteration process continues until the calculated midpoint between each of

the gas fluxes is less than 0.0001.

5. Carbon-13

Since the gas flux of carbon dioxide is calculated through the iteration process, it

is possible to derive the fraction of total inorganic carbon and carbon dioxide that is

carbon-13. The gas fluxes in and out of the atmosphere for each box are than

calculated using equations (9) and (10):

Flux out of the atmosphere into box a (Broecker and Peng, 1982):

GFaa = Areaa x (KineticEffc43c x PV,)x a 13. (9)

Flux into atmosphere from box a (Broecker and Peng, 1982):

GF,, = Areaa x (KineticEffect 3 x PVa)x frac13 (q) (10)

where: KineticEffect 3c = effect due to isotopic substitution
fracl3c(a) = fraction of dissolved CO2 which is 13C0 2
aa = equilibrium constant of solubility for box a



Then, E 13C0 2 is solved for using equation (11), with the atmosphere now being treated

as an additional box.

(Q14 
+ 13 + Q12 + GFAT)

212

013

214I'i

Q21

- (21 + 23 + GF2AT)

023
0

V2

- PF13 -

231

232

-(32 +231 +Q34)

Q34
V3

PF 3cB

PF13C23

- PFc23
PF 3c43

13Ctotal

Q41

Q42

243
- (Q41 + Q43 + GF4AT)

V4

x

GFAT-1 Y 13 CO21

GFAT 2  X13C022

0 z 13 CO 2 3

GFAT4  ,13C0 2 4

VAT - p 13CO2 t

- PFc,, (11)

where: E 13CO 2 a = concentration of inorganic carbon in box a
13Ctotal = total amount of carbon-13 in the ocean
PF13ca3 = particulate flux of carbon-13 from box a to box 3
GFab =gas flux between box a and box b
p13CO 2 AT = concentration of 13C0 2 in the atmosphere
A = water fluxes and gas fluxes between boxes
x = concentration of 3 CO 2, ain each box
b = additional fluxes not included in A

x = A'b

6 13C was also calculated using equation (12) (Broecker and Peng, 1982):

SC ampe l x1000 (12)S3C (13C /12C)Standard

6. Carbon-14

Carbon-14 is solved for in much of the same way as the carbon-13 portion of

the model. However, carbon-14 is not conservative. Cosmic rays produce carbon-14

and then the carbon-14 is transported through the atmosphere and into the ocean. In

addition to production, carbon-14 is also decaying as it is circulated through the ocean

and is therefore able to provide an age constraint to the model. Decay and production



of carbon-14 are treated as an additional flux out of the atmosphere and ocean and are

included in the A matrix in equation (14). This additional flux, which is the amount of

carbon-14 that is not transported and decays in each box is given by equation (13):

DA = 14c x Va (13)

where: X14C = decay constant for carbon-14

Gas fluxes are calculated from equations (9) and (10) using the kinetic effect (KE14)

and the solubility constants (a 14) for carbon-14.

A

-(014 + Q13 + Q12 + GFIAT + D)

Q12

Q13

Q14

GFIAT

Q21

-(Q21 + Q23 + GF2AT + D2 )
Q23

0

GF2 A T

z1 4 CO2 1

E14 C022

Y.14C023

114C024

p14CO2 4

Q31

Q32

-(Q32 +Q31 + Q34 + 03)
Q34
0

PFI4c
PFc 3
PF C 23

= PF14C,
1 - PFI4C -

PFC43c
14

Cproduction

Q41

Q42
Q43

-(Q41 + Q43 + GF4AT + D4 )

GF4AT

PF14C43

GFAT1

GFAT2
0

GFAT4

- (GFAn + GFAT2 + GFAT4 + DAT)

(14)

where: E"CO a = concentration of inorganic carbon in box a

14Ctota = total amount of carbon-14 in the ocean
PF14Ca3 = particulate flux of carbon-14 from box a to box 3
Da = amount of 14C that has decayed in box a

p' 4CO2 AT = concentration of 14C0 2 in the atmosphere
x= A-lb

8 14C and A14C are

1982):

also calculated using equation (15) and (16) (Broecker and Peng,

gs4C = (c C)Sample-(c / C)Standard x1000 (15)

