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Abstract

In the last decade, gyrokinetic simulations have greatly improved our theoretical
understanding of turbulent transport in fusion devices. Most gyrokinetic models in
use are 6f simulations in which the slowly varying radial profiles of density and
temperature are assumed to be constant for turbulence saturation times, and only
the turbulent electromagnetic fluctuations are calculated. Due to the success of these
models, new massive simulations are being built to self-consistently determine the
radial profiles of density and temperature. However, these new codes have failed
to realize that modern gyrokinetic formulations, composed of a gyrokinetic Fokker-
Planck equation and a gyrokinetic quasineutrality equation, are only valid for 6f
simulations that do not reach the longer transport time scales necessary to evolve
radial profiles. In tokamaks, due to axisymmetry, the evolution of the axisymmetric
radial electric field is a challenging problem requiring substantial modifications to
gyrokinetic treatments. The radial electric field, closely related to plasma flow, is
known to have a considerable impact on turbulence saturation, and any self-consistent
global simulation of turbulent transport needs an accurate procedure to determine
it. In this thesis, I study the effect of turbulence on the global electric field and
plasma flows. By studying the current conservation equation, or vorticity equation,
I prove that the long wavelength, axisymmetric flow must remain neoclassical and I
show that the tokamak is intrinsically ambipolar, i.e., the radial current is zero to a
very high order for any long wavelength radial electric field. Intrinsic ambipolarity
is the origin of the problems with the modern gyrokinetic approach since the lower
order gyrokinetic quasineutrality (if properly evaluated) is effectively independent of
the radial electric field. I propose a new gyrokinetic formalism in which, instead of
a quasineutrality equation, a current conservation equation or vorticity equation is
solved. The vorticity equation makes the time scales in the problem explicit and shows
that the radial electric field is determined by the conservation of toroidal angular
momentum.

Thesis Supervisor: Peter J. Catto
Title: Senior Research Scientist
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(...)

Greek letters
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e A
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se, 5i
AD

Vii, vie, Vee, vei

Wn,T

Gyroaverage holding r, v 1, v 1 and t fixed.

Gyroaverage holding R, E, p and t fixed.

In tokamaks, flux surface average.
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In tokamaks, poloidal magnetic field flux, radial coordinate.

In tokamaks, poloidal angle; in 0-pinches, azimuthal angle.

In 0-pinches, unit vector in the azimuthal direction.

In tokamaks, toroidal angle and unit vector in the toroidal direction.

In tokamaks, inverse aspect ratio a/R.
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Ion-ion, ion-electron, electron-electron and electron-ion Braginskii

collision frequencies.

Drift wave frequency.

Drift wave frequency in gyrokinetic equation (3.57) dependent on

Vni and VT.



Electrostatic potential.

) Electrostatic potential averaged in a gyromotion [see (3.16)].

Difference between the potential seen by the particle and the poten-

tial averaged in a gyromotion [see (3.17)].

I Indefinite integral of with vanishing gyroaverage [see (3.18)].

Gyrokinetic magnetic moment defined to be an adiabatic invariant

to higher order [see (3.33)].

Ag Gyrokinetic magnetic moment in which the explicit dependence on

the potential has been subtracted.

Po Lowest order magnetic moment of the particle vI/2B.

pi First order correction to the gyrokinetic magnetic moment [see

(3.34)].

Plo First order correction to the gyrokinetic magnetic moment in which

the explicit dependence on the potential has been subtracted [see

(4.21)].

1P Gyrokinetic gyrophase in which the fast time variation has been

averaged out [see (3.28)].

o Lowest order gyrophase of the particle [see (2.2)].

pi First order correction to the gyrokinetic gyrophase [see (3.29)].

10o First order correction to the gyrokinetic gyrophase in which the ex-

plicit dependence on the potential has been subtracted [see (4.22)].

7i Ion viscosity. Its definition includes the Reynolds stress because the

average velocity has not been subtracted [see (2.6)].

7rigII Vector that gives the transport of parallel ion momentum by the

E x B and magnetic drifts and the finite gyroradius drift i 1 [see

(4.39)].

7igx Tensor that gives the transport of perpendicular ion momentum by

the parallel velocity, the E x B and magnetic drifts and the finite

gyroradius drift i1 [see (4.40)].



7riG Effective viscosity for gyrokinetic vorticity equation (4.53).

zu Vorticity [see (2.11)].

LUG Gyrokinetic "vorticity" [see (4.51)].

w2 )  Higher order gyrokinetic "vorticity" [see (5.41)].

Roman letters
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B, B, b Magnetic field, magnetic field magnitude, and unit vector parallel to

the magnetic field.

B, In tokamaks, magnitude of the poloidal component of the magnetic

field.

c Speed of light.

DgB GyroBohm diffusion coefficient 6ipivi.

e Electron charge magnitude.
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rophase Vo [see (2.2)].

E Gyrokinetic kinetic energy in which the fast time variation has been

averaged out [see (3.24)].

Eo Kinetic energy of the particle v 2/2.

El First order correction to the gyrokinetic kinetic energy [see (3.25)].

E 2  Second order correction to the gyrokinetic kinetic energy [see (3.26)].

E Electric field.
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fig Distribution function found by replacing the gyrokinetic variables

R, E and p in fi(R, E, p, t) by Rg, Eo and po [see (4.3)].

fiG Distribution function found by replacing the gyrokinetic variables

R, E and p in fi(R, E, p, t) by Rg, Eo and pg.

fio Distribution function found by replacing the gyrokinetic variables

R, E and p in fi(R, E, p, t) by r, E and o0.

fi Gyrophase independent piece of the ion distribution function when
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fi - fi Gyrophase dependent piece of the ion distribution function when

written in physical phase space variables r, Eo0, p0 and po.

fMe, fMi Lowest order electron and ion distribution functions, assumed to be

stationary Maxwellians.

Fei Electron collisional momentum exchange with ions.

FiB Change in the perpendicular momentum of the gyromotion due to

variations in the magnetic field strength [see (4.42)].

FB2 Higher order version of FiB [see (5.37)].

Fic Force due to finite gyroradius effects on collisions [see (4.43)].

FiE Change in the parallel momentum due to the short wavelength com-

ponents of the electrostatic potential [see (4.41)].

FiE Higher order version of FiE [see (5.36)].

hi Correction to the Maxwellian for ions.

hi1, h b , hC  First order correction to the Maxwellian in 6i, decomposed into two

pieces: the piece due to turbulence and the neoclassical contribution.

hi2 , h b , h" Second order correction to the Maxwellian in 6 , decomposed into two

pieces: the piece due to turbulence and the neoclassical contribution.

I Function RB - ; it only depends on 0 to lowest order.

I Unit matrix.

J, JU Jacobian of the gyrokinetic transformation [see (3.44) and (3.47)].

J Current density.



Jd Current density due to magnetic drifts [see (2.10)].

Jgd Current density due to magnetic drifts calculated integrating vMofig

over velocity space instead of vMofi [see (4.47)].

j(2) Parallel current density calculated integrating v lfig over velocity

space instead of vjifi [see (5.39)]. The superindex (2) emphasizes

that Jll = J -b and J(2) differ only in higher order terms.SPolarization current density in gyrokinetic vorticity equation (4.45).

Ji Polarization current density in gyrokinetic vorticity equation (4.45).

Ji2 Polarization current density in gyrokinetic vorticity equation (4.53).

j2) Polarization current density in gyrokinetic vorticity equation (5.40).

k1l, k1  Wavenumbers parallel and perpendicular to the magnetic field.

L Characteristic length in the problem.

m, M Electron and ion masses.

ne, ni Electron and ion densities.

ni, Gyrokinetic polarization density defined in (3.55).

n )  Higher order gyrokinetic polarization density defined in (5.33).

pe, Pi Electron and ion "pressures." They are not the usual definitions

because the average velocity is not subtracted.

Peli, Pe- Electron parallel and perpendicular "pressures." They are not the

usual definitions because the average velocity is not subtracted.

Pill, Pil Ion parallel and perpendicular "pressures." They are not the usual

definitions because the average velocity is not subtracted.

Pigl , Pig± Parallel and perpendicular "pressures" calculated integrating Mv fig
and (Mv2/2)fig over velocity space instead of Mvfi and

(MvI/2)fi.

Pi Total ion stress tensor, including contributions due to the average

ion velocity.

q Safety factor.

r Position of the particle.



r In 0-pinches, radial coordinate.

r In 0-pinches, unit vector in the radial direction.

R In tokamaks, the distance between the axis of symmetry and the

position of the particle, also used as major radius in estimates of

order of magnitude.

R Position of the gyrocenter [see (3.12)].

R, Position of the guiding center r + Qf'v x b.

R1 First order correction to the gyrocenter position i 1 v x b.

R2 Second order correction to the gyrocenter position [see (3.15)].

Te, Ti Electron and ion temperatures.

u Velocity of the gyrocenter parallel to the magnetic field [see (3.23)].

u9 Parallel velocity found by replacing the gyrokinetic variables R, E

and p in u(R, E, p) by Rg, Eo and p.. [see (5.29)].

v Velocity of the particle.

vil Velocity component parallel to the magnetic field.

vi1o  Velocity parallel to the magnetic field with finite gyroradius modifi-

cations [see (4.16)].

vI, v1  Velocity perpendicular to the magnetic field and its magnitude.

Ve, vi Electron and ion thermal velocities, 2Te/m and 2Ti/M.

VE Gyrokinetic E x B drift [see (3.21)].

VEO Lowest order gyrokinetic E x B drift [see (4.18)].

Vd Gyrokinetic drift composed of VE and vM.

Vde Electron drift [see (3.50)].

Vdg Drift found by replacing the gyrokinetic variables R, E and p in

Vd(R, E, p) by Rg, Eo and [pt [see (5.28)].

VM Gyrokinetic magnetic drift [see (3.22)].

VM0 Standard magnetic drift [see (4.17)].

r 1 Drift due to finite gyroradius effects [see (4.19)].



V'  In tokamaks, flux surface volume element dV/db.

Ve, Vi Electron and ion average velocities.

Vig Ion average velocity calculated integrating vfig over velocity space

instead of vfi.

V12  Ion parallel average velocity calculated integrating v fig over velocity

space instead of vl fi [see (5.34)]. The superindex (2) emphasizes that

V1 = Vi b and (2) differ only in higher order terms.

Vic Ion average velocity due to finite gyroradius effects on collisions [see

(4.33)].

ViE, Vigd Ion average velocities due to the gyrokinetic E x B and magnetic

drifts [see (4.31) and (4.32)].

Vi Ion average velocity due to finite gyroradius contribution 'i1 [see

(4.30)].

Vi1c  Neoclassical ion parallel velocity.

Z Ion charge number.



Chapter 1

Introduction

Magnetic confinement is the most promising concept for production of fusion energy

and the tokamak is the best candidate among all the possible magnetic confinement

devices. However, transport of particles, energy and momentum is still not well under-

stood in tokamaks. The transport is mainly turbulent, and modelling and predicting

how it evolves is necessary to build a viable reactor.

The understanding of turbulent transport in tokamaks has greatly improved in the

last decade, mainly due to more comprehensive simulations [1, 2, 3, 4, 5, 6]. These

simulations employ the gyrokinetic formalism to shorten the computational time.

Gyrokinetics is a sophisticated asymptotic method that keeps finite gyroradius effects

without solving on the gyrofrequency time scale - a time too short to be of interest in

turbulence. Unfortunately, modern formulations of gyrokinetics are still only valid for

times shorter than the energy diffusion time or transport time scale. As simulations

try to reach longer time scales, the gyrokinetic formalism needs to be extended. This

thesis identifies the shortcomings of gyrokinetics at long transport times and solves

one of the most pressing issues, namely, the calculation of the axisymmetric radial

electric field, and thereby, the transport of momentum.

In this introduction, first I will review the characteristics of turbulence in tokamaks

in section 1.1. This review is followed by a brief history of gyrokinetic simulations

in section 1.2, with emphasis on new developments. The new codes being built will

require a new formulation of gyrokinetics valid for longer time scales. In section 1.3,



I will close the introduction by discussing the requirements for future gyrokinetic

formalisms and summarizing the rest of the thesis.

1.1 Turbulence in tokamaks

Currently, the main part of the turbulence in the core is believed to be driven by

drift waves. These waves propagate in the plasma perpendicularly to density and

temperature gradients. They become unstable in tokamaks due to the curvature

in the magnetic field and other inhomogeneities. There are several modes that are

considered important, but the two of most interest here are the Ion Temperature

Gradient mode (ITG) [7] and the Trapped Electron Mode (TEM) [8].

These modes have frequencies much smaller than the ion gyrofrequency. They

are unstable at short wavelengths - the fastest growing mode wavelengths are on

the order of the ion gyroradius because shorter wavelengths are stabilized by finite

gyroradius effects. The measurements in tokamaks suggest turbulence correlation

lengths on the order of five to ten gyroradii [9], which agrees with this idea. The

anisotropy induced by the magnetic field is reflected in the spatial structure of these

modes. The wavelength along the magnetic field, on the order of the characteristic

size of the device, is much longer than the perpendicular wavelengths.

The ITG and TEM instabilities provide energy for the turbulence at short wave-

lengths. By nonlinear beating, part of the turbulence energy is deposited in a radial

mode known as zonal flow [10, 11, 12]. The zonal flow is a radial structure in the

radial electric field that gives rise to a sheared poloidal and toroidal E x B flow. It is

a robust mode because it does not have any parallel electric field and hence electrons

cannot shield it or Landau damp it. Then, any energy deposited in the zonal flow

will remain there, leading to a rapid nonlinear growth of this mode. It has an impact

on turbulence dynamics because the velocity shear decorrelates the turbulence at the

shorter wavelengths. The statistical equilibrium of the turbulence is determined by

the feedback between zonal flow and short wavelength fluctuations. The effect of

zonal flow is so important that it can suppress the turbulence when the instability is



not too strong [13].

The radial electric field is crucial in the saturation of turbulence. Its short wave-

length radial structure is the zonal flow, whose importance in turbulence dynamics

has already been discussed. It is also quite clear that it plays an important role in the

pedestal of high confinement or H-mode plasmas in tokamaks [14], where the shear

in the macroscopic radial electric field becomes large. Experimentally, it is observed

that the radial electric field shear increases before the turbulent fluctuations are sup-

pressed, radial transport is quenched and the gradient of density increases to form

the pedestal [15]. Both zonal flow and transport barriers highlight the importance of

the calculation of the radial electric field in any turbulence simulation. In this thesis,

I will show that the traditional gyrokinetic approach is unable to provide the correct

long wavelength axisymmetric radial electric field. This problem has gone undetected

up until now because it is only noticeable at long time scales.

To summarize, the turbulence in a tokamak is characterized by electromagnetic

fluctuations with wavelengths as small as the ion gyroradius. On the other hand, the

frequency of these fluctuations is much smaller than the ion gyrofrequency, making

the timescales of gyromotion and turbulence so disparate that both can be treated

independently. It is this scale separation that gyrokinetics exploits by "averaging out"

the gyromotion, while keeping the finite gyroradius effects. However, as formulated,

the traditional gyrokinetic model does not contain enough physics to provide the

self-consistent long wavelength axisymmetric radial electric field. Since the radial

electric field affects turbulent transport, we need to extend the gyrokinetic formalism

to calculate it.

1.2 Gyrokinetics: history and current challenges

The gyrokinetic model is a more suitable way of writing the Fokker-Planck equation

for low frequencies and short perpendicular wavelengths. The idea of gyrokinetics

is to define new variables to replace the position r and velocity v of the particle.

The gyrokinetic variables are constructed such that the the gyromotion is decoupled



from the slowly varying electromagnetic fluctuations. This approach is especially

convenient in turbulence simulation because retaining the gyromotion is unnecessary.

The gyrokinetic variables are the appropriate variables to solve the problem since they

retain wavelengths on the order of the ion gyroradius and ignore the high frequencies.

Gyrokinetics had its roots in reduced kinetic techniques used to analyze stability

problems with finite gyroradius effects. The early works of Rutherford and Frieman

[16] and Taylor and Hastie [17] treated small perpendicular wavelengths in stability

calculations for general magnetic field geometries by using an eikonal approximation.

Years later, Catto [18, 19] formulated the gyrokinetic approach by introducing the

gyrokinetic change of variables.

The gyrokinetic formulation eventually evolved to a nonlinear model. Frieman

and Chen [20] developed a nonlinear theory for perturbations of small amplitude over

the distribution function in general magnetic field geometry. Their work was extended

later for a full distribution function in a slab geometry by Dubin et al [21]. Hahm

et al extended the work of Dubin et al to electromagnetic perturbations [22], and

toroidal geometry [23]. These nonlinear gyrokinetic equations were found employing

a Hamiltonian formulation and Lie transforms [24, 25].

Based on these seminal nonlinear models, Lee developed the first gyrokinetic code

for investigation of the drift wave turbulence [26, 27]. This first approach was a

primitive Particle-In-Cell (PIC) 6f model. The 6f models avoid solving for the full

distribution function, which would require much computational time. Instead, the

distribution function is assumed to be Maxwellian to lowest order, and a nonlinear

equation for 6f retaining small fluctuations is solved. The assumption is that the time

it takes the turbulence to saturate is much shorter than the diffusion time. Then, the

density and temperature profiles are given as an input and do not change in time. In

these codes, the turbulent fluctuations evolve and saturate, and from their saturated

value we can calculate the radial particle and heat fluxes. The modern, less noisy 6f

models originate in the ideas put forth by Kotschenreuther in [28].

Several 6f codes, both continuum, like GS2 [1], GENE [2] and GYRO [3], and

PIC, like GEM [4], PG3EQ [5] and GTC [6], have been developed and benchmarked.



It is based on these codes that most of the recent advances in tokamak turbulence

theory have occurred.

As it was already pointed out, the 6f codes are only useful to compute the particle

and heat fluxes once profiles for density and temperature are given. It is necessary to

develop a new generation of models capable of self-consistently calculating and evolv-

ing those profiles. It is not obvious that it can be done with the current gyrokinetic

formalism. For the 6f models it was enough to run the codes until the turbulence had

saturated, but in order to let the profiles relax to their equilibrium, runs on the order

of the transport time scale are needed. This extension is both a costly numerical task

and an unsolved physical problem. Models that reach transport time scales need to

take into account phenomena that were negligible when looking for the turbulence

saturation. In gyrokinetics, corrections to the velocity of the particles small in a ion

gyroradius over scale length are neglected. However, as run times become longer,

these terms must be retained since a small velocity correction gives a considerable

contribution to the total particle motion.

In recent years, several groups have begun to build codes that evolve the full

distribution function, without splitting it into a slowly varying Maxwellian and a

fast, fluctuating piece. These simulations, known as full f models, are employing the

traditional gyrokinetic formulation. In this thesis, I will argue that this approach is

inadequate since it is unable to solve for the self-consistent radial electric field that

is crucial for the turbulence.

Before getting into details, I will briefly review the four main efforts in this field:

GYSELA [29], ELMFIRE [30], XGC [31] and TEMPEST [32]. All these models are

electrostatic. ELMFIRE and XGC are PIC simulations, and GYSELA and TEM-

PEST are continuum codes. GYSELA and XGC calculate the full ion distribution

function, but they adopt a fluid model for electrons that assumes an adiabatic re-

sponse along the magnetic field lines. ELMFIRE and TEMPEST solve kinetically for

both ions and electrons. Importantly, all four models find the electrostatic potential

from a gyrokinetic Poisson's equation [27]. This gyrokinetic Poisson's equation just

imposes that the ion and electron density must be equal. It looks like Poisson's equa-



tion because there is a piece of the ion density, known as polarization density, that can

be written explicitly as a Laplacian of the potential. Regardless of its appearance, the

gyrokinetic Poisson's equation is no more than a lower order quasineutrality condi-

tion. It is lower order because the density is calculated from the gyrokinetic equation

in which higher order terms have been neglected. This is the most problematic part of

these models, as I will demonstrate in this thesis. Interestingly, GYSELA, ELMFIRE

and XGC have reported an extreme sensitivity to the initialization.

Operationally, the polarization density depends on the velocity space derivatives

of the distribution function (the polarization density is presented in section 3.4). It is

difficult to evaluate directly. In GYSELA, XGC and TEMPEST, the wavelengths are

taken to be longer than the ion gyroradius and the distribution function is assumed

to be close to a Maxwellian to obtain a simplified expression. In an attempt to

circumvent this problem, ELMFIRE employs the gyrokinetic variables proposed by

Sosenko et al [33]. These variables include a polarization drift that largely removes

the polarization density. With the polarization velocity, it is possible to use implicit

numerical schemes that give the dependence of the ion density with the electrostatic

potential.

To summarize, gyrokinetic modelling has been successfully used for studying tur-

bulence in the past decade. Codes based on 6f formulations, especially the continuum

ones, have provided valuable insights into tokamak anomalous transport. Currently,

there is an interest in extending these simulations to transport timescales, and that

requires careful evaluation of both physical and numerical issues. As a result, sev-

eral groups are building and testing full f simulations. In these codes, solving for

the axisymmetric radial electric field is crucial because it determines the poloidal

and toroidal flows, and those flows strongly affect and, near marginality, control the

turbulence level. Unfortunately, the full f community has failed to realize that a

straightforward extension of the equations valid for 6f codes are unable to provide

the long wavelength radial electric field. The objective of this thesis is exposing this

problem and proposing a solution.



1.3 Calculating the radial electric field

There are several problems that a gyrokinetic formulation has to face before it is

satisfactory for long time scales. The main issue is the missing higher order terms in

the gyrokinetic Fokker-Planck equation. The transport of particles, momentum and

energy from one flux surface to the next is slow compared to the typical turnover

time of turbulent eddies, the characteristic time scale for the traditional gyrokinetic

formulation. To see this, recall that the typical structures in the turbulence are of

the size of the ion gyroradius pi = Mcvi/ZeB, with vi = V2TiM the ion thermal

velocity, Ze, M and Ti the ion charge, mass and temperature, B the magnetic field

magnitude, and e and c the electron charge magnitude and the speed of light. Then,

eddies are of ion gyroradius size, requiring many eddies - and hence many eddy

turnover times - for a particle to diffuse out of the tokamak.

The gyrokinetic Fokker-Planck equation is derived to an order adequate for simu-

lation of turbulence saturation, i.e., for time scales on the order of the eddy turnover

time. This equation is too low of an order for transport time scales because flows and

fluxes that were neglected as small now have enough time to contribute to the mo-

tion of the particles. In other words, a higher order distribution function and hence

a higher order Fokker-Planck equation are required. For this reason, the extension

of gyrokinetics to transport time scales must draw from the experience developed in

neoclassical theory [34, 35]. Not only can neoclassical transport compete with the

turbulent fluxes in some limited cases, but the tools and techniques developed in

neoclassical theory become extremely useful because they require only a lower or-

der distribution function to determine higher order radial fluxes of particles, energy

and momentum. The application of neoclassical tools in gyrokinetic simulations is

described in [36] and extended herein.

The physics in which the modern gyrokinetic formulation is especially flawed is the

calculation of the long wavelength radial electric field. In this case, the comparison

between neoclassical theory and gyrokinetics is striking. In neoclassical theory, the

tokamak is intrinsically ambipolar due to its axisymmetry [37, 38], i.e., the plasma



remains quasineutral for any value of the radial electric field unless the distribution

function is known to higher order than second in an expansion on the ion gyroradius

over the scale length. The reason for this is that the radial electric field is related to

the toroidal velocity through the E x B drift. Due to axisymmetry, the evolution of the

toroidal velocity only depends on the small off-diagonal terms of the viscosity, making

impossible the self-consistent calculation of the radial electric field unless the proper

off-diagonal terms are included. The distribution function required to directly obtain

the viscosity is higher order than second; the order at which intrinsic ambipolarity

is maintained. The axisymmetric radial electric field has only been recently found in

the Pfirsch-Schliiter regime [39, 40, 41, 42], and there has been some incomplete work

on the banana regime for high aspect ratio tokamaks [43, 44].

In gyrokinetics, however, the electric field is found from a lower order gyrokinetic

quasineutrality equation [21, 26] rather than from the transport of toroidal angular

momentum. Implicitly, it is assumed that the tokamak is not intrinsically ambipolar

in the presence of turbulence. In this thesis, I prove that even turbulent tokamaks are

intrinsically ambipolar in the gyrokinetic ordering. Consequently, if the radial electric

field is to be retrieved from a quasineutrality equation, the distribution function

must be found to a hopelessly high order. The physics that determine the radial

electric field, namely, the transport of angular momentum, enters the quasineutrality

condition only in higher order terms, making the gyrokinetic quasineutrality equation

inadequate for the calculation.

In this thesis, I pay special attention to the evolution of the long wavelength ax-

isymmetric radial electric field in the presence of drift wave turbulence. Employing a

current conservation equation or vorticity equation, I assess the feasibility of different

methods to find the long wavelength axisymmetric radial electric field. Each method

requires the ion Fokker-Planck equation to a different order in 6i = pilL < 1 and

B/BP > 1, with pi the ion gyroradius, L a characteristic size in the machine, typically

the minor radius a, B the magnitude of the magnetic field and Bp the magnitude of

its poloidal component. The different methods explored in this thesis are summarized

in table 1.1. In this table, I give the chapter in which the method is presented and the



Method Order of fi Chapter

Gyrokinetic quasineutrality equation 64 f Mi 3

Radial transport Evaluated directly from fi i fMi 2
of toroidal

Moment equation i2 fMi 5angular
momentum Moment equation and B/Bp > 1 (B/Bp) i2fMi 5

Table 1.1: Comparison of different methods to obtain the long wavelength axisym-
metric radial electric field.

order of magnitude to which the ion distribution function must be known compared

to the zeroth order distribution function fMi. To better explain the classification by

required order of magnitude of fi, I present here a very simplified heuristic study of

the first method in table 1.1. This method, known as the gyrokinetic quasineutrality

equation, will be rigourously described at the end of chapter 3. In the gyrokinetic

quasineutrality equation, used in modern gyrokinetics, the electric field is adjusted so

that the ion and electron densities satisfy Zeni = ene, and the densities are calculated

by direct integration of the distribution functions, i.e., ni = f d3v fi and ne = f d3 v fe.

The ion and electron Fokker-Planck equations used to solve for the distribution func-

tions fi and fe are approximate. In chapter 3, I will describe in more detail the

formalism to obtain these approximate equations. For now, it is enough to consider

a heuristic form of the long wavelength limit of these equations in which only the

motion of the guiding center R is considered. Then, schematically the Fokker-Planck

equations for ions and electrons are

Of
+ Ri " Vfi + ... = Ci,ef{fi, fe} (1.1)

and
Ofe + Re Vfe + ... = Ce,eff{fe, fi}, (1.2)

where Ri and Re are the ion and electron guiding center positions, Ri = Vllib+Vdi+...

and Re = VJleb + vd + ... are the drifts of those guiding centers, and Ci,eff and



Ce,eff are the effective collision operators. The lower order drifts are the parallel

velocities viii - vi and vll ve, and the perpendicular drifts vdi = VMi + VE " 6iVi

and Vde = VMe + VE - 6,ve 6ivi, with vMi and VMe the magnetic drifts, VE

(c/B)E x b the E x B drift and E the electric field. The ion drifts are expanded

in the small parameter 6i = pilL < 1, and the electron drifts are expanded in the

small parameter 6,e = pe/L - 6im/M < < 5i, with Pe = mcve/eB the electron

gyroradius, ve = 2Te/m the electron thermal speed, and Te - Ti and m the electron

temperature and mass. The next order corrections in 6i to Ri may be written as

R = vlib + Vdi + 2) + iRi3  ... , with R02) = O(5v), Ri3) = O(56vi)... The

operators Ci,eff and Ce,ef are asymptotic expansions in 6i as well. The next order

corrections for Re are small in the parameter 6e < 6 i. For this heuristic introduction,

I will drop the next order corrections to Re exploiting the scale separation 6,e < 6

to find Re ~ vl eb + vde. This is not rigorous, but it does not change the final

result and simplifies the derivation. Under all these assumptions, the ion and electron

distribution functions can be solved for perturbatively, giving fi = f(0)+fi1)+fi2)+...

and fe = f(o) + f(l) + f( 2) +..., with fi(O) = fMi fl) = O( 5ifMi), f( 2) = O(fMi)...

and f,(O) = fMe, f(l) = O( ifle), fe(2) = O(6ifMe)...

In this thesis I prove that to find the long wavelength radial electric field in axisym-

metric configurations using the gyrokinetic quasineutrality equation, it is necessary to

solve the Fokker-Planck equations to fourth order because equations (1.1) and (1.2)

satisfy the condition

5t(Zeni - en,), -Ky d3v (Zefi i - e efek)]

+ d v (ZeCi,e {fi, fe) + eCe,ef{fe, fi})) = O(6benevi/L). (1.3)

Here, (...), is the flux surface average. For now, it is only important to know that

(...), makes the non-axisymmetric pieces vanish [see chapter 2]. Since the axisym-

metric radial electric field adjusts so that the axisymmetric pieces of the ion and

electron densities (ni), and (ne), satisfy quasineutrality, equation (1.3) requires that

terms of order 6ffMvli/L be kept in equations (1.1) and (1.2) to obtain the self-



consistent radial electric field. Gyrokinetic codes solve a Fokker-Planck equation only

through O(6ifMivi/L), leaving the radial electric field as a free parameter in the best

case (intrinsic ambipolarity), or finding an unphysical result in the worst scenario.

From an ion Fokker-Planck equation of order 6fM ivn/L it is possible in principle (but

not in practice) to obtain a distribution function good to order 64fMi. For this reason,

in table 1.1 the order to which the distribution function is required is 64fMi. Inter-

estingly, equation (1.3) simplifies considerably because of the flux surface average,

giving

a [f (f(2),,-- () .1 f ,(),. 3 f()-(Zenj - ene) P - Ze V -[ d v f +1 3 ) (0)R 4)

C. + + e )-+ di(. eff fi (e,eff{()) = O(64envi/L). (1.4)

Notice that, after flux surface averaging and integrating over velocity space, the dif-

ference of the fourth order pieces of the collision operators only depends on fil) and

f( 2), and the terms

(V 4 (Jlb))- =( [Jd3v (Zef(4 )vi -6 e4)v,.eb)])= 0 (1.5)

and

(V.. J 3) -) (. [V dv (Zef vdi - ef)e)]) = 0 (1.6)

exactly vanish in axisymmetric configurations. The term (1.5) is the contribution

of the parallel current density J 1 to the radial current. Since the radial current is

perpendicular, this contribution is obviously zero. The term (1.6) is more subtle.

It is the contribution of the current density Jd due to the magnetic drifts. This

contribution vanishes in axisymmetric configurations because to lowest order the net

radial displacement due to magnetic drifts is zero. In chapter 2, I will show that the

radial component of the current density Jd is related to the parallel and perpendicular

pressures p,1 and p± in the momentum conservation equation, and these pressures

finally do not enter in the calculation of the toroidal rotation, the quantity that

determines the radial electric field.



Importantly, according to equation (1.4), a distribution function fi good to O(6ifMi)

is enough to calculate the radial electric field although we need the higher order cor-

rections 2),  3) and R~I4 ); terms never employed in gyrokinetic codes. In this thesis,

I exploit the fact that only the second order correction of fi is needed to obtain the

long wavelength axisymmetric electric field. Moreover, I will not need to compute

the higher order terms R2), R}3 ) and R4) explicitly. It is possible to circumvent

this calculation by employing the radial transport of toroidal angular momentum,

introduced in chapter 2. By doing so we gain two orders in 6i, i.e., we make ex-

plicit that according to (1.4) we only need an ion distribution function good to order

6 ifMi. It is not necessary to obtain the higher order corrections to Ri because the

toroidal angular momentum conservation equation is obtained from a full Fokker-

Planck equation where no approximation for small 6i has been made. Importantly,

the procedure used to evaluate the radial transport of toroidal angular momentum

makes a considerable difference. As given in table 1.1, direct evaluation from the ion

distribution function requires the ion distribution function to O( 6jffmi), whereas the

moment approach presented in chapter 5 only requires a distribution function good

to O(6i fvi). The moment approach works because the radial transport of toroidal

angular momentum depends only on the third order gyrophase dependent piece of

the ion distribution function. The third order gyrophase dependent piece of the ion

distribution function can be expressed as a function of the second order piece by using

the full Fokker-Planck equation, and the moment approach is a simple way to write

that relation.

The second order distribution function is still an order higher than usual gyroki-

netic codes are built for, but there is a possible simplification listed last in table 1.1.

The idea is exploiting the usually largish parameter B/Bp - 10. The new method,

described at the end of chapter 5, is advantageous because conventional gyrokinetic

Fokker-Planck equations can provide, with only a few modifications in the imple-

mentation, the ion distribution function to order (B/Bp)6fM, high enough order to

self-consistently determine the long wavelength axisymmetric radial electric field for

B/B, >> 1.



Along with the long wavelength axisymmetric radial electric field, I investigate the

evolution of the axisymmetric flows in drift wave turbulence. Under the assumptions

explained at the beginning of chapter 4, the long wavelength axisymmetric flows

remain neoclassical even in turbulent tokamaks. Moreover, it is possible to prove

that in the modern gyrokinetic formalism the axisymmetric components of the flows

and the radial electric field with radial wavelengths above Vp'5L are unreliable due to

intrinsic ambipolarity. This result is related to the unrealistic higher order distribution

functions needed to obtain the long wavelength axisymmetric radial electric field from

the quasineutrality equation.

The rest of the thesis is organized as follows. In chapter 2, the calculation of

the radial electric field is formulated in terms of a current conservation equation or

vorticity equation. I show that, for the axisymmetric radial electric field, the vorticity

equation reduces to the radial transport of toroidal angular momentum. The vorticity

equation must be evaluated in the presence of turbulence, and the natural formulation

for drift wave turbulence is the gyrokinetic formalism, presented in chapter 3. In chap-

ter 4, the gyrokinetic formulation is applied to the vorticity equation. The resulting

equation makes explicit the time scales involved in the evolution of the axisymmetric

flows and the axisymmetric radial electric field. With this formulation, turbulent

tokamaks are proven to be intrinsically ambipolar to the same order as neoclassical

theory. In chapter 5, I present a different approach based on the radial transport

of toroidal angular momentum that only requires an O(S62fMi) distribution function,

and by exploiting an expansion in B/Bp > 1, I formulate a relatively simple model

capable of self-consistently evolving the axisymmetric radial electric field in the core

of a tokamak. By employing an example with simplified geometry in chapters 4 and

5, I illustrate the problems that arise from the use of the gyrokinetic quasineutrality

equation, and how a new approach can solve them. Finally, in chapter 6, I summarize

the findings in this thesis, and I describe a program to gradually implement a new

gyrokinetic formulation in current codes that can solve for the axisymmetric radial

electric field.



Chapter 2

Vorticity and intrinsic

ambipolarity

In this chapter, I study the quasineutrality equation in an axisymmetric configuration.

The time derivative of quasineutrality, also known as vorticity equation, makes the

time scales in the problem explicit. With this equation, it is possible to show that

the radial current is zero to a very high order independently of the axisymmetric,

long wavelength radial electric field, i.e., both ions and electrons drift radially in an

intrinsically ambipolar manner even in the presence of turbulence. Moreover, if the

radial current is calculated to high enough order, I can also show that forcing it to

vanish is equivalent to solving the toroidal angular momentum conservation equation.

