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Abstract

The Arctic is becoming increasingly attractive for shipping. With the potential savings in transit
time and the untapped natural resources, both the shipping and offshore industries are pouring capital
into research and development.

Myriad different ice-classes are described. Every classification society and country has their own
system of ice-classing vessels, which leads to complexities within the system. The Polar Rules are looking
to harmonize all of the different methods into one set of standards, thus simplifying the process.

Also addressed will be the effect of ice-class on vessel design. The hull shape and structure,
propulsion machinery, and auxiliary systems are all affected by ice-classing a vessel.

Herein, the reader will find a presentation of the percentage increases in weight, power, fuel
consumption, and cost of several different ice-classes over conventional containerships. To increase the
ice-class slightly, the data is within margins of error and thus, there are no increases (especially with
high speed LNG and container vessels). However, to increase the ice-class to the highest class analyzed,
the weight, power, fuel consumption, and cost increase substantially.

Ice-classed containerships may become economical in the future when the ice cover diminishes
due to global warming. Presently, routing containerships over the Arctic is generally not considered by
the industry to be economically, politically, or environmentally feasible for continuous, reliable service.
This thesis provides insight into the engineering and economic implications of ice-classed
containerships.
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Definitions and Nomenclature

1. ABS -American Bureau of Shipping

2. AIRSS - Arctic Ice Regime Shipping System

3. ASSET - Advanced Surface Ship Evaluation Tool

4. Brash Ice - A fairway channel which has been cut by an icebreaker and continuously

broken and re-frozen with the passage of shipping

5. CASPPR - Canadian Arctic Shipping Pollution Prevention Rules

6. CPP -Controllable Pitch Propeller

7. DAPPB - Double Acting Pusher Puller Barge system

8. DAS - Double Acting Ship concept or Double Acting Stern

9. DAT - Double Acting Tanker

10. DEICE - DNV Notation for additional ice protection

11. DNV - Det Norske Veritas

12. FE - Finite Element

13. FEM - Finite Element Modeling

14. FEU - Forty-Foot Equivalent Unit

15. FMA - Finnish Maritime Administration

16. FPP - Fixed Pitch Propeller

17. Fr - Froude Number

18. FS - Finnish-Swedish

19. FSICR - Finnish-Swedish Ice-Class Rules

20. FY Ice - First year ice up to 120 cm thick and low ice-strength properties

21. g - Universal Gravitational Constant (9.81 m/s)

22. IACS - International Association of Classification Societies

23. IM - Ice Multiplier

24. IN - Ice Numeral

25. ITTC - International Towing Tank Conference

26. JIY = LU - Russian Maritime Register Rules Notation

27. MDO - Marine Diesel Oil

28. MGO - Marine Gas Oil

29. MT - Metric Ton

30. MY Ice - Multi-year ice up to 3 m or more with high ice-strength properties (Caused by

progressive leeching out of salts and minerals trapped when the ice is

first formed. With the leakage of these impurities, the ice becomes

much stronger).

31. NCR - Normal Continuous Rating

32. NORDREG - Arctic marine traffic system

33. NSR - Northern Sea Route

34. NWP - Northwest Passage

35. PC# - Polar Class # (ex. PC1 - Polar Class 1)



36. PE - Effective Power

37. psw - Density of Salt Water at 700 F

38. ReN - Reynold's Number

39. RMRS - Russian Maritime Register of Shipping

40. RR - Residuary Resistance

41. RT -Total Resistance

42. SFC - Specific Fuel Consumption

43. SMA - Swedish Maritime Administration

44. TEU -Twenty-Foot Equivalent Unit

45. Vs - Ship Speed

46. WMO - World Maritime Organization

47. WSA - Wetted Surface Area

48. ZDS - Zone-Date System



1.0 Chapter 1: Introduction and Purpose

1.1 Overview and Background

With both intense climatic change and increased natural resource development, the Arctic is

becoming a new area of development for the global economy. Climate change has powerful effects on

the Arctic, where the average temperature has risen at twice the rate of the rest of the planet [13]. In

combination with estimates of 25 percent of the unexploited gas and oil reserves and up to 60 percent

savings in transit distance (See Figure 1.1), the Arctic is emerging as a prominent area of investigation

and research. Currently, most of the development is in the natural resource sector.

North m Sea oute , Nrthwest
a sPas e

Rotterdam San ottermFra~ncis o

Figure 1.1: Northern Sea Route and the Northwest Passage Compared with currently used Shipping

Routes [41]

One major requirement of a containership service is the stability of its schedule. It mandates a

reliable, weekly service. The Arctic offers up to a 60 percent reduction in distance, thus ideally

decreasing transit time. However, the Arctic has unpredictable ice conditions which can cause delays.

Additionally, ice-classed containerships come with an increased capital and operating cost, plus

transiting at slower speeds. Ice-classing a containership may cause a decrease in cargo space due to
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increased structure and closer frame spacing. The double acting concept, which will be explained in

greater detail later in this thesis (Section 3.4.2), is patented. The capital cost is increased when this

method is used.

Why would ice-classed containerships be utilized? Consider a future scenario, when a

containership from a fleet goes into drydock, the remaining ships can then be re-routed over the Arctic

to keep the same schedule with one less ship. This should be done in the summer months, ideally

August to October, as seen below in Figure 1.2. The routing over the Arctic can also employ

transshipment ports, thus requiring fewer ice-classed containerships.

Arctic Sea tCe Extent
(Area C woMen th a least 15% Sea ice)

4 .. 2008
-- 2007

Jun Jul Aug Sep Oct

Figure 1.2: Arctic Sea Ice Extend [17]

From a transportation systems planning point of view, it's important to determine the

relationship between the seasonal ice distribution conditions and the ship's capabilities, so that the

economics of the relationship can be examined [40]. Figures 1.2 and 1.3 show the seasonal ice



conditions in different forms. Figure 1.3 also shows the types of ships that can navigate the ice

conditions safely.

• Average open
0 water season

Z

1 IB Cargo Ship with IB Escort

4' - 7' 87 10'11 12' 1 2 3 Month
Ship without IB Escart

Ship with lB Escort

Figure 1.3: Probabilistic Shipping Seasons and Ship Capability [40]

Figure 1.4 shows the several different routes available to cross the Arctic. Not shown is the

route straight over the top of the Arctic. If this route is utilized, the politics (differing classes and

equivalency issues) and fees can be avoided. Presently, this route may be technically feasible, but is not

yet economically feasible.



-lIIIII Arc r dg u

t:::-: o them Sea Route

- Plmin otIest Peog

Figure 1.4: The Arctic Shipping Routes [17]

Environmental issues will have to be examined. These are not in the scope of this thesis, thus

will be mentioned only briefly. Arctic areas are very sensitive to discharge of oil and other pollutants.

The low temperature will preserve the pollutants, and due to the sensitive ecological balance there

should be 'zero tolerance' with regard to discharge. Due to the remote location of many of the new oil

fields, shore-based contingency plans and resources are limited and represent a challenge for the

industry and national authorities [43]. Thus, the Arctic Ocean is a no discharge ocean. This causes

several problems with ballast water management. Also, the air emissions and noise from the ships can

interrupt the serene environment. However, some proponents argue that the emissions saved by

cutting 2,500 miles to 3,750 miles off traditional routes will contribute to reversing the warming that is

melting the polar ice in the first place [9].



1.2 Purpose

The purpose of this thesis is to determine the feasibility of ice-classed containerships. Several

different sized containerships with several different ice-classes were analyzed with regards to weight,

power, fuel consumption, and cost. The results of this analysis and the viability of ice-classed

containerships in the future are presented.

1.3 Recent Developments

Germany's Beluga Shipping plans to deploy a ship through the Northern Sea Route this summer.

As stated above, this route cuts thousands of miles off of the normal sailing route via the Suez Canal.

From Bremen to Shanghai, 3,200 nautical miles can be saved. Beluga would have used the NSR last

summer if the necessary permits had been obtained from the Russian authorities. The ships will operate

independently of icebreaker assistance since the economic benefits would be lost. The route is only

available six to ten weeks and must be at least 90% ice-free because of the dangers posed by drifts.

Beluga will be the first Western Europe shipping company to attempt the passage without assistance.

Aker Arctic Technology is carrying out an NSR feasibility study determining what type of ship should be

used and the viability of the passage. The main obstacle to using the NSR remains psychological. If you

are stuck in ice in Russian waters, what is the reliability and cost of the Russian icebreaker service? It is

almost two decades old; the service is the same that has been around since the early 1990s when the

route was first opened [27].



2.0 Chapter 2: Class

2.1 Introduction

Currently, there are many different ice-classes in use. The countries bordering the Arctic include

Russia, Canada, Finland, Sweden, and the USA, and their classification societies each have a different set

of ice-classes. The requirements span the spectrum from hull strengthening to power requirements. The

purpose of ice-classes is to permit the safe operation of ships in ice-covered sea areas [42]. There are

three main regions where ice-classes are applicable; the Baltic Sea, the Arctic Ocean, and the Okhotsk

Sea (see Figures 2.1-2.3). Also, inland lakes such as the Great Lakes have supplemental regulations

regarding operation during winter months.

Figure 2.1: Map of the Baltic Sea



Figure 2.2: Map of the Arctic Ocean

Figure 2.3: Map of the Okhotsk Sea



The ice-classes endeavor to ensure the safety of the hull and essential propulsion machinery.

Additionally, sufficient power for safe operations in ice covered waters must be demonstrated. The hull

structure, propeller, and propeller shaft need to be strengthened to withstand loading with ice

interactions.

Classification ice rules are based on the ice thickness the ship is intended to navigate in. The

thicker the ice, the greater the hull reinforcement strength, propeller thickness, and steering gear

strengthening the ship will need to navigate safely. The regulations also take into account independent

or escorted operations [20].

2.2 Finnish-Swedish Ice-Class Rules

The Finnish Maritime Administration (FMA) and the Swedish Maritime Administration (SMA)

created the Finnish-Swedish Ice-Class Rules (FSICR) with consultation from various classification societies

[20]. A description of each Finnish Swedish Ice-Class is shown in Table 2.1 below.

The Finnish-Swedish Ice-Class Rules apply only to first-year ice conditions in the Northern Baltic.

The Baltic has a relatively low salt content, so the ice that is formed is stronger.



Table 2.1: Finnish-Swedish Ice-Class Rules [20, 32]

ce IFor Navigation
Ice Description

Class in

IA First year ice thickness 1.0m.