C = C2( C)Sta+ndar d25)x (16)

, 4C = 814C - 2( "C + 25)x (l + ,14C) (16)



7. Oxygen

To explore the effects of limiting air-sea gas exchange on deep ocean 02

concentrations, this portion of the model is also coupled with an atmosphere by

calculating the solubility of oxygen in seawater and the piston velocity for oxygen and

then solving for the concentration of oxygen in each box. Oxygen is also conserved.

However, since the reservoir of oxygen in the atmosphere so large, the concentration of

oxygen in the atmosphere can be considered constant. Oxygen is solved for in equation

(17). The Redfield ratio of oxygen to phosphorus used in equation (17) to calculate the

particulate flux of oxygen is the value suggested by Broecker (1985). Gas fluxes are

calculated from equations (9) and (10) but using the piston velocity and solubilities for

oxygen:

A x

- (Q4 + Q13 +12 +GFAT) 221 Q31 241 021
12 - (Q21 + 23 + GF AT) Q32 0 022

213 223 -(31 +232 +Q34 243 023

14 0 Q34 ( 4 1 + 4 3 + GF4 AT) 024

- PF013 - GFATI1

- PF23 + GFAT2  (17)

- (PFo1 3 + PF0 23 + PF043

- PF43 + GFAT4

where: 0 2a = concentration of oxygen in box a
14Ctotal= total amount of carbon-14 in the ocean
PF 2 a3 = particulate flux of oxygen from box a to box 3
x = A-lb



VI. Stephens and Keeling's Model and Results

Stephens and Keeling suggest that almost of all of the 80 ppmV decrease of

atmospheric CO 2 during that last glacial period was due to the growth of sea ice in the

high-latitude southern ocean which limited air-sea gas exchange and thus prevented the

deep ocean 'airing' of CO 2 (Stephens and Keeling, 2000). Furthermore, Stephens and

Keeling (2000) hypothesize that decreasing air-sea gas exchange also produces values for

deep oxygen and Antarctic surface 6 3C which correspond to observational data during

the last glacial period. They constructed a six-box ocean model coupled with an

atmosphere to illustrate this hypothesis using the assumptions that there were no changes

in nutrient concentrations and utilization during the last glacial period and that deep

waters only return to the surface in the high-latitude southern ocean (Stephens and

Keeling, 2000). Stephens and Keeling's (2000) model construction is presented in figure

4 with their solution for pre-industrial conditions in the ocean and atmosphere.

Pft n C02= 282 C13= -6.5
0.41 0.49 0.34 ' 0.70 1.25

Om- 325 VwwA 307 275 286 257

2 ±m - TA1.0 27 3T= 20 TA 2296
T= 0.9 S= 34.5 8 T= 5.5 S= 35.3 02= 226
S= 34.8 PO= 20 S=34.9130.9S COp 2199 M4 0.7 PO 0 8= 0.9
PO4= 2.2 TA= 2380 CO= 2118 ,COe 1962

