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Abstract

In this thesis we present results of lattice simulations of Gross-Neveu fermions in 1+ 1
dimensions. We rederive the representation of N flavors of Wilson fermions in terms
of Ising spins on a 1 + 1 dimensional lattice from [1]. We reimplement the cluster
algorithm of [1] for N flavors of free fermions and verify it against exact monomer
densities in the free theory. In addition, we extend this algorithm to the interacting
case using the prescription outlined in [1] and produce results for fermion correlation
functions in the Gross-Neveu model using a cluster algorithm for the first time. To
analyze Gross-Neveu fermions at nonzero temperature, we develop an algorithm to
simulate fluctuating boundary conditions. We calculate the chiral condensate at
nonzero temperature using this algorithm and see evidence consistent with a phase
transition in the large N limit.
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Chapter 1

Introduction

1.1 Cluster Algorithms for Efficient Monte Carlo

Simulations

When studying systems with large numbers of degrees of freedom, it is useful to

treat these systems numerically on the computer, as it is often impossible to directly

compute the partition function,

Z= Z e-H (1.1.1)

states

where 0 is the inverse temperature and H is the energy of the system. Instead,

one can use Monte Carlo methods to randomly generate configurations of the sys-

tem which have a high Boltzmann weight. In this case the partition function can

be approximated as a suitably weighted sum over these randomly generated most

probable states. Since expectation values of thermodynamic quantities are integrals

over all possible states weighted by the Boltzmann distribution, we can also use these

methods to calculate values of physical observables.

As an example, consider the Ising model in two dimensions. The Ising model is

a collection of particles which lie on discrete lattice sites and which have a single

property called spin that can take on values +1 or -1. The energy of the system is



derived from each particle's interaction with its nearest neighbors. The Hamiltonian

for the Ising model is

H = -J sisj (1.1.2)
(ij)

where J > 0 is a constant, (ij) denotes nearest neighbor lattice sites, si is the value of

the spin at lattice site i, and si E {+1}. From this, we can see that adjacent particles

with the same spin contribute negatively to the energy of the system and those with

opposite spin contribute positively.

The order parameter for the Ising model is the magnetization

M = (1.1.3)

or the absolute value of the average spin per lattice site, where N is the total number

of particles. At T = 0, the lowest energy state is the state where all spins take on the

same value, and M = 1. Because there are two possible lowest energy states, one with

all spins taking on the value +1 and one with all spins taking on the value -1, the

global spin flip symmetry (si -- -si) of the Hamiltonian is spontaneously broken in

either of the two ground states. At very high temperature however, the equilibrium

state is a disordered state with M = 0. At a critical temperature Tc, the system

transitions from a state of spontaneously broken spin flip symmetry (characterized

by a nonzero magnetization) to a state where the symmetry is restored (and M = 0).

In order to study the properties of this phase transition using Monte Carlo techniques,

we would like to have a method to compute the average magnetization of the system

as a function of temperature.

For an Ising model with N particles, there are 2 N possible states, and thus it is

not practical to directly compute the average magnetization for this system. Instead,

we would like to do so using only the most probable configurations, or those config-

urations where the Helmholtz free energy (F = - In Z) is minimized. The simplest

algorithms to randomly generate most probable configurations are local updating al-

gorithms. One example of this type of algorithm is the Metropolis algorithm. During



one iteration of the algorithm, the program visits each lattice site and calculates

whether the energy is made smaller if the spin at that lattice point is flipped. If

AH < 0, the spin is flipped with probability 1, and if not, the spin is flipped with

probability proportional to e - OAH where 3 is the inverse temperature. The system

evolves through computer time toward an equilibrium configuration. The drawback

of the Metropolis algorithm and similar algorithms is they have a high autocorrelation

times. That is, the number of iterations of the algorithm over which configurations

are correlated is significant.

Cluster algorithms provide dramatic improvements on these local updating algo-

rithms. Instead of flipping one spin at a time, cluster algorithms flip whole groups of

lattice sites at once. Among the earliest cluster algorithms that were developed are

those of Swendsen and Wang for the two dimensional Potts model [3] and Wolff for

O(n) models in two dimensions [4]. A sketch of a cluster algorithm of this type for

the case of the Ising model is as follows.

1. Choose a random spin on the lattice to be the first spin in a cluster.

2. Visit each of its nearest neightbors, and if the value of an adjacent spin is the

same, then include it in the cluster with probability p = 1- e-2 3. If the adjacent

point has opposite spin, do not include it in the cluster.

3. Visit the nearest neighbors of each of the newly added spins and continue grow-

ing the cluster in this way until no more spins are added.

4. Flip the value of all of the spins in the cluster.

These steps will generate one new lattice configuration. Because many spins are

updated at once, algorithms of this type greatly decrease relaxation times and auto-

correlations.

When simulating phase transitions, we run into difficulty because of long correla-

tion times at and around the critical point. Cluster algorithms have the advantage

of greatly reducing the effect of critical slowing down. This allows simulations at

increased lattice sizes, which leads to the reduction of finite-size effects. In this paper



we develop and implement a cluster algorithm to study the properties of Gross-Neveu

model fermions.

1.2 The Gross-Neveu Model

The Gross-Neveu model is a theory of relativistic fermions in 1 + 1 dimensions (one

space and one time dimension) with a four-fermion interaction. This model is both

renormalizable and asymptotically free, and because of its simplicity was created to

study the properties of more complex asymptotically free theories, such as QCD. The

original action described by Gross and Neveu [5] is

S = d2x i ()+ 1 (()(X))2 (1.2.1)

where V is a massless fermion field with two spinor indices and N flavor indices. This

action is invariant under the chiral transformation

0 -5#. (1.2.2)

Spontaneous symmetry breaking of this chiral symmetry results in a nonzero value

of the fermion condensate (4'4') and causes the generation of a fermion mass, which

was described in [5].

For the computational tools we develop in this paper, it will be most convenient

to write the Gross-Neveu action in terms of Majorana fermions, as presented in [1]. A

Majorana fermion, which is its own antiparticle, will be represented by a Grassman-

valued field (i with two spin components. One Dirac fermion can be written as a

combination of two species of Majorana fermions as

1
= I( 1 +iK2) (1.2.3)

1

= v(1 - i 2) T C. (1.2.4)

From this, we can see that a theory with N flavors of Dirac fermions corresponds to



a theory with 2N flavors of Majorana fermions.

We will use Wilson's method for representing fermions on a lattice, which corre-

sponds to replacing the mass term

mfm(x)O(x) -+ mO(x)(x) - 20, (x)8,0/(x). (1.2.5)

The Wilson discretization of equation (1.2.1) where we set r = 1 (as in [1]) written

in terms of Majorana fermions is given by

S = E Cc(,c , + m - -0)- ( Tc)2] (1.2.6)

where 0, "*, and 0 are the forward, backward, and symmetric discrete derivatives on

the lattice which act as

(Ta* = (T(x + :) - (T(x) (1.2.7)

8,r = (( + A) + ((x - 4) - 2()

and C is an antisymmetric matrix such that Cy,C - 1 = -y, . The Wilson term

(proportional to 0*0) breaks the discrete chiral symmetry ( --* -5 of the massless

theory. This symmetry is restored in the continuum limit at a critical nonzero value

of the mass parameter m, which will cancel the chiral symmetry breaking effect of

the Wilson term, restoring the massless form of the theory.

The partition function for one free Majorana fermion on a lattice with definite

boundary conditions e is

Z[m] = D eCSfree = Pf [C( , + m - 0*)] (1.2.8)

where Sfree is the action from equation (1.2.1) with g = 0 and Pf denotes the pfaffian.