Super
Special ice class IA Super, ships whose structural strength in essential

areas affecting their ability to navigate in ice essentially exceeds the
Extremely

requirements of ice class IA and which as regards hull form and engine
difficult ice

output are capable of navigation under difficult ice conditions without
conditions

the assistance of ice breakers. Engine output will not be less than

2800kW.

Escorted operation in all Baltic ice conditions.

IA First year ice thickness 0.8m.

Ships with such structure, engine output and other properties that they

are capable of navigating in difficult ice conditions, with the assistance Difficult ice

of icebreakers when necessary. Escorted operation medium (smaller conditions

vessels) and severe Baltic ice conditions. Engine output will not be less

than 1000kW.

IB First year ice thickness 0.6m.
Moderately

Ships with such structure, engine output and other properties that they difficult ice
are capable of navigating in moderate ice conditions. Escorted conditions

operation in medium ice conditions.

IC First year ice thickness 0.4m.

Ships with such structure, engine output and other properties that they Easy ice

are capable of navigating in light ice conditions. Escorted operation in conditions

light ice conditions.

11 Ships that have a steel hull and that are structurally fit for navigation in

the open sea and that, despite not being strengthened for navigation in Very easy ice

ice, are capable of navigating in very light ice conditions with their own conditions

propulsion machinery.

III Ships that do not belong to ice classes mentioned above.



The ice-class and tonnage requirements may vary depending on the severity of the winter

season. The two administrations (Finland and Sweden) provide icebreaker assistance, when needed, to

ships during the winter. Additionally, they provide navigational limitations on a weekly basis depending

on ice conditions. The FSICR criteria are driven by the maintenance of ship speed in ice, ensuring the

continuity of trade in the winter. Thus in more severe winters, smaller ports without their own

icebreakers may be closed temporarily. These traffic restrictions can also be accompanied with loading

restrictions (ie. 1000 MT of loaded/unloaded goods per port). Also, if a vessel is damaged, its ice-class

notation can be withdrawn and it may be issued a new, lower ice-class notation [20, 32].

The various ice-classes have different meanings depending on one's perspective. For example,

an ice class of Finnish-Swedish 1A may represent several connotations. Technically, the hull steel

structure and rudder are designed for pressures from 0.8 m thick first-year ice. Also, the propeller and

shafting are designed for impact loads from ice pieces. The power requirement is given by a minimum

maintainable ahead speed of 5 knots in 1.0 m thick brash ice. Commercially, this vessel is then suitable

for assisted navigation in first-year ice in the northern Baltic.

2.3 Russian Maritime Register of Shipping (RMRS) Ice-Class Rules

The Russian Maritime Register Rules apply to both first- and multi-year ice. The Russians also

have stability (intact and damaged) requirements in their ice-class rules. The Russian's set of rules are

the only set that aren't based on the FSICR guidelines. Table 2.2 provides the descriptions of the Russian

Maritime Register of Shipping Ice-Class Rules.

The Russian's have several guidelines that must be followed to navigate the NSR. The Captain of

a ship sailing through the Northern Sea Route is required to submit a notification and request of passage

to the Russian Administration (lead time of four months) and also guarantee payment of the icebreaking

dues. While transiting the NSR, the ship must report twice a day and must maintain the pre-determined



route unless under control of a state ice pilot. Two ice pilots are required and the Captain must have

fifteen days of NSR ice experience. However, the Captain maintains ultimate control despite the ice

pilots and directions from shore command. And prior to the use of the NSR, the ship must undergo a

mandatory inspection and is subject to spot inspections at any time. Also, compulsory icebreaker

assisted pilotage is required at certain choke points including the Vil'kitskogo Strait, Shokal'skogo Strait,

Dmitriya Lapteva Strait, and Sannikova Strait. Russian legislation defines the NSR as a national

transportation line, thus allowing them legal jurisdiction [17, 20].

Table 2.2: RMRS Ice Strengthening Notations [20]

Notation Ice Description

UL Independent navigation in the Arctic in summer and autumn in light ice conditions

and in the non-arctic freezing seas all the year round.

L1 Independent navigation in the Arctic in summer in broken open ice and in the non -

arctic freezing seas all year round in light conditions.

L2 Independent navigation in the non-arctic seas in small open ice. (= FSICR IB)

L3 Independent navigation in the non-arctic seas in small open ice. (= FSICR IC)

L4 Independent navigation in the non-arctic seas in small open ice, short period.

LU1 Independent navigation in small open ice in the non-arctic seas, short period and in

compact ice up to 0.4m thick in a navigable passage astern an icebreaker.

LU2 Independent navigation in small open ice in the non-arctic seas, and in compact ice

up to 0.55m thick in a navigable passage astern an icebreaker.

LU3 Independent navigation in small open ice in the non-arctic seas, and in compact ice

up to 0.70m thick in a navigable passage astern an icebreaker.

LU4 Independent navigation in young open arctic ice up to 0.6m thick in winter and

spring, and up to 0.8m thick in summer and autumn. Navigation in a navigable

passage astern an ice breaker in young arctic ice up to 0.7m thick in winter and

spring and up to 1.0m thick in summer and autumn.

LU5 Independent navigation in young open arctic ice up to 0.8m thick in winter and

spring, and up to 1.0m thick in summer and autumn. Navigation in navigable



Independent navigation in young open arctic ice up to 1.1m thick in winter and

spring, and up to 1.3m thick in summer and autumn. Navigation in navigable

passage astern an icebreaker in young arctic ice up to 1.2m thick in winter and

spring and up to 1.7m thick in summer and autumn.

passage astern an icebreaker in young arctic ice up to 0.9m thick in winter and

spring and up to 1.2m thick in summer and autumn.

LU6

LU7 Independent navigation in young open arctic ice up to 1.1m thick in winter and

spring, and up to 1.3m thick in summer and autumn. Navigation in navigable

passage astern an icebreaker in young arctic ice up to 1.2m thick in winter and

spring and up to 1.7m thick in summer and autumn.

LU8 Independent navigation in close young and biennial arctic ice up to 2.1m thick in

winter and spring and up to 3.1m thick in summer and autumn. Ramming rammer

of ice ridges. Navigation in a navigable passages astern an ice breaker in biennial

arctic ice up to 3.4m thick in winter and spring and in perennial ice in summer and

autumn with no restrictions.

LU9 Independent navigation in close perennial arctic ice up to 3.5m thick in winter and

spring, and up to 4.0m thick in summer and autumn. Ramming rammer of ice

ridges. Short ramming rammer of the young and biennial close ice segments.

2.4 Canadian Arctic Shipping Pollution Prevention Rules (CASPPR)

The Canadian criteria are driven by a need to limit the potential risks of hull and machinery

damage coupled with the prevention of pollution due to ship damage.

There have been changes to the Arctic Waters Pollution Prevention Act. Under the proposed

changes, their jurisdiction will be extended to 200 nautical miles (increased from 100 nautical miles) to

guard against pollution of the region's marine and coastal environments. In addition, the Prime Minister

announced new regulations under the Canada Shipping Act that will require mandatory reporting from

all ships destined for Arctic waters within the same 200 nautical mile limit [16].

An increase in international shipping throughout the Arctic raises the potential for accidents,

smuggling, illegal immigration, and even threats to national security. Canada claims the entire



Northwest Passage, a link between the Pacific and Atlantic oceans, but other countries including the

United States dispute Canada's claim over the waterway [19]. The United States may challenge Canada's

right to require notification if a ship is entering the Northwest Passage, a route it considers an

international waterway. The US would most likely lodge a quiet diplomatic protest as a first step. Other

foreign vessels have an incentive to register because Canadian authorities will share vital information

with them, such as satellite imagery [15].

The Canadian Arctic is regulated by the Zone-Date System (ZDS) and outside its permissible

dates by the Arctic Ice Regime Shipping System (AIRSS), which is used with certain conditions. The Zone-

Date System is based on historical data of ice conditions. It includes sixteen geographic regions, Shipping

Safety Control Zones, which start north of 600 N latitude (See Figure 2.4). There is an associated table

which indicates the allowable dates for passage. This system does not take into account the actual ice

conditions present in the Zone while the ship is proceeding through it [39, 61].

The Arctic Ice Regime Shipping System reflects actual ice conditions. An Ice Numeral (IN) is

calculated based on ice type, thickness, and concentration. It is the sum of the ice types and ice

multipliers (IM) specific for each ship class. The ice multiplier indicates the risk of damage to a ship by

different ice types. If the ice numeral is greater than or equal to zero, the ship may proceed. Currently,

this system is only used outside of the Zone-Date System [39].

In addition to mandatory registration for use of the NWP (4 months to one year lead time), ships

must report to NORDREG (the Arctic marine traffic system) on entry to each Zone giving 96-hour

advance notice and once a day. Also, the vessels are subject to spot inspections at any time. There are

no fees to use the NWP, and routing and icebreaker assistance are available via NORDREG. A certified

ice navigator may be required as detailed in Schedule VIII of the CASPPRs. The ice navigator must be a

qualified master with at least 50 days of experience, with at least 30 days in Arctic waters. Similar to the



Russian rules, the Captain maintains ultimate control despite ice pilots and directions from shore

command [17].
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Figure 2.4: Canadian Shipping Safety Control Zones [17]



2.5 DNV Class Rules

Det Norske Veritas (DNV) ice-class rules are summarized in Table 2.3. DNV has had ice

strengthening requirements since 1881, mandating that the frames had to be placed closer together in

the bow section in addition to other internal strengthening. Then, in 1932, a special set of standards

were released including increased scantlings of frames, plates and stringers specified as a percentage

increase (15-25%) above standard class rules [43].