200 m - CO2= 2205 02= 339 TA= 2343 8 50 ++ 50
TA= 2376 6'C= 0.6 02= 305

250 m - 02- 337 813C= 1.5 T- 2.0 IC02 2096 02 329

500 m- 8C= 0.4 25 Fa. Sp35.0 TA= 2303 13C= D.8 1.51
25 16 PO4 0.7

00m - 25
15 17 25

0.25 0.50 T= 1.8 ,C02= 2274 tsC= -0.3 0.38 0.67

S= 34.8 TA= 2376 CO32-= 82.5
15 PO4= 2.2 02= 191 17

4000 m -

I I I I I I
90°S Antarctic Antarctic Subtropical -50 0 N 90ON

Divergence Polar Front Front, -45 0 S

Figure 4: Six-box ocean model developed by Stephens and Keeling and their solutions for a pre-
industrial ocean and atmosphere. Box S represents the warm surface ocean, box T is the main
thermocline box, box SA represent the southern sub-Antarctic surface ocean, and box D represents the
deep ocean. Fa is the fraction of northward-flowing water that is exposed to the surface or carried to the
deep ocean. Carbon fluxes are in Gt C/yr, concentrations are in mol/kg except 8 13C, which is
measured in per mil, temperature is measured in oC, and salinity in psu. Note that box S does not
communicate directly with box SA, A, or B. In addition, there is no upwelling of deep water except to
boxes B and A (from Stephens and Keeling, 2000).



Using their six-box ocean model, Stephens and Keeling (2000) were able to

produce a decrease of 67 ppmV of atmospheric CO 2. They attribute 92% of this decrease

to the reduction of gas exchange in the high-latitude southern ocean and 1.8% of the

decrease to an increase in the deep ocean inorganic carbon concentration (Stephens and

Keeling, 2000). Stephens and Keeling also found that deep 02 is not sensitive to these

air-sea limitations except when sea ice coverage is very large (2000). Their sensitivities

of Antarctic surface 6' 3C, deep 02 and atmospheric CO2 to limitations in the gas

exchange are shown in figure 5.

-200
290-

-180
280 6
270- - 160

260
260- - 140 E - 0.6

250-- 120

2400 0.4

o 230- 80 0.2

220- -- Atmospheric CO 60 so

210- -- Deep 02 -40 0.0

200- a Antarctic surface 613 C
I1 -0.2

0.0 0.16 0.64 1.6 3.2 6.4 9.6 12.8 16.0

Ice-free area (1012 m 2)

Figure 5: Sensitivities of Stephens and Keeling's six-box ocean model to sea ice
coverage in the high-latitude polar ocean. The dotted line on the left represents
Stephens and Keeling's estimate for southern ocean ice coverage at the last glacial
maximum. The dotted line on the right denotes their pre-industrial values before
sea ice coverage was increased (from Stephens and Keeling, 2000).

VII. Designation of Values for Four-Box Ocean Model

As a first effort to test Stephens and Keeling's hypothesis, the values used in their

model were translated to the four-box ocean model. However, their model had been

designed in such a way that the high-latitude northern ocean box communicates with the

high-latitude southern ocean box independent of the low-latitude surface box. The four-

box ocean model cannot account for this behavior and thus yielded unreasonable results.

Furthermore, Stephens and Keeling's (2000) model was also designed to test the

sensitivity of their model to northward flowing Antarctic surface waters as it forms deep



water or continues along the surface. Therefore, the values used in their model design

were not easily transferable to the four-box ocean model.

Values were then assigned to the four-box ocean model based on the Toggweiler

and Sarmiento three-box model but in the 'spirit' of Stephens and Keeling, where low-

latitude upwelling from deep water is minimized. Appendix A lists the values for the

constants used in the model. The Toggweiler and Sarmiento (1985) three-box model

defines a water flux, T, which describes the 'conveyor belt' flux, and water fluxes which

exchange between each box. Figure 6 shows Toggweiler and Sarmiento's water flux

values for a pre-industrial ocean with T = 19 Sv.

2 C= -6.18
Pco,=271.2 au C=+1 to -5

Figure 6: Water flux values used by Toggweiler and Sarmiento in their three-
box model of the ocean. Wavy arrows indicate particulate fluxes to the deep
ocean. Solid straight arrows represent T, the 'conveyor' flux, and curved arrows
indicate the net water flux exchange between the two boxes, excluding T. All
water fluxes are in Sv. (Toggweiler and Sarmiento, 1985)

For the three-box model's pre-industrial solution shown in figure 6, a 'conveyor

belt' flux of 19 Sv was used. For the four-box ocean model, a slightly lower conveyor

flux was used to produce a solution for the modem pre-industrial ocean. The exchange

fluxes from Toggweiler and Sarmiento's polar box were split into the northern and

southern polar ocean for the four-box model under the assumption that the net water

fluxes between the deep ocean and each of the polar boxes would each equal 14 Sv. In

addition, Stephens and Keeling's assumption that the amount of upwelling from the deep

ocean to the warm surface ocean is minimal was utilized by allowing no net flux of water

between those two boxes in the four-box ocean model. Figure 7 shows the fluxes and



initial conditions used to calculate the four-box model solution for the modem pre-

industrial ocean.