The partition function for N flavors of free Majorana fermions is just (Z [m])N. If we

consider the mass parameter as x-dependent, m = m(x), then we can write the full



partition function for the Gross-Neveu model with N flavors of fermions in terms of

derivatives with respect to m(x) acting on the N-flavor free partition function [1] as

ZGN = De - s = exp {- (2 (Z [m]) N . (1.2.9)

There are four possibilities for the c of equation (1.2.8). On a two dimensional lattice

with T lattice sites in the time direction and L lattice sites in the space direction,

thepossible choices of boundary condition are e = (ET, EL) with CT, EL E {0, 1}, where

0 indicates periodic boundary conditions and 1 indicates antiperiodic boundary con-

ditions.

1.3 Fermion Phase Transitions in 1+1 Dimensions

The properties of Gross-Neveu fermions at nonzero temperature have been studied

in [6], [7], and [81. What has been found is that at zero temperature, spontaneous

symmetry breaking of the chiral symmetry causes the generation of a nonzero fermion

mass. If we rewrite equation (1.2.1) as

S= d2X[i 2 - a2 1 (1.3.1)

where a is a scalar field, then at zero temperature, a acquires a nonzero vacuum

expectation value, (a) = a* and the a/ term can be interpreted as a fermion mass

term. The action of equation (1.3.1) leads to the same correlation functions of the

fermion fields as equation (1.2.1).

In the limit of an infinite number of flavors of fermions, it is found that at some

nonzero critical temperature, T., the chiral symmetry is restored and the mass van-

ishes continuously but nonanalytically through a second order phase transition. How-

ever, for any finite N, the chiral symmetry is restored at any nonzero T due to the

condensation of kinks and antikinks along the space dimension [6]. At low T, the

potential of equation (1.3.1) has two symmetric minima at +a*(T). The kinks and



antikinks are alternating segments of +a*(T) and -a*(T). Because of the alterna-

tion of these segments, (a) = 0. This means that there is only spontaneous symmetry

breaking at T = 0 for a finite number of flavors.

In Chapter 2 we will derive two representations of fermions on the lattice-first, a

loop representation originally derived by Gattringer in [2], and then a representation

of Ising spins developed from the loop representation by Wolff [1]. In Chapter 3

we discuss a cluster algorithm for simulating free fermions in 1 + 1 dimensions and

present results for monomer densities for free fermions which are in agreement with

exact values. We discuss the Gross-Neveu model in Chapter 4. We present a modified

cluster algorithm in order to simulate interacting fermions and obtain results for the

Gross-Neveu model using a cluster algorithm for the first time. We calculate fermion

correlation functions at zero temperature in different boundary conditions. In Chapter

5 we study the Gross-Neveu model at nonzero temperature. We present an original

algorithm for simulating fermions with fluctuating spin boundary conditions, which is

necessary in order to simulate fermions at nonzero temperature. We describe results

for Gross-Neveu fermions at nonzero temperature for the first time using a cluster

algorithm, and demonstrate a fermion phase transition for large N. We discuss our

conclusions in Chapter 6.
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Chapter 2

Representing Fermions on a

Computer

It is not possible to directly sample the action of equation (1.2.6) because fermionic

fields are Grassman-valued. This means that we cannot sample lattice configura-

tions of Grassman numbers because we do not have an efficient way of implementing

Grassman numbers on a computer. In order to simulate fermions using Monte Carlo

methods, we must first come up with a way of representing field configurations on the

computer. One way of doing this is through a loop representation first described by

Gattringer in [2]. He describes an equivalence between the two-dimensional Wilson

fermion determinant and a sum over configurations of dimers on a lattice which form

closed loops. In § 2.1 of this chapter, we rederive Gattringer's loop representation of

the Gross-Neveu model. In § 2.2 we show the equivalence of this loop representation

to a system of Ising spins on a lattice. In § 2.3 we discuss the extension of this spin

representation to include negative values of the Gross-Neveu mass parameter. The

derivations presented in this chapter follow § 3 of [1].



2.1 Rederivation of the Fermion Loop Represen-

tation

Here we will rederive the loop representation of [2] in the context of Majorana fermions

with definite boundary conditions. Initially, we will ignore the four-fermion interac-

tion term in the Gross-Neveu model and only consider the action for a free Majorana

fermion in 1+1 dimensions:

S = (x)( ()C((x) - (x)CP(4)((x + 4) (2.1.1)
X X41

where O(x) = 2+m(x) and P(n) = -(1-n,y,) for lattice unit vectors n = +±. P(n)

is a projection operator formed from a combination of the discrete lattice derivatives

of equation (1.2.6) and has the property

~T (x)CP(A)((x + A) = (T(x + 4)CP(-4)((x). (2.1.2)

In order to calculate observable quantities, we would like to evaluate the partition

function

Z [] =/ De -s  (2.1.3)

where E specifies a boundary condition for the ( particles. Plugging equation (2.1.1)

into equation (2.1.3), we get

Z [q] = Dexp [ (x)( T(X)C((x) + ( (x)CP(A)(x + ) (2.1.4)

We can expand the Boltzmann factor to O( 2) to obtain

Z [] = J 1DF (1 + i(x)2(x)) 1(1 + T(x)CP(A)(x + 4)) (2.1.5)

where we have used the phase convention: -ITC( = (1(2. Now we reorganize this

equation by introducing variables k(x, p) which can take on values 0 or 1 and summing



over all possible configurations of k(x, p) to obtain

Z[0] = J D f(+ (X)2(X)) (l( X)CP()( + )1k(x. (2.1.6)
{k(x,p)} x X,I

These variables can be interpreted as dimers which lie on the links between lattice

sites. If k(x, p) = 1, there is a dimer on the link between site x and site x + ft, and if

k(x, p) = 0, there is none.

At each lattice site, there are only two possible cases which will contribute a

nonzero factor to the integral in equation (2.1.6). The first case is that there are

no dimers on any of the four links adjacent to x (k(x, p) = 0 for p = (±1, 0) and

1L = (0, +1)). In this case the relevant integral is just

J D(1 + 01(x) 2(x)) (2.1.7)

which contributes a factor of O(x) to the overall weight of the configuration. These

types of sites, with no adjacent links, are called monomers. Because of the properties

of Grassman variables, the only other possible case is that there are two adjacent

links at a particular site. Thus, there are seven types of allowed dimer configurations

at a particular site, which are shown in Figure 2-1 (the second configuration shown

has weight w2 = 0). When we consider tiling a lattice with these types of dimer

configurations, it is apparent that the only possible lattice configurations are closed

loops of dimers which do not intersect or backtrack.

We want to calculate the Boltzmann weight of one of these dimer loops. Consider

a loop which traverses lattice sites (x1, x2, ... , x 1), each consecutive pair of which differs

by one lattice unit vector, i. The Boltzmann weight of this loop is given by

I = J D [ (xi)CP(h)(X2)] [T (x 2)CP(fi2)(x3)]... [T()CP(ft)(xl)]

(2.1.8)

The result of this integral is

I = -tr[P(h1)P( i)P(n2)...P(iz)]. (2.1.9)



i I I--f-- -I I -

I , W3 W4I I

I 2 *

Figure 2-1: Possible configurations of dimers at each lattice site and their weights.
w1 = ¢(x), w 2 = 0, wa = w4 = 1, w5  6 = 7 = = . The only allowed

possibilities are either two dimers or zero dimers (a monomer) at a particular lattice
site. This figure is taken from [2].

which can be obtained by writing the projection operators in terms of their eigen-

vectors as in [1]. The Boltzmann weight of the loop in terms of Nc, the number of

corners it contains, and v = 0, ±1, the number of complete rotations it makes, is

I = (-1)+2 - 
2 (2.1.10)

So if a loop doesn't make a full rotation (v = 0), but instead winds around the lattice

then there is an extra minus sign in the weight.