Table 2.3: DNV Ice-Class Notations and Descriptions

DNV Ice-Class Notations

Ice-Class Description

ICEBREAKER Similar to POLAR-30, but the vessel's mission is icebreaking

POLAR-30 Vessels operating unassisted in ice-infested waters with pressure ridges, multi-year ice-floes

and glacial ice inclusions and a nominal ice thickness of up to 3.0 m

POLAR-20 Vessels breaking ice of 2.0 m level thickness in polar areas

POLAR-10 Vessels breaking ice of 1.0 m level thickness in polar areas
ICE-15 Vessels breaking ice of 1.5 m level thickness
ICE-10 Vessels breaking ice of 1.0 m level thickness
ICE-05 Vessels breaking ice of 0.5 m level thickness

ICE-1A*F Operating regular services in ice conditions with ice floes of 1.0 m level ice thickness

ICE-1A* Operating in ice conditions with ice floes of 1.0 m level ice thickness
ICE-1A Operating in ice conditions with ice floes of 0.8 m level ice thickness
ICE-1B Operating in ice conditions with ice floes of 0.6 m level ice thickness

ICE-1C Operating in ice conditions with ice floes of 0.4 m level ice thickness

ICE-C Operating in light ice conditions
ICE-E Ice strengthening for light localized drift ice in mouths of rivers and coastal areas

Recently, DNV has increased its Arctic-related class activities. They are researching contingency

planning and preparedness standards, vessel routing measures, reporting systems, and traffic services.

Approximately 1,900 vessels carry DNV ice-class notations with one-third of all the DNV-classed tankers

on order specified with ice strengthening. DNV covers the entire spectrum from icing in open water to



icebreaking capabilities in temperatures as low as -55 0 C. In addition, optional notations are available,

such as winterization and DEICE (described in more detail in Section 3.5.4.1) [55].

Higher requirements for redundancy and reliability are required for vessels operating alone in

such remote areas. Furthermore, as the traffic increases, there will be less icebreaker support available

unless local governments are increasing icebreaker support by rearranging the existing fleet or by

ordering additional icebreakers.

Also, the increased size of the ships becomes a concern when the width of the vessel is larger

than the width of the icebreaker. Either two icebreakers acting together are required or the vessel will

have to be designed for independent icebreaking. Double-acting vessels may be a solution (described in

more detail in Section 3.4.2) [43].

DNV also researched an ice load monitoring system that provides bridge personnel with real-

time information about the actual ice loads on the ship's hull and shows satellite information about the

ice in the vicinity of the vessel. This system includes fiber optic sensors that measure shear strain on the

vessel's hull and electromagnetic equipment which measures the thickness of the ice at the bow. This

information is analyzed and displayed on the bridge. Additionally, meteorological and satellite data

about the ice is integrated into electronic charts allowing for optimum route selection. The project is the

first to monitor the actual ice loads and present them in real time at the bridge as a part of a decision

support system. The system is ready to be installed for both new and in-service ships [56].

2.6 ABS Class Rules

The American Bureau of Shipping has a system of ice classes which includes classes A5 through

AO; BO, CO, and DO. A5 class is the strongest built of the classes, with DO being the weakest. The Ice Class

Rules are separated into three Chapters.



Chapter 1 provides a procedure for ice strengthening of side structures using nonlinear finite

element modeling (FEM), including both side longitudinals and side shell plating. The ice strengthening

procedure involves four steps for alternative design of the side structure under ice load. Table 2.4

summarizes their four steps.

Table 2.4: Steps in Ice Strengthening of Side Structures [2]

Stp Design Notes

1 FSICR design taseline design Design fully complies with FSlCR
(Ice strengthened longitudinal spacing, less than 450 mm)

2 FMA intem design Design complies with the FMA Guidelines, item 2
(Longitudinal spacing is wider than that specified by FSICI)

3 Alternative design for side langitudmals Side longitudals without rackets are determed using
nonlinear FEM

4 Alternative design for side shell Side shell thicess is determined usg nonlinear FEM for
extreme ice loads

The initial design of the side structures should fully comply with FSICR. FSICR require that the

maximum frame spacing of longitudinal frames "shall not exceed 0.35 meter for ice class IA Super and IA

and shall in no case exceed 0.45 meter". Brackets are required to connect longitudinals and webs. A

more sophisticated method may be substituted to determine the hull scantlings. The reasons a non-

linear FE model approach would be used are to lower the production costs and to reduce the weight.

The weight of the structure according to direct calculation is normally lower than that required by FSICR

[2].

Chapter 2 provides a procedure for calculating the power requirement for ice-class ships. The

minimum required engine output power is calculated utilizing the following formula:

(Rch/l000)3/2
P = Kc  kW

DP

where

Kc - efficiency of propeller

Rch - resistance of the vessesl



D - diameter of the propeller

This power requirement is meant to provide the vessel with a minimum speed of 5 knots in the

following ice conditions shown in Table 2.5 [2].

Table 2.5: Performance Requirements [2]

Perfomance Requirement

Class Speed (knot) Chamnnel Thickness (m) Consolidated Layer (m)

A Super 5 1 0.1
IA 5 1 0
IB 5 0.8 0
IC 5 0.6 0

Note: FSICR Notation
Channel thickness = Ice Thickness
Consolidated Layer = Thickness of Snow on Top of Ice

Chapter 3 provides a procedure for the strength analysis of propellers for ice class vessels. In

propeller strength assessment, the updated Finnish-Swedish Ice Class Rules requests that all IA Super

class propellers and highly skewed propellers in IA, IB, and IC classes be subjected to detailed FEM-based

stress analysis. Technical details regarding the performance of fatigue and plastic failure analysis in the

blade strength assessment procedure are provided [2].

There are two types of interactions between ice and propellers, namely ice milling and ice

impact. Ice milling takes place when an ice block is large or is trapped between the hull and the

propeller. During an instance of milling, ice is either crushed or sheared by the blades, and the loads can

be damagingly high. Ice impact is caused by small-size ice pieces that are accelerated through a

propeller or thrown out radially and pushed around the edge of the propeller disk. The loads from ice

impact are relatively moderate, but occur more frequently [2].

The material used for the propeller blades of ice class vessels must have high stress and impact

resistance qualities. Stainless steel and bronze are commonly used for ice-strengthened propeller blades

[2].



2.7 Polar Class Rules

There have been efforts to harmonize all of the different ice-classes into one unified set. The

introduction of the International Association of Classification Societies (IACS) Polar Class Rules is a

significant step in the rule harmonization process. The rules will then have to be adopted by all IACS

members. These rules may be the standard in years to come.

2.7.1 Polar Class Description and Application

The Polar Class Rules consider limited icebreaker assistance and, thus, glancing impact with an

ice floe. These rules are mainly applicable to navigation in multi-year ice, with the PC1 class capable of

independent operation without limitation. Table 2.6 describes the different Polar Ice Classes.

Table 2.6: Polar Class Descriptions [54]

Polar Class Ice Description (based on WMO Sea Ice Nomenclature).

PC1 Year-round operation in all Polar waters.

PC2 Year-round operation in moderate multi-year ice conditions.

PC3 Year-round operation in second-year ice which may include multi-year ice inclusions.

PC4 Year-round operation in thick first-year ice which may include old ice inclusions.

PC5 Year-round operation in medium first-year ice which may include old ice inclusions.

PC6 Summer/autumn operation in medium first-year ice which may include old ice inclusions.

PC7 Summer/autumn operation in thin first-year ice which may include old ice inclusions.

2.7.2 Structural Requirements for Polar Class Ships

This section of the Polar Class Rules provides structural requirements to enable ships operating

in the Arctic to withstand the effect of ice load and temperature. For ships of all Polar Classes, a glancing

impact on the bow is the design scenario for determining the scantlings required to resist ice loads.

Additionally, global hull girder longitudinal strength analysis is made based on an ice-ramming scenario.



This section also contains material requirements, framing method, corrosion/abrasion allowances, direct

calculations, and welding requirements [20, 54].

2.7.3 Machinery Requirements for Polar Class Ships

This section of the Polar Class Rules includes technical requirements for the main propulsion,

steering gear, emergency and other auxiliary systems essential for the safety of the ship and the

survivability of the crew. It considers the results of research and development on propeller damages,

propeller and shaft load measurements, and propeller-ice interactions to base its Rules [20, 54].

2.8 Equivalencies

The comparison of the different ice-classes' rules is a multi-parametric problem. To make it a

one-parameter problem, two methods are used: weakest element criterion and averaged

correspondence criterion [8]. The average method is used below since it obtains more objective results.

There are also three different ways to compare ice-classes: hull structure strength and metal

consumption, power requirements, or both. Figure 2.5 shows the ice-class equivalencies based on

power requirements while Figure 2.6 shows ice-class equivalencies based on hull structure strength and

metal consumption.
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Figure 2.7 shows ice-class equivalency combining the strength and power requirements.
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Figure 2.8 shows another set of ice-class equivalencies obtained from industry sources.

Minimum
Icebreaking Minimum

Canadian Baltic DNV Russian* Russian old rules Proposed Ice conditions regularly recorded Capability of Icebreaking
IACS in the area of operation the Escort Capability at

Icebreaker at 4 knots, m
Vessel Icebreaker Vessel Icebreaker Vessel Icebreaker 4 knots, m

CAC1 PC1 Multi-year ice of more than 3.5m 3.25 3.00

CAC2 POLAR-30 LL9 LL1 PC2 Multi-year ice of 3-3.5m 3.00 2.25

CAC3 POLAR-20 LU9 LL8 LL2 PC3 Second year ice of 2-3 m 2.50 1.50

CAC4 ICE-15/POLAR-10 LU7/8 LL7 ULA LL3 PC4-PC5 First-year mediumlthick ice of 0.7-2 m 1.50 1.00

Type A IAS ICE-IA*-1A*F ICE-10 LU6/LU5 LL6 ULA-UL LL4 PC6 First-year medium ice of 0.6-1.2 m 1.20 0.70

Type B IA ICE-IA ICE-05 LU4 UL UL PC7 First-year thin ice of 0.5-0.9 m 1.00 0.70

Type C IB ICE-1B LU3 L1 L1 First-year thin ice of 0.3-0.6 m 0.70 0.45

Type D IC ICE-1C LU2 L2 L2 First-year thin ice of 0.3-0.4 m 0.50 0.35

Type E LU1 L3 L3 First-year thin ice of 0.2-0.3 m 0.5 0.25
Current rules

Figure 2.8: Ice-Class Equivalencies from Industry



Table 2.7 shows yet another set of ice-class equivalencies.