Figure 7: Water fluxes used to calculate the solution for the modern pre-industrial ocean.
A conveyor flux of 14 Sv was used. The larger numbers in the right corner of each box
denotes the box number. Box 1 is the warm surface ocean, Box 2 is the northern polar
ocean, Box 3 is the deep ocean and Box 4 is the southern polar ocean. Solid arrows
indicate the particulate flux of carbon. Note that the net flux between Box 4 and Box 3 as
well as between Box 2 and Box 3 equals 14 Sv. The atmospheric CO2 concentration for
these conditions is 275 ppmV

As a check to make sure the four-box ocean behaved correctly in response to

changes in the rate of ocean overturning, the sensitivity of atmospheric CO2 and the

carbon-14 age of the deep ocean to the speed of the 'conveyor belt' were tested. The

results are shown in figure 8.
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Figure 8: Sensitivity of atmospheric CO2 and A'4 C age of the deep ocean to changes in the
overturning rate. As expected, when the overturning increases, the residence time of deep
water decreases. As overturning increases, the ocean also becomes a more efficient sink
for CO2 and decreases its concentration in the atmosphere.



Appendix B shows the steady-state solutions of the four-box ocean model for the

modem pre-industrial ocean; these solutions agree well with observational data. Table 1

is a comparison of observational data to the four-box model prediction of a pre-industrial

ocean. Table 1 was constructed as another verification that the model was behaving

correctly. Although the purpose of this study was to observe the qualitative behavior of

atmospheric CO 2, model output was compared with observational data to ensure the

sensitivity tests would produce reasonable values.

Table 1: Comparison of observation data to the four-box ocean model for the modern pre-industrial ocean.

Parameter Observational Four-Box Ocean Reference
Value Model Output

Southern Polar Ocean A'4C -158 %o -160 %o Broecker, Virgilio, and Peng (1991)
Northern Polar Ocean A'4C -68 %o -54 %o Broecker, Virgilio, and Peng (1991)

Atmospheric A14C 0 o 30.55 % Broecker and Peng (1982)
Deep Ocean A"4C -141 %o -141 6%o Toggweiler and Sarmiento (1985)
Atmospheric CO2  280 ppmV 275 ppmV Petit et al. (1999)

Deep 02 195 gnol/kg 191 lmol/kg GEOSECS
Atmospheric 8 3C -6.5 %o -6.07 9o Toggweiler and Sarmiento (1985)

Southern Polar Ocean 6 3C 0.6 96o 0.6 %o Toggweiler and Sarmiento (1985)

VIII. Results and Discussion

Just as in the Stephens and Keeling study, the sensitivities of atmospheric carbon

dioxide, deep water 02 concentration and high-latitude southern ocean surface water 813C

concentration to the effect of increasing Antarctic sea ice coverage were tested. In

addition to Stephens and Keeling's results, the sensitivities of A14 C concentrations for the

atmosphere, deep ocean and southern polar ocean were examined as well as the A 4C

ages of the deep ocean and warm surface ocean.

The growth of the Antarctic ice sheet was simulated by reducing the piston

velocity to see if Stephens and Keeling's results were reproducible using the four-box

ocean model. For each of the four-box model runs, the carbonate ion was kept constant

at 77 mpnol/kg by dissolving or precipitating CaCO 3 to insure that the oceanic CaCO3

budget is kept in balance. Figures 9 through 14 show the sensitivities of these parameters

to the growth of Antarctic sea in the southern polar ocean.



Sensitivities: Atmospheric Carbon Dioxide

As shown in figure 9, reducing the piston velocity to zero in the southern polar

ocean (which is equivalent to total ice coverage over this area), was not able to produce

the large decrease in atmospheric CO 2 that was shown by Stephens and Keeling's model.

