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Abstract

Single walled carbon nanotubes (SWNT) are cylindrical sheets of graphene whose
electronic structures and diameters are determined by their chiralities. Current synthetic
methods produce batches of nanotubes containing a variety of electronic properties. The
separation of these mixtures into semiconductors and metals will greatly enhance their
utility for nanoelectronic devices. Progress has been achieved in this area at the
laboratory scale through chemical and density-based handles for viable separation. While
pristine SWNT of a certain electronic type are in great demand, nanotubes functionalised
with specific molecules have applications in the detection of biological analytes, gas
sensing and nanoenergetics. An ongoing area of interest is the concept of nanostructure-
guided chain reactions, wherein the superior thermal conductivity of a nanotube is used to
anisotropically enhance the combustion velocity of the energetic moiety covalently
attached to its sidewall. A molecular assembly with this property has the potential to act
as a nanoscale thruster and a possible source of pulsed power. This thesis therefore
tackles the two research problems stated above: (a) Understand the separation of
metallic/semiconducting nanotubes from a modelling perspective to gauge the
phenomena from a molecular standpoint; (b) Develop a simple coarse-grained model that
describes the characteristics of one-dimensional nanoenergetic materials and extracts the
properties of the thermally propagated reaction wave.

The chemical route of metal/semiconductor separation involves the preferential
reaction of a diazonium salt (4-hydroxybenzenediazonium tetrafluoroborate) with
metallic nanotubes. Previous experimental work has identified electron transfer from the
nanotube to the diazonium molecule as the source of this selectivity. We have used this
insight to develop a rate model that extracts rate constants from photoabsorption spectra.
This necessitated the deconvolution of the UV-vis-nIR absorption spectra of single-
walled carbon nanotubes, recorded subsequent to the reactions, into individual
contributions - a complicated procedure because nanotube transition energies are closely
spaced. An algorithm has been presented in this work to convert spectral data to
diazonium surface coverage on representative SWNT, which were then fitted using
adsorption/reaction-based rate equations. The selective reaction of a metallic nanotube
with diazonium causes an increase in the density of the latter, which can be harnessed to
separate it from the unreacted - and hence, less dense - semiconductors via



ultracentrifugation. It is already possible to use a centrifugal field to sort surfactant-
suspended carbon nanotubes by diameter in a density gradient. Through a hydrodynamic
model, we seek to understand the effects of surfactant adsorption, diazonium reaction and
cylindrical geometry on the density of a single walled carbon nanotube.

In order to study the propagation of energetic reactions in a nanotube scaffold, we
have modelled the latter by a one-dimensional chain of oscillators. The characteristics of
thermally initiated chain reactions - e.g., wave velocity and modes of propagation- will
be explored with a simple molecular dynamics model in conjunction with a Monte Carlo
kernel that simulates the stochastic nature of the system. The contribution of the force
field to the properties of the reaction has also been analysed through the use of harmonic
and anharmonic interactions between the set of oscillators. This conceptual system helps
us in formulating design parameters for the fabrication of actual nanostructures in the
laboratory.

Thesis Supervisor: Michael S. Strano
Title: Associate Professor of Chemical Engineering
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1. Introduction

Single walled carbon nanotubes (SWNT) were discovered in 1991 by lijima and

co-workers.' They can be conceived of as cylindrically rolled sheets of graphene. The

direction of rolling is quantified by a pair of indices, n and m; the ordered pair, (n,m),

represents a unique nanotube and also determines many of its electronic and structural

properties. 2 4 Over the last fifteen years, carbon nanotubes have occupied a preeminent

position in the field of nanotechnology. Although a vast number of properties of

nanotubes have been studied, they are far from being thoroughly understood. While

SWNT have the potential to be used as nanosensors,5-'0 their most popular application

lies in the area of nanoelectronics, where they are touted as the successors to silicon

technology. The current path of miniaturization will inevitably lead to atomic scale

features in processors. It is possible that SWNT will have an enormous role to play when

that time comes.

1.1 (n,m) Characterization of SWNT

Figure 1.1. Two-dimensional coordinate
system on a graphene lattice specified by
the unit vectors a, and a2. Also shown is

| the path to reach the (3,2) node on the
sheet, along with the chiral vector that

S2 42) yields a generic (n,m) nanotube upon
Srolling the graphene lattice.



Graphite has a three-dimensional lattice composed of sheets of hexagonally

bonded carbon atoms. A single such sheet is termed graphene, whose two-dimensional

coordinate system defined by the unit vectors al and a2 is shown in Figure 1.1. With the

origin placed the point (0,0), we can specify a so-called chiral vector (dashed arrow),

Ch=nal+ma2, along which the sheet may be rolled to give a generic (n,m) single walled

carbon nanotube. As a numerical example, consider the location of the (3,2) lattice node

and the path taken to reach it (dotted arrow). The appropriate chiral vector 3a1+2a2 is

generated by first taking 3 steps along the al direction and subsequently 2 steps along a2.

Rolling the graphene sheet along this vector will yield the (3,2) nanotube. The (n,m)

indices encapsulate structural and electronic information about the corresponding

nanotube. The diameter of the tube is given by3' "

d = 3acc n2  m 2  (1.1)

while the angle made by Ch with the vector al - or the chiral angle, O(,,m) - is

0(,m) = cos-1 l = COS-1 n m 2  (1.2)

(a) (b) (C)

Figure 1.2. Three classes of nanotubes based on the values assumed by the chiral angle: (a)

Armchair, (b) Zigzag, (c) Chiral.

Figure 1.2 shows the three classes of nanotubes that exist based on the chiral angle. The

possibilities are listed in Table 1.1:



Table 1.1. Values of the chiral angle, O0,,,,, that yield the major types of single walled carbon
nanotubes

The (n,ni) indices also determine whether a given nanotube is metallic or semiconducting.

If (n-m) is divisible by 3, the resulting tube is a metal, while it is a semiconductor in the

converse case. 3 A typical SWNT manufacture process produces a variety of chiralities,

and it is of utmost importance to achieve a scalable method of separating the metals from

the semiconductors for various applications. The literature outlines several separation

schemes but we will focus on two in this work that may ultimately be linked in a cascade

to provide distinct metallic and semiconducting fractions.

1.2 Motivation for Selective Reaction

All the current methods of SWNT production - high pressure CO decomposition

(HiPco), 12 arc discharge, 13 laser ablation, 14 CoMoCAT 15 and chemical vapor deposition

(CVD) 16 - yield mixtures of semiconducting and metallic nanotubes. For them to have

any significant utility in the electronics industry, it is essential that the mixture be

separated into individual semiconductors and metals, since the presence of the latter will

render any nanotube-based field effect transistor useless. Significant progress towards

this end was made by Strano et al. in 2003,17 where a diazonium salt was used to react

preferentially with metallic nanotubes. The first evidence of separation was shown by

Chiral Angle (rad) Type of Nanotube

0(n,,,) = 1/6 (Fig. 1.2a) Armchair

(,,,,n) = 0 (Fig. 1.2b) Zigzag

0<O(,,,,,,)<z/6 (Fig. 1.2c) Chiral



Arnold et al., 18 wherein a density gradient method was used to separate nanotubes by

diameter and by electronic type.

The functionalisation of nanotubes with different moieties tunes their electronic

properties and is critical to their performance as nanoscale sensors. Functionalisation of a

nanotube is generally caused by noncovalent adsorption of the analyte on the SWNT

surface or the formation of a covalent bond between the analyte and the carbon atoms on

the SWNT or a combination of both. Noncovalent adsorption is mostly mediated by

electron transfer from the nanotube to the analyte or vice versa, 19' 2 0 while covalent

functionalisation results in the localisation of the electron near the covalent bond.21' 22

Both processes can be detected through the use of UV-vis-nIR absorption spectroscopy;

they result in the depletion of delocalised electrons (or unoccupied valence states) in the

nanotube, which directly leads to a decrease in the peaks that comprise the absorption

spectrum.

1.2.1 Density of States of Carbon Nanotubes

The density of states (DOS) per unit volume as a function of frequency (co) for any three-

dimensional structure is given by23

1(o) dS (1.3.1)

8Dc)3  kco(k)

In the above equation, dS is an area element on the surface in k-space corresponding to

the selected frequency, co. The denominator in the integrand is the group velocity

evaluated from the gradient (with respect to the wavevector k) of the electron dispersion

relation.
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Figure 1.3. Density of states for (a) semiconductor - (6,5), (b) metal - (7,7), and the electronic
transitions that give rise to the peaks observed in the absorption spectrum.

For a one-dimensional system such as a carbon nanotube, it is possible to simplify the

complex integral in equation 1.3.1 to a simple summation: 24

2
D (E)= - dk (k -k) (1.3.2)

where E is the energy being probed, 1 is the length of the 1D Brillouin zone, and ki is root

of the equation E-e(k)=0. Equation 1.3.2 was used to calculate the DOS of a

semiconducting - (6,5) - and a metallic nanotube - (7,7) - as shown in Figure 1.3. The

extremely narrow peaks representing large electron densities are termed Van Hove

singularities and are a standard feature of one-dimensional systems. The electron

population is clearly zero in the energy range -0.57 eV<E<0.57 eV for the (6,5) nanotube.

On the contrary, a finite DOS is present for the metallic tube between the first valence

band (vi) and the first conduction band (cl).

An absorption spectrum characteristic of surfactant-suspended single walled

carbon nanotubes is depicted in Figure 1.4. The various peaks seen in the spectrum
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Figure 1.4. Typical photoabsorption spectrum of a surfactant-suspended solution of nanotubes
in D20 showing the electronic transitions (Figure 1.3) that contribute to the peaks observed.

correspond to electronic transitions taking place between the different Van Hove

singularities in Figure 1.3. For instance, a transition from vl to cl in the (6,5) nanotube

leads to a peak in the red region in Figure 1.4. More specifically, the spectral peak at the

wavelength 974 nm represents the above case. 25 The metallic and higher-order

semiconducting transitions (i.e., V2---C 2) can be explained in the same manner.

1.2.2 Quantifying SWNT Absorption Spectra

Raman spectroscopy, 26,27 photoabsorption 28 ,29 and spectrofluorimetry 25,30 have

been used to estimate the composition of nanotube samples. Early optical absorption

studies on bundled nanotubes prepared by laser vapourisation and the electric arc method

show three broad SWNT-related peaks at approximately 0.75 eV, 1.3 eV and 1.8

eV.2 8,29,31 They were assigned as the first (E s ) and second (ES,) inter-band electronic

transitions of semiconducting nanotubes, and the first transition for metallic nanotubes

I _ I I I~ I I -I I I I -



(E,), respectively (Figures 1.3-4). The aggregation of the nanotubes due to strongly

attractive van der Waals forces destroys fine structure in the spectra.32

Highly-resolved absorption and photoluminescence (PL) spectra were obtained

after SWNT were individually suspended in solution by surfactant adsorption." These

samples enabled the spectral assignment of metallic and semiconducting species. 30 ,33,34

The assignment was further refined when only one of the metallic branches of the

transitions was observed optically.33 Spectrofluorimetry has been used to estimate the

relative concentrations of semiconducting nanotubes in a sample.30,35 Since metallic

nanotubes and bundles of nanotubes do not fluoresce, it is not possible to detect them

using fluorescence studies. The absorption spectrum typically has a distinct, yet

convoluted, metallic region. Additionally, in past work, we have shown that

spectrofluorimetric data should be interpreted with caution due to the effects of

sonication-induced changes 36' 37 and nanotube lengths36 on the quantum yields. The

results could also be skewed by the fact that spectrofluorimetry cannot detect quenched,

damaged or defective nanotubes, which do not fluoresce at all.38

Previous work focused on using tight-binding theory39, density functional theory39

and excitonic calculations with the Bethe-Salpeter equation40 for plotting the absorption

spectra of individual nanotubes. The more complex case of fitting the absorption

spectrum of sodium dodecyl sulfate (SDS)-suspended nanotubes has been performed by

two methods: (1) expressing the absorption coefficient of each nanotube as a function of

its joint density of states (JDOS) after broadening the singularities in the JDOS profile

with Gaussians.4 1 (2) using Voigt profiles to approximate the spectral contribution of

each nanotube, although this method was restricted to the Es region of the spectrum.42



1.2.3 Rate Law and Electron Transfer Mechanism

It has been previously shown that the reaction of SWNT with diazonium follows a

two-step process43: a (n,m)-selective adsorption step followed by a reaction that results in

a covalent bond. The adsorption step is mediated by electron transfer from the

nanotube'l9 44 to the diazonium molecule, while the covalent bond results in the

localisation of electrons in its vicinity and the formation of an impurity state at the Fermi

level. 20,21 Both processes lead to the lowering of peaks in the absorption spectrum. The

reactions of carbon nanotubes with 4-hydroxybenzenediazonium salt have been studied at

length and analysed for the rate constants, which were then linked to the density of states

of individual SWNT.4 5

The adsorption step has been assumed to be rate-limiting. In the semibatch reactor

used, the diazonium concentration is never allowed to accumulate. Due to these quasi-

steady state conditions, it is difficult to obtain dynamic information about the reaction;

however, in a sample containing N nanotubes, we can reliably obtain the rate constants of

N-1 nanotubes relative to the Nth nanotube, which yields a method of quantifying their

reactivities in relation to one another.

The relative rate constants extracted from the data have been compared with those

predicted by Marcus theory46 ,4 7 and Gerischer-Marcus theory.48n49 Marcus theory yields

rate constants for the transfer of electrons between donor and acceptor molecules in terms

of the free energy of the electron transfer step and the reorganization energy, which is the

energy required to alter the atomic configuration of the reacting species so that

isoenergetic electron transfer can take place in accordance with the Franck-Condon

principle. 46,50 Gerischer-Marcus theory provides rate constants based on the convolution



of the densities of states (DOS) of the acceptor and donor species. 48 ' 49 Although this

theory has been used for estimating rate constants of reactions at semiconductor 4849 and

SWNT 51',52 electrodes, in this work it has been used to examine trends in reactivities for

nanotubes suspended in solution.

1.2.4 Hydrodynamic Model for Ultracentrifuge

The centrifuge-based separation of CoMoCAT SWNT by diameter and electronic

structure was recently achieved by suspension with bile salts such as sodium cholate

(SC). 44 The extent of adsorption of the surfactant on nanotubes of varying chiralities is

not uniform and creates assemblies with different buoyant densities. This facilitates their

separation by isopycnic centrifugation, where particles migrate to regions of like density.

It is important to understand these phenomena at the molecular level so that further

improvements to the process can be made.

The sedimentation of solute molecules in a solvent during ultracentrifugation is

modelled by the Lamm equation. 53 The temporal and spatial distribution of particles in

the centrifuge tube is determined by competing diffusive and sedimentation fluxes.

Analytical solutions31 based on certain simplifications are available but involve the

calculation of functions that are too complex to fit to experimental data. Numerical

solutions have been performed for the sedimentation of molecules in dynamic density

gradients and compressible media, among other cases.

The theory of the ultracentrifuge and the numerical analysis of the Lamm

equation can describe the motion of surfactant-suspended SWNT in a density gradient,

and estimate the number of surfactant molecules adsorbed per unit length of the nanotube.

The latter determines the density of the SWNT-surfactant assembly. The sedimentation of



the gradient material and the solvent compressibility due to the high speed of rotation will

also be considered in our calculations.

The diazonium reaction yields reacted metallic nanotubes that are far denser than

the semiconductors. A hydrodynamic model that describes the motion of pristine

surfactant-suspended carbon nanotubes 54 in a centrifugal field was used to elucidate the

effect of chemical functionalisation with 4-hydroxybenzene diazonium salt on carbon

nanotubes. 55

1.3 Motivation for Nanostructure-Guided Reactions

Phonon confinement in one dimensional nanotube and nanowire systems results

in thermal conductivities that often exceed those of conventional materials by orders of

magnitude. We show theoretically that a chemical reaction represented as a nonlinear

source term in Fourier's law decomposes to a directed reaction wave of amplified

velocity confined almost exclusively to an annular region around a nanotube thermal

waveguide. The spatially confined wave solution is experimentally realised for carbon

nanotubes functionalised with a 7 nm shell of trinitramine (Figure 1.5). Anisotropic

reaction velocities along the tube length are -100 times the unamplified value. The

resulting materials are unique in their ability to direct the reaction along only the

longitudinal direction specified by the nanotube, creating nanoscale thruster materials

that far exceed the intrinsic impulse (>0.3 kN-s/kg) and specific impulse (>5.5 s/tg) of

any system demonstrated to date. Control of the rate and direction of energy release in

this manner may lead to more efficient chemical energy conversion processes and



Figure 1.5. Schematic of a SWNT wrapped with an
energetic material (EM). To the left is a transmission
electron microscopy image of trinitramine-SWNT
synthesised by wet impregnation.

devices. To this end, laboratory experiments have also demonstrate that the reaction wave

produces a corresponding thermopower wave that can potentially be used to power

nanoscale devices.

1.3.1 Experimental and Computational Conceptualization

We seek to harness the one-dimensionality and thermal conductivity of SWNT in

modelling and simulating chain reactions of energetic molecules (EM) that have been

covalently attached to the nanotube sidewall. A continuum model that describes the use

of SWNT as thermal conduits 56 has been framed but here we aim to track the directed

thermal transfer process at the molecular scale. There is a wealth of experimental data on

the reactions of metallic and semiconducting nanotubes with diazonium salts bearing OH,

Cl, and NO2 functional groups.17,43,45,55 The same techniques can be used to functionalise

SWNT with reactive molecules whose thermal decomposition reactions are highly

exothermic. Molecular analogs of TNT and RDX may be covalently bonded to the

nanotube surface for this purpose. We have experimentally explored laser-ignited

reactions and the concomitant thermopower generation in RDX-coated carbon nanotube

arrays. The superior thermal conduction of the nanotube backbone leads to a higher

reaction velocity as compared to a pure RDX crystal. This amplified anisotropic velocity



could aid in the creation of nanothrusters that exceed the specific impulse of any system

demonstrated to date. An electrical wave is generated in the same direction as the thermal

wave, which could supply nanoscale electronic devices with extremely high power

densities. The current theoretical study is confined to the thermal propagation in a coarse-

grained one-dimensional lattice using harmonic and anharmonic force fields.

Force-fields allowing n-dimensional (n>l) motion of the beads in a chain have

been developed for fracture studies,57 58 elastic deformations and self-assembly

phenomena, 59 and simulations of the nanomechanics of single walled carbon nanotubes.60

The Zhigilei model 60 includes a potential corresponding to breathing modes that

describes the internal degrees of freedom of the structure; 61-63 however, their effect, along

with that of torsion and the associated coupling terms, were seen to be minimal in the

case of isolated nanotubes. 60 In this work, we have used the Buehler model 59 as a simple

representation of a carbon nanotube. The bond-stretch component of the total potential

energy uses a bilinear model derived from a harmonic potential, which accounts for

nonlinearities up to a limit.

1.3.2 Anharmonic Interactions between Oscillators

Anharmonic potentials have been shown to produce solitons64,65 and breathers66 in

crystal lattices. Breathers, in particular, adversely affect the thermal conduction

properties of the crystal due to the localisation of energy.67,68 The mobility of high-energy

fluctuations in a one-dimensional lattice depends on the type of nonlinearity present in

the force-field. The fluctuations may result in localised high-frequency oscillations in a

lattice with an onsite potential characterized by the hard P4 term,68 which leads to the so-

called "diagonal anharmonicity" 69 - the interactions between neighbouring beads is



m Energetic
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Figure 1.6. Coarse-grained form of a carbon nanotube: red beads of mass M represent
successive sections of the tube, each consisting of -163 C atoms and connected by springs of
force constant k. Energetic molecules of mass m (blue) are loaded at specified intervals.

purely harmonic, while the anharmonicities are inherent within each oscillator, as

represented by the onsite potential. The mobility of high-frequency oscillations is greatly

enhanced through the use of an "off-diagonal" nonlinearity7 0 such as that encapsulated in

the classic Fennrmi-Pasta-Ulam , (FPU-6) lattice. 7 1 In this case, the inter-bead interactions

are themselves anharmonic. From a mathematical standpoint, the anharmonicity may be

either "diagonal" or "off-diagonal" depending on the positions of nonlinear terms in the

force-constant matrix of the system of oscillators.

1.3.3 Computational Approach

Each bead in the lattice is loaded with energetic molecules at a specified density

(Figure 1.6). An excitation applied at one end of the chain is expected to raise the local

temperature at the reaction sites, leading to the decomposition of the group. The one-

dimensionality can be used to channel the energy released during combustion and

facilitate subsequent reactions further down the length of the array of oscillators. We seek

to identify conditions under which sustained chain reactions will be feasible. The

following system parameters are varied: (a) activation energy of the reaction, Ea; (b)

fraction of the reaction enthalpy that is converted into the kinetic energy (KE) of the

reacted fragments, a. In the simulations, we have allowed a to vary from 0 to 1. An upper

bound on a is necessary according to the second law of thermodynamics but this has not

been implemented in the current work. Zones of stability of the nanostructure as well as



the velocity of the reaction wave have been mapped out. A Fourier analysis of the time-

series of the kinetic energy of the lattice and that of each bead was performed to

determine the modes that were responsible for the propagation of a disturbance through

the lattice. The effect of loading of the EM has also been studied for pristine and defect-

laden chains.

1.4 Thesis Overview

The first part of this work deals with the quantitative analysis of the

photoabsorption spectrum of carbon nanotubes and its subsequent application in the

analysis of SWNT-diazonium reactions. Chapter 2 describes in detail the deconvolution

of the SWNT absorption spectrum into spectral contributions from representative

nanotubes. Chapter 3 applies the deconvolution procedure to the series of steady state

absorption spectra that were recorded during the SWNT-diazonium reaction, and yields

relative rate constants for particular nanotubes. These values obtained from fits of the

experimental data are then compared with predictions from standard electron transfer

theories. A hydrodynamic model for the motion of surfactant-coated nanotubes in a

centrifugal field is presented in Chapter 4. It is validated with fits of two independent sets

of laboratory data for the diameter-based fractionation of nanotube decants. The model is

then extended to the case where nanotubes reacted with diazonium are separated from

unreacted species using ultracentrifugation.

The second half of the thesis focuses on the concept of energetic chain reactions

guided along a one-dimensional channel, such as a single walled carbon nanotube.

Chapter 5 contains the detailed derivation of the model incorporating energy and

momentum transfer from the energetic material to the 1D scaffold. The reactivities of



anharmonic and harmonic lattices have been compared along with the determination of

the modes that contribute to signal propagation in each chain. Lastly, Chapter 6 outlines

the conclusions of this research project and proposes future thrusts.



2. Deconvolution of the Absorption Spectra of Carbon Nanotubes

2.1 Introduction

Single walled carbon nanotubes (SWNT) absorb electromagnetic radiation over a

broad range of wavelengths - from the ultraviolet (-400 nm) to the near-infrared (-1500

nm). Photoabsorption spectroscopy of solutions of surfactant-suspended nanotubes yield

highly resolved peaks that are characteristic of monodisperse moieties. Each spectral

peak either corresponds to an electronic transition in a single nanotube or is a convolution

of several SWNT whose transitions are closely spaced in the energy domain. Covalent

reactions or noncovalent interactions that involve electron transfer to or from a nanotube

result in a suppression of certain absorption peaks. A quantitative analysis of the

spectrum should result in an estimate of the population of reactant molecules on the

nanotube surface. This is a highly complicated procedure due to the sheer number of

nanotubes present in solution. The algorithm presented in this chapter seeks to reduce the

complexity of the problem and extract enough information so as to create plots of surface

coverage on the nanotube sidewall for further analyses.

2.2 Preparation of SWNT Decant

HiPco nanotubes (Rice University, Reactor Run 107) were suspended in 1 wt. %

SDS (Sigma Aldrich) in deuterated water (D20, Sigma Aldrich) according to a previously

published protocol.3 0 A deuterated aqueous solution was used to eliminate water

absorption features above 1400 nm in the UV-Vis-nlR photoabsorption spectra. The

preparation of DNA-wrapped SWNTs has been specified in past work.72-74



2.3 Model Development

2.3.1 Background Subtraction

The absorbance at a certain wavelength, A(A), is:

A(i) = Abkg (i)+ j A(,,,,)()
(n,m)

(2.1)

Abkg () is the background due to colloidal graphite and r-plasmon absorption.75 77

SA(n,m) () is the total absorbance of all the nanotubes at wavelength A. The following
(n,m)

functional form is assumed for the background, with b and k as empirical fit parameters.78

(2.2)Abkg(i) = b

The absorbance after background subtraction is:

Asub (A) = A(A) - Abkg (A) (2.3)

The spectrum obtained after complete functionalisation of the nanotubes, leaving no

resolved absorption peaks, is expected to be solely due to the background. Figure 2.1

600 800 1000 1200
Wavelength (nm)

1400 1600

Figure 2.1. Comparison of the calculated background for the absorption spectrum of the given
SWNT decant with the spectrum of completely functionalised nanotubes.



shows that the regressed background matches the recovered baseline after

functionalisation, thus validating the functional form used.

2.3.2 Spectral Fitting of Optical Transitions

The Franck-Condon principle states that each electronic state has associated

vibronic states. 79-8 1 Environmental5 8' 38 and excitonic effects 82-84 on the nanotube create

intermediate electronic states. The major electronic transition is accompanied by minor

ones, thereby broadening the absorption lineshape.

The comparison of the fits for 9 absorption spectra with Gaussian, Lorentzian and

Voigt profiles (Appendix A, Fig. Al) showed that the latter two gave much lower errors

than the Gaussian fits. The Voigt lineshape was chosen over the Lorentzian, since it

represents a combination of natural line broadening due to the uncertainty in particle

lifetimes, and Doppler-broadening due to a distribution of particle velocities.8' The

spectral contributions of the nanotubes from 490 nm - 1600 nm (2.53 eV - 0.775 eV) are

therefore represented as Voigt lineshapes in energy space with peak areas C, = (C",,,) ,

peak centers {E,""'m) , and full widths at half maxima (FWHM) {F,, } , where ii

represents the transition, i.e., Ej, E 2 or Es . The transition energies are known from

the spectral assignment. 25' 33' 85 Three regions are identified for HiPco SWNT: 400 nm -

600 nm for Ell , 550 nm - 900 nm and 800 nm - 1600 nm for Es and E,

respectively. 30 Unique values of TFVii are assumed for the three regimes. The lineshape

for a nanotube as a function of energy is:

,,,,)(E)= G, (') L (E - ') dE' (2.4.1)
-00



The Voigt profile is a convolution of Gaussian (Gb,,) (E)) and Lorentzian (L!m) (E))

lineshapes, which represent Doppler and natural broadening of the

respectively. G".m) (E) is centred at zero, while Ln,m) (E) is

)e 2
G,(n,m) (E) I Eexp - cri

L,m) (E) = FLii /27

E - ,(n.m) ) + F2,, /4

spectral line,

centred at E,(nm)

(2.4.2)

(2.4.3)

(2.4.4)

where FG,i and FL,i are the FWHMs of the Gaussian and Lorentzian respectively, and

a', is the standard deviation for the Gaussian. A relation between F,. , G,ii and FL,i is

given by86 :

F,ii = 0.5346FL,ii+ 0.2166 F 2, + F ,2

Assuming FG,ii F L,i to reduce the number of fit parameters, we get:

Fv,ii
Gii Lii 1.6376

1.6376

For the Es , Es2 and E M lineshapes, the pairs (E1. ),F,11 ,

E( .), ,V , respectively, are substituted in Equations 2.4.1-4 and 2.5.1-2. The

lineshape, Pm) (E), can be expressed as a function of the wavelength, A, by using the

he
relation E = , where h is Planck's constant and c is the velocity of light. After

background subtraction, the overall absorbance at A is:

(2.5.1)

(2.5.2)

and

FG,ii = 2- -n2-,,

E~nm)22 9V,22



Asub (() = I c>lp (,,m ) ) (,)m (,) () , ) n t2.6)
(n,m)

2.3.3 Assumptions

The deconvolution procedure is predicated on two major assumptions. A more

detailed knowledge of each of the following aspects will enable the code to be more

robust and rigorous.

(a) FWHM. The FWHMs (F,,, FV,22, FV,T ) are held constant for all nanotubes in a

particular spectral region, although a variation of the linewidths with diameter, band

structure or energy is more likely. Due to the lack of information at present on the actual

dependence of the FWHMs on any of the above parameters, constant peak widths have

been assumed.

(b) Weighting Scheme. Each absorption peak is assumed to correspond to an individual

Voigt function, which envelopes a certain number of nanotube transition energies. The

set of these peak areas, CG, contains the fitting parameters. The peak areas of the

enveloped nanotubes are approximated as fractions of the peak area of the parent Voigt

profile. Given a peak energy, pk (E), it is assumed that only the nanotubes with transition

energies within the flanking valleys, vk(E) and vk+1 (E) , contribute to the peak in

question. These contributions are assumed to depend on the proximity of their respective

transition energies to Pk (E), with the weighting factor of the jth nanotube under the kth'

parent Voigt profile being:

S=exp 

(2.7)rjk = exp Pk (E- (2.7)
vk+1 (E) - vk (E)



These weights are normalised so that the parent Voigt lineshape is a sum of the individual

nanotube Voigt lineshapes:

Yjkmy = (2.8)

Approximate values for the spectral contribution of each (n,m) species, CN, from C are

computed with the following transformation:

CN =Q CG (2.9)

with the matrix S containing the normalised weights COjk. Implicit in the weighting

scheme is the assumption that the sample population is continuous and non-zero over the

spectral range.

In each group of nanotubes with similar transition energies, the weighting scheme

approximates the effect of the absorption coefficient, which determines the (n,m)

dependence of the probability of absorption of radiation at different energies; however,

an explicit (n,m) variation of the absorption coefficient has not been included.