Table 2.7: Approximate Equivalence of Class Symbols for Ice Strengthening Between

Classification Societies [20]

Classification Society

Finnish Swedish Ice Class Rules IA Super IA IB IC II

Russian Maritime Register of
UL L1 L2 L3 L4

Shipping (Rules 1995)

Russian Maritime Register of
LU5 LU4 LU3 LU2 LU1

Shipping (Rules 1999)

American Bureau of Shipping. Al AO BO CO DO

Bureau Veritas IA Super IA IB IC ID

CASPPR, 1972. A B C D E

China Classification Society. Bl* B1 B2 B3 B

Det Norske Veritas ICE-1A* ICE-1A ICE-1B ICE-1C ICE-C

Germanischer Lloyd E4 E3 E2 El E

Korean Register of Shipping. ISS IS1 IS2 IS3 IS4

Lloyd's Register of Shipping. 1AS 1A 1B 1C 1D

Nippon Kaiji Kyokai. IA Super IA IB IC ID

Registro Italiano Navale IAS IA IB IC ID



Figures 2.9 and 2.10 show another set of ice-class equivalencies.

Ice-Class Equivalents

Lloyds DNV Russian Finnish-
1999 Swedish

Ice Class 1AS ICE-1A* JIY6 1A Super
Ice Class 1A ICE-1A JIY4 1A

Ice Class 1B ICE-1B JIY3 1B

Ice Class 1C ICE-1C JIY2 1C

Ice Class 1D JIY1 II
100 Al JIY1 II

Figure 2.9: DNV Ice-Class Equivalencies

Classification Society/National Administration Approximate class equivalents

Canadian Arctic Shipping Pollution Prevention
Regulations

Russian Maritime Register of Shipping

Det Norske Veritas

Lloyd's Register of Shipping

Finnish-Swedish Maritime Administrations

CAC 1 CAC 2

LL1 LL2 LL 3

P30 P20 P10 I15

LR 3 LR 2 LR 2
LR 1.5

CAC3 CAC4 TypeA TypeB TypeC TypeD

LL 4

110

LR 1.5

Germanischer Lloyd

BureaunVeritas

American Bureau of Shipping

ULA UL

105 IA*

LRI IA
1AS

1AS
IA

E4

IAS

LI L2

IA IB

IB IB
1C

1B 1B
1C

E3 E2

IA 1B

El

IC

IAA IA IB IC

Figure 2.10: Approximate Equivalencies between Classes [40]
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Figure 2.11 shows another equivalency table between FSICR and IACS Polar Class rules.

IACS

Navigation IA PC7 in Atic Waters
in Su

FSICR

Figure 2.11: Ice-Class Equivalencies between FSICR and IACS [17]

Several of these ice-class notations are used in the analysis and discussion of ice-classing

impacts for containerships in Section 3.5.



3.0 Chapter 3: Arctic Containerships

3.1 Introduction

Arctic containerships are significantly different than their conventional (or open water)

counterparts. The design implications of an ice-classed containership are described as well as a survey of

the current ice-classed containership fleet. This survey shows the profile of the different ice-classes, with

the lowest ice-classes being the most prevalent. The implications of an ice-classed design are far-

reaching, from the hull form and structure to the power and auxiliary systems. Then, the Aker study is

examined to obtain baseline sizes for the containerships that are analyzed [6]. The analysis of the

different sized containerships begins in Section 3.5.

3.2 Fleet Survey

Three classification societies' fleets were analyzed to determine the allocation of the different

ice-classes. Lloyd's Registers' database of ice-classed containerships was examined and the distribution

of the different classes was determined. Figure 3.1 shows the majority (76%) of the containerships

classed as ice-class were the lowest Finnish-Swedish Ice-Class available (FSII). This class is defined as

"ships that have a steel hull and that are structurally fit for navigation in the open sea and that, despite

not being strengthened for navigation in ice, are capable of navigating in very light ice conditions with

their own propulsion machinery" [26].



1A Super 1B
1 0/ 1 0/

Figure 3.1: Lloyd's Register Ice-Class Fleet (1,350 Containerships)

The Germanischer Lloyd's ice-class fleet was also analyzed. Approximately one-third of their ice fleet

consists of containerships (2,631 Ice-Class Vessels in Fleet). The profile of the fleet of containerships was

examined in Figure 3.2. More than half of the fleet was classed at the two lowest classes (1C and 1B).

Approximately 97% were classed at the 1A, 1B, and 1C ice-classes.

1A Super; 29
1C; 282

1A; 411

1B; 197

Figure 3.2: Germanischer Lloyd's Baltic Ice-Class Fleet (919 Containerships) [28]



Finally, DNV's fleet was studied. Their fleet of containerships was considerably smaller in size

(DNV mostly classes tankers), but similar trends were seen. Figure 3.3 shows the distribution of ice-

classes. More than 80% of the containerships were classed at the two lowest classes (1C and 1B).

DNV Fleet Survey

Figure 3.3: DNV's Containership Fleet Survey (31 Containerships)
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3.3 Impact of Ice-Class on Vessel Design

Ships whose missions take them into ice-covered waters must be designed to operate

effectively in an environment distinguished by cold temperatures, remote locations, and the presence of

sea ice. Sea ice can be from a few centimeters to several meters thick, take on a variety of

morphological forms, and change on daily, seasonal, and annual bases [40].

The choice of ice capabilities of the vessel depends on the amount of time spent in ice-covered

water relative to open water, the ice conditions on the transportation service route, and on the

availability and costs of icebreaker escort services on specific routes. Additionally, operational flexibility

and the second hand market could be factors.

Usually an icebreaker would be expected to achieve about 10 to 12 knots in ice conditions

considered normal in its operating area. In heavier ice conditions, a lower speed, about 6 knots, is

acceptable. The ability to break a given thickness of ice at a minimum continuous speed of about 2 knots

is the usual measure of performance [40].

For most commercial ships, the effects of ice-classing are incremental: increasing scantlings and

propulsion power leads to a higher capital cost and loss of cargo capacity. But for ships with icebreaking

as their primary mission, ice has a more fundamental impact on design.

3.3.1 Hull Form

3.3.1.1 General Arrangements

The general arrangements of ice-going vessels can vary widely due to their diverse missions.

Since the ports in the Arctic are usually remote, vessels may carry their own cargo handling gear. Also,

endurance is a factor, so tank capacities and storage for spares and provisions are more important than

for a conventional vessel. The extreme cold and darkness call for several other amenities not commonly



found on ships: more interior access ways and equipment operating spaces, adequate heating,

insulation, air conditioning, and extra lighting. Additionally, the noise and vibration from icebreaking

should be kept in mind when designing accommodation spaces.

Escort icebreakers typically have a clear deck aft to accommodate towing operations. This can

include a stern notch. Also, helicopters are usually carried on-board icebreakers, so a helicopter deck is

needed. Most importantly, the bridge needs to have excellent visibility in all directions.

The Oden is a Baltic escort icebreaker with Arctic icebreaking capabilities shown in Figure 3.4.

Several features shown are the stern notch, helicopter deck, and clear decks forward and aft. Some

noteworthy hull form features include a wide forward form incorporating reamers (discussed more in

Section 3.3.1.2), an ice clearing wedge at bottom, a shallow icebreaking stern, and a rugged

arrangement of twin rudders and propellers in nozzles [40].

nw4 VIF
POQILE

Figure 3.4: General Arrangements of the Oden [40]



3.3.1.2 Shape

The design of the hull form for an icebreaking vessel is a compromise between icebreaking and

open water performance. The appropriate balance is determined specifically for each ship's mission.

Improved icebreaking performance usually comes at the expense of open water resistance and

seakeeping.

To break level ice effectively, the bow form should promote flexural failure instead of crushing.

This means a shallow stem, buttock, and flare angles. This form also eases the submergence of the ice.

To promote good ice clearance, shallow waterlines and a fine fore body should be utilized. However it is

difficult to reconcile a good icebreaking form with superior ice clearing. The progress of all vessels is

impeded in ice-clogged channels, but those with shallow bow angles and relatively blunt fore bodies

tend to suffer the most. Shallow refers to small buttock and flare angles. Figure 3.5 shows these bow

form characteristics.
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Figure 3.5: Bow Form Characteristics [40]
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A bulbous bow is probably not appropriate for icebreaking. A bulb is not effective in breaking

ice, has poor clearing attributes, and presents difficulties for some towing arrangements.

Clearing is particularly important when navigating in very close thick pack ice or in brash ice-

clogged channels. Submerged ice can accumulate at the bow and impede or stop progress. Additionally,

these ice pieces can slide along the entire length and reemerge along the buttocks leading to the

propeller. Propeller-ice interactions can severely hinder propulsion performance. To deal with this, a

clearing wedge can be incorporated into the hull to promote clearing to the sides. This feature can be

seen in Figures 3.4, 3.5, and 3.6.

To prevent the vessel from becoming beached during aggressive ramming of ridges and thick ice

floes, an ice skeg (or foot) can be fit to the bow to limit the extent to which the vessel can ride up on the

ice feature (See Figures 3.4, 3.5, and 3.6). Figure 3.6 shows several examples of icebreaking hull shapes.
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Figure 3.6: Icebreaker Hull Forms [40]



For conventional icebreakers, a gradual transition from the bow to the midbody is usually

employed. This avoids excessive crushing at the shoulders during forward icebreaking and maneuvering.

Some icebreakers have sloped sides (about 80 from vertical) along the midbody to provide some force

for the ice to fail in bending rather than crushing. This can improve maneuvering where the midbody

comes into contact with the ice, but can complicate the internal structure [40].

Frictional resistance (from both water and ice) can be kept to a minimum with a good bow form,

which breaks a channel wide enough for the rest of the vessel to pass through. Some icebreakers have

bows that include reamers, so that the bow is wider than the midbody (See Figure 3.4).

The design of an icebreaker's stern is driven by the required icebreaking capabilities, the

propulsion system (conventional shafting vs. Z-drives or Azipods, single, twin, or triple screw, and open

or ducted propellers), and the protection of the propulsion gear. The stern also has shallow buttocks at

the waterline for reverse icebreaking. Reamers in the bow are a disadvantage when operating in reverse

and some auxiliary systems, such as a water wash (described in Section 3.3.3) system, can be used to

mitigate this disadvantage [40].

Several methods have been used to protect rudders and propellers from ice. Ice knives aft of the

rudders are intended to deflect and split ice floes when operating in reverse. They are also used to

prevent the ship from excessive ride up on an ice feature, like the ice skeg on the bow.

The importance of bow shape can be seen by analyzing the characteristics of three different

bow shapes for two different ice-classes as shown in Table 3.1. The table compares two ice-classes to

the open water variant. For each ice-class, three different bow shapes were analyzed. Most of the

additional weight was added in the forward section of the hull (50% to 60% of the extra hull steel). The

effect: on power is tremendous. For the 1A Super class, the power ranges from 15MW to 40MW; that's

almost three times as much power for a change in bow shape.