The chapter is organized as follows. In section 2.1, I explain and justify the

assumptions necessary to simplify the problem. In section 2.2, I derive a vorticity

equation from the full Fokker-Planck equation. This equation cannot be usefully

implemented as it is written in this chapter because some of the terms are difficult to

evaluate. This issue will be addressed in chapter 4. However, this vorticity equation is

useful because it makes the study of the evolution of the radial electric field easier. In

section 2.3, I flux surface average the vorticity equation to determine the radial electric

field. The radial electric field adjusts so that the total radial current in the tokamak

vanishes, and the flux surface averaged vorticity equation is equivalent to imposing

that the total radial current is zero. I show here that the flux surface averaged



vorticity equation is the conservation equation for toroidal angular momentum. Then,

by estimating the size of the term that contains the transport of angular momentum

in the vorticity equation, I can argue that the radial current is zero to a very high

order and hence the plasma is intrinsically ambipolar to the same order as neoclassical

theory.

2.1 Orderings and assumptions

To simplify the calculations, and for the rest of this thesis, I assume that the electric

field is electrostatic, i.e., E = -V4, with ¢ the electrostatic potential. In general,

the electromagnetic turbulent fluctuations are important and should be considered

[45, 46]. However, keeping electromagnetic effects would obscure derivations that are

already quite involved. Furthermore, in the Coulomb gauge, the axisymmetric radial

electric field is purely derived from the potential. Thus, calculating the axisymmetric

radial electric field is fundamentally an electrostatic problem. The electrostatic for-

mulation presented in this thesis will offer a solution that can be extended later to

electromagnetic turbulence.

To be consistent with the electrostatic electric field, the magnetic field B is as-

sumed to be constant in time. In addition, it has a characteristic length of variation

much larger than the ion gyroradius. I use an axisymmetric magnetic field,

B = IVC + V( x VO, (2.1)

with # and ( the magnetic flux and toroidal angle coordinates. The vector V( = C/R

with C the unit vector in the toroidal direction and R the radial distance to the

symmetry axis of the torus. I use a poloidal angle 0 as the third coordinate, and

employ the unit vector b = B/B with B = IBI. The coordinates 0, ( and 0 are

shown in figure 2-1. The toroidal magnetic field, B( = I/R, is determined by the

function I that only depends on the radial variable 4 to zeroth order.

The results in this thesis are expansions in the small parameter 6i = pi/L < 1,
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Figure 2-1: Magnetic coordinates in tokamaks. (a) Three-dimensional view of the

tokamak where the magnetic field lines are the solid black lines and the axis of symme-

try is the chain-dot line. (b) Poloidal plane where the flux surfaces are schematically

represented as concentric circles. Here, ( points out of the paper, 0 labels different

flux surfaces, and 0 defines the position within the flux surface.

with L the characteristic length in the problem. Collisions and non-neutral effects

must be ordered with respect to b6. To do so, I will use the characteristic tokamak

values given in table 2.1. In this table, the minor and major radii and the magnetic

field strength are taken from [47] for Alcator C-Mod and [48] for DIII-D. The electron

density n, and the electron temperature T are given in [47] for Alcator C-Mod,

and in [49, 50] for DIII-D. The ion temperature Ti is difficult to measure, but in

general can be assumed to be of the order of the electron temperature T. The

average ion velocity V is taken from [51, 52] for Alcator C-Mod, and from [49, 53]

for DIII-D. The average velocities in DIII-D depend strongly on the neutral beam

injection, ranging from 20 km/s when the neutral beams are turned off or their net

momentum input is zero, to 200 km/s in cases that the beams drive large rotation.

Alcator C-Mod, on the other hand, does not have neutral beam injection and tends

to rotate at lower speeds. The rest of the quantities in table 2.1 are calculated from

the measured values. These quantities are the electron and ion thermal velocities

ve = 2Te/m and vi = 2Ti/M; the electron and ion gyrofrequencies Q, = eB/mc



and Qi = ZeB/Mc; the electron and ion gyroradii, pe = ve/Qe and pi = vi/Qi; the

plasma frequency wp = /47re2ne/rm and Debye length AD = Ve/,lp; the electron-

electron, electron-ion, ion-electron and ion-ion Coulomb collision frequencies vee =

(4v '/3) x (e4 ne In A/si-mT,3/ 2), vei = ZVee, Vie = (2Z 2m/M)vee and vii = (4 vi/3) x

(Z 3 e4n, In A/ /T3/ 2), and the corresponding mean free paths Aee = ve/Vee, Aei =

Ve/lvei, Aie = vi/Vie and Aii = vi/Vii"

In table 2.1, Vi/vi 0.3 for shots with neutral beam injection, Vi/vi - 0.1 in

the pedestal region, and Vi/vi - 0.03 in the core in the absence of neutral beam

injection. In general, in the core, V - V < vi can be assumed. Moreover, in the

absence of neutral beam injection, the average ion velocity is comparable to 1Vi 6ivi,

with 6i = pilL - 5 x 10-3 < 1 and L the characteristic length in the problem, in

this case the minor radius a. Ordering Vi - 6ivi - 6eVe - Ve, known as the low flow

or drift ordering, is then justified. This ordering allows the electric field to compete

with the pressure gradient by making the E x B flow, (cni/B)E x b, and diamagnetic

flow, (c/ZeB)b x Vpi, comparable. According to the drift ordering, the electric field

is E = -Vo , Te/eL, giving a total electrostatic potential drop across the core of

order Te/e. The cases with neutral beam injection can be recovered by employing

the drift ordering and then sub-expanding in eLIVI/Te > 1, giving a velocity Vi1

(eL|V4/Te)6ivi > 6ivi. In the pedestal, on the other hand, the gradients are large,

making L < a, and the average velocity is closer to the thermal speed, Vi/vi - 0.1.

Interestingly, it is possible to find an ordering similar to the low flow ordering because

the pressure gradient and the electric field must be allowed to compete [54]. In this

thesis, I focus in the core, where the drift ordering Vi 6iv -i 6eVe - Ve is valid,

but it is possible that the formalism I will develop could be extended to the pedestal

region.

To evaluate the importance of non-neutral effects, I need to compare the turbu-

lence frequencies and wavelengths with the plasma frequency wp and the Debye length

AD. I am interested in the long wavelength, axisymmetric radial electric field and its

evolution in the presence of drift wave turbulence. In section 1.1, I explained that the

drift wave turbulence spectrum extends from the minor radius to the ion gyroradius.



Alcator C-Mod DIII-D

Core Separatrix Core Separatrix

B (T) 5 5 2 2

ne (m-3) 3 x 1020 1020 3 x 1019 1019

Te - Ti (keV) 2 0.1 2 0.1

Vi (km/s) 20 20 20 - 200 20

ve (km/s) 27000 5900 27000 5900

vi (km/s) 620 140 620 140

Qe (GHz) 880 880 350 350

Qi (GHz) 0.48 0.48 0.19 0.19

Pe (pm) 31 6.7 77 17

Pi (pm) 920 290 3300 740

wp (GHz) 980 560 310 180

AD (pm) 28 11 87 33

vee ~ Vei (kHz) 150 3600 16 400

Vii (kHz) 2.4 60 0.26 6.5

vie (kHz) 0.16 4.0 0.017 0.44

Aii - Aei Aee (m) 260 2.3 2400 22

Aie (m) 3800 35 35000 320

Minor radius a (m) 0.21 0.67

Major radius R (in) 0.67 1.66

Table 2.1: Typical numbers for Alcator C-Mod [47, 51, 52] and DIII-D [49, 48, 50, 53].



Theoretical studies [1, 55] suggest that the turbulent spectrum can also reach wave-

lengths of the order of the electron gyroradius. Since my research focuses on the long

wavelength part of the electric field, I restrict myself to perpendicular wavelengths

between the ion gyroradius and the minor radius. In this range, the Debye length

is small, AD/Pi ' 0.03 < 1. Moreover, the typical frequencies are of the order of

the drift wave frequency w, = kicTe/eBL, n kpivi/L viL 6iQi < Qi, with

L = IVln n,- 1. The plasma frequency is then very high, w,/wp, 3 x 10-6, and

the plasma may be assumed quasineutral. There are exceptions in which non-neutral

effects have to be considered. I will point them out as they appear, but in general I

will ignore these corrections to simplify the derivation. They are easy to implement

and they could be added in the future with the electromagnetic corrections.

Collisional mean free paths range from very long in the center of the tokamak,

R/A i - R/Aee ~ R/Aei " 10-3 - 6i, to comparable to the major radius in the

pedestal, R/Aii R/Aee ~ R/Aei - 0.01 - 0.1. Notice that the mean free path is

compared to the typical length along the magnetic field, proportional to the major

radius R. I will order collisions as Vie < vii - vi/L and vee - Vei ' veIL, and the

low collisionality case can be obtained by then sub-expanding in the small parameter

qR/Aii - qR/Aee - qR/Aei < 1, where q> 1 is the safety factor. In this manner,

collisions are kept in the derivation. This collisional ordering implies that particles

are confined long enough to become a Maxwellian to lowest order. Then, the lowest

order ion and electron distribution functions are the stationary Maxwellians fMi and

fMe. They are assumed to be stationary to be consistent with the drift ordering.

To summarize, electromagnetic effects and non-neutral effects are dropped. The

typical frequency is assumed to be w$,'vi/L. Collisions are ordered as vie < vii

vi/L and Vee - Vei ~ ve/L. The ion and electron distribution functions are stationary

Maxwellians, fMi and fMe, to lowest order. Since L is the characteristic length in

the problem, Vfi - fMi/L and VfMe ~ fMe/L. The average velocities are ordered

as small in 6i, Vi - 6ivi 6 6eve - Ve, and consequently the electric field is O(Te/eL).

In chapters 3 and 4, I will extend these assumptions to the shorter turbulent wave-

lengths. For this chapter, intended as an introduction to the properties of the long



wavelength axisymmetric radial electric field, it will be enough to consider only the

longer wavelengths, of order L. Thus, in this chapter, the gradients are V r 1/L.

Finally, in the derivation it will be useful to split the velocity of the particles into

components parallel and perpendicular to the magnetic field, with vjj = v - b the

parallel component and v1 = v - vb1 the perpendicular. The perpendicular velocity

is determined by its magnitude v1 = Iv±l and the gyrophase 0o, defined such that

V 1 = v±(el cos -o0 + 62 sin o), (2.2)

where the unit vectors b(r), 6l(r) and e2(r) are an orthonormal system such that

X1 x e2 = b. Notice that e1 and 22 depend on the position r because b depends

on r. For a general magnetic field, e1 and e2 may be chosen to be the normal

el = b - Vb/1b . Vbj and binormal e2 = b x 61 of the magnetic field line. In a

tokamak, they could be defined as el = V)/I V )I and e2 = (b x V0)/IV7I.

The distinction between the gyrophase independent and dependent pieces of the

distribution function will be important. I will denote the gyroaverage, or average

over the gyrophase po, holding r, v 1, v 1 and t fixed, by (...). It is important which

variables are held fixed because when the gyrokinetic variables are defined, they will

have their own distinct gyroaverage. Notice that this average is not weighted with the

distribution function, i.e., f d3 vf-Q f d3vfQ, where f is the distribution function

and Q( po) is some given function of the gyrophase 0o.

2.2 Vorticity equation

To obtain the electrostatic potential and build in the quasineutrality condition, but

also make explicit the time scales that enter the problem, I work with the current

conservation or vorticity equation,

V -J = 0, (2.3)

where J = ZeniVi - eneVe is the current density, and ni = f d3 v fi, ne = f d3v fe,



niVi = f d3vvfi and neVe = f d3 v vfe are the ion and electron densities, and the

ion and electron average flows. The functions fi and fe are the ion and electron

distribution functions, respectively. The parallel current Jll = J - can be obtained

to the requisite order by integrating over the ion and electron distribution functions

as discussed in more detail in chapter 4.

The perpendicular current J1 = J - Ji b is given by the perpendicular component

of the total momentum conservation equation. The total momentum conservation

equation is

-t(niMVi) + V. dv (Mf + mfe)vvl = 1Jx B. (2.4)

I neglect the inertia of electrons because their mass is much smaller than the mass of

the ions. The total stress tensor can be rewritten as

d3v (Mf, + mfe)vv = p(I -bb) +p+ bb+ , (2.5)

where pi = Pil +Pe - f d3v (Mi + mf6 )v/2 is the total perpendicular "pressure",

Pll = Pill + Pell = f d3v (Mf, + mfe)v2 is the total parallel "pressure", and

7r= M dv f(v - v) = M dv fv - (I -bb) - v bb (2.6)

is the ion "viscosity." The electron viscosity is neglected because it is m/M smaller,

as I will prove in chapter 4. Here, I is the unit dyad, and v = (v/2)(I -bb) +

vAbb is the gyroaverage of vv holding r, vii, v 1 and t fixed. The definitions of

the "pressures" pL and pll and the "viscosity" +ri differ from the usual in that the

average velocity is not subtracted. The usual perpendicular and parallel pressures

are p' = p± - niMVi1/2 and p = p - niMV,~, and the usual viscosity is ri=Tri

-niM[ViVi - (Vi/2)(I -bb) - vi bb]. Notice that ri contains the turbulent

Reynolds stress. In the drift ordering, the pressures and viscosity used here are more

convenient than the more common definitions.

Obtaining the perpendicular current JI from (2.4), substituting it into (2.3) and



employing

-b xVp_ = -Vx b + bx VB+ cpVxb (2.7)
B B B 2  B

and

Vx b = bb V x b + x ., (2.8)

with n = b~ Vb the curvature of the magnetic field lines, gives the vorticity equation

=V . J1J + J + x (V. ~Ti) , (2.9)
Of B

where

Jd = cp bb V + cp x VB + cpb x n (2.10)
B B 2  B

is the current due to the magnetic drifts and

(Zen
zu =V. .( Qi V x b  (2.11)

is the "vorticity", with Ri = ZeB/Mc the ion gyrofrequency. The quantity w has

dimensions of charge density, but it is traditionally called vorticity because for con-

stant magnetic fields it is proportional to the parallel component of the curl of the

ion flow, w oc b V x (niVi).

Vorticity equations like equation (2.9) have been used in the past to solve for

the electrostatic potential in fluid models for turbulence [56, 57]. The vorticity w is

evolved in time, and the potential can be obtained from w by employing the lowest

order result

V VZecni + (V. Pi) . (2.12)
Baj Baj

To find this equation, I substitute in (2.11) the lowest order perpendicular flow

cni c
niVil - xV + b x (V- Ps), (2.13)

B Zer perpendicular ion flow (2.13) is obtainedB

where Pi= fd3 v Mvvf. The lowest order perpendicular ion flow (2.13) is obtained



from the conservation of ion momentum in the same way that the perpendicular

current density JI was found from the total momentum equation (2.4). In the lowest

order result (2.13), I have neglected the ion inertia, 0(niMVi)/Ot 6 ipi/L, and the

ion-electron friction force, Fei - mM pilL.

2.3 Radial electric field in the vorticity equation

In chapter 4, I will show that in general V -Jd dominates or at least is comparable to

the other terms in (2.9). However, in axisymmetric configurations, the physics that

determines the radial electric field is an exception in that V Jd no longer dominates

and only the viscosity term (c/B)b x (V. ri) matters.

The radial electric field adjusts so that the radial current and hence the flux

surface average of the vorticity equation vanish. To see that the flux surface average

of the vorticity equation is equivalent to forcing the radial current to vanish, recall

that the vorticity is V - J = 0, and the flux surface average of this equation gives

(J - V),¢ = 0, i.e., the total radial current out of a flux surface must be zero. The

flux surface average of equation (2.9) is

1 c92
&(), = i V ' (Jd VcI - (V 7r - 2 V'(cR - 7i -V)¢, (2.14)

V' 0 B 4  ,V OV2

where (...), = (V') - fd d d ( ( . . .)/(B - VO) is the flux surface average and V'

dV/dO = f dO d((B - VO) - 1 is the flux surface volume element. To simplify, I have

used
1
(V - V'(V (.. .)), (2.15)

bx x V = Ib - RB( (2.16)

and R(V. ri) - = V - (R *, "7). Equations (2.15) and (2.16) are obtained from the

definition of flux surface average and equation (2.1), respectively. The flux surface

average of Jd - VV is conveniently rewritten using (2.8), (V x b) -VO = V -(b x VO)



and (2.16) to find

Jd V4' = cPl (Ib) - bcIp- VB, (2.17)B B 2

where I use that V - (RBC) = 0 = . VB due to axisymmetry. The flux surface

average of this expression is

(Jd V)P = - ( [b . Vpjj + (Pll- p))V. -] , (2.18)

where I have integrated by parts and used b - V In B = -V b. Substituting this

result into equation (2.14), using the parallel component of (2.4) to write

b VP11 + (P1 - pl)V . b + (V. 7i) b = -- MnjV b (2.19)

and employing

I a V/ Zenil 1
() - V' iIv- b V'(cniRMVi. ) (2.20)

gives the conservation equation for toroidal angular momentum

& 1 00
(niRMVi'ot ) = V V'(R. "xi .V4),, (2.21)

where I have integrated once in 4' assuming that there are no sources or sinks of

momentum. Equation (2.21) shows that setting the total radial current to zero is

equivalent to the toroidal angular momentum conservation equation. Equation (2.21)

includes both turbulent and neoclassical effects. In a model in which the transport

time scale is not reached, as is the usual case in gyrokinetics, there is not enough

time for the angular momentum to diffuse from one flux surface to the next, keeping

then the long wavelength toroidal velocity constant and equal to its initial value.

Consequently, the long wavelength radial electric field, related to the toroidal velocity

by the E x B velocity, must not evolve and must be determined by the initial condition.

The vorticity equation makes this fact explicit by including the radial current density

(c/B)[b x (V. )] .V4.



Equation (2.21) can be generalized by flux surface averaging the toroidal angular

momentum conservation equation with the charge density and full current density

retained. Writing the electromagnetic force as the Maxwell stress gives

9 1 K + 4-* 1
i(niRMVi" V ) = V' ( (i + 7) -VO - R - (EE + BB) -V

(2.22)

In equation (2.21), the components of the toroidal angular momentum transport

due to the electron viscosity and the Maxwell stress are neglected. In subsequent

chapters I will argue that the ion viscosity term (R . i -VO) is of order 5jpiR V *0.

The other terms must be compared to this order of magnitude estimate to asses

their importance. In chapter 4, I will show that , pe - (m/M)h6pj, negligible

compared to 7i because m/M = 5 x 10- 4 << 6. The magnetic portion of the

Maxwell stress vanishes because the calculation is electrostatic and the magnetic field

is unperturbed and given by (2.1); in particular, it satisfies B - V - 0. The electric

part of the Maxwell stress is a non-neutral contribution. Using E = -V¢ - Te/eL, I

find R( EE - V4/4w - (AD/L) 2pRIVO|, with AD = Te/4re2ne the Debye length.

This is one of the instances when the non-neutral effects may contribute to the final

result. In both Alcator C-Mod and DIII-D, the non-neutral transport of toroidal

angular momentum R( - EE - VO/4r is comparable to the viscosity contribution,

albeit somewhat smaller. For the rest of the thesis, I will drop the non-neutral

contribution to simplify the presentation, but it is important to remark that it could

be easily added if necessary.

The fact that (J -V/), = 0 is equivalent to equation (2.21) means that whether a

configuration is intrinsically ambipolar or not depends then on the size of the radial

current density (c/B)[[b x (V. ri)] - V4. If this current density is small, as I will

prove it to be in chapter 4, the radial current is effectively zero. Then, if the plasma

is quasineutral initially, it stays so independently of the radial electric field, that is,

the configuration remains intrinsically ambipolar.

I will finish this chapter with some simple estimates that I will prove in chapters 4

and 5. In neoclassical calculations of the radial electric field [39, 40, 42, 43, 44], the



flux surface average (RC. ~'Xi -V4), is of order 6,p RIVI. The radial current density

(c/B) [b x (V. i)] V4 associated with this piece of the viscosity is tiny, of order

6ienevi Vbj. The estimate from neoclassical theory is not necessarily applicable to

turbulent transport of toroidal angular momentum, but it is suggestive. Indeed, the

same order of magnitude is recovered if the transport of toroidal angular momen-

tum is at the gyroBohm level and the average velocities in the tokamak are small

compared to the ion thermal velocity by 6 j, i.e., Vi , 6ivi. The gyroBohm diffu-

sion coefficient is obtained from turbulence fluctuations employing a simple random

walk argument as follows. In chapter 1, I pointed out that the typical eddy size is

Aeddy - Pi. The eddy turnover time is determined by the average velocity Vi - ivi,

giving Teddy - Aeddy/Vi 1 L/vi. With these estimates, the gyroBohm diffusion coef-

ficient is calculated to be DgB = eddy/Teddyeddy PiVi. Multiplying this diffusivity by

the macroscopic gradient of momentum, V(niMVi() - 6ineMvi/L, I find the same

result as the neoclassical calculation, namely, the transport of momentum is 6ipi and

the associated radial current density is 64enevi. In chapter 5, I will argue in favor of

this estimate more strongly. In any case, in current gyrokinetic formalisms, the flux

surface averaged radial current should remain equal to zero independently of the long

wavelength radial electric field.



Chapter 3

Derivation of gyrokinetics

Gyrokinetics is a kinetic formalism that is especially adapted to model drift wave

turbulence. By defining more convenient variables to replace the position r and ve-

locity v, it "averages out" the fast gyromotion time scales and keeps finite gyroradius

effects, permitting perpendicular wavelengths on the order of the ion gyroradius. Cur-

rently, there is no other model that allows simulation of short wavelength turbulence

in magnetized plasmas in reasonable computational times.

In this chapter, I derive the gyrokinetic Fokker-Planck equation and the gyroki-

netic quasineutrality equation. The gyrokinetic Fokker-Planck equation models the

response of the plasma to fluctuations in the electrostatic potential with wavelengths

that may be as small as the ion gyroradius. The gyrokinetic quasineutrality equa-

tion, or gyrokinetic Poisson's equation, is the equation used so far to determine the

self-consistent electrostatic potential. This equation is given here for completeness,

but in chapter 4 I will show that it is flawed at long wavelengths.

The rest of the chapter is organized as follows. In section 3.1, I lay out the

assumptions I need to derive the gyrokinetic equation. In section 3.2, I find the

gyrokinetic variables with a new nonlinear approach, based on the linear derivation

of [58, 59]. I have already published this derivation in [60]. In section 3.3, I give

the Fokker-Planck equation in these new variables. This gyrokinetic Fokker-Planck

equation does not have the fast gyromotion scale, yet it retains finite gyroradius

effects, as desired. I finish by deriving the traditional gyrokinetic quasineutrality in



section 3.4. The algebraic details of the calculation are relegated to Appendices A -

E.

3.1 Orderings

The assumptions are the same as in section 2.1. The characteristic frequency of

the processes of interest is assumed to be the drift wave frequency w . w, =

kicTe/eBL, n kpivi/L, with L 1' = V lnnel. To treat arbitrary collisionality,

the ion-ion collision frequency vii is assumed to be of the order of the transit time

of ions, vii vi/L. Consequently, the electron-electron and the electron-ion collision

frequencies are of the order of the electron transit time, v,ee Vei veIL. With this

assumption, I can treat low collisionality cases by sub-expanding the final results in

the parameter viiL/vi - VeeL/ve - VeiL/ve < 1.

The average velocities are assumed to be in the low flow or drift ordering, where the

E x B drift is of order bivi. Therefore, the electric field is of order E = -VO - Te/eL,

and the total electrostatic potential drop across the characteristic length L is of

order Te/e. The spatial gradients of the distribution functions are assumed to be

V fi - fNiu/L and Vfe- fue/L, where fMi and fIe are the zeroth order distribution

functions. Since I am primarily interested in the core plasma in tokamaks, I will

assume that the zeroth order distribution functions are stationary Maxwellians, with

ion and electron temperatures of the same order, Ti - T. The Maxwellians are

stationary to be consistent with the drift ordering.

To include the turbulence, I allow wavelengths perpendicular to the magnetic field

that are on the order of the ion gyroradius, k pi - 1. At the same time, due to low

flow or drift ordering, I assume V - Te/eL, Vfi - fMi/L and Vfe- fMe/L. This

ordering requires that the pieces of the potential and the distribution functions with

short perpendicular wavelengths qk, fi,k and fe,k be small in size, in particular

fi,k fe,k ek 1
fii fMe Te k (3.1)fai fie Te k IL '



with k± pi< 1. According to (3.1), the pieces of the distribution function that have

wavelengths on the order of the ion gyroradius are next order in the expansion in 6i.

Notice that k±Ifi,k ' VfIi,k - V fMi - fMi/L, and since 0/t - k pivi/L, fi,k/t -

JifMivi/L. I could allow wavelengths on the order of the electron gyroradius following

a similar ordering, but I ignore these small wavelengths to simplify the presentation.

Unlike the perpendicular wavelengths, the wavelengths along the magnetic field, kj 1,

are taken to be on the order of the larger scale L. Moreover, except for initial

transients, the variations along the magnetic field of fi, fe and q are slow, i.e., in

general b - Vfj - 6ifMi/L, b - V fe 6ifMe/L and b -V - 6iTe/eL.

Both the potential and the distribution function may be viewed as having a piece

with slow spatial variations (representing the average value in the plasma) plus some

rapid oscillations of small amplitude. The zonal flow, for example, will be included

in the small piece if its characteristic wavelength is comparable to the gyroradius,

but its amplitude may be larger for longer wavelengths. This ordering implies that

the rapid spatial potential fluctuations seen by a particle in its gyromotion are small

compared to the average energy of the particle. Then, the gyromotion remains almost

circular, and the distribution function of the gyrocenters is equal, to zeroth order, to

the distribution function of the particles. The difference, coming from the rapidly

oscillating pieces, is small in our ordering. Notice that the 6f codes [1, 2, 3, 4, 5, 6]

explicitly adopt this treatment for the components of q, fi and fe that satisfy k pi -

1, and, as in this thesis, they order them as 0(6i).

3.2 Gyrokinetic variables

In this section, I derive the gyrokinetic variables for ions, the only species where

the finite gyroradius effects matter, since k pi - 1. It is possible to find a similar

gyrokinetic equation for electrons, but for this thesis the drift kinetic equation is all

that is required. I begin by defining the Vlasov operator for ions in the usual r, v



variables for an electrostatic electric field as the following total derivative

d Ze
S= + V + + iv x b V V,, (3.2)
dt OMat(

where Qi = ZeB/Mc is the gyrofrequency. The Fokker-Planck equation for ions is

then simply
dfid= C { f}, (3.3)

where C{fi} is the relevant Fokker-Planck collision operator for the ions. The ion-

electron collision operator is small in -m/M, leaving only the ion-ion collision oper-

ator.

The objective of gyrokinetics is to change the Fokker-Planck equation to gyroki-

netic variables, defined such that the gyromotion time scale disappears from equation

(3.3). The nonlinear gyrokinetic variables to be employed are the guiding center lo-

cation R, the kinetic energy E, the magnetic moment p, and the gyrophase p. These

variables will be defined to higher order than is customary by employing an extension

of the procedure presented in [58, 59]. The general idea is to construct the gyrokinetic

variables to higher order by adding in 6i corrections such that the total derivative of

a generic gyrokinetic variable Q is gyrophase independent to the desired order, and

we may safely employ
dQ dQ
dQt dQ ,(3.4)

where the gyroaverage (...) is performed holding R, E, p and t fixed. This gyrokinetic

gyroaverage can be understood as a fast time average where 7 = -/Q0i is the fast

gyromotion time and t is the slow time of the turbulent fluctuations (ion gyromotion

is such that dl/dt < 0, hence the sign difference between 7 and p). The gyrokinetic

variable Q is expanded in powers of 5i,

Q = Qo + Q1 + Q2 +..., (3.5)

where Qo is the lowest order gyrokinetic variable (kinetic energy, magnetic moment,

etc.), and Qi = O(6iQo), Q2 = O(6iQo)... are the order 6i, i2 ... corrections. The first



correction Q1 is constructed so that dQ/dt = (dQ/dt) + O(6j5QiQ), while the second

correction Q2 is evaluated such that dQ/dt = (dQ/dt) + O(6~iQQ). In principle this

process can be continued indefinitely. Any Qk can be found once the functions Q1,

Q2 ... , Qk-1 are known. The functions Q1, Q2 ..., Qk-1 are constructed so that

dQ d(Q + + Qk-1) 0 + + + O(6 ,Qo). (3.6)
dt dt dt

Adding Qk to (3.5) means adding dQk/dt to (3.6). To lowest order, dQk/dt -

-Q i Qk/&Op, which to the requisite order leads to an equation for Qk,

dQ d O Qk d
dt- (Q+ - - - + k-1 - (Q+ Qk-1) , (3.7)

where (&Qk/Op) = 0 is employed. Notice that the gyrophase derivative is holding the

gyrokinetic variables fixed, and not r, vI and v 1 fixed (in some cases these two distinct

derivatives with respect to gyrophase are almost equal). Using (3.7), Qk = O(51Qo)

is found to be periodic in gyrophase and given by

Qk - do' (Q ... + Qk-1) - (Q +... Qk-1) (3.8)
?T dt dt )I -

More explicitly, through the first two orders, Q1 and Q2 are determined to be

1 d/o dQo
Q1= J dp' (d KdQ dQo)) (3.9)

and

Q2 + d (Qo + Q) d- (Qo + Q1) )] (3.10)
Qj dt dt

By adding Q1 and Q2, the total derivative of the gyrokinetic variable Q = Qo+QI +Q2

is
dQ dd - (Qo + QI) + O(63iQQo). (3.11)
dt dtion, I present the gyrokinetic variables that result

In the remainder of this subsection, I present the gyrokinetic variables that result



from this process. I begin with the guiding center position expanded as

R = Ro + R1 + R2, (3.12)

where Ro = r, R11 = O(pi) and |R 2 1 = O(6ipi). I construct R1 and R 2 such that

the gyrocenter position time derivative is gyrophase independent to order 5ivi,

dR = - + O(6vi). (3.13)
dt dt /

The explicit details of the calculation are presented in sections A.1 and A.2 of Ap-

pendix A. To first order, I find the usual result [18]

1
R = v x b. (3.14)

The gyromotion is approximately circular, as sketched in figure 3-1(a), even in the

presence of fluctuations with wavelengths of the order of the ion gyroradius. The

ordering in (3.1) that bounds the electric field to be O(Te/eL) leads to this significant

simplification. To next order, I obtain

1 1 1 b
R2 = vi + 4V_ VX ) + (V X ) U , 1 +Vv b{ 1 }
v+ v .l V b + b vb V v + 1 [v v - (v x X)(v x ,)] V,

-- VR x b, (3.15)
BQi

which is the same as [58] except for the nonlinear term given last. My vector conven-

tions are xy:M= y. M .x and xy M= x x (y. M). One of the terms in the second

order correction R 2 includes the function (I(R, E, p, o, t). It will appear several times

during derivations, as will the functions (0) and ¢. These are functions related to the

electrostatic potential that depend on the new gyrokinetic variables. Their definitions

are

(R) - (/)(R, E, p, t) = d t) (3.16)



( a) (b)q

Figure 3-1: (a) Gyrokinetic gyromotion r = R - R1 - R 2 (dashed line) in a turbulent
potential. The solid circle R-RI describes the gyromotion to first order. (b) Potential
q along gyromotion as a function of o. The average (q) is the dashed line, and the
fast time variation q is the difference ¢ - ( ).

S- ¢(R, E, y, V, t) = 0(r(R, E, t, ., t), t) - (0)(R, E, pt, t) (3.17)

and

S= 4 (R, E,, V, t) = dcp' O(R, E, p, o', t), (3.18)

such that (1) = 0. These are definitions similar to those used by Dubin [21]. I have

discussed the subtle differences between them in [61], as summarized in Appendix C.

From their definitions (3.16) and (3.17), we see that the function (4) is the fast

time average of the potential in a gyromotion, and q is the difference between the

potential at the position of the particle and (0). Both are represented in figure 3-1(b)

as a function of the gyrophase sp. The function 4$ is proportional to the fast time

integral of q, with 7 = - /o the fast time variation. The term -(c/BMi)VR x b

in (3.15) is the correction to the gyromotion due to the fast time component of the

E x B drift -(c/B)VR$ x b. This fast time contribution integrated over fast times

7 = -/RQ gives the correction to the gyrocenter position. The other corrections in

R 2 are fast time contributions due to magnetic geometry.

It is important to comment on the size of functions (¢), ¢ and 'I. Both q and (¢)



are of the same order as the temperature for long wavelengths, but small for short

wavelengths [recall (3.1)]. However, q is always small as it accounts for the variation

in the electrostatic potential that a particle sees as it moves in its gyromotion. Of

course, since the potential is small for short wavelengths, the variation observed by the

particle is also small. For long wavelengths, even though the potential is comparable

to the temperature, the particle motion is small compared to the wavelength, and

the variations that it sees in its motion are small. Therefore, 6 ~ 6 iTe/e for all

wavelengths in my ordering, making 4 small as well.

The Vlasov operator acting on R gives

dt = - + O(56v) = ub(R) + Vd + O(5v), (3.19)

where Vd is the total drift velocity,

Vd = VE + VM, (3.20)

composed of the E x B drift

VE C VR(f) x b(R) (3.21)
B(R)

and the magnetic drift

2
S= R) b(R) x (R)+ R) b(R) x VRB(R). (3.22)

V = (R) i(R)

In the preceding equations, u is the gyrocenter parallel velocity defined by

2

Notice that in (3.19), (3.21), (3.22) and (3.23), all the terms are given as a function

of the new gyrokinetic variables, R, E and p.

Following the same procedure as for the gyrocenter position R, the gyrokinetic



Eo

Figure 3-2: Kinetic energy Eo = v2/2 along the gyromotion. The dashed line is the
average value E = (Eo), and the difference E - E is the correction El. Notice that
the variation of the kinetic energy and the variation of the potential have opposite
signs because maxima of potential correspond to minima of kinetic energy.

kinetic energy is defined as

E = Eo + El + E2, (3.24)

where Eo = v 2/2, E1 = O(6siv) and E2 = O(6v?). The details of the calculation are

given in sections A.1 and A.2 of Appendix A. I find

TI Ze (3.25)

and

E2 =
B Ot

(3.26)

The Vlasov operator acting on E is shown in section A.2 of Appendix A to give

dE _ /dE\
dt dt - [ub(R) + vM]

The corrections E1 and E2 are necessary because otherwise the kinetic energy would

vary in the fast gyromotion time scale. Figure 3-1 shows how the potential changes

rapidly along the gyromotion due to the short wavelength turbulent structures. The

(3.27)
V ( 3

62 
Vi

VR(O) + 0 L)TL =



kinetic energy variations are accordingly rapid, as sketched in figure 3-2. The gyroki-

netic energy is the average kinetic energy E = (E 0o), where the fast time variation

has been extracted.

The gyrokinetic gyrophase is obtained in a similar way as the energy and the

gyrocenter position by defining

P o +O + 1, (3.28)

with c0 the original gyrophase. The details are again in Appendix A, in section A.1.