2.3.4 Confidence Intervals

The 95% confidence intervals for the parameter estimates were computed with the

Statistics Toolbox in MATLAB® in conjunction with a code that used Maximum

Likelihood estimation.87 89 We fit approximately 23 parameters - corresponding to 23

peaks - in a typical SDS-SWNT absorption spectrum. Tightly bound confidence intervals

guarantee the uniqueness of the fit, although some compromise has to be made with

regard to the quality of the fit. We note that it is possible to obtain a perfect fit by floating

the peak areas, peak-centers and linewidths; however, such a fit will not be unique and



the corresponding confidence intervals will be large, implying large uncertainties in the

parameter estimates. This work is the first to address spectral uniqueness for SWNT

deconvolution.

The peak areas are proportional to the oscillator strengths of the individual

nanotubes in the sample.79 57 nanotubes (39 semiconductors and 18 metals) have been

considered for the fit. Spectral deconvolution in this case is difficult because information

content on specific nanotubes is distributed non-uniformly. The ES1 region is more

Sinformative than the E 22 or the El I because it covers a larger energy range and contains

more well-defined peaks.

2.4 Algorithm for Deconvolution

Absorbance data

Background subtraction

Locate spectral peaks and valleys

SWNT-specific input: Calculate weights for each nanotube
(nm) indices

Transition energies
Peak widths Jacobian for reduced parameter set

Fit sum of Voigt profiles to data

Compute confidence intervals for parameters

Output results for each SWNT in sample

Figure 2.2. Flowchart showing the outline of the program to deconvolute an absorption
spectrum of a nanotube solution into its component peak areas.



As outlined in Figure 2.2, the deconvolution algorithm first reads in the spectral

data containing the absorbance as a function of wavelength, and subtracts the background

due to graphitic impurities (Figure 2.1). The peaks and valleys are located in the

subtracted spectrum for the calculation of weights that are assigned to each nanotube as

specified in equations 2.7-8. The transition wavelengths and peak widths for each SWNT

are provided beforehand, since they are known quantities. From a dataset of -57 tubes,

i.e., 57 fit parameters, it is possible to reduce the parameter space to -23 with the help of

the weighting scheme. The coefficient matrix is then calculated using the transformation

in equation 2.9, which is ultimately fed to a nonlinear least-squares optimisation routine

to fit the sum of the Voigt profiles to the experimental spectrum. Once the tolerance has

reached an acceptable value, the confidence intervals for the 23 fit parameters are

computed and are stored along with the computed peak areas for each tube in the starting

sample.

2.5 Results of the Fitting Algorithm

The deconvolution method was tested on the absorption spectra of the following:

(1) unfunctionalised, selectively functionalised and completely functionalised SDS-

suspended HiPco SWNT, and (2) fractionated samples of DNA-SWNT. After obtaining

reasonable fits and tight confidence intervals, the algorithm was used to analyse

absorption spectra of selective reactions of SWNT with diazonium reagents.3 8' 90

2.5.1 Analysis of SDS-SWNT Spectra

Approximate values for Fv,11 (29.86 meV), TF, 22 (57.96 meV) and F,, (93.42

meV) were obtained from fits of the absorption spectra of DNA-HiPco SWNT separated



by diameter using ion-exchange chromatography (Appendix A, Fig. A2).72-74 The

weighting scheme relies heavily on the experimentally determined transition wavelengths

as obtained for the SDS-SWNT system.25'33,3485 In the case of DNA-SWNT absorption

spectra, the transition wavelength of each nanotube is red-shifted to a different extent,73

thus adversely affecting the weighting scheme. The DNA-SWNT spectra we used had

fewer nanotubes and were less complex than the SDS-SWNT spectra. Consequently,

each nanotube peak could be fitted individually, without the assignment of specific

weights. A value of 25 meV for F,l,, provided a better agreement for SDS-SWNT

spectra. This could be due to surfactant effects, which might affect the E S more than the

E2S2 or the E11 due to greater electron screening in the latter two cases.91 It also agrees

with data reported in literature. 30,42 ,92

Experimental
S--- Model 12

o , 0.8
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600 Iaveth 1400 1600 0.8 0 rm 1.2 1.3 600 ave 10oth 10 1400 1800

Figure 2.3. Fits of SDS-suspended HiPco nanotubes. (a) and (b) The solid blue line denotes the
actual spectrum, and the dotted red line represents the fit. (c) and (d) Confidence intervals
corresponding to the 2 spectra, with the red squares denoting the Ell peaks, blue circles denotingthe E22 peaks and the black triangles denoting the metallic peaks. (e) and (f) The deconvoluted
peaks for the spectra in Figures 2.3(a)-(b) respectively.
peaks for the spectra in Figures 2.3(a)-(b) respectively.
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Figures 2.3(a)-(b) show the fits of the absorption data of two different SDS-HiPco

SWNT samples. The associated diameter distributions of the calculated peak areas are

shown in Figures 2.3(c)-(d) respectively. The red squares denote the ES
1 peak areas, the

blue circles denote the E 22 peak areas and the black triangles represent the EI peak

areas. It should be noted that the parameter estimates are tightly bound, as demostrated by

the small confidence intervals. Hence, despite the complexity of the spectrum, the

obtained parameters are meaningful within the accuracy of the stated assumptions.

Figures 2.3(e)-(f) show the deconvoluted EI , E2S2 and E s peaks for the spectra in

Figures 2.3(a)-(b) respectively.

Figures 2.4(a)-(b) show three-dimensional plots of the E S peak areas versus

diameter and chiral angle for the deconvoluted spectra. The plots are qualitatively similar

to the smoothed surface plot of fluorescence intensity as a function of nanotube diameter

and chiral angle, as reported by Bachilo et a125; however, Figures 2.4(a)-(b) do not show

the reported trend with chiral angle, wherein the quantum yields are greater for near-

armchair chiralities and nanotubes from the (n - m)mod 3 = -1 family.2 5 84 This could be

because photoabsorption is an ensemble measurement of nanotube concentrations, while

photoluminescence is able to probe single nanotubes, and hence, extract chirality and

diameter dependencies simultaneously. We note that the (n,m) dependence of the

quantum yield is not known, and does not affect the absorption spectrum.
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Figure 2.4. (a) 3-D plot of Ell Peak Area vs. Diameter and Chiral Angle for the spectrum in
Figure 2.3(a). (b) Ell Peak Area vs. Diameter and Chiral Angle for the spectrum in Figure
2.3(b). The plots in (a) and (b) were compared with the fluorescence plots in Bachilo et al. (c)
Ratios of E22 and Ell peak heights for 30 semiconducting nanotubes were obtained from fits of 9
spectra.

The E2 2 peak height of a particular nanotube is expected to be lower than its

corresponding E1  peak height, simply because the E s
11 transition is energetically more

probable than the Ef 2 transition. To investigate this, the ratios of the E 2 and E s peak

heights for nine SDS-HiPco SWNT spectra were calculated. Out of the 35

semiconductors considered, it was found that 30 of them had ratios which were less than

unity. The results have been plotted, with error bars, versus diameter in Figure 2.4(c).

With the knowledge of such links between individual E 2 and E peaks, future

modifications to the algorithm could involve the generation of the E 2 portion of the



absorption spectrum entirely from the ES1 region, thus reducing the number of fit

parameters. Specifically, knowledge of these individual ratios would permit the

relaxation of the diameter continuity constraint.

2.5.2 Analysis of SWNT-Diazonium Reactions
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Figure 2.5. Two different sets of reaction spectra that were analyzed with the algorithm. (a)
SWNT reaction carried out in a flow-through setup with 4 hydroxybenzene diazonium salt, as
described in the experimental section. (b) SWNT reaction setup with 4 chlorobenzene
diazonium salt, as described in Strano et. al.

Figure 2.5(a) shows the steady-state photoabsorption spectra for the reaction setup

described in the experimental section. Figure 2.5(b) shows data from Strano et al, where

the reagent used was 4-chlorobenzene diazonium salt.93 The algorithm was used to

analyse both data sets as a demonstration of its utility.

Under selective reaction conditions, metallic tubes react with the diazonium

compound first, followed by large-diameter semiconducting tubes and finally by small-

diameter semiconducting tubes.90,93 This progression is clearly seen in the absorption

spectra in Figures 2.5(a)-(b). Nanotubes with similar band gaps will show similar trends

in reactivity. According to our algorithm, the spectral contributions of nanotubes that are

grouped under a certain absorption peak will decay at the same rate, since they are simply



fractions of the total peak area, as derived in equation 2.9. It is difficult to obtain

reactivity information on all the metallic nanotubes, since absorption features at

wavelengths above 630 nrn have considerable contributions from the E 22 peaks of

semiconducting nanotubes. The low energy (Ell) region is easier to analyse, since it is

composed purely of E\ peaks. Hence, as far as estimating rate constants for nanotube

reactions is concerned, it is expected that more information will be available for

semiconducting nanotubes.

08 -

0.6

O A -

,;f 02 -

-I

II

0,8 -

0.6 -

0.4 -

0.2

0

*(7,) (a)
m(1%4)
A(1,7)

, t m

0.8

M 0.2

0.06 0.12 0.18 024 0.3 0.36
V (mol Reactant/103 Carbons)

87) (c)
A(9,7)
x(10,6) Nt

xmo9) (
,,ufX

0 0.06 0.12 0.18 024 03 036
N (mol Reactantl/0 3 Carbons)

(6,5)
A(7,5)
x00,2)

0 0.06 0.12 0.18 0.24 03 036
N (moil Re actant103 Carbons)

-"1.5 2Ag' ! ~ 2.1 , ---a

(d)

0,9 1.2

0.90.0 .6 - ................

0.3 4 0.

00
0.74 0.84 0.94 1.04 1.14

Diamete (nni)

Figure 2.6. Analysis of reaction data shown in Figure 2.5(a), The degree of functionalisation,
di/, represents the decrease in peak area of the i1t nanotube, normalised to its starting peak
area, subsequent to the jth addition of diazonium salt. N denotes the concentration diazonium
reagent in the solution. The figures depict the effect of diazonium reaction on: (a) Metallic
SWNTs. (b) Small-diameter semiconducting SWNTs. (c) Large-diameter semiconducting
SWNTs. (d) Slopes (Ad, /AN), as measures of reactivity, were calculated from the reaction
data for 17 semiconducting nanotubes (blue diamonds) and 3 metallic nanotubes (orange
squares). Reactivity increases with diameter for the semiconductors.
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(orange squares), and plotted against diameter. A distinct trend is observed for the
semiconductors, where reactivity increases with diameter.

We have measured the peak areas of 3 metallic tubes, 4 small-diameter and 4 large-

diameter semiconductors with increasing diazonium addition for both the data sets

considered. Figures 2.6(a)-(d) and 2.7(a)-(d) show the results of the analysis. The degree

of functionalisation, d/, for the ith nanotube after thejth addition is:

SC/

Co and C/ are the peak areas at the zeroth and jh addition steps respectively. It can be

seen that the degree of functionalisation for metallic nanotubes increases linearly with

*(7,7)
m(10,4)

A0(10,7)%it
II

U)4~

0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

0"

'It;
II

05

0A -

03

02

0.1
n

-h r-.

A A

mm HE'



diazonium addition (Figures 2.6(a) and 2.7(a)), while the small-diameter semiconductors

remain almost unaffected (Figures 2.6(b) and 2.7(b)). The large-diameter semiconductors

(Figures 2.6(c) and 2.7(c)) are more reactive than the small-diameter semiconductors but

not to the same extent as the metals. In past work, we have shown that the reaction

follows a two-step mechanism. 38 The first step (rate constant = kl) is a selective, non-

covalent adsorption of the diazonium on the SWNT. It depends on the density of states

(DOS) at the Fermi level. 90 The second step is presumably a non-selective reaction in

which a covalent bond is formed. A higher DOS gives a larger value of kl, which yields a

stronger linear relationship between d/ and diazonium concentration. This explains the

greater slopes for the plots of the metallic and large-diameter semiconducting tubes as

compared to the small-diameter semiconductors. Slopes for the d/ versus diazonium

Ad'
concentration data -Ad , where N is the concentration of diazonium salt in solution -

AN

were calculated for 17 semiconducting nanotubes and 3 metallic nanotubes, and the

results have been shown in Figures 2.6(d) and 2.7(d). The blue diamonds represent

semiconducting nanotubes and the orange squares denote metallic nanotubes, and they

have been referred to different axes for clarity. Since more data is available for the

semiconductors, we can see a definite trend wherein the slopes increase (i.e., reactivities

increase) with increasing diameters. We note that our algorithm can be used to extract

structure-reactivity relationships for a range of (n,m) nanotubes for various chemistries -

an important step in understanding chemical reactivity in carbon nanotube systems.

Subsequent work will attempt to establish a more concrete link between the band

structure of individual nanotubes and their respective degrees of functionalisation.



3. Structure-Reactivity Relationship for Carbon Nanotubes

3.1 Introduction

Diazonium salts have been observed to react preferentially with metallic carbon

nanotubes followed by large- and small-diameter semiconductors respectively. This

reactivity trend is counterintuitive from a pyramidalisation perspective, according to

which smaller nanotubes should be highly reactive due to the curvature-induced strain

experienced by the carbon bonds. It was later discovered that electron transfer from the

nanotube to the diazonium molecule was the step that attributed selectivity to the

process. 43 Metals, having a finite electron population at the Fermi level, are clearly more

reactive from this point of view. Additionally, the semiconducting band gap is inversely

proportional to nanotube diameter, which implies that electron transfer has a higher

probability of occurring in larger tubes. In this chapter, we have developed a rate model

that explains the experimental results, and have also linked the reactivities of different

nanotubes to their electronic band structures.

3.2 Experimental Section

3.2.1 Reactant Preparation

HiPco SWNT (Rice University, HPR 107.1) were suspended in D20 with 1 wt. %

sodium dodecyl sulfate (SDS, Sigma-Aldrich). Ultrasonication was followed by ultra-

centrifugation to individually suspend the SWNT following a previously published

protocol. 30 The final concentration of SWNT in solution was approximately 9.296 wt%.

The D20 was used to eliminate the contribution of water to the UV-vis-nIR absorption

spectrum in the 1400 nm - 1770 nm wavelength range. 4-hydroxybenzene diazonium



tertrafluoroborate was chosen as the reagent instead of 4-chlorobenzene diazonium

tertrafluoroborate, which was used in a previous study,17 because the hydroxyl group aids

the electrophoretic separation of nanotube mixtures. The 4-hydroxybenzene diazonium

salt was prepared by the reaction of nitrosonium tetrafluoroborate (NOBF4, Sigma-

Aldrich) and 4-aminophenol (HO-C 6H4-NH2, Sigma-Aldrich). Both reagents were

dissolved in acetonitrile (Sigma-Aldrich) in a nitrogen environment. 4-aminophenol

solution was slowly added to the nitrosonium tetrafluoroborate solution at -200C (dry

ice/acetone bath) for the reaction to proceed. The resultant diazonium salt was

precipitated with the addition of diethyl ether, filtered and dried under N2 for 24 hours.

The diazonium salt was stored at -20C and dissolved into D20 before the reaction.

3.2.2 Functionalisation Procedure

The SWNT-diazonium reaction was performed at pH 5.5 by injecting the

diazonium salt solution with a syringe pump (Cole-Parmer) into a semibatch reactor

containing the SWNT/SDS suspension (Figure 3.1). The total volume of the diazonium

solution (500 jil) was added at an injection rate of 20.83 pl/h into a reactor volume of 5

ml under various diazonium concentrations. The reactor was well-stirred throughout the

reaction time of 24 hours. The conversion of functionalised SWNT was controlled by

varying the concentration of diazonium salt from 0 to 0.217 mol diazonium/mol carbon,

at a reaction temperature of 450 C. The influence of illumination by room light on the

reaction rate and selectivity was also investigated at the diazonium concentration where

the reaction selectivity for metallic SWNT was maximised. The reacted SWNT solutions



Semi-Batch Reactor

Syringe Pump (20.83 pL/hr) Stir Plate at 450C Temperature
(Diazonium Injection) Control

Figure 3.1. Semibatch reactor used for the SWNT-diazonium reaction. The diazonium solution
is injected into the reactor (volume = VR) over a 24-hour period. The reaction mixture is
constantly stirred and maintained at 450 C.

were characterized by UV-vis-nIR absorption spectroscopy (Shimadzu UV-310PC) to

investigate the extent of reaction and selectivity.

3.3 Model Development

A rate model for the reaction between the diazonium reagent and the nanotube

sample was developed using an adsorption/reaction scheme. Fitting the model to steady

state absorption data yielded rate constants relative to the (11,5) nanotube, which had the

highest rate constant. In order to describe the trend in reactivities with band gap, the rate

constants were calculated relative to the (11,5) tube by using Marcus theory and

Gerischer-Marcus theory. The use of both formalisms is predicated on the assumption

that the adsorption step, which is mediated by charge transfer, is rate limiting.43

3.3.1 Formulation of Rate Equations

Consider the adsorption/reaction scheme43 in Figure 3.2 for each (n,m) nanotube:

k(
n.m

)  k(".,)

D + (n,.m,) A ) AO(nm) (n PO(n,m)



Here, D denotes the diazonium molecule, while 0 ,,m), A(,,,,) and PO,,m), respectively,

refer to the vacant sites on the nanotube, the sites occupied by the adsorption intermediate

and the sites occupied by the reaction product. The adsorption rate constant is k ('"') and
A

the reaction rate constant is k

OH

D+
OH. PO(n,m)

A kR

A(n,m)

'(n,m)

Figure 3.2. Schematic representation of the SWNT-diazonium adsorption-reaction scheme. The
first step is a non-covalent electron-transfer mediated adsorption with rate constant kA, while the
second step is a covalent surface reaction with rate constant kR. Each dot on the tube denotes
one of the following types of sites: adsorption (yellow), reaction (green) or vacant (blue)

An overall mass balance on the reactor gives its volume (VR) as a function of the initial

volume (V0), volumetric flow rate (vo) and time (t), assuming that the density of the

solution remains constant.

VR = VO + Vot (3.1)

A site balance carried out on the nanotube surface at any instant of time requires that the

total number of sites (NT, ) on a particular nanotube be the sum of the number of vacant

sites (No( ) and those occupied by the adsorbed (NA(n,m) ) and reacted species (No ).

NT N + NO + N
(n.m) n) A(n,m) (n.m)

- --- -- -1 -- - E

(3.2)



In the above equation, No, N and Np vary with time, while N ,remains

invariant. Once the reagent has entered the reactor, it reacts with the nanotubes to

different extents, depending on whether they are metallic or semiconducting. The balance

for the number of moles of diazonium (ND) yields

dND

dt Do (3.3.1)- k(n
m )  D (n"")

(n,m) VR

where FDo denotes the molar flow rate of diazonium into the reactor. On substituting the

value for No () from the site balance in equation 3.2, we get

=FND k(,m) [N
R (nm)

- NO - N(.)
(inm) (nm)j

In order to obtain an expression for NAO ,)

(3.3.2)

we use the pseudo-steady state

approximation, wherein the adsorbed species is consumed as soon as it is generated.

dNA, k(n'm)
(n - A NDN" - k""m)NA =O0 (3.4.1)

dt V (n.,m)

Once again, invoking the site balance, we get the following relation:

AO(n,,)

k "n")ND (N) N )

kR"R)V + D'"')N

The rate of product formation is given by

(3.4.2)

dN ,.) _ k(m)N
p "d = k(,)N
dt R AO(nm)

R k n'm)ND (N,) - NpD
k"m)V + k('m)ND

R R A

dND

dt

(3.5.1),) )



NP"-), 
eDefining the surface coverage on a (n,m) nanotube as 7(,m) = N , equation 3.5.1 can

be modified to read as

dy,,n,m) k(n") "k"")ND (I - '(n,m))
S(1 )(3.5.2)dt k(1'1)VR +0 1M)ND

Equation 3.3.2 for diazonium can now be rewritten as

dN N , k1111N k("")V
dD = F ND Ik 1-7 ) )R (3.6)

dt VR (,,) (nm) k + 1'"') ND

At this point, we use the assumption that the adsorption step is rate-limiting (i.e.,

k"n'" ) >> k (n'" ) ) to simplify the mole balances.
R A

dND ND 0 ) (3.7.1)
d FD - D k ( '" ' )N 1- (3.7.1)

dtR (nm)

dy,,) k(""' )

=dt - N D (1-(n,m)) (3.7.2)
dt VR

Equation 3.7.2 is the general form for all nanotubes that participate in the reaction. In

order to reduce the set of unknown parameters, the total number of sites on each nanotube

(N, ) is expressed as a fraction ((,,,,,)) of the total number of sites present in solution

(NT ).

NT(.m) = a(,,.m,)N T  (3.8.1)

AO
(") (3.8.2)

(,m)



The deconvolution of the absorption spectrum of an unreacted SWNT solution produces

peak areas of the spectral profiles corresponding to each nanotube.94 The peak area of a

nanotube in the unreacted decant solution (AO ) is assumed to be proportional to the

total number of available reaction sites on that nanotube, since increasing the surface

coverage decreases the peak area.. When normalised to the total area, the ratio is assumed

to give the fraction of sites for a particular nanotube.

3.3.2 Time Scale for the Reaction

The Damkihler Number (Da) compares the characteristic times for reaction and

convection.95 When evaluated at the initial conditions, Da gives an estimate of the time

scale for the reaction of diazonium.

Da= rDVR (3.9.1)FDo
where rD is the rate of depletion of diazonium. Initially, all the sites on each nanotube are

available for adsorption.

NDNT

(n,m) VR
Da = (nm) R (3.9.2)

The numerator in equation 3.9.2 can be simplified via the following assumptions: (a)

Initially, ND CDo V1 , where CDo is the concentration of diazonium in the syringe, and VI

is the volume of diazonium solution injected into the reactor until that instant. (b) The

reactor volume changes negligibly initially, i.e. Vo>> V, and hence, VR= Vo. (c) Only the

nanotube with the greatest adsorption rate constant (kA' ) contributes significantly to the

summation.



Applying these assumptions leads to the following expression for Da.

VI k "N, V', / vO 1-FDa = V N V/- TF (3.9.3)
Vov Vok NT ,, TR

In equation 3.9.3, NT , is the total number of sites on the nanotube with the greatest rate

constant, rF is the amount of time spent by the reagent in the reactor, and rR provides a

time scale for the diazonium reaction. Since TR was calculated by considering only the

most reactive nanotube, it is an estimate of the instant at which the diazonium begins to

react. Using equation 3.8.2 for the nanotube with the maximum rate, the final form of TR

can be expressed as

R N kA N (3.9.4)
kA"k'N ,, kAA'a-AINT

3.3.3 Nondimensional Analysis of Rate Equations

Equation 3.7.1 for the diazonium mole balance can be nondimensionalised by

introducing a dimensionless time ( t*= ) and a dimensionless molar amount of
T"
R

diazonium (OD = D ). The reason for the latter normalisation is that the total number of

sites that the diazonium reagent can possibly occupy is NT. The resulting nondimensional

differential equation is

d FTR V k a
- -- FDR D V k(m) a() (-(m)) (3.10.1)

dt *NV (nm) k aM

where k(nm) = k .(")N, and k,, = k"N . Equation 3.7.2 for the coverage on a (n,m)

nanotube can be also nondimensionalised in the same manner.



d(n'm) =D (1 -(nm) 
(3.10.2)

dt* km V aM

The fit parameters are k(n, ) and NT. The nondimensional analysis naturally gives the

reactivity of each nanotube relative to that of the most reactive nanotube, which is

expected to be a metal. It is these ratios that have been reported in this work.

3.3.4 Fermi Level Calculation

The position of the Fermi level (EF) relative to vacuum gives the work function

(W). If vacuum is taken to be zero, we have

EF = -W (3.11)

In the case of SWNT, Okazaki et al. reported an inverse dependence of the work function

on diameter.9 6 Suzuki et al. ruled out significant diameter- and chirality-based differences

in the work functions of metallic and semiconducting nanotubes. 9 7 More recent work has

shown that nanotubes with diameters greater than 0.9 nm have work functions that

asymptotically converge to the graphene limit (4.6 eV), while those with diameters less

than 0.9 nm have diameter- and chirality-dependent work functions.9 8' 99 Since the

diameter range of the nanotubes that we have considered for the reaction analysis extend

from 0.757 nm - 1.375 nm, with most of the diameters exceeding 0.9 nm, we have

assumed the absence of chirality and diameter effects on the work function. From the

tabulated work functions of several nanotubes, 99 we have chosen WswNTr= 4.45 eV as a

representative value, thus giving Es wT =-4.45 eV.

The half-wave potentials (EV1 2) of various diazonium salts have been estimated

using polarography.10 0 We have assigned a value of 0.35 eV (SCE) to the redox potential



of 4-hydroxybenzene diazonium salt. This assumes that it is at least as reactive with

SWNT as 4-chlorobenzenediazonium salt, for which E,1/ is available. The redox

potential, referred to vacuum, is equivalent to the Fermi level of the redox species in

solution. 10 1' 102 The conversion from one scale to another can be performed as follows 49:

EFD = - 4. 7 - VSCE (3.12)

which yields EF =-5.05 eV.

E s<f W can be fixed at the center of the gap,9 8,99 or more generally, at the zero energy in

the DOS of nanotubes. The redox level of diazonium relative to the zero of the nanotube

DOS becomes -0.60 eV.

3.3.5 Marcus Theory

The rate constant for an electron transfer reaction (kEr) is a product of an attempt

frequency (v,,), a tunneling factor ( i, ) and a nuclear factor( c,, ).46,47,103

kET = Veli,, (3.13.1)

Tunneling can be neglected ( ei, 1 ) if the diazonium molecule is physically close to the

nanotube during electron donation, i.e., the reaction is assumed to be adiabatic. The

nuclear factor is quantified by Marcus theory in terms of the reorganization energy (2)

and the free energy of the reaction (AG O )46,47 giving the following rate constant for a

(n,m) nanotube:

T = Vn (3.13.2)
4AkT

The electrochemical driving force, AG',, , is linked to the band gap as follows: 104 ,105



AGO) = - Es r  -~ - Ef (3.13.3)

where EF vT is the nanotube Fermi level and E("'") is the band gap, which is zero for

metallic tubes. The relative rate constant for a (n,m) nanotube can be obtained by

normalising k(nm) with respect to the maximum rate constant.

3.3.6 Gerischer-Marcus Theory

Gerischer-Marcus theory has been used to describe the kinetics of

electrochemical reactions at SWNT electrodes. 51,52 We extend this formalism to electron

transfer reactions in solution by considering each suspended nanotube as an electrode.

The rate constant for a certain nanotube depends on the convolution of its DOS

(D(nm) (E)) and the distribution of unoccupied redox states in solution (W(nm) (E))48,49 as

shown in Figure 3.3.

- (9.8) Dos0, O idat on stas

Reorganization
-0.4 Energy

-0.8------- E A

-2 -1 0 1
Density of States (statesleVatom)

Figure 3.3. Comparison of the density of unoccupied oxidation states of the diazonium
molecule (red) with the density of states (DOS) of the (6,5) - green - and (9,8) - blue -
nanotubes. The extent of overlap between the DOS of the electron-withdrawing reagent and
the nanotube (inset) determines the rate constant of the reaction.



kE'm) =V , Fox (E) D(n,m) (E) Wo "m) (E)dE (3.14.1)
EF

W '" (E) = p4 nkT,) (3.14.2)
oxk 4LkT

The band structures of different carbon nanotubes were computed from tight-binding

theory with the third nearest neighbour approximation.4,106 The densities of states were

calculated by the general expression provided by White and Mintmire for a 1D system.24

The tunneling term, ic, , is sometimes extracted from the proportionality function,

eo (E) , and included in the integral prefactor.49 Assuming that Eo, is independent of

energy, and that v,, and so are not nanotube-specific, it follows that they cancel out

when we calculate the relative rate constants.

3.3.7 Selectivity of Reagent towards Metals

The preference of diazonium towards metallic or semiconducting nanotubes can

be measured by defining the reaction selectivity as the ratio of the total surface coverage

for metallic SWNT (,,net) to that of the semiconductors (FTs). We have compared the

selectivity predicted by the rate model (Sp) to that obtained from the experimental data

(Se). -

Fme
Sp = (3.15.1)

1-s

Let M denote the set of all values of (n,m) corresponding to metallic SWNT, i.e., (n-m) is

divisible by 3. The following expressions can be derived for 1-,,et and Fs by using the



definition of surface coverage, Y(nm) = ( ") , and equation 3.8.1, which relates the total

number of sites on each nanotube (NT ) to

S(n,m () eM (n,m) (n,m)

!met = m (n,m) M

() NT, , n am)eM
(n,m)M 

(n,m),

X N)

(n,m)eM

the total number of sites in solution (NT).

(3.15.2)

I r(,.)a(nm)
(,m)M(nm)

(n,m)M (

(3.15.3)

The experimental reaction selectivity (Se) is obtained by taking the ratio of the overall

degrees of functionalisation for metallic (met,) and semiconducting SWNT (,Ss).

S e = met (3.16.1)
SC

All metallic SWNT are grouped into one unit, and all the semiconductors into a second.

For each group, the degree of functionalisation is defined as

met ,sc met,sc
S itial - unreacted

(met,sc A met,sc
Ainitial

where Am etc is the area under the metallic or semiconducting region of the absorption

spectrum of the starting SWNT solution, and Amets is the area under the corresponding

region after reaction.

3.4 Results and Discussion

Reactions of SWNT with 4-hydroxybenzene diazonium salt were performed at

various diazonium concentrations and temperatures, with and without illumination by

(3.16.2)



visible light. The UV-vis-nIR absorption spectra were collected for each sample after the

reaction. The spectral contributions of carbonaceous species and unreacted diazonium

salt were eliminated by background subtraction.