The sensitivity of atmospheric C02 to the piston velocity was significant only in the

extreme case, when the ice sheet would have completely covered the southern polar

ocean. Stephens and Keeling's sensitivities also show this type of behavior, however,

their sensitivities are plotted on a log scale which exaggerates the actual sensitivity of

atmospheric C02 to increases in ice sheet growth. Furthermore, the surface area of

southern polar ocean in the four-box ocean model is much greater than the surface area

used by Stephens and Keeling, so the expected decrease of atmospheric CO 2 for the four-

box model should be greater than the decrease produced by the Stephens and Keeling

model. The observed glacial values and Stephens and Keeling's glacial values, with the

exception of CO2, best agree with the four-box model when the piston velocity is reduced

to zero. Appendix C contains the steady-state solution for this glacial ocean scenario.
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Figure 9: Sensitivity of Atmospheric CO2



Sensitivities: Deep Ocean Oxygen and i 13C Concentration

The sensitivity of deep oxygen for the four-box ocean model behaved similarly to

Stephens and Keeling's model. Deep oxygen was not sensitive to limitations in air-sea

gas exchange in the southern polar ocean until there was approximately 90% ice

coverage. However, the quantitative amount of deep oxygen was lower for the four-box

ocean model than for the Stephens and Keeling model. The southern polar surface 8 13C

values for the four-box ocean model did not agree with the Stephens and Keeling values.

In the four-box ocean model, 13C increased with the decrease of gas exchange. This

difference is due to the fact that Stephens and Keeling included an input of 500 gigatons

of terrestrial carbon (Stephens and Keeling, 2000). Figures 10 and 11 show the

sensitivities of deep 02 and 6 13C.
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Sensitivities: Carbon-14

The atmospheric A14C values were also comparable to observational data. The

absolute atmospheric A 14C concentration was approximately 100 per mil during the last

glacial period (Broecker, 1995). From figure 12, when the air-sea gas exchange was

decreased to zero in the southern ocean surface box, the A 4C value of the four-box

model was 115.29 per mille. Also from figure 12, the difference between the A 4C

concentration of the deep and the atmosphere is increasing as the ice sheet grows. As the

deep ocean continues to be cut off from the atmosphere, the difference would become

larger.
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Figure 12: Sensitivity of absolute atmospheric and deep ocean A'4C concentration

Of particular interest is the behavior of A' 4C in the southern polar ocean with

respect to the A 4C concentration of the deep ocean. For the pre-industrial solution, the

A 4C in the southern and deep ocean is significantly less than (approximately one-half)

that of the A 4C found in the warm surface ocean and the northern polar ocean. Because

input of carbon-14 into the ocean only occurs through interaction with the atmosphere,

sequestered deep ocean water contains the lowest A 4C concentration (Broecker et al.,

1990). As this water upwells into the southern ocean, the amount of A 4C slightly

increases in the southern polar ocean due to the airing of the deep water with the

atmosphere (Broecker et al., 1990).

In the best-guess glacial solution, when the southern polar ocean has been entirely

cut off from interaction with the atmosphere, the A 4C concentration of the southern polar



ocean decreases further. The difference between the A 4C concentration of the deep

ocean and the southern polar ocean decreases as upwelled deep water in the southern

polar ocean sinks again to become Antarctic Bottom Water (AABW) with no interaction

with the atmosphere. This already carbon-14 deficient AABW water is then mixed with

the deep ocean.

Figure 13 shows this decrease in the concentration of A' 4C value for the southern

polar ocean as the piston velocity is reduced. Note that the concentrations of A 4C in the

southern polar ocean and the deep ocean appear to be converging. When there is less gas

exchange allowed in the southern polar ocean, it should behave as the deep ocean does.