Notice that only the first order correction pl is calculated since gyrokinetics will make

the gyrophase dependence weak and hence next order corrections unnecessary. The

first order correction is

Ze 04 1 v
V- -v 1  VlnB+-4 LV-bxVe 2 ^1]

MB Op Q v2

V1 [v±v - (v x b)(v x b)] Vb, (3.29)

where 4 is defined in (3.18). With this correction, dl/dt is gyrophase independent

to order O(vi/L), that is,

dt - + O(6 R) = -a + O(6i Q), (3.30)

where

S= (R) + Vx b - vb -V±2 ' 1 +Z 2e2 2(0() (3.31)
2  M 2 C ap

The function Ri is equal to Qi to lowest order. It might be surprising that the

gyrophase 0po needs to be corrected by p1. The gyrokinetic gyrophase V is in re-

ality the fast time variation 7 = -V/Qi. The correction pl is necessary because

d po/dt changes in the fast gyromotion time scale, making the dependence of 0o on

7 non-trivial. There are two effects that contribute to the fast variation of d o/dt,

namely, the electromagnetic fields and geometric corrections. The electromagnetic

fields contribute through the magnetic field strength B(r) in OQ(r), giving the correc-

tion - l v1 V In B in (3.29), and through the short wavelength turbulent structures
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Figure 3-3: Geometric effects on the gyrokinetic gyrophase. The circle represents the
gyromotion of a given particle. The variations of 61, 62 and b are exaggerated.

of the potential. The particle feels a rapidly changing potential along its gyromotion.

The perpendicular velocity then has a variation similar to the kinetic energy [recall

figure 3-2], and the gyromotion accelerates and decelerates accordingly, giving the cor-

rection -(Ze/MB)(OaI/p) in (3.29). The other contributions to the fast variation

of deo/dt are geometrical. The gyrophase Vo is defined with respect to the vectors

61(r), ^2(r) and b(r) at the position r of the particle, not the gyrocenter position

R. Figure 3-3 shows that to find the gyrophase 0O,A that corresponds to the particle

position A, the position vector r - R must be projected onto the plane defined by

the local vectors 61,A and e2,A; VO,A is the angle of the projection with respect to e2,A

[recall from (2.2) that Vo is the angle of v 1 with respect to the vector 61 and hence

it is the angle of r - R = - lv x i with respect to E2]. In figure 3-3, the geometric

construction to determine Vo at point A is sketched in red, and the corresponding

construction at another point B is given in blue, making explicit the distinction be-

tween the gyrokinetic gyrophases pA and 'PB, and the "local" gyrophases Po,A and

'PO,B. Notice that both variation in b, that determines the "local" plane of 61 and e2,



and rotation of 61 and 62 within that plane change the value of 0p. For this reason,

both Vb and V62 - 1 enter in pl and dp/dt.

Finally, the gyrokinetic magnetic moment variable is dealt with somewhat differ-

ently since we want to construct it to remain an adiabatic invariant order by order.

The condition for the magnetic moment is not only that its derivative must be gy-

rophase independent, but that (dp/dt) must vanish order by order. In this thesis,

I will define the magnetic moment [p such that dp/dt has a gyrophase dependent

component of order 6iv3/BL but satisfies

-dt = BLO 6 U (3.32)

for p to remain an adiabatic invariant. This variable p is

A = Po + I1, (3.33)

where o = v I/2B is the usual lowest order result, and pl = O(6ipo). The correction

p2 = O(6,iO) is not necessary because the distribution function is assumed to be a

stationary Maxwellian to zeroth order, making the dependence on p1 weak. For tp to

remain an adiabatic invariant, pl must contain gyrophase independent contributions

such that (dpL/dt) = 0 to the requisite order, given in (3.32). Solving for pl as outlined

in section A.1 of Appendix A gives

Ze 1 v [v±(vxb)+(vxl )v±]: V- v -1 bll  -Vxb. (3.34)
MB(R) B 4BQi 2BQi

To keep p an adiabatic invariant, (p11) = -(v UvI/2BQi)(b - V x b) / 0. In subsec-

tion A.2.4 of Appendix A, (p1) is proven to make p an adiabatic invariant to next

order.

The procedure presented in this section is compared to the Lie transform tech-

niques [25] in Appendix C. Both methods yield the same results, although the final

equations look somewhat different. These apparent discrepancies are shown to be due

to subtleties in the definitions of the functions (q), q and 4. Finally, I also compare



this derivation with drift kinetics. In particular, in Appendix E, I show that with the

higher order corrections R 2 and E 2 it is possible to recover the drift kinetic gyrophase

dependent portion of fi up to order S6 fMi.

3.3 Gyrokinetic Fokker-Planck equation

The Fokker-Planck equation (3.3) becomes

Ofi Ofi Ofi Ofj
S+ R.-Vfi+E + + -= C{fi} (3.35)

when written in gyrokinetic variables, where Q - dQ/dt, and Q is any of the gyroki-

netic variables. The gyroaverage of this equation is

_(f) &(fl)
+ Ri VR(fi) + kE = (f__ C{), (3.36)

at OE

where (fi) (fi) (R, E, p, t) is the gyroaveraged ion distribution function. Here, I

have used that E and R are defined such that their time derivatives are gyrophase

independent to the orders given by (3.19) and (3.27). The term A(ffi/ap) is ne-

glected because the magnetic moment p is defined such that dp/dt = O(6v/BL)

and the zeroth order distribution function is assumed to be a stationary Maxwellian,

making OflO/p = O(6ifMiB/v?). Therefore, in (3.36) I have neglected pieces that

are O(fMi52vi/L). I have also neglected the term (Ofj/O) = O(f6Givj1L), where

fi = fi - (fi) is the gyrophase dependent piece of the distribution function. I will

prove in the next paragraph that fi is O(fMi6ivii/Qi), making all the neglected terms

comparable to or smaller than fAfi6vi/L, and the distribution function gyrophase

independent to first order, fi - (fi). Notice that, due to the missing pieces, I can

only obtain contributions to the distribution function that are O(6ifMi), as well as

all terms with k Ipi - 1.

The explicit equation for the gyrophase dependent part of the distribution function

is obtained by subtracting from the full Fokker-Planck equation (3.35) its gyroaverage,



giving to lowest order

Q-i-O = C{ f} - (C{fi}). (3.37)

Therefore, the collisional term is the one that sets the size of fi. Since the distribution

function is a Maxwellian to zeroth order, the collision operator vanishes to zeroth

order, C{f } = O(iuviifMi), giving C{f } - (C{f }) = O(6 vii fMi). As a result, fA is

A - dcp' (C{fi} - (C{ fi})) = 0 fMi , (3.38)

where vii/2i < 1.

Using the values of dR/dt from (3.19) and dE/dt from (3.27), and using (fl) fi,

the equation for fi in gyrokinetic variables is

--- + [ub(R) + Vd] VRAf - Ze R= (C{ fI}), (3.39)
at M dE

where (¢) is defined in (3.16), and f - fi(R, E, u, t) is gyrophase independent.

The gyrokinetic equation can be also written in conservative form. To do so, the

Jacobian of the gyrokinetic transformation is needed. Conservation of particles in

phase space requires the Jacobian of the transformation, J = &(r, v)/O(R, E, p, 0),

to satisfy
OJ d • 0

+ V - (R J) + (E J) + -( J) + ( J) = 0. (3.40)
Ot OE Op Op

[This is the equality V - i + V, = 0 written in gyrokinetic variables]. Employing

this property, equation (3.35) can be written in conservative form by multiplying it

by J to obtain

S(Jfi) + VR (J)+ (fi) + i (Jfi) = JC{fi}. (3.41)

The gyroaverage of this equation is

0 0
(Jfi) + VR. (RJfi) + -(EJfi) = J(C{fj}). (3.42)

Ot OE



Here, I have taken into account that the Jacobian J is independent of V to the order

of interest, as can be seen by using (3.40). The equation for the gyrophase dependent

part of the Jacobian is obtained by subtracting from (3.40) its gyroaverage. Notice

that J - (J) depends on the differences R - (Ri, k - (E)..., and those differences

are small by definition of the gyrokinetic variables. The gyrophase-dependent part

of the Jacobian is estimated to be J - (J) = O(6~B/v). Finally, I substitute dR/dt

and dE/dt in (3.42) to get

0 8 Ze ^
(Jfi)+VR' Jfi[ub(R)+vd]} - {9Jfi[ub(R) + vN]- VR(O) = ( fi }).

(3.43)

The calculation of the Jacobian is described in section A.3 of Appendix A. The

final result is

O(r, v) B(R) Mc
-J E, , R+ b(R) - V x b(R). (3.44)

a(R, E, p, p) u Ze

In section A.3, it is also proven that J satisfies the gyroaverage of (3.40).

Similar gyrokinetic equations to (3.39) and (3.43) can be found for the gyrokinetic

variables R, u and p, where u is defined by (3.23). Combining equations (3.19), (3.23),

(3.27) and dp/dt _ 0 to obtain

i= - b(R)+ u -b(R) x (R) ]VR [B(R)+ ze 1 (3.45)

gives the gyrokinetic equation

Of. Ofj
-f + [ub(R)+ Vd] - V +Rfi + U2 = (C fi}). (3.46)

This gyrokinetic equation can be written in conservative form by noticing that the

new Jacobian is given by

a(r, v) a(r, v) OE Mcu
J (r ) (, ) = B(R) + - b(R) -VR x b(R). (3.47)

=(R, u, p, V) =(R, E, p, V) Ou Ze



Using the new Jacobian, the gyrokinetic equation may be written as

a &
-(JuLi) + VR* (Jfi[ub(R) + Vd]} + -(Jufii) = J,(C{fi}). (3.48)

The ion gyrokinetic Fokker-Planck equations (3.39), (3.43), (3.46) and (3.48) have

their counterpart for electrons. However, since in this thesis the wavelengths shorter

than the ion gyroradius are not considered, the electron gyrokinetic equation reduces

to the drift kinetic equation

+ (v1jb + v .)( V fe + - v -e) = C{Je}, (3.49)
a m 1Eo

with fe = fe(r, Eo, Po, t) the gyrophase independent piece of the distribution function,

V the gradient holding E0 , Po, Yo and t fixed, and

e VB - b x Q e- BV x (3.50)
2Qe Qe B

the electron drifts. Here, Qe = eB/mc is the electron gyrofrequency. The total

distribution function for electrons contains the gyrophase independent piece fe and

the gyrophase dependent piece

fue Vne e mEo 3 VTe
fe -f e (vx b) [Vr V m + (3.51)

e = - n Te T 2- T

In the rest of this thesis, the gyrokinetics variables to be used are R, E and p for

ions and r, E and po for electrons. Then, the relevant equations are (3.39) for ions,

and (3.49) for electrons.

3.4 Gyrokinetic quasineutrality equation

Modern gyrokinetics employs a low order quasineutrality condition to calculate the

electrostatic potential. The ion and electron distribution functions fi and fe are

calculated using the lower order equations (3.39) and (3.49). These distribution func-



tions are integrated over velocity space to obtain the densities ni and ne that are

substituted into the quasineutrality condition Zni = n, from which the potential is

solved. Since equations (3.39) and (3.49) give distribution functions good to order

6ifMi and 5efM, respectively, the quasineutrality equation is correct only to order

6ine. In chapter 4, I will show that this is not enough to solve for the long wavelength

axisymmetric radial electric field, and employing such a low order quasineutrality

equation can lead to unphysical results. In this section, I will derive the modern gy-

rokinetic quasineutrality equation to the order that is usually implemented, so I can

demonstrate later, in chapter 4, that it cannot provide the correct long wavelength

axisymmetric radial electric field.

I will begin with Poisson's equation to explicitly show that the quasineutral ap-

proximation is valid for the range of wavelengths of interest. The distribution function

fi in Poisson's equation,

-V20 = 47ie [Z J dv f(R, E, p, t) - ne(r, t)] , (3.52)

is obtained from the Fokker-Planck equation (3.39). Therefore, it is known as a

function of the gyrokinetic variables. The distribution function can be rewritten

more conveniently as a function of r + Q lv x b, E and Po by Taylor expanding.

However, it is important to remember that there are missing pieces of order b6 fMi in

the distribution function since terms of this order must be neglected to derive (3.39).

Thus, the expansion can only be carried out to the order where the distribution

function is totally known, resulting in

Ofi Ofifi(R, E, /, t) = fi(Rg, Eo, o0, t) + El + + + O(b2fMi). (3.53)

Notice that fi(R, Eo, po, t), with Rg - r + Q v x b, cannot be Taylor expanded

around r because k±p - 1. In the higher order terms proportional to El and L1, the

function fi is valid only to lowest order, i.e., fi - fmi, ifi/Eo E (-M/T)fMi and

Ofi/Opo - 0. Moreover, according to the ordering in (3.1), the corrections arising



from using r instead of Rg are small by 6i because, even though small wavelengths are

allowed, the amplitude of the fluctuations with small wavelengths is assumed to be

of the next order. Therefore, in the higher order integrals, only the long wavelength

distribution function fMi depending on Rg - r need be retained.

Since the turbulent wavelengths are much larger than the Debye length, the term

in the left side of Poisson's equation (3.52) may be neglected. The resulting quasineu-

trality equation reduces to

Znijp{} ne(r, t) - Z.NT(r, t), (3.54)

with ne = f d3v fe the electron density,

nip{} = - fd3v - fM (3.55)

the ion polarization density that depends explicitly in the potential, and

fNl (r, t) = d3v fi(Rg, Eo, Po, t) (3.56)

the ion guiding center density. In equation (3.54), terms of order Rn and nek±A2D/L <<

6k± pine have been neglected, with AD = Te/47re2ne the Debye length.

In the quasineutrality equation (3.54), the ion density is composed of two terms,

the guiding center density Ni and the polarization density nip,{}. Both terms have

a clear physical meaning. In figure 3-4, the ion density calculation is sketched. In

gyrokinetics, ions are substituted by rings of charge with radius the ion gyroradius.

The ion density at a point is then calculated by counting the rings that pass through

that point. In figure 3-4, the ion density in the black square is computed by summing

all the gyrocenters whose rings of charge cross the square. In the figure, two of them,

RA and RB, are shown. Importantly, the charge density along a ring is not constant,

but depends on the potential. In figure 3-1 we saw that the potential changes rapidly

along the gyromotion. There is a Maxwell-Boltzmann response to this variation,

-Ze¢/Te, that gives a varying ion charge density along the ring, as indicated in
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Figure 3-4: Ion density in the black square calculated using a gyrokinetic distribution
function. The electrostatic potential is the background contour plot.

figure 3-4, where the left region of the ring RA has lower density than the right

side. In the ring, therefore, the average charge position is displaced towards the lower

potential values, i.e., the charge moves in the same direction as the local electric field,

hence the name polarization. For this reason, the ion density is separated into the

guiding center density N, due to the average charge in the ring, and the polarization

density nip that originates in the non-uniform density along the ring that is induced

by the short wavelength pieces of the potential.

Equation (3.54) is used to calculate q for wavelengths of the order of the gyro-

radius, including zonal flow, in 6f turbulence codes such as GS2 [1], GENE [2] or

GYRO [3]. In most cases, the distribution function is obtained from the gyrokinetic

equation (3.39) written for fi = fMi + hi, with Ihi(R, E, p, t) << fMi and fMi only

depending on 4). The resulting equation is

Oht + [ub(R)+ Vd] - Vah, C hi - zef =

-fm ( iw"'(q) - [ub(R)+ v] " VM() (3.57)



with i = v-- and

nT cTi 1 dni (ME 3 1 dT
W = -sZ (b x V) -VRln() + (3.58)ZeB ni do Ti 2) Ti do

the drift wave frequency. In equation (3.57), q appears nonlinearly in Vd - VRhi and

linearly on the right side of the equation. The linear terms are usually solved implic-

itly. Then, hi has a linear dependence on q that will appear as a linear dependence

in Ni, and can be used to solve for 0 in equation (3.54). The ion polarization density

(3.55) also depends linearly on 0. However, at long wavelengths nip becomes too

small to be important. For i < k pi < 1, the polarization density is

nip - V - V± O= O(6ikipine). (3.59)

The details of this calculation are given in section D.1 of Appendix D. To estimate

the size of nip, I have used (3.1) to order V 1  - T/eL and V±V_ - k±T/eL.

With this estimate, for k±L - 1 equation (3.54) becomes

ZN(r, t) = ne(r, t), (3.60)

where terms of order 6Sne have been neglected.

It is possible to obtain a higher order long wavelength quasineutrality equation

for a non-turbulent plasma if the ion distribution function is assumed to be known

to high enough order. The resulting equation is

( Zcni ZMc2ni
V. BQ- V ) 2TiB 2  = ne - ZNVi, (3.61)

where Ni must be defined to higher order,

VVpiNi(r, t) = d3vfi(r, Eo, po, t) + ILI V X + (I -bb): . 2 (3.62)

The derivation of (3.61) is shown in section D.2 of Appendix D. Even though equation

(3.61) is correct, it is only useful if we are able to evaluate the missing O( 6 2fMi) pieces



in fi that are of the same order as the left side in (3.61). Equation (3.39) misses these

pieces. Equation (3.61) will only serve to demonstrate the problems that arise from

the use of equation (3.54).

In chapter 4, I will prove that neither equation (3.60) or its higher order version

(3.61) are able to provide the self-consistent, long wavelength radial electric field. I

will even give an example in section 4.5 in which the higher order equation (3.61)

leaves the radial electric field undetermined.



Chapter 4

Gyrokinetic vorticity equation

In this chapter, I rewrite the vorticity equation (2.9) in a convenient form for gyroki-

netics. The gyrokinetic change of variables found in chapter 3 is especially well suited

for simulation of drift wave turbulence. However, the gyrokinetic quasineutrality

equation, traditionally used to calculate the electrostatic potential, has problems. By

writing the vorticity equation (2.9) in gyrokinetic form, I can study the behavior of

the quasineutrality equation at different time scales and wavelengths. In particular,

I am able to prove that the radial current vanishes to a very high order for any radial

electric field, i.e., the radial drift of ions and electrons is intrinsically ambipolar.

In section 4.1, I explain the notation employed in this chapter and I list the as-

sumptions. These assumptions restrict the treatment to turbulence that has reached

a statistical equilibrium and, therefore, only has small variations along magnetic flux

surfaces. Under the assumptions of sections 3.1 and 4.1, I evaluate the size of the

terms in the vorticity equation (2.9) and in the toroidal angular momentum conserva-

tion equation (2.21). The size of the different contributions to the vorticity equation

depends on the perpendicular wavelength of interest, and this dependence makes

some terms important for structures of the size of the ion gyroradius and negligible

at wavelengths on the order of the minor radius of the device. In section 4.2, it will

become clear that direct evaluation of the terms in equation (2.9) is too difficult to

be of interest. Then, in the rest of the chapter, a different approach is taken. The

equations for particle and momentum conservation are derived from the gyrokinetic



equation in section 4.3. These conservation equations are then combined in section 4.4

to derive two different vorticity equations equivalent to (2.9) to lowest order. Impor-

tantly, these equations are easier to study and to evaluate numerically. With them,

I show that the dependence of quasineutrality on the long wavelength radial electric

field is not meaningful for gyrokinetic codes to retain since gyrokinetics will be shown

to be intrinsically ambipolar as already stressed in section 2.3. The problems that

arise from quasineutrality are exposed in a simplified example in section 4.5. I finish

this chapter with a discussion in section 4.6. All the details of the calculation are

relegated to Appendices F-K.

4.1 Notation and assumptions

In this chapter, I work in both the gyrokinetic phase space {R, E, , O} and the

"physical" phase space {r, v}. I refer to it as physical phase space because spatial

and velocity coordinates do not get mixed as they do in gyrokinetic phase space. I

use the variables r, E, 0o and Vo to describe this physical phase space. Whenever

I write /0Eo, it is implied that r, 40, 'po and t are held fixed, and similarly for

o/&0po and /la0o. The gradient holding Eo, Po, oo and t fixed will be written as

V. In addition, any derivative with respect to a gyrokinetic variable is performed

holding the other gyrokinetic variables constant. The partial derivative with respect

to the time variable t deserves a special mention since it is necessary to indicate which

variables are kept fixed. In this formulation, the time derivative holding r and v fixed

is equivalent to holding r, Eo, po and Vo fixed because the magnetic field is constant

in time. Also, a gyroaverage holding r, E, Po and t fixed is denoted as (...), as

opposed to the gyrokinetic gyroaverage (...) performed holding R, E, /I and t fixed.

All the assumptions in section 3.1 are applicable here. Then, the zeroth order

ion and electron distribution functions are assumed to be stationary Maxwellians,

fui and fMe. In this chapter, the only spatial dependence allowed for these zeroth

order solutions is in the radial variable 4. Therefore, b - VfMii = b - VfiMe = 0. I

assume that the radial gradients of fAi and fie are O(1/L), with L of the order of



the minor radius of the tokamak. The zeroth order potential ¢ works in a similar

fashion, depending only on 4' and with a radial gradient on the longer scale L.

As in section 3.1, I allow wavelengths perpendicular to the magnetic field that are

on the order of the ion gyroradius, kLpi - 1. The pieces of the potential and the

distribution function with short perpendicular wavelengths are small in size, following

the ordering in (3.1). Except for initial transients, I assume that the variation along

the magnetic field of fi, fe and 0 is slow, i.e., in general b . Vfi  6 ifMilL, b -Vfe

6ifMe/L and * - Vq $ 6iTe/eL.

The ion distribution function fi(R, E, p, t) is found employing the gyrokinetic

equation (3.39) [the gyrophase dependent piece is O(6fMivii/ji) and given by (3.38)].

After the initial transient, equation (3.39) becomes ub . VRfi = (C{fi}) to zeroth

order. At long wavelengths, this requires that fi approach a Maxwellian fMi with

b - VfMi = 0, giving fvMi - fMi(4, E). The assumed long wavelength piece of the

distribution function satisfies this condition. Importantly, b - VfMi = 0 does not

impose any condition on the radial dependence of fMi. Consequently, the density and

temperature in fMi may have short wavelength components as long as they satisfy

the orderings in (3.1), i.e., V 1 ni - k±ni,k - ni,k=o/L, V±IT - kTi,k ' Ti,k=o/L

and V IVfMi,k - k±fMi,k=o/L. Solving for the next order correction fi - fMi in

equation (3.39) gives fi - fMi - ifMi. Then, the average velocity Vi = n 1 f d3vvfi

is of order 6ivi. Furthermore, any variation of the distribution function within a flux

surface is due to fi - fMi, and thus small by 6i as compared to the long wavelength

piece of fMi. This means that when we consider average velocities or the gradients

b VaRfi and( - VRfi, it will be useful to think about the distribution function as

it is done in 6f codes where fi = fMi + hi, with hi - 6 ifMi < fMi. Comparing the

estimate for fi - fMi with the orderings in (3.1), I find that the gradients of fi and

¢ parallel to the flux surfaces are smaller than the maximum allowed in gyrokinetics,

i.e., b . VRfi - 6ifMi/LL C VRfi kI-(fi - fmi) - kIpfMi/L<fMi/L and b -

Ve -6 iTe/eL < V - kipiT/eL < T/eL. These estimates may fail for the initial

transient, but I am interested in the electric field evolution at long times, when the

transient has died away.



Interestingly, these assumptions imply that the long wavelength axisymmetric

flows are neoclassical. At long wavelengths, the ion distribution function fi(R, E, p, t)

can be Taylor expanded around r, E and Po. Then, the gyroaveraged piece fi is

approximately fi(r, Eo, po, t), where R, E and p have been replaced by r, Eo and

Po. This gyroaveraged piece of the ion distribution function fi satisfies the ion drift

kinetic equation

a (vjb + vM) - M V ) + VE VRfi = C{fi}. (4.1)
tf M OEoJ

This equation is obtained from (3.39) by realizing that the functional dependence of

fi on the gyrokinetic variables R, E and p is the same as the dependence of fi on

r, E and o0 . Then, equation (4.1) is derived from (3.39) by replacing R, E and p

by r, Eo and to, and employing that (0) - for long wavelengths. The difference

between the long wavelength ion equation (4.1) and a drift kinetic equation [see, for

example, the electron equation (3.49)] is in the nonlinear term vE VRfi. In this

term, the short wavelength components of fi and ¢ beat together to give a long

wavelength contribution. Due to the presence of these short wavelength pieces, fi

cannot be Taylor expanded and (4) - q. Importantly, this term gives a negligible

contribution to the axisymmetric piece of fi. For VE VRfi to have an n = 0 toroidal

mode number, the beating components fi,n and VR() -n must have toroidal mode

numbers of the same magnitude and opposite sign. Moreover, these components

must have n -4 0 because otherwise VR(O) is parallel to VRfi and VE VRfi vanishes

exactly. Thus, only the non-axisymmetric components of (¢) and fi contribute to

VE VRfi and these are of order 6iT/e and 6 ifMi, respectively. Writing VE VRfi =

-(c/B)b. VR X (fiVR(q)), it is easy to see that VE VRi (c/B)k f,lVR -n1,

with k 1 the radial wavenumber of the axisymmetric piece of fi. Since fi,n - 6ifmi

and (c/B)IVR(¢)_l - 6 ivi, the largest possible size for VE VRfi is 6ik pifMivi/L.

Consequently, at long wavelengths, VE Rfi is negligibly small compared with the

other terms in (4.1), and the equation for the axisymmetric component of fi is the

neoclassical drift kinetic equation. For this reason, the long wavelength axisymmetric



flows must be neoclassical, i.e., they are given by

nV = --- -- i + Zen- 0  + U(O)B, (4.2)
Ze ('i/ OQ

where U(4') is proportional to &T/0 in neoclassical theory [34, 35]. For k±pi i 6i,

the turbulent term VE VRfi is of order 6jfMivi/L. By comparing its size with the

smaller term in the drift kinetic equation, usually the collisional operator C{ f }

C( ) {fi - fMi} 6NifMivii I obtain that the turbulent correction to the neoclassical

flow U(b) is of order 6ivi/Lvii.

To finish this section, I will present the different contributions to the distribution

function. To order 3ifMi, the gyrokinetic distribution function can be written as

fi - f (R, E, p, t) _ fi - Z fMi, (4.3)

where

fig - fi(Rg, Eo, Po, t) (4.4)

and
1

R, = r +--v x b. (4.5)

In equation (4.3), I have Taylor expanded fi(R, E, p, t) around Eo and to, and I have

used the zeroth order Maxwellian fAi in the higher order terms. In the function 4 in

(4.3), it is enough to use the lowest order variables Rg, /to and po instead of R, p and

V (the dependence of 4 on E is weak). The piece fig of the distribution function will

be useful in section 4.3 to obtain moment equations from the gyrokinetic equation

(3.39). However, the pieces of the distribution function given in (4.3) are not useful

to evaluate terms in physical phase space since the variable Rg still mixes spatial and

velocity space variables. In physical phase space, it is useful to distinguish between

the gyrophase independent piece of the distribution function fi and the gyrophase

dependent piece. At long wavelengths, fig = fi(Rg, E, o, t) can be Taylor expanded



Table 4.1: Order of magnitude estimates for vorticity equation (2.9).

around r, and I can employ the lowest order result _ Q; -l(v x b) -V0, giving

fi = fio + O(6ik-pifMi) (4.6)

and

1 Vpi + (Mv 2  5' VT]
fi -f = (vx b). + Ti 2T sj fMi + f O(6 kpifmi), (4.7)

with

fo f (r, Eo, po, t). (4.8)

Notice that fio differs from fig in that the gyrocenter position R in fi(R, E, p, t) is

replaced by the particle position r and not the intermediate variable Rg.

4.2 General vorticity equation in gyrokinetics

In this section, I evaluate the size of the different terms in the vorticity equation

(2.9) and the toroidal momentum equation (2.21). For these estimates I will use the

assumptions in sections 3.1 and 4.1. The estimates are summarized in table 4.1. The

final result will be that the vorticity equation (2.9) is not the most convenient to

evaluate the electric field and a new vorticity equation is needed.

In equation (2.9), w - 6iklpien since Vi - 6ivi and V I k1 . Both currents

Jd and J1 are of order 6ienevi. The divergence of Jd is of order 6ienevi/L because,

according to the orderings in (3.1), Vpi - k pi,k " Pi,k=o/L. The divergence of Jil~

is also of order 6ienevi/L, but in this case it is due to the small parallel gradients.

Term Order of magnitude

w 6~ik±piene

V. (Jlb + Jd) 6ienevi/L

V. [(c/B)b x (V-. i)] 6i(k±pi)2 enevi/L



With these estimates, all the terms Ow/9t, V -Jd and V - (J 1b) compete with each

other to determine the electric field. The remaining term, V - [(c/B)b x (V. ri)], is

more difficult to evaluate.

The ion viscosity 7ri, given by (2.6), is of order O(6ik±pip). It only depends on

the gyrophase dependent part of the distribution function, and at long wavelengths,

the gyrophase dependent piece is given by (4.7), making ~ri- 6ik±pipi because the

lowest order gyrophase dependent piece vanishes. The estimate is also valid for elec-

trons, for which it is assumed that the shortest wavelength is of the order of the ion

gyroradius, giving an electron viscosity m/M times smaller than the ion viscosity,

thereby justifying its neglect.

With this estimate for 7i, the term V - [(c/B)b x (V. 7i)] in (2.9) is formally of

order (k pi) 3enevi/L, while the rest of the terms are of order 6 ienevi/L. However, I

will prove in section 4.4 that the formal estimate is too high, and in reality

V - x (V. _i)] ji(kpi)2 nevi/L. (4.9)

This term is the only one that enters in the equation for the radial electric field, as

proven by (2.21). Since it becomes small for long wavelengths, the vorticity equa-

tion and hence its time integral, quasineutrality, are almost independent of the long

wavelength radial electric field, i.e., the tokamak is intrinsically ambipolar even in

the presence of turbulence. The order of magnitude estimate in equation (4.9) is the

proof of intrinsic ambipolarity.

Except for the flux surface averaged vorticity equation, dominated by the term V

[(c/B)b x (V. -i)] - 6i(kipi)2enevi/L, the lower order terms in the vorticity equation

are always of order 6ienevi/L. Then, since the vorticity w is O(Jik±piene), becoming

small for the longer wavelengths, the time evolution of equation (2.9) requires a

decreasing time step as k±pi -4 0, or an implicit numerical method that will ensure

that the right side of (2.9) vanishes for long wavelengths. Solving implicitly for the

potential is routinely done in gyrokinetic simulations [3, 62].

The flux surface averaged vorticity equation gives toroidal angular momentum



conservation equation (2.21). According to the estimates in previous paragraphs,

the radial toroidal viscosity would be (RC. '-i "V)4 6 kipipiPRIVI. Then, the

characteristic time derivative for the toroidal velocity is /alt - kpivi/L. This

estimate is in contradiction with neoclassical calculations [39, 40, 42, 43, 44] and the

random walk estimate at the end of section 2.3, where the long wavelength toroidal-

radial component of viscosity is found to be of order 6jpiRIVO|. This discrepancy

probably only occurs transiently for short periods of time. It is to be expected that

for longer times, the transport of toroidal angular momentum (RC. i .Vo) 7

6ik±piPRIVV$j gives a net zero contribution, and the time averaged toroidal-radial

component of viscosity is actually of order 63piRIVO|. The size of the time averaged

(RC. ri -VO), is discussed in chapter 5.

To summarize, the vorticity equation (2.9) has the right physics, and makes ex-

plicit the different times scales (from the fast turbulence times to the slow radial trans-

port time). However, I show in section 4.4 that the divergence of (c/B)b x (V. i)

is an order smaller than its formal estimate suggests for k±pi < 1, going from

(k±pi)3 enivi/L to 6(k±pi)2enivi/L. In other words, (c/B)b x (V. -i) has a large

divergence free piece. This difference between the real size and the formal ordering

makes theoretical studies cumbersome and it may lead to numerical problems upon

implementation. The rest of this chapter is devoted to finding a more convenient vor-

ticity equation. In section 4.3, I will derive the particle and momentum conservation

equations from the gyrokinetic equation (3.39). In the same way that particle and mo-

mentum conservation equations were used in section 2.2, I will employ the gyrokinetic

conservation equations to find two gyrokinetic vorticity equations in section 4.4.

4.3 Transport in gyrokinetics

It is necessary to understand the transport of particles and momentum at wavelengths

that are of the order of the ion gyroradius. It is at those wavelengths that the

divergence of the viscosity becomes as important as the gradient of pressure, and we

need to determine which one dominates in the vorticity equation. The gyrokinetic
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Figure 4-1: Ion diamagnetic flow due to a gradient in ion density.

equation (3.39) is especially well suited to this task. In this section, I derive moment

equations from the gyrokinetic Fokker-Planck equation, in particular, conservation

equations for particles and momentum. They will provide powerful insights, but

we have to remember that the gyrokinetic equation is correct only to O(6ifMivi/L).

Then, the conservation equations for particles and momentum are missing terms of

order 6inevi/L and 6ipi/L.

With the conservation equations for particles and momentum derived in this sec-

tion, I will obtain two gyrokinetic vorticity equations in section 4.4. These new

vorticity equations will be equivalent to equation (2.9) up to, but not including,

O(jenevi/L). They will have the advantage of explicitly cancelling the problematic

divergence free component of the current density (c/B)b x (V. 'i) discussed in sec-

tion 4.2. The simplification originates in the fact that the ion distribution function is

gyrophase independent in gyrokinetic variables. Physically, ions are replaced by rings

of charge, thereby eliminating divergence free terms due to the particle gyromotion.

A simple example is the diamagnetic current -V x (cpilb/B). The physical mecha-

nism responsible for the ion diamagnetic flow in the presence of a gradient of density

is sketched in figure 4-1. In the figure, the ion density is higher in the bottom half.

Then, due to the gyration, in the middle of the figure there are more ions moving to-

wards the right than towards the left, giving a divergence free ion flow. Its divergence



vanishes because the ions just gyrate around the fixed guiding centers and there is no

net ion motion. In gyrokinetics, the gyromotion velocities are not considered because

the gyromotion is replaced by rings of charge, removing the divergence free terms

automatically and leaving only the net gyrocenter drifts.

The conservation equations for particles and momentum are of order 6inevi/L

and 6ipi/L, respectively, and they miss terms of order 6inevi/L and 62pi/L. In these

equations, it is possible to study what happens for wavelengths longer than the ion

gyroradius, kpi <K 1. Different terms will have different scalings in k±pi, and these

scalings will define which terms dominate at longer wavelengths. For this reason, I will

determine the scalings along with the conservation equations. It is important to keep

in mind that there are missing terms of order 62nevi/L and 56pi/L, and any terms

from a subsidiary expansion in kipi are not meaningful in this limit. In particular, I

will show in section 4.4 that the terms that determine the axisymmetric radial electric

field are too small at long wavelengths to be determined by this subsidiary expansion.

In this section, I present the general method to obtain conservation equations

from gyrokinetics. In subsection 4.3.1, I derive the gyrokinetic equation in the phys-

ical phase space variables r, Eo, po and po, and I write it in a conservative form

that is convenient for deriving moment equations. The details of the calculation are

contained in Appendix F. In subsection 4.3.2, I derive the general moment equation

for a quantity G(r, v,t). I will apply this general equation to obtain particle and

momentum transport in subsections 4.3.3 and 4.3.4, respectively. The details of the

calculations are in Appendix G. In Appendix H, I show how to treat the effect of the

finite gyroradius on collisions.