Because loops can wind around the torus, we can define distinct homotopy classes

of loops. Closed loops which, do not wind around the lattice can be continuously

reduced to a point, and thus are in the trivial homotopy class. If two loops wind

around the torus in the same direction, they are also reducible to a point, and this

type of configuration is still in the trivial homotopy class. However, configurations

with odd numbers of loops winding in the same direction belong to distinct homotopy

classes. Because loops can wind either trivially or nontrivally around the torus in each



of the two directions (time and space), there are four distinct homotopy classes of

loops: £oo, Coi, £10, and L11, where 0 indicates an even number of loops winding in

one direction (the trivial class) and 1 indicates an odd number of loops winding in one

direction. Examples of configurations of loops from each homotopy class are shown

in Figure 2-2. The purpose of the + and - signs in the figure will be explained in

the next section.

+ + + + + + + + +

+ + + + + - + +

+++ ++ -+++

+++++-++++

+ + + + + + + - -_ +

++++---+4-4-

+ +

+ + +
4-+

- - -L- - - - -

S+ + + + + +

+ + + +++

+--+--- -

+ ++ +

+ - -1+

+ ++
++ +

+-+

Figure 2-2: Configurations of loops in each of the four homotopy classes: £o0, £10, £o,
and £11, where the time direction runs left to right. The + and - signs are the values
of spins on the dual lattice. Figure taken from [1].

We can use equation (2.1.10) to define the Boltzmann weight p[k] of a particular

configuration {k} of dimers as the product over the weights of each individual lattice

4-++4-

++ + + +++++ - - 4--+-+ -



site.

p[k] = w(k, x) (2.1.11)

where w(k, x) is the weight of site x in the configuration {k} of dimers and

O(x) if x contains a monomer

1 if 2 dimers at x separated by 7r
w(k,x) - (2.1.12)

1/V if 2 dimers at x separated by r/2

0 otherwise.

So far we have not taken homotopy classes into consideration. We define four partition

functions-one for each homotopy class-by summing over all possible configurations

of dimers within each class:

ZJ[ = p[k] (2.1.13)
{k(x,tp)}El'j

where i,j E {0, 1} indicate whether there exists a nontrivial loop winding in each

direction. From equation (2.1.10) we see that the weight of a loop is positive for all

configurations in Loo.

The following connections between the dimer partition functions and the fermion

partition functions hold, which are described in greater detail in [1]:

4Z4o[k] = +Z 0[0] + Z 0o[] + Z l [0] + Z 1

4Z10[] Z 00 ["] + Z o[¢] - Z1 [] + Z '1[]
(2.1.14)

4ZO1 [] = -ZEO[] - Z o[] + Zl [0] + Z 1 []

4Z [] = -Z °[ ] + Z°[¢] + Z1[ - Z 1[].

These relationships can be inverted to obtain partition functions for the fermions with

definite boundary conditions in terms of the different classes of dimer partition func-

tions. For example, the partition function for fermions with antiperiodic boundary



conditions in time and periodic boundary conditions in space is

Zj0[o] = +Zko [] + Zio[] - Z[01[] + Z[]. (2.1.15)

The negative sign in front of Zo1[] means we have to sum contributions of negative

weights and effectively amounts to the subtraction of statistics.

2.2 Wolff's Spin Representation

Here we sketch out the transformation of the dimer representation into a represen-

tation of lattices of Ising spins. This is the crucial aspect for the development of

a Swendsen and Wang style cluster algorithm. The general idea is to conceive the

dimer loops as boundaries of domains of up and down Ising spins which lie on the

dual lattice. We can make this mathematically concrete by putting a field s(x) of

spins on the dual lattice and writing

k(x, p)= 1 if s(x)s(x + A) = -1 (2.2.1)
0 if s(x)s(x + A) = +1

where {x} are the sites of the dual lattice, located at the centers of the plaquettes

of the original lattice, s(_) is the value of the spin at x, and A is a unit vector on

the dual lattice. A link on the original lattice (x, i) is dual to the link (_, A) which

crosses it. So if two adjacent spins are of the opposite sign, there is a dimer lying

between them on the corresponding link of the original lattice; otherwise the spins

are not separated by a dimer. An example of this is shown in Figure 2-3.

For each configuration of dimers, there are two possible configurations of spins on

the dual lattice which obey equation (2.2.1). These two configurations differ simply

by a global spin flip because, when populating the dual lattice with spins, there is a

freedom in choosing the sign of the first spin. Examples of spins lying on the dual

lattice can be seen in Figure 2-2.

The Boltzmann weight of a particular configuration of spins is a product over



o 0 0 0

X+ +

A
X , X+o

O C I 0 O= original
X lattice

* = dual 0
-- lattice

0 0 0 0

Figure 2-3: Diagram of the relationship between coordinates on the original lattice
and dual lattice. A link exists on the original lattice between spins of opposite signs
on the dual lattice. Figure taken and modified from [1].

all the plaquettes of the dual lattice, with a contribution w(sl, s 2, S3, S4) from each

plaquette. If we label the spins around a plaquette as

(84 83

S1 S2

then we see that out of the 16 possible spin configurations, 2 are not allowed.

( ) and

cannot exist because these correspond to intersecting loops on the original lattice.

Therefore, though the spin fields s(x) are composed of Ising-type spins, the set of

allowed configurations is not equivalent to that of the Ising model.

We can define the weight of a plaquette on the spin lattice in terms of the relative

signs of adjacent spins around the plaquette and unknown coefficients p, q, and r as

w(s, S2, S3, 84) = P[1262363441 L[23461423 +[114212363234+4143

(2.2.2)



where 6bi = (1 + sis) are bonds. Since the plaquettes on the dual lattice corre-

spond to the lattice points on the original lattice of dimers, we need the weights of

the plaquettes on the spin lattice to match the weights of the lattice sites in the

dimer representation. By evaluating the delta functions for the different possible

configurations of spins around a plaquette (as shown in Table 2.1), we find that

O(x) = 4p + 2q + 4r

= 2p+r

1 = 2p + q.

(2.2.3)

Solving for p, q, and r, we obtain the dependence of these coefficients on the mass

parameter:

1 r (2.2.4)
P- 2V 2

q=1- +r.

S1 82 83 S4 W(S 1, 82,S 3S 84)

+(-) +(-) +(-) +(-) 4p + 2q+4r = (x)

+(-) (-) -(+) 2p + r =1

+(-)-(+) +(-) +(-) 2p + r =

-(+) +(-) +(-) +(-) 2p + r -

+(-) -(+) -(+) +(-) 2p + q = 1

+(-) +(-) -(+) -(+) 2p + q = 1

+(-) -(+) +(-) -(+) 0

Table 2.1: Weights of the 16 possible configurations of spins around a plaquette,
where we have used the fact that w(sl, s2, 83, S4) = W(-Sl, -82, -S3, -84).

We can now define four spin partition functions in definite boundary conditions

as

Z= E H w(si, 2 , 83 , S 4 ) (2.2.5)

{s() } plaq

where E is the boundary condition for spins on the dual lattice. In order to relate

these spin partition functions to the dimer partition functions, Z(, we must realize



that a nontrivial loop configuration in the k-representation in one direction forces

antiperiodic spin boundary conditions in the s-representation in the corresponding

orthogonal direction. This means that the following relationships between partition

functions hold

zoo ZOO Z0 = Z Z Z1o  Z = Z11 (2.2.6)_ s  
k' 2 s  

k 2 S 2 s

where the 1 enters due to global spin flip symmetry. Note that for boundary conditions

E = (0, 1) and E = (1, 0), the antiperiodic direction is opposite in Zk and Z.