With no additional input of carbon-14 from the atmosphere and continued upwelling of

lower A14C from the deep ocean, the A 4C concentration of the two boxes should appear

to agree as the gas exchange becomes more limited in the southern polar ocean.
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Figure 13: Sensitivity of southern polar and deep ocean A' 4C
concentration. Note that the A14C of deep water is not sensitive to
changes in the piston velocity. In addition, the A' 4C concentrations
appear to be converging.

By limiting the input of carbon-14 from the atmosphere into the southern polar

ocean, the A 14C age of the deep water would also 'appear' older than for the pre-

industrial solution. Figure 14 shows the increase in age of the deep water as the piston

velocity is decreased. Figure 14 also shows the difference between the age of warm

surface water and the age of the deep water as air-sea gas exchange is limited. As the

deep ocean is prevented from interacting with the atmosphere, there is no additional input



of carbon-14 and A14C further decreases. However, the warm surface ocean is still able

to interact with the atmosphere and the difference between the age of the deep ocean and

the age of the warm surface ocean becomes greater.
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Figure 14: Sensitivity of A'4C age of the deep and warm surface ocean.

Other Methods to Reduce Atmospheric Carbon Dioxide

Since reducing the piston velocity in the four-box ocean model was not sensitive

enough to produce large decreases in atmospheric CO2, another hypothesis for the

decrease of atmospheric CO2 was tested using the four-box ocean model. As the gas

exchange in the southern ocean was limited, dissolved CO2 would have increased

(Broecker and Peng, 1982). Increased CO2 in the southern polar ocean would have

increased biological productivity in the southern ocean and the phosphorus concentration

in the southern ocean surface box would have decreased.

This hypothesis was tested using the four-box and three-box ocean models to see if

they produced the same results as limiting the gas exchange in the southern polar ocean.

Increased biological productivity was simulated by reducing the phosphorus

concentration in the southern ocean polar box and polar box. To compare the three-box

and four-box model results, the average preformed phosphate of the northern and

southern polar oceans was calculated for the four-box ocean model using equation (18).



Average Preformed Phosphate = (jP] + [P, ]) 360-[021 (18)
RRo2

where, Pa = phosphorus concentration in box a
023 = concentration of oxygen in the deep ocean
RR 02 = Redfield ratio of P:0 2

For the four-box ocean model, when the phosphorus concentration was decreased

in the southern ocean without limiting the air-sea gas exchange, atmospheric CO2 also

decreased. For a decrease of about one-third of the pre-industrial concentration of

phosphorus in the southern polar ocean, the four-box ocean model produced an

atmospheric CO2 concentration of 210 ppmV. Figure 15 presents the sensitivities of

atmospheric CO2 to biological productivity in the southern ocean. Figure 16 presents the

sensitivity of atmospheric CO2 to changes in the polar phosphorus concentration using

the Toggweiler and Sarmiento model. For both the three- and four-box models,

increasing biological productivity in the polar ocean is a more effective means to reduce

atmospheric CO 2 than limiting the air-sea gas exchange.
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Figure 15: Sensitivity of atmospheric C02 to increasing biological
productivity in the southern polar ocean using the four-box ocean model.
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IX. Conclusions

The four-box ocean model was not sensitive enough to the growth of ice to produce

the large decrease in atmospheric CO2 that was shown in Stephens and Keeling's model.

Both the six- and four-box models only showed a high-degree of sensitivity to the growth

of the ice sheet when the coverage is very large. Carbon-14 was also calculated for the

four-box ocean model, which was not examined in the six-box ocean model. The best-

guess glacial condition for four-box ocean model, when only the piston velocity was

changed, would be the case where the air-sea gas exchange was zero, or where there was

total ice coverage, in the southern polar box. This steady-state solution is shown in

Appendix C. In this case, the behavior is consistent with observational data, particularly

for carbon-14, which was not calculated in the six-box ocean model. However, it may be

unrealistic to assume that air-sea gas exchange in the southern ocean was zero during the

last glacial period and, if that were the case, the sensitivity of atmospheric CO2

concentration is still not as large when compared to the behavior of observed

concentrations of atmospheric CO2 during the last glacial period.