4.3.1 Gyrokinetic equation in physical phase space

The distribution function shows a simpler structure when written in gyrokinetic vari-

ables, namely, it is independent of the gyrophase except for the piece in (3.38) re-

sponsible for classical collisional transport. The goal of this subsection is writing the

Fokker-Planck equation, df/ldt = C{fj}, in the physical phase space variables r, E,

P0 and po, while preserving the simple form obtained by employing the gyrokinetic
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Figure 4-2: Gyrokinetic equation in physical phase space.

variables. The relation between the full Fokker-Planck equation and the gyrokinetic

equation written in physical phase space variables is sketched in figure 4-2. They

differ in two aspects. On the one hand, the gyrokinetic equation (3.39) misses terms

of order 6bfMivi/L. On the other hand, gyrokinetics is not only a change of variables,

but it also implies a time scale separation between the gyromotion and the evolution

of the slowly varying electrostatic potential. The ion distribution function is then

gyrophase independent in the gyrokinetic phase space, i.e., the motion of the parti-

cles may be replaced by drifting rings of charge. The advantage of this distribution

function is the lack of divergence free terms in the moment equations constructed

from it, as explained in the introduction to this section.

I write the Fokker-Planck equation to order 65ifMivi/L, the order to which the

gyrokinetic equation is deduced, by starting with

df L Ofi Of,df - v-Vfi +a-Vvfi
dt t r,v (t R,E,p,(p

+ VRaf + k +  7 (4.10)aE amo

where a = -ZeV¢/M+f2(v xb ) is the acceleration of particles and I have written the

Vlasov operator d/dt in both r, v and gyrokinetic variables. The term p(fif/Op) does

J

L_ I



not appear in equation (4.10) because I assume that fi is a stationary Maxwellian to

zeroth order and f is small by definition of y. The derivative respect to the gyrokinetic

gyrophase o is small and related to the collision operator by (3.38),

Ofi
P- = C{fi} - (C{fi}). (4.11)

The difference between time derivatives of fi can be written as

- Z O , (4.12)
& R,E,p,p O r,v M & r,v 'E

where I have employed (3.25) and that B is independent of time. Combining equations

(4.10), (4.11) and (4.12), the Fokker-Planck equation dfil/dt = C{fi} becomes, to

O(6 ifMivi/L),

-+ f+i + R VRf i + E = (C{fi}). (4.13)
rv r,v

Here, I have used that the time evolution of Of/OE !_ (-M/Ti)fMi is slow.

It is necessary to rewrite equation (4.13) in the variables r, Eo, Po and o. Using

equation (4.3) and considering that both the zeroth order distribution function and

the zeroth order potential are almost constant along magnetic field lines, I can rewrite

part of equation (4.13) in terms of the variables r, Eo, Po and 0o. The details are in

section F.1 of Appendix F, and the final result is

R VRfi + E- R VRgr - V - ()ifi) , (4.14)

where fig is missing the piece proportional to ¢ [see equation (4.3)]. The gradient

VR, is taken with respect to Rg holding Eo, po, 'Po and t fixed, and V is the gradient

with respect to r holding Eo, po, 'po and t fixed. The quantity R VR,r is given by

R - VRr = v110 + VMO + VEO + Vl, (4.15)



with

V lo= + b V + 2 v )(b) vI (vx ~) VB
2Qi -i 2 BOQi

+ l - V2 '1 + [VI(V X ) + (v x b)v±] : Vb, (4.16)

v0 = xVB + bR x ., (4.17)
M i B i

C-

VEO = - () x b (4.18)

and using equation (F.6)

v =- X V . (4.19)

In equation (4.14), it is important to be aware of higher order terms (like vMo.Vfig), in

which the full distribution function, not just fMi, must be retained. In these terms,

the steep perpendicular gradients make the higher order pieces of the distribution

function important [recall the orderings in (3.1)].

Equation (4.14) can be written in conservative form, more convenient for transport

calculations. The details of this calculation are in section F.2 of Appendix F, and the

result is

Vf fi vi [. (fgR. 0

B V11  B Ze0

a (fB - Zeo) BfMiZ - VRgr -(4) , (4.20)

where B/vil is the Jacobian (v)/a(Eo, p, o), and the quantities /i1o and V1o are the

pieces of the first order corrections p1 and cp that do not depend on the potential.

They are given by
Ze¢

/10o = --1 B (4.21)MB

and
Ze 80

1o = V1 + M (4.22)
TheB definitions of and are in equations (3.29) and (3.34), respectively.

The definitions of V, and pl are in equations (3.29) and (3.34), respectively.



Finally, substituting equation (4.20) into equation (4.13), I find

Ofig

at
-t r,v

(fMiB - V po)

0

a
aEo

B Ze•
VRgr .V()

(fMiB " Vlo)

= (C{f2 }).

Here, for (q) and ¢, it is enough to consider the dependence on the lowest order

variables, i.e., R, p0 and o (the dependence of (¢) and q on E is weak).

4.3.2 Transport of a general function G(r, v, t) at kpi ~ 1

Multiplying equation (4.23) by a function G(r, v, t) and integrating over velocity

space, I find the conservation equation for that function G to be

( d3vGfi ) +V. [J dv fi (R VRr) G] = J d v fiK{G}

+ f d3v G(C{fi}),

dGK{G}= Oa +R- Vagr - (VG -
r,v

OG

19/-1

Ze- G )

M OE

09 00l (4.25)

In the next two subsections, I will use this formalism to study the transport of particles

and momentum at short wavelengths.

4.3.3 Transport of particles at k pi - 1

Particle transport for electrons is easy to obtain since I only need to consider kipe <K

1. In this limit, drift kinetics is valid giving

+ V (neVellb+ neVed
cn

B e x b = 0,B

ao
a(po (4.23)

with

(4.24)

one
at

+ ! I L f ig "V R g rk?

(4.26)



with neVlI = f d3 v fevll and

neVed = bb Vx b cp x VB- c~ ×,x. (4.27)
eB eB 2  eB

The same result may be deduced from equation (4.24) by neglecting electron pressure

anisotropy terms that are small by a factor m/M compared to the ion pressure

anisotropy. Obviously, the ion particle transport must be exactly the same as for

the electrons due to quasineutrality. Nonetheless, we still must obtain the particle

transport equation for ions to be able to calculate the electric field by requiring that

both ions and electrons have the same density.

The conservation equation for ion particle number is given by equation (4.24) with

G = 1. Employing section G.1 of Appendix G, it can be written as

(ni - nip) + V. (nVilb + niVigd + niViE + niVi + niVic) = 0, (4.28)

where nip is the polarization density, defined in (3.55), the parallel flow is

niVill = d3v fivii = d3v figvI , (4.29)

the term niVi is a perpendicular flow that originates in finite gyroradius effects, given

by

niVi = Jdvfig Jd3v fIgV X v, (4.30)

and the flows due to the E x B and magnetic drifts are

niViE = 3 V figVEO fig() x b (4.31)

and

S= cpig Vx ± + cpigip cPigIIx (4.32)
liVigd ZeB ZeB 2  ZeB (

with Pigl = f d v figMv and PigI = f d3 v fgMV/2. The collisional flow niVic is

evaluated in Appendix H and is caused by ion-ion collisions due to finite gyroradius
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Figure 4-3: Finite gyroradius effects in niVi. (a) The magnetic field line along which
the gyrocenter lies is the line that guides the parallel motion, making it possible for
parallel motion to transport particles across magnetic field lines. (b) As the size of
the gyromotion changes, a particle that spent time on both sides of the blue plane is
now only on one of its sides, leading to an effective particle transport.

effects. It is given by

niVic = dv (() x b - (.v±)v x (4.33)

with y = 27Z 4 e4 ln A/M 2 and

r = dv' fdMi gVgg [v f - vv' ( (4.34)

Here, f = f(v), f' = f(v'), g = v - v', g = Ig and VVg = (g2 I _gg)/g 3.

In the presence of potential structure on the order of the ion gyroradius, the contri-

butions to niVi no longer average to zero in a gyration since they can add coherently.

In the integration niVi = f d3 v fig(vll/Qi)V x vI only two terms contribute to its

divergence so that V (nijV) = V - (niVio) with

v vl BVB
niVio = d3v fig v(vx ). V + 2B v x b] . (4.35)

In section G.1 of Appendix G, I prove that all the other terms in ni can be neglected.



Table 4.2: Order of magnitude estimates for ion particle conservation equation (4.28).

The physical origin of niVio is sketched in figure 4-3. The drift (vll/Qi)(v x b) - Vb

is presented in figure 4-3(a), where there is difference between the direction of the

magnetic field at the gyrocenter b(R), and the direction of the magnetic field at

the real position of the particle b(r). Due to this difference, the parallel motion of

the gyrocenter drives part of the gyromotion, plotted in red in the figure, across the

blue plane. Notice that the magnetic field line B(r) lies in the plane, leading to the

"paradoxical" parallel motion across magnetic field lines. The other term in niVio,

(vllb.VB/2BQi)v x b, is explained in figure 4-3(b). Here, the change in the size of the

gyroradius due to the change in magnitude of the magnetic field, dB/dt = vb). -VB,

drives part of the gyromotion, plotted in red, across the blue plane.

In section 4.4, I will obtain a vorticity equation for ¢ by imposing Zni = ne.

Equations (4.26) and (4.28) will provide the time evolution of Zni - n,. It will be

useful to know the size of the different terms in equation (4.28). I summarize the

estimates of order of magnitude in table 4.2. These estimates include the scaling

with kipi for long wavelengths. The wavenumber k1 is the overall perpendicular

wavenumber, i.e., given k1 , the corresponding Fourier component for nonlinear terms

like A(r) x B(r) is f d2 k A(k' ) x B(k - k ), with A and B the Fourier transforms

of functions A and B. The divergence of the drift flow, V - (niVigd + niViE), is of

order Jinevi/L since VfMi ~ Vfik [recall (3.1)]. The flow niVi is of order 6S2kPinlevi

because, for kipi < 1, the gyrophase dependent piece of fig, similar to (4.7), is

even in vjj to zeroth order, making the integral vanish. Its divergence, V - (niVi),

is then of order 6i(kipi)2nevi/L. The divergence of the collisional flow, V. (niVic),

Term Order of magnitude

nip ikipine

V - (niVillb + niVigd + niViE) 6inevi/L

V (nivi) Ji(kip)2n,vii

V (niVic) 6J(klLip)2 evii



is of order 6i(kipi)2 viine, as proven in Appendix H. The polarization density nip is

of order 6ik pine, as shown in (3.59). This result means that for long wavelengths,

the polarization term becomes unimportant. Therefore, at long wavelengths only the

balance between the time evolution of the density, the parallel flow, and the magnetic

and E x B drifts matter.

4.3.4 Transport of momentum at kpi r 1

From electron momentum conservation, I will only need the parallel component, given

by

b . VPeII + (PeI - pei)V -b = eneb - V¢ + Feili, (4.36)

where Feill = m f d3v ViiCei(fe} is the collisional parallel momentum exchange. The

time derivative of nemVe and the viscosity have been neglected because they are

small by a factor of m/M. In this equation, there are terms of two different orders

of magnitude. The dominant terms are b - VPeil _ b. VPe and eneb - V, both

of order O(6ipe/L) for turbulent fluctuations at k±pi r 1. The friction force Feii

and the terms that contain the pressure anisotropy pell - Pel - 6epe are an order

/i/M smaller than the dominant terms. However, these smaller terms are crucial

because they provide the non-adiabatic behavior and hence allow radial transport

of particles. In the vorticity equation (2.9), the non-adiabatic electron response is

kept in the integral f d3 v fevlI in J 1. Thus, for most purposes, equation (4.36) can be

simplified to

b. Vpe = ene V0. (4.37)

Equation (4.36) can also be recovered by using equation (4.24) and neglecting terms

small by m/M.

For the ions, using equation (4.24) with G = v and employing section G.2 of

Appendix G, I find the momentum conservation equation

S(niMVig) + [b. - Vpig + (Pigli - pig)V b + V - 7rigl,] + V. rigx=

-Zenb - VO + FPiEb + FiB + Fic, (4.38)



where niVig = f d3v figV is the average gyrocenter velocity; the vector 7rill is the

parallel momentum transported by the drifts and is given by

ill = d3V f(vio + VEO + I)Mvjj; (4.39)

the tensor i,, gives the transport of perpendicular momentum by the parallel ve-

locity and the drifts,

igx= dv fig(vlb + VM + VEO + V 1)MvL; (4.40)

the vector FiEb is a correction due to the short wavelengths of the electric field with

FiE = Ze J d3v fM (b + QIV x v1 ) -V; (4.41)

the vector FiB contains the effect on the gyromotion of the variation in the magnetic

field and is given by

FiB = d"3v MfigVllb 1 v + J d3v i fi(V x b) .VV; (4.42)

and the finite gyroradius effects on collisions are included in

Fic - M fd3vv(C{fi}) = -My d Vd (). bb + 1 r( v )vi

+V. f J3v (r) x b - -(P v)v x) v] (4.43)

The force FiE originates in the change in the parallel velocity magnitude due to

potential structures on the size of the ion gyroradius. The force FiB accounts for

the change in perpendicular velocity due to variation in the magnetic field that the

particle feels during its motion. Interestingly, the parallel component of equation

(4.38) is simply

O(niMVjil) + b -VPig + (Pig|f - pigi)V b + V rig = -Zenb - V



Table 4.3: Order of magnitude estimates for ion momentum conservation equation
(4.38).

+FiE + Fic b. (4.44)

The parallel components of V- wig×x and FiB cancel each other, as proven in sec-

tion G.2 of Appendix G.

Equation (4.38) will be used in section 4.4 to get one of the forms of the vorticity

equation. Thus, it is useful to estimate the size of the different terms in it. The

estimates of order of magnitude are summarized in table 4.3. The pressure terms,

b VPigll + (Pigll - pig-)V -b, and the electric field term, Zenib - V4, are O(6pi/L).

The terms FiE and FiB are of order 65ik±pipi/L. These estimates are obvious for

the integrals (Ze/Qi) f d3 v fMi(V x v) . V - (Mc/B) f d3 v fM(V x b) VvI

since V0 - k±piTe/eL due to e5/Te, 6 . The integral Ze f dv fMAib V¢ would

seem to be of order 6ipi/L since b V~ 6iTe/eL but it is an order k±pi smaller

because the integral of ¢ in the gyrophase Po vanishes to zeroth order. The in-

tegral M f d3vfigvll Vv v is of order 6ik±piPi/L because the leading order gy-

rophase dependent piece of fig is even in vil [recall (4.7)]. The collisional force,

Fic is order 6ikipviinMvi, as proven in Appendix H. The vector 7rigll is O(6 pi)

because fig is even in vil and v_ up to order 6 ifMi. The matrix +igx has three

different pieces: the integral f d3 v fig(vMo + li)MvI also of order 5pii, the inte-

gral f dav figMvllbvi of order 6ik±pipi, and the integral f d3 v figMVEOVI of order

6ipi. The integral f d3v fig Mvl bv is of order 6ik pipi because the leading order gy-

rophase dependent piece of fig is even in vll as in (4.7). On the other hand, the size

of the integral f d3v figMVEOVI is estimated by employing VEO = -(c/B)V(0) x b =

Term Order of magnitude

niMVi9, ineMvi

b - Vpigl, (Pigll - pigi)V - b, Zenib. V b6ipi/L

V lrigll, V 'igx, FiE, FiB 6ikipip/L

Fic ikpiviijjnelMvi



-(c/B)V¢ x b + (c/B)YV x b. Then, I find that (Mc/B) f d3v fig(V€ x b)v± 6ipi

since fig is gyrophase dependent at O(6ifmi), and (Mc/B) f d3v fig(V x b)v < 6ip.

It is difficult to refine this last estimate because it is a nonlinear term and short

wavelength pieces of fig and ¢ can beat to give a long wavelength result. The di-

vergences of wrigll and rigx are both O(6kipipiL). Importantly, the divergence of

7Tigx <6iPi is not of order k1 pipi/L but of order 6ik±pipi/L. The divergence of

f d3v figMv Ibv± is of order 6ikipi1p/L because it only contains a parallel gradient,

and V. [(Mc/B) f d3v fig(V¢ x bO)v±] = -V. [Mc f dEo dpo dpo V x (bfigv±/vll)]

6ik±pipi/L, where I have used d3v = (B/v 1)dEo dod dpo and V. [V x (...)] = 0 [since

(fjg/vll)(V x b)v 1 = V x (bqfi9v±/v11) - 0V x (bfigv±/vl1)].

4.4 Vorticity equation for gyrokinetics

In section 4.2, I showed that the term that contains the ion viscosity in the vorticity

equation (2.9) seems to dominate at short wavelengths. However, in reality it is

smaller than V Jd, as I demonstrate in this section. As a result, the viscosity must be

evaluated carefully; otherwise, spurious terms may appear in numerical simulations.

Here, I propose two different vorticity equations that avoid this numerical problem and

are valid for short wavelengths. Long wavelength, transport time scale phenomena,

like the self-consistent calculation of the radial electric field, can be included, but this

will be the subject of chapter 5.

The vorticity equation (2.9) provides a way to temporally evolve the electric field

perpendicular to the magnetic field. However, the parallel electric field strongly de-

pends on the parallel electron dynamics, hidden in the parallel current J1 in equation

(2.9). Fortunately, it is enough to use the integral JI = Ze f d3v v, Ifig - e f d3 v vllfe

for the parallel current since JI does not alter the higher order calculation of the ra-

dial electric field determined by equation (2.21). In several codes [3, 62], the electron

and ion distribution functions are solved implicitly in the potential. These implicit

solutions are then substituted in JI to find the potential in the next time step from

the vorticity equation.



In subsection 4.4.1, a vorticity equation is derived directly from gyrokinetic quasi-

neutrality. The advantage of this form is its close relation to previous algorithms,

but it differs greatly from the general vorticity equation (2.9). In subsection 4.4.2, I

present a modified vorticity equation that has more similarities with equation (2.9).

I ensure that both forms are equivalent and satisfy the desired condition at long

wavelengths, namely, that they provide a fixed toroidal velocity.

4.4.1 Vorticity from quasineutrality

The first version of the vorticity equation is obtained by taking the time derivative of

the gyrokinetic quasineutrality (Zni = ne). In other words, I find the time evolution

of ion and electron density and ensure that its difference is constant in time. This is

equivalent to subtracting equation (4.26) from Z times (4.28) to obtain

-(Zenip) = V - (Jj + Jgd + Ji + ZeniVi + ZeniVic) , (4.45)

where Ji is the polarization current

Ji- B(v (V x J d3vf J dv fgV()x =

B (d3 figV V¢ x l dv zef (4.46)

and Jgd is the drift current

Jgd - ZeniVigd - eneVed = cp glb 1  V x b + Cgl x VB CpgIb x, (4.47)
B B2 B

with Pgjj = Pigll + pe and pgI = pigI + Pe. Here, to write the second form of Ji, I

use fi - fig = -(Zeb/Ti)fMi, given in (4.3). In equation (4.45), the ion polarization

density, nip = - f d3 v (Zek/T)fMA is advanced in time, and the electric field is solved

from nip.

It is necessary to check if equation (4.45) satisfies the right conditions at long

wavelengths. In the present form, though, it is a tedious task. To perform this check,



Table 4.4: Order of magnitude estimates for vorticity equation (4.45).

I will use the much more convenient form in subsection 4.4.2, that I will prove is

equivalent.

Finally, I give estimates for the size of all the terms in (4.45) in table 4.4. These

estimates will be useful in subsection 4.4.2 to study the behavior of the toroidal

angular momentum for k±pi < 1. The size of most of the terms in equation (4.45)

can be obtained from the estimates given in table 4.2, giving V - Jgd " 6ienevi/L,

V - (ZeniVi) - 6i(k±pi)2enevi/L and V - (ZeniVic) - 6i(k±pi)2 iiene. The size of

V Ji requires more work. Even though a cancellation between the drift kinetic E x B

flow, (cni/B)V x b, and the corresponding gyrokinetic flow, (c/B) f d3v figV(q) X b,

is expected, due to the nonlinear character of these terms, where the short wavelength

components of fig and q can beat to give a long wavelength term, I can only give

a bound for the size of Ji. Given the definition of Ji in equation (4.46), its size

is bounded by IJi <Sienevi. Then, it would seem that its divergence must be IV -

Ji kipienevi/L, but the lowest order terms contain V x V0 = 0 and V x V(O) = 0,

leading to V.Ji I < 5ienevi/L. To refine this bound, I use that V.Ji = f dEo dpo dpo V.

ji, where V -ji is found from equation (4.46) to be

Vj V Zec (fiv x - figV(0) x) =

-r - S x Ze fc + ee Ze. fiVx b l 6k pefmjB/L. (4.48)
\ v l ViI TI

I have used d3 v = (B/vll)dEo dpo d po and V. (vlfi,~V x ) = -V. [ V x (lvl1fig)]

to find this result. The second form of (4.48) is useful to estimate the size of V . j

Term Order of magnitude

Zenip 6 ikipien,

V. (J 1b + Jgd) 6ienevi/L

V - (Ji + ZeniVi) 6i(kipi)2enevi/L

V. (ZeniVic) 6i(kipi)2 envii



because I can use e¢/Te - 6i and Vfig, fMi/L to find V ji " 6ikepefMiB/L. In

V -ji, given in (4.48), there are short wavelength components of fig and q that beat

together to give a long wavelength component. These short wavelength components

of fig = f (Rg, Eo, Po, t) and ¢(Rg,, , Io, t) cannot be expanded around r, but the

long wavelength component of V ji can be expanded as a whole to find

1V. ji(R9, Eo, Po, o) " 7 ji(r, Eo, Po, o) + -(v x i) V(V. j). (4.49)

The difference between V -ji(r, Eo, Po, o) and V ji(Rg, Eo, PUo, sOo) is negligible in

the higher order term. The interesting property of equation (4.49) is that the ve-

locity integral of the zeroth order term V -ji(r, Eo, Po, cpo) can be done because

the gyrophase dependence in R, has disappeared. Employing the second form of

equation (4.48) for V7 ji(r, Eo, Po, po), I find f dEo dpodo d V .ji(r, Eo, Po, =o)

-V. [(Zec/B) fd 3 v (Ze/T)fMiV x j] N 2kpienevi/L since V = V(02/2).

This result is negligible compared with the term Q-'(v x b). V(V . ji) in (4.49),

which gives V Ji - 6i(k±pi)2enevi/L since V7-i '- 6ik±piefMiB/L. Using this result,

I find that the k±pi <K 1 limit of V . Ji is

V. Ji - V dEo dodo d (vxo6)] , (4.50)

where I use that Q-l(v x b) -V(V.ji) ' V. [Q-l(v x b)(V.ji)] because the gradient

of Q lv x b is of order 1/L and the gradient of V -ji is of order k1 .

4.4.2 Vorticity from moment description

Equation (4.45) has the advantage of having a direct relation with the gyrokinetic

quasineutrality. However, its relation with the full vorticity equation (2.9) and the

evolution of toroidal angular momentum is not explicit. For those reasons, I next

derive an alternative vorticity equation.



I define a new useful function

ZG =i d3v figv X b) - dv 2 0 fMi (4.51)

that I will call gyrokinetic "vorticity" because, for k±pi < 1, it tends to w = V

[(Ze/Qi)Vi x b]. To see this, I use - fd 3v (Ze$/T)fMi -- V - [(cn/BaQ)V-±] and

f d3v figv x b - (c/ZeB)V±pi to obtain

V Zecni V + iC VIP) (4.52)
l - .BCj BOj

as given by w in equation (2.12) to first order. The new version of the vorticity

equation will evolve in time the gyrokinetic "vorticity" (4.51). The advantage of

this new equation is that it will tend to a form similar to the moment vorticity

equation (2.9) for kpi < 1. It is important to point out that the new version of the

vorticity equation, to be given in (4.53), and equations (2.9) and (4.45) are totally

equivalent up to O(6jenevi/L). The advantage of the new version is a similarity with

the full vorticity equation (2.9). This similarity helps to study the size of the term

V. [(c/B)b x (V. 'i)] and the behavior of the transport of toroidal angular momentum

for k±pi < 1. I will prove that the toroidal velocity varies slowly, as expected.

Additionally, since the new vorticity equation is derived from quasineutrality and the

gyrokinetic equation, it is equivalent to the gyrokinetic quasineutrality equation and

provides a way to study its limitations.

The new version of the vorticity equation is obtained by adding equations (4.45)

and V - {(c/B)[equation (4.38)] x b} to obtain

OWG bJ +JiO +b bF 1  (4.53)= V - Jb1 a + J4 + Bb x (V. wiG) + ZeniVic - Bb x Fic . (4.53)

The terms Ji, ZeniVi, (c/B)b x (V. +igx) and (c/B)b x FiB are recombined to give

JiO, (c/B)b x (V. iG) and some other terms that have vanished because they are

divergence free. The details on how to obtain equation (4.53) are in Appendix I. Here



Table 4.5: Order of magnitude estimates for vorticity equation (4.53).

I have defined the new viscosity tensor

7'iG- M d3v fivivllb+ igx =

Jdv fgM [v I(vib + byv )+ (vo + VEO + ' 1) VI (4.54)

and the new polarization current

Z ec - f X
Ji =J,- Cb x fdv fii(q x b) . Vv1 , (4.55)

with Ji given in (4.46). The derivation of equation (4.53) implies that both equations

(4.45) and (4.53) are equivalent as long as the perpendicular component of equation

(4.38) is satisfied, and any property proved for one of them is valid for the other.

Equation (4.53) gives the evolution of wG and the potential is then found by

solving equation (4.51). Equation (4.53) does not contain terms that are almost

divergence free, as was the case of (c/B)b x (V. ri) in equation (2.9). This will ease

implementation in existing simulations.

It is important to know the size of the different terms in (4.53) for implementation

purposes. The order of magnitude of the different terms is summarized in table 4.5.

In subsection 4.4.1, in table 4.4, I showed V -Jgd 6ienevi/L and V - (ZeniVic) -

6i(kpi)2viiene. The term V. [(c/B)b x Fic] is of order 6i(k±pi)2 iiene according to the

results in Appendix H. For the flow (c/B)b x (V. liG), there are two different pieces in

7ric, given in (4.54), namely, M J d3v figv iVlb and igx as defined in (4.40). The first

component gives (Mc/B)b x [V. (f d3vfigvvll b)] = (Ze/Ri)b x (f d3v figvllv ±.Vb)

Term Order of magnitude

wG 6ik±piene

V - (J 1b + Jgd) 6ienevi/L

V. [J, + (c/B)b x (V. liG)] 6i(kpi)2erevi/L

V - [ZenrVic - (c/B)b x Fic] 6j(kpi)2envii



6Zkkpienevi, where I have used that the lowest order gyrophase dependent piece of fig
is even in vjj [recall (4.7)]. The divergence V. 7igx is of order Jik±pipi/L as proven in

subsection 4.3.4, giving V. [(c/B)b x (V. riG)] 6i(k±pi)2enevi/L. Finally, Je is also

composed of two pieces shown in (4.55). The divergence of V - Ji was already found

in (4.50), and it is of order 6i(kipi)2enevi/L. The second term in (4.55) is of order

62k±ppienevi, giving V. J*o - 6i(k±pi)2enevi/L. Interestingly, employing equations

(4.48) and (4.50), and the definition of Jio in (4.55), I find that for k±pi < 1, V -Jj

tends to

V-Ji=V { Bx V {Jd3v ( - fi V A) MVVl }V . (4.56)

To obtain this expression I neglect

Z e - C ( V o X
V - b x [Jdv(f - fb)(V x b) - Vv] } 6/kipienevi/L. (4.57)

Equation (4.56) will be useful in the kpi < 1 limit worked out in Appendix J.

The estimates in table 4.5 are useful to determine the size of the problematic term

V. [(c/B)b x (V. *i)]. Subtracting equation (2.9) from (4.53) gives

V. [j x (V. rG) ( - JW)d - Ji + jb X (V. 7iG)cB
+ZenjVIc - -6 x FFi 6i(kpi)2 enevi/L. (4.58)

This result was anticipated in equation (4.9) and proves that turbulent tokamaks are

intrinsically ambipolar!

Most of the estimates for the terms in equation (4.58) are obtained from table 4.5.

Only w - aG and V -(Jgd - Jd) need clarification. The long wavelength limit of waG

6ik±piene, given in (4.52), is the same as the long wavelength limit of w in (2.12).

Thus, they can only differ in the next order in k±pi, giving w - zG - 6i(kipi) 2ent.



The difference Jgd - Jd can be rewritten using fi - fig = -(Ze¢/Ti)fMi to obtain

Ti 2ji 2BOi O"

The size of Jgd - Jd is 62kipienvi since the integral of ¢ in the gyrophase vanishes

to zeroth order. Then, V -(Jgd - Jd) - 6i(k±pi)2enevi/L. Employing these estimates,

I find that V - [(c/B)b x (V. *i)] is of order 6i(k±pi)2envi/L, as given in (4.58) and

asserted in equation (4.9) in section 4.2. Therefore, there is a piece of the viscosity of

order 6ik±pipi that vanishes to zeroth order in V - [(c/B)b x (V. ri)]. In equations

(4.45) and (4.53) this piece has already been cancelled.

Finally, I study the evolution of the toroidal velocity implicit in equation (4.53).

To do so, I flux surface average equation (4.53) as I did in section 2.3 for equation

(2.9). The result is

(/, = V' Jgd Vb + Ji" VO + ZeniVic -VV

B (V iG -Fic) - (b x V)) (4.60)

The term Jgd - V can be manipulated in the same way as the term Jd in equation

(2.14) to give (Jgd - V) = -((cl/B)[b - VpglI + (Pgll - p 1 )V . ]). Employing the

parallel momentum equation for ions, given by (4.44), and electrons, given by (4.37),

to write

0
b . Vpg, + (pgii - pg,)V -b = -- (niMV1iI ) - V rigll + FiE + Fic -b, (4.61)

I find

(G ( ),- v'ZeI nii ) ,V' cI(V -i II - FE)- V' -h nj V, 8, B

+J.i" V - C(V. T iG) - (b x VO) + ZeniVic -VO - cRFic , (4.62)

where I have employed (I/B)Fic - b - B- 1Fic (b x Vb) = RFic . ( [recall (2.16)].



Taking the limit kIpi < 1, for which Gc - V. [(Zeni/Q~i)Vi x b], equation (4.62)

can be shown to give

0 1 0.(0)
&(RniMV - -V = V V'(RC. ri -Vo),, (4.63)

where I have integrated once in 0. The details of the calculation are in Appendix J.

The zeroth order off-diagonal viscosity is given by

(R. - o) V), = Kdv fRM(v ) (vuo + 1j - BV x b) VO . (4.64)

The distribution function fi = fiq - (Zeb/T)ffMi has both the adiabatic and the

non-adiabatic pieces. The viscosity in (4.64) includes the nonlinear Reynolds stress,

describing the E x B transport of toroidal angular momentum, and the transport

due to the magnetic drifts VMO and finite gyroradius effects 91. In the absence of

collisions, only the Reynolds stress gives a non-vanishing contribution as the other

terms correspond to the gyroviscosity. In section K.1 of Appendix K, I prove that

d3v fiRM(v - )(vuo + it1 ) V < = K0 1 (IV0 2pil +

K d J C 3v f IV2 I2v) . (4.65)

It becomes apparent that when statistical equilibrium is reached and the net radial

transport of energy is slow so that 0/t - 0, the magnetic drifts only provide mo-

mentum transport proportional to the collision frequency. Since collisions are usually

weak, this term will tend to be small. Moreover, in section K.2 of Appendix K, I show

that this collisional piece vanishes exactly in up-down symmetric tokamaks, leaving

only the Reynolds stress,

(Ri .o) V>), - id3v fRM(v )(V x b) V (4.66)

In any case, the zeroth order viscosity is of order 5ipi, and the corresponding piece

in the vorticity equation (4.53) is of order b(k±pi)2enev/L, which becomes of order



6enevi/L as kI -+ 1/L.

An important conclusion that can be derived from equation (4.63) is that the

rate of change of the toroidal velocity is o/Ot - k±pivi/L, becoming slower and

slower as we reach longer wavelengths. This behavior must be reproduced by any

equation used to calculate the radial electric field. Equations (4.45) and (4.53) satisfy

this condition, but in addition they have the advantage of showing this property

explicitly. The terms that determine the radial electric field turn out to be Ji - VO,

ZeniVi -VO and ZeniVic -VO in equation (4.45), and Ji - VO, (c/B)[b x (V. 7riG

)]. V0, ZeniVic - VO and (c/B)(b x Fic) - Vb in equation (4.53). Additionally, it

is necessary to keep the terms V - 7rni, , FiE and Fic - b in the parallel momentum

equation (4.44). Any simulation must make sure that these terms have the correct

behavior at long wavelengths and give equation (4.63). In the traditional gyrokinetic

approach, the terms Ji -VO, Zeni'Vi 7 Vb and ZeniVic -VO of equation (4.45) can be

tracked back to terms in the gyrokinetic Fokker-Planck equation. They correspond to

the difference between the ion and electron gyroaveraged E x B flows, (c/B)(fjV x

b--figVR() xb), and the finite gyroradius effects that make b(Rg) # b(r), VR, $
and (C{fi}) $ C{fi}. This identification is the advantage of equation (4.45) since it

allows easier analysis of existing simulations. Equation (4.45) can be used to check if

the simulations reproduce the correct transport of toroidal angular momentum.

Since the vorticity equations (4.45) and (4.53) give equation (4.63) for kpi < 1,

it may seem that they provide the correct radial electric field at long wavelengths.

Moreover, I have deduced these vorticity equations employing only the gyrokinetic

Fokker-Planck equation and the corresponding quasineutrality, making it tempting to

argue that the traditional gyrokinetic method is good enough to find the radial elec-

tric field. This argument is flawed because there are missing terms of order 62enevi/L

in equations (4.45) and (4.53). Then, the transport of toroidal angular momentum

(4.63), that corresponds to a term of order 6i(kipi)2enevi/L, will remain correct only

if (kpi )2  6i. Consequently, the gyrokinetic quasineutrality should provide the

correct radial electric field up to wavelengths of order VpL. For longer wavelengths,

there will be missing terms. This estimate only considers the terms that the gyroki-



i1b
Figure 4-4: Geometry of the 0-pinch.

netic equation is missing and neglects possible numerical inaccuracies.

In the next section, I will show with a simplified example that gyrokinetic indeed

has problems determining the radial electric field in axisymmetric configurations. This

example is intended to illustrate the difficulties that arise from the use of gyrokinetic

Fokker-Planck equation together with the gyrokinetic quasineutrality equation (3.54).

4.5 Example: quasineutrality in a 0-pinch

In this section, I try to find the solution to the non-turbulent, axisymmetric 8-pinch.