3.4.1 Functionalisation of Nanotubes

Figures 3.4(a)-(b) show UV-vis-nIR absorption spectra of deuterated SWNT

solutions reacted with increasing concentrations of 4-hydroxybenzene diazonium at 450C,

with and without illumination. The reagent concentrations have been expressed as moles

of diazonium per moles of carbon (D/C). The absorption features represent Van Hove

transitions of each (n,m) SWNT at different wavelengths. The first Van Hove transitions

of metallic species ( E~ ) appear between 440 nm and 645 nm, while the first ( ES ) and

second (ES2 ) Van Hove transitions of semiconducting species appear between 830 nm -

1600 nm and 600 nm - 800 nm, respectively. When the SWNT are covalently

functionalised by diazonium salts, their absorption peaks diminish because electrons are

localised by the formation of a covalent bond.2 1,22 ,43 This enables the monitoring of the

extent of adsorption/reaction for each (n, m) nanotube.

Figure 3.4(a) shows that there are no significant changes in the absorption

features of all individual SWNT until 0.019 D/C diazonium solution is added. When the

concentration of added diazonium solution exceeds 0.027 D/C, notable changes in the

absorption features are observed. The E I peak intensities start to decrease, while those

representing the Ejs and ES transitions of the semiconducting species show little

change. This indicates that metallic SWNT react with the diazonium salt before the

semiconducting SWNT. This trend becomes more prominent at the diazonium
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Figure 3.4. Photoabsorption spectra of SWNT reacted with 4-hydroxybenzene diazonium salt
(a) under illumination, and (b) in the dark. Diazonium concentrations, normalised to the
number of carbons, are listed in the figures. For each of the listed concentrations, 500 jla of 4-
hydroxybenzene diazonium salt dissolved in D20 was injected into 5 ml of SWNT solution
over the course of 24 hours, at 45C and a pH of 5.5. The insets in (a) and (b) show the decay of
the metallic peaks with increasing diazonium content.

concentration of 0.054 D/C, where half the metallic SWNT have reacted, while most of

the semiconducting SWNT still remain unreacted. At 0.078 D/C, most of the metallic

SWNT have been functionalised, and semiconducting SWNT with large diameters (0.93

nm - 1.25 nm) begin to react. At high concentrations of diazonium solution (>0.155 D/C)

all nanotubes react, regardless of electronic structure, resulting in the complete decay of

all absorption features.

The reactivities of SWNT in the absence of illumination show a different trend, as

shown in the SWNT absorption spectra in Figure 3.4(b). At a concentration of 0.078 D/C,

significant amounts of metallic SWNT still remain unreacted, in contrast to the

illuminated reaction. The effect of illumination on the extents of reaction of SWNT may

originate from the different reactivities of the diazonium intermediate radical, whose

form changes upon illumination.'0 7 The diazonium is known to form two types of

radicals: the diazenyl radical (Ar - N = N ), and the aryl radical (Ar ), where Ar

denotes an aromatic group. The latter is known to be the major intermediate when the



diazonium is exposed to illumination. Based on the reaction results in Figures 3.4(a)-(b),

the presence of excess aryl radicals, in addition to diazenyl radicals, leads to greater

extents of reaction in the presence of light.

The above results confirm that electronic structure selective chemistry on

nanotubes can be performed with 4-hydroxybenezene diazonium. The preference of

diazonium towards metallic or semiconducting SWNT can be gauged through the

selectivity parameter, which we have defined as the ratio of the total extent of reaction of

metallic SWNT to that of the semiconductors. The effects of diazonium concentration

and illumination on the selectivity are explored in the following section.

3.4.2 Approximation during Deconvolution

(6,5) / >(12,1 , -"

14,3) 2 0
il , 1 . ,

-0.S -*6 4A -0 A 4 03 -026 -02
Energy (eV)

Figure 3.5. Density of states (valence band only) of certain semiconducting single walled
carbon nanotubes. As tube diameter increases (left to right), a grouping of nanotubes occurs
about a common band gap energy. Species in the same group (as defined by the ovals) are
assigned the same rate constant assuming that they have similar reactivities with respect to
electron transfer reactions.

Spectral lineshapes corresponding to at least 56 nanotubes (18 metals + 38

semiconductors) constitute the absorption spectrum of SDS-suspended HiPco SWNT.

Strictly speaking, in equations 3.10.1-2, 56 values of k(n,.) should be used as fit

---- -- -- --- I I II I--



parameters; however, each absorption peak is composed of nanotubes with similar

transition energies. We used a simple weighting scheme to approximate the spectral

contribution of each (n,m) species to the parent peak. The upshot in reaction analysis is

that the absorption peaks of all nanotube comprising the parent peak decrease at the same

rate with increasing diazonium content. In other words, nanotubes with comparable

transition energies are observed to have similar reactivities. This concept is further

bolstered by Figure 3.5, which shows the density of states for specific semiconducting

nanotubes. A grouping of tubes is seen to occur around certain band gap energies. The

size of the group is inversely proportional to nanotube diameter, which increases from

left to right in Figure 3.5. SWNT in a particular group are assigned the same rate constant,

since we assume that they behave similarly during the electron transfer step.

Across the wavelength range considered (490 nm - 1600 nm), we have examined

the effect of diazonium on 17 representative nanotubes (4 metals + 13 semiconductors)

whose transition energies lay closest to the corresponding absorption peak. The depletion

of these peaks is due to the presence of adsorbed and covalently bonded diazonium

molecules on each nanotube. 43 Therefore, the surface coverage introduced in equations

3.5.1-2 (Y(,~)) can also be interpreted as

AYn,) - An(m) (3.17)

where 0 is the peak area of a (n,m) nanotube in the unreacted decant, and ,,) is the

depleted peak area of the same nanotube at the completion of the Nth addition of

diazonium.



3.4.3 Fits of Absorption Data

The (n,m)-specific fits in Figures 3.6 and 3.7 show fits for the following in the

presence and absence of illumination: metals ((7,7) and (11,5)), small-diameter

semiconductors ((6,5) and (10,2)) and large-diameter semiconductors ((9,8) and (10,3)).

The fits for the less reactive semiconducting nanotubes in Figures 3.6c-d and 3.7c-d show

a cusp at large diazonium concentrations. This is because when higher amounts of

diazonium are present in solution, the more reactive nanotubes quickly react to

completion leaving a considerable fraction of the reagent to react with the less reactive

semiconductors. This sudden glut in diazonium molecules competes for the limited

semiconducting sites still available and causes a steep rise in the calculated and observed

surface coverage. Once the latter reaches the maximum possible value - 1 - it levels off

and remains fixed at larger quantities of diazonium used. The poor fits for the (9,8)

nanotube in Figures 3.6f and 3.7f indicate that the model faces difficulties in describing

the adsorption phenomena on large-diameter semiconductors whose reactivities lie in

between those of the metals and small-diameter semiconductors. A nonlinear dependence

of the adsorption rate on the diazonium concentration (i.e., exponent > 2) was seen to

capture the S-shape of the isotherm. The total number of sites in solution (NT) was

computed as 0.00574 mmol and 0.00684 mmol for the light and dark reactions,

respectively. The approximate concentration of SWNT in the starting solution was 9.296

wt%. In the 5 ml reactor volume, this translates to 0.0347 mmol of carbon atoms. The

total number of sites computed is at least an order of magnitude lower than the number of

carbons present in solution, which means that not all the carbon atoms are reactive sites.

Once it was known that the (11,5) nanotube had the highest rate constant (k( 11,5)) , the



fitting procedure was repeated by keeping k( ,5) invariant and determining the rate

constants of the other nanotubes relative to it. The gradient in rate constants between the

various reacting species causes the metal --+ large-diameter semiconductor -* small-

diameter semiconductor progression. The precise metering of the diazonium reagent into

the reactor ensures that this progression is maintained.
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Figure 3.6. Surface coverage (7(,,m)) as a function of the total amount of diazonium fed into the 5
ml reactor for the light reaction for representative metallic and semiconducting nanotubes. The
black squares denote the surface coverage data obtained from the deconvolution of the
absorption spectra of the SWNT-diazonium reactions, and the red lines represent the fits
predicted by the adsorption-based rate model.
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Figure 3.7. Surface coverage (y(,,,,)) as a function of the total amount of diazonium fed into the 5
ml reactor for the dark reaction for representative metallic and semiconducting nanotubes. The
black squares denote the surface coverage data obtained from the deconvolution of the
absorption spectra of the SWNT-diazonium reactions, and the red lines represent the fits
predicted by the adsorption-based rate model.

3.4.4 Structure-Reactivity

The electronic structure-reactivity relationship for nanotubes can be explained by

using the Marcus and Gerischer-Marcus formalisms to fit the relative rate constant data.

The comparison between the computed (k(n,m)) and theoretical (kEn, ) relative rate

constants for semiconducting SWNT is shown in Figures 3.8(a)-(b), along with the
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Figure 3.8. Comparison of the relative rate constants (fit parameters obtained from the surface
coverage data) for the semiconductors, along with their associated 95% confidence intervals,
with the predictions of the Marcus and Gerischer-Marcus theories for the (a) light, and (b) dark.
Both theories predict the expected dependence of relative rate constants on band gap.

associated 95% confidence intervals for the former. The sole fit parameter, the

reorganization energy (A), was estimated as 0.54 eV by Marcus theory and 0.71 eV by

Gerischer-Marcus theory. These values lie between the observed bounds for A (0.5 eV

and 1 eV).4 9 Despite the scatter, the expected trend is obtained for the semiconductors:

large-diameter semiconductors have higher relative rate constants than their small-

diameter counterparts. Metallic nanotubes have higher rate constants than the

semiconductors due to the finite DOS at the Fermi level, which is conducive to electron

transfer. Although this is predicted by the Marcus and Gerischer-Marcus theories, the

model and data values do not agree as well for the metallic nanotubes (Appendix A,

Table Al). This difference could be attributed to the reaction step, which we have

assumed as non-rate limiting.

The relative rate constants have been correlated with the band gaps instead of the

SWNT diameters. This is because the band gaps play a more significant role in

determining the values of the relative rate constants. The electrochemical driving force

defined in equation 3.13.3 depends on the position of the first Van Hove singularity in

semiconducting nanotubes, relative to the redox potential of diazonium. The larger the



band gap, the smaller the driving force, and hence, the smaller the rate constant. The rate

constant according to Gerischer-Marcus theory (equation 3.14.1) depends on the

convolution of the densities of states of the reacting species. The larger the band gap, the

larger the region where the SWNT DOS is zero, which leads to a smaller overlap between

the densities of states of the nanotube and the diazonium molecule. In a SWNT-

diazonium reaction mixture where different (n,m) nanotubes are present, the charge

transfer mediated adsorption step could be rate-limiting because a spectrum of energy

states is available for electron donation; this, along with the metal - large-diameter

semiconductor - small-diameter semiconductor progression observed experimentally,

also rationalise the dependence of the relative rate constants on the band gap.

3.4.5 Reaction Selectivity in the Light and Dark

The reaction selectivity has been defined as the ratio of the overall degrees of

functionalisation of metallic (6,,et ) and semiconducting SWNT (S, ). The effect of

illumination on 8,,et and (5, as shown in Figure 3.9(a), is to increase the extents of

reaction and the rates for metals and semiconductors at all concentrations of the reagent.

We expect the enhanced conversion to lower the selectivity in the light when compared to

the dark. This is evident in Figures 3.9(b)-(c), which depict the experimentally observed

(Se) and theoretical selectivities (Sp), respectively, for each input of diazonium. Although

a similar trend is seen in both figures, there are discrepancies in the magnitudes of S, and

Sp. This can be attributed to the relatively low quality of the fit for large-diameter

semiconductors at low diazonium concentrations in the dark (Figure 3.4(e)-(f)). Due to an

overestimation of the surface coverage of large-diameter semiconducting SWNT in the

dark reaction, the rate model underestimates its selectivity. Consequently, the difference
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Figure 3.9. (a) Degrees of functionalisation of metallic (6,,t) and semiconducting (6) SWNT in
the light and dark. (b), (c) Experimental and theoretical selectivities, respectively, as functions of
the total amount of diazonium fed. The light reaction has a lower selectivity due to higher extents
of reaction for all nanotubes. The rate model overestimates 6c for large-diameter semiconductors
at low concentrations of diazonium in the dark reaction, thus leading to a mismatch with the
observed trend. (d) A comparison of relative rate constants for the light and dark shows that they
are similar. Illumination does not preferentially enhance the rate constant of a particular (n,m)
species over another.

in light and dark selectivities in the low reagent concentration regime (Figure 3.9(c)) is

much lower than reality (Figure 3.9(b)).

We stated previously that illumination raised the overall reaction rate, thus

resulting in greater conversion. An increase in the rate can either be due to higher rate

constants for the nanotubes, or a higher activity of diazonium in solution. A parity plot

between the light and dark relative rate constants in Figure 3.9(d) shows that they are

similar, with limited dispersion (standard deviation = 0.0417) about a line with unit slope.
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With the inclusion of confidence intervals (Appendix A, Fig. A3), we see that the relative

rate constants for the two cases are not statistically different from each other, thus leading

to two possibilities: (a) the absolute rate constants do not change at all in the presence of

light, or (b) a uniform increase in the rate constants of all the nanotubes occurs in such a

way as to maintain the same relative ratios. Illumination causes the diazonitun to

decompose into aryl radicals, the concentrations of which are negligible in the dark. The

presence of excess reactive radicals - Ar - N = N and Ar - increases the activity of

diazonium in solution, and hence, the reaction rate. All these factors contribute to greater

degrees of functionalisation for each (n,m) SWNT in the presence of illumination,

thereby decreasing the selectivity.



4. Nanotube Transport in a Centrifugal Field

4.1 Introduction

The successful suspension of single walled carbon nanotubes (SWNT) in water

was made possible by the use of the surfactant sodium dodecyl sulfate (SDS), and

ultracentrifugation to remove bundles from the sample. 30 The centrifuge-based separation

of nanotubes by diameter and electronic structure was achieved by suspension with bile

salts such as sodium cholate (SC). 4 4 Previous efforts involved DNA as the suspension

agent.108 The non-uniform extent of adsorption of the surfactant on nanotubes of varying

chiralities facilitates their separation by density-based centrifugation.

The sedimentation of solute molecules in a solvent during ultracentrifugation is

modelled by the Lamm equation. 53 Under certain conditions, analytical solutions of the

latter are available' 09 115 but use functions that are too complex to fit to experimental data.

Computer simulations reduce the number of assumptions and account for nonlinearities

that would otherwise prevent closed-form answers. The first numerical solution of the

Lamm equation was performed using finite element methods by Claverie et al.116.Later

work extended the scope of this technique to the sedimentation of molecules in dynamic

density gradients 117 and compressible media,118 among other cases. 1 19,120

In this work, we seek to use the theory of the centrifuge 110,12 1 and the numerical

analysis of the Lamm equation to describe the motion of surfactant-suspended SWNT -

both reacted and unreacted - in a density gradient, and estimate the number of surfactant

molecules adsorbed per unit length of the nanotube. The latter determines the density of

the SWNT-surfactant assembly, and although we cannot discern how it depends on

chirality, we now have a bound for the number of species on the SWNT surface. It has



been noted that this technique of separating suspended nanotubes with the centrifuge is

purely density-based 44 and does not depend on their velocities in the gradient. We have

accounted for the sedimentation of the gradient material and the solvent compressibility

due to the high speed of rotation, since both factors determine the final positions of the

enriched fractions.

4.2 Experimental Section

4.2.1 Preparation of Nanotube Solutions

Two types of nanotubes were used in this study: CoMoCAT SWNT (Southwest

Nanotechonologies, Inc.) for separation by diameter, and HiPco SWNT (HPR 162.3, Rice

University) for separation by electronic type. Suspension of SWNT in water with 2 w/v%

SC was performed by ultrasonication and ultracentrifugation to obtain individual

nanotubes as described in the literature.44 In both cases, the concentration of SWNT was

adjusted to 1 mg/ml. SWNT solution was first homogenised for 1 hr at 65,000 rpm (T18

basic ultra-turrax, IKA) and then sonicated for another hour with a 1/8" probe tip at 10 W

(130 W ultrasonic processor, Cole-Parmer). The resulting solution was centrifuged for 1

hr at 220C and 32,000 rpm to eliminate bundles and non-suspended nanotubes (Optima L-

100XP centrifuge, Beckman Coulter). SWNT prepared in this way were used in the

separation steps described below.

4.2.2 Conditions for Diameter Separation

Separation of CoMoCAT SWNT by diameter in a density gradient was performed

as described in the literature. 44 The gradient was made using a non-ionic medium,

OptiPrep (60 w/v% iodixanol, Sigma-Aldrich), in a linear density gradient maker (SG30,



Hoefer, Inc). The resulting density of the solution ranged from 7.5 to 22.5 w/v%, with a

total volume of 8 ml (Figure 4.1a). One ml of CoMoCAT SWNT (density = 20 w/v%)

was injected at the bottom of the gradient and centrifuged for 22.26 hr at 220C and 32,000

rpm using a swinging bucket SW 32.1 Ti rotor (Beckman Coulter). After centrifugation,

SWNT samples were fractionated at every 150 pl in a fraction recovery system

(Beckman Coulter), and characterized by UV-vis-nIR absorption spectroscopy

(Shimadzu UV-3 10PC absorption spectrometer) to investigate the extent of enrichment of

specific SWNT diameters.

4.2.3 Conditions for Electronic Type Separation

The separation of HiPco SWNT into metallic or semiconducting fractions was

performed according to the protocol 44 to separate laser-ablation-grown nanotubes.

Surfactant mixtures of SDS and SC in a weight ratio of 3:2 for metallic SWNT

enrichment and 1:4 for semiconducting SWNT separation were utilised.2 The density

gradient also contained the same mixture of SDS and SC. The solution density ranged

from 20 to 35 w/v% and 15 to 30 w/v% for the metallic and semiconducting SWNT

separations, respectively. One ml of HiPco SWNT, having the same ratios of surfactant

mixtures by the addition of 2 w/v% SDS in water, was injected at the bottom of each

density gradient. The density of the injected SWNT solution was 32.5 w/v% and 27.5

w/v% in the 3:2 and 1:4 cases, respectively. All the other conditions were similar to the

diameter separation described above.



4.2.4 Selective Reactions for Density Enhancement

The SWNT-diazonium reaction was performed at pH 5.5 by injecting the

diazonium salt solution with a syringe pump (Cole-Parmer) into a semibatch reactor

containing the SWNT/SDS suspension. The total volume of the 4-

hydroxybenzenediazonium solution (500 pl) was added at an injection rate of 20.83 ul/h

into a reactor volume of 10 ml under various diazonium concentrations (0.42, 0.84 and

1.68 mM). The reactor was well-stirred throughout the reaction time of 24 hours. The

conversion of functionalised SWNT was controlled by varying the concentration of

diazonium salt at a reaction temperature of 450C.

The separation of reacted tubes from the unreacted ones based on the difference in

their densities was carried out with the following arrangement of density media (OptiPrep,

60% w/v iodixanol, Sigma-Aldrich) in a centrifuge tube (Figure 4.1b):5 5

(a) 3 mL layer of 60% w/v iodixanol at the base of the centrifuge tube, which is called the

"stop-layer", the purpose of which is to prevent nanotubes from reaching the base.

(b) 7 mL layer of 30% w/v iodixanol in which nanotube motion takes place under the

cenitrifugal field.

(c) The remainder of the centrifuge tube was filled with water.
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Figure 4.1. Schematic of the ordering of layers of different densities in a centrifuge tube for the
(a) diameter-based separation of a nanotube solution, and (b) separation of reacted nanotubes
from their unreacted counterparts. The starting solution is injected at the location shown.

A 1 mL solution of nanotubes with a concentration of 32.5% w/v was injected deep into

the second layer and centrifugation was performed for 22 hours at 32000 rpm using a

swinging bucket rotor (SW 32.1 Ti, Beckman Coulter). After centrifugation, 150 'UL

fractions of SWNT samples were characterized by UV-vis-nIR spectroscopy (Shimadzu

UV-310PC absorption spectrometer).

4.3 Hydrodynamic Model Development

4.3.1 Derivation of the Lamm Equation

The sector-shaped 53 110,114,12 differential element (EFGH) in Figure 4.2 has a

volume equal to h*dr*rO, where h is the height of the element, dr is its radial thickness, r

is its distance from the origin (0), and 0 is the angle swept by the rotor arm (OB) in a

time interval dt. Within that time frame, the accumulation of the solute in the volume

element is given by:



Figure 4.2. Sector-shaped cell showing a differential element across which mass transport of the
solute takes place in a centrifugal field. The Lamm equation is obtained by framing a shell
balance using the flow variables shown.

[C(r,t +dt)-C(r,t)]hdrrO =[Jrrl, -JrOlr+dr hdt (4.1.1)

where C(r,t) is the spatiotemporal distribution of the solute and J is its flux at a radial

distance r from O. Dividing equation 4.1.1 throughout by h*dr*rO*dt yields

ac= a ) (4.1.2)
at r ar

The solute flux can be described in terms of the diffusive and sedimentation components,

the latter being due to the centrifugal field applied.

aC
J= -D +uC (4.1.3)

ar

where D is the diffusion coefficient of the solute, and u is the magnitude of its velocity.

A solute particle experiences a net acceleration due to the competing effects of the

centrifugal, buoyancy and hydrodynamic drag forces:

ma s = mscor - mLco2r - fu (4.1.4)

In the above equation, ms is the mass of the solute and mL is that of the displaced solvent

which provides an upward thrust on the sedimenting particle. The drag coefficient is f



while the angular velocity of the rotor is co. Assuming that the particle reaches a terminal

velocity, i.e., the velocity field reaches a steady state, we get:

Um= 2r - m  = m 2 r  (4.1.5)
f f p,)

Here, VL is the volume of the solvent that is displaced by the solute, and is trivially equal

to the volume of the solute itself, V, by Archimedes' Principle. The final expression that

results for the steady state velocity is:

m o2r1 1PLI (4.1.6)
u PS)

Equations 4.1.2-6 in concert give us the Lamm equation:

aC D a ac 1aC -- I r-C- --- (ru C) (4.1.7)at r ar -ar r ar

with the assumption that D does not vary spatially.

4.3.2 SWNT Concentration Profiles

The one-dimensional Lamm equation derived in the previous section can be used

to calculate the concentration distribution (C(0,,,,)) of a (n,m) nanotube as a function of its

diffusion coefficient (D(,,,m)) and sedimentation velocity (U(,, .):

c(nm) D(nm) a r ') - rC u) (4.2.1)
at r ar dr r ar (nm) (nm)

The above PDE is solved with a finite volume method, using a first order upwind scheme

for the sedimentation term. 122 The velocity in terms of the SWNT mass (M(,,m)), angular



velocity of the rotor (co), friction coefficient (f,,,,)), solution density (p,) and particle

density ( p,,n,,)) is

U M(ni) o [1 p 1 (4.2.2)

We define velocity explicitly instead of including it in the sedimentation coefficient,

which is not constant for each SWNT and varies radially due to the non-uniform

density. 123 12 The orientationally-averaged friction coefficient, f,,,,) , is obtained by

approximating the nanotube as a circular cylinder composed of a stack of rings: 126-130

Afn, n) = L(,m) (4.2.3)
In L ] +0.32

where L(nm ) and d(,,,m) are the SWNT length and diameter, respectively, and q is the

viscosity of the aqueous solution, which is assumed to change negligibly with pressure.'31

Supposing that the nanotubes in solution do not interact with each other, the (n,m)

frictional and diffusion coefficients can be related by the Einstein-Smoluchowski

equation: 132133

kTf U,,,,, = D 
(4.2.4)

(nm)

The diffusion coefficients are taken to be independent of the solute concentration. At high

values of the latter, the Lamm equation ceases to be applicable. 134



4.3.3 Solution of the Lamm Equation by Finite Volume Method

The computational domain is discretised into equally-spaced cells for the solution

of the Lamm equation by the Finite Volume Method (Figure 4.2). 12 2 Each cell i has an

average solute concentration Ci, radial coordinate ri, left (right) boundary ri-1/2 (ri+1/ 2) with

its associated mass flux J-1/2 (Ji+1/2). The benefit of the method of finite volumes over

finite differences is that the former assures mass conservation at the smallest level of

discretisation. For this reason, it is easier to start with the version of the Lamm equation

that uses flux variables, i.e., equation 4.1.2.

C(r,t) 1 a(rJ)
= (4.1.2)at r ar

The definition of the flux in terms of the concentration and velocity will be implemented

at the very end with the first order upwind schemel22 to ensure that the solution algorithm

remains stable throughout. Zero flux boundary conditions are applied at each end, rl/2 and

rN+1/2, while the initial condition for the solute concentration is a pulse centered around ro

shown in the insert to Figure 4.3. Consider the cell i. Equation 4.1.2 can be integrated as

shown below within this volume between the radial limits ri-1/2 and ri+1/2:

1 ra hrdr= r Chrdr = 1 +1 hr ) dr (4.3.1)

hrAr r t t hAr hrAr r ,V r 2

where h, ri and Ar have already been defined. The denominator is simply the volume of

I r,+V2

the chosen cell. Defining C = - C hr dr as the spatially averaged concentration in
hrAr i-

cell i, the simple integration on the RHS gives

aC, 1- rJIl - rJLI (4.3.2)at rAr -12 +2
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Figure 4.3. Discretisation of sector-shaped cell for the solution of the Lamm equation by the
Finite Volume Method. The inset shows the initial concentration distribution of the solute
centered at a radial distance ro from the origin 0.

The next step is to average both sides of equation 4.3.2 over a time interval At.

t+t t+At t+At t+At

dt = J i-r] dt= ri JZ 11 2dt/-, 1 12  Ji+/2dt (4.3.3)f t rAr - , I

t+At

Using J = A f J dt as the definition of a time-averaged flux across a cell boundary, we
t

may rewrite equation 4.3.3 as:

Lt [ /ri ri 2] (4.3.4)
C, (t + At)- C, (t)= - -,rJ------4

Therefore, the solute concentration at any time step t+At in terms of the known quantities

from the previous instant is:

- At - ] (435)
C, (t + At) = C, (t)- rJr i+ -rJ1-1/ (4.3.5)

r, Ar / -2



Equation 4.1.3 states the dependence of the flux on the local concentration gradient and

the velocity of the solute.

aC
J= -D +uC (4.1.3)

ar

For the direction of flow shown in Figure 4.3, equation 4.1.3 may be discretised into the

left- and right-hand mass fluxes using the first order upwind scheme: 122

D (4
Ji+2 - i+ -Ci)+Ui+11/2 Ci (4.4.1)

D -4
j-12 =---(C - C- 1)+ Ui-1/2 C-1 (4.4.2)

The velocity at a boundary is estimated from equation 4.1.6. Equations 4.4.1-2 are then

substituted into 4.3.5 and applied to each node 1<i<N in the computation domain. This

results in a system of algebraic equations in terms of the unknown concentrations at each

point. It may be succinctly expressed in matrix form:

Cn +l = M c" (4.5)

where c" (c" + 1) is the vector of concentrations at the time instant n (n+l), and M is the

coefficient matrix. A forward time-stepping algorithm along with the stated initial and

boundary conditions can be used to calculate the concentration distribution in the

centrifuge time at any instant.

4.3.4 Density of Surfactant-SWNT Assembly

The density of the surfactant-nanotube assembly ((n,m)) can be described by a

single parameter, namely the number of surfactant molecules adsorbed per unit length of

the SWNT (ns). For a specific (n,m) species, the number of carbons per nanometer (nc)



can be estimated,3,135 and when combined with ns, yields the total mass per unit length

M(n,m) = ns,jms, + ncM c + nfMf + nsolMol (4.6.1)

where Ms (Mc) is the molecular (atomic) weight of surfactant (carbon), and the

summation is carried out over all the surfactants in solution. The last pair of terms is

applicable when the interior of the nanotube is filled with either nf molecules (per nm) of

a fluid with molecular weight M or nsoi molecules (per nm) of the solvent with molecular

weight Ms,,o. The general formula for the volume per unit length of the assembly is

V(n,,n) = ns, + d - nsoVs (4.6.2)

deff = d(,, ) + 2rc  
(4.6.3)

where rc is the van der Waals radius of a carbon atom in aromatic molecules (-1.72 A). 136

The third term in equation 4.6.2 is a correction when the interior of the SWNT is

accessible to the solvent whose molar volume is V,0o. In this work, we have assumed that

the pores in the SWNT lattice are devoid of any fluid, i.e., nf = nsol = 0. Additionally, the

nanotubes are presumed to be uncapped and lacking catalyst particles. Values of the

anhydrous molar volumes of the surfactants under study (Vs)137-139 were found in the

literature. Anhydrous surfactant molecules impart little, if any, buoyancy to the nanotubes.

We have therefore accounted for one hydration shell while calculating the apparent molar

volumes of SC (-613 ml/mol) and SDS (-403 ml/mol) using approximate hydration

numbers for each.140,141 Finally, the buoyant density of a generic nanotube is

(n,m)
P(nM,) ) (4.6.4)

, (n,n)



4.3.5 Dynamic Density Gradient

The concentration of the density gradient material, iodixanol, changes in space

and time due to sedimentation, leading to a variation in the solution density (p).117

Consequently, the nanotube density cannot be estimated from its final position in the

gradient. The iodixanol molecules settle according to equation 4.2.1, with the subscript

(n,m) replaced by L The motion of the gradient in the centrifugal field is assumed to be

independent of the co-solute (SWNT). 142 Instead of solving the partial differential

equations for the nanotubes and iodixanol simultaneously, a look-up table containing the

sedimentation profiles of the gradient at different times was created beforehand. During

the computation of the SWNT trajectories, the instantaneous density gradient was

obtained by interpolation from the tabulated values. The diffusion coefficient of iodixanol

(DI) was calculated by comparing the theoretically predicted gradient profile with data

collected by Arnold et a144 (Figure 4.4), and was found to be -2.5 x10-10 m2/s.

