
Search For Rare Events in /s NN

PHOBOS Data

by

Alexander Mott

200 GeV Au+Au

Submitted to the Department of Physics in partial fulfillment of the
requirements for the degree of

BACHELOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May, 2008

@2009 ALEXANDER MOTT
All Rights Reserved

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in

Signaute of Author ........

Department of Physics
May 11, 2009

Certified By ....

George Stephans
Thesis Supervisor, Department of Physics

Accepted by .........

Professor David E. Pritchard
Senior Thesis Coordinator, Department of Physics

1

OF TECHNOLOGY

JUL 0 7 2009

LIBRARIES

ARCHIVES



2 A. Mott

Contents

1 Introduction
1.1 The Relativistic Heavy Ion
1.2 Physics and Terminology .
1.3 PHOBOS Detector .

1.3.1 Multiplicity Array
1.3.2 Triggering System .

1.4 Events . ..........
1.5 Types of Rare Events .

1.5.1 Black Holes .
1.5.2 DCCs .......

2 Event Selection
2.1 Preliminary Event Selectior
2.2 Pileup Removal ......

3 Experimental Procedure
3.1 Binning and Data Structure
3.2 Validation Toy Model .
3.3 Analysis Chain ......

3.3.1
3.3.2
3.3.3

4 Toy
4.1
4.2
4.3

Collider . ..............

Calculating Average Multiplicity
Covariance Matrices ......
Calculating X .........

Monte Carlo
A More Advanced Toy Model.....
Spike Model . ..............
What is Missing From the Toy Models

5 Results
5.1 Statistical Event Distribution . . . . . . . . . . ..
5.2 Rare Events . ..........................

6 Conclusion

7 Appendix
7.1 Report Card Examples . .... .................

48
48
52

67
67

- - - -



Search For Rare Events in V-NN = 200 GeV Au+Au
PHOBOS Data

by

Alexander Mott

Submitted to the Department of Physics
on May 8, 2009 in partial fulfillment of the

requirements for the degree of Bachelor of Science in
Physics

Abstract

In this analysis, we set an upper bound on the rate of rare events: events
whose dN distribution deviates more than statistically from the ensemble av-

erage distribution for s = 200 GeV Au+Au collisions in PHOBOS
data. We carefully remove events that may exhibit non-statistical fluctua-
tions due to other effects, such as event pileup and detector pathology. We
also use very fine binning in the z and y vertex positions to eliminate fluctua-
tions due to different event vertices. We eliminate global correlations within
the d distributions by using a covariance matrix in the analysis, which is
used to scale out correlations between difference pseduorapidity (ri) regions.

In the end we produce a value of X2 per degree of freedom (X2 ) for each
event, which reflects how well the event agrees with the ensemble average.
We compare this distribution with the distribution we would expect for a
model using uncorrelated random variables with the same degrees of free-
dom of our system, and find remarkable agreement between our data and
this random distribution. This allows us to conclude that most events in
our data set are statistical fluctuations about the ensemble average. We are
further able to determine that there is a signal of non-statistical events with

XV > 2.22, and that the rate of these events in the PHOBOS data is less
than (1.97 ± 0.4(stat) O0.1(sys)) x 10- 5 rare events

Thesis Supervisor: George Stephans
Title: Senior Research Scientist
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1 Introduction

1.1 The Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider (RHIC) is a large particle collider located

at Brookhaven National Laboratory in Upton, NY. It is capable of acceler-

ating two counter-propagating elliptical beams of heavy ions (Au7 9+ ) up to

a center of mass energy per nucleon pair of , = 200 GeV with 6 cross-

ing points for interactions. There were 4 experiments (BRAHMS, PHENIX,

PHOBOS, and STAR) running during the physics runs from 2000-2005, each

located at one of these crossing points.

Figure 1 shows the layout of the RHIC experimental facility. Aul- ions

are fed into the Van de Graaf generator, which accelerates and strips electrons

from the gold ions producing a beam of Au 32+ ions with a total energy of

roughly 1 GeV each [1]. The Au 32+ ions are fed into a booster ring where they

are accelerated up to 1.03 GeV/nucleon and have 45 additional e- stripped

from them, leaving a beam of Au 77+ ions. From there, they are fed into the

AGS and accelerated up to 9.79 GeV/nucleon and stored. The AGS feeds

multiple experiments, one of which is RHIC.

The output from the AGS is fed into RHIC, and accelerated up to 100 GeV

per nucleon by RF cavities arranged along the beamline. Superconducting

magnets curve the beam along the circular beam line, and into the 6 inter-

action points spaced evenly along the beam path [1]. At 100 GeV/nucleon,

these Au 79+ ions are highly relativistic, so we expect them to lose energy

due to synchrotron radiation. We can calculate the loss due to synchrotron
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Figure 1: Schematic of the RHIC experimental facility (Source: LLNL.gov)

radiation in one full revolution using a formula from [2] (in which h = c = 1):

AE =4Ra (E) 4

3R m (1)

Evaluating this for the RHIC accelerator (the radius is R f 610 m) we find

that AE e 1 keV/revolution r 78 GeV/s is the energy loss for a single gold

ion. This is a relatively small amount of energy, which we must add back

into the system (done using RF cavities to boost and quadrupole magnets to
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focus the beam along the beamline).

1.2 Physics and Terminology

The vast energy of the heavy ion collision is localized into a very small phys-

ical area, and occurs in a very short amount of time, so the energy density is

very high. The particles produced from this region are generally vastly more

numerous than those that went into the collision (roughly a factor of 10 for

the most central collisions).

One traditionally parametrizes scattering and collision processes using

the impact parameter, b, of the collision, which is defined as the transverse

distance between the centers of the colliding ions. In relativistic heavy ion

collisions, however, this parameter is not particularly useful to characterize

the events and understand the output [3]. The more useful parameters, which

we shall use throughout are N,,1o and Npart. Npart is defined as the number of

nucleons that participate in the collision, while N,,1o is the number of nucleon-

nucleon collisions in the event. These are related to the impact parameter,

but encode more useful information. The complement of Npart is the number

of spectators nucleons, which is defined as the number of nucleons which

don't interact in the event. One can see that if b = 0, then Npart Nnucleons

and Nspectators 0. O Obviously, these relations will not be exact in the real

world, but in theory this would be observed.

We would also like to encode the impact parameter of the events in some

easy to use variable, which we call the centrality of the event. More specif-

ically, we would like to have certain bins of centrality which encompass a

small range of impact parameters, so that we can easily address groups of

A. MottIntroduction



similar data. We call these centrality bins; there are 17 of them, and we

create them by dividing the data into bins of fractional cross-section. In

practice, we bin data in paddle signal because, as we will discuss later, this is

directly related to centrality. For instance, the 17th centrality bin (the most

central bin) contains the top 3% of events in centrality as measured by the

paddles. This should correspond closely to the lowest 3% in centrality and

impact parameter, but will include a small tail of events outside the desired

region.

The distributions used in this analysis will be measured in pseudorapid-

ity, which is a commonly used parameter of relativistic systems. It is an

angular parameter which describes the angle of a particle with respect to the

beamline. If we define 0 as the angle between the particle's momentum and

the beamline, then the pseudorapidity (i7) is:

7 = -log(tan(O/2)) (2)

One can see that r = 0 => 0 = 900, so the center of the pseudorapidity

region is the same as the center of the region in polar coordinates. When

we say "mid-rapidity" we mean the area centered at rl = 0. The phrase

pseudorapidity suggests that there is something called rapidity; this is usually

denoted y, and is given by:

y = tanh-'l (3)

where / = 5. Rapidity is an important variable in special relativity, the
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8 Introduction A. Mott

simplified form of a Lorentz boost is given by [4]

ct cosh(y) -sinh(y) 0 0 ct

A -sinh(y) cosh(y) 0 0 x
A(y) = (4)

y 0 0 10 y

z 0 0 0 1 z

Rapidity is, in general, the more important for physical phenomona, but

pseudorapidity is much easier to measure in the lab (the angle of the particle

is much easier to determine than its velocity). Fortunately, in the highly

relativistic limit, where particles in this experiment live, the two are very

closely related. This can be most easily seen by writing [4]:

_1 2 Ipl +
S= -log (5)

2 pl -pj1 E+p(6)
y = -log (6)

Here pl is the component of momentum along the beamline. One can see

that in the limit where ! << then E ? p, so in the limit rapidity and

pseudorapidity are equal.