Without turbulence, the perpendicular wavelengths are of the order of the charac-

teristic size of the 0-pinch, k±L - 1. This section is intended only as an example,

and neglecting the turbulence greatly simplifies the calculation without fundamen-

tally changing the properties of quasineutrality. In this simplified problem, I find that

current gyrokinetic treatments, even if extended to a higher order in 6i = pi/L < 1

than in chapter 3, do not yield a solution for the long wavelength radial electric

field, leaving it as a free parameter. The gyrokinetic Fokker-Planck equation and the

quasineutrality equation are intrinsically ambipolar and cannot determine the radial

electric field. In chapter 5, I will show that the radial electric field is recovered if a

different approach is employed.

In the 0-pinch, the magnetic field is given by B = B(r)b, where here b is a constant

unit vector in the axial direction, and r is the radial coordinate in cylindrical geometry.



The geometry is sketched in figure 4-4. For long wavelengths, the gyrokinetic equation

can be found to order 6 fMivi/L. The simplified geometry of the magnetic field yields

more manageable expressions for the gyrokinetic variables, i.e., pl and R 2 become

Ze v 2
- (vxb)-VB (4.67)
MB 2B22i

and

R2 4 [v±v± - (v x b)(v x b)] VB, (4.68)

where the term (c/Bi)VR x 6?k±piL has been neglected because I assume

that kLL - 1. Using R2 , the gyroaverage of it is calculated to be

(R)_ villb +\ b xVB- V xb + v _ VR2 -. vR2 , (4.69)
i/ Ob V B- c Ze (4.M9)

where I have used that in a 0-pinch b VB = 0 to write v - VR 2 = v .VR 2.

The gyroaverages are performed by employing the long wavelength approximation

V ~- VR - 7l (v x b) VR and the relation (v v±v±) = 0 to get

(R) (v)b + b x VRB - VR x b. (4.70)
S,(R) B(R)

The gyroaverage of E is found by using (A.17) to write

Ze d Ze (RVR)+ 0 )( go (4.71)
M dt M al at)

where I employ that 0/Ot - Sivi/L for long wavelengths and O/OlE = O(6aiM/e) in

the 9-pinch. Considering that (#) = O(6jva/BL) and 0(q)/&p = O(6MB/e), the

gyroaverage of (4.71) is calculated to be

Ze
(E) " M (R) VR(¢). (4.72)



Thus, the gyrokinetic equation to order O(52fvivji/L) is

(fi fR Ze fj ( .3
a ZeV M OfR) = (C{fi}). (4.73)

I have neglected the derivative Ofi/Op because the distribution function is Maxwellian

to zeroth order and (4) is already small by definition of p. For an axisymmetric

steady state solution, the terms on the left side of (4.73) vanish, the second term

because the gyrocenter parallel and perpendicular drifts, (R), remain in surfaces of

constant fi and q (for this reason, (vll) need not be evaluated to second order). Thus,

equation (4.73) becomes (C{fi}) = 0. Such an equation can be solved for a simplified

collision operator. I use a Krook operator, C{ff} = -v(fi - fM), with constant

collision frequency v and a shifted Maxwellian,

f ( i 2 [ M(v - Vi,)2 (4.74)
2Ti= ) () exp 2T 1

where ni, T and Vi are functions of the position r. I assume that the parallel average

velocity, Vill = b -Vi, is zero and I order Vi as O(6ivi) to obtain

Myj. Vi M 2 (vI Vi) 2  MV 2

fM -- fMo 1 + + _I2 ,2T i (4.75)
Ti 2Tj2 2T

with

fo = (M 3/ 2 exp 2)(4.76)
2 M=n Ti ( 2T

With the Krook operator, the gyrokinetic solution is

f = (fU) = (fMo + T MO + 4T 2  M F FM, (4.77)

where I have used that in the higher order terms, fMo - FM, with

FM = n(R) exp [-Ti(R) (4.78)

For the first two terms in equation (4.77), it is necessary to Taylor expand fMo(r, EO),



Vi(r) and v1 = 2poB(r) [(r) cos oo + 62(r) sin o] around R, E, p and p. The

final result is

2 C M C2 MV 2

f = (f) = F 1 - cni V + (2- x)IV±j 2 + ( - 1)
ni B i 2T B 2  I 2T -

+ 2 2 i 3 - 4 5 22 35
2MQ 2 2njMQ 2T MQ? 4

+2 ( 5 ( C 2v_ ( 2)

(4.79)

where x 2 = Mv2/2T _ ME/T, X4 = Mvj/2T! _ MpB/T and I have employed

1 C
Vi- b x Vpi- -V x b. (4.80)

niMQ B

The distribution function in (4.79) has been calculated by using a gyrokinetic equation

that is correct to order 65jfMivi/L for both the Vlasov operator and the gyroaveraged

collision operator. Using the definitions R = r + R 1 + R 2, E = E + El + E2 and

P = Po + Pil, and the gyrophase dependent collisional piece fi given in (3.38), I can

find the distribution function fi in r, v variables to order O(6jfMi). As a check,

the same solution has been also obtained without resorting to gyrokinetics to order

O(65jfmi). This check is omitted here.

If I had gyroaveraged C{fj} only to order 6i, as most gyrokinetic models do, the

solution would have been simply

fi - FM. (4.81)

Substituting this solution into the higher order gyrokinetic quasineutrality equation

(3.61), I find the inconsistent result

Zcni ZMCc2ni Z(V. (iVi - 2 = ne - Zni - 2 M Pi (4.82)

However, this quasineutrality equation is very different from the one we obtain by



using the full O(b5fMi) solution in (4.79), which simply gives

Zni - n,. (4.83)

Therefore, the gyrokinetic quasineutrality equation reduces to the quasineutrality

condition when the exact O(6ifMi) distribution function of (4.79) is employed. Equa-

tion (4.82) is wrong because the O(6 ifMi) result of (4.81) is either inducing an

O(6?ene) charge difference or imposing the non-physical condition

( iV |2 2 (4.84)( Zcni ) ZMc2 ni 2B 2TB2 2M (4.84)

The difference between (4.82) and (4.83), given by (4.84), originates in O(65 ne) terms

that should have been cancelled by pieces of the distribution function of the same

order.

The 0-pinch example illustrates the problem of using a lower order gyrokinetic

equation than needed, but it also highlights another issue. The potential does not

appear in the quasineutrality equation (4.83), and, therefore, it cannot be found

using it. In a computer simulation, the potential is obtained from the gyrokinetic

quasineutrality equation (3.61), and the distribution function is evolved employing

the gyrokinetic equation (4.73). A possible initial condition fi,t=o(R, E, p) is the

stationary solution (4.79), where the potential O(r) is a free function that is set to be

Ct=o(r). Equation (4.83) proves that the solution to the gyrokinetic quasineutrality

equation (3.61) at t = 0 must be O(r, t = 0) = Ct=o(r), where Ct=o(r) is the free

function that I chose for the initial condition. Since the initial condition fi,t=o(R, E, p)

is a stationary solution, I find that the solution for all times is fi = fi,t=o and ¢ = Ot=,

and the radial electric field is solely determined by the initial condition. If there were

any numerical errors that made the solution invalid to order 62fMi, the radial electric

field would suffer a non-physical evolution. In modern gyrokinetics, the radial electric

field is then determined by the initial condition, in particular, by a piece of order

562fMi of the initial condition. This result is not surprising since in this chapter I have

proved that, in axisymmetric configurations, the axisymmetric piece of the vorticity



equation, or time derivative of Zni - ne, is of order 56nevi/L at the most, as given by

(4.9). The gyrokinetic equation is only calculated to order 6 fMivv/L in this section

(and only to order 6ifMivi/L in codes), leading to an effectively constant Zni - n, and

hence a radial electric field dependent only on the initial condition. In section 5.2, I

will show that in reality the time derivative of Zn - n, is even smaller than 6inevi/L

by a factor of v/1i.

4.6 Discussion

In this chapter, I have shown how the vorticity equation recovers the physics of

quasineutrality and at the same time retains the effect of the transport of toroidal

angular momentum in the radial electric field. I have proposed two possible vorticity

equations, (4.45) and (4.53). With these two equations, I estimate the size of the term

that determines the radial electric field, given by equation (4.9). In this manner, I

prove that, with the usual gyrokinetic equation, setting the radial current to zero,

(J - V. ), = 0, cannot determine the long wavelength axisymmetric radial electric

field. Therefore, modern gyrokinetic formulations are intrinsically ambipolar, and

thereby unable to determine the long wavelength axisymmetric radial electric field.

I illustrated the problems that arise from a failure to satisfy intrinsic ambipolarity

with a simplified problem in section 4.5. In the example, the long wavelength, axisym-

metric radial electric field was left undetermined by the gyrokinetic quasineutrality

equation even if the distribution was calculated to an order higher than current codes

can achieve. More importantly, if there is an error in the density as small as 6ne,

the gyrokinetic quasineutrality equation yields an erroneous long wavelength radial

electric field. This feature places a strong requirement on the accuracy of any code

that calculates the radial electric field. The vorticity equation, on the other hand,

makes the dependence of the radial electric field on the toroidal transport of angular

momentum explicit. Both vorticity equations (4.45) and (4.53) would yield a long

wavelength radial electric field constant for the short turbulence saturation time.

Between the two vorticity equations, equation (4.45) is closer to the gyrokinetic



quasineutrality and is probably the best candidate to implement and compare with

existing results. In fact, a similar, but less complete, vorticity equation has already

been implemented in the PIC gyrokinetic code GEM [63]. On the other hand, equa-

tion (4.53) is similar to the traditional vorticity equation (2.9), making the study of

conservation of toroidal angular momentum straightforward.

These vorticity equations are valid for short wavelengths on the order of the ion

gyroradius. They must be supplemented with long wavelength physics to be extended

to wavelengths longer than Vp-iL. Only then will the transport of toroidal angular

momentum be correctly described. The extension to longer wavelengths is treated in

chapter 5.

Finally, any numerical implementation of either of the vorticity equations needs to

make sure that the properties derived and discussed are satisfied, namely, the scaling

of the different terms with kpi should be ensured, and the cancellations that take

place due to the flux surface average should also be maintained in codes. It is for

this reason that I give all the details of the analytical calculations including detailed

appendices.
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Chapter 5

Solving for the radial electric field

In this chapter, I describe the method that I propose to calculate the radial electric

field. As I showed in section 2.3, the flux surface averaged vorticity equation reduces

to the transport of toroidal angular momentum. Then, to obtain the radial electric

field, it is necessary to solve the conservation equation for the transport of toroidal

angular momentum.

In section 5.1, I obtain an equation for the toroidal-radial component of the ion

viscosity to order 63pi that only requires the ion distribution function to order :52 fMi.

I already argued in section 2.3 that 6 pi is the order to which the ion viscosity should

be found to recover gyroBohm transport of angular momentum. In this chapter, I

give some arguments that suggest that the radial transport of angular momentum

is indeed of order 6ipi. Interestingly, the transport of toroidal angular momentum

found in (4.64), of order 6iklIpipi, should then vanish for long wavelengths. In reality,

the transport probably is of order 6 pi at each time step yet its time average vanish

to that order. In other words, there might be fast local exchange of toroidal angular

momentum, leading to zonal flow structure, but the irreversible transport of angular

momentum from the edge to the core is much slower. In section 5.2, I apply the

equation for the ion viscosity obtained in section 5.1 to solve for the radial electric

field in the example presented in section 4.5.

Even with the convenient equation that gives the radial transport of toroidal

angular momentum to order 6ip with only an O(52fMi) distribution function, this
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still makes it necessary to find the ion distribution function and the potential to an

order higher than the order to which they are usually calculated. At the end of this

chapter, in section 5.3, I prove that under certain assumptions, the lowest order full

f gyrokinetic equation (3.39) is valid even to calculate the second order distribution

function, and the vorticity equations (4.45) and (4.53) are easily extended to yield a

higher order potential. Finally, I discuss all the results of this chapter in section 5.4.

5.1 Ion viscosity and the axisymmetric potential

The evolution of the toroidal velocity, given in (2.21), is determined by the flux surface

averaged toroidal-radial component of the ion viscosity (R(. i -V),. According to

the gyroBohm estimates at the end of section 2.3, the ion viscosity has to be obtained

to order 3pi. If the ion viscosity is to be determined directly from its definition in

(2.6), the ion distribution function must be calculated to order 6 fMi, too high of an

order to be practical or implementable.

To avoid direct evaluation of the ion viscosity, I propose using moments of the

Fokker-Planck equation. This is the approach followed in drift kinetics [64] and to

formulate a hybrid gyrokinetic-fluid description [36]. The ion viscosity can be solved

from the Mvv moment of the Fokker-Planck equation, given by

Ri(ri xb - bx i) =K, (5.1)

with

4--P

K= + V. M dvfivvV + Zeni(VV + V qV) - M dv C{f}vv. (5.2)

Here, Pi= Mf d3V fivv. From the moment equation (5.1), the off diagonal elements

of wi can be solved for as a function of K. Additionally, equation (5.1) contains

the energy conservation equation, Trace(K) = 0, and the parallel pressure equation,

b. K = 0.

To solve for the toroidal-radial component R(- 7i .V4, I pre-multiply and post-
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multiply equation (5.1) by RC, giving

Mc 0 2  M2CvvfR 2 (v )RiC- 7 r -VV = - (R2C. , C 3+V f 2V C)22Ze t 2Ze
+McniR 2 ( Vq)(Vi) - MC v C{jf}R 2 V. )2  (5.3)

2Ze

where I use R(b x x) = VV/B and V(RC) = (VR)C-C(VR). Flux surface averaging

this expression gives

( + M 2C 1 0 J (f 2
(R -ri2Ze 0 V' d3v (f -f)(v . V)R 2 (v )2

+(McniR 2 (+ V )(Vi t )) + C P(R2 i2Ze 2t
2 (/d3vC{fi}R2(v ) ) . (5.4)

In the first term of the right side, I use that (v . Vo)(v . )2 = 0 to write the integral

only as a function of the gyrophase dependent piece of the distribution function.

Equation (5.4) has the advantage that a distribution function correct to order 6 fMi

gives a viscosity good to order 65 pi! The method by which we have gained an order in

6i is similar to the calculation of the perpendicular ion flow employing the momentum

equation. To evaluate the perpendicular ion flow niVi± = f d3v fvl± to order 6inevi

by direct integration over velocity space, the distribution function fi must be correct

to order 6 ifMi. Instead, it is possible to use the ion perpendicular momentum equation

to order pi/L, where the Lorentz force (Ze/c)niVi x B balances the perpendicular

pressure gradient V±pi and the perpendicular electric field ZeniVI±, giving the ion

flow niVi± = (c/ZeB)b x Vpi - (cni/B)V x b. Notice that only the lowest order

Maxwellian fMi has been used to find pi. We have gained an order in 6 .

If the gyroBohm estimates done at the end of section 2.3 are correct, the ion

viscosity must identically vanish to order 6iPi without determining the evolution

of the long wavelength axisymmetric radial electric field on transport time scales.

To obtain the toroidal-radial component of 7ri to this order, it is enough to use a

distribution function good to order 6 ifMi in (5.4). For long wavelengths and to the
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order of interest, the gyrophase dependent piece of the distribution function is given

by (4.7), i.e., it is proportional to (vxlb) .V. Then, the first integral in (5.4) vanishes.

Additionally, I find that for this gyrophase dependence, Pi_ pil(I -bb) +pillbb and

f d3 vvvC{f} J d3v [(vI/2)(I -bb) + vbb]C{fi}. With all these simplifications,

(RC 7ri .VO)o becomes to O(6jpiRIV'?I)

(RC. - .-VO) = - KniRM(Vi )-(VO x b) -V.

+- Iv |2 I2)) (5.5)

where I have used b - V - 0 and R( = Ib/B - (b x VO)/B to write cRC V _

-(c/B)(V¢ x b) -V¢. Equation (5.5) is exactly the transport of momentum found

from the gyrokinetic vorticity equation, given in (4.64) and (4.65). For turbulence in

statistical equilibrium, the time derivative term can be neglected. If in addition the

tokamak is up-down symmetric, the collisional term vanishes as proven in section K.2

of Appendix K, leaving only the Reynolds stress

(R i V) = -K niRM(Vi )(VO x b) =

- Jd3v fRMI(v C )(V x b) VV . (5.6)

This Reynolds stress is formally of order 62piRI V I. If the Reynolds stress were this

big, the transport of toroidal angular momentum would be much larger than the

gyroBohm estimate. It is more plausible that the Reynolds stress averaged over time

is almost zero. Therefore, the Reynolds stress to order 62pi does not determine the

evolution of the long wavelength axisymmetric radial electric field on transport time

scales. This possibility does not conflict with possible fast growth and evolution of

zonal flow structure, that happens in relatively short times, but does not transport

angular momentum through large distances.

It is difficult to prove unarguably that the Reynolds stress (5.6) must vanish to

order p6si. In 6f flux tube codes like GS2 [1] and GENE [2], only the gradients
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of density and temperature enter the equation for the correction to the Maxwellian

[recall (3.57)]. The gradient of the velocity and hence of the long wavelength axisym-

metric radial electric field is ordered out because the average velocity in the plasma is

assumed to be small by i6 . Then, the system does not have a preferred direction and

it is unlikely that there is any transport of angular momentum. Quasilinear calcula-

tions suggest that in up-down symmetric tokamaks, 6f flux tube formulations must

give zero transport [65]. If the average velocity is ordered as large as the thermal

velocity, the symmetry in the flux tube is broken and there is a net radial momentum

transport [66], but such a description is not relevant in many tokamaks.

It seems more reasonable to assume that, at least in a time averaged sense, the

Reynolds stress (5.6) becomes of order 6pi. Therefore, from now on, I consider the

fast time average of equation (5.4) to filter the fluctuations in the transport of toroidal

angular momentum. Fast time here is an intermediate time between the transit time

of the particle motion around the tokamak, L/vi, and the much slower transport time

scale, 6 -2L/vi. Since this time average should make the Reynolds stress of order 6ipi,
the rest of the terms in equation (5.4) must be evaluated to order 6ipi. To that end,

the ion distribution function and the potential must be known to order 6i2fMi and

order 6iTe/e; an order higher than solved for in gyrokinetic codes. In section 5.3, I will

prove that this problem can be circumvented under some simplifying assumptions.

The rest of this section is on how to evaluate the first term in (5.4) in a convenient

way.

The first term in equation (5.4) only depends on the gyrophase dependent piece

of the ion distribution function. For this reason, it can be solved by employing the

moment vvv of the Fokker-Planck equation, given by

Qi d3v fiM[(v x b)vv + v(v x b)v + vv(v x )] = ( d3 v fIMvvv

+V (J djv 3fMvvv) + Ze Jd3v f,(VOvv + vVqv + vyVq)

- dvC C{fi }Mvvv. (5.7)

Multiplying every index in this tensor by RC, employing R(b x C) = VO/B and flux
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surface averaging gives

M d v (fs - 7)(v -VV)R 2 ( ) = KdZv fiR (v * C
M 2c 1 0 3V f,iV.)3

3Ze V' a V

3Z KJ dv C{f }R 3(V. C)3). (5.8)

This equation has to be evaluated to order 6ipiviR21V0 to give terms of order

bipiRIVI in (5.4). The first term in the right side is then negligible because it

has a time derivative. With turbulence that has reached statistical equilibrium and

after fast time averaging, the time derivative becomes of the order of the transport

time scale at long wavelengths, i.e., 0/Ot - DB/L 2 - 6 vi/L. The contribution of

such a time derivative is negligible since it gives a term of order 6~piviR 2 1V0. The

second term in equation (5.8) is also negligible since (v -Vo)(v C)3 = 0 means that

only the gyrophase dependent piece of the distribution function contributes. To the

order of interest, the gyrophase dependent piece is given by (4.7), and its contribution

vanishes. Then, the only terms left are

MJ dv(f v )(v V-)R 2 (v O . )0 = c(R3 (C Vq)(C. Pi

- KfJdv C{fR3 V * )3 (5.9)

Substituting this relation into equation (5.4) gives

(RM ri V) = 2Ze (R2),P + (McniR 2( - V )(Vi. ())-

M2c d3vC{fi}R2(V )2 ± M2  V'(R3(. V)( -Pi "))
2Ze 2Ze PO

M3c 2 1 a 3
62 V' V (/dvC{f}R(v. )) . (5.10)
6Z 2e 2 V' &?/'

In the time derivative term, I used that for statistical equilibrium and after fast time

averaging, only the slow transport time scales are left. Then, the dominant term in

0( . Pi -C)/&t is 0pi/Ot. This term is determined by the turbulent heat transport
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and heating in the plasma. Of the rest of the terms in equation (5.10), the second and

the third term require a distribution function good to order 6i fMi, and a potential

good to 62Te/e. The last two terms only need the distribution function to order 6ifMi

and the potential to order 6iTe/e.

In the next section, I apply the methodology suggested in this section to solve for

the radial electric field in the 0-pinch problem presented in section 4.5. In section 5.3,

I will explain how the distribution function can be found to second order in tokamak

geometry. Notice that this piece of the distribution function is only needed for the

irreversible transport of angular momentum since the transport of angular momentum

to order 62pi is enough to capture the fast evolution of zonal flow.

5.2 Example: the solution of a 0-pinch

In section 4.5, I showed that, in the 0-pinch, the quasineutrality condition applied

to the second order solution (4.79), valid to O( 6 2fAi), does not determine the radial

electric field. However, I will show in this section that the electrostatic potential can

be obtained from the conservation of azimuthal angular momentum, equivalent to the

conservation of toroidal angular momentum in tokamaks since both momentums are

in the direction of symmetry. The momentum equation has the advantage of showing

how quasineutrality depends on the long wavelength axisymmetric potential without

having to calculate the distribution function to higher order than O(6 2fMi). The

methodology I use here is presented for screw pinches and dipolar configurations in

[67].

For a steady state solution, the azimuthal angular momentum must be conserved,

giving
10

S-(r 21. i -0) = 0, (5.11)
r Dr

where i and 6 are the unit vectors in the radial and azimuthal directions, with

x 0 = b [recall figure 4-4], and i is the ion viscosity, given by (2.6). In a case without

sources or sinks of momentum, the final equation for the potential is r 2 • 'i "0 = 0.

Finding r2 • i 0 directly from the distribution function requires a higher order
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solution than the one provided by the O(62fMivi/L) gyrokinetic equation (4.73) used

so far. However, this problem can be circumvented by using the equivalent to equation

(5.10) for 0-pinches, given by

r r 73 fi V 2 r r d vC{f(v ) . (5.12)

To obtain this equation, I have used that 0 -V = 0 due to axisymmetry. In this

particular case, this expression can be reduced to integrals of the gyrophase dependent

piece of the distribution function, terms much simpler to obtain to order i2 fMi. To

see this, I use (v -0) 2 = v2 /2, (v. )2 _ (V . )2 = (1/2)0. [vv± - (v x b)(v x b)] -. =

(1/2)[(v 0)2 - (v i)2] and (v 0)3 = 0 to write

h2 3v (C {f} - C{fi}) ( v. i) 2

Mr2  v M [ r3

+2ri d3 vC{fi 2 6rQt Or -i dv (CI{f} - C{fi}) (v . 0) . (5.13)

For the Krook operator C{fi} = -v(fi - fM), with fM given in (4.75),

C{f} - C{fil = -v {f - M 1 . VifMo

M2
2T2(VIV± - VIVI) : (ViVi)fMO , (5.14)
2 T2

where, according to (4.80),

cA 1 pi +0¢)
V = Zen Or+ (5.15)B Zenj r ar

The term f d3 vC{f i }(MvI/2) in (5.13) can be found from the equation for the per-

pendicular pressure, given by
Op±l f ] 10 F v1 1 M+d/Cvc}-A

S-3V rM Jd _vf(v. [-) = -ZenV -V. + M dv C { f} . (5.16)

Since in this case, 0/Ot = 0 and Vil - V¢ = (Vi -. i)(04/Or) = 0 [recall (5.15)],
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equation (5.13) finally becomes

r2-" +-i " Mr2 3V12 /d, (c{f,} - C{fi}) [(v )2 - (v. 6)2]

Mr O vi+ M r d [, (f -d 3V(v V_)2Qj cr 2

raM 0 [rr 3 /" ( (5.17)
6ra Fr dv (C{fi} - C{f) (V 0)3 . (5.17)

In this equation, only the gyrophase dependent piece of the distribution function

enters in the integrals. The corrections R 1, R 2, El, E2 and pl depend on the gy-

rophase. Then fi(R, E, p, t) must be Taylor expanded around r, Eo and / 0 to get

the second order gyrophase dependent piece. The calculation is done in section E.2

of Appendix E, and the final result is

(fi - )g = ,1 (v. - ) (fmo + fMo
(- r T o9 j

r [(v i)2-(V T 1 fiMo Ze MO
40S or rt r Ti a
Mc ()2 [0 ( fiMOi Ze Oq 1[(v ) _ (v( )2r ) + " mO (5.18)

4BQj Or Or TiJ T r J (5.18)

where fMo is given in (4.76), and the subindex g indicates the non-collisional origin

of this gyrophase dependence. The gyrophase dependent piece given by (3.38) is also

necessary. For the Krook operator it becomes

v MV 2 5
(A - ) = fMo 2  v. V In T. (5.19)

f a 2Ti 2

Employing equations (5.14), (5.15), (5.18) and (5.19), I find

Mr 2  d3v (C{fi} - C{fi})[(v . ) 2 - (V _)2]4QjI
vr3p 0i 9 C (q+ 1 p r3 a 1 Pi OTi (5.20)
4Q? Or -rB or Zen Odr -4J O4Or MQ Or '

Mr a L r O upr (5.21)2 Orr dv (f - f)(v - )- =- M2r (5.21)
20s ar 2 Qj dr M f i(r
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and

S1 (5.22)
6r Or Qj J 2rQi Or MQ Or /

Substituting these results into (5.17), r 2 • i 70 = 0 gives

(4 1 Opi B(, r , U(r') 3 0 IP )U (r')
c += rB(r) dr In B(r') - In I

Or Zeni Or o r' Or' 2 Or' r' '
(5.23)

where U = (2/M 2 i)(OTi/Or). Notice the difference between this equation and (4.84).

In particular, notice that for an isothermal fMo, OTi/Or = 0, a radial Maxwell-

Boltzmann response is recovered from (5.23) as expected, but this is not a feature of

the non-physical forms (4.82) and (4.84).

Finally, I remark that equation (5.17) gives a radial transport of toroidal angular

momentum i. d 0 6 2(v/1i)pi, corresponding to the term in the vorticity equation

V x(V ) = (rr -- enevi/L. (5.24)
B r Or rIB Or Q

The radial current density represented by this term is too small to be recovered with

a gyrokinetic equation good only to order b6ffMivi/L, as already shown in section 4.5.

5.3 Distribution function and potential to second

order

To evaluate (5.10), the ion distribution function and the potential have to be found

to order 632fMi and 6jTe/e, respectively. In this section, I show how both the distri-

bution function and the potential can be calculated to higher order without the full

second order Fokker-Planck and vorticity equations. I take advantage of the usually

small ratio 1/q ~ Bp/B < 1, where q(O) = (27r) -1 f d(B - V(/B - VO) is the safety

factor, and Bp = IV4|/R is the poloidal component of the magnetic field. Expanding

in q > 1, I will find the ion distribution function to order q6i2fM, neglecting terms
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of order G6 fMi. The potential is calculated consistently with this higher order solu-

tion for fi by employing a higher order vorticity equation. Importantly, the vorticity

equations obtained in this section only give to higher order the short wavelength, non-

axisymmetric part of the potential. The axisymmetric piece of the potential must be

calculated employing another equation. The axisymmetric component is composed of

the flux surface averaged piece, given by the conservation of toroidal angular momen-

tum equation (2.21) and the higher order viscosity (5.10), and a poloidally varying

modification. The poloidal variation is the Geodesic Acoustic Mode (GAM) response

[68, 69]; the initial transient of an axisymmetric perturbation in the potential. The

perturbation initially induces poloidal density variations that rapidly Landau damp

towards a constant zonal flow known as the Hinton-Rosenbluth residual [10, 11]. This

initial decay or GAM is axisymmetric and thus does not drive radial transport. It

can, however, shear the turbulence. The lower order vorticity equations (4.45) and

(4.53) reproduce the lower order GAM response. The new higher order vorticity

equations derived in this subsection will not have, however, higher order corrections

to GAMs. It is relatively straightforward to calculate the higher order corrections

analytically, but they complicate the vorticity equations unnecessarily since in reality

the GAM response is believed to be less important than the Hinton-Rosenbluth resid-

ual, that is adequately kept by the gyrokinetic ion Fokker-Planck equation (3.39) and

the toroidal angular momentum conservation equation (2.21). For this reason, I will

drop the higher order axisymmetric corrections to the gyrokinetic vorticity equations

(4.45) and (4.53).

In subsection 5.3.1, I show that equation (3.39) is enough to calculate the distri-

bution function to order q6b~fMi. I also argue that the second order corrections R 2

and E2 are not needed since they only provide corrections of order 6fmi. Employ-

ing these two results in subsection 5.3.2, I extend the gyrokinetic vorticity equations

(4.45) and (4.53) to give the electrostatic potential consistent with the higher order fi.

To do so, I develop an extended gyrokinetic equation in the physical phase space, as

I did in subsection 4.3.1, but now to order q6'fMivi/L. Taking moments of this equa-

tion, I obtain the new extended vorticity equations that retain the short wavelength,
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Figure 5-1: High flow ordering for the ion parallel velocity with Bp/B < 1. Notice
that the poloidal projection of the E x B drift must be comparable to the poloidal
projection of the ion parallel velocity, giving VE - (Bp/B)Vill , (B,/B)vi < vi.

non-axisymmetric pieces of the potential to higher order.

5.3.1 Higher order ion distribution function

To find fi (R, E, p, t) to order 652fMi, it is necessary to solve a higher order gyrokinetic

Fokker-Planck equation. Similarly, for the higher order potential, it is necessary

to find a higher order gyrokinetic vorticity equation. In this section, I show that

under certain assumptions, the second order gyrokinetic Fokker-Planck and vorticity

equations can be easily deduced from their first order versions.

There has already been some work in transport of toroidal angular momentum

in gyrokinetics. For these studies, it was necessary to realize that the Reynolds

stress tends to vanish to order 65 Pi in the low flow limit, becoming of order 63pi.

In references [65, 66, 70] the revised approach is ordering the parallel velocity as

comparable to the ion thermal speed. Since for sonic velocities, the plasma can only

rotate toroidally [71, 72], a sonic parallel velocity requires, in general, a sonic E x B

drift to cancel its poloidal component. However, sonic E x B drifts invalidate the

gyrokinetic derivation of chapter 3. To avoid this problem, references [65, 66, 70]

do not reach sonic E x B velocities because they take advantage of the expansion

parameter Bp/B < 1. The perpendicular Ex B drift is small compared to the thermal

speed by Bp/B, making the traditional gyrokinetic formulation based on subsonic

E x B motion still valid [see figure 5-1]. Under these assumptions, the toroidal velocity
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is given by -cR(0q/0), and the radial transport of toroidal angular momentum is of

order 52pi, as can be found from equation (5.5). The term with the time derivative in

equation (5.5) is still negligible if the turbulence reaches its statistical equilibrium, but

the collisional term, proven to vanish for up-down symmetric tokamaks in section K.2

of Appendix K, contributes to order 62pi because the sonic parallel velocity breaks the

up-down symmetry by introducing a preferred direction in the Maxwellian. Similarly,

the Reynolds stress (5.6) in this case is of order 6bpi. In reference [66], the Reynolds

stress is calculated employing the 6f code GYRO with sonic parallel velocities, and

it does not vanish to order 6bpi, as expected.

This approach has the disadvantage of making the toroidal velocity only depend

on the radial electric field 00/00. Density and temperature gradients cannot compete

with the radial electric field, and therefore it is not possible to recover naturally the

isothermal radial Maxwell-Boltzmann solution, or the dependence of the velocity on

the temperature gradient. I propose an alternative approach with subsonic velocities

that at the same time avoids solving a full second order gyrokinetic equation. It

exploits the extra expansion parameter Bp/B < 1 in a different manner.

In the new ordering with Bp/B < 1, the parallel gradient is of order 1/qR, with R

the major radius and q - B/B, > 1 the safety factor. As in section 4.1, the ion and

electron zeroth order distribution functions are assumed to be stationary Maxwellians

with only radial dependence, i.e., fi - fMi(o) and fe _ fMe(0). With the new order-

ings, the size of the first order correction to the Maxwellian hil changes depending on

the nature of the correction, i.e., depending on whether it is turbulent, due to non-

axisymmetric potential fluctuations, or neoclassical, given by the long wavelength,

axisymmetric pieces. For the neoclassical banana regime pieces, the term vE" VRfi

is negligible [recall the discussion in section 4.1], and the neoclassical correction hn is

determined by a balance between the parallel streaming term ub* VRh" (vil/qR)h

and the magnetic drift term vM VRfMi- (pi/R)vifMi/a, giving a neoclassical piece

of order hyn _ q6 ifMi when the transit average collisional constraint is satisfied. On

the other hand, in tokamaks, turbulence is driven by toroidal drift wave modes in

which the parallel streaming term ub - VRfi is of secondary importance. The turbu-
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lent contributions h b are determined by the competition between the magnetic drift

term VM VRh b and the E x B drift term v - VRh b . The orderings of (3.1) still

hold, giving that for k±pi - 1, h i/f ., eqtb/T, - 6i. The turbulent contribution

h b is then smaller than the neoclassical piece h' by a factor of 1/q.

To calculate the axisymmetric radial electric field in a completely general manner,

the gyrokinetic treatment needs to be extended to provide the pieces hi2  
6 fMi Of

the ion distribution function. This would require calculating the gyrokinetic Fokker-

Planck equation (3.39) to higher order, i.e., obtaining the time derivatives of the

gyrokinetic variables R, E and p to an order higher in 6i. However, as just noted, there

are terms that are larger by q > 1. Instead of calculating the complete O(6i2fMivi/L)

gyrokinetic Fokker-Planck equation, I will only keep the terms that are larger by q.

To identify these terms, I let fi = fMi + hil + hi2 +... and then write the gyrokinetic

equation for the second order perturbation as

Ohi2 (Cnfc)( 2) = V
& + [ub(R) + Vd] . VRhi2- )(2 ) = -Vd " VRhil

-it (2 ) VR(fMi + h b )  Ze [u(R) + VM] - VR() -hi + (2) (5.25)
M1E T

with (C{fi f})(2) = (C{ff}) - (C(e){fi + hi1}), R(2) = (i) - [ub(R) + Vd] and

k(2) = (E +(Ze/M)[ub(R)+vM].VR(¢). Here, (C{f}), (E) and (R) are calculated

to order 62viifMi, 6iv3/L and 62vi, respectively; an order higher than in equation

(3.39). Notice that the first order correction hil enters differently depending on

its nature. The turbulent short wavelength piece h b has large gradients and it is

multiplied by the small quantity I (2) , while the gradient of the neoclassical piece hncf

is small but is multiplied by the lowest order term vd > 1( 2)

On the right side of equation (5.25), the dominant terms are -Vd VRh' c and

(Ze/M)[ub(R) + VM] VR(¢)(Oh n/OE) because hn, is larger than all other terms

by a factor of q. The higher order corrections R (2) and E(2) are finite gyroradius

correction that do not contain any q factors. Since hn' determines the parallel velocity

and the parallel heat flow, the term vd VRhn represents the effect of the gradient

of the parallel velocity and parallel heat flow on turbulence. This term is not kept
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in 6f flux tube codes because only the short wavelength pieces of the first order

correction to the distribution function are calculated. We see from (5.25) that it is

possible to simply add this neoclassical term to the 6f gyrokinetic equation along with

(Ze/M)[ub(R) + VM] VR(q)(Ohn/OE). In full f codes, the distribution function

is solved from the lowest order equation (3.39). In this equation, the terms -Vd

VRh and (Ze/M)[ub(R) + vM] - VR(¢)(Ohnc/oE) are naturally included, so it is

not necessary to write the gyrokinetic equation to higher order than (3.39).