These results indicate that solely limiting gas exchange in the southern polar ocean

due to ice coverage may not fully explain the reason that atmospheric CO2 decreased

during the last glacial period. Other mechanisms need to be explored in conjunction with



the growth of sea ice such as the lowering of phosphorus in the southern polar ocean,

whose behavior indicates that atmospheric CO2 concentrations in the four-box and three-

box ocean models are more sensitive to changes in biological productivity than ice sheet

growth.



Appendix A. Table of Constants Used in Four-Box

Constant Value Units

Total Mass of the Ocean 1.29 x 1021 kg

Total Area of the Ocean 3.45 x 10" m

Mole Volume of the 1.80 x 1020 mol
Atmosphere

Total Salinity in the Ocean 4.48 x 102 psu

Total Phosphorus in the Ocean 2.70 x 1021 gnol

Total Alkalinity in the Ocean 3.06 x 1024 eq

Total Carbon in the Ocean 2.96 x 1024 Pmol

Total Carbon-13 in the Ocean 3.0 x 1022 Pmol

Kinetic Effect of Carbon-13 0.9988

Kinetic Effect of Carbon-14 0.9976 -----

Production of Carbon-14 by 374.5 mol y
Cosmic Rays
3C/12C Ratio 1.42 x 10-2

14C/1 2C Ratio 1.18 x 10-12

Piston Velocity for Carbon 1080 m yr-1

Piston Velocity for Oxygen 1108 m yr-I

Redfield Ratio of Alk:P 50 pnol pnol

Redfield Ratio of Organic C:P 137.5 mpnol imol-

Redfield Ratio of 0 2:P T -175 pnol mnol-

tValues of constants are from the Toggwieler and Sarmiento (1985) model, unless otherwise noted.
Broecker and Peng, 1982

Broecker et al., 1985

Model



Appendix B. Four-Box Ocean Model Solution for a Modern Pre-industrial Ocean

Box 1: Warm Surface Ocem Box 2: ith Polar Oce Box 3: Deep Ocen Box 4 South Por Ocem mosphere lts
Water fufrom Box 1 to -- 19 1 4 SY

er fluxfrom Box2to 6 - 21 - - Sv

Waer fi from Box 3 to 1 7 ..... 67 - Sv

Waterfux from Box 4 to 19 - 53 - - Sv

Tropical Flx from Box 1 to -- 1 - I - S

Temperature 20 25 2 25 - C

S~iy 37.44 3533 34.64 3432 -

P~sphorus 02 0.69 2.1 1.7 - umog

osph.Part. Fx to Box 3 0.004 0.000 ..... 0.026 - mom*

Ak*y 2467 2349 2367 2338 - ,eqkg

Normazed Akainy 2306 2327 2391 2385 - mo~nyr

A Part. Flxto Box 3 0.182 0.001 --- 0.106 - mol/r

Carbon 2081 2123 2258 2161 - aumolg

Noamied Carbon 1945 2104 2281 2204 - umnkg

Cabon Part. Flux to Box 3 0.591 0.020 ---..... 3.247 - monzt

pCO2 277 238 .-.. 303 275 ppnV

Piston Vekdy 1080 1080 -... 1080 -

% C i h VPiston V city 0 0 ---- 0 -

Carbonate bn C03 281 164 77 134 - mdokg

0Co 23.84 24.31 25.83 24.73 - unm g

si 224 1.87 0.68 152 -608 per mile

ptC 3.15 2.67 ...- 3.43 3.13 pmV
COPart. Fxto Box3 0.007 0.000 ---- 0.036 - mor0'r

ICO, 2.58 2.56 2.34 2.31 - molAg
Vt 25.13 -1.19 -141.34 -113.49 711 9 per mle

pl4 0% 034 028 -.- 0.32 0.36 fmdoled

AlC -30.73 -54,86 -185.44 -16052 3055 per mile

C age 508 717 1955 1704 986" years

C Part. FlutoBox 3 168 81 050 ..... 7992 - mukg

0, 223 322 191 322 - umolkg

O0Part. Flux to Box 3 -0.64 -0.03 .... 4.62 - mo4

OPiton Veoy 04 1104 11--- 104 1- 104t

"NOTE This NOT the age of osphere; this is the residence tine of deep water in the ocean. For pre-instr cii ndons,the value s d be a .1000 years.