1.3 PHOBOS Detector

The PHOBOS detector (shown in Figure 2) consists of 4 primary systems:

the multiplicity array, the Vertex detector, the Spectrometer, and the trigger

system. The detector is covered extensively in Ref [5], so only the level

of detail necessary for this analysis will be providede here. The multiplicity

array provides large solid angle coverage for counting the number and angular

8
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distribution of the particles emitted in the collision. The Vertex detector uses

finely segmented Si sensors to record particle hits, from which tracks can be

derived and the primary interaction vertex determined. The Spectrometer

is used to track, identify, and measure the momentum of a small fraction of

the particles; this functionality, however, is not used in this analysis. The

trigger system is designed to pick out potentially interesting and well-formed

events and initiate event recording; it is also responsible for determining the

approximate impact parameter of the collision. The Spectrometer is situated

in a 2.18T magnetic field, generated by a double dipole magnet in order to

bend the charged species which are produced in the interaction.

ZDC
SCherenkov TOF

I Tn TOF

SpecTrig
ilanPCAL

Figure 2: The PHOBOS detector. The relevant detector subsystems are
described in detail in the text (From Ref [3])
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1.3.1 Multiplicity Array

The multiplicity array detects the number and angular distribution of par-

ticles produced in the collisions in the pseudorapidity range -5.4 < r < 5.4

and angular range 0 < 0 < 27 [5]. The array consists of an octagonal detector

which covers -3.2 < q < 3.2 and 3 pairs of rings cover the remaining region.

Apart from 4 small holes where Si wafers are removed from the Octagon (2

to accommodate the Spectrometer, and 2 to accommodate the Vertex detec-

tor) near mid-rapidity, the multiplicity array covers the full available region

outside the beam pipe. Hits measured by the Spectrometer and Vertex de-

tectors are used to partially fill these holes, so the effective missing region is

very small.

The Octagon is centered around mid-rapidity, and extends 0.55 m in each

direction along the beam pipe; the diameter is 90 mm, measured from the

center of each opposing face [5]. The detector contains 92 silicon pad wafers

arranged in 8 rows (giving it an octagonal shape), which are divided further

into 120 pads (rows of 30 in the beam direction). The individual pads cover

an eta range of 0.06 near mid-rapidity to 0.005 near the edge of the Octagon.

The total energy deposited in each pad is read out individually for each event

and stored.

The remainder of the q coverage is provided by the ring detectors, which

are divided into 8 trapezoidal sensors each consisting of 64 pads [5]. The pad

sizes increase with distance from the beam pipe, and the sizes are chosen so

that each pad subtends a pseudorapidity range of A?] 0.1. There are three

pairs of rings which, together cover the region 3.2 < I7I < 5.4; ring 1 covers

3.4 < |qj < 4, ring 2 covers 4 < 7Ir1 < 4.6 and ring 3 covers 4.6 < 1I < 5.4.

A. MottIntroduction



1.3.2 Triggering System

Primary triggering is provided by the paddle trigger counters [1]. These cover

the range 3 < IrqJ < 4.5, and are each constructed of 16 scintillators located

±3.21 m from the center of the interaction region. Primary triggering is

done by requiring nearly simultaneous hits in both the positive and negative

paddles within 76 ns of each other. This condition is virtually guaranteed

to be true during any collision, but can also be satisfied by a variety of

backgrounds, which are rejected by other online and offline methods (some

of which will be discussed in Section 3).

The paddles are also used to determine the centrality of an event, based

on the total number of charged particle hits in the scintillators. As discussed

in Section 1.2, the number of participant nucleons in the collision is related to

the impact parameter of the collision, since a large impact parameter means

most of the nucleons miss each other without interacting. It is seperately

observed that Npart is proportional to the number of particles produced in

the collision, and hence with the total energy deposited in the paddles. The

paddles have a very fast integration time, since they are scintillators, so they

provide a very good estimation of the centrality of the event.

Rather than deal directly with the impact parameter, we instead sort the

events into centrality bins corresponding to ranges of paddle signal, which

is a measurable experimental variable correlated with the centrality of the

event. In this analysis, we deal mostly with the 10% of the events which have

the highest paddle signal: the 10% most central events. These are organized

into 3 bins: 0-3%, 3%-6% and 6%-10% most central events. Figure 3 shows

the mean of the signals in the two paddle detectors for all events, corrected
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for inefficiency for peripheral events. The top 10% of that distribution is all

of the events with a mean paddle signal above approximately 1500.

105
*t-

w
oS104 --

E
Z

10 -

0 500 1000 1500 2000
Mean Paddle Energy (au)

Figure 3: Distribution of the mean signal in the paddles

The final elements of the triggering system are the zero-degree calorime-

ters (ZDC), which are designed to measure the neutron component of the

spectator nucleons in the collision. The ZDCs are situated at ± 18 m from

the interaction vertex directly along the beamline. Magnets situated between

the interaction point and the ZDCs will bend any charged species away, so

the ZDCs will detect only the neutral component of the spectator nucleons.

The ZDCs are used for triggering by requiring near coincident neutron hits

in the forward and backward ZDCs.

The ZDCs are also strongly inversely correlated with centrality for the top

50% most central events. For the most central events, most of the nucleons

will interact, so the number of spectators will be very low. This will lead
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to a small signal in the ZDC for very central events. For very peripheral

events, we expect a small number of participant nucleons (since the impact

parameter is very big), and hence a large number of spectator neutrons. This

will lead to a large signal in the ZDC for high impact parameter. At very large

impact parameters, there are a large enough number of spectator nucleons to

allow the spectator neutrons and protons to clump into small nuclei (alpha

particles, deutrium, etc.). Since these small nuclei are charged, the magnets

will bend them away, and they will not be registered by the ZDCs. This

will have the effect of decreasing the ZDC signal for very perhipheral (low

paddle) events. Figure 4 shows the distributions of Negative ZDC energy and

Mean Paddle Energy (correlated to centrality), and shows this trend in actual

PHOBOS data. We can also see the clustering take over in the peripheral

region, driving the ZDC signal down. In the extreme of lowest paddle signal,

we expect a very glancing hit, so most of the spectator neutrons will be

bound up and we see very small ZDC signal.

1.4 Events

PHOBOS was able to achieve very good azimuthal coverage for charged par-

ticle, and so was able to measure the density of charged particles (( ) ch

out to very large Tj values compared to other experiments at RHIC. The fully

corrected mean N- distribution is shown in Figure 5 [3]. This distribution

agrees well with the predicted shape of the - found in Kharzeev et al. [6],

as well as HIJING Monte Carlo simulations [1].

It is also important to note that the statistical errors on Figure 5 are

very small indeed. In fact, the statistical error bars on the figure are actually
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1000
Mean Paddle Energy

Figure 4: Distribution of events by Negative ZDC Energy and Mean Paddle
Energy. Note the downward correlation of Paddle Mean Energy and ZDC
energy in the high paddle region.

smaller than the symbol used to draw the points. This allows us to conclude

that the RMS of the events is sufficiently small to allow very good determi-

nation of the mean. This will be important for our analysis, because we will

be using an ensemble average, so we need this average to be well determined.

The original in [3] also includes systematic uncertainties, which can be large,

but in this paper we are concerned only with the statistical deviation of the

events, which is very small.

Figure 5 shows the fully corrected dN distribution for PHOBOS events,

but the actual output of the detectors looks very different. Figure 6 is the

mean raw detector output of 0-3% central Au+Au events. Again, the statisti-

cal errors are entirely hidden by the data points. To reproduce Figure 5 from

A. MottIntroduction
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600

400

200

Figure 5: Corrected N distribution for 0-6% central 200 GeV
lisions at PHOBOS. Adapted from Figure 1 in [3].

Au+Au Col-

Figure 6, one must correct for a variety of physical parameters of the system,

including the geometry of the detector, the acceptance of the pads, satu-

ration of certain pads relative to others, and background particle removal,

which can be very large for some pads. All of these procedures introduce

some potential for error, so for this analysis we use the uncorrected, raw pad

outputs.

1.5 Types of Rare Events

The goal of this search is to put an upper limit on the rate of occurrence of

certain types of events in the PHOBOS data set, so it is worthwhile to discuss

the types of events which might occur, and to which this analysis is sensitive.