As for hil, the function hi2 has a turbulent piece h b , and a neoclassical piece hn.

The turbulent piece is given by the balance between the drifts Vd" VRh b - 5ivik±h'b

and the driving term vd - VRhnc  q vifMi/a, giving h b - q6ffMi for k±pi - 1.

The neoclassical piece is a result of a balance between the parallel streaming term

ub. VRhn, _ (vi/qR)h' and the magnetic drift term VM - VRhinC - (pi/R)viq6fMi/a,

leading to hic q2 
i f2 Mi.

Since h b is larger than 62fMi by a factor of q, the second order corrections R 2 and

E2 give negligible contributions to the second order piece of the distribution function.

To see this, Taylor expand fi(R, E, p, t) around Rg = r + Q- v x b, Eo and o10. Then,

the terms R 2 VRfig and E 2(OfMi/oEo), of order 62fMi, are negligible. This fact

simplifies the integration in velocity space in (5.10), since it is enough to keep only

the first order corrections R 1, El and pl. Finally, the gyrophase dependent piece

fi, defined in (3.38), vanishes [fi c_ 1 f 1 dp'(C(e){hnc} - (C(e){hn})) = 0 since

Ohnc /O o = 0].

5.3.2 Higher order electrostatic potential

In this subsection, I find the gyrokinetic vorticity equations (4.45) and (4.53) to

higher order. To simplify the derivation, I limit myself to the short wavelength, non-

axisymmetric contributions to the vorticity equation - the ones responsible for the

turbulence. The flux surface averaged component of the potential will be given by

the conservation of toroidal angular momentum. For the usually unimportant GAM

response [68, 69], it is enough to retain the first order terms, already in the lower

order gyrokinetic vorticity equations (4.45) and (4.53).
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Finding the higher order vorticity equation becomes a simple task because the

higher order corrections to the gyrokinetic variables R 2 and E 2 are negligible. Quasineu-

trality must be enforced for the gyrokinetic Fokker-Planck equation with the new

terms Vd - VRh" and (Ze/M)[ub(R) + VM] Va(0)(Ohn/OE), and a O(q6/2fMi)

distribution function given by

fi (R, E, p, t) fiG Mi + hnc) 1 i (5.26)

with fiG = fi(Rg, Eo, ,t), Rg =r + Qlv x b and pg = p - Ze/MB k o.

In expression (5.26), hnC(R, E, p, t) - hnC(r, Eo, Po, t). It is convenient to extract the

ZeO/MB portion of p by introducing pg so we can take advantage of previous results.

As I did in section 4.3, I will find the vorticity equations by taking moments of

the gyrokinetic Fokker-Planck equation (3.39); in this case to order qSbfMivi/L. To

write (3.39) in physical phase space, I will first find the evolution equation for fiG.

Equation (3.39) gives the evolution of fiG if R is replaced by Rg, E by E and p by

pg, giving to order qb2fMivi/L

OfiG rv  [ Ze 0 ]Of + [ugb(Rg) + v] - VRfiG - VR () (fi + hnc) =
r,v y fi ME

(C{ fi) R-,Rg,E-EO, -- g, (5.27)

with

2

Vdg g)(Rg) X VRgB(Rg) + Q (Rg) x n(R,)

B(R VR () (Rg, ig,t) x b(Rg) (5.28)

and

Ug - V2[Eo - gB(Rg)] = 2[E - pB(R)] = u, (5.29)

where El = ZeO/M and p - ,g = Zeq/MB(Rg) cancel exactly to give the second

equality. In equation (5.27), I have neglected terms of order J6 fMi by taking the

approximation &fiG/Eo - o(fMi + hnc)/OEo.
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Equation (5.27) needs to be written in the physical phase space variables. To

the order of interest, VRgfiG = VRgr. VfiG + VRgLo(Ohl 0io) and VR,()

Vagr, V(), with VaRIO = -VR,,PlO --Vp 10 and pg - /Io = plo = pi - Ze/MB.

Then, equation (5.27) becomes

OfiG + [ub(Rg) + VMo + VEO VR,r. fiG Ze O a (fM i  hnc)

9t r,v i

-vlb Vt10 2 i = (C{jf}).(5.30)
Opo

Here, the term (Vdg - VMO - VEO) VRfiG - JfMivi/L has been neglected. In the

collisional term (C{fi}) in (5.30), it is necessary to consider pieces of order q52vfiifMi

that come from the gyroaverage of C(e){hn} performed holding the higher order

gyrokinetic variables Rg, E and p fixed, with C(e) the linearized collision operator.

These terms are not considered in Appendix H, where the gyrokinetic variables are

approximated by Rg, E and po. Fortunately, the collision frequency is usually small,

making these terms negligible. Ignoring these terms and assuming that the collision

operator can be treated as in Appendix H is reasonable and simplifies the rest of

the derivation. Finally, employing the results in section F.2 of Appendix F, equation

(5.30) gives

anfiG nnc
&i v B fiG V' LRg [ 0 Mi + h) -l 10

o [(fMi + hi )B, VlO (fMi + h n) Z r) -~)

= (C{fi}), (5.31)

with R-VR.r from (4.15). Notice that equation (5.31) is equivalent to equation (4.23)

except for the changes fMi -- fM + hn and fig fiG.

The same moment equations that were obtained with (4.23) can be found for

equation (5.31), but now with fiG instead of fig and fMi + hic' instead of fMi. The

differences between equations (4.23) and (5.31) are enough to invalidate some of

the cancellations that were found in Appendix G. For example, in the momentum
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conservation equation for ions (4.38), the piece of the viscosity M f d3v figvUOVi±,

with v 10 given in (4.16), reduced to M f d3v figvliVI because the small correction

M(vllo - vll)v±, composed of terms that are either odd in vll or in v±, vanished when

integrated over the lowest order Maxwellian. In the new vorticity equation, terms of

order q62pi/L must be retained in the momentum conservation equation, leading to

a new non-vanishing term M f dav hn~(vilo - v 1)v 1 . Fortunately, most terms like this

one are axisymmetric and only enter in the calculation of the flux surface averaged

radial electric field and the higher order GAM response. To calculate the flux surface

averaged radial electric field, the toroidal angular momentum conservation equation

is to be used, and to simplify the equations I ignore the higher order corrections to the

GAM response that is expected to be unimportant, as already discussed. Therefore,

the vorticity equation is only employed to solve for the non-axisymmetric, turbulent

fluctuations in the potential, and many of the cancellations employed in Appendix G

are recovered. Additionally, the difference fiG - fig L (Pg - ipo) (Ohn/&io) - q6i fMi is

also a long wavelength, axisymmetric piece, and it will not enter in the equations for

the non-axisymmetric electric field. Then, fiG can be approximated by the simpler

distribution function fig =- fi(Rg, E 0, Po, t). The generalized particle conservation

equation can be found following section G.1 of Appendix G by ignoring the purely

axisymmetric contributions of hi. Then, the non-axisymmetric component of particle

conservation is

S +n - + . niV b + niVigd + n ViE+ fi + nVic) = 0, (5.32)

with
(2) 3Ze Z e h +1 O h n - d fMi d3v + (5.33)

Ti M dEo B 9,o

and

ni (2 dv figvI n Vill. (5.34)

The rest of the terms in (5.32) are as defined in subsection 4.3.3, although now the tur-

bulent second order contribution h implicitly enters in the integrals via the solution
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fi to the full gyrokinetic equation (3.39). The non-axisymmetric piece of the mo-

mentum conservation equation can be obtained following section G.2 of Appendix G,

finally giving

£ (niMVig) + b[. V'Pill + (Pig I - pigi)V b + V -rigll] + V. igx=

Xl r (2) (2)-Zenib (6 + x ) ) V$ + iE+ F + Fic, (5.35)
nc VnV

with niVill = fd vi lnh

(2) 3V (fM1, nciE = Ze dv ( f +i hi) + x K + V x v ) (5.36)

and

F) dv Mfgv1 b. v + d B (fmi + h )( x f)l Vv 1 . (5.37)

Again, the rest of the terms are as defined in subsection 4.3.4, but with the higher

order piece h b implicitly included.

The moment equations (5.32) and (5.35) can be used to extend the gyrokinetic

vorticity equations (4.45) and (4.53) to order q62enevi/L. Combining equation (5.32)

with the electron number conservation equation (4.26) gives the vorticity equation

(Zen)) = V J + Jgd + Ji+ ZenjVj + ZenjVic), (5.38)

with

J(2) = Zenii - eneVe1, (5.39)

and the rest of the terms as defined in subsection 4.4.1 with h b implicit. Finally,

combining (5.38) with (5.35) gives

= V. [J) + Jgd + J) + b x (V. iG) + ZenVic - Fic] (5.40)
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with

2) ('e I 3V 2Z22 nc 1 nc
w ) = V. - dv fivx b - dv Z e + _ hv __1h

G QTi M MEo B o90o
(5.41)

Zec V b (5.42)
J BQ b x d3v (fuM + h~flc)(V x b) -v 1 , (5.42)

and the rest of the terms as defined in subsection 4.4.2. Both equations (5.38) and

(5.40) can be used to find the short wavelength non-axisymmetric pieces of the po-

tential consistent with the higher order fi. The flux surface averaged component of

the potential is given by the conservation equation of toroidal angular momentum.

Finally, it is important to remember that dropping the higher order axisymmetric

terms in equations (5.38) and (5.40) implies dropping the higher order corrections

to the GAM response [68, 69]. I expect this response to be unimportant for core

turbulence based on previous experience with tokamak core simulations.

5.4 Discussion

The fast time average of equation (5.10) provides the irreversible transport of toroidal

angular momentum across the tokamak. This irreversible transport determines the

toroidal rotation profile and hence the self-consistent radial electric field.

It is expected that the fast time average of equation (5.10) is of order 63pi, requiring

then a distribution function good to order 6 fMi and a potential consistent with this

higher order distribution function. It is in principle possible (if not in practice) to

obtain a gyrokinetic equation able to provide such accurate results, but in this thesis

I propose an alternative approach. To simplify the problem, I take advantage of

the expansion in Bp/B < 1 to prove that the gyrokinetic Fokker-Planck equation

(3.39) is enough to obtain the distribution function up to order qSi2fMi. In 6f flux

tube codes, the distribution function cannot be calculated to higher order than 6 ifMi

because of the present implementation technique, but these codes can be adapted

by adding terms that contain the first order neoclassical correction hil . In full f

codes, the gyrokinetic equation (3.39) is fully implemented. Once the turbulence has
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Solve Fokker-Planck equations
for ions (3.39) and electrons (3.49)
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Solve gyrokinetic
vorticity equation (5.40)

Solve toroidal angular momentum
conservation equation (2.21) + (5.10)

STurbulent ( /

Figure 5-2: Procedure proposed to obtain the long wavelength axisymmetric radial
electric field.

reached statistical equilibrium, the long wavelength axisymmetric flows must be close

to the neoclassical solution, and the orderings described in this chapter hold, leading

to solutions valid up to qi2 fMi.

Finally, I have extended the gyrokinetic vorticity equations (4.45) and (4.53), and

written them in (5.38) and (5.40). These vorticity equations have only been found for

non-axisymmetric pieces of the potential, giving then the non-axisymmetric turbulent

fluctuations consistent with the higher order fi. The flux surface averaged component

of the potential cannot be calculated from these vorticity equations, but it can be

solved from the conservation of toroidal angular momentum (2.21).

The method proposed to self-consistently solve for the long wavelength axisym-

metric radial electric field in the presence of drift wave turbulence is summarized in

figure 5-2. To be specific I employ the higher order gyrokinetic vorticity equation
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(5.40). The solution must be reached by time evolution of q, fi and fe. Employing

the gyrokinetic Fokker-Planck equation (3.39) and the electron drift kinetic equation

(3.49), the ion and electron distribution functions fi(R, E, p, t) and fe(r, E0, po, t)

are evolved in time. To find the corresponding electrostatic potential, we first split

it into the flux averaged component and the turbulent piece by, for example, Fourier

analyzing it into toroidal and poloidal modes. For the turbulent pieces, we must em-

ploy the higher order gyrokinetic vorticity equation (5.40). The flux surface averaged

component of the potential is obtained by evolving the axisymmetric toroidal rota-

tion Vi ( with equation (2.21) and the viscosity given in (5.10). Once the toroidal

rotation is found, the axisymmetric radial electric field is obtained using the lower

order result (4.4) to write

RniV - 3= d fi,R(v ) - d fM:R(v. .)

-Iu( - z-- O + Zeni2  (5.43)
k pi --4 0 Ze ( 00 80

where to write this last expression I have used the neoclassical relation (4.2). Here, fig

depends implicitly on 0(o). Finally, the turbulent and flux surface averaged compo-

nents of the electrostatic potential are added to obtain the total electric field, and the

distribution functions fi and fe may be evolved in time again. Notice that equation

(5.10), employed here to find the radial electric field, requires that the radial wave-

lengths be longer than the ion gyroradius. This limitation is probably unimportant

since the zonal flow is characterized by kIpi - 0.1 [12].
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Chapter 6

Conclusions

In this thesis, I have proven that the current gyrokinetic treatments, composed of a

gyrokinetic Fokker-Planck equation and a gyrokinetic quasineutrality equation, can-

not provide the long wavelength, axisymmetric radial electric field. Employing the

vorticity equation (2.9), I first showed that setting the radial current to zero to ob-

tain the axisymmetric radial electric field is equivalent to solving the toroidal angular

momentum conservation equation, given in (2.21).

In chapter 3, I present a new derivation of electrostatic gyrokinetics that general-

izes the linear treatment of [58, 59]. This derivation is useful in chapter 4 to study the

current conservation or vorticity equation in steady state turbulence. To simplify the

problem, I assume that, in statistical equilibrium, the turbulent fluctuations within a

flux surface must be small by 6i = pilL because of the fast transport along magnetic

field lines. Then, the long wavelength axisymmetric flows must remain neoclassical,

and the tokamak is intrinsically ambipolar even in the presence of turbulence, i.e.,

(J -Vo), - 0 for any long wavelength axisymmetric radial electric field. According to

the estimate in (4.9), the radial current density associated with transport of toroidal

angular momentum is so small that modern gyrokinetic treatments are unable to self-

consistently calculate the long wavelength radial electric field. For most codes, long

wavelengths are those above /piL.

To solve this issue, I propose to solve a vorticity equation instead of the gyroki-

netic quasineutrality equation. The vorticity equation has the advantage of showing
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explicitly the dependence on the transport of toroidal angular momentum. I have

derived two approximate gyrokinetic vorticity equations. Vorticity equation (4.45)

is similar to the gyrokinetic quasineutrality equation, and vorticity equation (4.53),

on the other hand, is constructed to resemble the full vorticity equation (2.9). The

two gyrokinetic vorticity equations (4.45) and (4.53) are equivalent to the full vortic-

ity equation (2.9) within terms of order 6i. The long wavelength radial electric field

cannot be found from these gyrokinetic vorticity equations because they are miss-

ing crucial terms. However, they satisfy a very desirable property explicitly, namely,

the long wavelength toroidal velocity tends to be constant for the short turbulence

saturation time scales.

To complement the gyrokinetic vorticity equation, I propose using the conserva-

tion equation for the toroidal angular momentum (2.21), where the toroidal-radial

component of the ion viscosity (R. 7i .V?')p is given to order 63pi in (5.10). Unfor-

tunately, expression (5.10) requires a distribution function and a potential of order

higher than calculated in gyrokinetic codes. In section 5.3, I show that, for q > 1,

the ion distribution function can be found to high enough order by employing the full

f gyrokinetic equation (3.39). The gyrokinetic vorticity equations (4.45) and (4.53),

however, have to be extended to determine the higher order potential. Equation

(5.38) and (5.40) are the higher order versions of (4.45) and (4.53).

To summarize, to obtain the self-consistent electric field, it is necessary to re-

frain from using the lower order gyrokinetic quasineutrality equation. Instead, the

electric field has to be found by employing a higher order formulation like the pro-

posed vorticity equation (2.9). Moreover, since the axisymmetric contributions to the

vorticity equation are equivalent to the conservation of toroidal angular momentum,

only the non-axisymmetric pieces of the potential must be found by employing higher

order gyrokinetic vorticity equations like equation (5.38) or equation (5.40). The

axisymmetric electric field should be found from (2.21) employing the toroidal-radial

component of the ion viscosity in (5.10). At the same time, the ion distribution func-

tion evolves according to (3.39). In order to implement this methodology, I foresee

several steps. First, the lowest order gyrokinetic vorticity equations (4.45) and (4.53)
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should be implemented in 6f flux tube codes. These codes are well understood and

easy to study. Equation (4.45) is appealing since it is very similar to the gyrokinetic

quasineutrality equation. If the vorticity equations show good numerical behavior in

6f flux tube codes, they should be then implemented in full f codes. For runs that

stay below transport time scales, these vorticity equations are still valid. Finally,

the transport of toroidal angular momentum given in (5.10) must be studied. To

do so, it is necessary to calculate the potential and distribution function to higher

order, requiring then the higher order versions of the gyrokinetic vorticity equations

(5.38) and (5.40). Again, it will probably be easier to study these equations and the

transport of toroidal angular momentum in 6f flux tube codes first, and then, finally,

implement this method in full f models.
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Appendix A

Derivation of the gyrokinetic

variables

In this Appendix the detailed calculation of the gyrokinetic variables is carried out. In

section A.1, the gyrokinetic variables are computed to first order in 6i. In section A.2,

the gyrokinetic variables R and E are extended to second order, and the gyrokinetic

magnetic moment p is proven to be an adiabatic invariant to higher order. Finally,

in section A.3, the Jacobian of the transformation from the variables r, v to the

gyrokinetic variables is calculated. The Jacobian is employed to write the gyrokinetic

equation in conservative form.

A.1 First order gyrokinetic variables

It is convenient to express any term that contains the electrostatic potential ¢ in

gyrokinetic variables, mainly because the electrostatic potential components with

kIpi - 1 cannot be Taylor expanded. In order to do so, I will develop some useful

relations involving the potential 0 in subsection A.1.1. With these relations, the first

order corrections, R 1, El, pl and pl, are derived.
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A.1.1 Useful relations for 0

I first derive all possible gyrokinetic partial derivatives of 0 and their relation to one

another. To do so, only R = r + Q lv x b + O(6iL) is needed.

The derivative respect to the gyrocenter position is

VR¢(r) = V¢ + VR(r - R) - V = V0 + O(6iTe/eL) - V4. (A.1)

The derivative respect to the energy is

0 = (r - R) - V0 = O(62M/e) 2 0, (A.2)
dE E

since r - R only depends on E at O(6iL).

Using r - R oc v/i(6 1 sin o - e2 cos 0), the derivatives with respect to p and 0 are

calculated to be

04 _ ( Mc
-(r - R)- V0L- (v x b) V0 (A.3)

0A 85p Zevi

and
0 _ & 1S (r - R) -V0 -- vi - V0. (A.4)

I will need more accurate relationship than (A.1) and (A.4) for the second order

corrections. They will be developed in subsection A.2.1.

A.1.2 Calculation of R 1

The first order correction R 1 is given by (3.9), where in this case, Qo = Ro = r.

The total derivative of Ro is dRo/dt = v = v~b + v±, and its gyroaverage gives

(dRo/dt) = vllb + O(6ivi). By employing v1 = 0(v x b)/0Oo, equation (3.9) gives

(3.14).
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A.1.3 Calculation of El

The first order correction El is given by (3.9), where Qo = Eo = v2/2 and dQo/dt =

dEo/dt = -(Ze/M)v -V¢. It is convenient to write El as a function of R, E, p and

p. To do so, I use (A.1) and (A.4) to find

-v . V¢ = -vb V - v - V -v b - Va- +v1b. (A.5)

Notice that b VR$ < b. VR(¢) because q is smaller than (¢). As a result, dEo/dt -

-(Ze/M)vll b VR(¢) + (ZeQi/M)O/8O9 and (dEo/dt) = -(Ze/M)vllb - VR(4) +

O(jiv /L). Then, equation (3.9) gives (3.25).

A.1.4 Calculation of pl

The first order correction yp is given by (3.9), where Qo = po. The zeroth order

gyrophase 'po is defined by equation (2.2). According to this definition, upon using

V, 0 = -2v x ib and Vo = (vII/vI)Vb. (v x b) + Ve 2 61, the total derivative

of ~O is

do Z 2e2  2 U1=-Q +(vx )- VIn Q+ XV- x V 2 1
dt M 2c Op v

2v2I

where the potential O(r, t) and the gyrofrequency 9Q(r) have been written as functions

of the gyrokinetic variables by using (A.3) and Qi(r) __ Qj(R) + (r - R) - VQS,

respectively, and I have used the relations (v v±) v±v± = (vI/2)(I -bb) and

1
v v1 - (vIvI) = 2[v±v± - (v x b)(v x b)]. (A.7)

Here, (...) is the gyroaverage holding r, v 1, v1 and t fixed, and (...) is the gyroaverage

holding R, E, p and t fixed. These two gyroaverages are equivalent in this case

because the functions involved do not have short wavelengths. A detailed derivation

of (A.7) and other velocity relations can be found in Appendix B.
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In equation (A.6), the function Qi is given by equation (3.31). Upon gyroaveraging

(A.6), I obtain (dcpo/dt) = -ni + O(5bji). Finally, pl is obtained from (3.9) by

employing v x b = -Ov±/_0po and

10
viv - (v x b)(v x b) = [vi(v x b) + (v x b)vj], (A.8)

2 o9o

giving equation (3.29). Relation (A.8) is proven in Appendix B.

A.1.5 Calculation of y1

Calculating p 1 requires more work than calculating any of the other first order cor-

rections since we want p to be an adiabatic invariant to all orders of interest. This

requirement imposes two conditions to pl. One of them is similar to the requirements

already imposed to R 1, El and pl, dpo/dt - Qj(Optt 1/Op) = (d[o/dt) = 0, but there

is an additional condition making p0 + p1 an adiabatic invariant to first order,

d-(/o + /Il) = (6- 1 . (A.9)

The solution to both conditions is given by

ti = I j d Cp t dt + (1i). (A.10)

Notice that the only difference with the result in (3.9) is that the gyrophase indepen-

dent term, (pl), must be retained, making it possible to satisfy condition (A.9).

Employing Vpo = v±/B and Vpo = -(v /2B 2 )VB - (vll/B)Vb v, I find that

the total derivative for [0 = v /2B is

dpo Ze _ V F

dt MBv VV- 2 B2 V B-
[v v - (v x b)(v x )] : Vb, (A.11)

2B

where I have used the relations (v v±) _ vvj = (v_/2)(I -bb) and (A.7).

Notice that the gyrophase independent terms in (A.11) cancel exactly due to
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b -V In B + V - b = 0, making 0o an adiabatic invariant to zeroth order. The term

that contains 4 in (A.11) is rewritten as a function of the gyrokinetic variables by

using (A.4), to give -(Ze/MB)v -V = (ZeQi/MB)O5/Oo.

Applying (A.10), pi is found to be given by (3.34). To get this result, I have

employed v- = O(v x b)/0o and (A.8). The average value (Pl) = -(vlI v/2BQi)(b

V x b) was chosen to ensure that condition (A.9) is satisfied. In previous works

[19, 73], it has been noticed that solving (A.9) may be avoided and replaced by

imposing the relation E = [dR/dt -b(R)]2/2 + tB(R) on the gyrokinetic variables.

This procedure works in this case, and allows me to find (p1). I will prove that the

chosen (p1) satisfies condition (A.9) in subsection A.2.4.

A.2 Second order gyrokinetic variables

To construct the gyrokinetic variables to second order, higher order relations than

the ones developed in subsection A.1.1 are needed to express € as a function of

the gyrokinetic variables. These extended relations are deduced in subsection A.2.1.

Using them, the second order corrections R 2 and E 2 and the gyrophase independent

piece of the first order correction (p1) are calculated. The magnetic moment and the

gyrophase are not required to higher order.

A.2.1 More useful relations for ¢

To calculate the second order correction E2 and the gyrophase independent piece (P1),

the expressions b - (V¢ - VRa) and v -V must be given in gyrokinetic variables to

order 6iTe/eL and 6iTevi/eL, respectively.

For b - (V - VRO), I use VO = VR VRa + VE(9/OE) + Vp((O/Op) +

V9(0/0op) to write

00 00(A.12)

b - (V - Vae) -- b - VR . VR + b. - Vpo + b -Voa (A. 12)

where I have neglected higher order terms. Here, it is important that the gradient is
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parallel to the magnetic field, since R 2 , t1t and p have pieces with short perpendicular

wavelengths that are important for the perpendicular component of the gradient. Em-

ploying VR 1 = -Q- 1 [(V In B)(vx b)+V x v], Vpo = -(v2/2B 2)VB-(vll/B)Vb.v,

V o = (vll/v)Vb (v x b) + V62 . 1 and the lowest order relations (A.3) and (A.4)

for 00/p and 00/0p, I obtain

b (VO - tVO) = -- (b - VB)(v x b) - VO
2BOi

0i (A.13)
b- Vb -(vx b)(b • V) + b- Ve2 . e . (A.13)

To find this result, I have used

vIl 04a v11  i-b Vb -v±L + b - Vb -(vx b)- = vjLb - Vb - (b x V¢), (A.14)
B By v,  o O,

where I employ (A.3) and (A.4) for &0/&p and 0¢/&0p, and the relation v±(v x b) -

(v x b)v± = v (I x b). This relation is obtained from the fact that vi and v x b

expand the vector space perpendicular to the magnetic field, giving v v1 + (v x

b)(v x b) = v,(I -bb).

To calculate v -VO, I use that the total time derivative for 0 in r, v variables is

dt = - + v -V, (A.15)
r

while as a function of the new gyrokinetic variables it becomes

S+ R +E + . (A.16)
dt Ot RdE

Combining these equations gives an equation for v . V¢,

/t r  tR, p (.17)

where the left side of the equation is of order O(Tevi/eL). I analyze the right side term

by term, keeping terms up to order 6iTevi/eL. Noticing that ¢(r, t) = O(R+(r-R), t),
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the partial derivatives with respect to time give the negligible contribution (0q/tr -

¢0/t R, E, ,,W) = -(r - R)/Ot. V¢ = O(62Tevi/eL), since the time derivative of

r - R can only be of order 6vi for a static magnetic field. The partial derivative with

respect to E is estimated in (A.2), giving that E 04/E = O(6jTevi/eL) is negligible.

The total derivative R has two different components, which I will calculate in detail

in subsection A.2.2. These components are the parallel velocity of the gyrocenter,

ub(R), of order vi, and the drift velocity, Vd, of order 6ivi. Using this information, I

find ub(R) VR = O(Tevi/eL) and Vd -~V = O(6iTevi/eL). Finally, the last term

in the right side of (A.17) is (0¢/o9) = O(Tevi/eL), since b - Qj and &0/01 =

o/ olp 6~Te/e according to (3.17). Neglecting all the terms smaller than 6iTevi/eL,

equation (A.17) becomes

-v - V¢ = -ub(R) -VRO - Yd. VRO + -i ¢  (A.18)

A.2.2 Calculation of R 2

The second order correction R 2 is given by (3.10), where Qo = Ro = r and Q1 =

R1 = Ql1v x b. The total time derivative of Ro + R 1 is

d c
(Ro+RI) =vb-v.V( xv- -V x b, (A.19)

and its gyroaverage may be written as (d(Ro + R 1)/dt) = ub(R) + Vd, where u =

(vl) + (v2/2Q)(b . V x b), and vd has been already defined in (3.20). The function

u can be written as a function of the gyrokinetic variables. I express vil as a function

of r, E and Po, expand around R, E and p, and insert R 1, it1 and E1 to obtain

2

vII = /2(E0 - PB(r)) - V2(E - pB(R)) - I V x
2Qj

- I Vb(vxb)V- [v (v b)+ ( vx b)vI] : Vb. (A.20)
Qj 4Qj

Finally, gyroaveraging and using (v1 (v x b) + (v x b)v±) = 0 [a result that is deduced

from (A.7)] give u = /2[E - pB(R)], which can be rewritten as (3.23).
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Using (A.19) and (A.20), Taylor expanding b(r) about R and inserting the result

into (3.10) gives (3.15) and (3.19). To integrate over gyrophase, v x b = -Ov / o

and (A.8) have been used.

A.2.3 Calculation of E2

Equation (3.10) gives E2, where Qo = Eo = v2 /2 and Q1 = El = Zeq/M. The

total derivative of Eo = v2/2 can be expressed as a function of the new gyrokinetic

variables to the requisite order by using (A.18) to obtain

dE Ze Ze 04dt = --- V- 2 - i 00 [ub(R) + ]vd VR . (A.21)
dt M M Op

From the definition of El = Ze /M, use of gyrokinetic variables yields

dE _ Ze Of 00--dt =- - - + [ulb(R) + Vd] VR- i (A.22)

Adding both contributions together leaves

d(Eo + El) = [ub(R)+ Vd] VR(q) + e (A.23)
dt M [(M at

As a result, E2 is as shown in (3.26), and to this order, dE/dt is given by (3.27).

A.2.4 Calculation of (p,1)

In this subsection, I will check that (p1) = -(v jv_/2BQt)) - V x b satisfies the

condition in (A.9). To do so, it is going to be useful to distinguish between the part

of d(po + l1)/dt that depends on ¢ and the part that does not depend on 0 at all

since these pieces will vanish independently of each other. I will write the piece of

d(po + pl)/dt that depends on 0 as a function of the gyrokinetic variables, finding

d I Ze Ze d
(o + ) Ze V VPo - V. - VvPlIr,v + d-P111, (A.24)dt M M dt
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with p 1[ = Zeq/MB and Ll Ir,v = p, - Zeq/MB. The piece of d(po + ,u)/dt that

does not depend on q is

d
dt + p)

r,v
i a 0ilr,v + V * Villr,v.a o

(A.25)

In this equation, the two first terms cancel by definition of ttlr,v, leaving

d(o
(Po + [0)

r,v
= V - V/l r,v. (A.26)

I will first prove that the gyroaverage of (A.26), (v -Vp1 r,v), vanishes to O(biv /BL)

due to the choice of (p1). Afterwards, I will prove that the gyroaverage of (A.24)

vanishes to the same order, demonstrating then that o + #1 satisfies condition (A.9).

To prove that (v -VA11r,v) = 0, the function pl r,v, is conveniently rewritten as

pu=v (vx
r,v 2 B2 i

VII (vx b)
2BaQi

2

b). VB- v--Vx
B Q-

SVb v -Vv V X b,
4BQi

where I use b -Vb = r. and (2.8) to write bI Vb - (v x b) = vj

equation (A.7) and (v±vi) = (v2/2)(I -bb) to find

1A
2[v (vx b) + (vx b)v]

(A.27)

-V x b, and I employ

: Vb = (v x b) - Vb -v - V x b. (A.28)

I will examine term by term the gyroaverage of v - V[expression (A.27)]. Employing

v V(vI/2) = -v -V(v/2) = -v v -Vv , v VvJ = v. VV. v and (vv) = (vI/2) I

+[v1 -(v /2)]bb, the first, second and fourth terms in (A.27) give

V 2B2Qi

4 V B2.xi
4 (BQ

2B2 . Vb (b x VB)
2B 2 R

2

2)
2

V x VB) b,
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( V ))

(V x b)1
Bj j

v2 2

= j b Vb (V xb)
BR,

)[ (V b)1 b

-Vxb ))
22 S(V. b)b V

4Bi

4
8B 

(v
8 BQj -b)b-Vxb 

_vi b .Vxbx b + vb~. V .4 Bai

The contribution to (v Vlllr,v) of the third term in (A.27) is calculated by using

v Vvl = v -Vb -v, (vv) = (vI/2) I +[v2 - (vI/2)]bb and

4

(vl,jVi,kEvI,vlI,m) = [(jk -8
bJ k) (Im - bibm) + (j - bjb)(6km - bkbm)

+(6jm - bjbm)(6kl - bkbz)]. (A.32)

This result is proven in Appendix B. With these relations, the third term in (A.27)

gives

(V-V 2B i (
2B~s

+ I 7: [(b
16Bli

3 2 Lb
2 ,/

-Vb.-v]

x Vb) - Vb] +

V ( ,kB4 I

v4
16BCj

16BQ-

b] V 2
4

(V. b)b -Vxb

b x Vb) . (Vb)T]

+ vi. (bxVbII ±7 4+ V B b4 B '

with (Vb)T and (b x Vb)T the transposes of Vb and b x Vb.

Several terms in equations (A.29), (A.30), (A.31) and (A.33) simplify because they

vanish. In particular, equation (2.8), with b. Vb = n, leads to b. V -(V x b) = 0 and

bV[(V x b)±/BQi] .b = -(B,)- 1 b.Vb.(V x lb) = 0. Also, b- {bV[(b x Vb)/Bj]-

b} = 0, I: [(b x Vb) (Vb)T] = -V (b Vb) b = and V [(b x Vb)/BQi]. b = 0.
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With these cancellations, I find that equations (A.30) and (A.33) reduce to

v-V v V xb = V -(bb V x)
Bji 2Bji

2 2

(V x I VB, (A.34)
B2i

where I have employed V - [(V x b)L] = -V. (bb V x b), and

V v (vx b) bv v b) Vxb
[ 2B ~  8B(V V

v2 2

+- V - (bb V x b), (A.35)
4BQj

where I have used BQib - V[(b • V x b)/BQi] = V (bb V x b) - (V b + 2b

V In B)b -V x b = V. (bb Vx b) + (V -b)b -V x b, B V - [(b x Vb)T /BQi] -b =

- I: [(b x Vb) -Vb] = -(V b)b. Vx b and

I: [(b x Vb) - Vb] = (V -b)b V x b. (A.36)

To prove this last expression, I write I: [(b x Vb) - Vb] as a divergence, giving

I: [(bx x Vb) -Vb] = V [( -. Vb) x b]- I: (b -VVb x b) + b .Vb -(V x b). (A.37)

Then, relation (A.36) is recovered by using I: (b - VVb x b) = b~ V(V x b) b =

V. (bfi. V x b) - (V -b)b V x b - b - Vb - (V x b) and equation (2.8) to write

(b Vb) x b = -(V x b), and b Vb (V x ) = 0.