- Density gradient (t=0)
1300- - Post-centrifugation gradient

,- 1250 (t=12 hrs)
E - - - Predicted gradient
6 1200- (t- 2 hrs)

Z 1150-

c 1100

1050

1000
0.08 0.10 0.12 0.14

Radial Distance (m)

Figure 4.4. The original density gradient (blue) changes after centrifuging for 12 hr (red) due
to the sedimentation of Iodixanol. The solution of the Lamm Equation predicts the final
density profile (black), and a comparison with the experimental data gives the diffusion
coefficient of Iodixanol (D) as -2.5 x 10- 10 m2/s.



4.3.6 Solvent Compressibility

The compressibility of water (K) is so low (4.6x10 - lo Pa- ) that it is considered

incompressible at ordinary pressures. However, the tremendous forces generated by

centrifugation lead to pressures that are high enough to affect the solution density. The

radial dependence of pressure (P) is given by'18

dP = p 2rdr (4.7.1)

Combining equation 4.7.1 with the definition of compressibility,

dps = KcpdP (4.7.2)

a relation between the densities of successive cells in the computation domain can be

obtained.

Ps,i+ = PS (4.7.3)
1- ap,

where a = 2_ - ). In this pair of equations, i denotes the ith cell in the discretised

space. The density in the first cell (ps,) is simply that of water at atmospheric pressure.

We have considered the compressibility of the iodixanol-water solution to be the same as

that of pure water.

4.3.7 Estimation of Time Scale

The length-dependent time scale for each (n,m) entity (t(nlh)) is determined by

the interplay of the hydrodynamic drag and the centrifugal force.

(n,m) _ f(n,m) (4.8)
M (n,m) L(n,m)"



In the denominator of equation 4.8, the SWNT length (L(n,)) appears because the total

mass of the nanotube system is used to calculate the centrifugal force. For the CoMoCAT

sample, a Gaussian length distribution was used with parameters that were obtained for

DNA-SWNT separated by centrifugation, 08 while for HiPco, a log-normal abundance

profile was assumed.143 Centrifugal forces have a smaller effect on short nanotubes as

compared to longer ones, since their masses are lower. In the density gradient, the former

travel slower but diffuse to a greater extent than the latter.

4.4 Results and Discussion

4.4.1 Assumptions in the Model

Monolayer coverage of the surfactant on the SWNT is assumed while calculating

the density of the assembly. In the presence of a co-surfactant, both species are thought to

adsorb at different sites on the nanotube so that the total volume equals the sum of the

component volumes. A conclusive visualisation of SDS adsorbed on SWNT is yet to be

articulated. SDS has been shown to form cylindrical micelles,3 0 beads, 144 hemimicellesl 45

and more recently, random, structure-less features 146 on SWNT surfaces. We have

adopted the last formulation in determining the total surfactant volume. The estimation of

ns is contingent on the assumption that the SWNT is pristine, and can be constructed by a

simple axial translation of the unit cell. End effects have been neglected. The use of a

single parameter (ns) for a separated fraction implies the uniform adsorption of

surfactants on the corresponding nanotube surface. In other words, each (n,m) species has

a single density, not a range.



Diffusion plays a secondary role while the nanotubes are moving through the

gradient in a centrifugal field. However, its effect will be greater during the start-up and

shut-down phases of the centrifuge. We have neglected these regimes in the computation.

It is not clear whether the density gradient is linear as soon as it is injected into the

centrifuge tube. The evolution of the gradient with time has been calculated by

approximating linearity at the start of the run.

The critical micelle concentration (CMC) and solubility of a surfactant are

affected by pressure. 147 ,14 8 A change in the CMC can be neglected due to the excess

quantities of surfactants used to suspend SWNT. The solubility of SDS in water drops

drastically above 1000 atm. 147 Calculations indicate that pressures in the region of

interest - the density gradient - do not exceed this value (Appendix B, Fig. B1). A

similar analysis could not be performed for SC due to the lack of informnation regarding

the effect of pressure on its solubility in water.

4.4.2 Separation using Sodium Cholate

The diameter-based separation of CoMoCAT nanotubes using centrifugation is

conceptually the easiest to describe mathematically, since only one surfactant (2 w/v%

SC) is involved. The model has been applied to data generated during the course of this

work and in the literature.44 We use relative SWNT concentrations as defined by Arnold

et al.,44 wherein the (n,m) concentrations are normalised to the corresponding maxima.

The two datasets differ in the rotor configuration, centrifuge tube dimensions and

centrifugation time. The final SWNT positions (Figures 4.5a,b) and gradient profiles46

differ in both cases. However, the result that we seek - ns, number of SC molecules

adsorbed per nm - should be similar, as is evident in Table 4.1, which shows n, with its



95% confidence limits.88 The radial SWNT concentration curves from the Arnold dataset

are approximate and this could adversely affect the comparison. In the original work,4 4

the distribution of each fraction was given in terms of densities. The spatial equivalent

had to be extracted from the predicted density gradient after 12 hours of centrifugation.

Earlier measurements of SDS coverage on SWNT yielded 2-3 molecules/

nm2.149,150 The surface coverage of sodium dodecylbenzene sulfate was at least 8 times

higher than that of SDS. 15 1 Such a high packing density might probably be due to

adsorption along the tube followed by the 'tails-on' configuration. 151' 152 Our estimates of

SC adsorption on an areal basis are listed in Table 4.1. The values for SC surface

coverage are lower than those of SDS because of the larger molar volume of the former.

The diameter and length of the cholic acid molecule are roughly 0.6 nm and 1.32 nm,

respectively. 153 It is plausible that at least 2 cholate molecules can adsorb onto the SWNT

surface within a linear distance of 1 nm.
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SWNT (molec/nm) Lower Limit Upper Limit (moleclnm 2) (kglm 3)

2.1229 2.1038 2.1601 0.6138 1060.3
(6,5)

2.0955 2.0611 2.1294 0.6058 1063.6
2.0003 1.9920 2.0074 0.5428 1085.2

(7,5)
2.1382 2.1247 2.1560 0.5802 1068.7
2.0076 1.9988 2.0120 0.4644 1094.9

(8,7)
2.0753 2.0638 2.0865 0.4801 1087.4

Table 4.1. Comparison of the fit parameter (ns) for 3 semiconducting SWNT in 2 datasets
involving sodium cholate, and the corresponding buoyant densities: Arnold et al. (blue) and the
present work (black). The fifth column shows the nominal value of ns on an areal basis. Relative
to the corresponding numbers for SDS, SC has much lower coverage values, probably due to its
larger size.

Figure 4.5. Diameter separation of
CoMoCAT SWNT using 2 wt% sodium
cholate in (a) Arnold et al. and (b)-(c) this
work. (a) and (b) show the final concentration
distributions of 3 semiconducting SWNT
along the length of the centrifuge tube. As
nanotube diameters increase, so do their
masses and buoyant densities, which yields
enrichment at different radial positions. (c)
Predicted concentration profiles for the (8,3),
(9,1) and (7,6) nanotubes. All the plots have
been offset for clarity.



We have also collected data for different run times of the 2 w/v% SC-SWNT

sample - 12 hours and 44.53 hours - in order to check the veracity of the coverage

estimates (Appendix B, Fig. B2). The final SWNT concentration profiles were situated

close to the point of injection. In the case of the 12 hr sample, this was because the

nanotubes had not been given sufficient time to move upwards. For the 44.53 hr sample,

the extended run time meant that the SWNT had reached their respective isopycnic points

and were carried downwards by the sedimenting density gradient. Either way, it was not

possible to obtain data that were as clean as the 22.26 hr sample, since the bulkier tubes

at the bottom have high absorbances and artificially raise the concentrations of the

SWNT of interest. The approximate profiles for the (6,5) and (7,5) nanotubes were

extracted and fitted. The values of ns for the 12 hr (44.53 hr) runs are 1.815 (1.84) and

1.832 (1.89) molecules/nm, respectively, which are not identical to those in Table 4.1 but

are still within 5-10% of the corresponding 22.26 hr values. Ideally, the same number of

adsorbed SC molecules should be able to describe the 12, 22.26 and 44.53 hr datasets.

However, the optimal value of the fit parameter, ns, is very sensitive to factors such as the

spatial location of the fractions in the centrifuge tube, the starting position of the SWNT

sample and its spread after being injected into the gradient. In addition, as mentioned

previously, the proximity of the SWNT fractions to the bulk sample also skews the

concentration profiles. We note that the values reported in this work are simply statistical

averages of the SC population on the nanotube surface. There is a constant exchange of

SC molecules from the nanotube to the solution due to the thermodynamic equilibrium

that exists between the adsorbed, micellar and free surfactant phases. 154



A more reliable test of ns is against the concentration profiles of the (9,1), (8,3)

and (7,6) nanotubes (Figure 4.5c). Since the fitted estimates of ns are clustered around 2

molec/nm, the profiles for these 3 tubes were obtained by fixing ns at 2.04 molec/nm. The

predictions are not perfect, although they roughly capture the SWNT positions after 22.26

hours of centrifugation. Note that the experimental concentration profiles for individual

SWNT are extracted from the absorption spectra, and are therefore affected by the

convolution with neighbouring spectral peaks. 155

4.4.3 Separation using SDS-SC Mixtures

Tuning the SDS:SC weight ratio has resulted in the enrichment of semiconductors

(surfactant ratio = 1:4) and metals (surfactant ratio = 3:2), most prominently in the case

of laser-ablation-grown SWNT.4 4 HiPco samples have metallic and semiconducting

species of comparable diameters. It is difficult to discern electronic separation in the case

of HiPco nanotubes for 2 reasons: (i) tracking the absorption peak of a specific metal as

an indicator of enrichmlent is not feasible due to the presence of semiconducting E22

peaks in the same spectral region, (ii) metallic fractions in the centrifuged samples may

also contain semiconductors with similar diameters. We have focused on the (6,5), (7,5)

and (8,7) semiconducting nanotubes so that information obtained from the CoMoCAT

fits can be used for the HiPco data. In other words, the n, estimates from the single

surfactant (SC) case provide a foundation for examining the dual surfactant (SDS-SC)

scenario.

The fits of the 3:2 data (Figure 4.6a) show a diameter-based separation for

semiconducting SWNT, although their buoyant densities are observed to be higher than
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Figure 4.6. Concentration profiles for HiPco semiconducting SWNT with (a) 3:2 SDS-SC weight
ratio, and (b) 1:4 weight ratio. The fits assume that the total number of surfactant molecules
adsorbed on the SWNT is conserved. SDS is postulated to replace the already existing cholate,
whose concentration on the nanotube surface is given by the analysis of the CoMoCAT diameter-
separation data. The plots have been offset to improve clarity.

{n sos,n sc }) Density
SWNT (molec/nm) (kgm 3)

{0.6629,1.4326} 1094.9
(6,5)

{0.8715,1.2667} 1109
(7,5)

{1.0643,1.0739} 1119.1
{.8545,1.2208} 1124.4

(8,7)
{0.7639,1.3113} 1120.2

Table 4.2. Fit parameters for different SDS:SC weight ratios - 3:2 (blue) and 1:4
(black) - along with the buoyant densities of the HiPco SWNT-surfactant assemblies for
each case.

when SC alone is used (Table 4.2). The desorption of SC from the nanotube surface and

its replacement by SDS, which has a lower molar volume, leads to an increase in density.

The concentration profile for each semiconductor was fitted by assuming a 1:1 molecular

displacement of SC by SDS, with the initial SC coverage already known from the

CoMoCAT fits. While this may not be an accurate representation of reality, it does yield

\

I



a lower bound for the SDS population on the nanotube. The analysis reveals the

progressively greater uptake of SDS molecules (i.e., greater SC desorption) as SWNT

diameter increases (Table 4.2). This is consistent with the higher activation energies

required by SC to desorb from most small-diameter nanotubes. 15 6' 15 7 The ability of the

3:2 weight ratio to separate metals from semiconductors can be explained by the stronger

interaction of sodium cholate with the former. Apart from the fact that cholate suspends

more nanotubes due to its naphthenic structure, s8 the proximity of the hydroxyl groups in

the cholate molecule to the nanotube surface results in electronic polarisation towards the

SWNT. 159 Metallic nanotubes have delocalised electrons at the Fermi level, and are more

receptive to induced charges. Thus, metallic SWNT have lower densities in the 3:2 case

because of minimal SC desorption as compared to the semiconductors. In the case of

large-diameter metals, it is also plausible that SDS adsorbs onto vacant areas on the

surface and further reduces the density.

The 1:4 surfactant ratio leads to the enrichment of the (6,5) nanotube in the

HiPco- and CoMoCAT-based runs (Figure 4.6b); however, the distribution of the (6,5) is

too broad to be accurately described by our model, and so, we have restricted parameter

estimation to the (7,5) and (8,7) nanotubes (Table 4.2). Here, as expected, we observe

that the increase in density can be accounted for by the adsorption of SDS in place of SC.

Given the smaller amount of SDS present in the 1:4 surfactant solution as compared to

3:2, it is expected that its population on the SWNT surface will be correspondingly lower,

which certainly is the case for the (8,7) nanotube (0.764 molec/nm versus 0.855

molec/nm). By this logic, there is an apparent discrepancy for the (7,5) species. At this

juncture, we would like to emphasise that the 1:1 replacement of SC by SDS was



assumed because of the lack of information involving any other adsorption scheme. It is

entirely possible that not all the cholate molecules will be replaced by SDS, which still

raises the density of the nanotube, while conforming to the approximate diameter

dependence of SC desorption. 156,157

4.4.3 Extension of Model to Reacted Nanotubes

Equations 4.6.1-2 were used to calculate the densities of unreacted surfactant-coated

nanotubes. The simple modification in equations 4.9.1-2 can estimate the densities of SWNT

reacted with diazonium groups. 55 Assuming a uniform loading (nd-i diazonium group per 10 C

atoms) of 4-hydroxybenzenediazonium molecules on the nanotube surface, the mass and volume

per length can be modified.

M(n,m) = ncM c + nM, + ndMd (4.9.1)

V(n,m) = n + d + ndVd (4.9.2)

where Md (Vd) is the molecular weight (molar volume) of the functional moiety, and the other

variables retain their original meanings. The value of ns is assumed to remain the same as in the

unreacted case (-2 molecules/nm), while the diazonium molecules attached to the nanotube are

not assigned a hydration layer. The predicted values of pristine and reacted semiconducting

SWNT are shown in the first 5 rows of Table 4.3. A glance at columns 3 and 4 indicates that a

solvent whose density lies in between the reacted and unreacted densities will promote their

motion in opposite directions upon centrifugation. The solvent density was fixed at 1164 kg/m3

(30% w/v iodixanol, Figure 4.1b). Figure 4.7 shows the initial (red) and final (black) density

profiles in the centrifuge tube. Two distinct bands of nanotubes were formed after the 22-hour

centrifugation step (Figure 4.7). As shown in the last row of Table 4.3, the upper (unreacted) and

lower (reacted) bands have densities of -1090 kg/m3 and -1188 kg/m3 respectively. These values

match our predictions and therefore lend physical significance to the model for the estimation of



SWNT density. The analysis using a heavier functional group (4-nitrobenzenediazonium) also

yielded similar a correspondence between model and experiment.55

Estimated Density, (kg/n)

Nonfoctiona1ed Funciondized Ditfercncc

(6,5) 0.75 10613.6 1157.8 942

(7.6)

(8.6)

(9,8)

0.89

117

Measured Average Density (kg/Ai

10865

10874

1087

1089.6

1182'8

118751

96.3

977

997

1036

97.9

Table 4.3. Comparison of calculated and experimental densities for unreacted and reacted
semiconducting SWNT. The last row shows the average densities of the unreacted and
reacted fractions of nanotubes obtained after ultracentrifuge-based separation.
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Figure 4.7. Density measurement for functionalised and unfunctionalised nanotubes. The initial
density profile (red) used a solvent density of 1164 kg/m3 based on the predictions in Table 4.3.
The final densities (black) were measured after 22 hours of centrifugation. The inset shows a
picture of the centrifuged 0.84 mM reaction sample with 2 distinct bands representing the
unreacted (-1090 kg/m 3) and reacted (-1188 kg/m3) nanotubes.
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5. One-Dimensional Nanostructure-Guided Chain Reactions

5.1 Introduction

One-dimensional chains with different potential functions have been extensively

studied with respect to their dynamical properties,71 shock waves160-162, bond

dissociation, 16 3 energy relaxation 64 ',165 and pulse propagation. 166' 167 We use this simple

platform to model sustained chain reactions that propagate in a single dimension, as along

the backbone of a carbon nanotube. Energetic groups bonded to the lattice react such that

the energy released is coupled back into the nanostructure and directed along the

backbone to propagate the reaction. The hypothesis is that the reduced dimensionality of

the nanostructure should be able to guide and accelerate the reactions along a preferred

orientation. Apart from their utility as thermal interface materials' 68,169, the quasi one-

dimensional nature of SWNT also holds prospects for applications as waveguides. Past

work has focused on confined propagation of x-rays 7 0 and thermal neutrons 17 1 through

carbon nanotubes.

In order to determine the characteristics of reactions with positive energy

feedback, we have represented a carbon nanotube as a linear chain of oscillators

connected by springs. Each oscillator is allowed to move in 3 dimensions, while thermal

conduction occurs only along the chain. The bead-spring model that was proposed by

Buehler 59 accounts for stretching and bending contributions to the overall force field. The

entire setup is assumed to be isolated from its surroundings. Each bead in the lattice is

loaded with energetic molecules (EM) at a specified density. An excitation applied at one

end of the chain is expected to raise the local temperature at the reaction sites leading to



the decomposition of the group. The one-dimensionality of the nanostructure channels the

energy released during combustion and facilitates subsequent reactions.

5.2 Model Development

5.2.1 Types of Lattices and Force Field Components

The Hamiltonian (H) for a system of N oscillators as a function of the individual

momenta (ps), masses (mi) and position vectors (r) is:

(a) ry (b)

Figure 5.1. (a) Component of the force field that involves the stretching of the bond about the
equilibrium distance ro; (b) Displacement of the ith bead from its equilibrium position (bk) which
leads to a finite onsite potential.

H=z +2 1V,(I+ g-_lr-4-i-ro)]+V (,+l,+2)+U(IF-ol)  (5.1.1)
j=1 2m, 2

where V,(y) is the contribution to the total potential due to bond stretching, and yy is the

deviation of the i-j bond length from its equilibrium value, ro (Figure 5.1); Vb is the bond

angle component of the overall force field in terms of the position vectors of the beads at

locations i, i+l and i+2; U(6;) is the onsite potential, with 6i denoting the displacement of

the ith oscillator from its equilibrium position, rio (Figure 5.1). The effect of the weak

interactions between nonbonded beads can be safely ignored, since the cutoff distance for

the 6-12 Lennard-Jones potential is less than the distance between a bead and its third

nearest neighbour. 59



The analytical forms of V(y) and U(i) change according to the type of lattice

used. Non-dimensionalisation of equation 5.1.1 yields a time scale (tsc) that depends on

the tensile force constant (ks) and the total mass of the bead (i.e., with the full

complement of reactive groups).

m b + n e

t- + m (5.1.2)

In the above equation, mb (me) denotes the mass of a single bead (reactive group) and no

is the total number of energetic groups loaded on each bead.

The details of the harmonic potential along with the associated parameters have

already been outlined in previous papers by Buehler et al.57-59

V () = 7 (5.2.1)

The FPU-fi lattice has a quartic term in addition to the harmonic portion, which

leads to the nonlinearities in inter-bead interactions and the aforementioned off-diagonal

effect. The onsite potential, U(6i) is zero in this case.

V (rj) = 7r, + r4 (5.2.2)

We have assumed that k' = k,. The nonlinear term plays a greater role at higher

deformations. As the energy input into the lattice increases, so does the frequency of

oscillation, which results in a pulse propagating at a higher speed and lower dispersion

than in a harmonic chain.166'167

The (p4 lattice retains the pure harmonic interactions between beads (equation

5.2.2) but includes an external contribution in the form of a non-zero onsite potential

U(8s)= k 8
2 k (5.2.3)21 21



which represents the effect of a substrate or the environment of the chain on the motion

of solely the ith bead. The nonlinearity is embedded within the oscillator itself, thus

resulting in diagonal anharmonicity. Again, we set kl=k2=ks.

Since the beads are allowed to move in all 3 dimensions, a deviation of the ijk

bond angle as shown in Figure 5.2a from its equilibrium value (r) also contributes to the

overall potential in the form of Vb.

Vb (Ook)= 2 Uk a;)2  (5.2.4)

+2(a) b
Figure 5.2. (a) Deviation of the ijk bond angle (0uk) from its natural value, 7r, adds a bending
component to the overall inter-bead potential; (b) Position vectors that determine the magnitude
of the bond angle formed by the beads at the locations i, i+1 and i+2.

Let the bond angle determined by the beads at locations i, i+l and i+2 be denoted as 0. Its

magnitude can be computed as a function of the respective position vectors of the above

beads- Fi, F, +2. 172

S= os-' i +2 (5.2.5)

where d, = - F,+ and di+2 = +2- +1 as shown in Figure 5.2b.

1



5.2.2 Calculation of Reaction Times

Reactions at the molecular scale are stochastic in nature, being subject to

fluctuations in temperature and pressure. In order to predict the time at which one will

occur and its position in the chain of oscillators, we use Gillespie's First-Reaction

Method. 173 With the help of the Arrhenius formula, zeroth-order rates for each bead (k)

are calculated in terms of the activation energy (Ea) and the kinetic energy of the bead in

question (Ek,i):

k, (s-) = 1013 exp a-  (5.3.1)

The time at which a reaction will occur at the ith bead is obtained by sampling the

governing probability distribution for a zero-th order reaction: 173

i (r) dr = k, exp(-kr)dr (5.3.2)

The reaction times (r) thus calculated for each bead are sorted in ascending order and the

bead with the smallest time is chosen. The reaction location, p, and time, r,, can therefore

be estimated together.

5.2.3 Reaction Acceptance Criterion

Once a possible reaction site has been located by Gillespie's First-Reaction

Method 73,'174, it remains to be seen whether it can be accepted or not. The metric used in

our algorithm compares the computed reaction occurrence time (z,) with the time scale of

energy dissipation from an excited bead to the quiescent lattice. This implies that the

reaction may be accepted if a bead remains in an excited state for a sufficiently long

period. To estimate the dissipation time scale, a bead in the center of the chain was

excited and its KE was tracked as a function of time. The energy correlation function was



computed using equation 5.4 from this time series for the FPU-f and the ( 4 lattices

(Figure 5.3).

(E - E) (E,, - E)
C() = (5.4)

Z(E, -E)

where T is the total number of time steps, r is the correlation time, E is the kinetic energy

of the excited bead at the ith instant and E is the time-averaged KE of the bead.

Panel (i) shows that dissipation occurs within one oscillation period (i.e., t,) for

the FPU lattice, which is the also the norm for harmonic chains. 6 9 Anharmonicities in the

potential function cause the dissipation to occur over longer time scales, 68 which is

obvious for the (94 lattice in panel (ii), where at least 3 lattice time steps are required to

achieve dissipation. Using the information in Figure 5.3, we can execute a reaction if rz

<tc (FPU-fl or harmonic) or Tr <3t,, ((4). Despite the greater leeway given to the (P4

lattice as compared to the FPU-f, we shall see that it has a lower reactivity than the latter

for the same energetic load.

When multiple energetic molecules are loaded on a single bead, the coarse-

grained nature of the system prevents us from ascertaining the time at which each group

will react. In other words, the computed reaction time - Tr - applies to the entire node-

reactive group assembly. We introduce stochasticity by permitting n energetic molecules

on a bead to react if nrz <mt, where m=1 or 3 depending on the lattice considered.
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Figure 5.3. Estimation of the reaction acceptance criterion for (i) FPU lattice, (ii) ( 4 lattice: The
50 bead in the lattice is excited and the decay of the energy correlation function is observed.
The bead attains a steady energetic level after 1 (3) oscillation period of the lattice for the FPU
((04) case. The reaction is accepted if the computed time required for it is less than ts.

5.2.4 Energy Conservation during Reaction

The chemical energy released during the reaction (AH) is deposited in the kinetic

component of the local bead. The fraction, a, determines the amount of enthalpy that is

converted to the KE of the reaction products, the remainder being lost as heat to the

surroundings. Before a reaction at a beadj, the total energy (TE) of the entire lattice is:

TE = E, + Ek - N (nAH) (5.5.1)

where Ep and Ek are the total potential (PE) and kinetic (KE) energies of the lattice, N is

the number of energetic molecules (EM), no is the EM loading on each bead and AH (<0)

is the enthalpy of reaction of a single EM; the last term gives the total energy stored in

the reactive bonds. After n, reactions have taken place at the locationj, TE becomes

TE = E' + Ek -(Nno - n, ) AH + Q (5.5.2)

E', (E k) is the new PE (KE) of the lattice, and Q is the heat lost to the surroundings. The

part of the reaction enthalpy that has not been irreversibly lost has partitioned into the PE



and KE of the affected bead. We shall now probe each term in the above equations for

greater clarity.

a) We assume that the change in the lattice PE in the instant after the reaction is

negligible because the change in conformation is highly localised. This is plausible when

the number of beads is large. It therefore follows that E', E,.

1 u
b) The lattice KE prior to the reaction is given by Ek =-L (mb + noe)u i , where mb

2 i=1

(me) is the mass of the bead (EM). For the purpose of this derivation, we know that the

next nr reactions will occur atj, so the KE can also be written as

Ek = -e(mb +n ome)U 2 + -(mb M +nM e)u (5.5.3)

The first sum is over the beads that do not react, while the second term corresponds to the

bead that does. After n, reactions have occurred, the total KE of the lattice is

E'= (mb + nm )u7 1 ij +nr -mv (5.4.4)

The first sum extends over the unreacted beads with the assumption that their velocities

are not altered immediately after the reaction. In other words, only the velocity of the

bead j will change. The second term is a sum of the final KE of the reacted bead and the

centre of mass of the decomposed EM. Since the summation terms cancel out, the change

in the total KE of the lattice due to the reaction is

E' - Ek = LmbVb + 2 mVe -(mb + nome )u (5.5.5)k k2 bb V M



c) The amount of energy lost irreversibly to the surroundings as heat can be

parameterised as a fraction of the reaction enthalpy. If we assume that a portion a of the

energy released - nAH- is converted to useful work, Q = (1- a)n,AH.

Equating the total energy before and after the reaction, we get

E, +Ek + HNnoAH = E' + Ek +(Nno - n, )AH + Q (5.5.6)

On substituting the expressions for each term that have been derived above along with the

concomitant assumptions, the result of energy conservation at thejth bead is:

2an,AH = mb + 2+ (mb + nome ) u 2  (5.5.7)

In the above equation, the first two terms represent the final kinetic energies of these

species. We only consider the centre of mass (CM) of the latter set in the analysis to

simplify matters. It follows that me (Ve) is the mass (velocity) of the CM of the reaction

products of the molecule. The last term denotes the initial KE of the unreacted bead,

where u is the velocity of the bead prior to the reaction. The RHS of the energy balance

can be expressed in terms of the components of the kinetic energies in the x, y and z

dimensions:

2anrAH = mb(Vx +Vy )z re v )+nm +ve +v4 )-(mnb +nome)(U2 +u +U2 )  (5.5.8)

Grouping the x, y and z terms separately, we get

2anAH= [m +nrmeV-(b + n+nome) = Ek (5.5.9)
j=x,y,z j=x,y,z

where the RHS is simply the sum of KE along each of the 3 spatial dimensions.

The LHS in equation 5.5.7 is the total energy available for useful work after a

reaction. It may be partitioned into the corresponding spatial contributions thus:

.j = f3l (2anrAH) (5.5.10)



where /3 is the fraction of the reaction enthalpy available to dimensionj (i = x, y, z). With

the concepts developed above, the total energy balance can be split into dimension-wise

portions with the appropriate velocity components.

2 2 (
EJ = mbVj +n,m,re Vj ob e)u (5.5.11)

During a given time step, all the quantities in equation 5.5.11 are known except for the

final velocities of the reaction fragments - vbj and Vej. The conservation of momentum in

each spatial dimension ( = x, y, z) gives us a second relationship between the product

velocities.

(mb + noe )Uj = mb b,j + n,.mevej (5.6)

Equations 5.5.11 and 5.6 can be solved simultaneously for the unknown velocities of the

reacted bead and the CM of the decomposed energetic molecule. The bead velocity after

the reaction has occurred is:

lb, = u + (5.7)
y (+1)

where 7= +nb + The choice of the sign is governed by the conservation of
nrm e  n,.

momentum. As an example, assume that the centre of mass of the decomposed energetic

molecule moves in the +x direction immediately after the reaction. If the unreacted bead

initially moves along +x, its reaction product will experience a thrust in the opposite

direction and the minus sign is used in equation 5.7. The converse holds if the unreacted

bead initially moves along -x. The same rule applies for the y and z dimensions. In this

way, the energy released during the reaction can be converted to the KE of the affected

segment of the chain.



5.2.5 Evaluation of the Parameter f

The parameter fy was introduced in the previous section to facilitate the energy

conversion mechanism. An exact expression for it can be derived by assuming that the

u
direction cosines, cos Oj i , remain invariant in the instants preceding and succeeding

the reaction. Here, j is the angle made by the velocity vector, u, with the j-axis, wherej

stands for either x, y or z. We suppose that during an infinitesimal time interval after the

reaction, the centre of mass of the decomposed EM moves along the same trajectory as

the unreacted bead prior to the reaction. It is evident from equation 5.7 that the final

velocity components of the reacted bead are functions of Ej, which itself depends on 8j

(equation 5.5.10). We can therefore state that vb,j- j- . Using the aforementioned

assumption regarding the invariance of the direction cosines, we get

vbJ u = cos O_ (5.8.1)

Vb IU

Since each component of the final velocity vector (vb) is known in terms of 8j, Eq 5.8.1

can be expressed as

= cos (5.8.2)
A+, 3 , +/z

By definition, the denominator equals 1, and so,

fl = cos2 0j [j = x,y, z]

The direction cosines are obviously know

corresponding values of P3 can be calculat

implication: if, for instance, the angle made by

(5.8.3)

n before the reaction and hence the

ed. Equation 5.8.3 has the following

trajectory of the unreacted bead with the
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x-axis is smaller than those made with the other two, there is a greater likelihood of the

energy released augmenting the x-component of the reacted bead's velocity.