This analysis will be sensitive to events which effect the total number of par-
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Figure 6: Raw N distribution for a sample of 0-3% central Au+Au events.

ticles produced (Nhits), or the shape of the - distribution. Our sensitivity

to small deviations, which fall within the range of statistical fluctuations is

poor, but our sensitivity to fluctutations in the number of high Nhits and

very unusual shape fluctuations is very good. Two interesting events will be

singled out for discussion as illustration: miniature black hole formation, and

disoriented chiral condensate (DCC) production. It is important to stress,

however, that this analysis will not be able to detect whether or not these

events exist in the data, merely a limit on the rate at which they occurred.

1.5.1 Black Holes

While considered very unlikely, the production of a black hole is theoretically

possible in RHIC collisions [7] [8]. If a black hole is produced, it would

radiate its energy away very quickly due to Hawking radiation, and decay,

7 r , , , I r

.*
F

. *

S

* *

.S**

00 0
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which would produce a characteristic signature in the detectors.

A PYTHIA simulation of a black hole event inside the ATLAS detector at

the LHC is shown in [8]. Figure 7 shows the-dN distribution for a black hole

event versus a regular event (labeled as "initial radiation" in that paper).

There is clearly a pronounced difference between the two events, with a

great deal of enhancement at midrapidity and suppression at larger rapidities

for the black hole event [8]. This is due to the preferential absorption of

particles with low pT by the black hole, and re-emission with a more isotropic

distribution.

009

0-08

OO7

0-06

0.5

044

0.01

0

Figure 7: A PYTHIA simulation of the expected dN for a black hole event

compared to that for a regular event. This figure is a reproduction of Figure

8 in Tanaka et al. [8].

Such black hole events would exhibit not only the shape deviations de-
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scribed above, but also Nhit, deviations. Figure 8 shows a comparison of

the total multiplicity distribution for a regular event and for an event with

a black hole decay [9]. The overlap of the distributions for the regular event

and for the black hole makes this a less precise channel to exclude black hole

production, since we cannot discriminate black holes in the overlap region.

Coupled with the shape fluctuations, however, this analysis is expected to

very strongly constrain the rate of production of sufficiently large black holes

in our data.

do2r .ITV du22TV

Figure 8: The expected total multiplicity distribution for a black hole event

versus that for a normal event. This figure is a reproduction of Figure 5 in

Stocker [9].

1.5.2 DCCs

A Disoriented Chiral Condensate (DCC) is a possible state of the vacuum

corresponding to the restoration and re-breaking of the chiral symmetry be-

tween the up and down quark. According to Ref. [10], the Lagrangian for
tween the up and down quark. According to Ref. [101, the Lagrangian for
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the fermionic part of the QCD Lagrangian is

U = ±UL +dLiPdL + URiPUR + dRiPdR (7)

where the u's and d's represent up and down quarks and the L and R represent

the chirality. Equation 7 is separately invariant under unitary transforma-

tions of the vectors and . At high temperature, we can
d d

have free quarks and so this symmetry is realized in the high T region. As the

system cools, however, the symmetry is spontaneously broken by binding of

quark-antiquark pairs. When the quarks begin pairing, the quark-antiquark

doublet gains a non-zero vacuum expectation value, which breaks the full

SU(2) symmetry. The pseudo-Goldstone bosons corresponding to this sym-

metry breaking are the three flavors of pion.

The vacuum which condensed from the big bang (that is to say, the one

we live in) is oriented orthogonal to the three 7r directions (in the a direction

using the sigma model) [11]. There is no a priori reason that a system

restored to the symmetric state would re-decay into the sigma state, so in

general an arbitrary symmetry breaking state will have some component in

one or more of the w directions. This state is a DCC; disoriented because

its orientation is different from the main vacuum. According to [11] the

interaction of this state with the a vacuum will produce a large number of

whichever flavor pion the DCC is oriented toward.

This makes PHOBOS sensitive to certain types of DCC, and this analysis

capable of discriminating them. PHOBOS is a charged particle detector, so

we will not see a DCC oriented along 7ro (an anti-Centauro type), but we can

A. MottIntroduction
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see a charged pion DCC (Centauro type), which will appear as a spike in the

number of charged particles detected in a narrow r region [12]. The DCC

signal is less pronounced than the signal from the black hole, but this analysis

could place production limits as a function of the size of the Centauro type

DCC.



2 Event Selection

2.1 Preliminary Event Selection

This analysis is searching for fluctuations due to physically interesting events

in the detector, so all sources of unphysical fluctuation must be removed

before this search can occur. We first ignore any event which occurred in one

of a half-dozen bad runs where various elements of the detector were mis-

calibrated or not working properly. We further remove events that occurred

during a drift in the y position of the beam. While the events may not all

be bad, they exhibit a different pattern than non-drift events, and since

the statistics in this region are low, we remove them rather than trying to

correct for them.

The raw hits from the detector must first be merged into a format which

is readable for the analysis. The details of this are not crucial to this analysis,

but can be found in [1]. We ignore pads within 0.2 in r of the end of the

Octagon's eta coverage, because these receive hits in less than 50% of the

events and create fluctuations.

We impose conditions on the vertex of the events to ensure that it is not

too far from the average vertex, and to ensure that the vertex reconstruction

worked properly for the event. We require that the x vertex of the event be

in the range -0.3 cm< x < 0.3 cm where 0 is the center of the interaction

region, and require that the z vertex be in the range -10 cm < z < 10 cm. If

these conditions are not met, the event will exhibit a strange N due only to

its vertex position and not any physically interesting event in the detector.

The vertex position of the event is crucial to our track reconstruction and

errors in this determination will lead to errors in the ! distribution. We
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determine the vertex position in 5 different ways, and use the three most

reliable to cross-check that all systems worked correctly for the specific event

in question. The Vertex detection subsystem computes a main vertex for the

event, to which we compare the vertex positions reported by other subsys-

tems. We also measure the vertex using the Spectrometer; the Spectrometer

measures charged particle tracks through its silicon layers, so it is possible to

compute the initial starting point of the event. The third method is to use

the paddle time difference to compute the z vertex of the event, which is very

reliable since all particles travel very close to c. For our event selection, we

require that the Spectrometer and paddle vertices are within 3a of the vertex

determined by the Vertex detector. Here o is the standard deviation of the

event vertex from the mean for all events, and is roughly 0.03 cm. If this

is not the case, we conclude that there was some problem in the electronics,

perhaps noise, perhaps a malfunction in a subsystem, but we exclude the

event to avoid introducing that error into our final calculation.

These quality cuts undoubtedly remove many perfectly valid events from

consideration, but are necessary to ensure sensitivity to fluctuations. We

expect to be looking for a very small signal of interesting non-statistical

events on top of a very large number of statistical events [13]. We must,

therefore, exclude any events which even have a chance to include unphysical

fluctuations, otherwise most of the observed unusual events will simply be

events with detection errors. It is preferable, therefore, to eliminate many

good events rather than keep a few bad events, as long as the selection is

done to eliminate sources of error, rather than specific events which deviate

from the norm.
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2.2 Pileup Removal

Pileup occurs when two collisions occur in the detector within the resolu-

tion time of the whole detector, and are counted as a single event. Pileup

events will have a very different ! distribution from regular events, but are

obviously not physically interesting processes, so we would like to eliminate

them. We can imagine three possible cases for pileup events: two very central

collisions, two very peripheral collisions and one central plus one peripheral

collision. We need to be able to discriminate all three of these in order to

effectively remove pileup.

The paddles have a very short integration time, because scintillator sig-

nals are intrinsically very fast, so for most pileup events they will only register

one of the events. Since we only consider events which the paddles tag as

highest centrality, we can eliminate the events where two peripheral events

pileup, since the paddles will detect one of these and never tag it as central.

It is possible to have two events occur within the integration time of the

paddles, but the rate is much lower, and we will eliminate those in other

ways. We can further eliminate pileup by using the difference in integration

time between the paddles and multiplicity array to look for a characteristic

pileup signature.