49



Table 3.1: Effect of Bow Shape on Power [48]

3.3.1.2 Structure

The structure of an ice-capable ship is designed to resist local loads due to ice contact and global

loads associated with ramming-type operations. Vibration, caused by icebreaking and high installed

power, is also a consideration. Special steel grades with adequate fracture toughness are used because

of the very low temperatures encountered. To reduce the steel weight, usually higher strength steels

are used, which can complicate the fabrication, especially the welding [40].

Ice loads are very difficult to quantify. Efforts are underway to better predict these loads.

Several full-scale measurement programs have shed new light on this area of research recently. Using

this data, a nominal uniform average pressure and corresponding load area could be deduced for future

designs [40].

For the speeds used in icebreaking, the ice at the interface fails in a brittle manner and the

contact pressure over a nominal contact area tends to be highly concentrated in relatively small regions

distributed within that area. This causes local ice failure and rapid changes in the locations of the

concentrated high contact pressure. Additionally, the variability of the mechanical properties of ice

(which affect failure) complicates the contact loading phenomena further. There are also interaction

Ice-Class PB (MW) PB (hp) Aft (t) Midship (t) Forward (t) Total (t) A Increase ANEW (t)

IA 15.0 20,115 61 261 529 851 4.4% 20,251
22.5 30,173 79 299 583 961 5.0% 20,361
30.0 40,231 93 330 628 1,051 5.4% 20,451

IA Super 15.0 20,115 142 453 605 1,200 6.2% 20,600
27.5 36,878 176 528 698 1,402 7.2% 20,802
40.0 53,641 202 586 770 1,558 8.0% 20,958

Open Water Hull Steel Weight = 19,400 t



effects like global body motions due to contact loads and local structural deflection, that influence the

ice loads [40].

An ice load model must capture the magnitudes of the design loads corresponding to full-scale

experience and the contact areas and pressures reflecting the pressure-area relationship (the design

pressure is higher for local structural members than for larger structural assemblies).

Lately, a move from using the first yield (elastic limit) as a design criterion to using the large

strength reserve in ductile steel plate due to its plasticity is being incorporated into the design criterion.

Using plastic design criteria, permanent set is acceptable, but rupture is still avoided [40].

Structural failure of the support structure can take the form of bending, shear failure, fracture,

and local buckling and tripping instability. To prevent these failure types, each member must have an

adequate section modulus, shear area, and fracture toughness. When aggressive ramming is part of a

ship's mission, the deck and bottom stresses due to global bending are kept within permissible limits by

ensuring adequate hull girder section modulus.

Another consideration for a vessel's structure is brittle fracture. Ice-capable ships are especially

prone to this condition due to their operating environment (air temperatures of -200C to -500C and

water temperatures of 00C), their mission (causes high local stresses and intermediate strain), and their

thick plating (increases the number of flaws that can propagate). This has caused the use of high-

strength steels to become a requirement for most classification societies. The most likely sources of

defects are the weld metal and heat-affected zone of the base metal [40].

The use of high strength steels is becoming more prevalent in the design of icebreakers. Using

higher strength steel reduces weight and provides flexibility to the designer. In the Oden design (Figure

3.4), high strength and extra high strength steel were extensively used (ov = 355 Mpa and oy = 500 Mpa),



which offered shell weight savings of about 18% and 30%, respectively, over conventional steel (oy = 245

Mpa) [40].

The hull can be separated into various sections, depending on the frequency and the severity of

the ice loads. Figure 3.7 shows these respective areas.

Transition areas

Bow area
Midbody &
Stern area Skeg area

Bottom area

Figure 3.7: Ice-Strengthened Hull Areas [40]

The classification societies usually state maximum design loads that are based on ship-ice

interaction models that are calibrated with full-scale measurements. The design loads depend on

displacement and power and are applied to different structural members according to a pressure-area

relationship. Scantlings are determined using elasto-plastic design criteria that permit stresses in excess

of yield so that some permanent deformation is acceptable. This leads to thinner plate, bigger frames,

and larger frame spacing over traditional ship structural design methods [40].

3.3.2 Propulsion

The propulsion system for an icebreaker is selected similarly to that of conventional ships. The

selection is based on capital and operating costs, reliability, power to weight ratio, and efficiency.

Additionally, icebreakers need systems that are highly responsive for maneuvering and that can operate



effectively even while subjected to repeated, intermittent, high torque loading due to propeller impacts

with ice.

The medium speed diesel engine is the most common type of prime mover used on icebreakers.

They have relatively good power to weight ratios and fuel consumption, with relatively inexpensive fuel,

and are compact and reliable. One drawback is their relatively poor overtorque capability. The

transmission used deals with this deficiency [40].

The determination of the required power is based on the resistance and propulsion in ice.

Decisions on the necessary power are increasingly being made on the basis of model testing. Figure 3.8

shows typical ice and open water resistance curves. The rate of increase of the ice curve is comparable

to a quadratic while a cubic is fitted to the open water curve [43, 63].
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The transmission type is either a geared diesel or a diesel-electric system. Geared diesels have a

higher efficiency and are lighter, more compact, less costly, and simpler although the ice loads pose

some complications. The high transient ice torque loads necessitate a large flywheel to ensure that the

shaft continues to rotate without a sudden loss of speed when the propeller mills ice. Also, controllable

pitch propellers with a rapid pitch control capability can be used to accommodate high ice torque loads.

Diesel-electric systems cope better with the ice torque loads by decreasing shaft speed. Diesel-electric

systems have excellent speed-torque characteristics and flexibility, in both power output and

arrangement [40].

A single centerline screw on a horizontal shaft is the most common arrangement used on ice

strengthened cargo ships. Most icebreakers have two or three propellers. Multiple propellers offer

redundancy in case of damage, flexible use of power, and enhanced maneuverability. Azimuthing

propellers are becoming popular as they eliminate the need for rudders, shafting, and brackets so the

flow into the propeller is more uniform [40].

The propeller also has to be strengthened for the ice. The extra strength requirements and high

thrust loading results in high strength material, thick blade sections, large blade areas, large hubs, and

little or no rake. Some propellers have the individual blades bolted to the hub, which makes for easier

replacement if one blade is damaged [40]. There are advantages and disadvantages to either fixed pitch

(FPP) or controllable pitch (CPP) propellers. They are related to the machinery commonly used with

each: diesel-electric for FPP and geared diesel for CPP. To ensure the pitch control for the CPP is

adequately strong and protected, the hub is large (35 to 40% of the propeller diameter). This causes a

loss of efficiency and CPPs are relatively expensive. However, CPPs are good for a vessel that operates

over a wide range of loading conditions and eliminates the need for shaft reversals, thus avoiding low



speed and stopped propeller conditions under which a propeller is particularly vulnerable to ice damage.

However, FPPs reverse performance is superior to that of the CPPs.

There are several methods to protect a propeller from ice damage: use a duct, locate the

propeller as close to centerline as possible, reduce the propeller diameter in order to limit torque loads,

use ice deflecting devices, use ice horns and rudders for reverse operation, and for forward operations

use a large skeg or ice wedge. However, all of these devices have drawbacks [40].

3.3.3 Auxiliary Systems

There are a variety of auxiliary systems that are employed to aid the icebreaking process, reduce

resistance, or improve propulsive performance. Low friction paint is one of the simplest. Another

method is an air bubbler system that pumps compressed air at the midbody and bow to reduce

frictional resistance. This system works best at low speeds. A water deluge, or water wash, system

sprays large volumes of water under low pressure on the ice from above the waterline at the bow. This

reduces friction, overburdens the ice, and promotes submergence of ice pieces. Also, heeling tanks are

used to aid in icebreaking and increase maneuverability. By transferring water between the tanks in

rapid succession, the ship can proceed through heavy ice conditions in a 'duck walk' (rocking/swaying

motion). All of these systems require power that could be incorporated into the propulsion plant [40].

3.3.4 Operation in Ice

Successful passage through ice-choked waters depends on the freedom to maneuver. The safety

of the vessel is dependent primarily on the operational aspects (mainly speed) and the structural

capability of the vessel. There are three basic ship handling rules when encountering ice:

- Keep moving, even if very slowly.

- Work with the ice movement and not against it.

- Excessive speed leads to ice damage.



Additionally, the severe cold could cause a reduction in the standard operating procedures for radio and

navigational equipment.

The crew will be exposed to continuous freezing temperatures and darkness, which will

deteriorate their performance, thus reducing the safety of the vessel. Each crew member should be

familiar with the signs and treatments of hypothermia. Furthermore, an Ice Navigator should be on

board vessels operating in Arctic ice-covered waters [20].

3.3.5 Other Requirements

3.3.5.1 Stability

Icebreakers have special stability requirements due to the potential for icing (discussed in

Section 3.5.4.1). Damage stability requirements are also more stringent. In order to ensure safe passage,

there are additional minimum navigation and equipment requirements.

3.3.5.2 Pollution Prevention Provisions

Each classification society and country has a different set of environmental rules. Russia requires

a wastewater treatment facility with a thirty day holding tank. Also, a bilge water separator is mandated

and there are bilge water and garbage discharge restrictions. The vessel must have a double bottom

with no storage of petroleum products. Canada implements a zero-discharge of water policy (with minor

exceptions). Similarly, there are bilge water discharge restrictions and no pollutants can be stored on the

ship side or bottom [17].



3.4 Aker Study Comparison [6]

3.4.1 Overview

Aker Arctic Technology performed the study, "Arctic Shuttle Container Link from Alaska US to

Europe," in March 2006. In this paper, two containerships were considered: a 750 TEU vessel and a 5000

TEU vessel. One major difference between the 750 TEU and 5000 TEU containerships is the draft. The

larger vessel cannot sail on the coastal route; therefore, it must navigate the Arctic polar pack ice on the

more northern route [6]. Accordingly, the ice conditions are more difficult, increasing her ice

strengthening and power requirements.

3.4.2 Aker's Double Acting Operation

The double acting concept is patented by Aker. A vessel operates bow first in open water and

light ice conditions and stern first in heavy ice conditions. This allows the bow to be designed to be

efficient in open water, which usually includes a bulb. Also, electric propulsion and azimuthing thrusters

must be adopted. The DAS, 'Double Acting Stern,' has no rudder in front of the propellers to impede its

progress. The azimuthing movement of the thrusters makes the reversing steerable, and the ice crushing

effect of the propellers is seen over a wider range, simultaneously enlarging the flushing effect on the

hull surfaces [6].