2.3 Negative Mass

The three coefficients of equation (2.2.4) are positive for masses such that 0 < m <

2V/2. This is sufficient for the free theory since, in this case, m, = 0. However, for

the theory of interacting fermions, it is necessary to allow for negative mass since

m < 0 due to additive renormalization. The current bond probabilities p, q, r given

in equation (2.2.4) restrict the algorithm we will use to m > 0 since otherwise r < 0

for negative m. In the negative mass case, we will need to use a new decomposition

of the plaquette interaction by replacing the r term with

S[614 + 21623 + 632634 + 641643 + 612614 + 621623 + 632634 + 6416431 (2.3.1)

where 6iy - 1 - bij are antibonds, and keeping the other two terms the same, but

making the substitutions p -+ jP and q -+ q. Setting the new weight and the old

weight equal, we get the relations

r = -r

+ i- = p (2.3.2)

=q



and plugging in the results of equation (2.2.4), we get the solution

- (- 2) = -m4

1 (2.3.3)
2,2 2

We will need to use these alternate values when doing simulations with negative bare

masses. The decomposition of equation (2.3.1) includes antibonds, which connect

spins of opposite signs. This means that when using the cluster algorithm of the next

chapter, if m < 0, clusters formed from these antibonds can include spins of both

signs.
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Chapter 3

A Cluster Algorithm for

Simulating Free Fermions

We have seen that free fermions in 1 + 1 dimensions can be represented as a system

of Ising spins on a two dimensional latice. In order to calculate physical observables,

we need a method to efficiently generate random lattice configurations. Since these

fermions can be represented as Ising spins, we expect that it is possible to develop a

method similar to the cluster algorithms for the Ising model of [3] and [4]. Cluster

algorithms are much more efficient than local update algorithms. Here we develop a

cluster algorithm for simulating free fermions in the spin representation. This algo-

rithm constructs clusters of spins in order to generate independent spin configurations

by using two Monte Carlo sampling techniques. In § 3.1, we describe the algorithm for

simulating N flavors of free fermions on a lattice with definite spin boundary condi-

tions. In § 3.2 we discuss the calculation of exact monomer densities for free fermions,

and in § 3.3 we compare these exact calculations with free fermion simulations using

the cluster algorithm of § 3.1.

3.1 Description of the Algorithm

We would like to sample configurations of spins from the partition function Z', for a

fixed value of e. We will update spin configurations by constructing clusters of spins



and flipping the value of the spins in these clusters with some probability. As a first

step, we will rewrite the weight of a single plaquette as

10

W(s 1,82 S2 3 S 4 ) i E Ai(1,82, S3 S4 ) (3.1.1)
i=1

where Pi E {p, q, r} and the A are the 10 delta function terms in equation (2.2.2).

These Ai can be conceived as configuratons of bonds which lie on the links of the

lattice of Ising spins. If 6ij = 1, there is a bond between si and sj, otherwise, there is

no bond.

In order to construct clusters of spins, we will first sample the Ais. To do this,

we will restructure the partition function as follows. Introduce bond variables b(x)

which take on the values {1, ..., 10} and represent the 10 possible configurations of

bonds around a single plaquette (see Table 3.1). Sum over all possible configurations

of these bond variables on the original lattice in addition to all possible configurations

spins on the dual lattice to get

ZS = : I Pb(x)Ab(x)(sl, S2, S3, S4). (3.1.2)
{b(x),s(x)} plaq

With the partition function now written this way, we can sample both the bond

variables and the spins. These three steps are required to generate one new spin

b(x) Pb(x) Ab()

1 p 612
2 p 623
3 p 634
4 p 641

5 q 612634

6 q 614623

7 r 612614

8 r 621623

9 r 632634

10 r 641643

Table 3.1: Values of bond probabilities Pi and Ai for bond variables b(x).



configuration.

1. Choose a new configuration of bond variables, {b(x)}, at fixed spins by a local

heatbath procedure. That is, sweep through the lattice and at each site x,

choose a new b(x) e {1, ..., 10} with probability

p(b(x)) Pb(x) Ab(x)(s 1, 82, 83, 84) (313)p(b()) 10(3.1.3)

SPiAi(s 1 2, S3, S4)
i=1

Note that some values for b(x) may have zero probability because Ai(sl, 82, s2, 3,) =

0 for some i and some configurations of four spins. For example, for sl = s2 =

s3 = + and s4 = -, the only possible values for b(x) with nonzero probability

are b(x) = 1, 2, or 8 because A 1 , A 2, and As are the only nonzero delta function

terms.

2. Construct clusters of spins based on this new bond configuration. The set of

bond variables {b(x)} maps out a configuration of bonds lying on links between

spins. This bond configuration completely specifies the set of clusters. Two

spins which are joined by a bond belong to the same cluster.

3. For each cluster, either flip all of the spins in the cluster or flip none of them.

Choose each option with probability 1/2. This results in the selection of one of

the possible equally weighted configurations of spins.

Performing these steps constitutes one iteration of the algorithm, after which we have

sampled one new configuration of spins.

Simulating multiple flavors of fermions is trivial in the case of the free theory. Each

flavor is represented by an Ising lattice of spins, meaning that for N flavors, there are

N spin values at each lattice point. Each of the N lattices is updated independently

according to the steps described above, and the update procedure for one lattice is

not affected by the values of the spins in the other N - 1 lattices. This will no longer

be true in the interacting theroy, and we will return to this discussion in Chapter



4. After each lattice has been updated, we have sampled one new configuration of

(Z[])N.

If we want to sample configurations of the spin partition function with boundary

conditions other than E = (0, 0), we have to modify the algorithm such that spins

which lie on an edge with antiperiodic boundary conditions see each other as the

opposite sign. This only affects the weights of plaquettes along an antiperiodic edge,

which should be adjusted for when computing bond probabilities.

3.2 Exact Monomer Densities for Free Fermions

To test the effectiveness of our algorithm, we would like to compute an observable

which can be calculated exactly. One such observable we can calculate is the average

monomer density (K). K(x) = 1 if there is a monomer at x and 0 otherwise. In the

spin representation, this is just

K(x) = 6151+S2+S3+841,4 (3.2.1)

which evaluates to 1 only if the four spins around x are the same. (K) can be

computed exactly for free fermions in any combination of boundary conditions using

the methods described in [1]. In the free theory (K) is directly proportional to the

more interesting observable, the fermion condensate (V/4), or (ITC() in terms of

Majorana fermions, as

(K) = -- ( TC() (3.2.2)
2

where = 2 + m. Monomer densities ar a good starting point to verify the algorithm

because they are easy to compute exactly and because, as we move to the interacting

theory, we will want to compute ( TC(). In the next section, we discuss calculations

of (K) in fermion simulations.



Boundary Conditions Lattice Size (K) Tint Exact Value

8 x 8 0.80733(32) 1.58(2) 0.80738

E = (0, 0) 16 x 16 0.78882(21) 1.92(2) 0.78914
32 x 32 0.77950(13) 2.36(3) 0.77951

8 x 8 0.66989(26) 1.75(2) 0.66966
E = (0, 1) 16 x 16 0.71786(15) 1.61(2) 0.71808

32 x 32 0.74367(9) 1.81(2) 0.74378
8 x 8 0.61263(18) 1.38(1) 0.61277

E = (1, 1) 16 x 16 0.69264(12) 1.39(1) 0.69272
32 x 32 0.73151(8) 1.59(2) 0.73146

Table 3.2: The monomer density and integrated autocorrelation time computed for
three square lattice sizes and three boundary conditions using the cluster algorithm.
The results are very close to the exact values.