The paddles and the rings cover similar r ranges, but have very different

integration times; we can use this difference to look for pileup. Since the

paddles and rings detect, in general, the same particles, we expect their

energy values to be very strongly correlated for normal events. In a pileup,

however, the paddle will only detect one of the events, while the ring will

detect both, so we expect the ring energy to be greater than the paddle
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energy. This is the only reasonable situation in which this will happen,

so by eliminating events which look like this, we can remove pileup events

which the paddle discriminates, but the rings don't. Figure 9 shows the total

mean paddle energy versus the total ring energy for our events. The tail of

events with high ring energy but intermediate paddle energy is exactly the

noise signal we expect: two events are registered in the rings, but only one

is counted by the paddle. We cut along the diagonal line to remove these

events, but not eliminate the events which have both high ring energy and

high paddle (this might be pileup, but they might also be legitimate signal).

Paddle Mean Value versus Ring Energy

9500-2500 -- ..
-

0. •

3000

1500 2000 2500 3000 3500
Ring Energy

Figure 9: Paddle Mean versus Ring Energy for 0-3% central events. The
solid line indicates the position of the pileup cut (we exclude events to the
right of that line).

We can eliminate pileup events not caught by the paddle vs ring cut

by appealing to the inverse relationship between the paddle and the ZDC

A. MottEvent Selection



discussed earlier and shown in Figure 4. In a normal central event, we expect

a low ZDC signal, since the number of spectators is low. In a pileup event,

where there is one central event and one more peripheral event, however,

we would expect to see a large signal in the ZDC from the spectators in

the peripheral collision and a large signal in the paddles from the central

event. Because the integration time of the ZDC is matched much more

closely to the multiplicity array, we use it rather than the paddles, but the

same relationship should hold for the ZDC and total energy as holds for

the ZDC and paddles. Figure 10 shows the relation between the ZDCs (at

±18 m) and the total energy measured by the multiplicity array. The negative

correlation is obvious in these plots, and the similarity between these plots

and Figure 4 is also evident. We can cut along a line which mirrors this

negative slope in order to eliminate events with high ZDC and total energy

signals, which we believe are pileup.

In principle, the negative and positive ZDC signals should be identical,

over a large number of events. The two plots in Figure 10 differ because

differences in the physical setup of the two ZDCs lead to slight differences

in their calibration. While there is a calibration factor to make the signals

look more similar, it is not sufficiently well understood and reliable to apply

for this analysis. The positive ZDC is also known to be less well calibrated

than the negative ZDC, so we impose a much less severe cut on the positive

ZDC, and use the negative ZDC to do most of the work.

While it is not possible to exactly show that all the pileup events are

removed, if we could do that we could eliminate all pileup events, we can look

at some other expected features of pileup events and see how our cuts reduce

those. One would expect, for example, that pileup events would produce more

A. MottEvent Selection
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Figure 10: Positive (left) and Negative (right) position ZDC energies versus

Total energy detected by the multiplicity array.

total particles than regular events, this is encoded in a variable called Nhits.

While we cannot directly cut on Nhit, since we would like to see interesting

physics events that might affect the total multiplicity, it is possible to see

how the Nhit, distribution is affected by the cuts. Figure 11 shows the Nhits

distribution of our data set both before and after pileup cuts are applied.

From the figure, we can see the effect that the pileup cuts have on the Nhits

distribution; the pileup cuts remove most of the high Nhit, events, where we

expect pileup events to exist.

Since many of our pileup cuts will overlap in terms of the events that

they eliminate, one can also look at how one pileup cut affects the other.

Figure 12 shows the paddle energy versus ring energy plot after the ZDC

cuts have been applied. We can see that the ZDC cuts effectively remove

much of the trail of high ring energy and intermediate paddle energy events.

Even more striking is the reduction in the high paddle and ring energy events,

which are almost totally removed by the ZDC cut.
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Figure 11: Distribution of the number of hits per event before (red, dashed)
and after (blue, solid) event selection.

3 Experimental Procedure

3.1 Binning and Data Structure

This analysis centers around separate modules, which compute the quantities

required to assign a X2 value to each event. X2 is the X2 value per degree

of freedom, which is simple x where NDF is the number of degrees ofNDF

freedom. We begin by separating the events into 400 vertex bins, based on

their y and z vertex positions in order to avoid comparing d distributions

that differ only due to vertex position in the final result. The z vertex (along

the beamline) falls in the range -10 cm < z < 10 cm, and is separated into

200 equal bins of 0.1 cm each. The y vertex (transverse to the beamline) runs

from -0.2 cm < y < 0.1 cm, and is separated in 2 bins: [-0.2, 0), [0, 0.1].

A. MottExperimental Procedure
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Figure 12: Ring energy versus paddle energy after the ZDC cut. Compare
to Figure 9, which shows the same plot before the pileup cuts.

The bins are arranged so that the first 200 vertex bins correspond to the 200

z vertex bins in the [-0.2, 0) y bin, and the next 200 bins follow the same

prescription in the [0, 0.1] y bin.

We use the y vertex bin because early physics runs in the data sample

under analysis showed a beam drift to slightly negative mean y vertex (Fig-

ure 13). The shift in vertex position could create a slight difference in the

detected dN for these events compared to later runs where the drift was fixed.

By binning in y vertex and considering each vertex bin totally independently,

we eliminate or substantially reduce any potential fluctuation from this drift.

Since no drift is observed in the x position of the beam, no x bins are created,

as this would only harm our final result by reducing the statistics in each

bin.
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Figure 13: Distribution of events by y vertex position and run number. We

see that early runs had a shifted y vertex position; we bin in y vertex to

mitigate this potential source of fluctuations.

Finally, we get each event's -- distribution by combining, as mentioned

previously, the hit information of the Vertex detector, the Spectrometer, the

Octagon, and the three pairs of Rings, which gives us full coverage in the

77 range -5.2 < q < 5.2. Each event's distribution is separated into

52 q bins, spanning the full pseudo-rapidity range, corresponding to a bin

size of Aq = 0.2. Since we are primarily looking for shape fluctuations, we

apply no correction factors or scaling to any of the outputs, instead relying

on raw detector energy outputs. This allows us to get the most unbiased

shape information without having to worry about the additional uncertainty

introduced by scaling factors and acceptance corrections.
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3.2 Validation Toy Model

All sections of the analysis chain are validated using a simple toy model with

easy to understand behavior. We simulate a toy event by randomly assigning

a vertex bin, and create a mock dN distribution where each bin is thrown like

a Gaussian with mean of 100 and RMS of 10 (Figure 14). These toy events

are very simple, but will be useful to validate that the analysis apparatus is

working correctly, since we can say a priori what we expect the output of

each module to look like. We generate 2 million of these events to roughly

match the statistics of the real data. We will discuss the expected output,

and compare it with the actual output in every module section as a means

of showing that the module is doing what it is supposed to.

100

LFg

80

-5 5

Figure 14: An example of the N distribution for a single validation toy event.

Each bin is a Gaussian deviation from the mean (100) with RMS (10).
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3.3 Analysis Chain

The analysis chain consists of three modules acting on the already pre-

processed data. All modules act on each vertex bin independently and so

produce one output per vertex bin (except for the final module, which pro-

duces one output per event). The analysis modules are, in order: the average

dN module, the covariance matrix module, and the X2 module. All of these

modules act on dN distributions which have been divided up into 52 r bins,

as described above.

3.3.1 Calculating Average Multiplicity

The first module computes the average distribution for the set of events in

each vertex bin. It does this on a detector by detector basis as well as for the

entire distribution. This average is used as the baseline, to which all events

are compared to compute the X2 values. Since there are vastly more normal

events than unusual events in our sample, we conclude that the presence of

unusual events in the creation of this average does not significantly affect

the final result.

We expect the output of this module for our toy model to produce a

distribution which is flat in average , and has a mean of 100. Figure 15 is

an average over 100 vertex bins, which is roughly 5 x 105 events. We see that

the mean is 100.002 ± 0.05, and the RMS is 10.0002 ± 0.006. These errors

are so small because we have 2 x 106 events, and so are able to determine

the mean and RMS very precisely.

Experimental Procedure A. Mott
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Figure 15: Output of the average ! module for the validation toy

3.3.2 Covariance Matrices

The next step is to calculate the covariance matrix for each vertex bin. It

is known that events usually contain some strong correlations, especially be-

tween adjacent or near adjacent bins. Among other things, we expect every

bin to be positively correlated with Nhits, which leads to global positive corre-

lations between the bins. Since these correlations are very difficult to model,

we instead attempt to remove them, to look for non-global fluctuations that

may characterize unusual events. We do this by computing the covariance

matrix, which encodes correlation information within it.