3.4.3 750 TEU Arctic Containership

The 750 TEU Arctic containership is an improved design of the Norilskiy Nickel. The Norilskiy

Nickel is an operating 650 TEU containership with an ice-class of LU-7 in the Russian Maritime Register.

The Norilskiy Nickel exceeded all performance predictions and has even been known to lead actual

icebreakers in heavy ice conditions. The design of the 750 TEU containership is shown below in Figure

3.9. This vessel is expected to operate in more difficult ice conditions than the Norilskiy Nickel. However,

its ice-class will not include independent operations on the Northern Sea Route year round.
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Figure 3.9: 750 TEU Arctic Containership [6]

3.4.4 5000 TEU Arctic Containership

The 5000 TEU containership is a scaled up (1.5:1) version of the 750 TEU containership with one

hold of parallel mid-body added to achieve capacity. The stern is also modified to allow for a twin pod

arrangement. It will be designed for an ice-class of either LU-8 or LU-9, the two highest Russian Register

ice-classes. Presently, there are no ships designed or constructed meeting these classes. This vessel will

be able to operate year round, even during a 'severe' ice winter. The inboard profile of the 5000 TEU

containership is shown below in Figure 3.10.
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The powering of this vessel may be only 70 to 80 percent of its open water counterparts. This is

because open water containerships of this design travel at 22 to 26 knots while the ice-classed

containership is estimated to achieve 19 knots in open water.

The principal characteristics of the Norilskiy Nickel, the 750 TEU containership, and the 5000 TEU

containership are shown in Table 3.2.

Table 3.2: Principal Characteristics [6]

SI Units - (m, t, kW, knots)

Norilskiy Nickel 750 TEU 5000 TEU

LOA 169 169 281

Lp, 160 160 269

B 23.1 23.1 34.6

D 14.2 14.2 21.3

T 9 9 13.5

Deadweight @ T = 9m 14,500 14,500 68,000

Cargo 12,700 11,200 61,500

Containers 650 815 5,000

Fuel 1,500 3,000 6,000

Shaft Power 13,000 13,000 36,000

Speed 17 17 19

Displacement 100,000

Lightship 32,000



3.5 Open Water, Ice-Strengthened, and Ice-Breaking Containerships

A conventional (or open water) containership, two classes of ice-strengthened containerships,

and an ice-breaking containership will be examined in this section.

Detailed industry analyses were reviewed to determine which ice-class should be used for the

ice-strengthened containership in this analysis. Although the analysis was not performed specifically for

containerships, comparable sizes and ice-classes were found and deemed reasonable.

The first ice-strengthened ship chosen was a compromise between Arctic conditions and open

water. This was to allow greater flexibility of operational area, thus as to not restrict the containership

to only icy waters or to only open water.

This leads to a containership ice-classed at the ABS Al or FS 1A-Super level. These classes have

the ability to operate in first-year medium ice of 0.6 - 1.2 meters. To meet these requirements an

increase in the lightship of 2% was seen with no additional power being necessary. The increase in

lightship should have a minimal effect on the ship's operations. Also examined were containerships ice-

classed at the ABS A3 level (higher ice-strengthened) and ABS A5 level (independent icebreaker).

The three different ice-classes will be compared to the open water variant in several areas

relating to cost. First, the increase in weight is analyzed and the effect on the capital cost is found. Then,

the power and fuel consumption are examined and their effect on the operating costs are determined.

3.5.1 Capital Cost

The capital cost of an ice-classed containership will be higher than a conventional containership.

The hull steel weight will be higher for an ice-classed vessel, increasing construction costs. Additionally,

several auxiliary systems must be installed on the vessel to enable safe operating in Arctic waters



(described in Section 3.3.3). The additional costs for the auxiliary systems were not included in the

analysis of the construction costs.

3.5.1.1 Hull Steel and Lightship Weight

Several methods were used to calculate the lightship and hull steel weight. Data provided by

industry contacts and a proprietary HEC-ABS report were all used and compared to determine these

values. This data is summarized in Appendix A. The increase in weight derives primarily from thicker

shell plating, especially in the ice belt, and closer framing. This is the hull steel weight, a component of

the lightship weight.

Using data provided by industry and the calculations made using the HEC-ABS model, Figures

3.11 and 3.12 show the trend for increasing hull steel weight and lightship weight, respectively, as the

ice-class increases (plotted in terms of the Russian LU system).

Figure 3.11: Increase in Hull Steel due to Ice-Class
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Figure 3.12: Increase in Lightship due to Ice-Class

From the data in Appendix A, it was determined that, in general, a 5% increase in hull steel

weight results in roughly a 3% increase in lightship weight. However, actual data was available and used

for the Al, A3, and A5 ice-classed containerships.

3.5.1.2 Construction Costs

In order to estimate the relationship between the construction cost and the hull steel weight for

the ice-class vessels in question, the construction costs of other representative ice-classed

containerships were determined using the proprietary HEC-ABS model and industry values. These

representative containerships and their costs are shown in Table 3.3. The ABS DO class cost was taken

from industry data. For the 5000 TEU vessel, costs were calculated for both the open water and LU-8 or

LU-9 ice-class using the HEC-ABS model since the parametric model was for larger containerships. This

model breaks the ship's weight into several categories including: hull steel, coatings, accommodation

outfit, hull outfit and piping, cargo equipment, machinery and electrical, and engineering and fees.



Table 3.3: Cost of Different Ice-Classed Containerships [50]

Ice-Class Length TEU Cost % Increase

(m) (Million)

ABS DO Class 283 4800 $90

Open Water 269 5000 $91.3

RMRS LU-8 or LU-9 269 5000 $110.9 21.5%

Figure 3.13 shows the building prices for several different size conventional containerships.

Figure 3.13: Building Prices for Containerships [59]

Using these values, the calculated ice-class values were plotted. Figure 3.14 shows that the open

water value follows the trend and the ice-classed values are above their open water counterparts. The

DO Class is only slightly above the trend since it is a very low ice-class (See Section 2.8).
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Figure 3.14: Comparison of Open Water and Ice-Classed Containership Prices [59]

In summary, the data show that for a 10% increase in hull steel weight, cost increases by roughly

4%. This relationship is used in Section 3.5.3 to determine the total cost for the Al, A3, and A5 ice-

classed containerships.

3.5.2 Operating Costs

The operating costs of an ice-classed containership will be higher than a conventional

containership. The power and, thus, fuel consumption will be significantly higher for an ice-classed

vessel, increasing operating costs. Additionally, the crew must have experience operating in ice,

resulting in higher wages (described in Section 3.5.4.2). Also, the insurance costs more for an ice-classed

vessel for obvious reasons. The additional crew and insurance costs were not included in the analysis of

the operating costs.
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3.5.2.1 Resistance and Power Calculations

The effect of added hull steel weight on fuel consumption is analyzed in this section. The

additional weight increases the resistance of the ice-classed containership, resulting in a lower

maximum speed. Furthermore, the specific fuel consumption of an ice-classed containership will be

compared to the open water specific fuel consumption of a conventional containership.

Calculations were performed on the vessel described below. Industry contacts provided

information about the weight and power of this vessel at several different ice-classes. Table 3.4 shows

the principal dimensions of the ship. This vessel is very similar in size to the 5000 TEU containership that

is being analyzed.

Table 3.4: General Characteristics of Ship

LOA 279 m

LBp 266 m

B 42.6 m
T 11.3 m
D 26 m

C B  0.75

Asw 107,000 MT

Vs  20.1 knots

Power, Installed 29,050 kW
Power, NCR 24,700 kW

Compared to the 5000 TEU Ship

LBp 269 m

Asw 100,000 MT

To determine the increased resistance of the ice-classed containerships, the overall approach is

to calculate the total resistance of the baseline (open water) ship and then determine the changes in the

resistance coefficients for the ice-classed ships.



Several assumptions are relevant to this approach. The first is that the assumed operating speed

for the analysis is 20.1 knots. Others are that the ship is operating at 70 0F in salt water and is wall-sided.

The wall-sided assumption may lead to some errors when higher ice-classes (greater increase in weight,

thus more sinkage) are analyzed, but will be considered sufficient for the work presented below.

Additionally, it is assumed the extra hull steel weight is distributed evenly; this allows the use of TPI

without trim concerns. Table 3.5 shows the assumed values used in the following calculations.

Table 3.5: Given and Assumed Values for Fuel Calculations

Installed Power

NCR Power

Speed

Displacement

Sea Margin

Length
Beam

Kinematic Viscosity

Density

Waterplane Coefficient

Residual Resistance Coefficient
TPI

U.

29,050
24,700
20.1

107,000
15

266
42.6

1.1057 x 10-5

1.9876

0.61

5 x 10 -4

180

The total resistance for the open water ship was calculated using the following equation:

P
R = -

vs

The installed power value is used since the analysis is relative and to facilitate comparison of the

actual vs. required installed power for the ice-classed ships. The next step is to determine the baseline

resistance coefficients for the open water ship.

kW

kW

knots

MT

m
m

ft2/s

lbfs 2/ft4

MT/in



The open water frictional resistance coefficient was calculated using the ITTC 1957 Formula with

the Reynold's number, as shown below.

Vs L
ReN = = 2.68 x 109

0.075C-=
CF = (loglo(ReN) - 2)2

Also, the Froude number and speed to length ratio were found using:

Vs
Fr - = 0.202

V
Speed-to-Length Ratio = 7 = 0.68

The open water residual resistance coefficient was then determined. Table 3.6 describes the

characteristics of a containership for which the residual resistance coefficients are known at various

speeds. Figure 3.15 shows the corresponding residual resistance coefficient plotted against Froude

number with a red line marking the Froude number of the ship analyzed for this section's calculations.

Table 3.6: Principal Characteristics of the Containership in the Graph Below [52]

LBp 230 m

B 32.2 m

T 10.8 m

CB 0.65

WSA 9,424 m
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Figure 3.15: Experimental Dependence of Residual Resistance Coefficient on Froude Number [52]

After reviewing the various sources [52, 64, 31] and Figure 3.15, a residual resistance coefficient

of 5 x 10-4 was used for the open water vessel in the calculations.

Next, the total resistance coefficient for the open water ship was determined, using the

following equation:

CT = CF + CR

Since the change in resistance was examined, a correlation allowance was not used since it

would drop out.