3.3 Simulations of Free Fermions

(K) was computed using the cluster algorithm for three different lattice sizes and

in three different boundary conditions (E = (1,0) is equivalent to e = (0, 1) on a

square lattice). The results of these simulations are shown in Table 3.2. The exact

values are within errors of the results. Each run had 6 x 105 iterations, with a small

fraction discarded to allow for equilibration. The integrated autocorrelation time Tint

measures the average number of iterations over which configurations are correlated

and is given by
N-1

Tint = 2 (t) (3.3.1)
int-- --- E (0)

t=1

where

F(t) = (aiai+t) - (ai) (ai+t) (3.3.2)

is the connected correlation of measurements ai that are t computer time steps apart,

and F(0) is just the variance of the measurements. With this definition of Tint, the

error a on the measurement is given by

2 2 Tint (0). (3.3.3)
N
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Values for (K), errors, and Tint were computed using the methods described in [9].

Both (K) and Tint are consistent with the results obtained by Wolff in [1]. The run

time scaled approximately as the order of the size of the lattice. Everything was

computed on the order of minutes using a laptop.

In general, the autocorrelation time slightly increases with increasing lattice size.

This algorithm is much more efficient than local algorithms, which have autocorrela-

tions which scale with the lattice volume [1]. In addition, errors on the value of (K)

decrease with increasing lattice size roughly as 1/TL, adjusted by the slightly increas-

ing autocorrelation time. Tint is lower for simulations with increasingly antiperiodic

boundary conditions, as found in [1].



Chapter 4

Simulations of Interacting

Fermions

Now that it is possible to simulate free fermions on a two dimensional lattice using

a cluster algorithm with efficiency much greater than that of known local updating

algorithms, it would be much more interesting to apply this technique to the interact-

ing theory, where correlation functions cannot be calculated exactly. In this chapter,

we discuss the application of the cluster algorithm of Chapter 3 to the Gross-Neveu

model. In § 4.1, we describe how to modify the algorithm to simulate N flavors of

interacting fermions. § 4.2 discusses how to calculate fermion correlation functions

using this algorithm. We present the first results of simulations of the Gross-Neveu

model using a cluster algorithm in § 4.3 (for doubly periodic spin boundary condi-

tions) and in § 4.4 (for singly and doubly antiperiodic boundary conditions).

4.1 Modification of the Cluster Algorithm

The algorithm described in § 3.1 must be modified in order to simulate N flavors of

interacting fermions. To model N flavors of interacting fermions, we will use N Ising

lattices (one for each fermion). This means that at each site there are N spins (one

from each lattice.) The total weight of a particular configuration is a product over

the weights of the plaquettes of each of the N lattices. The weights of plaquettes that



do not contain monomers are numerical constants and so are unchanged. However,

the monomer weights are modified due to the interactions between fermions. w(x) =

O(x) = 2 + m(x) is replaced by an effective monomer weight O,(x) which depends on

the total number of monomers at site x and the value of the coupling, g. The inclusion

of these effective monomer weights is the only difference between the algorithm for

the free theory and the algorithm for the Gross-Neveu model [1].

We can calculate these effective monomer weights using equation (1.2.9). If there

are n monomers at site x, then the weight of site x comes from the interactions of all

the monomers at x and is given by

c(n, m, g) = exp g 2  (2 +m)= 2J!(n 2j): 2(2 + m)n-2. (4.1.1)
j=0

This means that we can replace O(x) with the effective monomer weight

S= c((x) + 1, m, g)() =(4.1.2)c(i(x)',m,g)

where i(x) = number of monomers at site x in the N - 1 lattices not currently being

updated. The first few effective monomer weight values are

o0(x) = 2 + m; l1(x) = 2+m + 2 2(x) = 2 + + 2g mm  )  (4.1.3)

In one iteration of the algorithm, each spin lattice is updated independently. The

effective mass only enters the update routine in the step where the bond variables are

updated through the coefficients p, q, and r, which depend on the value of ¢.

4.2 Calculation of Correlation Functions

We would like to use our algorithm to generate most probable configurations of the

Gross-Neveu partition function in order to calculate fermion correlation functions.

We can test the correctness of our algorithm by computing these observables and

comparing them to exact results at g = 0, and to results calculated by other methods



for g =f 0. Here we will derive equations for correlation functions in the spin repre-

sentation. The observables we will discuss are the chiral condensate and the mass

susceptibility, which can be written as derivatives of the partition function.

Define X, the chiral condensate, as

1 T In ZS
=(1 lnZ) = (4.2.1)

V 1m

where V = TL is the total number of lattice sites. The spin partition function from

equation (2.2.5) can be written as

Z = ds w(x) (4.2.2)
x

where f ds indicates a summation over all possible spin configurations and w(x) is

the weight of the plaquette at x, taking into account the effective monomer weights

from equation (4.1.2). Plugging equation (4.2.2) into equation (4.2.1), we get

1 1 aZ 1 1 w(x)
--,ds (Uw(x') )(4.2.3)

V Z Om V Z Xm *

We can rearrange this by multiplying and dividing the integrand by w(x) to give

x= Jds Z(x) w(x). (4.2.4)
V Z w (x) am

The equation is now in the form X - -. f ds6 )7 w(x), so we must sample the
x

operator

1 w(x) (4.2.5)
Z.w (X) am

for each spin configuration and average over these independently generated measure-

ments of 0 to compute a value for X.

The mass susceptibility Cx is a measure of how the chiral condensate changes

with an infinitesimal change in the mass parameter and can be written as the second



derivative of the partition function

ax 1 a 2 In Z
CX m V Om2 (4.2.6)

Following the same steps we used to compute the equation for X in the spin repre-

sentation, we get

V 1 1-± d 1 [w (x) (x)=m V (z) am

1 1 1
d 2w() w(x) I

V Z ds Z W() om2 w(x)2

Therefore, in order to compute Cx we have to sample the operator

w(x) 2

E ( 1 a2w(x) 1

+ w(x) iM2 W(x) 2

in each spin configuration and also use our calculated result for x. The derivatives

of w(x) which appear in equations (4.2.5) and (4.2.8) are only nonzero if there is

a monomer at x and can be computed by taking derivatives of equation (4.1.2).

Calculations of X and Cx for the Gross-Neveu model are discussed in the next two

sections.

4.3 Results for the Gross-Neveu Model

The results presented in this section were all computed with c = (0, 0) spin boundary

conditions with all spins pointing in the same direction as an initial condition. We

begin with further results for the free case. The chiral condensate was calculated

as a function of the mass parameter m using the cluster algorithm of § 4.1 and the

prescription of § 4.2 for two free Majorana fermions for 8 x 8 and 16 x 16 square

Cx

w())2)

(4.2.7)

Sam ()
-5--)

(4.2.8)
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Figure 4-1: Chiral condensate of two free Majorana fermions (g2 = 0) as a function
of the mass parameter computed for two square lattice sizes.

lattices and is shown in Figure 4-1. Similarly, the mass susceptibility was computed

as a function of m for two free Majorana fermions and is shown in Figure 4-2. We

used O(104) measurements of observables per data point, and could produce one

curve in on the order of an hour using a laptop. The statistical errors for all of the

measurements in this section were computed from integrated autocorrelation times

using the methods of [9]. We see a peak in the magnitude of the susceptibility that

moves to the right as the lattice size increases. This peak diverges logarithmically

with L 2 at m = 0, as calculated in [10] and [11] for lattice sizes up to 5122 and 7002.