5.3 Molecular Dynamics Algorithm

Figure 5.4 shows the flow of logic behind the calculation of the properties of the

reaction wave. The system properties - masses of the bead and the energetic molecules,

load on each bead, force constants, simulation time - are established at the very

beginning. The temperature of the system is raised to 300 K via the technique of velocity

scaling.' 75 The reaction wave is initiated by exciting the first bead in the chain. The

derivative of the Hamiltonian of the system (equation 5.1.1) with respect to the

coordinates of each bead gives the net force acting on it, which can be used in Newton's

Second Law to determine the positions and velocities for the next time step. Before that is

carried out, it is important to determine whether subsequent reactions are possible

following the excitation at time t = 0. The temperature at each lattice node is found from

its kinetic energy, 17 5,176 which is then used in estimating the local Arrhenius rate constant

for a zero-th order reaction (equation 5.3.1). The predicted reaction times and positions

are sorted in ascending order according to Gillespie's scheme' 73,174 and the criterion

tailored to the nature of the lattice is invoked to determine whether the reaction may be

accepted or not.

In the case of a successful reaction, the appropriate portion of the enthalpy, as

fixed by a is transferred to the kinetic energy of the bead using the energy conversion

mechanism that has been described in sections 5.2.4-5. Newton's Second Law is finally

used with the information from the reaction kernel to compute the new positions of each

bead in the chain. Due to the probabilistic nature of the system, multiple runs of the code
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are necessary to generate statistically significant estimates for the reaction wave velocity

and other characteristics.

Set system
parameters

Run multiple trials to generate statistics I

Equilibrate system at desired
temperature (300 K); Excite

0. 1t bead
o

-

". Calculate 0th-order
a. Calculate localCompute forces a at - rate constant at

E
i-

E
E Uab pintemperatures at beads each beadci

Deposit fraction of Estimate times of
SUpdate bead position enthalpyAccept reaction if 4 reaction (tx) and sort

O and velocity 4- e o n!,(n =or 3)of reacted bead in ascending order

Record time &
position of reaction

Build matrix containing times Estimate most probable time of
and positions for each run reaction and wave velocity

Figure 5.4. Flowsheet depicting the hybrid molecular dynamics/Monte Carlo algorithm used in
estimating the properties of one-dimensional chain reactions along a nanostructure waveguide.

5.4 Thermal Conductivity of the Lattice

5.4.1 Constant Temperature Molecular Dynamics

The thermal conductivity of a system may be measured either by equilibrium or

nonequilibrium molecular dynamics.' 77 In both cases, some form of temperature control

is needed: equilibrium MD (EMD) requires that the entire system be at a fixed

temperature with minimum deviation from the set point; in non equilibrium MD (NEMD),
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hot and cold baths are placed at the two ends of the conductor and the heat current due to

the ensuing temperature gradient is measured. The coupling of the system to an external

bath was first achieved by the Andersen algorithm 78 for temperature and/or pressure

control. Here, particles within the system were subjected to stochastic collisions with

species in the bath according to a preset collision frequency, i.e., a coupling constant. If a

certain particle has been selected to undergo a collision, its new velocity is then drawn

from a Boltzmann distribution corresponding to the desired temperature, T. This

technique is not suitable for the purpose of computing the thermal conductivity, since it

leads to a sudden decorrelation of particle velocities and an artificial drop in the velocity

autocorrelation function."17 The Nos-Hoover thermostat 79 -18 1 is far more suitable for the

intended application.

Heat Bath

Figure 5.5. Schematic of the extended system - the heat bath and the system under study linked
by the coupling parameter, Q.

According to the Nos-Hoover scheme, the system is once again coupled to the

external heat bath via a coupling constant Q (Figure 5.5). Unlike the Andersen thermostat,

the interactions of the bath with the system are not random collisions but evolve

deterministically in time as specified by an additional coordinate - s - and an extended

Hamiltonian as developed by Nos 179,' 80 and later simplified by Hoover with the

introduction of the thermodynamic friction coefficient, .17s,181
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HNos = R +U(r,)+ +3NkTln(s)=Ho + +3NkTln(s) (5.9.1)
i2 2m 2 2

Equation 5.9.1 shows the addition of two terms to the traditional Hamiltonian, H0,

consisting of the total kinetic and potential energies of the system. The dynamic evolution

of the artificial coordinate s is described by:

dn(s= (5.9.2)
dt

where 4 is obtained by solving the ordinary differential equation

2

XPi -3NkT
dg m,d Q (5.9.3)
dt Q

Newton's Second Law for each component of the system is then modified in terms of the

newly added connection to the external heat bath:

p,= -U(rN) p, (5.9.4)

The second term in the equation above acts to constrain the particle velocity according to

its interaction with the heat bath. The system defined by HNose is a NVE ensemble, and

the total energy in equation 5.9.1 is therefore conserved. On the contrary, Ho represents a

NVT ensemble where energy is allowed to flow across the system-bath interface. The

dynamics of the extended system may be easily solved using a centered-difference

algorithm first conceived by Holian et al. 182 The value of Q should be chosen carefully so

as to avoid large fluctuations in the temperature. A small value of Q implies a low inertia

of the heat bath. From equation 5.9.2-3, we see that a low Q-value leads to a larger rate of

change of the bath variable s, which ultimately causes greater fluctuations in the velocity

of the particle via equation 5.9.4.175 The converse occurs for large values of Q. The
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optimum Q can be found by matching it to the characteristic frequency of the system,183

or 1/tsc from equation 5.1.2, where tsc is the lattice time scale.

5.4.2 Calculation of Thermal Conductivity

The thermal conductivity (K) of a one-dimensional lattice may be found using

either equilibrium or nonequilibrium molecular dynamics. Both routes require the

calculation of the heat current in the axial direction (J), i.e., along the path of thermal

conduction.

J, L (t)= [ v,,E, + ri ( - , (5.10)

1=1 J i

where vi is the z-velocity of the ith bead, E is its total energy, ry is the distance between

it and its nearest neighbours, and Fy is the force of interaction between them. 77,184 ,185 The

essence of equation 5.10 is the transfer of energy as heat through the motion of the bead

(captured in the first term) and its interactions with the immediate neighbours

(encapsulated in the second term). The EMD path of the estimation of K involves the use

of the Green-Kubo formalism. 77,184,185

ic =Vk, T 2 (z (0) J, (t))dt (5.11)

In the above equation, V is the volume of the system and T is its temperature, which

explains the need for the thermostat outlined previously. The integrand is the heat current

autocorrelation function (HCACF). Equation 5.11 is derived from linear response theory

and uses the fluctuation-dissipation theorem, according to which the effect of an external

field on a system may be linked to the decay of fluctuations to an equilibrium state. 86
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An alternative, and conceptually easier, approach to compute K would be to use

NEMD by establishing a temperature gradient across the 1D lattice and using Fourier's

Law.185,187-189

Figure 5.6. Setup to calculate the thermal conductivity using nonequilibrium molecular
dynamics. The first and last beads are connected to hot (T,) and cold baths (T), respectively.

The first step is to connect the first and last beads in the chain to hot and cold temperature

baths respectively (Figure 5.6). The Nos&Hoover equations are applied to just these

beads with a simple modification to equations 5.9.3-4:

2

P'N -3k T_
= _ hN (5.12.1)

dt Q

Pi,N - (rN) ,-P,N (5.12.2)
r,N

with +,. equal to zero for all the interior beads.

The establishment of a steady temperature gradient across the lattice allows us to

calculate the axial heat current using equation 5.10. The thermal conductivity is then

given by Fourier's Law: 177

KcV = (5.13)

// dz
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5.5 Results and Discussion

5.5.1 Parametric Study of Reactions

The number of beads in the chain (N) was fixed at 100. We perform the analysis

for loads of 1-4 reactive groups/bead. The heat of decomposition of TNT (2732.48

kJ/kg) 190 was used as a representative value for AH in the simulation. The lattice, initially

equilibrated at 300 K, was allowed to evolve in time over a period covering -7ps.

The first step was to ascertain the stability of the nanomaterial as a function of the

system parameters Ea and a. After equilibration, the system was allowed to evolve in

time and reaction events were recorded. The average conversions from 100 trials have

been plotted in Figures 5.7a-d for different loads as a function of the 2 parameters. It is

observed that there is a threshold of stability with some spontaneous reactions occurring

when Ea<2 5 kcal/mol. Approximately 80% of the reactive groups present react without

an external stimulus for Ea<2 0 kcal/mol; the obvious conclusion is that at low activation

barriers, the reaction sites are energetic enough to obviate the need for a prior excitation.

Most of the species react haphazardly at room temperature itself thereby making the

assembly inherently unstable. This test establishes a lower limit for the selection of

molecules in the design of such structures.
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Figure 5.7. Stability plots for 4 loadings: (a) 1 EM/bead, (b) 2 EM/bead, (c) 3 EM/bead, and
(d) 4 EM/bead. Each system was equilibrated at 300 K and allowed to evolve in time without
any initial excitation. Average conversions have been plotted as a function of Ea and a. The
nanostructures seem to be unstable for Ea < 25 kcal/mol (yellow dotted line), since room
temperature is probably sufficient to set off the reactions.

The effect of an excitation at time t = 0 was studied by permitting all the reactive

groups at the first node to react unconditionally and tracking the progress of the reaction

wave with time. Figure 5.8 shows the total conversion as a function of the system

parameters for (a)-(c) harmonic, FPU and p4 lattices at 3 reactive groups/bead, and (d)-(f)

the respective lattices at 4 reactive groups/bead. While the conversion plots for the

harmonic and FPU systems are almost identical for the loads used, the (P4 lattice exhibits

a comparatively lower conversion at each value of a. This can be attributed to the poor

thermal conduction characteristics of the hard (4 potential.68 Nonlinear ID lattices can

support a temperature gradient, as has been proved by Non-Equilibrium Molecular
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Dynamics simulations. 67' 189 The approximate thermal conductivity of each chain can be

found by calculating the ratio of the time-averaged heat current to the applied

temperature gradient. 185,187-189 The thermal conductivity of the (p4 lattice in our study is

lower than that of the FPU chain by a factor of -14 (Appendix C, Fig. Cl). The

difference between the harmonic and FPU lattices is minimal due to the relatively small

displacement of the beads from their equilibrium positions. As a result, the quartic term

does not play a significant role under the current energetic loadings. The use of a

considerably higher reaction enthalpy will be explored later to elicit the difference in the

speed of the reaction wave.
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Figure 5.8. Conversion plots for (a) harmonic, (b) FPU and (c) (p4 lattices at 3 EM/bead; (d)-(f)
conversion plots for the respective cases at 4 EM/bead after equilibration at 300 K and allowing
the first bead to react unconditionally, thus releasing energy for subsequent reactions. While the
harmonic and FPU lattices have similar degrees of conversion, the (p4 lattice lags behind them at
both loads.
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Figure 5.9. Covariance maps in units of sec for the (a)-(b) harmonic, and (c)-(d) P4 latticesloading for the lattice.

on sites further along the chain as a function of loading and the post-reaction energy

available to the lattice. The steadily increasing pixel intensities down the length of the

chain - along the main diagonal - indicate progressively greater correlations between

neighbouring reactive sites. For the harmonic lattice at loads of 3 and 4 reactive

groups/bead, we see in Figures 5.9a-b, respectively, that the variance in reaction times

increases with loading. This is because an energetic pulse undergoes dispersion while

traversing a harmonic chain. 166' 167 Consequently, the reaction front progressively
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broadens and subjects the beads ahead to constant excitation, thus enabling them to react

before the front has passed them by. Identical reaction conditions for the (4 lattice present

a contrary set of results (Figures 5.9c-d) wherein the variance in reaction times decreases

with increasing loads and is also lower than the corresponding values for the harmonic

system. In order to explain this phenomenon, we examined the change in the phonon

density of states (DOS) of the (4 lattice with reactions at loads of 3-7 and 12 reactive

groups/bead (Appendix C, Fig. C2). A band gap partitions the spectrum into low- and

high-frequency regions. The ratio of the area under the high-frequency portion to the total

spectral area was recorded as a function of loading of the energetic molecules. The total

contribution of the higher modes is directly proportional to the reactive group loading. In

the next sub-section, we shall demonstrate that only signals with frequencies lying in the

higher end of the spectrum have a finite probability of traveling through the ( 4 lattice.

Therefore, energetic reactions involving a sparser coverage of reactive groups excite the

low-frequency modes to a greater extent, which have a limited capacity to propagate in

the (4 chain. This decreases the efficiency of information transfer in the lattice and

consequently raises the uncertainty in reaction times.

5.5.2 Fourier Analysis of Lattice KE

In order to understand why the conversion in the p4 lattice is less than the FPU

and harmonic cases, it is important to analyse the DOS of each lattice (Figure 5.10a, blue)

by taking the Fourier transform of the lattice KE.191 Additionally, we have mapped out

the range of frequencies that support signal transduction in each lattice (Figure 5.10a,

green) for a load of 3 reactive groups/bead. This range was determined by a technique
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similar to that used by Bowman et al. to obtain normal modes without a Hessian using

Driven Molecular Dynamics. 192

FPU. Cd. 6950 = 0.030.6 0.6 z .9
4- o ° D0

S0 0.2 0. 510152025303540.mi c 5 10 15 20 25 30 35 40

0 0.2 0.4 0.6 0.8 5 10152025303540

permitted frequency range have a finite probability of penetrating the FPU and harmonic
of0.2 0.4 0.6modes (ar0.ea 5 10 15 20 25 30 35a 40

Frequdriving frequencies (cod) and their respective optimal amplitudes (2). Energy transfer fromBeadigher to lower modes is evident in of the central panel, which correspondsh to a signal that has a(green)
high likelihood of propagation.of a signal applied at the 50th bead being propagated down the chain. Signals spanning the
permitted frequency range have a finite probability of penetrating the FPU and harmonic
lattices. Only high-frequency signals will propagate in the (0.34 case. (b) Ratio of the contribution
of lower modes (area 1 in 5.10a) to their higher counterparts (area 2 in 5.10a) at different
driving frequencies (cod)d) and their respective optimal amplitudes (). Energy transfer from
higher to lower modes is evident in the central panel, which corresponds to a signal that has a
high likelihood of propagation.

The 50h bead in the chain was driven at various frequencies and the total kinetic

energy of 40 beads on either side of the point of application of the signal was recorded. It

is clear that viable propagation is p ossible at all the permitted frequencies (0tc0.6) for

the FPU and harmonic chains; however, only high-frequency signals (0.3how a value close to 1 for0.65) have

non-zero probabilities of traveling through the (P4 lattice. The effects of specific driving

frequencies (cod) are depicted in Figure 5.10b for the (04 chain. Each frequency, cod, has an

optimal amplitude, A,192 (Appendix C, Fig. C3) whose value is also shown in each panel.

The ratio of the areas under the regions labeled "1" and "2" in the bottom panel of Figure

5.10a has been plotted against the distance from the 50th bead in Figure 5.10b. This ratio

is a measure of the relative contributions of the low- and high-frequency modes to signal

propagation. The top and bottom panels in Figure 5.10b show a value close to 1 for the
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ratio, which remains almost constant with distance from the driven bead, thus implying

that no energy transfer occurs from the higher to the lower modes. This is not surprising,

since the corresponding cOd lie in the forbidden range (i.e., cod<0.3 and cod>0.6 5). The

central panel uses a driving frequency that lies in the permitted range; despite the noise, a

distinct increase is observed in the ratio with distance, indicating that the role of the lower

modes gradually grows in importance as one moves away from the driven bead. A

transfer of energy takes place from the higher modes to the lower modes. In other words,

the allowed high-frequency phonons from the point of excitation disintegrate into their

low-frequency counterparts, which are responsible for the successful propagation of the

wave.

The 5 0 th bead in a (4 chain was energetically excited and its DOS has been plotted

in Figure 5.11 along with those of its immediate neighbours. The enhanced energy state

of node 50 raises the phonon population in the low- and high-frequency regions of the

spectrum, including a spillover into the band gap. From the results presented in Figures

5.10a-b, it is now certain that the increased DOS among frequencies less than o)=0.3 do

not aid in energy propagation. When compared to the FPU and harmonic lattices where

all frequencies are allowed, only the upper half of the spectral range in the ¢4 chain is

capable of transmitting signals. Oscillations with c>0.65 become highly localised and

possibly lead to the formation of breathers. This reduced capacity of the (4 chain to

support signals of all permitted frequencies explains the poor conduction, and hence,

lower chemical conversion when compared to the other 2 systems.
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Figure 5.11. DOS of 4 beads after the energetic excitation of the 50th node. Although the
population of the lower modes (co<0.25) of the latter have been raised, their contribution to
propagation is small.

It is also of interest to determine whether a sustained reaction wave is facilitated

by the activation of certain modes of oscillation in the harmonic lattice. Figure 5.12a

shows the power spectra for 0 (orange) and 3 (blue) reactive groups/bead calculated at

300 K. The absence of modes in the frequency range 0.55< wo<0.66 for the loaded chain

(inset) is due to the fact that its component beads are heavier than the unloaded case, and

the oscillation frequency is inversely proportional to mass. A lattice undergoing chain

reactions will have a mix of completely reacted (i.e., lighter) and unreacted (i.e., heavier)

beads. The above frequency range will play an important role in these circumstances

especially since a rise in temperature increases the phonon population at the band-edge

(Figure 5.12b). Additionally, the central panel in Figure 5.10a shows that signals with

frequencies o50.4 have a greater likelihood of penetrating a harmonic lattice loaded with

3 reactive groups/bead. It is evident that energy propagation in this lattice is carried out

by the low-frequency portion of the spectrum. Modes above Cw=0.57 do not contribute to

propagation at all but we will show that they are capable of inducing reactions.
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Figure 5.12. (a) Fourier analysis of kinetic
energy time series for 0 and 3 EM/bead.
The absence of modes in the frequency
range 0.55<co<0.66 for the latter case is
due to the heavier bead masses. (b)
Comparison of the phonon DOS of the
lattice at 3 temperatures. Higher
temperatures lead to greater population at
higher frequencies. (c) Power spectra of
four individual beads in the high-frequency
range showing the induction of modes in
the heavier beads (51, 52 60) by the lighter
one (50).

The results in Figure 5.12c were computed by partitioning the 100-bead chain into

2 halves: beads 1-50 had no reactive groups loaded, and beads 51-100 were equally

loaded with a finite number of molecules. The chain was thus split into light and heavy

segments, the former being akin to the portion that lies behind the reaction front. The

kinetic energies of each bead were recorded over 2048 time steps for numerical

convenience and averaged over 100 independent runs. No reactions were executed during

this timeframe, since the object was to determine the coupling between beads of different

masses at the interface. The power spectra in Figure 5.12c correspond to two reactive

group loads and have been plotted for a light bead (50) and 3 heavy beads (51, 52, 60). In

the cases of 2 and 3 reactive groups/bead, it is evident that the coupling between the light
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and heavy beads is conducive to the appearance of modes beyond the band-edge (i.e.,

o)>0.57) of the latter. The effect is most prominent for the heavy bead that is directly

connected to the lighter one, and progressively decays further into the loaded portion of

the chain. We postulate that the presence of these localised high-frequency modes in the

heavier - or unreacted - beads causes them to react as soon as the preceding bead has

reacted. A comparison of the two panels in Figure 5.12c also shows that it is easier to

induce higher modes in the case of lower EM loads (i.e., 2 versus 3 reactive groups/bead)

simply because of the difference in bead mass, and hence, inertia.

5.5.3 Reaction Velocity Calculation

It is possible to extract the velocity of the reaction wave and the associated

confidence intervals from these simulated datasets in the specific case of directional

energy transfer. Reaction events with probabilities of occurrence below 0.90 were

neglected during this calculation. Figures 5.13a-c show the velocity calculations for 3

reactive groups/bead for the (4, FPU and harmonic lattices, respectively, with Ea=35

kcal/mol and a=0.7. The most probable reaction times at n beads can be easily fit with a

straight line, the reciprocal slope of which is the velocity of the reaction wave. In each

plot, the green and red lines represent fits to the reaction times at beads 1-3 and 4-13,

respectively. This was necessitated by the presence of a distinct start-up zone for the P4

lattice (Figure 5.13a), where the velocity computed from the first 3 beads (2.72 km/s) is a

third of the bulk velocity computed from the next 10 beads. The FPU and harmonic

lattices show a comparatively negligible difference in velocities between the 2 zones

(Figures 5.13b,c). The contrast between the initial and bulk velocities is clearly presented

in Figure 5.13d for two different loads of the energetic material. The (o4 velocities
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Figure 5.13. Comparison of velocities for (a) y4, (b) FPU and (c) harmonic lattices for 3
EM/bead (Ea=35 kcal/mol, a=0.7). A distinct start-up regime is observed in (a). An analysis of
the FPU and harmonic cases indicates that a similar start-up zone is almost negligible; indeed,
almost similar velocities are predicted in each situation, which is depicted most clearly in (d) for
each lattice at two different loadings. The insets in (a)-(c) show the probability cutoffs (0.90)
that decided the number of viable reactions.

predicted from beads 4-13 lie in the same range as the corresponding values for the other

lattices within the 95% confidence intervals; 87'88 however, the reaction wave definitely

undergoes an activation phase, which depends on the energetic load used. Furthermore,

the difference between the two zones in the 04 lattice decreases as the loading is

increased from 4-7 reactive groups/bead (Appendix C, Fig. C4).
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The predicted reaction times in the FPU and harmonic chains deviate

considerably from the linear fit (Figures 5.13b-c, red lines) as the distance from the

ignition point increases. This observation points towards an increase in the wave velocity

due to the energy injected into the lattice at each reacted node. The (o4 chain, on the other

hand, adheres to the linear reaction trajectory to a greater extent (Figure 5.13a) even at

higher energetic loads (Appendix C, Fig. C4). We have already seen that the variance in

reaction times is less than the FPU and harmonic cases. The (4 lattice therefore offers a

greater degree of control over the reaction trend although the overall conversion lags

behind the other systems.

The reaction characteristics of the FPU-/f and harmonic lattices are almost

identical for the 3 EM/bead (Figure 5.13b,c) and 4 EM/bead 25 scenarios. Previous work

by Sarmiento et al.166 has proved that pulse propagation in a hard anharmonic lattice

occurs at speeds that exceed those in the harmonic variant. Since the energetic loads used

thus far have been unable to distinguish between the two lattices, we increased the

reaction enthalpy by a factor of 20 while keeping the load at 2 groups/bead. The

corresponding velocity calculations are displayed in Figures 5.14a-b. Linear fits using the

first 10 reaction times indeed show that the FPU-f has a marginally larger velocity (14.22

± 0.28 km/s) than the harmonic chain (12.88 ± 0.57 km/s), thus showing that large

deformations are required to distinguish between the 2 lattices.
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Figure 5.14. The reaction velocities for the (a) harmonic and (b) FPU lattices have been
calculated for 2 EM/bead (Ea=35 kcal/mol, a=0.7) but with 20 times the reaction enthalpy as in
the standard cases. As has been shown in the literature, increased energy input leads to greater
wave velocities in hard potentials - (a) - compared to the harmonic - (b). The inset in each plot
shows the variation in reaction probability with bead location.

5.5.4 Effect of Defects

Defects were introduced in the chain of oscillators by lowering the bond-stretch

and bending force constants by a factor of 50 at select locations: 320 and 650 A (Figures

5.15a-b. The simulations were run for the 3 reactive groups/bead case and can therefore

be compared to Figure 5.8a. The contour plot in Figures 5.15a shows a distinct reduction

in conversion with the presence of defects in comparison to the pristine chains in Figure

5.8a. It is interesting to note that the average conversion at Ea=40 kcal/mol is around 70%

even at a=l, whereas it was -1 for the non-defective chains in Figure 5.8a under similar

circumstances. In addition, Figure 5.15b shows that the very first defect in both cases

drastically reduces the probability of reactions further down the length of the chain (inset).

The reaction wave is disrupted by the defect at 320 A and all subsequent reactions shown

in light blue in the primary plot are comparatively rare events. The use of free boundary

conditions at both ends of the chain results in more energetic beads at the extremes as
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compared to the central portion of the lattice (Appendix C, Fig. C5) and sometimes

reactions at the end of the chain appear more likely than those in the center. Thus, defects

may serve as a practical consideration making it difficult to experimentally realize these

chain reactions in practice.
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Figure 5.15. Conversion plot (3 EM/bead) with the introduction of 2 defects along the length of
the chain. Comparing the contour plot to Fig. 5.8a, a distinct reduction in reactivity is observed
due to poor thermal transport. (b) The path of the reaction wave is impeded at the very first
defect (orange dashed line), with the subsequent beads (light blue) having drastically reduced
probabilities of reacting, as depicted in the inset.
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6. Conclusions and Future Directions

In this work, we have analysed the interactions - covalent and non-covalent - of

single walled carbon nanotubes (SWNT) with diazonium groups and surfactants, and

their utility with respect to metal/semiconductor separation. A structure-reactivity

relationship for reactions of HiPco SWNT with 4-hydroxybenzene diazonium salt has

been presented. Subsequent deconvolution of the reaction spectra yielded surface

coverage of the diazonium on the nanotubes as a function of the total molar amount of

diazonium added. A generic algorithm was developed to fit SDS-suspended HiPco

SWNT, and DNA-suspended HiPco SWNT. The spectral profile of each nanotube has

been approximated as a Voigt lineshape with peak widths that were estimated from the

fits of DNA-suspended HiPco SWNT. Due to the clustering of nanotubes with similar

transition energies, a weighting scheme was devised to apportion the contributions to the

parent spectral peak. This scheme does not account for the true absorption cross section

of different SWNT. It is therefore entirely possible that the spectral contributions of some

nanotubes are either overestimated or not accounted for completely. The deconvolution

procedure is a starting attempt at trying to understand the absorption spectrum of

monodispersed nanotubes and obtaining quantitative information related to nanotube

reactions. Peak widths that do not vary with nanotube chirality adversely affect the fit. It

would be instructive to derive the exact dependence of the full width at half maximum for

different nanotubes either via theory or experiment.

A rate model for the steady state data that considered the adsorption step as rate-

limiting was used to extract rate constants nonnalised to the (11,5) nanotube. Along with

values predicted from electron transfer theories, the metal > large-semiconductor > small-
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semiconductor reactivity trend has been explained. The non-covalent adsorption was

assumed to be the rate-limiting step, which could explain the relatively poor fits of the

surface coverage data for the large-diameter semiconductors. We are only able to

estimate the relative rate constants for a solution containing a large variety of nanotubes.

The use of highly pure samples containing a single chiral entity would yield absolute rate

constants that would have greater utility while designing experiments. The extension of

the model to other diazonium-based functional groups would enable the creation of a

structure-reactivity map that would have an additional utility vis-A-vis density-based

separation.

A hydrodynamic model to describe the separation of surfactant-suspended single

walled carbon nanotubes using centrifugation has been developed. Parameter estimates

for the number of sodium cholate molecules adsorbed per unit nanotube length were

obtained by fitting data in the literature as well as our own. The model has veen validated

by its application to the separation of reacted nanotubes from unreacted ones. However,

the analysis of concentration profiles with our mathematical formulation does not

adequately distinguish between surfactant adsorption on nanotubes of different diameters.

The use of surfactant mixtures for metal/semiconductor separation is still not entirely

understood and more fundamental work needs to be carried out in this area.

The last part of this thesis dealt with a conceptual system, the experimental

realisation of which is an ongoing research area. We have performed a parametric study

of energetic chain reactions propagating through harmonic and anharmonic lattices. The

mean conversion for a 100-node lattice was investigated as a function of these handles.