We compute the correlation matrix by:

6 - N1 Ev dN (dN)] [(dN )J (dN)](Nevents eet[(dq dT1 dq dq

A. Mott
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Where (dN )I is the value of the dN distribution in the I t h q bin, and (d)I

is the value of the mean dN distribution in the I th q bin. One important case

of this formula is the diagonal elements, which have the formula

C, = 1 E I - ( ) 2  2 (9)
events I Iqd?

a is just the regular definition of the standard deviation, so we expect the

on-diagonal entries of the covariance matrix to simply be the square of the

RMS (Figure 16).
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Figure 16: An example of a covariance matrix for a single vertex bin, plotted
on a regular (left) and log (right) scale. Notice that all the correlations are
net positive (representing the overall correlation with the total multiplicity
fluctuations of the events).

In order to calculate the X2 using these covariance matrices, we must

invert them. To do this, we use a built in ROOT function, which uses a

Bunch-Kaufman decomposition of the symmetric matrices to transform the

inversion into 52 simultaneous vector equations, and then solves those using

another built in ROOT function. While the correctness of this inversion is

not checked systematically by the analysis modules, we can manually check

that this inversion is being done correctly (Figure 17). We can see that the

inverse looks like the identity, except for order 10- off-diagonal components.

A. MottExperimental Procedure



This is likely due to numerical imprecision in the variables used to handle

the matrices, but should not produce a noticable effect on the final outcome.

Coverlance Matrix

m5-

Inverse Matrix
'5-

Multiplied Together

-5 0 511 -5 0 5 -5 0 5

Figure 17: Inversion of Covariance Matrices: Covariance Matrix (left), its

inverse (middle), and their matrix product (right). We see that the product
of the covariance matrix and its inverse is a matrix with 1 in the diagonal
positions and order 10- 3 off-diagonal components.

The verification toy model is generated by throwing 52 independent Gaus-

sians, so we expect no correlations between the bins, and hence no off-

diagonal elements in the covariance matrix. We set the RMS of each bin

to 10 to generate the toy, so we expect the diagonal entries of the covariance

matrix to be 100 (=102). We can see from Figure 18 that the covariance

matrix for a toy model consists of a matrix with 100 on the diagonal (the

square of the RMS, as we expect), and small off-diagonal components.

We can quantify "small" by looking at the mean of the off-diagonal ele-

ments in this covariance matrix as we increase the statistics. Figure 19 shows

A. MottExperimental Procedure



the trend in these off-diagonal elements. We see that the off-diagonal com-

ponent goes like l, where N is the number of events; this behavior suggests

that the off-diagonal component is purely statistical, and would go to 0 in

the N --+ o limit. This allows us to conclude that the covariance matrices

are behaving as we expect, the square of the RMS is on the diagonal, and

the off-diagonal is zero except for statistical noise.

5 P10. 5

10

1

10
-3

-5 -5
-5 0 1 -5 0

Figure 18: Sample Covariance matrix from the validation toy. The on di-

agonal elements are very close to 100, and the off-diagonal entries are small

compared to the RMS. Left is a log plot with the absolute value of nega-

tive values plotted to show structure, and the right is a linear plot with the

on-diagonal elements set to 0.

3.3.3 Calculating X2

X~ is defined as the X2 value divided by the number of degrees of freedom,

and tells us, for a given event, how much each bin deviates on average.

Usually, X is defined for a set of random variables X 1,..., XN with standard

deviations oi and means Xi as:

2 1 (Xi -Xi)2(10)
X, = N i i(10)
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Figure 19: RMS of the off-diagonal elements of the covariance matrix as a

function of the number of events. The dashed line is not a fit, but is drawn

in to show the shape of a L distribution.

We will use a different definition to make use of our covariance matrices, but

we will show that it is identical in the absence of correlations. One can see

that x~ should average to one, since the square of the variable's deviations

should average to the square of ai. We will use this in Section 5 to justify a

correction we will make to a x2 distribution.

Using the inverted covariance matrices and the average - distributions

the X~ can be calculated with global correlations removed. For each event,

the X2 is calculated as in Equation 11.

2 1 52 52 [(d
52 I=1 dN

x~ 5I= 1 J=1 (dr
dN )(dN) (dN)](-)1( dwl-w

Here II,j are the entries in the inverted covariance matrix for the vertex bin

l l

n ' N
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of the event, and the 52s enter because there are 52 r bins.

From Equation 11, one can recover the more usual x 2 formula, for the

case where there are no correlations. In the uncorrelated case, we have:

o2 1 = J
Ci,j 

U

and so obviously

i#j

In this case, Equation 11 simply becomes

2 1 1 dN dN (
X = (12)

52 or? d dj

which is exactly the formula for X2 for 52 uncorrelated random variables.

One additional thing that will be used repeatedly is the probability den-

sity function (PDF) for the X2 of 52 uncorrelated Gaussian distributed ran-

dom variables. By comparing our observed X distribution to this, we will

be able to estimate the rate of non-statistical fluctuations in our data, since

the covariance matrix removed the correlations within our data. There is a

closed form for this PDF given by [14] as:

Xr/2-1e-/2

PDF(X; r) =- Xr/2  / 2  (13)
F(r/2)2r/2

where X is the value whose probability we would like to know, r is the number

of degrees of freedom, and F(z) is the Gamma function. Figure 20 shows the

distribution created by Equation 13. This plot is created by throwing 10'

A. MottExperimental Procedure
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events according to Equation 13, so the fluctuations at high X are purely

statistical and can be ignored.
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Figure 20: Random variable X2 distribution. The
an artifact of the creation process.

fluctuations at X2 > 2 are

We can produce the X' distribution for our validation toy model, to

check how well it agrees with our random distribution. Figure 21 shows

the X2 distribution of the toy and of the random distribution. From visual

inspection the shape agrees quite well, but when analyzed in detail, there is

a shift in the mean of the toy distribution relative to the predicted random

distribution. The random distribution has a mean of 1 (as we expect), but

the toy has a mean of 1.008. This is a fairly large difference compared to

the expected statistical error on the mean of this distribution (which is order

10-4), and it is not clear where it comes from. We do, however, find that the

agreement becomes excellent when we perform a multiplicative shift of the

A. MottExperimental Procedure
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toy X. values to smaller XV so that the mean works out to 1. This is not an

ideal solution, but can be justified by looking at another distribution.

X2

10-2 --

0-

10 - --

10 -- Flat Toy
a m

0 0.5 1 2 1.5 2 2.5
-- 2

Figure 21: Flat toy model and random distribution

The x2 for an event can easily be converted to calculate the probability

that that event could be a statistical fluctuation of the mean distribution.

For example, an event which deviates greatly from the mean will have a large

x value, and will hence be very unlikely to occur as a random fluctuation.

On the other hand, an event which deviates only slightly from the mean will

be very likely to have originated as a random fluctuation of the mean, so it

will have a very high probability of occurrence. Over a large dataset, we can

plot the probability distribution of the events, which shows how many events

occur at each probability. For a large sample of uncorrelated statistically

fluctuating events, we expect a flat probability distribution.

Figure 22 shows the probability distributions for the validation toy when



shifted as described above, and for the random model. Notice that the distri-

bution for the random model is flat in probability, as we expect for uncorre-

lated statistically distributed random variables. The probability distribution

for the shifted toy model is also flat, and agrees well with the random model.

This is not the case for the unshifted toy (Figure 23). While this issue is

being investigated, the method for this paper will be to shift the output

distribution.
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Figure 22: Probability distribution for the random (theoretical) model and

the validation toy, when the X2 values are shifted so that the mean of the

V2 distribution is one.
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Figure 23: Probability distribution for the flat toy model without the multi-

plicative shift applied. The downward slope is caused by the shift to higher

X2 values, but it is not clear what causes that shift.

4 Toy Monte Carlo

4.1 A More Advanced Toy Model

We have already mentioned the toy model we use to verify the the procedure,

but a toy model can also be created which can be compared more closely to

the data. To do this, we would like to include as many of the characteristics

found in the data as possible: a distribution that looks like data, real

vertex bin fluctuations, and real Nhits fluctuations. We expect this toy to

behave much more like the data than the validation toy; the only things

it misses which are in the data are correlations (which should be removed

by the covariance matrix), and any non-statistical fluctuations. Since we

A. MottToy Monte Carlo



are looking for non-statistical fluctuations in the data, this toy will provide

valuable insight into what is really occurring.