Similar plots were produced of X and Cx for one Dirac fermion using a loop

algorithm in [11]. The results we obtain for two Majorana fermions are quantitatively

equivalent to the results obtained for one Dirac fermion, as expected. Therefore, we

reconfirm that the cluster algorithm is working properly for the the free theory, and

we conclude that our methods for computing X and Cx in the spin representation

are correct. Though these results were obtained on the order of minutes using a
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Figure 4-2: Mass susceptibility of two free Majorana fermions (g2 = 0) as a function
of the mass parameter computed for two square lattice sizes.

laptop, and it is well within our capability to extend these calculations to larger

lattice sizes, we do not feel the need to do so, as we expect to obtain results which

are quantitatively equivalent to those presented in [11]. For the two lattice sizes we

did explore, we observe that for m >-- 0.2, the values of X and Cx no longer differ.

The differences at m <- 0.2 are due to effects from the finite size of the lattice.

For the interacting theory, plots of the condensate and mass susceptibility for

two Majorana fermions at coupling g2 = 0.1 are shown in Figure 4-3 and Figure

4-4 respectively. The shapes of the curves in the interacting case are qualitatively

similar to those of the free theory, but the correlation functions take on different

values due to the nonzero fermion coupling. These plots can once again be compared

with plots obtained using a loop algorithm for one Dirac fermion in [11]. We find that

the curves of X and Cx are equivalent to those in [11], and thus conclude that our

algorithm works properly for the theory of interacting Gross-Neveu fermions. The

peaks in the susceptibility are shifted to the left from their location in the free theory

(g2 = 0). If we assume that calculations for larger lattices will be the same as those
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Figure 4-3: Chiral condensate of two interacting Majorana fermions (g2 = 0.1) as a
function of the mass parameter computed for two square lattice sizes.

obtained in [11], we expect that the critical mass is no longer at m = 0, but occurs

at a negative value of the mass parameter. Again, we see the disappearance of finite

size effects at high values of the mass parameter. Though we have not computed

correlation functions for lattice sizes greater than 16 x 16, we expect that finite size

effects will also disappear with large lattice sizes at low values of the mass parameter

and only remain manifest at the critical mass, as in [11].

These are the first results for the Gross-Neveu model using a cluster algorithm.

The enormous improvement in efficiency over local algorithms make this algorithm

an excellent tool to numerically study interacting fermions in 1 + 1 dimensions. In

the next chapter we will use this tool to investigate phase transitions of interacting

fermions. But before we conclude this chapter, we will present results for the Gross-

Neveu model in spin boundary conditions other than E = (0, 0).
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Figure 4-4: Mass susceptibility of two interacting Majorana fermions (g2 = 0.1) as a
function of the mass parameter computed for two square lattice sizes.

4.4 Boundary Conditions

Here we present results for interacting fermions in fixed spin boundary condtions

E = (0, 1) and c = (1, 1). Figure 4-5 shows X computed as a function of the mass

parameter for a 32 x 32 lattice with g2 = 0 for these three boundary conditions.

Because E = (1, 0) boundary conditions are equivalent to e = (0, 1) on a square

lattice, E = (1, 0) was omitted. We see finite size effects due to the different boundary

conditions. At small values of m, there is no distinction in the value of the condensate

for different boundary condtions, however, at large m a gap emerges. This agrees with

the results obtained in [11]. As the boundary conditions become increasingly periodic,

the magnitude of the condensate decreases for high values of m, as was found in [11].

This is due to the fact that for e = (0, 0), there are no nontrivial loops on the latice,

and at high mas there are a greater number of monomers than in the boundary

conditions c = (0, 1) and E = (1, 1). Figure 4-6 shows Cx as a function of m on a
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Figure 4-5: Chiral condensate as a function of the mass parameter for 2 Majorana
fermions on a 32 x 32 lattice with g2 = 0. E = (0, 0), E = (0, 1) and e = (1, 1) boundary
conditions were used.

32 x 32 lattice with g2 = 0 for the same three boundary conditions. We see that the

cusp in the mass susceptibility is sharper for doubly periodic boundary conditions,

E = (0, 0), indicating a steeper transition in the condensate at m = 0, as observed

in Figure 4-5. At high and low values of m, there is no difference in Cx between the

different boundary conditions.
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Chapter 5

Gross-Neveu Fermions at Nonzero

Temperature

Now that we have developed an efficient cluster algorithm to accurately simulate

Gross-Neveu model fermions, we can use this technique to further investigate the

properties of interacting fermions in 1 + 1 dimensions. We would like to observe

the second order phase transition from spontaneously broken chiral symmetry to

restored chiral symmetry which occurs at a nonzero critical temperature. We can

analyze fermions at nonzero temperature by using boundary conditions which are

antiperiodic in the time direction (this leads to the correct Fermi-Dirac distribution

of particles.) From equation (2.1.15), we know that in order to simulate the fermion

partition function with e = (1, 0), we have to simulate all four possible spin partition

functions. Yet, this equation contains a negative contribution from the Z' partition

function, so when simulated, we would effectively be subtracting statistics from our

calculation of observables, wasting computer time. If we reach the infinite spatial

volume limit, however, the boundary conditions in the space direction should not

matter. Therefore, to avoid simulating a negative partition function, and to make

our algorithm slightly simpler, we will leave the boundary condition in the space

direction variable and instead simulate

Z 0 + Z~' = 2(Zk0 + Z0) = Z O1 + Z O0 (5.0.1)



which can easily be derived from equation (2.1.14).

To simulate fermions at nonzero temperature, we need to sample spin configu-

rations from two different classes of boundary conditions, e = (0, 0) and E = (0, 1),

which are periodic in the time direction and either periodic or antiperiodic in the

space direction. This reversal of boundary conditions comes from the correspondence

of spin and loop partition functions described in equation (2.2.6). In § 5.1 we de-

scribe an algorithm for simulating the partition function combination of equation

(5.0.1) using fluctuating boundary conditons. We test the accuracy of this algorithm

by comparing simulations of free fermions to exact results for the free theory in § 5.2

and checking its self-consistency in the interacting theory in § 5.3. The results of

the first simulations of Gross-Neveu fermions at nonzero temperature using a cluster

algorithm are presented in § 5.4.

5.1 Fluctuating Boundary Conditions

Here we construct an algorithm for sampling spin configurations from the partition

function Ztot = ZO1 + Z°o. Now each of the N spin lattices will have an associated

boundary condition variable which is independent of the boundary conditions of the

other lattices. At each iteration of the algorithm, first all of the spins are updated

using the procedure described in §3.1. Then the program will attempt to update the

boundary conditions of each lattice of spins. The idea of the algorithm is to look

for some axis perpendicular to the space direction, which we will call a horizontal

cut(assuming the time direction points horizontally and the space direction points

vertically.) Then, with some probability, flip the spins above the cut while leaving

the ones below fixed and, at the same time, change the spatial boundary conditions.

We are only interested in changing the spatial boundary conditions, so our axis must

be a nontrivial loop in the time direction. Though we could in principle search for

any loop which begins and ends at the same plaquette point and winds around the

lattice in the time direction to serve as our boundary for flipping spins, it is simpler

and just as effective to only search for a horizontal line.