At loads of 3-4 energetic molecules/bead (Ea=35 kcal/mol, a=0.7), the FPU and harmonic
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lattices behaved similarly with reaction velocities ranging between 8-8.5 km/sec, which

are lower than the speed of sound in the lattice(-14 km/s). The p4 lattice exhibited lower

conversions along with the formation of a start-up zone where the reaction wave velocity

was at least half of the bulk value at the aforementioned loads. Fourier analyses of the

kinetic energy traces of the (4 lattice revealed that only high-frequency (i.e., high energy)

excitations led to viable wave propagation, which explains the prominence of the start-up

zone at lower loadings of the energetic molecules. The bead-spring model is a one-

dimensional analog for a carbon nanotube but suffers from the main drawback of highly

coarse-grained systems: the absence of realistic vibrational modes. A more extensive

theoretical study could use the same principles in the atomistic case to uncover the true

flavor of this nanostructure.
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Appendix A: Spectral Lineshapes, Peak Parameters and Parity Plots

Comparison of Gaussian, Lorentzian and Voigt Profiles
0.0 , 0.9
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Figure Al. Figures (a)-(c) compare spectral fits using Gaussian, Lorentzian, and Voigt
profiles respectively. The sum of squared errors was determined for the fits of 9
absorption spectra and is displayed in Figure (d) for each lineshape. It can be seen that the
errors for the Voigt and Lorentzian fits are much lower than the ones for the Gaussian fits.
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Fit of a DNA-SWNT Absorption Spectrum

00oo 900
Wav mngh (m)
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095 1

Figure A2. No weighting scheme was applied, since most of the peaks correspond to
single nanotubes. In the diameter-distribution plots, the blue circles denote the Ell peaks,
the red squares denote the E22 peaks and the black triangles denote the metallic peaks. The

following peak-parameters were estimated: FV,11 =29.86 meV, FV,22 =57.96 meV,

FV,M =93.42 meV

Comparison of metallic relative rate constants with theory

Relative Rate Constants (Dark) Relative Rate Constants (Light)

Spectral Marcus Gerischer- Spectral Marcus Gerischer-

(n ,m) Fits Theory Marcus Theory Fits Theory Marcus Theory
(7,7) 0.388 ± 0.108 1.000 0.143 0.389 ± 0.086 1.000 0.143
(10,4) 0.577 ± 0.164 1.000 0.500 0.652 ± 0.146 1.000 0.500
(11,5)* 1.000 1.000 1.000 1.000 1.000 1.000
(11,8) 0.344 ± 0.094 1.000 1.000 0.408 ± 0.087 1.000 1.001

*All rate constants were calculated relative to the (11,5) nanotube

Table Al. Relative rate constants for metallic nanotubes as obtained fi-om the spectral fits,
Marcus theory and Gerischer-Marcus theory. Figures 4(a)-(b) show that the electron transfer
theories can explain the trend in the relative rate constants with band gap for semiconductors.
While the theories predict higher relative rate constants for metallic SWNT than
semiconducting SWNT, they fail in detecting trends among the metals themselves.
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Parity Plot

* Metals
a Semiconductors
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Figure A3. (a) Parity plot with the 95% confidence intervals for the light and dark relative
rate constants. Shown are the extremes on either side of the unit slope line between which
the fit parameters can lie. (b) Light and dark relative rate constants for semiconducting
SWNT. The high degree of overlap between the 95% confidence intervals, especially for
the large-diameter nanotubes, shows that the values are statistically similar.
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Appendix B: Nanotube Transport in a Centrifugal Field

Radial variation of pressure in the centrifuge tube

SC = 2 w/vO/o
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Figure BI. Radial variation of pressure for the (a) 2 w/v% SC, (b) 3:2 and (c) 1:4 cases. The
region of interest, within which SWNT motion takes place, lies between 0.1138-0.1538 m for
(a) and 0.0979-0.1488 m for (b)-(c). The pressures in these domains are below 1000 atm,
which indicates that SDS is not likely to precipitate out of solution. Nothing can be said about
SC, since no information regarding the effect of pressure on its properties could be found.
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Fits of 12- and 44.53-hour centrifuge runs
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Figure B2. Fits for the (6,5) and (7,5) nanotubes after 12-hr and 44.53-hr runs. The
parameter estimate might be skewed (-1.84 molec/nm for the first two cases vs. -2.04
molec/nm for the third) by the fact that the fractions are located close to the point of
injection, where the bulkier SWNT lie.
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Appendix C: Nanostructure-Guided Chain Reactions

Thermal Conductivity of Oscillator Chains (FPU-f and ( 4)

15 20 25 30 35 40
Index of Bead

x 10 4

<J U = 2.335x1 0.4
FPU.

<J> = 4.029x1 0-

0 FPU-I
0

10 20 30 40
Index of Bead

Figure C1. (a) Comparison of temperature variation in the FPU (top panel) and ?4 (bottom
panel) lattices when one end of the chain was set at T*=0.004 and the other at T=0.00003.
Here, T* is the scaled temperature that is comparable to those generated in the lattice during
successive energetic reactions. The scaling factor is msc(usc*us)/kB, where msc is the mass of
the unreacted bead, us is the speed of sound in the lattice, and kB is the Boltzmann factor. The
calculated temperature gradient (scaled units) is shown in blue. (b) Time-averaged heat current
in the axial direction (x) at each node. Stationarity requires that the averaged value be
approximately constant across the chain. The mean heat current for the entire chain, <J>, is
shown for the 2 lattices. The ratio of <J> to the negative of the temperature gradient yields the
thermal conductivity of the respective lattice in scaled units: KF- 77.83, Ko- 5.76, i.e., KFP

S13.5,.
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Effect of EM load on contribution of higher modes
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Figure C2. (a)-(e) Density of states of individual beads in a <p4 system at the specified
reactive group loadings. The orange line indicates the position of w0=0.2, which was
used as the boundary for the calculation of the areas under the low- and high-
frequency regions of the spectrum. (f) Ratio of the area under the high-frequency
portion to the total spectral area plotted against reactive group loading shows that the
contribution of the higher modes increases with the energy input into the lattice.

Optimal driving forces for Driven Molecular Dynamics
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Effect of EM load on (4 reaction velocity
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Figure C4. Comparison of reaction velocities for a (p4 lattice at (a) 4, (b) 5, (c) 6 and (d) 7
EM/bead, respectively (Ea=35 kcal/mol, a=0.7). The probability cutoffs were set at 0.90. With
increased loads, the difference between the slower start-up and faster bulk phases gradually
disappears.
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Higher energies at free boundaries of a harmonic chain
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Figure C5. Variation of local temperature in a harmonic chain with 2 EM/bead loading. The
system was initially set up at 300 K and simulated in an NVE ensemble to obtain the time-
averaged temperatures at each location. Free boundary conditions at both ends result at higher
energies at the extreme beads in comparison to the central portion of the lattice.
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Appendix D: MATLAB and C Programs

Selected MATLAB functions for deconvolution of reaction spectra

This program is used to analyse the reactions of single-walled carbon nanotubes.
"reaction" is the main function from where all the remaining functions are called to
perform calculations, store data and plot the trends in reactivity for certain nanotubes.
"Semiconductors" have been abbreviated as "sc", and metals are denoted as "met".

function reaction
clear sub isub conc
global sub isub conc

file=input('Enter Excel file name (without ".xls"): ','s');
sheet=input('Enter sheet name: ','s');
spec=xlsread([file '.xls'],sheet); %Reads absorption data from specified Excel file
op=input('Has background subtraction already been performed (y/n)? ','s');
if op=='y'

sub=spec;
lsub=length(sub);
smooth;

else
colm=input('Which data set would you like to use to calculate the background? ');
[sub lsub]=bkgnd(spec,colm); %Background subtraction based on selected colunmn

end
[val peak sub lsub]=pkval(sub,lsub);
[lamda_ 1 lamda_22 lamda_m lamda nmdp]=getinfo;
ganmmia=weight(lamda,val,peak);
X=detX(gamma,lamdam,lamda_22,1amda_l 1);
[SC,M,abso]=rxn(X,lamda,nmdp,gamma);

function smooth
global sub lsub

%Locates peaks and valleys in the spectrum
%Stores SWNT-related information
%Calculates weights for each SWNT
%Calculates coefficient matrix
%Fits multiple reaction spectra

%Smooths the spectrum

s=sub(1:2,:);
k=2;
for i=3:lsub-2

k=k+l;
s(k,1)=sub(i,1);
s(k,2:size(sub,2))=(sub(i-2,2:size(sub,2))+2*sub(i-

1 ,2:size(sub,2))+3sub(i,2:size(sub(i+ 1,2:size(sub,2))+sub(i+2,2:size(sub,2)))/9;
end
s=[s;sub(lsub- 1:lsub,:)];
sub=s;

function [sub,lsub]=bkgnd(spec,colm) %Front-end for background subtraction
sl=spec(1,1);
while 1>0

w=input('Enter the starting and ending wavelengths: ','s');
w=sscanf(w,'%i');
[temp bg]=bkg(spec(w(1)-s +1 :w(2)-s 1+ + 1,:),w(2)-w(l)+l ,colm);
plot(spec(w(l)-s 1 +1 :w(2)-s 1+1, l),spec(w(1)-s 1+1 :w(2)-s 1+1 ,2:size(spec,2)))
hold on
plot(spec(w(1)-s 1+1:w(2)-sl+,1),bg,'r')
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opt=input('Are you satisfied with the background (y/n)? ','s');
if opt=='y'

close
break

end
close

end
tl=temp(1,1);
sub=temp;
lsub=length(sub);

%Subtracted spectrum stored in "sub"
%/oNumber of data points in "sub"

function [sub,bg]=bkg(spec,lspec,colm) %Back-end routine for subtraction
global data Idata col

data=spec;
Idata=lspec;
col=colmn;
kb=[200 0.9]; %Initial guess for the fit parameters "k" and "b"
log_kb=[log(kb(1)) kb(2)];
A=[ones(ldata, 1) -log(data(:, 1))];
B=log(data(:,col));
log_kopt=fmiincon(@fit3,logkb,A,B); %Calculation of optimum "k" and "b"
kopt=[exp(log_kopt(1)) log_kopt(2)];
bg=kopt(1)./(data(:,l).^kopt(2));
sub=data(:, 1);
for i=2:size(data,2)

sub(:,i)=data(:,i)-bg;
end
s=sub(1:2,:);
k=2;
for i=3:length(sub)-2

k=k+ 1;
s(k, 1)=sub(i, 1);
s(k,2:size(data,2))=(sub(i-2,2:size(data,2))+2*sub(i-

1,2:size(data,2))+3 *sub(i,2:size(data,2))+2*sub(i+ 1,2)+sub(i+2,2:size(data,2)))/9;
end
s=[s;sub(length(sub)-1 :length(sub),:)];
sub=s;

function err-fit3(log_kb) %Function minimized by the "fmnincon"
global data Idata col
log_data=log(data);
log_bkg=log_kb(1)*ones(ldata, l1)-log_kb(2)*log data(:, 1);
F=log_data(:,col)-log_bkg;
err=F'*F;

function [val,peak, sub,lsub]=pkval(sub,lsub) %Locates spectral peaks and valleys
sl=sub(1,1);
s2=sub(lsub, 1);
pwav=[];
vwav=[];

gr=gradient(sub(:,2));
q=0;
for i=2:(lsub-1)

if(gr(i-1)<O & gr(i+l)>0) & sub(i,1)<1500 %Identifies points where slope changes sign
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q=q+1;
s(q,1)=sub(i, 1);
s(q,2)=sub(i,2);

end
end
len_s=q;

val(1,1)=sub(1,1);
val(1,2)=sub(1,2);
val(2,1)=s(1,1);
val(2,2)=s(1,2);
i=1;
k=2;
while i<(len_s-2)

k=k+ 1;
j=i+1;
j_in=j;
while (s(j, 1)-s(i, 1))<9

j=j+l;
end

j_fin=j;
val(k, 1)=s(j,1);
val(k,2)=s(j,2);
i=i+(j_fm-jin+ 1);

end
val(length(val)+ 1,:)=sub(lsub, 1:2);

q=0;
for i= 1:length(val)- 1

q=q+ 1;
L =val(i, 1);
L2=val(i+l, 1);
m=max(sub(L1-sl+1 :L2-sl+1,2));
for L=L1:L2

if sub(L-s l +1,2)==m
wav=sub(L-s l+1,1);

end
end
peak(q, 1)=wav;
peak(q,2)=m;

end

plot(sub(:, 1),sub(:,2))
hold on
plot(peak(:, 1 ),peak(:,2),'or')
plot(val(:, 1),val(:,2),'sk')
legend('Spectrum','Peaks','Valleys')
op=input('Do you wish to add more peaks and valleys (y/n)? ','s');
if op=='y'

pwav=input('Enter wavelengths of additional peaks: ','s');
vwav=input('Enter wavelengths of additional valleys: ','s');
pwav=sscanf(pwav,'%i');
pnum=pwav-sub(l, 1)+ 1;
pwav=[pwav sub(pnum,2)];
vwav=sscanf(vwav,'%i');
vnum=vwav-sub(l, 1)+ 1;
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vwav=[vwav sub(vnum,2)];
end
peak=sortrows([peak;pwav], 1);
val=sortrows([val;vwav], 1);
op=input('Are there extraneous peaks or valleys (y/n)? ','s');
if op=='y'

wstart=input('Enter new starting wavelength: ');
for i= 1 :length(val)

if peak(i, 1)<wstart
peak(i,:)=[];

end
if val(i, 1)<wstart

val(i,:)=[];
end
if val(i, 1)>wstart

break
end

end
wstart=wstart-sub(1, 1)+1;
sub=sub(wstart:length(sub),:);
lsub=length(sub);

else
sub=sub;
Isub=lsub;

end
close

function gamma=weight(lamda,val,peak) %Calculate weights based on transition energies
temp=repmat(Inf, 1,1ength(lamda));
gamma=[];
for i= 1:length(val)- 1

for j= 1:length(lamda)
if lamda(j)>=val(i, 1) & lamda()<val(i+1, 1)

temp()=abs(l/lamda(j)-1/peak(i, 1))/(l/val(i, 1)- l/val(i+1, 1));
end

end
gamma=[gamma;exp(-temp)./sum(exp(-temp))];
temp=repmat(Inf, 1,length(lamda));

end
gamma=gamma';
gamma=[lamda gamma];
gamma=sortrows(gamma, 1);
gamna=gamma(:,2:size(gamma,2));

function X=detX(gamma,lamdam,lamda 22,1amda 11)
global sub lsub

Lm=length(lamda_m);Lsc=length(lamda_ 11);
hc=1239842;
fv_ 1=25; fv_22=57.96; fv_m=93.42; %Voigt FWHMs
fg_ll=22=ffv_22/1.6376; fgfgm=fvm/1.6376;
fll 1=fgl 1; fl_22=fg_22; fl_m=fg_m; %Lorentzian component FWHMs
l_start=sub(l,1);
l_end=sub(lsub, 1);
Ej=-100:0.1:100;
X=[];
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for L=l start:l end
met=calc(Ej,L,lamda_m,fg_m,flm); %Coefficients for metallic peak areas
one=calc(Ej,L,lamda_l 1,fg_l 1,fll 1); %Coefficients for E-11 peak areas
two=calc(Ej,L,lamda_22,fg_22,fl_22); %Coefficients for E-22 peak areas
temp(1:Lm)=met;
temp(Lm+ 1 :Lm+Lsc)=two;
temnp(Lm+Lsc+l :Lm+2*Lsc)=one;
X=[X;temp];

end
lamda=[lamda_m;lamda_22;lamda_ 11];
X=[lamnda X'];
X=sortrows(X, 1);
X=(X(:,2:size(X,2)))';
X=X*ganmma;

function val=calc(Ej,L,wav,fg,fl)
val=[];
delE=O. 1;
E=1239842/L;
for i= 1:length(wav)

Eo= 1239842/wav(i);
func=exp(-2.7726*(Ej/f).^2)./(fl2/4+(E-Ej-Eo).^2)*delE;
val= [val 0.1495*sum(func)];

end

function [SC,M,abso]=rxn(X,lamda,nmdp,gamma)
global sub Isub

SC=[];
M=[];
abso=[];
C=[];
for num=2:size(sub,2)

[Abs C beta res err]=voigtfit(X,ganima,num,C); %Calls the linear solver that solves for the peak areas
LU=confint(C,res,X,gamma,beta); %Calculates confidence intervals for each SWNT
[sc,met]=select(nmdp,lamda,beta,LU); %Separates parameter vector into sc & met portions
SC=[SC sc];
M= [M met];
abso=[abso Abs];

end

function [Abs,C,beta,R, err] =voigtfit(X,gamma,num,C)
global sub lsub

Ydata=sub(:,num);
H=X'*X;
f=--X'*Y data;
lb=zeros(size(gamma,2), 1);
if num==2

ub=repmat(Inf,size(ganlma,2), 1);
else

ub=C;
end
options=optimset('TolFun', 1 e-20,'Maxlter', 100000000);
C=quadprog(H,f,[], [], [], [],b,ub, [],options); %Solved "parent Voigt" peak areas
beta=gamma*C; %Peak areas for nanotube Voigts
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Abs=X*C;
R=Y_data-Abs;
err=R'*R;

%Calculated Absorbance values
%Residuals at each wavelength

function LU=confint(C,resjac,gamma,beta)
n=100;
[1 m]=size(jac);
v=--m-2;

Ires=length(res);

temp=find(max(abs(jac))==O);
if -isempty(temp)

jac(temp,:)=jac(temp,:)+sqrt(eps);
end
for i=1:lres

if i<=n
sig(i)=sqrt(sum(res(1 :i+n).*res(1 :i+n)/(i+n)));

elseif i>n & i<=(lres-n)
sig(i)=sqrt(sum(res(i-n:i+n).*res(i-n:i+n)/(2*n+l)));

elseif i>res-n
sig(i)=sqrt(sum(res(i-n:lres).*res(i-n: res)/(lres-i+n+1)));

end
end
Ve=diag(sig.A2,0);
VeinvVe\eye(size(Ve));
tl=jac'*Ve_inv;
t2-tl *jac;
Vb-t2\eye(size(t2));

tl=gamma*Vb;
t2-tl *gamma';
delta-tinv(0.975,v)*sqrt(diag(t2,0));
ci=[beta-delta beta+delta];
for i= 1:length(ci)

if ci(i, 1)<O
ci(i, 1)=0;

end
end
LU=[beta-ci(:, ) ci(:,2)-beta];

function [sc,met]=select(nmdp,lamda,beta,LU) %Separates the results into sc and met portions
sc=[];
met=[];
lamda=sort(lamda);
for i= 1:length(beta)

if rem(nmdp(i, 1)-nmdp(i,2),3)-=0
for j= 1:length(beta)

ifj-=i & nmdp(i,1)==nmdp(j,1) & nmdp(i,2)=-nmdp(j,2) & lamda(i)<lamda(j)
sc=[sc;[lamda(j) nmdp(i, 1:4) beta(i) LU(i, 1:2) beta(j) LU(j, 1:2)]];

end
end

else
met=[met;[nmdp(i, 1:3) beta(i) LU(i,1:2)]];

end
end
sc=sortrows(sc,1);
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sc=sc(:,2:size(sc,2));

function [sc,met]=degree(SC,M)
q=0;
for i= 1 :size(SC, 1)

for j=l:size(SC,2)
ifj==8+q

sc(ij)=(SC(i,8)-SC(ij))/SC(i,8);
q=q+10;

elseifj==9+q
Y=SC(i,8)-SC(ij-1);
x=Y/SC(i,8);
dY=sqrt(SC(i,9)2+SC(i,j)A2);
dX=X*sqrt((dY/Y)A2+(SC(i,9)/SC(i,8))A2);
sc(ij)=dX;
sc(ij+1)=sc(ij);

elseifj-=10+q
sc(ij)=SC(ij);

end
end
q=0;

end
q=0;
for i=l:size(M,1)

for j=l :size(M,2)
ifj==4+q

met(ij)=(M(i,4)-M(ij))/M(i,4);
q=q+6;

elseifj==5+q
Y=M(i,4)-M(ij-1);
X=Y/M(i,4);
dY=sqrt(M(i,5)A2+M(ij)A2);
dX=X*sqrt((dY/Y)A2+(M(i,4)/M(i,5))A2);
met(ij)=dX;
met(ij +1)=met(i,j);

elseifj-=6+q
met(ij)=M(ij);

end
end
q=0;

end

%Calculates degree of functionalisation
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Selected MATLAB functions for rate calculations

This program was used to fit steady state surface coverage data from the
semibatch reactor and obtain relative rate constants for representative nanotubes.

function ode sites nd
global Ntot_range AO fit_data tspan ic nm vals wavs index gamma

[ic AO fit_data guess tspan Ntotrange nm vals wavs]=getinfo;
gamma=matrix;
opt=optimset('TolFun', le- 10,'TolX', 1 e- 10,'MaxFunEvals', 1e3,'Maxlter',2e3);
trial=0;
choice='y'; index=[]; sq_err[];
lb= zeros(length(guess), 1); %Lower bound for parameters
while choice=='y' %Loop continues running until convergence

[sol_vec,d,res,d,d,dj ac]=lsqnonlin(@solver,guess,lb, [],opt);
trial=trial+1;
index= [index;trial];
[err cf cd]=solver(solvec);
sq_en-rr-[sq_eerr;err'*err];
plot res(sq_err,cf,cd)
choice=input('Continue? ','s');
if choice=='y'

guess=sol_vec+guess*0.001 %Perturbation of current solution for next run
close all

else
break

end
end

function [err,cf,cd]=solver(guess)
global Nnt K_nt Ntot range Ntot fit data tspan ic vals ways nm gamma
Nnt=guess(1); k=guess(2:length(guess));
for i=l1:length(k) %Locates SWNT with maximum rate constant

if k(i)==max(k)
k(i)=1;
break

end
end
Knt=gamma*k* 1 e3;
cf=[];
option=odeset('Jacobian' , @jacobian);
indicator=0;
alpha_m=find_alpha; max_prod=max(Knt)*alpha_
VO=5; tau=V0/max_prod;
Tspan-tspan/tau;
for Ntot=Ntot_range

[t cm]=ode 1 5s(@rhs,Tspan,ic,option);
cf= [cf;cm(size(cm,1),2:size(cm,2))];

end
data=[]; model=[];
for col = 1 :size(fit_data,2)

data=[data;fit_data(:,col)];
model=[model;cf(:,col)];

end

%Normalisation w.r.t. chosen time scale
%Solves ODEs for different amounts of reagent

%Stacks data into a column vector
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err=(data-model); %Computes error at each data point
function vec=rhs(t,c) %ODEs defined
global Ntot K_nt Nnt AO
alpham=finmd_alpha; max_prod=max(K_nt)*alpha_m;
V0=5; v0=0.02083;
tau=V0/max_prod; Vr=VO+vO*tau*t;
Fd=Ntot/24;
vec(1)=Fd*tau/Nnt-c(1)*sum(K_nt.*AO.*(1-c(2:length(c))))*VO/(Vr*maxprod);
vec(2:length(c))=K_nt*c(l).*(1-c(2:length(c)))*VO/(Vr*max_prod);
vec=vec';

function jac=jacobian(t,c) %Jacobian for ODE solver
global AO Nnt K_nt Ntot
alpha_m=find_alpha; max_prod=max(K_nt)*alpha_m;
VO=5.25; v0=0.02083;
tau=VO/max_prod; Vr-5+v0*tau*t;
N=length(c);
diag_vec(l)=-sum(K_nt.*A0.*(1-c(2:length(c))))*VO/(Vr*max_prod);
diag_vec(2:N)=-c(l)*K_nt*VO/(Vr*max_prod);
jac=diag(diag_vec);
jac(1,2:N)=c(1)*(K_nt.*AO)'*VO/(Vr*max_prod);
jac(2:N,1)=K_nt.*(1-c(2:length(c)))*VO/(Vr*max_prod);

function alpha_m=find_alpha
global K_nt AO
for i= 1:length(K_nt)

if Knt(i)==max(K_nt)
alpha_m=AO(i);
break

end
end

%Locate absorbance for most reactive SWNT

function gamma=matrix
global vals wavs
gamma=zeros(length(wavs),size(vals,1));
for i= 1 :size(vals, 1)

forj=l :size(wavs,1)
if (wavs(j)>vals(i,1)) & (wavs(j)<vals(i,2))

gamma(j,i)=1;
end

end
end

function plot_res(err,cf,cd)
global fit data Ntot_range index
plot(Ntotrange,cf)
hold on
plot(Ntotrange,fitdata,'o')

figure(2)
plot(index,err,'--rs')
xlabel('Trial')
ylabel('Squared Error')

%Compares model to data

%Plots error after each run
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MATLAB program for evolution of density gradient in centrifuge

This program computes the sedimentation of the density gradient medium
(lodixanol) in a centrifuge tube while under the influence of a centrifugal field. The effect
of diffusion also has been taken into account. A finite volume method with the first order
upwind scheme has been used to solve the partial differential equations. Flow of the
solute is always oriented along the positive radial direction. The resulting spatiotemporal
coordinates of the lodixanol are stored in a look-up table for use in the subsequent
program to calculate the concentration profiles of the nanotubes.

function centrif fvm iodix
global conc del rt range tau del_t D_t
clc

conc=30;
[del r t range tau del_t D_t]=grid stuff;
time-march;
clear all

function time march
global ic N_cells r d t range tau press
eta=ic;
d_prof-[];
press=[];
for t=-trange

density=1005.3+8.215 *eta;
d_prof-[d_prof density];
update_vel(eta);
M_rhs=grid_mat;
eta=Mrhs*eta;

%Iodix conc (wt/vol)

%output saved to disk

%vector
%initial density profile

%soln density (kg/m^3)
%row=dist,col=time
%update vels for new gradient
%recalc matrix
%conc (mol/L)

end
Tgrad=t_range*tau; %abs times
save C:\MATLAB7\work\Centrif\WJData\grad_data d_prof T_grad

ic= 1005.3+8.215*ic;
eta= 1005.3+8.215*eta;
plot(rd,ic,rd,eta,'r')
xlabel('Radial Distance (m)'),ylabel('Density (kg/m^3) ')

axis tight
clear M_rhs eta ic count density
% xlswrite([r_d d_prof(:, 1) dprof(:,end)],[],[],'test.xls')

function updatevel(eta)
global u-t r d del

rho=update_density(eta);
u_t=r d.*(1-rho/2161)/del

function rho=update_density(eta)
global w rd delr ic rho_ic N_cells press
rho=1005.3+8.215*eta;

%incl transport/pressure fx
%updated velocity

%wt/vol -> kg/mA3 (transport)

kappa=0.46e-9; %1/Pa (water comp)
del_P=wA2*rho(1:N_cells-1).*(r d(2:N_cells).A2-rd(1:Ncells:Ncells-1).2)/2;
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P= 101300+cumsum(del P);
press=[press [101300;cumsum(del_P)]];
rho(2:N_cells)-rho(1 :N cells-1).*exp(kappa*del_P);

clear del rho

function Mrhs=grid_mat
global r ddelr deltD t ut N cells

ratio=del t/delr;

rf=rd(3 :N_cells);
r c=r_d(2:N_cells-i);
r_b=r_d(l :N_cells-2);
r_R=(r f+rc)/2;
r L=(r c+r b)/2;

ufut(3:N_cells,:);
u_c=u_t(2:N_cells- 1,:);
u_b=u_t(1 :N_cells-2,:);

d=[-1 0 1];
[A B C]=direxn(ratio,r R,r_L,rc,u_f,u_c,ub);
[A B C]=bcells(ratio,A,B,C);
Mrhs=spdiags([[C;0] B [0;A]],d,N_cells,N_cells);

%ubiquitous factor

%'r' of front cell
%'r' of curr cell
%'r' of back cell
%posn of right edge
%posn of left edge

%'u' of front cell
%'u' of curr cell
%'u' of back cell

%diagonal vector
%i+l,i,i-1 cells
%add boundary cell data

cleardr fr cr br Rr L
clear ratio u fu c u b

function [A,B,C]=direxn(ratio,rR,r L,r c,u f,uc,u b)
global delr D_t

A=-ratio*(-rR*D_t/delr+r_R.*min(u_f,0))./r_c; %i+1 (2->N_cells-1)
B=1-ratio*(D_t*(r_R+r_L)/del r+r R.*max(u_c,0)-r L.*min(u_c,0))./r_c; %i (2->Ncells-1)
C=ratio*(r_L*D_t/del_r+rL.*max(u_b,0))./r c; %i-1 (2->N_cells-1)

function [A,B,C]=bcells(ratio,A,B,C)
global rd delr Dt ut Ncells

r_R=(rd(2)+rd(1))/2;
r L=(rd(N_cells)+r d(N_cells-1))/2;

%lst cell BC
A_1=-ratio*(-r R*D t/del r+r_R*min(u_t(2),0))/r_d(i);
B_1=1-ratio*(r_R*Dt/delr+rR*max(ut(1),0))/rd(1);

%Nth cell BC
C_N=ratio*(r_L*D_t/del_r+r_L*max(u_t(N_ cells-),0))/r d(N_cells);
BN=I +ratio*(-r L*Dt/del_ rr_L*min(ut(N_cells),0))/r d(N cells);

A=[A_1I;A];
B=[B_1I;B;B_N];
C=[C;C_N];

clearA *B *C *

%i+ (1->Ncells-1)
%i (1->N cells)
%i-1 (2->Ncells)
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function [del r,t range,tau,del_t,D_t]=grid_stuff
global conc w rd ic rho_ic N_cells del

w=pi*32000/30;

r a=0.0718-0.00566; r_b=0.1688; del=rb-r a;

kT=4.0721 e-21;
D=2.5e-10;
T=22*3600; tau=kT/(2.5833e-24*D*w^2);
tlim=T/tau;

pbd=[0.0979 0.1488];
slope=79.6/diff(p_bd);
p_inj=p_bd(1)+5*diff(p_bd)/6;
sp=0.00566;
p_sp=p_inj+sp*[-0.35 0.65];
p_bd=p_bd-[sp 0];

N_cells=101; del r d=del/(Ncells-1);
del r=del r d/del; del_t=0. l*delr;
t_range=0:del t:t lim;
r_d=(r a:del r d:r b)';
rd=chop(rd,4);
i_bd=find(r d==pbd(1) I rd==p_bd(2));
i_bdmodify(ibd,p_bd,del r d);
i_sp=find(rd==p_sp(1) I rd==p_sp(2));
i_sp=modify(i_spps p,del r_d);

%rad/s

%computation bdys (m)

%J/atom
%Iodixanol diffusion coeff (m2/s)
%run time (sec)

%original grad bdys (m)
%initial grad slope
%SWNT injexn pt (m)
%spread of SWNT soln (m)
%bdys of spread (m)
%new grad bdys (m)

%cell bdys,dim spacing
%non-dim spacing,time step

%spatial grid (m)
%chop to 4 decimal places
%bdy indices
%insert non-existent pts
%spread indices
%insert non-existent pts