The wetted surface area of the open water ship was caluclated, using the following equation:

RT
WSA =

C2 psw V 2



Now, the frictional resistance and residual resistance for the ice-class cases are determined. The

new frictional resistance was found using the following formula.

1
RF,New = S CF Psw Vs2 (WSA + WSAAdd'l)

To determine the additional wetted surface area, the TPI is found. Figures 3.16 and 3.17 show

trends for the TPI for containerships of different sizes. This data is used to parametrically determine a

suitable TPI to use in the calculations to obtain additional wetted surface area due to the added weight

of the additional steel. The parametric analysis led to a TPI of 180 being used for the ship.

Figure 3.16: TPI for Different Size Containerships [22]
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Figure 3.17: TPI for Different Size Containerships [22]

Using the TPI and the extra weight (additional hull steel), the sinkage (or immersion) of the ship

was found:

AAdd'l
hlImmersed -

TPI

The waterplane coefficient was found using the formula below.

= AAddl
Psw L B (hImmersed)

The extra submerged volume was calculated using the waterplane coefficient.

VAddl,= CWP L B (himmersed)

As a cheek, the extra weight was found to make sure it correlates to the previous value.

AAddd = PSW VAddrl
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The wetted length was determined using the equation below.

Lwetted = B + 2 L

The additional wetted surface area was found, assuming the ship is wall-sided, which is plugged

into the above RF,New equation.

WSAAdd,- = Lwetted himmersed

To determine estimates of the residual resistance coefficient when the displacement of the

vessel was increased, the US Navy's Advanced Surface Ship Evaluation Tool (ASSET) was used. Table 3.7

shows the ships that were analyzed in ASSET. The Resistance Module was used to analyze the Full Load

and Average Displacement conditions, thus providing the residual and frictional resistance at two

different displacements. The operating speed of the containership being analyzed is 20.1 knots, so the

resistance at 20 and 21 knots was examined.

Table 3.7: Comparison of ASSET Ships with the Containerships

Ship LBp B T A % Change

(m) (m) (m) (MT) in A

SEALIFT FTV MKI 193.5 32.2 10.4 42,523 1.28%

TAO 187 198.1 29.8 10.5 41,319 1.00%

AOE 6 222.5 32.6 11.7 48,679 2.13%

LSD 41 176.8 25.6 5.9 14,736 2.22%

PD 337E 183.9 32.2 9.1 36,390 2.43%

LPD 17 200.0 29.5 7.0 22,635 2.72%

5000 TEU Containership 269.0 34.6 13.5 100,000
Comparison Ship - Open Water 266.0 42.6 11.3 107,000 0.00%
Comparison Ship - Al 0.75%

Comparison Ship - A3 4.26%
Comparison Ship - A5 13.0%



Table 3.8 shows the percentage change in residual resistance due to a percentage change in

displacement.

Table 3.8: Effect of Changing Displacement on Residual Resistance

20 knots 21 knots

Ship %Change %Change %RR/%A %Change %Change %RR/%A
in RR in RF in RR in RF

SEALIFT FTV MKI 0.73% 0.56% 57.0% 0.68% 0.56% 53.3%
TAO 187 0.67% 0.62% 66.8% 0.74% 0.62% 74.3%
AOE 6 1.23% 1.16% 57.9% 1.29% 1.15% 60.7%
LSD 41 0.40% 1.03% 18.0% 1.13% 1.04% 51.1%
PD 337E 0.62% 1.33% 25.4% 0.23% 1.33% 9.6%
LPD 17 1.67% 1.61% 61.3% 0.93% 1.60% 34.1%

After analyzing the ASSET data, the relationship identified was that the residual resistance

coefficient increased by 50% of the displacement increase. For example, if the displacement increased

10%, the residual resistance coefficient was increased 5%.

The total resistance was then determined for each ice-class case, using the following equation:

RT,New = RF,New + RR,New

Then the new required power for each ice-class was found, using the equation below.

P = RT,New (Vs)



Tables 3.9 and 3.10 show the results of the calculations outlined above. The installed power is

the power installed on the icebreaking ships, while the required power is that power required to

maintain the 20.1 knots (operating speed) in open water.

Table 3.9: Change in Draft with Differing Ice-Classes

Ice-Class Increase in % Increase % Increase Immersion New

LS Weight in Lightship in Overall Draft

(ABS) (MT) Weight Weight (in) (m)

Al 800 2.78% 0.75% 4.44 11.41

A3 4,557 13.7% 4.3% 25.3 11.94

A5 13,892 48.2% 13.0% 77.2 13.26

Open - 28,800 MT 107,000 MT - 11.3 m

Table 3.10: Change in Power with Differing Ice-Classes

Ice-Class New Power % Increase Installed % Increase

Required to in Power Power Installed over

(ABS) Maintain Speed to Maintain Required Power
(kW) Speed (kW)

Al 29,129 0.27% 29,050 -0.27%

A3 29,501 1.55% 41,845 41.8%

A5 30,424 4.73% 102,370 236%

Open 29,050 kW - 29,050 kW -

As an aside, the installed power for the A5 class is reasonable even though it is over 230%

greater than the power required to maintain the open water speed. The most powerful icebreaker in the

world has two nuclear reactors which develop approximately 500,000 horsepower (=360,000 kW), and

has a huge steel ice belt 5 meters wide that can easily break through ice up to 2.5 meters thick [33].
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Figure 3.18 shows the effect the added steel weight has on the power requirements of the ship

in open water. See Appendix B for the description of nominal ice-classes.

Figure 3.18: Power Required to Maintain Speed in Open Water
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Figure 3.19 shows the decrease in speed as the weight increases if the power isn't changed. For

the highest ice-class, the maximum open water speed decreases about one knot.
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Figure 3.19: Difference in Speed with Increased Weight



Figure 3.20 shows both the installed and required power for the ship over the three different

ice-classes and open water. For the A3 ice-class, about 1.4 times the power was installed on the ship and

for the A5 ice-class, about 3.4 times the required power was installed. This extra power is installed as

part of the ice-class rules (stating a minimum power) and includes several factors of safety. Also, towing

is usually part of an icebreaker's mission, which substantially increases the installed power. This aspect

was not taken into account in these calculations; only the power necessary to maintain the given

operating speed was found.
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Figure 3.20: The Installed Power and Required Power for Differing Ice-Classes



3.5.2.2 Fuel Consumption Calculations

Next, the fuel consumptions were calculated for the open water and the three different ice-

classed ships. First, an average fuel consumption for an open water containership was found using

various sources.

Figure 3.21 shows an average specific fuel consumption of 135 g/bhp-hr, which is equivalent to

181 g/kW-hr.
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Figure 3.21: Specific Fuel Consumption Over Time [30]



Table 3.11 shows several medium speed diesels' power and fuel consumption data. The 85%

load was assumed to be the normal operating load.

Table 3.11: Specific Fuel Oil Consumption for Various Man B&W Medium Speed Marine Diesel
Engines [21]

Percent Load

100 85 75 50 25
Engine Power Speed

Preliminary Fuel Consumption with MGO
(kW/Cylinder) (RPM) propeller operation and with all attached pumps*

(g/kW-hr)

28/33D STC 420 1000 190 188 192 194 198
28/33D 450 1000 190 188 189 197 217
L+V 32/40 500 750 181 179 180 185 198
L 32/44CR for Emission Standard DNV Clean Design 550 750 180 178 185 190 204
L 32/44 CR 560 750 177 175 179 184 197
L 40/54 720 550 183 181 182 188 200
L+V 51/60 DF 975/1000 500/514 184 183 184 190
L 48/60B 1200 500/514 178 175 178 186 203
V 48/60B 1200 500/514 176 173 176 184 201
L 48/60CR 1200 500/514 178 175 178 183 190
V 48/60CR 1200 500/514 176 173 176 181 197
L 48/60CR IMO Tier 11 1200 500/514 180 176 180 185 201
V 48/60CR IMO Tier II 1200 500/514 178 174 178 183 199
L 58/64 1310/1400 400/428 174 173 177 186 199

*Tolerance Warranty +5%

For the purposes of this thesis, a specific fuel consumption of 180 g/kW-hr will be assumed for a

conventional containership. There is a 5% margin on the numbers given by industry (in Table 3.11).

However, the relative changes will be examined for the purposes of this work.



Tables 3.12 and 3.13 show the results of the above calculations. A price of $450/MT of MDO was

used in the calculations [14]. Also, the ship was assumed to be operating 8,400 hours a year (350 days).

Again, the required power is that needed to maintain the given operating speed in open water and the

installed power is the power that is installed on the icebreaking variant of the vessel.

Table 3.12: Change in Specific Fuel Consumption with Differing Ice-Classes using Required Power

Required Power

Ice-Class SFC SFC Hours of Fuel % Increase Price

(85%) (Increased) Operation Usage in Fuel using MDO

(ABS) Usage

(g/kW-hr) (g/kW-hr) (hr) (MT)

Al - 180.5 8,400 44,163 0.54% $19,873,269

A3 - 182.8 8,400 45,298 3.13% $20,384,105

A5 - 188.5 8,400 48,177 9.68% $21,679,576

Open 180.0 - 8,400 43,924 - $19,765,620

Table 3.13: Change in Specific Fuel Consumption with Differing Ice-Classes using Installed Power

Installed Power

Ice-Class SFC SFC Hours of Fuel % Increase Price

(85%) (Increased) Operation Usage in Fuel using MDO

(ABS) Usage
(g/kW-hr) (g/kW-hr) (hr) (MT)

Al 180.5 8,400 44,043 0.27% $19,819,372

A3 182.8 8,400 64,252 46.3% $28,913,414

A5 - 188.5 8,400 162,104 269% $72,946,698

Open 180.0 8,400 43,924 - $19,765,620



3.5.3 Cost Summary

To estimate the total increase in cost for an ice-classed containership, the costs were broken

down into several categories as shown in Figure 3.22. These percentages are derived from Russell

Pollock's thesis, the "Economic Feasibility of Shipping Containers through the Arctic". Thus, hull steel

comprises 9% of the total cost and fuel makes up 56% of the total cost.

Total Cost

Capital Costs Operating Costs

30% 70%

Fuel Other

80% 20%

Capital Costs

--------------------------------

Steel Other

30% 70%

Figure 3.22: Ship Cost Breakdown



Table 3.14 shows the effect of different ice-classes on the weight, power, fuel consumption, and cost of

containerships.