This combined process of flipping spins and changing boundary conditions will

only affect the weights of the plaquettes along the cut (and therefore the probability

of making this update will be proportional to the weights of the plaquettes along the

cut in the old configuration and the proposed configuration). Not any horizontal axis

can function as a cut, however, because in general illegal plaquettes may arise by

flipping the spins on one side of the cut. The algorithm for finding a horizontal cut

and updating the boundary conditions of a single spin lattice consists of the following

steps:

1. Sweep through the lattice of bond variables and propose a new bond at each

lattice site. Each of b(x) = 1 and b(x) = 3 are proposed with probability

1/2. These bond types connect spins horizontally and thus will increase the

probability of there being a horizontal cut through the lattice.

2. Accept the proposed bond value with probability

Pacpt= min ( Pb(x) Ab'()(s) (5.1.1)

where b(x) is the current bond value and b'(x) is the proposed bond value.

3. Sweep through the lattice of bond variables and look for a horizontal cut. A

horizontal cut exists if there is an entire row of the lattice with b(x) E 1, 3, 5.

Otherwise, there are vertical bonds across the horizontal axis and the axis can-

not be used as a cut.

4. If there exists a cut, flip the spins above the cut with probability

H w'(x)

Pflip = x along cut7flip = (5.1.2)

x along cut

where w'(x) is the weight at x in the proposed configuration with flipped spins

and w(x) is the weight at x in the current configuration.



5. If the spins were flipped, change the spatial boundary condition from periodic

to antieriodic or vice versa. Otherwise do nothing.

This algorithm is repeated for each of the N lattices. Once the boundary conditions

have been updated for each lattice a new configuration has been sampled. In the next

section we will check the correctness of the algorithm for fluctuating boundary con-

ditions by comparing calculations of correlation functions in the boundary conditions

Z'° + Z" to exact results for the free theory. With both the fluctuating boundary

conditions algorithm verified in the free case and the cluster algorithm at fixed bound-

ary conditions verified for the interacting theory independently, we expect that the

combination of the two will produce correct results for the interacting theory using

fluctuating boundary conditions.

5.2 Exact Results for the Free Theory

We would first like to test that our algorithm of § 5.1 correctly simulates the partition

function of equation (5.0.1). In this section we will compare results of free fermion

simulations in the boundary conditions Z00 + Z01 = Zo + Z" to exact values of

correlation functions. The chiral condensate can be calculated exactly for N free

Majorana fermions in any combination of fermion boundary conditions

Z [m] = Ec()Z [m] (5.2.1)

and is given by

(2T)c Iln(Ze). (5.2.2)2 TL 8m

This only depends on the parameters T, L, and m. A method for calculating equation

(5.2.2) using exact fermion partition functions is described in [1].

First, we simulate one free Majorana fermion. In Figure 5-1, we show the results of

calculations of X as a function of the mass parameter for a lattice of size T = 4, L = 16

using the algorithm of § 5.1. Also plotted are the exact values of the condensate for

Z = Z1o + Z"1 . The values obtained as a result of simulations are in agreement with
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Figure 5-1: Exact and simulated chiral condensate of one free Majorana fermion as

a function of the mass parameter on a rectangular lattice with T = 4 and L = 16.

The boundary conditions of the simulation were sampled from the partition function

Z o + Z 1 using the algorithm of § 5.1.

the exact results, and thus we determine that the algorithm for fluctuating boundary

conditions works correctly in the case of one free fermion. Figure 5-2 shows a similar

plot for a lattice of size T = 16, L = 4, demonstrating the asymmetry of the time

and space directions. The shape of the curve is slightly different when we change the

orientation of the lattice due to the fluctuating boundary conditions in the spatial

direction.

We obtain values of the condensate which match the exact results for multiple

species of free fermions as well (in the case XNflavors = NXlflavor). The consistency

of the numerical values of X with the exact values is similar to that seen in Figures

5-1 and 5-2 for one free fermion, but we do not find it illuminating to present plots

of this here. From this, we conclude that the algorithm works properly for the free

theory. In the next section we check the consistency of the algorithm in the case of

the interacting theory.
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Figure 5-2: Exact and simulated chiral condensate of one free Majorana fermion as
a function of the mass parameter on a rectangular lattice with T = 16 and L = 4.
The boundary conditions of the simulation were sampled from the partition function
Z oo + Z01 using the algorithm of § 5.1.

5.3 Correlation Functions in the Interacting The-

ory

Here we consider multiple flavors of Gross-Neveu fermions with the boundary condi-

tions of equation (5.0.1) using the algorithm outlined in § 5.1. Because we cannot

exactly calculate observables in the interacting theory and because results for this

model have not been obtained by any other methods previously, we cannot compare

the calculations of correlation functions we obtain to any other values. Instead, we

will check the self-consistency of the algorithm in the interacting theory before using

it to study Gross-Neveu fermions at nonzero temperature.

To check the consistency of the algorithm for calculating correlation functions

using fluctuating boundary conditions, we calculate the mass susceptibility in two

ways and compare the results. We do simulations of two Majorana fermions on a

33 1 ,

T=16, L=4 . Simulated Result
x Exact Value
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Figure 5-3: Chiral condensate of two interacting Majorana fermions (g2 = 0.1) as

a function of the mass parameter on an 8 x 8 lattice with fluctuating boundary
conditions.

square 8 x 8 lattice with coupling g2 = 0.1. Figure 5-3 and Figure 5-4 show calculations

of the condensate and the mass susceptibility, respectively, as a function of the mass

parameter done using the method of § 5.1 for fluctuating boundary conditions. Both

were also computed previously using the prescription presented in § 4.2. The results

in Figures 5-3 and 5-4 are qualitatively similar to those presented in § 4.3 but differ

numerically because of the difference in boundary conditions.

We also approximate the mass susceptibility for two flavors of interacting (g2 =

0.1) fermions on an 8 x 8 lattice by calculating the numerical derivative of the con-

densate. The numerical derivative is defined as

AX x (m + - ) - X (m - - )
Am Am (5.3.1)

In Figure 5-5 we plot the numerical derivative CX calculated using Am = 0.08 and

the values for the condensate plotted in Figure 5-3. We also plot the calculations of

Cx directly from the simulations which are shown in Figure 5-4. We see that the two

sets of results are well within errors of each other and that our method for computing
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Figure 5-4: Mass susceptibility of two interacting Majorana fermions (g2 = 0.1)
as a function of the mass parameter on an 8 x 8 lattice with fluctuating boundary
conditions.

correlation functions using this algorithm is self-consistent. Now we can confidently

use this algorithm to study Gross-Neveu fermions at nonzero temperature.

5.4 Fermion Phase Transitions

We can simulate fermions at nonzero temperature by using a rectangular lattice which

is very long in the spatial direction and short in the time direction. The number of

lattice points in the time direction T corresponds to the inverse temperature, T P3.

We will refer to temperature as 0-1 throughout this section so as not to confuse it

with T, the width of the time direction in lattice units. We would like to run our

simulations at a spatial size large enough to reach the infinite volume limit so that

we can be sure that our results are not dominated by finite-size effects.
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Figure 5-5: Mass susceptibility of two interacting Majorana fermions (g2 = 0.1) on

an 8 x 8 lattice calculated directly from simulations and by taking the numerical

derivative of the condensate.