%overlayer
rho(1 :i_bd(1)-)=1005.3;
%1 st sloped region
density= 1005.3+5.3 *conc; %starting density (kg/m^3)
rho(ibd(l):i sp(1))=density+slope*(rd(ibd(1):isp(1))-r d(ibd(l)));
%SWNT injexn layer
rho(i_sp(l)+1:i_sp(2)-1)=rho(i_sp(1));
%2nd sloped region
rho(i_sp(2):i_bd(2))=rho(isp(1))+slope*(rd(isp(2):i_bd(2))-rd(isp(2)));
%stop layer
rho(i bd(2)+1 :length(rd))= 1323.3;
rhoic=rho';
ic=(rho_ic- 1005.3)/8.215; %conc (mol/L)
plot(r d,rho)
fac=le-23; %kg
D_t=kT./(w^2*0.2573*fac*del^ 2 ); %dim-less number

clear temp d_* kT del fac rho

function chopped=chop(toRound,decimalPlaces)
powerOf=- 1 OdecimalPlaces;
chopped=toRound. *powerOf;
remainder=mod(chopped, 1);
whole=chopped-remainder;
chopped=whole/powerOf;

function ind=modify(ind,p,del_r d)
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global rd

if length(ind)==2 %no change reqd
ind=ind;

elseif length(ind) = = 1 %add 1 elem to 'r d'
i=fmd(p-=r_d(ind)); %elem not in 'r d'
gap=abs(rd-p(i)); %absolute distances
min_gap=min(gap); %closest points
ind=[ind find(gap==min_gap)]; %indices of closest pts

elseif length(ind)==O %add 2 elem to 'r d'
gaps=[abs(rd-p(1)) abs(rd-p(2))]; %absolute distances
min_gap=[min(gaps(:, 1)) min(gaps(:,2))]; %closest points
ind=fmd(gaps==min_gap(1) I gaps==min_gap(2))'; %indices of closest pts
ind=ind-size(r d, 1)*[0 1]; %row numbers

end
ind=sort(ind);
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MATLAB program for diameter-based separation of SWNT in centrifuge

The following code is used to fit experimentally obtained concentration profiles of carbon
nanotubes that have been separated according to diameter in a density gradient via
ultracentrifugation. The density of the sedimenting medium at all times and positions are obtained
by interpolating from the look-up table created by the preceding program. The sole fit parameter
is the number of surfactant molecules adsorbed per unit length of the nanotube sidewall.

function centrif fvm mod
global n_ad N_n Lrange N_L w d_prof T_grad dia
global del delr del_t N c r data eta_data rmun time

clc
warning off all
datafile='Centrif 32'; %Excel file with data
tube='87'; %SWNT of interest
load C:\MATLAB7\work\Centrif\WJData\grad_data %calculated gradient profile
run time=22*3600; %run time (sec)

[rdata eta_data w n_ad Nn L range N_L dia]=get_data([datafile '.xls'],tube);
[del N_c del r delt]=grid_stuff;
[eta_model err]=timemarch;
% [low up]=confint(err)
plot_res(eta_model,err);
clear all

function [r data, eta_data,w,n_ad,N_n,Lrange,N_L,dia] =get_data(file,tube)
global N_s num_C n_D

data=xlsread(file,tube);
r_data=data(:,l); %radial positions (m)
eta_data=data(:,2); %relative conc

w=pi*32000/30; %angular speed of rotor (rad/s)

n 1=4.05;n 2=0;
n_ad=[n 1 n 2];
[N_n N_s]=size(n_ad); %# of choices,# of surfs

start=10; stop=1010; num=20;
step=(stop-start)/num;
Lrange=(start:step:stop)';
N_L=ength(Lrange);

n=str2num(tube(1)); m=str2num(tube(2));
data=xlsread('CoMoData.xls','Data');
row=find(data(:,1)==n & data(:,2)==m); %find row corresp to "n","m"
dia=data(row,3); %diameters (nm)
num_C=data(row, 11); %#C/nm
nD=0;
%n D-=numC/10;
clear start step stop data

function [del,N_c,del_r,del_t]=grid_stuff
global rd N_L N_n w ic exp_int exp_all
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r_a=0.0661; r_b=0.1688; del=r_b-r_a;

p_bd=[0.0979 0.1488];
sp=0.00566;
p_inj=p_bd(1)+5*diff(p_bd)/6;
p_sp=p_inj+sp*[-0.35 0.65];
p_bd=p_bd-[sp 0];

N_c=101; del r d=del/(N c-1);
del r=del r d/del; del_t=l*delr;
r d=(r a:del r d:r b)';
r d=chop(r_d,4);
i_sp=find(r_d==p_sp(1) I rd==p_sp(2));
i_sp=modify(i_sp,p_sp,del r_d);

ic=zeros(length(rd), 1); ic(i_sp(1):i_sp(2),:)= 1;
ic=repmat(ic,N_L, 1);
ic-repmat(ic,N_n, 1);

exp_int=zeros(NL,N_L*(N_c-2));
exp_all=zeros(NL,N L*N_c);
for i=1:N L

intrange=(i- )*(N_c-2)+1 :i*(Nc-2);
allrange=(i- 1)*N_c+1 :i*N_c;
exp_int(i,int_range)=ones(1,length(int_range));
exp_all(i,all_range)=ones(1,length(all_range));

end

%computation bdys (m)

%original grad bdys (m)
%spread of SWNT soln (m)
%SWNT injexn pt (m)
%bdys of spread (m)
%new grad bdys (m)

%cell bdys,dim spacing
%non-dim spacing,time step
%spatial grid (m)
%chop to 4 decimal places
%spread indices
%insert non-existent pts

%unif conc over this range
%"ic" for all lengths
%"ic" for all "nad"

%expand "D" for interior
%expand "D" for all cells

%range of cols to be filled

clear temp int_* all_*

function ind--modify(ind,p,del_rd)
global r_d

if length(ind)==2 %no change reqd
ind=ind;

elseif length(ind)==1 %add 1 elem to 'r_d'
i=find(p-=r_d(ind)); %elem not in 'rd'
gap=abs(rd-p(i)); %absolute distances
mingap=min(gap); %closest points
ind=[ind find(gap==mingap)]; %indices of closest pts

elseif length(ind)==0 %add 2 elem to 'rd'
gaps=[abs(rd-p(1)) abs(r d-p(2))]; %absolute distances
mingap=[min(gaps(:, 1)) min(gaps(:,2))]; %closest points
ind=find(gaps==min_gap(1) I gaps==min_gap(2))'; %indices of closest pts
ind=ind-size(r_d, 1)*[0 1]; %row numbers

end
ind=sort(ind);

function [eta_model,err]--time_march
global Nc N_n NL ic r_data rd eta_data del_t run_time

eta=ic;
[m_tot density tau]=calc_qty;
tau_min=min(tau);
tL=runtime./tau;

%initialise for each "n ad"
%output calc from "n ad"
%time constant for fastest NT
%scaled times for each L
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t_L=chop(t_L,2);
t L start=tL;
t_max=max(tL);
prof-zeros(N_n*N_L*N_c,1);
for t=0:del t:t max

ind=find(t_L<=t);
if -isempty(ind)

range=[];
for i=ind'

j=fmd(t_L_start=-t L(i));
range= [range;(j -1)*N_c+1 :j *N_c];

end
prof(range)=eta(range);
tL(ind)=[];

%"t L" is reduced later
%max scaled time (loop limit)

%march fwd wrt fastest NT
%length indices to be removed

%actual posns of removed pts
%collect ranges to be extracted

%collect completed profiles

end
[U R]=updatevel(t*tau_min,density);
M_rhs=grid_mat(U,R);
eta=M rhs*eta;

end
[eta_model err]=profiles(prof);

clear M_rhs eta ic profs

function [m_tot,density,tau]=calc_qty
global del L_range N_L n_ad Nn N_s N_c numC nD dia w exp_int exp_all D_int D_all

Nav=6.023e23;
NT_mass=num_C*0.012/N av;
diaz mass=n D*0.093/Nav;
n 2=1;

term_l=[];
for i=l:N n

terml =[terml ;repmat(n_ad(i,:),N L, 1)];
end
term_2=repmat(L range,N n, 1);
ifN s==

mol_mass=0.43055/N_av;
mol vol=6.13e-4/Nav;

else
molmass=[0.43055 0.28838]/N_av;
molvol=[6.13e-4 4.03e-4]/N_av;

%Avogadro's Num (molec/mol)
%SWNT mass per length (kg/nm)

%replicate "nad" for each "L"

%one surfactant used
%surf molec mass (kg/molecule)
%surf molec vol (m^3/molecule)

end
surf_mass=sum(terml .*repmat(molmass,size(term1 ,1),1),2);
surf_mass=surf_mass+n_2*molmass(l);
m__tot=(NT_mass+diaz_mass+surf_mass).*tenn_2; %total mass for each length

rC=0.172;
NT_vol=0.25*pi*(dia+2*r C)2* le-27;

%radius (nm)
%CNT vol (m^3/molec)

diaz vol= 105.304e-30;
surf_vol=sum(term_l .*repmat(molvol,size(term_1,1), 1),2);
tot_vol=NT_vol+n_D*diaz_vol+surf_vol; %m^3/length replicated by "L"
density=(NT_mass+diaz_mass+surf_mass)./totvol; %kg/m^3 replicated by "L"
density(l)
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kT=4.07e-21; %J/atom
D=kT./(m_tot*wA2*delA2); %n-d diff coeff for each "L"
D_int=zeros(Nn*N_L*(N_c-2),1);
D_all=zeros(N_n*N L*N_c, 1);
temp=zeros(Nn*N_L*N_c, 1);
for i=l:N n

range=(i-1)*N_L+1:i*N_L;
D_int((i-1)*N_L*(Nc-2)+1 :i*N_L*(N_c-2))=D(range)'*exp_int;
D_all((i- )*N_L*N_c+1 :i*N_L*N_c)=D(range)'*exp_all;
temp((i-1)*N_L*N_c+l :i*N_L*N_c)=density(range)'*exp_all;

end
density-temp;

f-3*pi*8.94e-4*term_2*le-9./(log(term_2/dia)+0.32);
tau=f./(m_tot*wA2); %time consts for each L (s)

clear term * temp range f

function chopped=chop(toRound,decimalPlaces)
powerOf=l- 10AdecimalPlaces;
chopped--toRound.*powerOf;
remainder=mod(chopped, 1);
whole=chopped-remainder;
chopped=whole/powerOf;

function [U,R]=updatevel(t,density)
global r_d del d_prof T_grad w Lrange N_c N_n N_L
ind=max(find(T_grad<-t)); %interp posn
alpha=(T_grad(ind+1)-t)/(T_grad(ind+1)-T_grad(ind));
rho=alpha*d_prof(:,ind)+(1-alpha)*d_prof(:,ind+ ); %density profile at "t"
u=repmat(rd,N_n*N_L,1).*(1-repmat(rho,N_n*N_L, 1)./density)/del;
rexp=repmat(rd,N_n*N_L, 1);

temp=zeros(Nc, 1);
temp(1:N_c-2)=1;
ind=fmd(repmat(temp,N_n*N_L, 1)== 1);
u_bu(ind);
rb=r_exp(ind);

temp=zeros(Nc, 1);
temp(2:N_c-1)=1;
ind=find(repmat(temp,N_n*N_L,1)== 1);
u_c=u(ind);
rc=rexp(ind);

temp=zeros(Nc, 1);
temp(3:N_c)=1;
ind=find(repmat(temp,N_n*N_L, 1)== 1);
u_f=u(ind);
r_fr_exp(ind);

u_R=(uf+uc)/2;
u_L=(u c+ub)/2;
r _R=(rf+r c)/2;
r_L=(r c+r_b)/2;
clear * b * f

%back cell
%back cell positions
%vel in back cell
%'r' of back cell

%current cell
%current cell positions
%vel in current cell
%'r' of front cell

%forward cell
%forward cell positions
%vel in forward cell

%vel at right edge
%vel at left edge
%posn of right edge
%posn of left edge
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den_uniq=unique(density);
down=[]; up=[];
template d=zeros(N_n*N_L*(N_c-2), 1);
template_u=zeros(N_n*N_L* (N_c-2), 1);
for i=l:N n

v_inv=max(find(rho(2:N_c- 1)<den_uniq(i)));

temp=zeros((N_c-2), 1);
start=(i- )*NL*(N_c-2)+1; stop=i*N_L*(N_c-2);
gap=v_inv-1;
temp(1:(l+gap))=l;
template_d(start:stop)=repmat(temp,N_L, 1);

temp=zeros((N_c-2), 1);
start=(i-l)*N_L*(N_c-2)+1; stop=i*N L*(N_c-2);
gap=N c-v_inv-3;
temp((v_inv+l):(v_inv+l+gap)) = 1;
template u(start:stop)=repmat(temp,N_L, 1);

end

%pluck out unique densities

%template for down motion
%template for up motion

%replicated in length

%added to starting point
%down range=non-zero
%same for all "L" per "nad"

%replicated in length

%added to starting point
%up range=non-zero
%same for all "L" per "n ad"

u R d=template_d; u_ L_d--template_d;
rR d-template_d; rL_d-template_d; r c_d=template_d;
ind=find(u R d==l); %indices of"down" range
u_Rd(ind)=u_R(ind); u_L_d(ind)=u_L(ind);
r_R d(ind)=r_R(ind); r_L_d(ind)=rL(ind); rc_d(ind)=rc(ind);

uRu=template_u; u_L_u=template_u;
r Ru=template_u; r L _u=template_u; rc u=template_u;
ind=find(u R_u==l); %indices of "up" range
u_R u(ind)=u_R(ind); uL_u(ind)=u_L(ind);
rR u(ind)=rR(ind); rL_u(ind)=r L(ind); rcu(ind)=rc(ind);

U=[uR duLd uRu uL u];
R=[rRd rL_d rc_d r_R_u r_ Lu r_c_u];

clear den_* ind alpha v_inv temp st* template_*
clear * R * * L *

fmnction M_rhs=gridmat(U,R)
global delr delt N-c N_L N_n
ratio=del_t/del r; %ubiquitous factor
d=[-1 0 1]; %diagonal vector
[A_i B_i C_i]=direxn(ratio,U,R); %interior cells
[Af B_f C_f]=bcells(ratio,U,A_i,B_i,C_i); %A/C=N_c-1,B=N_c (size)
n_row=N_n*N_L*N_c;
Mrhs=spdiags([[C_f;0] B_f [0;A_fJ],d,n_row,n_row);

clear ratio * fU R

function [A,B,C]=direxn(ratio,U,R)
global r_d del_r N_c Lrange N_L Nn Dint

u_R d=U(:,1); uL_d=U(:,2);
uR u=U(:,3); u L u=U(:,4);
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rR d=R(:,1); r_L_d=R(:,2); rcd=R(:,3);
rR u=R(:,4); r_L_u=R(:,5); r c u=R(:,6);

%used when particle moves down (r<rO)
A_d=-ratio*Dint.*r R d./(del r*r c_d);
B_d=ratio*(D_int.*(r_R_d+r Ld)/del_r+u_R_d.*r_R_d)./r_c_d;
C_d=-ratio*(D_int.*r L_d/delr+u_ Ld.*r_L_d)./r c d;

%used when particle moves up (r>rO)
A_u=ratio*(-D_int.*r Ru/del_r+u_R_u.*r_R_u)./r c_u;
B_u=ratio*(D_int.*(r_R_u+r L_u)/del_r-u_Lu.*r_L_u)./rcu;
C_u=-ratio*D_int.*r_L_u./(del r*r c u);

%replace "NaN" in "down" vector with finite values in "up" vector
A_d(find(isnan(A_d)==l))=A_u(find(isnan(A_u)==O));
B_d(find(isnan(B_d)== 1 ))=B_u(fmd(isnan(B_u)==O));
C_d(find(isnan(C_d)== 1))=C_u(find(isnan(C_u)==O));

A=-A_d;
B=I-B_d;
C=-C_d;

%i+1 (2->N_c-1)
%i (2->N_c-1)
%i-1 (2->N_c-1)

clearA _*B * C* * R ** L ** c *

function [A_f,B_f,C_f]=bcells(ratio,U,A_i,B_i,C i);
global rd delr N_c L_range N_L N_n D_all

r_R=repmat([(r d(2)+r_d(1))/2;zeros(N c-1, 1)],N_n*N_L, 1);
rL=repmat([zeros(Nc- 1,1);(r_d(N c)+r_d(N c-1))/2],N_n*NL,1);

u_L_d=U(:,2); %for 1st BC (1st cell)
u_R=zeros(N_n*N_L*N_c, 1); %consider all cells
u_R(1 :N_c:N_n*N_L*N_c)=u_L_d(1 :(N_c-2):N n*NL*(N_c-2));
u_R_u=U(:,3); %for 2nd BC (Ncell-th cell)
uL=zeros(N_n*N_L*Nc, 1); %consider all cells
u_L(N_c:Nc:N n*N L*Nc)=uR u((N c-2):(N_c-2):N n*NL*(N_c-2));

A_f-=repmat(zeros(N_L*(N_c+ 1), 1),N_n, 1);
C_f-repmat(zeros(N_L*(N_c+1),),N_n, 1);

%lst cell BC
range = 1 :Nn*NL*(N_c+1);
range((Nc+1):(N_c+1):Nn*NL*(N c+1))=[];
A_f(range)=ratio*D_all.*rR/(delr*r d(1));
rem_range=N_c:(N_c+1):N_n*N_L*(Nc+1);
A_f(rem_range)=[];
B_1=l-ratio*(D_all.*r R/delr+uR.*rR)/r_d(1);

%Nth cell BC
range= 1 :Nn*NL*(Nc+1);
range(1:(Nc+1):N_n*N_L*(N_c+1))=[];
C_f(range)-ratio*D_all.*r L/(del_r*r_d(N_c));
rem_range=2:(Nc+1):N_n*NL*(N_c+1);
Cf(rem_range)=[];
B_N= -ratio*(D_all.*r L/del r-uL.*r L)/r d(Nc);

%pad with ghost cell at the end
%pad with ghost cell in front

%1->N_c+1 for each length
%N cell+1-th cells removed
%fill 1->Nc for each "L"
%remove Ncell-th cell
%1->Nc- for each length

%l->N_c+1 for each length
%1st cells removed
%fill 1->N c for each "L"
%remove 1st cell (below ghost)
%2->N_c for each length
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range=l:N_n*N_L*N_c;
cell_ = 1:N_c:N n*N_L*N_c;
cell N=N c:N c:N n*N L*N c;
range([cell_l cellN])=[];
A_f(range)=A_i;
A_f(end)=[];

B_f(cell_l )=B_l(cell 1);
B_f(cell_N)=B_N(cellN);
Bf(range)=B_i;
B_f=B_f;

C_f(range)=C_i;
C_f(1)=[];

%"N c" cells for all L
%posns of 1st cell
%posns of Nth cell
%remove 1 st and last cells
%fill in interior cells
%remove end cell for "spdiags"

%fill in 1st cells
%fill in last cells
%fill in interior cells

%fill in interior cells
%remove 1st cell for "spdiags"

clear A_i B_i C_i *range cell_*

function [eta_model,err]=profiles(prof)
global rd r data eta_data L_range N_L N_c N_n

mu=311; sig=290;
P_L=1 ./(sqrt(2*pi)*sig).*exp( -(L_ range-mu) .^ 2/(2*sig ^2));
P_L=repmat(P_L, 1,N_n);
P_L=ones(size(P_L));
temp=[]; n_prof=[];
for i=l:N n*N L

range=(i- 1)*N_c+1:i*Nc;
if rem(i,N_L)-=0 %collect profs for all L

temp=[temp prof(range)*PL(i)];
else

n_prof-[n_prof sum(temp,2)]; %collect profs for all "n_ad"
temp=[];

end
end
plot(rd,nprof)
eta_model=interp l(rd,n_prof,rdata); %prof corresp to data
eta_max=repmat(max(eta_model,[], 1),length(rdata), 1); %max for each "n ad"
etamodel=etamodel./eta max;
err-repmat(eta_data, 1,N n)-eta_model;
err--sum(err.^2,1); %sq err for each "n ad"

clear range temp PL

function [low,up]=conf int(err)
global rdata n_ad ic Nn N_s n_0

ic_temp=ic;
N_beta = 1;
% temp=[1 0;1 0];
temp=[0 1;0 1];
beta=temp*n_ad';
gamma=repmat(n_ad(1,2),size(beta, 1),1);
delta=repmat(0.000 l,size(beta, 1), 1);
coeff-[-1;1];
n_ad=repmat(n_ad,size(beta, 1), 1);
n_d=size(r data, 1);

%num of parameters for N_s=1

%nominal value vector (2x1)
%only one surf
%starting perturbn (2x1)
%'delta' coeffs (2x1)
%2xl
%number of data points
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F_val=fminv(0.95 ,N_beta,n_d-Nbeta);
err_bnd=err*(1+F_val*N_beta/(nd-Nbeta))

while 1>0
betaold=beta;
beta=beta+delta.*coeff;
n_ad(find(temp==1))=beta;
n_ad(fmind(temp==))=n_0-n_ad(:,2);
N_n=size(n_ad, 1);
ic=repmat(ic_temp,N_n, 1);
[eta_model,err]--time_march;
ind=fmd(err<=err_bnd)';
[ind nad(ind,:) err(ind)']
ind=f'md(err>errbnd)';
beta(ind)=beta_old(ind);
delta(ind)=0.0001;

if length(ind)==size(beta, 1)
break

end
end

low=beta(1)-0.0001;
up=beta(2)-0.0001;

%err bnd for 95% conf level

%'beta' frm prev step
%current 'beta'

%"ic" for all "n ad"

%modfify corresp 'delta'

%all exceed 'err bnd'

%lower bound
%upper bound

function plot res(eta model,err)
global r_data rd eta_data n_ad

err
plot(r_data,eta_data,'o',rdata, eta_model,'-r')
xlabel('Radial Distance (m)'),ylabel('Relative Concentration'),hold on
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C program for nanostructure-guided chain reactions

The suite of programs (main + headers) outlined below is used to calculate the
properties of the reaction wave in a nanostructure coated with energetic molecules. As
described in the main text, a carbon nanotube has been approximated by a 1D chain of
oscillators interacting with both harmonic and anhannonic force fields. The output is a
table of reaction times relative to the origin at t = 0 at each node in the lattice and for each
Monte Carlo run. A separate MATLAB program is then invoked to generate statistics on
these results and calculate the velocity of the reaction wave and plot the various figures in
Chapter 5.

Main program:

#include <math.h>
#include <stdlib.h>
#include <gsl/gslrng.h>
#include "mex.h"
#include "pars.h"
#include "funcns.h"
#define pi 3.141593
#define small le-10
#define N 100
#define nmol 100

/*parameter file*/
/*function definitions*/

gsl mrng *rng; /*random number generator (global defn)*/
int rb[nmol],n r[nmol],Ng;
double Fs[3*N],F b[3*N],F nb[3*N],mass[N],t rxn[nmol],u_cm[3];
double r[3*N],u[3*N],E_s[3],E_b[3],E nb[3],E_k[3],msc;
double IS[N],uE[N],v_0[N];

void mexFunction(int nlhs,mxArray *plhs[],int nrhs,const mxArray *prhs[])
{

exec_loops();
gslrnmg_free(mg);

}

void exec_loops(void)

int m;
double Ea,alpha,beta_x,beta_y,vals[2],T;
FILE *f;

f=fopen("res.txt","w+");
mg=gsl rngalloc(gsl rnmgmtl9937);
gsl_mg_set(rng,time(NULL));

for(Ea=5;Ea<41 ;Ea+=5)
for(alpha=0.0;alpha<1 .01;alpha+=0. 1)

for(m=1;m<=nruns;m++)

initialise();
equilib();
vals[0]=Ea; vals[1]=alpha;
calc_force(&T,vals,f);

/*MT algorithm*/
/*seed RNG*/

/*activn energy loop*/
/*KE frxn loop*/
/*MC trials loop*/

/*init 'r','u',masses*/
/*set at -300 K*/
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fclose(f);

void equilib(void)
{

int i=0,j=0;
double fac,tol,T,Tdes,flag[ 1]={0};
FILE *d;

T des=300; tol=Tdes/20.0;
for(i=0;i<100 i++)
{

calc_force(&T,flag,d);

if(T<0.67*Tdes) fac=sqrt(0.67*T_des/T);
else fac=sqrt(T_des/T);
for(j=0;j <N;j++)

u[j]*=fac;
if(fabs(T-Tdes)<tol) break;

/*force computation-rxn*/

/*scale vels*/
/*exit loop*/

void initialise(void)
{

int i;
double sum 1,sunm2,sum3, step;

Ng=(int)(N-nmnol)/2;
bl=l;
assign(0);
assign(l);
suml=sum2=sum3=0.0;

/*half the # of ghost beads*/
/*locn of 1st reac bead*/
/*init masses*/
/*init rxn stuff*/

for(i=0;i<N;i++)

r[i]r[Ni~r[2*N~i]=0.0:

u[i]=gsl mrng_uniform(mg)/100;
u[N+i]=gsl_mg_uniform(mg)/100;
u[2*N+i]=gslrnguniform(rnmg)/100;

suml+=u[i];
sum2+=u[N+i];
sum3+=u[2*N+i];

for(i=0;i<N;i++)
{

u[i]-=suml/N;
u[N+i]-=sunm2/N;
u[2*N+i]-=sum3/N;

r[i]=i-u[i]*dt;
r[N+i]-=u[N+i]*dt;
r[2*N+i]-=u[2*N+i]*dt;

/*subtract CM vel*/
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}

void calc_force(double *T,double *vals,FILE *f)

int count,i,start,stop;

m sc=m b+load*m e;
t_sc=sqrt(1.4395*m_sc/k_0);
u sc=le-10*r_0/tsc;

if(vals[0]>0.0) acceptor(0.01 ,b l-1,vals,0);

start= 100; stop=2099;
for(count= 1 ;count<=steps;count++)
{

if(vals[0]>0.0) sub velcmO;

assign(2);
stretch();
bond();
LJ();
update(T,0);

assign(2);
stretch();
bond();
LJ;()
update(T, 1);

if(vals[0]>0.0)

/*mass scale (kg)*/
/*time scale (s)*/
/*vel scale (m/s)*/

/*cleave 1st bond*/

/*time march loop*/

/*calc CM vel & subtract*/

/*zero elems in F,E_k arrays*/

/*update posns*/

/*zero elems in F,E_k arrays*/

/*update posns*/

prob(vals,count);
/*if(count>=start && count <=stop)

calc_acf(start,count,f);

/*calc_modes(f);
/*calc_dist(f);
/*calc_image(f);
/*calc wavlocn(f);
/*calc_E(f);
/*calc_cuT(f);

/*call rxn code*/

/*VACF*/

/*energy in modes*/
/*inter-bead dists*/
/*bead energies at each instant*/
/*wav locn,std devn*/
/*total E as func of time*/
/*heat curr*/

*T*= 15.524e30/(3 *N-3); /*temp (K)*/
if(vals[0]>0) write array(f); /*write 't_rxn' into file*/
/*if(vals[0]>0) for(i=0;i<N;i++) fprintf(f,"%f %f %f\l",r[i],r[N+i],r[2 *N+i]);*/

void stretch(void)

int i,j;
double k_T[2],r 1,d[2],fl,f,dot_prod,diff,E,prod;
double s,k,rij,x,y,z,sum0,sum 1,sum2,dx,dy,dz,dr;

k T[0]=1000/k_0; k_T[1]=700/k 0; /*spring consts (nd)*/
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r_1=10.5/r0;
d[0]=1; d[1]=rl-k_T[0]/k T[ 1]*(r_1-1);
sum0=suml=sum2=0.0;

for(i=0;i<N- 1 ;i++)

choosepar(i,k_T,r_1 ,d,&s,&k,&rij);
x=(r[i]-r[i+1])/rij;
y=(r[N+i]-r[N+i+1])/rij;
z=(r[2*N+i]-r[2*N+i+1])/r_ij;
dx=r[i]-i;
dy=r[N+i];
dz=r[2*N+i];
dr=sqrt(dx*dx+dy*dy+dz*dz);

diff r_ij-1;
fl=-diff*( 1+diff*diff*r_0*r 0);
fl =-diff;
f2=0;
f2=-dr*(l+dr*dr);

/*cutoff (nd)*/
/*sub qtys (nd)*/

/*par for RHS*/
/*x-comp factor;denom=centre-centre dist*/
/*y-comp factor*/
/*z-comp factor*/

/*RHS force magnitude*/
/*FPU-fi case*/
/*harmonic case*/

/*<04 case*/

F_s[i]+=fl *x+f2*dx/dr; /*x-comp for curr bead*/
F_s[N+i]+=fl *y+f2*dy/dr; /*y-comp for curr bead*/
F_s[2*N+i]+=fl *z+f2*dz/dr; /*z-comp for curr bead*/
dot_prod=F_s[i]*u[i]+F_s[N+i]*u[N+i]+Fs[2*N+i]*u[2*N+i];
IS[i]=(r[i+l]-r[i])*dot_prod; /*stretch comp for 'i*/

F_s[i+1]-=fl*x; /*x-comp for 2nd bead*/
F_s[N+i+1]-=fl*y; /*y-comp for 2nd bead*/
F_s[2*N+i+ 1 ]-=fl*z; /*z-comp for 2nd bead*/
dot_prod=F_s[i+] *[i+ 1 ]+F_s[N+i+ 1 ]*u[N+i+1 ]+F_s[2*N+i+1 ] *u[2*N+i+1];
/*IS[i+1]+=(r[i]-r[i+1 ])*dot_prod; /*stretch comp for 'i+1'*/

E=r _0*r_0*diff* diff*diff*diff/4.0;
j=fabs(i-b 1+1);
sum0+=E;
suml+=j*E;
sum2+=j *j *E;

/*O-th moment*/
/*1st moment*/
/*2nd moment*/

E_s[O]=sumO*r_0*r_0;
E_s[1]=sum 1 *rO*r_0;
E_s[2]=sum2*r0O*r_0;

void choose_par(int i,double *k_T,double rl,double
{

double a,dx,dy,dz;

dx=r[i]-r[i+l];
dy=r[N+i]-r[N+i+ 1];
dz=r [2*N+i]-r[2*N+i+1];
*r ij=sqrt(dx*dx+dy*dy+dz*dz);

if(*rij<r1)
{

*s=d[O];

*d,double *s,double *k,double *rij)

/*x-comp*/
/*y-comp*/

/*z-comp*/
/*edge-edge dist*/

/*sub qty*/
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}
else

*s=d[1]; /*sub qty*/
*k=k_T[1]; /*spring const*/

}

void bond(void)