Table 3.14: Overall Summary of Ice-Class Differences

Percentage Increase over Open Water Ice-Class
Al (FS 1A-Super) A3 A5 (PC1)

Weight (Lightship) 2.8% 15.8% 48.2%
Weight (Hull Steel) 2.7% 15.5% 35.4%
Power (Installed) -0.3% 41.8% 236%
Power (Required) 0.27% 1.55% 4.73%

Fuel Consumption (Installed) 0.27% 46.3% 269%
Fuel Consumption (Required) 0.54% 3.13% 9.68%

Cost - Steel 1.1% 6.20% 14.1%
Cost - Fuel 0.27% 46.3% 269%
Cost - Total 0.25% 26.5% 152%

Note: Installed - Power installed on the icebreaking variant of the vessel to satisfy the higher
power demand (ice-breaking or max speed).

Required - Power needed to maintain the given operating speed in open water.

As seen, the increases in installed power have the greatest impact on total cost, particularly for

the A3 and A5 ice-classes.

3.5.4 Other Cost Considerations

3.5.4.1 Icing

An ice-classed ship needs to have many additional features. An ANTI-ICE class notation can be

achieved if several criteria are met. These deal primarily with the prevention of icing of ship structures

and equipment: including anchor and mooring equipment, lifeboat hook releasing devices, survival craft

launching arrangements, liferafts, special Arctic foam for firefighting, pre-heated combustion air,

insulation, defrosters for navigation-related areas on deck, use of special ice-resistant materials, and

special cold-weather outfits for the crew [57, 58]. The steel above the waterline is exposed to harsh

conditions including temperatures around -400C. Sonar and helicopters (electromagnetic imaging for

icebergs) can also be used to detect current ice conditions.



DNV has a similar notation to provide additional protection in the Arctic. The DEICE notation

provides operational safety through proactive preparation. The ship has to be outfitted with de-icing

equipment to remove ice within a period of 4-6 hours. It is important to keep certain areas where

continuous operation is required, such as navigational equipment and fire lines, ice-free. If this

equipment becomes ice-covered, the level of safety decreases substantially [43].

Icing usually leads to several problems including the impairment of stability due to the lifted

center of gravity, the limitation on safe navigation caused by antenna and radar equipment being out of

operation, and icing on wheelhouse windows. In addition, liferaft release mechanisms may become

jammed, scuppers can clog, and gangways and railings are unsafe to use.

All of these extras, increasing a ship's capability to operate in the Arctic, lead to an increase in

cost. Additionally, supplemental insurance is usually required for operations in the Arctic. There has

been an increase in the number of ice-related claims. Usually the ice damage is a small incident that

turns into a major claim because of the remoteness of the location [46].

Ice navigation poses additional stability issues. The ship is subject to movements from ramming

and ice impacts as it moves through the ice. Also, damage stability criteria must be able to withstand

flooding resulting from hull penetration due to ice damage, and to return the ship to equilibrium after

such damage. When hot cargoes are carried, a thermal stress is created in the hull, so the permissible

still water bending moments should be reduced. Additionally, rapid icing can occur since large quantities

of sea spray hit the ship. This can result in topside ice accumulations of over 10cm. This may adversely

affect the ship's stability [20].



When navigating in the Russian Arctic, an Ice Certificate is required. There are also different

rules in effect, for example, the 'sanitary rules', which include requirements for noise, vibration and

ventilation [43].

3.5.4.2 Crew

When a vessel is operating in ice, the major increase in noise and vibration will affect the crew's

ability to get proper rest when off duty, and thus reduce their ability to work safely while on duty. There

is research underway to improve human performance in cold and dark conditions. The skill and

experience of the crew will prove to have a significant and direct impact on the safety level.

Furthermore, most ship operations are different in ice and low temperatures and require experienced

crews in order to maintain the same safety level as for worldwide operations. Unavailability of

competent crews may limit safe operation [43].



4.0 Chapter 4: Conclusions and Recommendations

4.1 General Conclusions

Some experts believe global warming is opening up the Northwest Passage like a hot knife

through butter and predict that it will be an established year-round route within 50 years. However,

some think the Northwest Passage will bring a stop-start trade since ships would be continually

hampered by weather and ice and couldn't meet the modern demands for efficient shipping. With the

added insurance premiums and other increased expenses, the route might not bring in the optimistic

returns some promise [9].

There is concern that the number of ships on order with high ice-class may exceed the need for

the Baltic and Arctic areas. If so, many of these ships will operate only sporadically in ice and will not be

able to build up and maintain the necessary experience to operate safely in cold climates [43].

The acceptance of the Polar Class rules will harmonize all of the ice-classes and make it easier to

transit the Arctic. The basic philosophy of the rules is that the structural strength of the hull and the

power of the propulsion machinery should be able to withstand ice loads with minimum safety margin.

Excessive ice strengthening is avoided for economic reasons [20].

In summary, a voyage from Shanghai to New York via the Panama Canal takes 25 days to

complete, covers 20,000 km and entails Canal fees. The same trip taking the Arctic route through an ice-

free Northwest Passage would be around 16,000 km. Is it cheaper? Open water in the context of ice

navigation merely means water less than 10% of which is covered by ice. Under these circumstances,

there will be fog and plenty of growlers, car-size torpedoes of more or less invisible glacial multi-year

ice, both of these natural impediments require slower speeds. An average of 14 knots is one estimate,

which translates to about 25 days. But then the insurance premium probably wipes out any savings to



be had from the Panama Canal fees. Furthermore, after denting the ship in the Northwest Passage,

there may be a dry docking required [47].

Politics also plays a role in Arctic business. It depends on communicating with Arctic populations

in the sparsely settled north to control the impact of icebreaking bulkers on their fragile communities.

The vessels make a 24 meter hole 100 km long right through their world. The aboriginal people use the

ice for transport, as an extension of their highway system, so the icebreakers could not separate their

islands. After an icebreaker passes, the ice refreezes, and local workers smooth the surface so sleds and

snowmobiles can pass easily at predetermined points.

Table 4.1 summarizes the calculations in this thesis. To slightly increase a vessel's ice-class a very

small change in weight, power, fuel consumption, and cost is seen (particularly for a high powered LNG

ship or containership). These changes are all within acceptable margins of error. However, to ice-class a

vessel to the highest class examined in this work, an A5 class (an independent icebreaker), requires a

huge investment. Thus, this vessel should be used exclusively for Arctic operations if possible.

Table 4.1: Summary of Ice-Classes Effect on Weight, Power, Fuel Consumption, and Cost

Percentage Increase over Open Water Ice-Class
Al (FS 1A-Super) A3 A5 (PC1)

Weight (Lightship) 2.8% 15.8% 48.2%
Weight (Hull Steel) 2.7% 15.5% 35.4%
Power (Installed) -0.3% 41.8% 236%
Power (Required) 0.27% 1.55% 4.73%

Fuel Consumption (Installed) 0.27% 46.3% 269%
Fuel Consumption (Required) 0.54% 3.13% 9.68%

Cost - Steel 1.1% 6.20% 14.1%
Cost - Fuel 0.27% 46.3% 269%
Cost - Total 0.25% 26.5% 152%

Note: Installed - Power installed on the icebreaking variant of the vessel to satisfy the higher

power demand (ice-breaking or max speed).
Required - Power needed to maintain the given operating speed in open water.



Presently, routing containerships over the Arctic is generally not considered by the industry to

be economically, politically, or environmentally feasible for continuous, reliable service. In the future,

when more experience is gained operating in the Arctic along with decreasing ice cover and the

harmonization of the ice-class rules, ice-classed containerships may emerge as a popular niche market.

One must remember the basic principles of ice navigation. The first principle of ice navigation is

to avoid ice. The second is when that's not possible, avoid the thicker ice. From the bridge, it all looks

white [47].



Appendix A: Summary of Weight Data
Table A.1: Summary of Weight, Power, and Cost Data

Ice Class LBp B T D

(m) (m) (m) (m)

A Hull Steel Lightship Power Cost % Increase Hull Steel/Lightship % Increase
(MT) (MT) (MT) (kW) $Million in Hull Steel in Lightship

Germanischer Lloyd
Suez-Max Tanker Open Water 269 48 17 180,000 19,400

1A 20,361 22,500 5.0%
1A-Super 20,802 27,500 7.2%

Aker Study
Norilskiy Nickel (650 TEU) LU-7 160 23.1 9 14.2 13,000

750 TEU (Cap. 815 TEU) LU-7 160 23.1 9 14.2 13,000
5000 TEU LU-8 or LU-9 269 34.6 13.5 21.3 100,000 32,000 36,000

NYK
4800 TEU D-Class 283 32.2 13.5 21.8 51,390 $80-$90

ABS
150,000 LNG Carrier Open Water 275 44.2 11.4 26 21,500 29,500 38,000 72.9%

1A 22,200 30,200 38,000 3.3% 73.5% 2.4%
PC7 22,735 30,735 38,000 5.7% 74.0% 4.2%

INSROP
Multi-Purpose (532 TEU) 160 24.5 9 15.2 25,900 11,200 15,400

Herbert-ABS
750 TEU Open Water 160 23.1 9 14.2 3,916 6,750 13,000 58.0%

5000 TEU Open Water 269 34.6 13.5 21.3 100,000 15,304 23,979 36,000 $91.3 63.8%
5000 TEU LU-8 or LU-9 269 34.6 13.5 21.3 100,000 23,325 32,000 36,000 $110.9 52.4% 72.9% 33.4%

ABS

138,000 m3 LNG Carrier
Open Water 266 42.6 11.3 26 107,000 22,600 28,800 29,050 78.5%

Al 107,000 23,061 29,261 29,050 2.0% 78.8% 1.6%
A3 107,000 26,105 33,357 41,845 15.5% 78.3% 15.8%
A5 107,000 30,592 42,692 102,370 35.4% 71.7% 48.2%

A5 - Power of A3 107,000 30,592 37,844 35.4% 80.8% 31.4%

Type



Appendix B: Description of Nominal Ice-Class

In several graphs and tables, the heading of 'nominal ice-class' appears. The different ice-classes

were given nominal ice-classes as described in Table B.1 below.

Table B.1: Nominal Ice-Classes

Ice-Class ABS Nominal

Open -4 0
Al 1 5

A3 3 7
A5 5 9
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