In addition to equations (A.34) and (A.35), equation (A.29) can be written as

v.V 2 (vx b).VB = (Vx b) VB2B2Ri B2fh
4

4  (V )b. Vx b, (A.38)4Bfj

where I use equation (2.8) to write ib Vb - (b x VB) = -(V x b)_ - VB, and I

employ B2Q V. [(1b x VB)/B 2Q,] = (V x bi) -VB, B2Q,. V[(i x VB)/B 2RQ] .b =

136



-b Vb. (b x VB) = (V x b) -VB and b -VB = -B(V. b). Finally, I add equations

(A.31), (A.34), (A.35) and (A.38) to obtain

(v" Vtir,v) = 4Bfj V. (b. Vx I) + (V. b)b. V x

-BQib -V =b x b 0, (A.39)

the property I was trying to prove. Notice that the time derivative of (P1) =

-(vll'v/2BQi)b . V x b was necessary to obtain this result. The derivative d(pl)/dt

is in part responsible for the term (A.31).

There is still the piece of d(po + pl)/dt that depends explicitly on the potential,

given in (A.24). I will next prove that it also gyroaverages to zero, the desired result.

The terms in (A.24) must be written as a function of the gyrokinetic variables in

order to make the gyroaverage easier. I will do so for each term to the required

order. The first term in (A.24) is -(Ze/M)V. -Vvpo = -(Ze/MB)v± - VO. Using

v . VO = v - V - vlb -V and relation (A.18), I find to order 65v/BL

Ze Ze

MV4 VBo = [vllb(r) V¢ - ub(R) -VR¢]

Ze ZeQSi 90
-- Vd VR + M (A.40)
MB MB(r) Op o

In the lower order term [Zei/MB(r)](o/&cp), the difference B(r)-B(R) - -Qi 1 (v x

b) - VB is important, giving

ZeQi 0q0 ZeQi 0q cMB(r) - MB(R)- - (v VO)[(v x b) VB], (A.41)
MB(r) ap - MB(R) Oap B3

where I employ the lowest order result 00$/Op - -Q lv. V¢. The term vllb(r) •

VO - ub(R) - VRa in (A.40) is to the order of interest

vll1 (r) V¢ - ub(R) VR :-- (vl - u)b(R) • VR¢

+u[b(r) - b(R)] -VR4 + ub(R) - (VO - VRO), (A.42)
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where b(r) - b(R) _ -Qi (v x b) Vb and b(R) - (V¢ - VR¢) is given in (A.13).

The difference vii - u can be obtained from (A.20), giving

II 1I-u= - .Vb.-(v xb)- - [vX(v x b)+ (vxb)v]: Vb
vii 4Q-

1
- (v x b) Vb-v

2A
~ -b.Vx b,

4R (A.43)

where I use (A.28) to obtain the second equality. Employing (A.13), (A.41), (A.42)

and the definition of Di in (3.31), equation (A.40) becomes

Ze -
SVv/0 = MB V e) [(vll- u) 2ivj S(v x b)]

S(x b) -VCb V - 2--1[(v x b) V¢](b - VB)

B3 2B2)(b x )

Ze
Vd . VR¢ +

MB

Z 2e 2

V2c Z 3 e a3 0() 0
SMA3cB Op ) O

To obtain this form, I used the lowest order result 0/0 "- -Q'vi 1  V in the term

(v11/2)(b V x b)( /a).

The second term in (A.24) is calculated employing (A.27), giving

Ze
Ze V - Vv/llr,v =M

Ze

MB(b -.V)[ b.-Vb. (vx b) - (VII -

+ 2B2 (V4 x b) -Vb
2B2

Ze
v x b) - VB] + -v m V¢

-v + 2B2 (v x b) Vb V

+ B(v. Vq)(b. Vx b),

with v l-u from (A.43). Substituting equations (A.44) and (A.45) in equation (A.24),

the piece of d(p0 + pl)/dt that depends on q is written as

dtt
Z2 2=M c Z 3e3 0()

M 3cB Oj
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Zec d
+ B R(2 x b) -VRO + . (A.46)+AB2 (¢ X) R+ dt

Here, I have used

(VO x b) -V - (v x i) . Vb -V¢ = -(V - b)(v x b) -V¢. (A.47)

To prove this last expression, I employ V = v -2[v±v±. V¢ + (v X b)(v x b^) -V]

to find

(V4 x b) Vb -v, - (v x b) Vb. V =
1
2 [(v x b) V ][v v± + (v x b)(v x b)] : Vb. (A.48)

Upon using I -bb = vI 2[VIV± + (v x b)(v x b)], equation (A.47) is recovered.

Finally, the gyroaverage of equation (A.46) is zero. The term

d a a
tI11- 11 + RA I O + R- PL10 (A.49)

vanishes when gyroaveraged because pll, = Zeq/MB(R) gyroaverages to zero and

the gyrokinetic variables are defined such that R and b are gyrophase independent.

Notice that here it is important that B(R) in pi|l = Zeq/MB(R) depends on R and

not on r.

A.3 Jacobian of the gyrokinetic transformation

In this section the Jacobian of the transformation from variables r, v to variables R,

E, p, p is calculated, and the gyroaverage of condition (3.40) is checked.
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The inverse of the Jacobian is

VR VE Vp: Vp VR VE Vp V
I , " . . . .I . I

-+ -4 --- -4 .-- 4 1- - ------. , •I ... I .

VvR VE: Vqp< Vv 0Ei&p OV
I . I . I . . .

(A.50)

Employing that the terms in the left columns of the first form are to first approxi-

mation VR _ I and VR f Qi 1 I b, the determinant is simplified by combining

linearly the rows in the matrix to determine the second form, where

(. ..) = - x (.. .). (A.51)

The second form of (A.50) can be simplified by noticing that the lower left piece of

the matrix is zero. Thus, the determinant may be written as

J-1 = det(VR)[0E - (Op x 0o)]. (A.52)

I analyze the two determinants on the right side independently. The matrix VR

is I +V( -'v x b + R 2). Hence, det(VR) - 1 + V -(Qilv x b + R 2 ). The Jacobian

must be obtained to first order only. The only important term to that order in

R 2 is the term that contains the potential 0, since its gradient may be large, but

V - R 2 ~-V - [(c/BR)VR x b] _ 0. Therefore, the determinant of VR becomes

det(VR) = 1 - v -V x . (A.53)

For the second determinant in (A.52), I evaluate the columns of the matrix OE,
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ap and aV to the order of interest, using

1
E = v + V,E - - x VE, (A.54)

vi 1 ,
= + V,p,- b x Vp (A.55)

and
I 1

( = = v x b + Vo 1 - b x Vp. (A.56)

The determinant becomes

OE . (Op x a(Op) v + b VE + v - b) (Vvl - b x VP

7 II )
B (v b) (Vv, -~i x Vo).(A.57)

In the lower order term v1 /B(r), the difference B(r)-B(R) " -Q-'(vxb).VB ~ 5iB

is important. From the definitions of El, p, and pl, I find their gradients in velocity

space. I need the gradients in velocity space of q and a4/&p. The gradient Vv, is

given by

V = VE + V,V + VC, + VvR -VRaE ap aOp
= ×vx b + 1 x VR. (A.58)
B aO v ap +

The gradient Vv,(O//Op) is found in a similar way. The gradients in real space are

only to be obtained to zeroth order. However, some terms of the first order quantities

that contain q are important because they have steep gradients. Considering this, I

find

VE = V , (A.59)
M

VA = 'VB - Vb v + Ze (A.60)
2B 2 B MB
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and

v Ze
S Vb ( b+ V2 - (A.61)

V I'Vb v 2 1  MBV p

Due to the preceding considerations, equation (A.57) becomes

OE ( p x p) = B) [I + v.(b x ) , (A.62)

where I have employed (A.43) to express vjl as a function of the gyrokinetic variables,

and I have used (v x b). Vb.v - v. V . (vx b) = v .- V x b. This last result is

deduced from v (I -bb) = vIv1 + (v x b)(v x b). In equation (A.62), in the lower

order term u/B(r), the difference B(r) - B(R) = -0Q l(v x b) - VB is important.

Combining (A.53) and (A.62), and using (2.8) to write v - (b x K) = v± -V x b, the

Jacobian of the transformation is found to be as given by (3.44). Notice that to this

order J = (J) as required by (3.40).

Finally, I prove that J satisfies the gyroaverage of (3.40) to the required order,

namely,

OJ Ze a
+ VR - {J[ub(R) + vd]} - {J[ul(R) + Vd] - Va()} = 0, (A.63)

where Vd is given by (3.20). To first order, I obtain

McPbY Mcu c
J[ub(R) + Vd] _ B(R) + b x VRB + VaRx b - -VRa() x b, (A.64)

Zeu Ze u

where I have employed (2.8). Inserting (A.64) into (A.63) and recalling that u =

V2-[E - B(R)] is enough to prove that (A.63), and thus (3.40) gyroaveraged, are

satisfied by the Jacobian to first order.
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Appendix B

Useful gyroaverages and gyrophase

derivatives

The various derivations require various averages and integrals respect to the gyrophase

po. In particular, the integrals for terms that contain several vI are recurrent. In

this Appendix, I show how to work out these type of terms.

According to (2.2), the perpendicular velocity, v1 , is v1 = v (e^1 cos o+e2 sin o).

In order to find gyroaverages and integrals, it is useful to express the perpendicular

velocity as

v± = Re[v± exp(ipo)u] = v- [exp(i o)u + exp(-i~o)u*], (B.1)

where i = y--1, u = ^1 - ie 2 , u* is the conjugate of the complex vector u and Re(a)

is the real part of the complex tensor a. Notice also that

vi exp(i~0o)u = vI + iv x b. (B.2)

It is very common to find tensors composed of tensor products of v±,

(v±)V" -- . . . vi . (B.3)
n times
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It is possible to find a more convenient form for this tensor product by using equa-

tion (B.1). It is useful to distinguish between odd and even n. For even n, n = 2m,

2m

(VL) 2m = A1 Re{ exp(i2mopo)W(2mO) + exp[i2(m - 1) ojW (2m,1)

+... + exp(i2 o)W(2mm - 1) + W(2mm), (B.4)

and for odd n, n = 2m + 1,

2m+1

(v ) 2 m + l = V Re{ exp[i(2m + 1) o]W( 2m + 1 ,0)

+ exp[i(2m - 1)~p0]W( 2m + 1' l ) ... + exp(i o)W(2m+lm)}, (B.5)

where the tensor W(n' , ) is the tensor formed by the addition of all the possible different

tensor products between (n - p) u vectors and p u* vectors, i.e.,

W(n )  U...uu*u*...u*+ U...U u...u u*uu* ...u*+...+u*...u*u.... (B.6)
n-p p n-p-1 p-1 P n-p

There are n!/[p!(n - p)!] different terms in the summation. For example, W(1,2) has

10 summands, given by

W (5,2) = uuuu*u* + uuu*uu* + uu*uuu* + u*uuuu* + uuu*u*u

+uu*uu*u + u*uuu*u + uu*u*uu + u*uu*uu + u*u*uuu. (B.7)

The tensor W (n p) can be written in a form in which only W(n- 2p ,0) and the matrix

I -bb appear. The tensor of the form W(m,O) is more convenient because it is part

of Re[vr exp(im o)W(m,o)] and easy to write in a recognizable manner. For example,

for m = 2, employing (B.2), I find

Re[v 2 exp(i2 o)W(2 ,0)] = vIvl - (v x b)(v x b). (B.8)
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For m = 3,

Re[vI exp(i3 )W( 3,o)] = V VIV1 - VI(v x b)(v x b) - (v x b)v±(v x b)

-(v x b)(v x b)v±. (B.9)

These tensors are not only easy to write but also easy to integrate in po because

a
lm[v exp(im=o)W(mo)] = mRe[v7 exp(im o)W(m,o)], (B.10)

with Im(a) the imaginary part of the complex tensor a. Equation (B.10) for m = 2

is

o [v±(v x 1) + (v x b)vj] = 2[VIV± - (v x b)(v x b)], (B.11)

and for m = 3 is

oVo [vII(v x b) + v(v x b)vI + (v x 6)vIv- - (v x )(v x b)(v x b)]

= 3[v ±vi - v±(v x b)(v x 1) - (v x b)vl(v x b) - (v x b)(v x b)v±].(B.12)

Equation (B.11) is used in the derivation of the gyrokinetic variables.

The decomposition of W (n ,p) into W (n- 2p,O) and matrices I -bb is also interesting

for gyroaverages. According to equation (B.4), the tensor products of an even number

of vectors v 1 has the gyroaverage

2m2m - w(2mm)
(v2) 2m  2 m , (B.13)

where W(2m,m) is a summation of tensor products of p (I -bb) matrices. At the end

of this appendix, I will give the result as a function of I -bb. The gyroaverage of

an odd number of v 1 is zero, as shown in (B.5).

I will prove now that W(",p ) can be written such that it only contains W (n - 2 ,0 )

and the matrix I -bb. To do so, I will first prove that W (" ,p ) can be decomposed into

a summation of tensors formed by the product of W(n- 2p ,0) and W (2p p) . After that,
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I will show that W (2p ,p ) is formed by a summation of tensor products of p (I - b^)

matrices.

By multiplying W (n P ) by (n - p)!/[p!(n - 2p)!], (n - 2p) u vectors can be distin-

guished from the rest of u vectors. I will denote them as ud (this is a trick to make

the derivation easier). Then, a new tensor T ( n p p ) is defined as the tensor formed by

p u vectors, p u* vectors and (n - 2p) ud vectors, giving

(n - p)! W(n,p)= T(n,p,p) ud ... udu...UU U* ... U*

p!(n - 2p)! _
n - 2p P P

+ ... u d uu ... UU U*U* ... U*+...+U*...U* U... UUd .. (B.14)
n- 2p- 1 P p- 1 P P n-2p

For instance, 3W (5,2) = T (5,2 ,2) can be deduced from (B.7) to give

T(5,2,2)_ uduuu*u* + UdUU*UU* + UdU*UUU* + u*dU* + uduu*u*u

+Ud u*uu*u + u*uduu*u + ud u*u*uu + u*udu*UU + U*U*U duu

+uuduu*u* + uudu*uu* + Uu*uduu * + U*uuduU* + UUdu*u*u

+Uu*ud *U + U*UUdU*U + UU*u*udu + U*UU*du + U*U*u U

+uuudu*u* + uuu*udu* + uu+*Uudu* + u*uuuu* uuu*u*ud

+uu*uu*ud + u*uuu*ud + uu*u*uud + u*uu*uud + U*U*UUU d. (B.15)

The tensor T ( ' ,p ,p ) can be written as a combination of a tensor W(n- 2p,O) formed by

(n - 2p) ud vectors and a tensor W (2p ,p) formed by p u vectors and p u* vectors,

leading to

T(n,p ,p )  W!2p,p) w(n-2p, )  W(2p,p) w(n-2p,O)

i132...3n 31...32p 32p+1...3n 1...
3

2p-132p+1 j2pj2p+2...j n "

+W(2p,p) W(n-2p,0)_ n! W (2p p) W(n-2p,) (B.16)
n-2p+1.. n 1 ...1n-2p - (n - 2p)! (2p)! (jl... 2p 2p+1... in)

Here, the number of summands is n!/[(n - 2p)!(2p)!] because the tensors W(m,O) and

W (2p p) are symmetric respect to all of their indexes. Additionally, the tensor W( 2p ,p)

is always real, since [W(2p,p)]* = W( 2p,p) by definition of W (2p,p) . The last expression
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in (B.16) is based on the typical tensor notation, where the parenthesis around the

indexes indicate symmetrization of the tensor. As an example of the equivalence in

(B.16), the tensor T( ,5 2,2) in (B.15) may be written as

T(5,2,2) (4,2)I(1,0) + (4,2)l W (1,0) w(4,2) Vl/(1,0) 4,2) (1,0)
jklmn jklmjn jkln m jkmn 1 jlmn k

+ W (4,2) W (1,' 0)  (B.17)

with W (1,o) - u - ud, and

W (4,2) = uuu*u* + uu*uu* + u*uuu* + uu*u*u + u*uu*u + u*u*uu. (B.18)

The tensor W(2 p,p) can be rewritten employing yet a third tensor, I(2p). This tensor

is formed by adding all the possible different tensor products that are formed by p

matrices (I -bb)jk = 6jk - k = 6  i.e.,

j(2p) -3 .. .6 ±6+ . .6- +...

(2p)! - 6- (B.19)
2Pp! (J3lj2 3334 j2p-lj2p)

This tensor is formed by (2p)!/(2Pp!) summands. For example, I(4) is

i -(4) _ 6 +±11+ 6 (B.20)

jklm - "jk im jI km + 6jmk. (B.20)

The tensor I(2p) can be written in terms of W (2p,p) because

2(1 -bb) = 2(6161 + e2e2) = UU* + Uu. (B.21)

Using this relation, the tensor 2PI(2p), formed by all possible tensor products of p

2(1 -bb) matrices, is written as a summation of tensor products of p u vectors and p

u* vectors by substituting equation (B.21) in it. Each summand 2P6j -6_ - ... 6

of 2PI(2p) [recall (B.19)] gives 2p different tensors formed by p u vectors and p u*

vectors. Adding all the terms in I(2p), there is a total of (2p)!/p! terms formed by
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tensor products of p u vectors and p u* vectors. In this summation, each summand

of W (2p,p) is present p! times. According to (B.6), a summand of W(2p,p) is uniquely

determined by the positions that the p u vectors occupy, or alternatively, which p

indexes of jij2 .. j2p correspond to the p u vectors. Without loss of generality, these

indexes can be chosen to be jij2 ... jp. A tensor of the form uj luj,.. . jpujp+ .. U2 p
is obtained from every term of 2 oI(2p) of the form 2P6jk' 2  

6  with klk 2 ... k
Sjk 2 k 2 " " " w i t h j p " "

being any permutation of jp+ljp+2 ... j2p. There are p! of these terms, proving that

2 I(2p) = p!W (2p,p ).  (B.22)

Considering the examples (B.18) and (B.20), equation (B.22) implies that their rela-

tion is 4I(4) = 2W (4,2).Combining equations (B.14), (B.16) and (B.22) gives

W!np) 2P(n - 2p)! [f(2p) W(n-2p,0) i(2p) w!n-2p,O)

132... i n (n - 'p ! ) 31...32p ji 2p+1...jn 1+ 1 ... 2p-li2p+l 3 2pJ 2 p+2 ...jn "...

+(2) w(n2p,O) n -(2p) w(n-2p,) (B.23)
jn-2p+1...3jn i...jn-2pj p!(n - p) 1 (J...2p j2p+1...jn)

As promised, W(n, p) is written in terms of W (n -2p,0 ) and I -bb because I(2p) is

formed by addition of tensor products of I -bb. Continuing with the example in

(B.7), W (5,2) gives

(5,2) 2 [(4) r(4) U+ (4) [± U + 4U], (B.24)
jklmn - 31jklmUn + - jkmUl + ljlmn k lm , (B.24)

with I(4) given in (B.20). This tensor appears in (v1 )5 - v v v v v1 as [recall

(B.5)]

1 5 (5,2) vr [(4) 1(4) V(4)

SRe[v± exp(ipo)W jkl -j[ klmVL,n jLV, + jkmnnV±mj

_1(4) 1(4)
vjlmnV ,k + klm±,j. (B.25)

To finish, the gyroaverage of an even number of vectors v± is calculated. Com-
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bining equations (B.13) and (B.22) gives

S 2m

(v )2m I (2m ) ,  (B.26)2mm!

with I(2m) given in (B.19). For m = 1, the familiar result

v-v = 2 (I -bb) (B.27)
2

is found. This result, combined with (B.4) for m = 2 and (B.8) gives (A.7). The

gyroaverage for m = 4 gives (A.32).
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Appendix C

Gyrokinetic equivalence

In this Appendix, a summary of [61], I prove that the gyrokinetic results in chapter 3

are completely consistent with the pioneering results by Dubin et al [21], obtained

using a Hamiltonian formalism and Lie transforms [25]. This comparison confirms

that both approaches, the recursive method in chapter 3 and the Lie transforms, yield

the same final gyrokinetic formalism.

In chapter 3, the recursive approach developed in [58, 59] was generalized for

nonlinear electrostatic gyrokinetics in a general magnetic field. In reference [21], the

nonlinear electrostatic gyrokinetic equation was derived for a constant magnetic field

and a collisionless plasma using a Hamiltonian formalism. The asymptotic expansion

was carried out to higher order in [21] because the calculation is easier in a constant

magnetic field. When the method proposed in chapter 3 is extended to next order,

the results are different in appearance, but I will prove that these differences are due

to subtleties in some definitions.

Both methods are asymptotic expansions in the small parameter 6 = p/L < 1.

Here L is a characteristic macroscopic length in the problem and p = vth/Q is the

gyroradius, with Q = ZeB/Mc the gyrofrequency, vth = 2T/M the thermal velocity

and T the temperature. In both methods, the phase space {r, v}, with r and v the

position and velocity of the particles, is expressed in gyrokinetic variables, defined

order by order in 6. In reference [21], the gyrokinetic variables are obtained by Lie

transform and the gyrokinetic equation is found to second order in 6. In chapter 3, the
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gyrokinetic variables are found by imposing that their time derivative is gyrophase

independent. Here d/dt - /Ot + v - V + (-ZeV/M + Qv x b) - V, is the Vlasov

operator. In chapter 3, the gyrokinetic equation was only found to first order. In this

Appendix, I will calculate the gyrokinetic equation and the gyrokinetic variables to

higher order for a constant magnetic field, and I will compare the results with those

in [21]. The orderings and assumptions are more general than in section 3.1. The

pieces of the distribution function and the potential with short wavelengths also scale

as
fk _ek < 1

f8  T k±L "'

with k±p < 1. Here f , is the lowest order distribution function with a slow variation

in both r and v. In chapter 3, the lowest order distribution functions was assumed

to be a Maxwellian. In this Appendix, to ease the comparison with reference [21], I

relax that assumption. Finally, I order the time derivatives as 0/0t ,, vth/L.

C.1 Constant magnetic field results

The general gyrokinetic variables obtained in section 3.2 are R = r + R 1 + R 2 ,

E = Eo + El + E2, A = PO + P1 + A2 and ( = c0 + (1 + V2. Since the unit vector

b is assumed constant in space and time, I can define el and e2 in (2.2) so that they

are also constant, and I do so to simplify the comparison with [21]. The corrections

found in section 3.2 specialized to constant magnetic field are, for the gyrocenter

position R, R1 = -lv x b and R 2 = -(c/BQ)VRD x b^; for the kinetic energy

E, El = Zeq/M and E2 = (c/B)(o-/0t); and for the magnetic moment jp and the

gyrophase V, y1 = Zeq/MB and pl = -(Ze/MB)(0$/0p). The corrections p2

and V2 were not calculated because they were not needed to obtain the gyrokinetic

equation to first order in 6 under the assumptions in chapter 3.

I require the gyroaverage of dR/dt and dE/dt to higher order than in section 3.2,

and I need the second order correction P2. For constant magnetic fields, (dR/dt),

(dE/dt) and the correction p2 can be easily calculated by employing the methodology

in chapter 3. I will define P2 so that the gyroaverage of dp/dt is zero to order 62 vth/BL.
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The second order correction p2 is needed to obtain d/dt to higher order. However,

f is gyroaveraged, making the dependence on o weak. Thus, V2 never enters in the

final results and will not be necessary for our purposes. Once I have R, E, p and

their derivatives to higher order, I will compare these results to both the gyrokinetic

Vlasov equation and the gyrokinetic Poisson's equation in [21].

C.2 Time derivative of R

Employing the definitions of R 1 and R 2 , I find

dR c dR 2d vb - Vtx bx + b (C.2)

The gyroaverage of this expression is performed holding the gyrokinetic variables R,

E, it and t fixed to obtain

= ub - (V) x b, (C.3)

where u = (vil). My gyrokinetic variables are defined so that when the Vlasov operator

is applied to a function with a vanishing gyroaverage, like R 2 = R 2 (R, E, A, V, t), the

result also has a zero gyroaverage; namely (dR 2/dt) = 0.

The gradient V0 is written in the gyrokinetic variables by using

V0 = VR. VR + V~p + VP - + VR2. R1 + (C.4)

Here, I neglect aO/&E _ -(OR 1 /OE) -V0 because the function R 1 does not depend

on E to order 6L. To obtain the second equality, I use that VR 1 = 0 = Vo = V 0o.

The gyroaverage of equation (C.4), obtained employing the definitions of R 2, 1 and

V1, gives

Ze a ao 8V
(V5) - VR( () - R(V R. ( VK)) + V V .BQ MB ) +(c.5)

(C.5)
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This equation can be simplified by integrating by parts in o to obtain

(84
VRtL

¢Va ( NA
1 (02,

= -VRa (2
2 (atl/

(C.6)

I next demonstrate that

1
(VRVR D (b x VRO)) = -VR(VR. - (b x VRO))

2
(C.7)

by first noticing that

(VRVR - (b x VR)) = VR(VR - (b x VR)) + '(VRVR - (b x VRI)). (C.8)

Integrating by parts in p in the second term, I find (VR R " (b x VR ))=

-(VRVR. (b x VR$)), giving the result in (C.7).

Finally, substituting equations (C.6) and (C.7) into equation (C.5) and using the

result in (C.3) gives

dR)
dt

C

ub - -V x b,B
(C.9)

with

T = () +
Ze 0

2MB Op
+ (VR - (b x VR)).2BQ

(C.10)

To find u, I need vii as a function of the gyrokinetic variables. To do so, I use

(C.11)

where I employ El - plIB = 0. According to this result, the difference between

u = (vi1) and vI is necessarily of order 6 2 Vth. Once I calculate P2, I will be able to

find u.
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C.3 Time derivative of E

Employing the definitions of El and E2 , and gyroaveraging, I find

/dE\ Ze(v VO). (C.12)

Here, I have used that (dE 1/dt) = 0 = (dE2/dt).

The term v -V can be conveniently rewritten by employing

do ao 8 dR dA 8+ dp adq = + dR dvO=+ V + L (C.13)
dt Ot r t REpp dt dt p dt p

Here, I neglect &q/&E again. Solving for v -V and gyroaveraging, I find

KdR \ / 4 dq
(v. -V) = -. VR¢ + d -/ +  .d Ol -_ R- t (C.14)

dt dt ap dt t r a R,E,Ozp) O

To simplify the calculation, I will assume that I know the corrections R3 , p3 - (p3),

V2 and V3 (obtaining these corrections is straightforward following the procedure in

section 3.2 but will be unnecessary). With these corrections, I find that to the order

needed, dR/dt = (dR/dt), given in (C.9), dp/dt = (dp/dt) 0 and dp/dt = (dl/dt).

Then, equation (C.14) simplifies to

(V - VO) = (ul - VW 6-X b^) -V -, (C.15)
" -- ( r R,E,u,p

where T is given in equation (C.10) and (&~/a) = 0. Notice that assuming that I

already have R3 , P3 - (p3), V2 and c3 is only a shortcut to find the result in (C.15).

To obtain (q) to the order required, these higher order corrections are not needed,

neither are they necessary for the difference between time derivatives, as I will prove

next. The difference between time derivatives is

0q5 _ O$ OR O4 Op __o , r VR + + (C.16)h ot t iat a t 9 (r ,Eppr,v r,v r,v

The procedure for rewriting (C.16) is analogous to that used on (C.4). Using the

154



definitions of R 1, R 2 , p1 and pl, I find that &R/tlr,v - 0a 2 /ztlr,v, O/Atlr,v 

Oill/OtIr,v and a(p/otjr,v _ p1p/Otlr,v, giving

-

(a))

at (C.17)at r

where I use the equivalent to equations (C.6) and (C.7) with 0/Ot replacing VR. The

final result, obtained by combining equations (C.12), (C.15) and (C.17), is

KdE\dtl

Ze= - SVRP xb (C.18)

C.4 Second order correction p2

The correction P2, according to section 3.2, is given by

d0K o + [11))] ± (12), (C.19)

where (p2) is found by requiring that (dp/dt) = 0 to order 62vh/BL.

The time derivative of Po + p1 is given by

d
-(o + tI)

Ze

MB
-v . VO + do)

dt (C.20)

To rewrite vI - V4 as a function of the gyrokinetic variables, I employ v±

v -V - vllb - V and equation (C.13) to find

-v. -V4+ +
dt

d(¢)
dt

+ vjlb - V4. (C.21)

To the order I am interested in, dR/dt ub - (c/B)VR(¢) x b, giving

-vi. V4 +--
O R,E,,L

- ub VR(O) + + vb,, - Ve.

According to equation (C.11), the difference between u = (vii) and vii is higher order,
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and according to equation (C.16), the difference between &0/0tr and O¢/OtR,E,,

is negligible. Therefore, equations (C.20) and (C.22) give

d
(Po + pi)=dt

Ze

MB
(C.23)+ Ub

which in turn, using equation (C.19), yields

/2 = CB2
+ u b VRO) + (p2). (C.24)

To find (p2) I require that (dp/dt) = 0 to order 62 vath/BL. The gyroaverage of

dpl/dt is given by

Ze
= B(VIMB

d(P2
dt

(C.25)

where the gyroaverages of dpl/dt and d(p2 - ( 2 ))/dt vanish. The term (v± - V4)

can be conveniently rewritten to higher order than in (C.22) by employing equation

(C.15) to find

(vi V¢) = V() (F - (0)) - (vb - V),
• ~at

where I used equation (C.17). Employing equation (C.4) and the fact that the differ-

ence between u = (viI) and vil is order 62 Vth (C.11), I find

(vb - VO) - (vlb - VR) + ub ( - (0)) c ub VRXJ. (C.27)

To obtain the second equality, I employ b . VR(O) > b. V , which means that

(vbll. VRO) - (vllb VR() + ub VRO ) = ub VR(b) to order 62Tth/eL. Then,

equation (C.26) becomes (v± VO) = -d(xP - (4))/dt, where to this order d/dt =

aO/t + [ub - (c/B)VR(k) x b] - [VR - (Ze/M)VR()(O/OE)] and O(' - (0))/OE = 0.

Finally, imposing (dp/dt) = 0 on equation (C.25), I find

Ze
(P2) = (T - ( ) ) "

MB
(C.28)
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C.5 Comparisons with Dubin et al

To compare with reference [21], I first need to write the gyrokinetic equation in the

same variables that are used in that reference, i.e., I need to employ u instead of E.

The change is easy to carry out. I substitute E2 and (C.24) into (C.11) to write

C
v = V2[E - (- (p 2))B] + b. VR, (C.29)

where I Taylor expand E2 - (P2- (P 2 ))B = -(c/B)ub. VR. Then, gyroaveraging

this equation I find
U

2

-= E - (p - (P2))B. (C.30)
2

Applying the Vlasov operator to this expression and gyroaveraging, I find

du Z -VR, (C.31)
dt M

where I used equations (C.18), (C.28) and (dp/dt) = 0. With this equation, equation

(C.9) and the fact that (dp/dt) = 0, I find the same gyrokinetic Vlasov equation as

in reference [21], namely

Of ( c Ze Of
+ (ub - -V x VRf - - .VROp = 0, (C.32)

O B M On

with f(R, u, p, t). The differences between my function I of (C.10) and the function

b in reference [21], given in their equation (19b), come from their introduction of the

potential function q(R + p, t) : 0(r, t), leading to subtle differences in the definitions

of (0), ¢ and 4. Here, the vector p(p, 9) is

P = ((1 cos 0 - 62 sin 0), (C.33)

with 0 the gyrokinetic gyrophase as defined in [21]. The relation between the gy-

rophase 0 and my gyrophase o is 0 = -ir/2 - c. From now on, I will denote the

functions (0), q and 4 as they are defined in [21] with the subindex D. The definitions
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in [21] are then

(C.34)

(C.35)

D - D(R, p , t) = dO (R + p, t),

D - D (R, p, 0, t) = D(R + p, t) -

S/0(R
4D - D(R, p, 0, t) = dO' OD(R, p, 10, t)

(C.36)

such that ( 0D) = 0. Notice that these definitions coincide with mine to order 6T/e,

except for 1 D, for which 1 D ~ -. The sign is due to the definition of the gyrophase

0. To second order, however, Taylor expanding ¢(r, t) = ¢(R + p - p - R1 - R 2 , t)

gives

¢ c ¢(R + p, t) - (p + R 1 + R 2 ) ' VR,

p + R1 MClev
Zev 2

(C.37)

P1
- vI (C.38)

To obtain equation (C.38), I Taylor expand p(p, o) around 0o and o0 in equation

(C.33). Employing the lowest order results o0/lao 1 -Q-lv - V¢ and O/Op a

-(Mc/Zev2)(v x b) - V¢, I write equation (C.37) as

Ze
- ¢ O(R + p, t) - MB

MB
&4 0)
CIA 89 + (V4 x b)BQ (C.39)

where I used the definitions of R 2 , 1 and pj. Then, gyroaveraging gives

Ze
S-oMB Op( + -(R x b) - VR$).BQ

Substituting this equation into the definition (C.10) of I and employing that to lowest

order q _ (D and I D - 4 D, I find

Ze 2MB(
9 D 2MB j d/ D

- ((VRRD x b) - VROD),2BQ

exactly as in equation (19b) of reference [21].

Finally, I will compare the quasineutrality equations in both methods.
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expanding the ion distribution function around R, = r + Q-lv x b, v1i, po and 'po, I

find

c f Ofg pfi a 2, g, 2
fi(R, u, I, t) 2- fig + R2 VRgfig bVR + (1 + 1 VR) - 2 , (C.42)

B VO1 ago 2Op0

where fig - f(Rg, vii, Po, t). Here I have used equations (C.29) and (C.30) to obtain

that u - vi - (c/B)b~. VR. The ion density is given by

F Of ig+ 2 fig 12

ni - d~vf dv fig + R2 VRgfig +(1 - (2)) p (C.43)

Here, the integrals of (c/B)(b. VR i)(fig/vj() and (p2 - (p2))( figl/&o) vanish

because f d o = 0 and the only gyrophase dependence is in 4 since fig is assumed

to be a smooth function of r and v to lowest order, giving fig - fi(Rg, vi , po, t) -

fi(r, v11, po, t). The integral f dyo is performed holding r, v 1 , Po and t fixed, and it

vanishes to lowest order as proven at the end of this Appendix. On the other hand,

the integral of R 2 VRg fig does not vanish. Here the gyrophase dependence of fig

contained in its short wavelength contributions becomes important due to the steep

gradient [recall the ordering in (C.1)].

In equation (C.43), I can employ ¢ _ D and 1 _ -- DD in the higher order terms.