Constants Value Redfied Ratio for Box 2 Box 4

% Cng in total P ho 0 Akiy 50 4 4

Toal Phosphorus of Ocean 2.7E+21 umol Organic CO, 137.5 121 121

CaCO3 Austnet 0 7COi 162.5 123 123

Totd Aika of Ocean 306E+24 umol 'C, 1.83 137 137

Organic Carbon u 0 'CO 0.16 0.12 0.12

Total Cab in Ocean 2.961E+24 0rol 0: -175 -175 -175
_ _ __-5 -17



Appendix C. Four-Box Ocean Model Best-Guess Solutions for a Glacial Ocean by
Limiting the Air-Sea Gas Exchange for the Southern Polar Ocean.

Box i: Wam Surfce Ocean Box 2orth Polar Ocan Box 3 Deep Ocem Box South Pola Ocen osp re Units

Wer flux from Box 1 to - 19 1 4 Sv

erlux frm Box 2to 6 --- 21 - - S

er f from Box 3to 1 7 - 67 - Sv

Mier ti from Box 4to 19 .-- 53 - - Sv

Tropi Flux from Box I to - I --- 1 - Sv

Temperaure 20 2.5 2 2.5 - C

Srd 37.44 35.33 34.64 34.32 -

Phosphwus 02 0.69 2.1 1.7 - umolkg

Phsph. Part. Flx to Box 3 0.00 0.000 - 0.026 - moa

Aka ty 2475 2357 2375 2346 - eqm g

Normalzed Akalinly 2314 2335 2399 2393 - mo"lA

Ak. Part. Fkx to Box 3 0.182 0.001 - 0.106 - modkn r

Carbon 2045 2091 2266 2185 - umnkg

Normalzed Carbon 1912 2072 2289 2229 - ounag

Carbon Part. Fux to Box 3 0.591 0.020 - 3247 - mdnlyr

pCO, 232 192 - 337 227 ppmV

Piston Ve y 1080 1080 - 0 -m

% Chng inPbon Velociy 0 0 - -1 - --

Carbone Ion C03: 312 190 77 124 - mikg

CO7 23.49 24.00 25.96 25.05 - umotg

aC 5.02 4.40 2.31 2.92 -2.95 per mie

p O, 265 2.18 - 3.83 258 ppmV

COu Part. Fux to Box 3 0.007 0.000 - 0936 - mokdh'

'CO, 265 2.62 235 229 - fmoLkg

tC 71.61 38.54 -142.96 -130.89 166.37 per mile

piCO, 030 0.24 - 0.35 032 fmolol

At 728 -22.52 -189.77 -179.42 114.93 per ,de

9 age 915 1188 2920 2801 16130 years

'CO Part. Fkx to Box 3 168.31 0 50 - 79.68 - mrrd

01 222 321 27 90 - umoNlkg

O Part. Fhx to Box 3 -0.64 -0.03 - -4.62 - okn

0 Pison Velocty 1104 1104 - 0 - rmy

"NOTE: This is NOT the age of abmosphere this isthe residence time of deep water inthe ocean. For pre-dstrial condtions,the vabe shotld be approx1000 yeas.

Constats Value Redfield Ratio for Box Box 2 Box 4

%Chng in total Phosphos 0 Akahy 50 4 4

Total Phorus of Ocean 2.7E+21 mol Organic CO, 1375 121 121

CaC03 Ad*smert 4 CO2 162.5 123 123

Tdl Akainty of Ocean 3.07034E+24 umol 1CO 1.83 1.37 137

Organic Carbon A*stert 0 
4Co0 0.16 0.12 0.12

Tal Carbon h Ocean 2.961E+24 umo 0 -175 -175 -175
Ij
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