To generate an event in this toy model, we first pick a vertex bin according

to the distribution actually seen in data. Once we have that, we generate the

dN distribution for the event by taking the mean dNdistribution calculated

by the analysis module and, for each eta bin, offset the event from this mean

by a Gaussian with RMS equal to the RMS calculated in data. Figure 24

shows an example of a toy i distribution along with the - distributionnexample d7

from data which is used to generate it. Finally, we choose an Nhits from the

distribution in data for the chosen vertex bin and scale the event so that its

total integral matches this Nhits value (note that Figure 24 has this scaling

removed).

The covariance matrix for this toy will be more complicated than that

for the flat toy used for validation, since we impose scaling on the event

distributions. While we throw each of the bins using independent Gaussians,

we then scale them to fixed values in total integral, which imposes correlations

between the bins. Since the individual bins in the dN can fluctuate more than

the Nhits distribution we have a situation where a big positive fluctuation in

one bin suppresses other bins, in order to meet the total integral reqiurement.

This acutally will impose small negative correlations between the bins (small

since there are big enough fluctuations to cause this effect in only a subset of

the events), so we expect the off-diagonal component of the covariance matrix

to be slightly negative. Figure 25 shows the covariance matrix for a single

(representative) toy vertex bin. We see that the on-diagonal entries dominate

the covariance matrix, which we expect as the correlations should be small.

The on-diagonal entries are no longer uniform, as they were in Figure 18,

A. MottToy Monte Carlo
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Figure 24: An example of a toy event 4-N distribution and the mean

dN distribution from data on which it is based (toy and event are scaled

to the same integral).

since the RMS values are now no longer the same for every d bin. We also

see in the figure the negative correlations between the different j bins, which

is stronger for the bigger bins, since their variance is greater.

The x~ output of these toy events must be compared against Equation 13

and Figure 20 to fully understand what the toy is telling us. Figure 26

shows the X2 distributions for this toy and the random X2 distribution. The

agreement is fairly good over most of the range, roughly ±2o. Since our

model includes correlations and various other dynamics which are not found

in the random model, we could not expect perfect agreement.

A. MottToy Monte Carlo4,3-4
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Figure 25: Covariance matrix for a sample toy vertex bin. The full covariance

matrix is shown on the left, while the same matrix with the diagonal entries

set to zero is shown on the right.
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Figure 26: X2 distribution for the toy derived from data and the random

distribution (top) and the difference between the toy and the theoretical
model divided by the standard deviation of the toy.

4.2 Spike Model

We have said that we are sensitive in this analysis to deviations in the shape

of the dN distribution, but we would like to have a toy model that quantifies

that somewhat more precisely. One possible shape fluctuation is a "spike",

or a consecutive set of qj bins which exceed the mean distribution. This

could be caused by any number of physical phenomena that cause bursts of

particles to be detected and so we would like to understand our sensitivity to

it. One can refer to Figure 6 for the average number of particles in each bin,

but it averages roughly 70, with spikes to 120-130 particles. This behavior



is essentially what is reproduced in the toy model described above, so if we

modify that to add in spikes, we can get a sense for our sensitivity.

We try to add spikes in a way that would best represent the data, so we

introduce them only in a fraction of the events and we keep the total spike

size small compared to the average bin contents. We generate 2 x 106 events

and add spikes to 0.01% of them. These spikes are 3 consecutive 'r bins,

to which we add a total of 20 hits (5 in the left and right bins, and 10 in

the middle), and we randomly position these spikes in their central r7. This

represents an enhancement of at most 30% in the rings, and as little as 4%

at the peaks in the octagon.

We run these events through the same analysis procedure, and compare

them to the distribution we found for the toy model. We apply the same

multiplicative shift to center the mean as before, and we are looking for an

enhancement in the region of events with high X . Figure 27 shows the

X~ distribution for this spike model, compared with the distribution for the

toy model described above. We see a pronounced enhancement in the high

X~ region compared to the other toy. The slight supression of the spike model

relative to the regular toy is an artifact of the normalization, the crucial

aspect is the enhancement in the region X > 2. This plot dramatically

shows that we are very sensitive to fairly small spikes in the - distribution.

4.3 What is Missing From the Toy Models

The toy model is a very useful tool for understanding our data, but there are

fundamental areas where it will be different. The most obvious, and most

important, is in the presence of non-statistical fluctuations. Physically inter-

A. MottToy Monte Carlo
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Figure 27: X distribution for the toy model based on data from section 4.1
and the toy model with spikes added.

esting events will be characterized by some sort of non-statistical fluctuation

in the data; since our toy models have no physics beyond the Nhits fluctu-

ations built into them, we will never see any events like that come into the

toy.

Another element that is missing from the toy is more subtle, and has to do

with the effectiveness of our covariance matrix in removing correlations. The

covariance matrix is a very effective tool for removing global correlations,

which show up in the majority of events. It removes from the data the

overall correlation with Nhits, and other systematic correlation within the

detector. What it cannot do, however, is remove correlation which show

up in a minority of the events. One could imagine electrical noise causing

some artifact in a small subset of a run, for example. This would create
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correlations in a small number of events within the data set, but would not

be visible within the global data set. There could be very slight differences

between the runs themselves, which would show up as a global correlation

for a specific run, but not for the data set as a whole.



5 Results

5.1 Statistical Event Distribution

The ultimate goal of this analysis is to put an upper bound on the rate of

anomalous events occurring in the data set. To do this, we first will compare

the data to our random model and our toy models to understand how well the

the non-anomalous events conform to the statistical expectations. Figure 28

shows the X distribution for 0-3% central data and the x2 for the random

events, governed by Equation 13. We can see that the bulk of the data falls

in the region 0.3 < X2 < 2, and in that region the data follows a very similar

shape as the random distribution. This suggests that, once correlations are

discounted, most of the fluctuations observed in data are statistical. This

is, in itself, an important result, because it says that we really can ask the

question how often non-statistical fluctuations occur in the data. One could

imagine the data having a X distribution which agreed poorly, or not at

all, with a statistical distribution, which make this question much harder to

answer.

In order to better illuminate the match between data and the random

model, we can examine the difference between the two throughout the range.

Figure 29 shows the difference between the x2 distribution from data and

that for the random distribution in units of the statistical error on the data.

Comparing Figures 28 and 29, we see an enhancement in the region 1.8 <

X~ < 2.4, where we would like to look for rare events, but a much bigger effect

in the enhancement and supression in the region 0.3 < X2 < 1.8. Before we

can understand the region that may correspond with physically interesting

events, we must focus on the region 0.3 < X2 < 1.8, where the statistical

Results A. Mott
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Figure 28: X~ distribution for 0-3% central events and that for the random
distribution. Note that error bars are purely statistical.

events live.

Figure 29 shows that most of the random distribution falls within 1 - 2cr

of the data distribution, except for some areas that deviate more. One also

notices that there is a clear trend of enhancement of the event distribution

over the random on the low side of X 1, and suppression on the high side.

This suggests that there is some shift between the two distributions, with

the peak of the event distribution falling at slightly lower X2 than the peak

of the random distribution. While it is unclear what causes this shift, we do

observe that the mean of the data distribution is 0.99811 and the mean of the

random distribution is 0.99996. If we manually correct this shift, by simply

multiplying the X2 values of the data events by the ratio of the means, we

get a X2 distribution which is visually indistinguishable from Figure 28, but
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Figure 29: The difference between the data and the random distributions in
units of the standard deviation of the data.

a difference distribution which looks quite different.

Figure 30 shows the difference plot for this shifted X2 value and the ran-

dom distribution, and shows that the agreement is somewhat better. The

enhancement in the 1.8 < X2 < 2.4 region is still evident, but the differences

in the region 0.3 < X2 < 1.8 have been suppressed. The events now fall

much more in the ±la range, suggesting agreement between the data and

the random model. The residual pattern suggests that the widths of the

distributions may not match perfectly, but the agreement is still better than

without the shift. This supports the notion that there is some small, but

systematic shift in the X values of the data. It is not clear what is causing

this shift, but it appears to be a non-negligible effect.