{
int i,j;
double d_1 [3],d_2[3],mod_l ,mod_2,prod,cos_phi,sin_phi,E,product;
double terml 1,term _2,phi=0,w_ 1[3],w2[3],sumO,suml,sum2,k_B,dot_prod;

k_B=14300/(k_ 0*r_ 0*r0); /*bending const (nd)*/
sum0=suml=sunm2=0.0;

for(i=0;i<N-2;i++) /*bead index (denom)*/
{

d_l[0]=r[i]-r[i+l1]; /*LHS bond direxn (x)*/
d_ [1 ]=r[N+i]-r[N+i+1]; /*LHS bond direxn (y)*/
d_1[2]=r[2*N+i]-r[2*N+i+1]; /*LHS bond direxn (z)*/
mod_1=sqrt(d 1[0]*d_ 1[0]+d_ 1[1]*d_ 1[1]+d_l [2]*d_1 [2]);

d_2[0]=r[i+2]-r[i+l]; /*RHS bond direxn (x)*/
d_2[1]=r[N+i+2]-r[N+i+1]; /*RHS bond direxn (y)*/
d_2[2]=r[2*N+i+2]-r[2*N+i+1]; /*RHS bond direxn (z)*/
mod_2=sqrt(d_2[0]*d 2[0]+d_2[1]*d_2[1]+d_2[2]*d_2[2]);

prod=dl [0]*d2[0]+d_[1]*d 2[1]+d_[2]*d_212];
cos_phi=prod/(modl *mod_2);
if(cos_phi>1.0) cos_phi= 1.0;
if(cos_phi<-1.0) cos_phi=-1.0;

phi=acos(cos_phi); /*obtuse bond angle*/
term_l=-k_B*(phi-pi);

sin_phi=sqrt(1-cos_phi*cos_phi);
if(sin_phi<1.Oe-3) /*avoid denom=0*/

term_2 = 1/(1. 0 e-3*mod 1*mod_2);
else

term_2= 1/(sin_phi*mod_1 *mod_2);

w_l[0]=prod/(modl *mod _l)*d_l [0]-d_2[0];
w_l[1]=prod/(mod_l *mod_l)*d_l [1]-d 2[1];
w_ [2]=prod/(modl *mod_l)*d_1 [2]-d_22];
w_2[0]=prod/(mod_2*mod_2)*d_2[0]-d_1 [0];
w_2[1]=prod/(mod_2*mod2)*d_2[1 ]-d_l[1];
w_2[2]=prod/(mod_2*mod_2)*d_2[2]-d_ [2];

F_b[i]+=term_l *term_2*w_l1[0]; /*force on left bead*/
Fb[N+i]+=term_l *term_2*w_1[1];
F_b[2*N+i]+=term_ *term_2*w 1[2];
dot_prod=F_b[i] *u[i]+F_b[N+i] *u[N+i]+F_b[2*N+i] *u[2*N+i];
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F_b[i+l]--term_l *term_2*(w_1[0]+w_2[0]); /*force on centre bead*/
F_b[N+i+1]--term_1 *term_2*(w_1 [1]+w_2[1]);
F_b[2*N+i+ 1]--term_ 1*term_2*(w_l [2]+w_2[2]);
dotprod=Fb[i+1]*u[i+l]+Fb[N+i+l]*u[N+i+l]+F_b[2*N+i+l]*u[2*N+i+1];

F_b[i+2]+-term_l *term_2*w_2[0]; /*force on right bead*/
F_b[N+i+2]+-term_l *term_2*w_2[1];
F_b[2*N+i+2]+-=term_l *term_2*w_2[2];
dot_prod=F b[i+2]*u[i+2]+Fb[N+i+2]*u[N+i+2]+F_b[2*N+i+2]*u[2*N+i+2];

E=k_B*(phi-pi)*(phi-pi)/2;
j=fabs(i-bl+1);
sumO+=E;
suml+=j*E;
sum2+=j*j*E;

}
E_b[0]=sumO;
E_b[1]=suml;
E_b[2]=sum2;

/*0-th moment*/
/*1st moment*/
/*2nd moment*/

void LJ(void)

int ij,k,start,stop;
double eps,sig,cutoff,dot_prod,E,prod;
double dx,dy,dz,r_ ij,term,force,sum0,suml ,sum2,ecut;

eps=15.1/(k 0*r 0*r 0);
sig=9.35/r_0;
cutoff-60/r 0;

term=pow(sig/cutoff,6);
ecut=4*eps*term*(term-1);
sum0=suml=sum2=0.0;

for(i=0;i<N-1;i++)
{

if(i+10>=N)
stop=N;

else
stop=i+10;

for(j =i+3;j<stopj++)
{

dx=r[i]-r[j];
dy=r[N+i]-r[N+j];
dz=r[2*N+i]-r[2*N+j];
rij=sqrt(dx*dx+dy*dy+dz*dz);

if(r ij>cutoff)
continue;

term=pow(sig/rij,6);
force=24*eps*term*(2*term-1)/r_ij;

F_nb[i]+=force*dx/r ij;

/*L-J (nd)*/
/*L-J (nd)*/
/*cutoff dist (nd)*/

/*x-comp*/
/*y-comp*/
/*z-comp*/
/*edge-edge dist*/

/*skip if dist>60 A*/

/*total force*/

/*x-comp for curr bead*/
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F_nb[N+i]+=force*dy/r_ij; /*y-comp for curr bead*/
Fnb[2*N+i]+=force*dz/rij; /*z-comp for curr bead*/
dotprod=F_nb[i]*u[i]+F_nb[N+i]*u[N+i]+F_nb[2*N+i]*u[2*N+i];

F_nb[j]-=force*dx/r ij; /*x-comp for 2nd bead*/
F_nb[N+j]-=force*dy/r_ij; /*y-comp for 2nd bead*/
F_nb[2*N+j]-=force*dz/rij; /*z-comp for 2nd bead*/
dotprod=F_nb[j]*uU]+Fnb[N+j]*u[N+j]+F_nb[2*N+j]*u[2*N+j];

E=4*eps*term* (term- 1)-ecut;
k=fabs(i-bl+l);

sumO+=E;
suml+=k*E;
sum2+=k*k*E;

}
}
E_nb[O]=sumO;
E_nb[1]=suml;
E_nb[2]=sum2;
E_nb[O]=O;
E_nb[1]=O;
E_nb[2]=O;

void update(double *T,int flag)

int ij;
double ratio,temp,gamma;
struct { double x,y,z; } a;

/*0-th moment*/
/* Ist moment*/
/*2nd moment*/

/*components of acceln*/

for(i=0;i<N;i++)
{

ratio=mass[i]/m_sc; /*mass ratio*/
gamma=0.0; /*damping for interior*/
if(i<Ng) gamma=d_max*(1 -i/((float)(Ng-1))); /*for 1st Ng beads*/
if(i>=N-Ng) gamma=d_max*(i-N+Ng)/(float)(Ng-1);

a.x=(Fs[i]+F_b[i]+F_nb [i]-gamma*u[i])/ratio;
a.y=(F_s[N+i]+F_b[N+i]+F_nb[N+i]-gamma*u[N+i])/ratio;
a.z=(Fs[2*N+i]+F_b[2*N+i]+Fnb[2*N+i]-gamma*u[2*N+i])/ratio;

switch(flag)

case 0:
r[i]+=u[i]*dt+a.x*dt*dt/2;
r[N+i]+=u[N+i]*dt+a.y*dt*dt/2;
r[2*N+i]+=u[2*N+i]*dt+a.z*dt*dt/2;

/*1st force calcn: r & u*/

u[i]+=a.x*dt/2;
u[N+i]+=a.y*dt/2;
u[2*N+i]+=a.z*dt/2;

*T=0.0;
break;

case 1: /*2nd force calcn: u*/
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u[i]+=a.x*dt/2;
u[N+i]+=a.y*dt/2;
u[2*N+i]+=a.z*dt/2;

j=fabs(i-b 1+1);
temp=u[i] *u[i]+u[N+i] *u[N+i]+u[2*N+i] *u[2*N+i];
E_k[O]+=mass[i]*temp/m_sc; /*O-th moment*/
E_k[1]+=j *mass[i] *temp/m_sc; /*1 st moment*/
E_k[2]+=j *j *mass[i]*temp/m_sc; /*2nd moment*/
uE[i]+=u[i] *mass[i] *temp/(2*m_sc);
*T+=mass[i]*temp;
break;

}
}

void prob(double *vals,int count)

int i,j,bead=0;
double sum,tau= 10.0,k,Ea;

for(i=Ng;i<N-Ng;i++)
{

/*if(i!=2) rb[i-Ng]=0;*/
j=rb[i-Ng]- 1;
if(j<0) continue;

/*loop thru reactive interior*/

/*array index of reac bead*/
/*skip reacted bead*/

sum=mass[j ]*(u[j]*u[j]+u[N+j]*u[N+j]+u[2*N+j]*u[2*N+j]);
Ea=2*vals[0]*6.973e-21/usc/u sc; /*scaled activn energy*/
k= le13*exp(-Ea/sum); /*rate const*/
if(k<small) k=small; /*avoid denom=0*/
locator(k,i,&tau,&bead); /*rxn time,posn locator*/

acceptor(tau,bead,vals,count); /*rxn acceptor*/

void locator(double k,int i,double *tau,int *bead)
{

double zi,temp;

zi=gslrng_uniform(rng);
temp=log(1/zi)/(k*3 *t_sc); /*rxn time @ reac bead i' (nd)*/

/*find earliest rxn*/if(temp<*tau)
{

*tau-temp;
*bead=i;

/*store lower time value*/
/*possible rxn locn (array index)*/

void acceptor(double tau,int bead,double *vals,int count)
{

int i,n,index;
double fac,alpha;

index=bead-Ng; /*to match 'rb','n r' indices*/
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/*rxn possible*/

locn=rb[index]- 1;

for(i=1 ;i<=load-n_r[index];i++)
if(i*tau<=1) n=i;
else break;

if(count==0) n=load;
mass[locn]-=n*m_e;
nr[index]+=n;

if(nr[index]==load)
{

t_rxn[index]=count+3*tau/dt;
/*printf("%i %.3f\n",rb[index],trxn[index]);
rb[index]=0;

if(count==0) alpha= 1.0;
else alpha=vals[ 1];

calc_vel(alpha,n);

/*array index of reac bead*/

/*cycle thru unreac molecs*/
/*# molecs reacted in dissipn time*/
/*skip invalid loop indices*/

/*sub reac molec mass*/
/*tot # molecs reacted*/

/*all molecs on bead reacted*/

/*time of rxn at full conversion*/
/*print rxn locn,time*/
/*locn no longer reactive*/

/*unconditionally cleave 1st bond*/

/*chem energy->KE*/

void calc_vel(double alpha,int n)
{

int i,sign = l;
double dir[3],u_sq,E,g_1,g_2,G,frxn;

g_l=mb/(n*mne);
g _2=load/n;
G=g_l+g_2;
u_sq=sqrt(u[locn]*u[locn]+u[N+locn]*u[N+locn]+u[2*N+locn]*u[2*N+locn]);
dir[0]=u[locn]/u_sq; dir[1]=u[N+locn]/u_sq; dir[2]=u[2*N+locn]/usq;

if(dir[2]<0)

dir[O]=-dir[0];
dir[1]=-dir[1];
dir[2]=-dir[2];

}

for(i=0;i<3 ;i++)

/*bead moves downwards*/

/*x-direxnl cosine*/
/*y-direxnl cosine*/
/*z-direxnl cosine (always +ve)*/

/*do for x,y,z dims*/

frxn=dir[i]*dir[i];
E=frxn*(2*alpha*delH/(me*u sc*u_sc));
if(dir[i]>0) sign=-1;
u[i*N+locn]+=sign*sqrt(E/(G*(G - 1)));

/*energy fraction in dim i*/
/*energy deposited in dim 'i'*/
/*choose correct sign for soln*/
/*solve for bead vel*/

void sub_vel_cm(void)
{

int i;
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double suml,sum2,sum3,sum4;

sum 1 =sum2=sum3= sum4=0.0;
for(i=0;i<N;i++)
{

suml +=mass[i]*u[i];
sum2+=mass[i]*u[N+i];
sum3+=mass[i] *u[2*N+i];
sum4+=mass[i];

}
ucm[O]=sum l/sum4;
u_cm[1]=sum2/sum4;
u_cm[2]=sum3/sum4;

for(i=0;i<N;i++)
{

u[i]-=u cm[0];
u[N+i]-=u_cm[ ];
u[2*N+i]-=u_cm[2];

/*subtract CM vel*/

void assign(int flag)
{

int i,index,del b;

switch(flag)

case 0:
mass[0]=m b+load*m_e;
for(i= 1 ;i<N;i++)

mass[i]=m b+load*m e;
break;

case 1:
for(i=Ng;i<N-Ng;i++)

index=i-Ng;
t rxn[index]=0.0;
rb[index]=i+ 1;
nr[index]=0;

/*init masses for all beads*/

/*intrinsic mass + reac molec load (kg)*/

/*init rxn-related stuff*/
/*runs over only reactive interior*/

/*rxn time storage array*/
/*actual posns of reac beads*/
/*# of reacted species on bead*/

break;

case 2:
for(i=0;i<N;i++)

/*init forces to zero*/
/*cycles thru beads*/

Fs[iF_s_s[N+i]=F_s[2*N+i]=0.0;
Fb[i]=Fb[N+i]=F b[2*N+i]=0.0;
Fnb[i]=Fnb[N+i]=F-nb[2*N+i]=0.0;

IS[i]=O.0; /*inner sum in heat current*/
uE[i]=O.0;

E_k[0]=E_k[1]=E_k[2]=.0.0 /*init 'E k' to 0 for sums*/
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break;
}

}

void calc_acf(int start,int count,FILE *f)

int i;
double acfvt;

acf-0.0;
for(i=0;i<N;i++)
{

if(count==start) /*set origin vels*/
v_O[i]=sqrt(u[i]*u[i]+u[N+i] *u[N+i]+u[2*N+i] *u[2*N+i]);

v_t=sqrt(u[i]*u[i]+u[N+i]*u[N+i]+u[2*N+i]*u[2*N+i]);
acf+=v_0 [i]*v_t;

}
acf/=(double) N; /*avg sum over all beads*/
fprintf(f,"%e\n",acf);

void calc_modes(FILE *f)
{

int k,i;
double a,a_dot,omega,E;

for(k= 1 ;k<=N;k++)
{

a=0; a dot=0;
for(i=0;i<N;i++)
{

a+=r[i]*sin(i*k*pi/N);
a_dot+=u[i]*sin(i*k*pi/N);

omega=2*sin(k*pi/(2*N));
E=(a_dot*a_dot+a*a*omega*omega)/2;
fprintf(f,"%f ",E);

}
fprintf(f,"\n");

void calc_dist(FILE *f)
{

int i;
double d,dx,dy,dz;

for(i=0;i<N-1 ;i++)
{

dx=r[i]-r[i+l];
dy=r[N+i]-r[N+i+1];
dz=r[2*N+i]-r[2*N+i+1];
d=sqrt(dx*dx+dy*dy+dz*dz);
fprintf(f,"%f ",d);

}
fprintf(f,"\n");
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void calc_image(FILE *f)
{

hit i;
double E,kB=1.38e-23;

for(i=0;i<N;i++)

E=mass[i]*(u[i]*u[i]+u[N+i]*u[N+i]+u[2*N+i]*u[2*N+i])/m_sc;
fprintf(f,"%e ",E*msc*u_sc*u_sc/(3*kB));

}
fprintf(f,"\n");

void calcwavy locn(FILE *f)
{

double E0,E 1,E2;

EO=E_s[]+E_b[]+E_nb[]+Ek[];
E =E_s[ 1 ]+E_b[ 1 ]+Enb[ 1 ]+Ek[1];
E2=E_s[2]+E b[2]+Enb[2]+E_k[2];
fprintf(f,"%f %f\n",E1/EO,E2/EO-E1 *E1/EO/EO);

/*sum O-th moments*/
/*sum 1st moments*/
/*sum 2nd moments*/

void calc E(FILE *f)
{

fprintf(f,"%e\n",E_k[0]);
}

void calc_curr(FILE *f)
{

int i;
double j,sum;

sum=0.0;
for(i=0;i<N;i++)

j=uE[i]+IS[i];
sum+=j;
printf("%i %e %e\n",i,uE[i],IS[il);
/*fprintf(f,"%e ",j);*/

}
fprintf(f,"%f\n",sum);

void writearray(FILE *f)
{

int i;

/*local heat flux*/

for(i=O;i<nmol;i++)
fprintf(f,"%f",t ra[i]);

fprintf(f,"\n");
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Parameter header file:

#ifndefpars h
#define pars_h

/*# of time steps,# of MC runs*/
int steps= 1000,nruns=500;

/*spring const (kcal/mol/A^2),inter-bead dist (A),max damping,time step (nd)*/
double k_0=1000.0,r_0=10.0,d_max=,ddt=0.1;

/*1 st reac bead,reac bead locn,# reac molec on bead*/
int b1,locn,load=3;
/*mass of bead (kg),mass of reac molec (kg)*/
double m b=32.426e-25,m_e=3.5198e-25;

/*scaling vel (m/s),time (s),rxn enthalpy (J)*/
double u_sc,t_sc,delH = 10.3e-19;

#endif

Function definition header file:

#ifndef funcns h
#define funcns h

void exec_loops(void);
void equilib(void);
void initialise(void);
void calcforce(double *,double *,FILE *);
void stretch(void);
void choose_par(int, double *,double,double *,double *,double *,double *);
void bond(void);
void LJ(void);
void update(double *,int);
void prob(double *,int);
void locator(double,int,double *,int *);
void acceptor(double,int,double *,int);
void calcvel(double,int);
void sub_vel_cm(void);
void assign(int);
void calc_acf(int,int,FILE *);
void calc_modes(FILE *);
void calc_dist(FILE *);
void calc_image(FILE *);
void calcwavlocn(FILE *);
void calc_E(FILE *);
void calc_curr(FILE *);
void write_array(FILE *);

#endif
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MATLAB program to analyse results:

function data_plot
clc
mex covariance.c
warning off all

Ea=5:5:40; alpha=0:0. 1:1;
n_Ea=length(Ea); n_alpha=length(alpha);
n_runs=500; n_beads=100;
res=funcn(n_Ea,n_alpha,n_runs,n_beads);
figl(res,Ea,alpha);
clear all

function res=funcn(n_Ea,n_alpha,n_runs,n_beads)
global n_steps t_range del_t
n_rows=n_Ea*n_alpha*n_runs;
file=[pwd '/Results 2/res3.txt'];
data=dlmread(file,' ');
data(:,end)=[];

stds=zeros(1,n_beads);
res=zeros(n_Ea,n_alpha);
X=(0O:n_beads - 1)'* l1e-9;
del t-75.373e-16;
load=3; m=l+load*0.1085;
delt=del_t*sqrt(m/1.217);

%analyse 'time' matrix

%results file to be analysed

%std devns of event times
%row=E_a, col=alpha
%dimensional posns of beads (m)
%time step (2 EM,s)

for i=l1:n Ea %row index
forj= 1:n_alpha %col index

start=(i-l)*n_alpha*n_runs+(j-1)*n_runs+1;
stop=(i- 1)*n_alpha*n_runs+j*n_runs;
range=start:stop; %all runs for (E_a,alpha) pair
time=data(range,:); %rxn times for beads in range
avg_conv=length(find(time>O))/(n_runs*n beads);
res(ij)=avg_conv;
dt=sdev(time,n_beads);

[T veps P]=covariance(time,t_range);
v_eps(l,:)=[]; v_eps(:,l)=[];
row-min(fmd(diag(v_eps)>1el2))
if isempty(row)

row=size(v_eps, 1)+1;
else

v_eps(row:end,:)=[];
veps(:,row:end)=[];

end
X=X(1:row);

T=T(1:row)*del_t; v_eps=v_eps*del_t^2;

fig2(n_beads,v_eps);
beta=fit_line(P,X,T,v_eps,n_runs);

end
end

function beta=fitline(P,X,T,v_eps,n_runs)

%calc mean rxn times,covariance matrix
%del 1st bead
%beads satisfying prob cutoff

%delete low-prob rows
%delete low-prob cols

%truncate chain length
%dimensionalise (s,sA2 )

%fit line thru N pts
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global data del_t
start=1; stop= 13; %pts to fit to line
var=diag(v_eps);
dT= 1.96*sqrt(var/n runs); %error bars for rxn times
data=[X(start:stop)* 1 e9 T(start:stop)/delt]; %dataset to be fitted (non-dim)
v=data(end, 1)/data(end,2); %initial guess for slope (vel)
t_O=T(1)/del_t; %initial guess for 1st rxn time
beta=lsqnonlin(@solver,[v;t_0]); %solve for parameters
for i= 1 :length(dT)

if dT(i)>T(i)
dT(i)=T(i);

end
end
dT=[O;dT];
beta(1)=beta(1)* le-9/del_t; %dimensional vel (km/s)
beta(2)=beta(2)*del_t; %dimensional time (s)
confint(X(2:end),T(2:end),v_eps,beta); %calc confidence intervals
fig3(P,X,T,dT,beta,stop);

function res=solver(beta)
global data
Y=data(:, 1)/beta(1)-beta(2); %predixn
res=data(:,2)-Y; %residuals

function conf'mt(X,T,veps,beta)
v_inv=v_eps\eye(size(veps));
S=[-X/beta(1)^2 -ones(size(v_eps, 1), 1)]; %sensitivity vector
temp=v_inv*S;
temp=S'*temp;
v_beta=temp\eye(size(temp));
[m n]=size(S);
d=m-n; %# degrees of freedom
delta-tinv(0.95,d)*sqrt(diag(v_beta));
b l=[beta-delta beta beta+delta]./repmat([ 1000; 1], 1,3);
fprintf(1,'%e %e %e\n',b l');

function dt=sdev(time,n beads)
global n_steps trange
for i=l:n beads

ind=find(time(:,i)>0);
if -isempty(ind)

stds(i)=std(time(ind,i));
else

stds(i)=0;
end

%rows with non-zero times

%std devns of non-zero times

%no rxn event at all

end
dt=floor(min(stds(stds>1e-4))); %time step = min std devn
t_min=min(min(time(time>0))); t_max=max(max(time));
t_range=t_min:dt:t_max+2*dt; %time range
n_steps=length(t range);

function figl(res,Ea,alpha)
contourf(alpha,Ea,res);
xlabel('Enthalpy Fraction Converted to KE','FontSize',22);
ylabel('Activation Energy (kcal/mol)','FontSize',22);
colorbar;
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set(gca,'xtick',[0 0.2 0.4 0.6 0.8 1],'ytick',[10 15 20 25 30 35 40])
set(gca,'FontSize',22);

function fig2(n_beads,v_eps)
figure
imagesc(1 :size(v_eps, 1), 1:size(v_eps, 1),v_eps* 1e25);
colorbar
xlabel('Index of Bead in Chain','FontSize', 18);
ylabel('Index of Bead in Chain','FontSize', 18);
axis tight
set(gca,'FontSize', 18);
plot(1:size(v_eps),diag(v_eps),'m'),hold on
xlabel('Index of Bead in Chain','FontSize', 18);
ylabel('Variance (sA2)','FontSize ' , 18);
axis tight
set(gca,'xtick',[5 20 35 50 65 80 95])
set(gca,'FontSize', 18);
legend('E_a=25 kcal/mol','E_a=30 kcal/mol','E_a=35 kcal/mol','E_a=40 kcal/mol'); legend('boxoff);

function fig3(P,X,T,dT,beta,stop)
figure
errorbar(X,T,dT,dT,'sb')
xlabel('Bead Location in Chain (m)','FontSize', 18);
ylabel('Time of Reaction Occurrence (s)','FontSize',l 8);
hold on
Y=X(1:stop+30)/beta(1)-beta(2);
plot(X(1 :stop+30),Y,'-r','LineWidth',3)
v=num2str(beta(1)/1000); v=v(1:4);
str=['v =' v ' km/s'];
text(0,0,str,'FontSize', 1 8,'FontWeight','bold','Color','r')
legend('Mean Reaction Time','Fit for Beads 1-3','Fit for Beads 4-13');
legend('boxoff);
axis tight
set(gca,'FontSize', 18);

figure
plot(1 :length(P),P,'b','LineWidth',6)
xlabel('Bead Index','FontSize',38);
ylabel('P(Reaction)','FontSize',38);
axis tight
set(gca,'xtick',[20 60 100])
set(gca,'FontSize',38);
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Calculating the covariance of reaction times:

#include <math.h>
#include "mex.h"
#define cutoff 0.90
#define Inf le8

void calc qty(double *,double *,double *,double *,double *);
void calc_len(double *,int,int *);
void calc avg(double *,int,double *,double *,double *,double *);
void calc_cov(double *,int,int,double *,double,double *,double,double *,double *);

int nbeads,nruns,nsteps;

void mexFunction(int nlhs,mxArray *plhs[],int nrhs,const mxArray *prhs[])

int n_b,n_r,n_s;
double *time,*tr,*T,*v_eps,*P;

n_r=mxGetM(prhs[0]); /*no: of runs (rows)*/
n_b=mxGetN(prhs[0]); /*no: of beads (cols)*/
time=mxGetPr(prhs[0]); /*rxn times*/
n_s=mxGetN(prhs[1]); /*# of time steps*/
tr=mxGetPr(prhs[ 1]); /*time range*/

plhs[0]=mxCreateDoubleMatrix(n_b, 1,mxREAL);
T=mxGetPr(plhs[0]); /*mean rxn times*/
plhs[1]=mxCreateDoubleMatrix(n_b,n_b,mxREAL);
v_eps=mxGetPr(plhs[ 1 ]); /*covariance matrix*/
plhs[2]=mxCreateDoubleMatrix(n_b, 1,mxREAL);
P=mxGetPr(pllhs[2]); /*probability list*/

nbeads=n b;
nruns=n r;
nsteps=ns;
calc_qty(time,tr,T,veps,P);

void calc_qty(double *time,double *tr,double
{

int i,j,L=0;
double ti_b,ti[500],tj_b,tj [500],cov,prob;

for(i=0;i<nbeads;i++)

calc_len(time,i,&L);
if(L==nruns) continue;

calc_avg(time,i,ti,&ti b,&prob,tr);
T[i]--ti_b;
P[i]=prob;
for(j=ij<nbeads;j++)

calc_len(time,i,&L);
if(L==nrunns) continue;

*T,double *v_eps,double *P)

/*col/bead index in 'time'*/

/*# of 0 rxn times*/

/*mean rxn time & prob @ 'i'*/
/*dimensnl mean rxn time (s)*/
/*prob of rxn @ T*/

/*# of 0 rxn times*/
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calc_avg(timej,tj,&tjb,&prob,tr);
calc_cov(time,ij,ti,tib,tj,tj_b,tr,&cov);
veps[j*nbeads+i]=cov;
v_eps[i*nbeads+j]=v_eps[j*nbeads+i];

/*mean rxn time @ 'j'*/
/*calc cov(ij)*/

/*symmetric matrix*/

void calc_len(double *time,int col,int *L)
{

int i,start,stop,count=0;

start=col*nruns;
stop=(col+1)*nruns-1;
for(i=start;i<=stop;i++)

if(time[i]==O) count++;

*L=count;

void calc_avg(double *time,int
{

/*1st elem in col*/
/*last elem in col*/
/*traverse col elems*/
/*count # of zeros*/

/*tot # of Os in col*/

col,double *t,double *t_b,double *prob,double *tr)

int ij,start,stop,count;
double sum_t,sum_p=0,sum_tp=O,p;

start=col*nruns;
stop=(col+ 1)*nruns- 1;
for(i=O;i<nsteps-1 ;i++)

sumt-0.O; count=0;
for(j=startj<=stopj++)

if(time[j]>-tr[i] && time[j]<tr[i+l])
{

sumt+-time[j];
count++;

}
p=(double)count/(double)nruns;
sump+=p;
if(count>0)

t[i]=sum_t/(double)count;
else t[i]=(tr[i]+tr[i+1])*0.5;
sum tp+-t[i]*p;

*prob=sum_p;
if(sum_p>=cutoff) *t_b=sum_tp/sum_p;
else *tb=Inf;

/*1st elem in col*/
/*last elem in col*/
/*'tr' index*/

/*traverse col elems*/

/*for mean calculation*/
/*# of times in interval*/

/*P(rxn) in [i i+l)*/
/*tot prob of rxn @ 'i'*/

/*mean of runs*/
/*centre of interval*/

/*prob of rxn @ 'i'*/
/*mean rxn time @ 'j'*/
/*no rxn possible*/

void calc_cov(double *time,int i,intj,double *ti,double ti_b,double *tj,double tj_b,double *tr,double *cov)
{

int m,n,p,q,i__Oj,iNj N,count;
double tml,tm2,tn1,tn2,p_ij,sum_tp=O,sum_p=0;

i_0=i*nruns;
iN=(i+l)*nruns-l1;

/*1st elem in col 'i'*/
/*last elem in col 'i'*/
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j_0=j*nruns;
j_N=(j+1)*nruns- 1;

for(m=0;m<nsteps;m++)
{

tml=tr[m]; tm2=tr[m+1];
for(n=0;n<nsteps;n++)

/*lst elem in col 'j'*/
/*last elem in col 'j'*/

/*interval limits for 'i'*/

tnl=tr[n]; tn2=tr[n+1]; /*interval limits for 'j'*/
count=0;
for(p=iO,q=j_O;p<=iN,q<=j_N;p++,q++) /*scan cols 'i' & 'j'*/

if((time[p]>=tml && time[p]<tm2) && (time[q]>-tnl && time[q]<tn2))
count++;

p_ij=(double)count/(double)nruns;
sum_tp+=(ti[m]-tib)*p_ij *(tj [n]-tj_b);
sum_p+=p_ij;

*covsumtp/sump;

/*P(rxn) @ (ij)*/
/*prod of vecs & matrix*/
/*total probability*/

/*covariance*/
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