We want to be simulating in the infinite volume limit, which means that we want

LA > 1 (5.4.1)

where L/a is the length of the lattice in the spatial direction in lattice units and aA

is the energy scale of our theory. We know from [8] that aA scales with the coupling

and the number of fermion flavors as

aA = exp N 1 (5.4.2)

so for a fixed N and L, we can determine the value of g2 we need to produce the

correct energy scale. We will only see full chiral symmetry restoration at the critical

mass me, so we would like to be simulating as close to mc as possible. The value of

I I

x Simulated C

. AX/Am

JJ
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Figure 5-6: Chiral condensate for L = 24 and L = 48 lattices with N = 8, g2 = 0.5,
and m = -0.5775. T is the number of lattice points in the time direction, and
increasing 1/T corresponds to increasing temperature.

the critical mass is a function of both N and g and is given by

N
amc=- (2N-1) Kg 2 + (g 4) (5.4.3)

where K = 0.385 is a constant [12]. Once we have determined a value for g2, we

can estimate amc, the value of the critical mass in dimensionless lattice units, using

equation (5.4.3).

In order to test whether we have achieved the infinite volume limit, we simulate

fermions with lattices of two spatial sizes, L = 24 and L = 48, and varying widths

in the time direction: T = 4, 5, 6, 7, 8, 10, 12, 16, 20, 24. We compare measurements of

the condensate as a function of 1/T, which corresponds to increasing temperature,

for these two spatial sizes. For 8 fermions, at a g2 of 0.5, from equation (5.4.2),

aA r 0.12, which means the condition of equation (5.4.1) holds for L = 48. The

value of the critical mass for N = 8 and g2 = 0.5 can be calculated from equation

(5.4.3) and is approximately m, = -0.5775. The results are at fixed N = 8, g2 = 0.5,

I IL=48

L=48



and m, = -0.5775 and are shown in Figure 5-6. We see that the values for X for

L = 24 and L = 48 sized lattices are within errors of each other for each value of

p-1 tested. From this plot, we can conclude that we have reached the infinite volume

limit at L = 24 for the values of N, g, and m we have tested, since doubling the length

of the spatial direction does not affect the calculations of X. The shape of the plot

in Figure 5-6 is probably due to lattice effects, as simulations at g = m = 0 on the

same lattice sizes produce the same shaped plot.

In § 1.3 we learned that for any finite N flavors of 1 + 1 dimensional Gross-Neveu

fermions, Tc = 0. That is, for any T > 0, there should be no spontaneous breaking

of chiral symmetry. However, from [6] we also know that chiral symmetry is restored

at any nonzero T due to the condensation of kinks in the spatial direction. The

size of the segments in the spatial direction which are separated by kinks scales with

the number of fermion flavors as exp(amf N/T) [6] where a is a constant of 0(1)

and mf is the fermion physical mass. Therefore, on a finite lattice of spatial width

L, we should expect to observe spontaneous chiral symmetry breaking at low T at

large enough N, when the size of the segment is O(L). Then, as the temperature

increases, the segment size decreases, and they eventually disappear. Therefore, we

should observe chiral symmetry restoration at a nonzero critical temperature for large

enough N.

Now we will use a new method to simulate nonzero temperature. We will manip-

ulate the value of the coupling, as done in [8], which alows us to scan continuously

in temperature. Increasing the value of g2 corresponds to increasing the lattice spac-

ing, making the width of the lattice larger, and the temperature smaller. We will

perform simulations on a 6 x 48 lattice, which we already know to be in the infinite

volume limit for eight fermions at g2 = 0.5 and critical mass. We compute X for both

N = 8 and N = 16 flavors of fermions, and scan around the critical value of g2, such

that equation (5.4.2) is satisfied with aA 0.12. Changing g2 changes the value of

m. according to equation (5.4.3), so as we scan in g2, we also calculate m,(g2 ) and

simultaneously scan in the value of the mass parameter.

In order to see the fermion phase transition, we must get rid of the additive shift



0.35 0.4 0.45 0.5 0.55 0.6
92

Figure 5-7: Left: X (computed on a 6 x 48 lattice)
lattice) for 8 flavors of fermions as a function of
decreasing temperature. Right: X - XT=o for N =

-0.01

I
-0.015 I I

II

I

-0.025 I
I

-0.03

I

-0.035

-0.04 0.35 0.4 0.45 0.5 0.55 0.1

g2

and
g2.

8as

XT=o (computed on a 32 x 32
Increasing g2 corresponds to
a function of g2

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

92

Figure 5-8: Left: X (computed on a 6 x 48 lattice) and XT=O (computed on a 32 x 32
lattice) for 16 flavors of fermions as a function of g2. Increasing g2 corresponds to
decreasing temperature. Right: X - XT=O for N = 16 as a function of g2.

-5.6

-5.7 6 x48
+ 32 x 32

-5.8

+-5.9- -+

-6

-6.1 +

-6.2 +

-6.3

-6.4 N=16

-u.u;

-0.04 ,

-0.06

-0.08 

-0.1

-0.12

-0.14

-0.16
-0.18

-0.18

-0.2
0.1 0.15

g2

0.2 0.25



in X which arises due to the Wilson lattice discretization. One way to get rid of this

shift is by subtracting the zero-temperature value of the condensate, XT=o, from the

value of the condensate at nonzero temperature, XT>O. We can compute the zero

temperature value of X by performing simulations on a square lattice. From Figure

5-6, we see that we are already in the infinite volume limit at L = 24 for N = 8 and

g2 = 0.5. To make sure we are still sufficiently within this limit, we will simulate

fermions at zero temperature on a 32 x 32 square lattice and calculate XT=O. Then

we will subtract these values from the nonzero temperature calculations of X done

on a 6 x 48 lattice in order to get rid of the additive shift in the condensate. What

we expect to see is the difference in the condensate X - XT=O approach zero as g2

increases (decreasing temperature). At low temperature (high g2) we still expect

the chiral symmetry to be broken, so x - XT=o should be small. However, at high

temperature (low g2), the chiral symmetry should be restored, so X should differ

significantly from its zero temperature value and the magnitude of x - XT=O should

be large. In the large N limit, we expect a second order phase transition to occur

at some critical value of the coupling, g , corresponding to a critical temperature Tc,

which depends on N. The transition should be more sharply defined for larger N,

and Tc/A -+ constant for N --+ oo.

We report our results for N = 8 in Figure 5-7 and N = 16 in Figure 5-8. Both the

curve for N = 8 and N = 16 approach zero at high g2 as we would expect. However,

the change in X - XT=O over the range of g2 for N = 8 is minimal, whereas it is an

order of magnitude for N = 16. In addition, the plot of X - XT=O on the right hand

panel of Figure 5-8 for N = 16 is more sharply curved than that of Figure 5-7 for

N = 8. This is consistent with the expectation that a cusp will develop as N -+ co,

as for a second order phase transition in the large N limit.
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Chapter 6

Conclusions

We have developed and implemented an efficient cluster algorithm to study the ther-

modynamic properties of fermions on a lattice. We have reproduced the algorithm

of [1] and verified it for free fermions in 1 + 1 dimensions. In addition, we have

extended this algorithm to the Gross-Neveu model for the first time and computed

correlation functions for interacting fermions. Finally, we have studied fermions at

nonzero temperature using a cluster algorithm for the first time and produced first

results consistent with the expectation of a fermion phase transition for large N.

Because the algorithm we have developed is much more efficient than previ-

ously used local updating algorithms, we now have the ability to study Gross-Neveu

fermions at increasingly larger lattice sizes and with higher N. Doing this will allow

us to observe properties of fermion correlation functions and the chiral phase tran-

sition more sharply. We can also extend our calculations to spatially larger lattice

sizes, where we eventually expect to see the disappearance of chiral symmetry break-

ing as L > size of the broken symmetry segments. This type of algorithm could

also be developed for fermions at a nonzero chemical potential, which would allow

us to efficiently study additional interesting thermodynamic properties of interacting

fermions in 1 + 1 dimensions.
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