Comparing Figures 29 and 30, we also notice that the enhancement in
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Figure 30: The difference between the shifted data and the random distribu-
tions in units of the standard deviation of the data.

the region 1.8 < X2 < 2.4 is not substantially affected by the shift. This

is encouraging, since it suggests that this enhancement is a real effect, and

not arising as the result of some offset in the X values. The shape of the

deviation in this region is also largely unaffected, suggesting that there is

some real difference between the events in the two regions. Also notice that

the region of X > 2.2 is unaffected by the shift, and there is some clear

excess in that region. This again suggests that we are seeing a signal on top

of the random distribution.

Figure 31 shows the probability distributions for the data (with the mean

shifted as described above) and the random distribution. We can see that

the random distribution does, in fact, have a flat probability distribution as

expected. The data follows a nearly flat distribution for most of its range,



consistent with its good agreement with the random distribution, but devi-

ates sharply for low probability events. This corresponds to the deviation we

see in the 1.8 < X2 region. This indicates that our data does contain a non-

statistical number of events which have a very low probability of occurring.

These are the events we would like to further understand and put an upper

bound on the rate of.

X2
- data

0.0102 random

2 0.01Cw

00.0098

0.0096

0.0094
0 0.2 robabily6 0.8 1

Figure 31: Probability distributions for (shifted) data and random distribu-
tions. The random is scaled to total integral 1, and the data is scaled to have
the same integral in bins 2 to 100 as the random. This is done to allow easier
visual comparison.

5.2 Rare Events

Having seen the good agreement between the shifted data and the random

model, we can conclude that the bulk of the data behaves like statistical fluc-

tuations of the mean distribution. We can, therefore, endeavor to understand

Results A. Mott



53 Results A. Mott

the signal that arises as a deviation from the random distribution. Figure 32

shows the probability distribution from data for small probabilities. We see

that it is still very flat all the way down to a probability of 1 x 10-6, which

corresponds to X2 - 2.22. We run very quickly into statistics problems when

we try to reduce beyond this limit, so we will define a "rare event" as any

event which has X. > 2.22. We can see immediately from Figure 32 that

there are roughly 28 such events, although we will be more precise about this

shortly.

X 2  . ......., . , . . ......, I I I I f

30-

W 20-
0

10 -

0

107  10-6  -5 10
Pro Ability 10

Figure 32: Probability distribution for low probability shifted data events.

By successively zooming the plot to smaller probability values, we can

more easily see where our rare events live. Figures 33 and 34 show the

probability distributions in the ranges (0, 2 x 10-3) and (0, 3 x 10-4) respec-

tively. We see that, even at lower probability than Figure 31 can resolve, the

probability distribution is flat, except for an enhancement in the lowest bin.
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Comparing Figures 33 and 34, we see that the enhancement in the low bin in

Figure 33 is larger than the enhancement in the low bin of Figure 34. These

extra events show up in the small enhancement in the bottom 7 bins in

Figure 34 (each bin in the low 15% of the first figure is 7 bins in the second).

Indeed, if we integrate the first 7 bins, we find 84 events, which corresponds

exactly with what we expect from the previous figure. This discussion is

simply to show that the figures are consistent, the real message of these two

figures is that there is a true signal of events at very low probabilities.

80
CO4-.

o
60

0 0.0005 Proa.001ity 0.0015 0.002

Figure 33: Probability distribution for data in the range (0, 2 x 10-3), with
100 bins. The distribution is (within error bars) flat, except for the bins at
lowest probability.

To make a quantitative estimation of the excess of low probability events,

we want to extrapolate the trend in the higher probability events to the data.

Figure 35 shows the full probability distribution (as in Figure 31), with 2 fits
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Figure 34: Probability distribution for data in the range (0, 3 x 10-4), with
100 bins. This represents the bottom 15% of Figure 33.

applied, which we will use to estimate the number of events expected in

the range 0 < prob < 10-6. The first fit is a constant fit, which predicts

1.238 ± 0.001 events in this range. Based on the random model, we expect

the probability distribution to be flat, so a flat fit should agree with the

statistical events on theoretical grounds.

We also do a quadratic fit to the data in Figure 35, which is motivated by

looking at the shape of the probability distribution, and seeing that there is

some overall curvature. While this is not very well understood, and does not

agree with our models, if we simply fit the observed data, we can get another

estimate of 1.221 ± 0.003. Even though we fit a quadratic, the parameters

of the fit show that the linear and quadratic part of the fit are rough 8% of

the constant part, so we are still dominated by the constant part, which is

A. MottResults



Results A. Mott

at least partially consistent with the random model.
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Figure 35: Number of events
constant and quadratic fits to

per probability bin
bins 2 through 100.

(bin size: 10-2), with a

We perform a similar fit procedure to the lowest 1% of the distribution in

order to get additional estimations of the expected rate. Figure 36 shows the

1% of the events with lowest probability, along with a constant fit to all but

the lowest bins. Figure 32 suggests that most of this excess actually occurs

in the very lowest portion of the first bin, showing 28 5 events in the region

0 < prob < 10-6. Using our fit, and scaling appropriately, the fit predicts

1.26 - 0.01 events in the range 0 < prob < 10-6.

Averaging the three different predicted values, we get 1.239 ± 0.016 ex-

pected events in the probability region 0 < prob < 10-6. The data shows

28 + 5 events, which is more than 5a different from the expected value. It

is worth noting that this is a fairly conservative estimate for the expected

A. MottResults
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Figure 36: Number of low probability events per probability bin (bin size:
10-4), with a constant fit to bins 2 through 100.

number of events. Figure 34, for example, suggests that we have a slight

increase in our baseline number of events going toward low probability. We

are, however, looking for an upper bound on the overall rate, so we use a

conservative estimate here, and anticipate that our final rate will be some-

what of an overestimation of the true rare event rate. We will convert all of

this into an event rate shortly, but this shows that there is a signal of low

probability events that is clearly non-statistical. We will include the error on

this prediction due to the multiple different fits, as a systematic error on the

final excess rate.

Our data sample consists of 1.26 x 106 0-3% central Au+Au events that

survive all the event selection and pileup cuts. Out of this sample we see 28

events that qualify as rare events under our definition. Table 1 summarizes

A. MottResults



the number of events above various x2 cutoff values, as well as the range this

covers in probability. We can see a clear set of core events remaining down

to very small probability values, once again underscoring the non-statistical

nature of these rare events. The table also shows the rate of the events in the

data set with statistical errors. As discussed above, we expect 1.239 ± 0.016

events from statistical fluctuations, so we must subtract this from the number

of events at x~ > 2.22 to get the excess event rate; this leaves us with an

excess rate of 26.76 events. We can estimate the additional systematic error

introduced by the shift in the mean of the x 2 distribution by comparing the

number of events in each range before and after the shift, and seeing how this

changes the rate. Since the X2 shift is a systematic correction on our data, we

include it as a systematic error on the final rate of rare events in the data and

arrive at a value for the rate of rare events: (2.13±0.4(stat)±0.1(sys)) x 10- 5,

which we will endeavor to improve upon.

Vx Probability range # of Events Excess Rate (x 10- 5)

2.0 [0, 2.5 x 10- 5) 92 7.2 ± 0.8
2.2 [0, 1.4 x 10- 6) 28 2.2 ± 0.4

2.22 [0, 1.0 x 10- 6 ) 28 2.2 ± 0.4

2.4 [0, 6.4 x 10- 8) 13 0.9 ± 0.3
2.6 [0, 2.5 x 10- 9) 10 0.7 ± 0.2
2.8 [0, 8.4 x 10- 11) 7 0.6 ± 0.2

3.0 [0, 2.5 x 10- 12) 7 0.6 ± 0.2
4.0 [0, '.5 x 10- 20) 3 0.1 ± 0.1

Table 1: Number of Events exceeding each listed x2 value

Before looking at the individual events remaining in the sample, it is use-

ful to get a sense of how big the deviation in these rare events is. Recall

from Section 4.2 that we generate a toy model with spikes added on top of

some of the events to simulate rare events like dN fluctuations. The param-
dr,
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eters we used were that 0.01% of events got a spike of 20 particles spread

over 3 rl bins. We can compare this to what we find in the data to see how

our rate and average fluctuation size compares to this. Figure 37 shows the

X~ distributions for data and the toy model. One can see that the spike model

actually overestimates both the rate and the size of the deviations observed.

We end up with roughly an order of magnitude less events than in the spike

model, and the deviation of the events in data are generally smaller than

those in the spike model.

X2 - I I I I I -
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0 1 2 3 4 5

Figure 37: X distribution for data compared to that for the spike model (toy
model with spikes added)

We can also compare the probability distributions for the data and toy

model, to see the relative size of the low probability peak. Figure 38 shows

that our model does indeed dramatically overestimate the number of rare



events. We see the roughly order of magnitude overestimation evident in

Figure 37. We also see fairly good agreement between the spike model and

our data in all other bins, even mirroring the slight upward trend in data at

lower probabilities. In our toy model we added spikes to 0.01% of the events,

or 1 in 10- 4 events. We see that this is actually an order of magnitude higher

than the rate of rare events we see in the data so our spike model actually

matches the data very well. There are 198 events in the low bin of Figure 38,

which implies that virtually every event with a spike is being detected as a

rare event. This suggests that we are very sensitive to spikes of around 20

particles. Furthermore, in Figure 37 we can see that the rate of events in the

spike model with X2 > 3.2 is much greater than that observed in data, so if

there are spikes in data of around 20 particles, we would actually expect a

slightly more extended tail than we see. Based on this, we can conclude that

we are sensitive to spikes of slightly less than 20 particles in data.

The number of rare events found is a small enough number to enable an

event by event analysis of the rare events, which we carry out to determine if

there are additional exclusions we can make or additional conclusions about

the nature of the events. Looking at the raw detector output for these events

it is immediately apparent that for some events there are simple detector

malfunctions that influence the output. In one of the events, for example,

the negative rings failed to record any hits. An example event display for

this type of event is included in the appendix in Figure 39. In total, there

are 2 events which suffer from this blatant detector failure.

While we will explore other detector effects which might cause these rare

events, these obvious failures are the only ones which we can exclude to a

high degree of certainty. Both of the detector failure events had x2 >> 3

A. MottResults
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Figure 38: Probability distribution for data compared to that for the spike

model

so, excluding these events, we have 26 rare events, which leads to an excess

rate of rare events:

(1.97 ± 0.4(stat) ± O.l(sys)) x 10-5 rare events
event

We have been quite conservative here in our choice of which events to elim-

inate, and our estimation of the baseline rate, so we expect this rate to be

an overestimation. We are looking for an upper bound on the actual rate,

so this is our final result, but it is also interesting to take a brief look at one

way we could be more aggressive in this rate.

One type of event, which shows up often in the rare events signal, is an



event which has individual pad subdetectors with high signal in the rings.

These events are characterized by having every pad in the subdetector hit,

while other pads show only mild or no enhanced signal. The hit merging

routine uses a dead channel map to normalize the signal in a pad detector

based on the energy value of unhit pads. It is possible that, if there are no

unhit pads, the dead channel correction does not work, which could lead to

a deviation which has no physical significance. An example of the readout in

this type of event is found in the appendix in Figure 40. We cannot, however,

determine that these events are actual malfunctions with the same level of

rigor as the clear failures, so we do not remove these events from the final

rate calculation. There are 6 of these events in the rare events data set, so

if we could remove them, the excess rate of rare events would be reduced to

(1.49 ± 0.5(stat) ± 0.1(sys)) x 10- 5 rare events per event.

Finally, Figure 41 shows an event that has no detector malfunction or

subdetector pathology. This event does exhibit a spike in the rings, but

the problem of Figure 40 does not occur. This is the primary contribution

to the high X' value, but we also see some significant deviations in other

bins, especially around the positive boundary between the octagon and the

rings. This is the sort of event which could actually encode some interesting

phenomena, and is the type of event we are seeking in this analysis.
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6 Conclusion

This paper has endeavored to put an upper limit on the production of non-

statistically fluctuating events in the PHOBOS 0-3% central Au+Au data.

We have seen two examples of types of physical phenomena whose rate might

be constrained by this analysis, but there are surely many other interesting

and exotic ideas that could be tested with this analysis. It is not the pur-

pose of this paper to discuss the production rate of specific phenomena, but

rather to make a general statement about the production rate of a class of

phenomena.

The cuts used in this analysis were selected to balance removing non-

physical fluctuation with avoiding accidentally removing potential physics.

The event quality selections were left as lenient as possible, only removing

those events that belonged to known problems. The pileup removal was nec-

essarily a more subtle process, but was ultimately very successful in removing

events whose signatures strongly suggested that they were pileup. None of

these cuts were designed to specifically remove events with high x~ values,

only those which matched a well understood picture of what pileup should

look like.

The analysis chain was very successful in removing the large correlations

that exist in the data, evidenced by the close agreement between the data

and the random distribution. Somewhere in the analysis, however, a shift in

the mean of the output X2 distribution occured, made more perplexing by

the fact that it shifted the means of the toy model and the data in different

directions. It could be that the shift in the data is a real effect: some non-

global correlation actually shifts events more towards the mean. This would
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be a very surprising result, and it would require some reinterpretation of our

results, but there is nothing to suggest that the shift is, in fact, real. The

origin of this shift is not well understood but, when it is removed, the data

and toy agree exceptionally well with the random distribution.

Accepting this correction, we are able to arrive at two very important

conclusions about the data: that most of the events look like statistical

fluctuations about the mean, and a cutoff and rate for rare events. The

agreement between the data and the random distribution in the 0.3 < Vi <

1.8 region strongly indicates that most events in the dataset simply look

like statistical fluctuations about their mean. This effect is masked by the

existence of correlations in the data set, but once those are eliminated the

effect becomes obvious.

With this realization one is able to identify where the data begins to

deviate from the random distribution and then use that to establish a rate.

We see good agreement up until XV - 2.22, so we define this as the cutoff for

a rare event. We then eliminate events that have clear detector pathology,

and are able to come up with a value of the rate of rare events in the detector:

(1.97 ± 0.4(stat) ± 0.1(sys)) x 10- 5 rare events Our analysis with the spike

model overestimates this rate by an order of magnitude, which is very close

to the excess rate at which 20 particle spikes were added to the data. Based

on this, we can conclude that this analysis is sensitive to spikes of slightly

less than 20 hits.

This rate is a useful metric to test theories of phenomenology concerning

the PHOBOS detector and RHIC events in general. While this analysis is

not sensitive to all possible fluctuation events that may occur in the detector,

it is sensitive to a substantial fraction of potential events. It will also be
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very interesting to see how this value compares to the rate that might be

found at future experiments at the LHC, for example. A similar analysis for

other existing experiments might provide a very interesting trend for how

anomalous event production scales with center-of-mass energy.
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7 Appendix

7.1 Report Card Examples

Report cards are a combination of various single value parameters for the

event, the raw hit arrays for the octagon and rings, and portions of the

dN distribution from various detectors. Figures 39 to 41 show some report
d?

cards for a few events. The box on the top left contains information about

the energy measured by different detectors for the event. The top middle

box contains the vertex position as measured by different detectors. The

paddle vertex detection is often very different from the others, but if other

vertex positions disagree there is probably a problem that wasn't picked up

by the event selection for some reason. The final box contains the X' value

and some information about the time when the event occured.

The 2D plots show the raw hit array from the negative rings (left) the

octagon (center) and the positive rings (right). One can see the holes in the

octagon for the spectrometer and vertex in the center plot. The plots in

the bottom layer are the 0 integrals of these plots, the d distributions from

different detectors. On the right of the bottom row is the event plotted on

top of the mean -N for the corresponding vertex bin. In the very bottom row

in the center is a plot of the number of sigma that the event deviates from

the mean in units of the standard deviation.
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Figure 39: Report Card for a detector failure event. Notice that the negative
ring and several layers of the octagon failed to register any hits. There is no
physical reason for an event to look like this, so this is clearly a failure in the
readout system.
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Figure 40: Report Card for possible pad saturation. One notices the spike

in the event in the region 4.6 < r < 5.4 which is evident in the events .

The 7 - ¢ plot shows that 2 wafers are hit in every pad in this region. We

suspect that this may cause a problem with our subdetector normalization,
but we cannot rule out some physics explanation.
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Figure 41: A rare event which shows no obvious detector pathology. There is
a spike in the negative rings, but no obviously lit up subdetector indicating
a malfunction. This event could be a real non-statistical fluctuation.
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