However, for p, I need the difference between 0 and oD. Subtracting (C.40) from

(C.39), I find

Ze (o AO) C bV Ze a 2

MB 4p ±p B MB 5p

×((VRD x b) -VRO). (C.44)BQ

In this equation, /D = /D(R, p, , t), but for equation (C.43), it is better to use

ODg = gD(Rg, o, io, t). By Taylor expanding, I find that

gD Dg R2 -VRDg + P1 + (1 (C.45)

This equation, combined with equation (C.44) and the definitions of R 2 , p1 and 1,
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leads to

ZeODg ODg c Ze 0
Dg (VR Dg x b) -VRg Dg + _ _ Dg

MB 0i BRQ gd MBgi+Dg
C

+B ((VRDg X b) VRg$Dg), (C.46)

where I have used that, to lowest order, OD -- Dg, CD ' Dg - D(Rg, 0o, t) and

DD C-- Dg - D(Rg, 0 0, 0,t). Substituting equation (C.46) into (C.43) yields

S d 3v fig± ZeD Dg B( ) ,fig
nI " dvf MB ato I BQ (VRg Dg X b) - VRgfig

Z e2 g Ze Ze Dg akDg C ___ -

2M 2B 2  02 MB MB BDg VRg Dg

Ze c f (C.47)
+2MB 0 aloD 2BQ RD x b) V D)l , (C.47)

where I have used the definitions of R 2 and (p2). This result is exactly the same as

in equation (20) in reference [21]. For comparison, I give ni to order 62ni with the

definitions of (), q and I in equations (3.16), (3.17) and (3.18),

SZe fg c Z2e2q 02fig
d3  fig + g f - (VR x b) - VRfig + 2M2B 2 0pf

Ze Zeg Og, Zemg am , C(V ).
+ .M (V0/,0 M x b) VRg7g

MB MB 8po MB O8 o BR

Ze c Of
0 2B((R, x b) (C.48)2MB apo 9 2BQ( v 9g Xb VRgg "

I have found this equation substituting pl, R 2 and (p2) into (C.43). From the

functions q(R, p, o, t) and '(R, p, , t), I have defined qg = $(Rg, po, o, t) and

(g = D(Rg,, o, Po, t). The relationships between 5 and g and between 4 and 1-g are

similar to the one given in (C.45).

The methodology and results of chapter 3 are completely consistent with the re-

sults of [21] since they give the same gyrokinetic equation (C.32), generalized potential

T (C.41) and quasineutrality condition (C.47).

160



Integral dpo0 (

To prove that f doI = 0 vanishes, I Fourier analyze ¢ = (2r)- 3 f d3k Ck exp(ik -r),

giving to lowest order

0(r, t) O(R - Q-v x b, t) = I d3k Ck exp[ik - R - iz sin( o - 'k)], (C.49)

where z = kiv±/j . Here, I employ r _ R- -'v x b and I define 'Pk such that

k1 = k±(el cos Pk ±2 +2sink) to write k- r - k R - zsin( o - Pk). Then, I use

exp(iz sin p) = Jm(z) exp(imp),-00oo
M=-00

with Jm(z) the Bessel function of the first kind, to find

- (2 )J dk k exp(ik -R) 0
m=-oo

Jm(z) exp[-im( o - Vk)]-

Employing this expression, I obtain q by subtracting the average in o (component

m = 0), and I find 1 by integrating q over o, giving

(C.52)S(2) 3 dk#kexp(ik R) Z Jm(z) exp[-im(po - )],
2 m7 0 mO

where the summation includes every positive and negative m different from 0.

rewrite 1 as a function of r, vji, [Po and Vo, I need the expression

exp(ik -R) - exp(ik -r)
p=-oo

deduced from R - r + -lv x b and (C.50). Then, I find

-(2 ) 3 J dk Ck exp(ik -r)
m0O,p

i
-Jm(z)Jp(z) exp[i(p - m)(o - (pk)].m
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(C.50)

(C.51)

SJ(z) exp[ip(po - k)], (C.53)

(C.54)



Finally, integrating in Vo, I obtain

27 = (2) 3 dk k exp(ik r) E [Jm(z)]2 = 0

since J-m(z) = (-1)mJm(z).
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Appendix D

Quasineutrality equation at long

wavelengths

In this Appendix, I obtain the gyrokinetic quasineutrality equation at long wave-

lengths (klpi < 1). In section D.1, the polarization density nip in (3.55) is calculated

for the intermediate scales 6i < kIpi < 1. In section D.2, the polarization density

ni, and the ion guiding center density Ni are computed up to O(Si2n) for the extreme

case of a non-turbulent plasma.

D.1 Polarization density at long wavelengths

For long wavelengths 6i < kipi < 1, the polarization density simplifies to give (3.59).

To obtain this result, € and hence ¢ must be obtained to O(6 kpiT/e). To this order,

the potential is

1
O(r) (R - R 1) - O(R) - R, - VRq + 2R 1R: VRVR , (D.1)

2

with RI = n'v x 1b. Here, according to (3.1), VR¢ - Te/eL and VRVR "-

kiTe/eL. With the result in (D.1), the function 4 is

1
1= - ( ) - VRq + 2(RIR 1 - (RIRI)) : VRVR¢, (D.2)
2
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where I neglect (R 1) - 6ipi. The gyroaverage of the first order correction R 1 is not

zero due to the difference between r, p0 and Vo and the gyrokinetic variables R, p

and p. This difference will become important in section D.2.

The integral nip in (3.55) is performed over velocity space holding r and t fixed.

Then, equation (D.2) has to be Taylor expanded around r to obtain a function that

depends on r and not R. To O(6ik±piTe/e), the result is

1
- -R1 -V¢ - -(R 1R 1 + RIR 1) : VV, (D.3)

2

where I use VR -V + R1 -VV. In the higher order terms, the gyroaverage (...)

holding the gyrokinetics variable fixed can be approximated by the gyroaverage (...)

holding r, vI and v 1 fixed.

Expression (D.3) can be readily substituted into (3.55) and integrated to give

cni
nip 2 (I -bb) : VV¢. (D.4)

The final result in (3.59) is found by realizing that V - [(cni/BfQi)(I -bb)] V± is

small by a factor (k±L)-1 compared to the term in (D.4).

D.2 Quasineutrality equation for k1 L r 1

In this section, I obtain the long wavelength quasineutrality condition to order 6i2ne.

The derivation is not applicable to turbulent plasmas because I will assume that

neither the potential nor the distribution function have short wavelength pieces.

In quasineutrality, the ion distribution function must be written in r, v variables.

In a non-turbulent plasma, the ion distribution function can be expanded around r,

E and /to up to O(bfMi), giving

fi(R, E, p, t) = fio + (R1 + R 2) Vfi + (El + E2) ao 1 f
dEo 90LO

+ R1R1 : VVfmI + ElRj -V )+ E2,2 , (D.5)
2 Eo (.5)
+2RIl.&fE +ER 0) 2 OEo
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with fio - fi(r, E, o, t) and V the gradient holding E, po, Po and t fixed. In fi I

have not included the collisional gyrophase dependent piece given in (3.38) because it

will not contribute to the density. In the higher order terms of the Taylor expansion

(D.5), the lowest order distribution function fi - fMi must be used.

To find the ion density, the ion distribution function is integrated in velocity space.

Some of the terms vanish because the integral over gyrophase is zero; for example,

f d3 v (R 1 + R 2) -Vfo = 0 = f d3v E2(OfO0/OEo). Then, the ion density becomes

/v Ze [Ofio 1 Ofio + Ze 3 2fMi - fMi
N+ d± M + M + R1 - E)], (D.6)i M OEo B 8o9 -  2M aE2 OEo I

where Ni(r, t) is the ion gyrocenter density, defined as the portion of the ion density

independent of q and given by

S= dv fo -d llv V. Ofio + R 1R 1 : VfMi. (D.7)
2BQj 09P' 2

The formula for Ni can be simplified. The second term in the right side of the equation

is proportional to f d3 v (vtlv2/2B)(Ofo/Opo). This integral is simplified by changing

to the variables Eo = v2/2, Po = v2/2B and po and integrating by parts,

- V fio - -B dEo dpo do apo J dv vI fo, (D.8)
2B Opo OdE aF, Oo.°

where a = vll/jvll is the sign of the parallel velocity, the summation in front of the

integral indicates that the integral must be done for both signs of vii, and I have used

the equality d3 v = dEo dpo dco B/ivll . The third term in the right side of (D.7) is

proportional to

M dv (v x b)(v x b): V V f (I -bb) : VVp. (D.9)

The final function Ni reduces to the result shown in (3.62).

In equation (D.6), ¢ appears in several integrals. The expression can be simplified

by integrating first in the gyrophase. Two integrals in (D.6) can be done by using
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the lowest order result _ - 1 (v x b) -V. The integrals are

/ Z 2 e 2 2 2f Mc
2 n

2M 2  -E 2TB2

and

] d3v -B(v b).V V n i V . (D.11)B o Baj
For f d3v q(Offo/&Eo + B-lfio0/Opo), only the gyrophase integral fo2"  do is needed,

but ¢ must be written as a function of the variables r, v to O(J6Te/e) to be consistent

with the order of the Taylor expansion. To do so, first I will write 0(r, t) as a function

of the gyrokinetic variables by Taylor expansion to O(6Te/e) [this Taylor expansion

is carried out to higher order than in (D.1)]. The result is

1
0(r, t) _ ¢(R, t) - R1 - VR + 1RIR 1 : VRVR - R2 'VR¢. (D.12)

2

The second term in the right side of the equation needs to be re-expanded in order to

express ¢ as a self-consistent function of the gyrokinetic variables to the right order.

The function R 1 is, to O(6ipi),

1 V2piB(R)
R 1  -V X (R) - [el (R) sin - e2 (R) cos V] - Ap, (D.13)

with Ap(R, E, p, o, t) 6 iPi. The function Ap is found by Taylor expanding Ri(r, Po, soo)

around R, p and V to O(Sipi), giving

1 Mc 1
Ap= 2 B 2 (v x b)(v x b) - VB + Z v jl( x b) + - v

+ (v x b) -(sin oVi~l - cos coV62 ). (D.14)

Combining (D.12) and (D.13), ¢ is found to be

2pB(R)
0= - ()-- fi(R) [eI(R)sinp - e2 (R)cos] . VR-2 .VR
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1
+(Ap - (Ap)) VaR + 2-2 [(v x b)(v x b) - ((v x b)(v x b))] : VRVRO.(D.15)

The function q must be written as a function of r, v and t since the integral in velocity

space is done for r and t fixed. Taylor expanding the first term in (D.15) gives

1 2
- (v x b) - VO - (Ap) . V - R2. V¢- j-2(I -bb) : VVQj- -i

2 (v x b)(v x b) : VV, (D.16)

where I use ((vx b)(v x b)) = (v_/2)(I -bb). Equation (D.16) is more complete

than the approximation in (D.3).

Gyroaveraging ¢ in (D.16) holding r, vI and vj fixed leads to

2 1dpo -(Ap) - V - vI -bb) : VV.
27r o 290 (D.17)

with Ap the function in (D.14). To simplify equation (D.14), the gradients of the

unit vectors e1 and 62 are expressed as V61

Ve2 = -(Vb 6 2 )b + (Ve 2 .1)61, giving

= -(Vb - e6) - (V6 2 61)62 and

1 Mc
Ap = (v x lb)(v x b) - VB + Z p 1(v x b) + p v l

2BQi Zev1  Q

(V x b) -Vb - (v x b)b - VI(v x b) e V2 -i ,
i i

and its gyroaverage

C
(Ap) V -

BO4

2 V2
V iB - II

Bz R

SVb- 221 ( 72 '-

where I use

cv 2

2B 2

4 2 2

V±B - bVb
4B 2Qs 2BQ,
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C
( 1pivi) = 2B

2 U2

V B- I
2BQj 20Q

Sb + vx V6 2 . 6 1 .2Qj

These expressions are found by using the definitions of y1 and p1, given by (3.29)

and (3.34), and employing the lowest order expressions _ -Q- (v x b) - V¢,

D = Jf qd ' -v V and &/Op -_ (Mc/Zev2)v _L V .

Substituting (D.19) in (D.17) gives

2 = 2 v. 2 1 +

(D.22)

where I have used

1  -) VV

za

2
-- VB

1

1( - V ) V e. b.

Notice that the gyroaverage of q is O(62Te/e), which means that the integral is

O(62ni), and the lowest order distribution function, fMi, can be used to write Ofo/OEo -

-(M/T)fMi and fo/0po ~ 0. All these simplifications lead to the final result

d 3 ( fio 1 Ofio+ - t -
B to)

= niV - V
BO4

Mc 2 n

TiB2
(D.24)

Using (D.10), (D.11) and (D.24), equation (D.6) becomes

c( VI
Mc2ni

2 TB2 IV
(D.25)

where N is given by (3.62). Then the quasineutrality condition is as shown in (3.61).
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Appendix E

Gyrophase dependent piece of fi

for k L ~ 1

In this Appendix, I show how to obtain the O( 6j fM) gyrophase dependent piece of the

ion distribution function from gyrokinetics in a non-turbulent plasma. The general

gyrophase dependent piece is found in section E.1. This result is useful because it can

be compared to the drift kinetic result [74], proving that the higher order gyrokinetic

variables allow us to recover the higher order drift kinetic results. In section E.2,

the general gyrophase dependent piece is specialized for the 0-pinch, and it is used in

section 5.2 to calculate the radial electric field.

E.1 General gyrophase dependent piece

Part of the gyrophase dependence is in the corrections to the gyrokinetic variables

R 1, R 2, El, E2 and pi. This gyrophase dependence can be extracted for k1 L - 1 by

Taylor expanding fi(R, E, p, t) around r, Eo and 0o, as already done in (D.5). The

contribution of the collisional piece fi, given by (3.38), can be always added later.

Employing (D.5), the gyrophase dependent part of fi is found to be

fi2- = (Qv xb+R2 .fi+ I (-5)+E 2 i fEo
SM ~ Efo
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1
+4- [(vx b)(v

Z 2e 2

x b) - vivi] : VVfMi + 2M2(
2M2~

+c r(vx b) - ¢(v x b)]. V- i
B OEo

2 ) 2fMi

+ (1 - ) 0foal-o
(E.1)

with fio - fi(r, Eo, /o, t). Here, I have employed the lowest order distribution function

fMi in the higher order results, and I have used (A.7) to rewrite (v x b)(v x b) -

(vx b)(vx b).

The function 4 must be written as a function of the r, v variables. To do so, I

use equation (D.16) to find

- - 1 1
Ib) . V- -R2 -- + VIVi - (vx b)(v x b)] : (VV).(E.2)

For the higher order terms in (E.1), I can simply use the lowest order result

5 2 -Q 'i(v X b) V 0, which leads to

12 -2 = 2[vLv - (v x)(v x b)] : (V4V) (E.3)

$(v x b) - 4(v x b)
1

2Qjt [Vivi - (v x b)(v x b)].

Using these expressions, the gyrophase dependent part of the distribution function

becomes

fi- fi= v' g , Ofio
+(1 - )"-

Ofio
+ R2 - G + E2-o

aEo

x b)(v X 6) - VIVl]

l1 -
g 1 = x Io ( -

0j4 '

Ze OG
VG -- V ,

M OEo

Ze V fio
M &Eo)

Ze 'fio
G = Vfio - -Vo"

M &Eo
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(E.5)

(E.6)

(E.7)
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Thus, gI = j1- bx G. In the long wavelength limit, 0/Ot < vi/L, so E2 as given in

(3.26) is negligible since it contains a time derivative. Also, the zeroth order Fokker-

Planck equation for the ion distribution function is

vilb - G = V( Vf~o - Ze Oo = C{f} = 0, (E.8)

since the ion distribution function is assumed to be Maxwellian to zeroth order. This

condition is important in (E.5) because it implies that the components of R 2 that are

parallel to the magnetic field do not enter fi - fi. Therefore, employing the definition

of R 2 in (3.15) and using the fact that for long wavelengths (c/BOi)VR x b ,

6kippiL is negligible, I obtain

R2 - G = jvjlb + v4 Vx b + V + v i + 4 : [V ( 2 x G

+v- Vb G. (E.9)

Equation (E.9) can be written in a more recognizable manner by using

+ 1 Ze OG
[b(v x b) + (v b)1] :h= b - VG - V Vj-

+[b(v x b) + (vx b)b] V G , (E.10)

where h is
Ze, Og

h= Vg± - VOM . (E.11)

The first term in the right side of (E.10) can be further simplified by using (E.8) to

obtain

. G - -V V- = v -±.VG .b = -v. -Vb - G. (E.12)
11GEo
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As a result, (E.9) becomes

R2 -G = [b(v x b) + (v x b)b] :

1
+±-[v±(v x b) + (v x ,)v] •

QiR
[V x GI

6j

The gyrophase dependent part of the ion distribution function can now be explic-

itly written as

(fi - 7J)g = v - g Vd V
UII+ 4B i [v (v

4BS (
1[( v

x b) + (V X b)v ] :

x b+ vx (vb+

where the subindex g indicates the non-collisional origin of this gyrophase dependence.

Equation (E.14) is exactly the same gyrophase dependent distribution function found

in [74].

E.2 Gyrophase dependent piece in a 0-pinch

The solution for fi found in (4.79) means that for all the terms in (E.14), fio is

approximately fMo from (4.76). Due to the geometry in the 0-pinch, the vector g±

defined in (E.6) is
g 1 = f (Mog, = -0

Qj Or
Ze 0¢ fmo

+ fr (E.15)

and the matrix h defined in (E.11) is

dr fTi

OfMo
Or

Ze e0 fMo+ eOr

Ze O fMO
T Or

where I use VO = -/ilr. Employing this results and taking into account that

Ofio/lpo ~ 0 in this case, I find (5.18).
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Ofio

4 :h,V4-)] : (E.14)

h= i0
Or +

Ze 0¢
Ti Or

fmo) Ze Or
Qi Or

1-ei 1
-fr ,(E.16)

(E.13)

b+4vb +4v



Appendix F

Gyrokinetic equation in physical

phase space

This Appendix contains the details needed to write equation (4.13) as equation (4.23).

In section F.1, equation (4.14) is derived. Equation (4.14) models the finite gyrora-

dius effects in the particle motion through the modified parallel velocity vi0o and the

perpendicular drift 1. In section F.2, equation (4.14) is written in conservative form,

more convenient to obtain moment equations.

F.1 Gyrokinetic equation in r, E, Po and o vari-

ables

In this section, I rewrite part of the gyrokinetic equation as a function of the variables

r, Eo, Po and o. The gyrokinetic equation is only valid to O(6 ifMiVi/L), and the

expansions will be carried out only to that order. In particular, I am interested in

R - VRfi + E(Ofi/OE). In the term E(Ofia/E), I can make use of the lowest order

equality Ofj/&E _ OfMj/Eo. Then, employing E from (3.27) gives

VRA + f ' R (VRf - e V- V ( I. (F.1)

R.vf,+ - .V~i-- a<>z--M
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For VRfi, changing from R, E, p and to r, Eo, Po and po, I find

-f_ Of_ Of
VRfi - VRr Vfi + VREo + VRaO + VR00O (F.2)

Here, Ofi/,po and ofi/Opo are small because the zeroth order distribution function

is a stationary Maxwellian. The gradient of Eo is given by 0 = VRE - VR(Eo +

El) = VREo + (Ze/M)VR. Similarly, VRA = 0 = VRP give VapRo 2 -VRP1 and

VR 0o - -VR1. Then, to the required order

Ze - Ofi
VRfA Vr -V fi- R- OE (F.3)

Since Ofi/OE _ (-M/Ti)fMi, and q VRfMi < fahiVRq because the perpendicular

gradient of ¢ is steeper and the parallel gradient of fMi is small, I find

VRfi VRr.fV i+ Ze fi)= VRr -Vfig, (F.4)

where I have employed the lowest order result (4.3) and VR - VRr" Vq5. To prove

that VR C-- VRr V and VR(O) - VRr -V(O), I follow a similar procedure to the

one used for fi in (F.2). In this case, Oq/Eo and O(q)/&Eo are small. Substituting

equations (F.4) and VR() - VRr - V(o) into (F.1), I find equation (4.14), where

to write VRr - VRgr I have used the fact that R can be replaced by Rg to lowest

order. The only coefficient left to evaluate is R. VRgr. Since r = Rg - Qiv x b, and

v x b = 290oB(r) [, (r)sin o - 2 (r) cos o], I find that VRgr _I -V(Qlv X b),

where the gradient V(T lv x b) is evaluated holding po and ypo fixed, and it is given

by

-V -- vx = (VB)(v x b) + V. (v x b)b + (Ve 2  1)v . (F.5)

In R, given by (3.19), the terms vM and vE are an order smaller than ub(R) so I can

use VRgr _I for VM VRr and VE VRgr to find the result in (4.15). In equation

(4.15), I have also used ub(R) ub(r) + (vll/Qi)(v x b) . Vb, vM - VMIO, VE - VEO
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1
x v = (v x b) Vb + v x b(b. VB) + v±(b. V62. 1)2BVB

where I employ V x v± = Vx [bx (vxb)] = V.[(vx b)b]-V.[b(v x b)]. To find the

result in equation (4.16), notice that vilo = u+(vll1/i)bVb.(v xb)-(v1 /fQi)b.V xvi,

and the difference u - v11 is given in (A.43).

F.2 Conservative form in r, E0, Po and 0Po variables

To obtain equation (4.20) from (4.14), I just need to prove that

V - (I VRr)
(vil

S
OPLO

(B
0Opo

(B -Vlo)

0 (BZe.
OEo v11 M SVRr - V(4)) =0.

Then, equation (4.20) is found by using ofig/lEo - ofMi/Eo, Ofig/lpo " 0 and

O fi ,9 / I 0.

To prove (F.7), I use the value of R VRgr from (4.15) and the relations (B

-110)/90p-0 = V [B(aplo0/alo)] and 9(B Vo10o)/lao = V. [B(o9V10/1o)], to find

V7 . [(vo - vI)b + VMO + VEo] - B 0 + O( o )
E ( vB Ze-VMO V() = 0. (F.8)

Here, I have also employed V - B = 0, 8(B - V(O))/aE = 0, V [(B/vjl)if] = 0

and O[(B/vjl)~i]/OEo = 0 [these last two expressions are easy to prove by using the

definition of jr1 from (4.19)]. In the term IR. VRr -. V(), (vllo - v)ll)b. V () is

negligible because b -V(O) 2_ 0 (the zeroth order potential is constant along magnetic
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field lines). In equation (F.8), it is satisfied that

v - (VEO

B viI 0Eo
B Ze . (q)=0,

v1 VM o M ( ) = 01
V11M

(F.9)

where I employ relation (2.8) and b -V() _ 0; and

Vil 0 - V1 1  0910
vii OPO

0O10

O po R
V x b,

with OvL/81o = (B/vi)v±, 0vL/0 o = -v x b and vilo defined by (4.16).

these relations, equation (F.8) becomes

Ze [b x(8 VBi+v Vx

where the relation (2.8) is used again.

Mc~

= ze V. [V x (vilbf)] = o,

(F.10)

Using

(F.11)
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Appendix G

Details of the particle and

momentum transport calculation

This Appendix contains the details of the derivations of the gyrokinetic particle con-

servation equation (4.28) and the momentum conservation equation (4.38) from equa-

tion (4.24).

G.1 Details of the particle transport calculation

Equation (4.24) with G = 1 leads to equation (4.28), with the integral of the gyroav-

eraged collision operator giving the term V - (niVic) as shown in Appendix H. The

only other integral of some difficulty isf d3v figR - VRr. The integral of vlb is done

realizing that fi - fig = (-Ze4/Ti)fui is even in vii to write (4.29). The integral of

(v 0jo - vl)b is done by using V - [f d3v fig(vilo - vl1)b] - B - V[f d3v fig(vllo - II)/B].

Then fig can be replaced by fMi because the gradient is along the magnetic field line,

and the slow parallel gradients make the small pieces of the distribution function

unimportant. From all the terms in vilo - v1i, only the gyrophase independent piece

(vI/2i)b - V x b gives a non-vanishing contribution.

To perform the integral V - (nirV) = V - (f d3v figvi) = V . [f d3 v fig(v1 /Qi)V X

vI], I use the expression of V x v1 in equation (F.6). The contribution of the

parallel component of V x v is negligible because its divergence only has parallel
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gradients, and they are small compared to the perpendicular gradients. The integral

of (vll/i)v±(b -V6 2 -61), on the other hand, vanishes because its divergence becomes

dv bV e2. 1 Vfig d3v vb. Ve 2 . e i~ = O (G.1)

Here, I neglect the gradients of any quantity that is not fig because they give contri-

butions of order 6ik.±pinevi/L. To obtain &fig/(O0 - lv±- Vfig, I use that fig's

only dependence on o'o is through Rg. The final result for niVi is written in (4.35).

G.2 Details of the momentum transport calcula-

tion

Equation (4.24) with G = v gives equation (4.38). The integral of the gyroaveraged

collision operator gives Fic. The details are given in Appendix H.

To simplify the integral f d3v fi,(R VRgr)Mv, I use that V [f d3v fig(vII0 -

vll)bv] c- B - V[fd 3v figv(vlo - ll)/B ] . Then fig can be replaced by fMi because

the gradient is along the magnetic field line, and the next order corrections can be

neglected. The integral f d3v fMiv(vllo - vll)/B vanishes because all the terms are

either odd in vI or odd in v . The final result is

j d3v fig (R. VRr) Mv = pig bb + 7rig b+ ix, (G.2)

where I use the definitions of Pig,l = f d3v figMv2, rigIl from (4.39), and rigx from

(4.40).

To find the integral f d3v MfiK{v}, with the linear operator K given in (4.25),

I use K{v} = K{vllb} + K{v±}. For K{vllb}, I need Vvll = -oVB/vll, OvllI/Eo =

v-1, v/llOlao = -B/vll and &vll/&ayo = 0. Then, using the definitions of Pigl and irigll

along with

( V) B + Zei0vB
(vii Vo =xo 9 + V(¢ , (G.3)
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I find

Jdv MfgK{vib} = (Pigib + 7rig1 ) Vb - f dv figMPobb - VB

+ d3v fMi b(b" V x b)b. Vvil + d3v fMiMb(B -Vl0o)

-Zef d3vfgb(b + Q V X v±) -V(O. (G.4)

Here, I have used that (vji o - vil). V(0) - 0 and that, in the integrals that include

(v11o - v1)b 0 V(v1b) and i1 Vvll, only the term (v/2Qi)b(b . V x b)b . Vvij gives a

non-vanishing contribution. The integral of fMi(Vl/Qi)(b x v)- [poVB+(Ze/M)V( )]

vanishes because it is odd in vll. Equation (G.4) can be further simplified by using

dav fMNB -.Vlo = - dv fMiB -V Bx b =

2

SJd3v fMi (b (Vx b)b Vv1, (G.5)

where I have used that in o10 all the terms but the gyrophase independent piece

give vanishing integrals. The last form of (G.5) cancels with a term in (G.4). Using

Pig, = J dv figMvI/2, equation (G.4) then becomes

J d3v MfgK{vIl6b = -pibb - V ln B + (pigl b + i,9 11) - Vb

- Ze d3vfigb(b + Qi-; x v±) - v(). (G.6)

The integral f d3v fgK{v} is obtained using Vv1 = (VB/2B)vI - Vb; vb +

Ve2 l(V x b), v 1/OEo = 0, &v±/0/0o = (2po)-lvi and &OvI/o = -v x b. Then,

I find

d3MS,,irvJ d S Mfii ,. Vv_.-) x ) -VvL, (G7)
d~v M fK {v-} = dBv v - d v fM(V() x b) -v±,

where I employ that the integrals of fMi[(vllo - v11)b + VuO + Vm 1 ] Vv1 , fMivbI -

V/lo(V±/O 0o) and fMivjll. VPlo(Ov±/OVPo) vanish because the terms are either

odd in vI or in v1 . The integral that includes V7() can be rewritten by realizing
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that V(0) = V¢ - V¢, to find

dv MfigK{vi} = J d v MfgV1ig . v1 +M'fJ d3v fU1(V x b) - v. (G.8)

Combining equations (G.6) and (G.8), I find

J d3v Mfig K{v} = pigb(V-b)+(pigb+rigll). Vb- Zenbb.Vq+FPEb+FiBs, (G.9)

where I have used 1. V In B = -V -b, and the definitions of FiE from (4.41) and FiB

from (4.42).

Using (G.2) and (G.9) in (4.24) gives

(niMVig) + V - (pigibb + 7rig~b+ igx) = -Zenibb - V

+Piglb(V + ) + (Piglli + 7rigsl) Vb + FiE + FiB + Fic. (G.10)

Finally, employing V (Pi,llbb) = b(1b. Vpigll + Pig V 1b) +pigllb -Vb and V (rillb) =

(V - rrig ,l) + 7rigll Vb, I am able to recover equation (4.38). Multiplying equation

(4.38) by b and taking into account the cancellation of

FiB b= -M d3vfig (vil + B W X f) Vb v (G.11)

and

(V igx>) b -M d3 fig (v + B b Vb v, (G.12)

I find equation (4.44). To obtain relation (G.12), I have employed srix .b = 0 and I

have used the lowest order distribution function fMi for the higher order terms. All

the higher order terms, except for (c/B)V(O) x b, cancel because they are either odd

in vil or vi.
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Appendix H

Finite gyroradius effects in the

like-collision operator

In this Appendix, I show how to treat the gyroaveraged like-collision operator, (C{ f} ).
The like-collision operator is

C{fj} = 7VV d3v' V, ,g * (f'VvfZ - fVv, fi)] , (H.1)

with fi = fi(v), fj' = fi(v'), g = v - v', g = IgI, VgVgg = (g2 I -gg)/g 3 and

- = 27rrZ 4e4 ln A/M 2 . Linearizing this equation for fi = fMi + fil, with fil < fM, I

find

C(e){fil) = 7, v r(fil},

with

(H.2)

rf{fi} = d3v ' fMjifiVVg * Vfi]

The vector F can also be written as in (4.34) because r{fi} = r{fmi} + {fii} =

r{fi }. Using gyrokinetic variables in equation (H.2) and gyroaveraging gives

(C(CO{f }) = - B OE#
. VVE)) aO

B O
(U .Vp)) + VR ( (r

U

Here, B/u 8 0(r, v)/O(R, E, p, c) is the approximate Jacobian, and I have used the
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transformation rule for divergences from one reference system {xi} to another {yj }:

Vx.r= Ia(Jr .Vxyj) = : a (JyFyv), (H.5)
3 Jyyj 3 J yj

where J, = O(xi)/O(yj) is the Jacobian of the transformation, FY = r -Vxy and

Vx is the gradient in the reference system {xi}. To rewrite equation (H.4) in terms

of the variables r, E 0, p0 and 0, I need to use (H.5) and the chain rule to find the

transformation between the two reference systems {yj } and { Zk

1 = 1 0 ( Oz
J( JyZ,) = Jz Z F ). (H.6)

Employing this relation to write equation (H.4) as a function of r, Eo, Po and o gives

B Br. ±v ( r.V

+ [B (P. vvip) + (r VR))] }, (H.7)

where I have used the lowest order gyrokinetic variables Rg, Eo, Po and o. This

approximation is justified because the collision operator vanishes to lowest order, and

only the zeroth order definitions must be kept. Notice that I keep the first order

correction R 1 = Qi-'v x b only within the spatial divergence because the spatial

gradients are steep. Employing VvE - v, Vvp - vi/B, or/ -OR /Op

-(2poti)-lv x b and VvR Q-i I x, I find

(CM{fl}) vII 0 B(r -v) + (r -v-)
- (I) x(vF -V vx b . (H.8)

ZevJ v2 )

In the main text, there are two integrals that involve the gyroaveraged collision

operator, V. (niVic) = - f d3v (C{ff}) and Fic = M d3 v (C{fi}). Using equation

(H.8), I obtain equations (4.33) and (4.43). To find (4.43), I have integrated by

parts using Ov/&Eo = vb and Ov/o = (B/v2)v 1 - (B/vll)b, and Vv has been
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neglected because the gradient is of order 1/L.

I can prove that the divergence of niVic, given in (4.33), is of order 3i(k±pj)2 jiin,

rather than 6ikipivijine. For kjpi < 1, the function F(r, Eo, jpo, yo) can be Taylor

expanded around Rg to find F(r, Eo, Po, o) - F(Rg, Eo, Po, (o) - Q7-(v x b) Vagr.

Then, the gyroaverage (...) holding R, E, p and t fixed gives

() = f [ (Rg, Eo, Io) - 1(vx b) VRg], (H.9)

where I have employed that to the order of interest holding Rg, Eo and Po fixed is

approximately equal to holding R, E and p fixed. To rewrite equation (H.9) as a

function of r, Eo, Io and Vo, I Taylor expand F(Rg, Eo, po, po, t) around r to find

1 1
2 do F(Rg, Eo, Po, o) 2 i r + -(vx b). V r, (H.10)

with F - r(r, Eo, po) = r(r, Eo, po, Soo) the gyroaverage holding r, Eo, Po and t fixed.

The second term in the right side of (H.9) is higher order and can be simply written

as

dooo (v x b) -VR,F -- (v x b) .Vr. (H.11)

Employing equations (H.10) and (H.11) in equation (H.9), I find

1 1
S(x b) - (v x b). vF. (H.12)

Similarly, letting F --+ F v± in (H.12) and ignoring Vv1 corrections as small, I find

1 1 (.
(r-v )= r-v + (vxb)'V(r ' v I) (v xb)- Y -v (H13)

Using these results in (4.33) the integral becomes

V.(niVic) -V. Id3v x b- (v x b).V x - v -v

(H.14)

where I have used that f d3 v (...) = f d3 v (. .). The integral f d3v F is zero, as can
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be proven by exchanging the dummy integration variables v and v'. The rest of the

integral can be written as

V. (niVic) = VV: d [(v x(v b)(r x ) + (I -bb)( (H.15)

where the spatial gradients of functions different from F have been neglected. Using

the definition of the linearized collision operator (H.2) and employing f d3v [(v x

b)(vxb)+(vi/2)(I -bb)]v.'r = - d3v [(r xb)(vxb)+(vxb)(r xb)+(rF.v)(I

-bb)], I find

V. (niVic) = -VV: d C({fi} (I -bb)+ (v b)(v x b ,

(H.16)

where I have also employed V V: [(v x b)(r x b)] = v: [(r x b)(v x b)]. This

integral, of order 6i(k±pi)2viine, can be simplified by employing that, for k±pi < 1,

the gyrophase dependent part of the distribution function is proportional to v1 to

zeroth order [see (4.7)]. Then, the integral becomes

V. (nVic) = -VV: d3 C({fl} (I -bb ) ] (H.17)

where I used that v(v x b)(v x b) = 0 and (v X b)(v x b) = (vI/2)(I -bb).

Finally, I prove that Fic from (4.43) is of order 6ik1piviineMvi. Here, it is im-

portant to realize that the first integral in (4.43) must be carried to the next order

in k±pi, but the integrals in the divergence only need the lowest order expressions.

Then, using expressions (H.12) and (H.13) in the first integral of (4.43), and the low-

est order expressions (F) F and (F - v±) F.- v for the second integral, I find

that for k±pi < 1,

Fic V. -Jd3v (vx b)( b)b + (r x )vb + (r- v±) I xb =

-V. aJd3vC(I){fji} (v x b)vi 1b + I xbl .(H.18)
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To obtain the last result, I have employed that f d3v [(vxb)v 1 b+(v/2) I xb]V,-. =

- f d3v [(r x b)vllb + ( x b)(r b)b + (F -v±) I xb] and I have used the definition

of the linearized collision operator (H.2). Only the gyrophase dependent part of

fil contributes to the first part of integral (H.18), and for k±pi < 1 the gyrophase

dependent part is even in vil [recall (4.7)] so this portion vanishes. As a result, the

integral becomes

Fic = -V d3vC(){ 1} I xb] (H.19)

of order 6ik±piviineMvi.
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Appendix I

Gyrokinetic vorticity

In this Appendix, I explain how to obtain the gyrokinetic vorticity equation (4.53)

from equations (4.38) and (4.45).

Before adding equations (4.45) and V {(c/B)[equation (4.38)] x b}, I simplify the

perpendicular component of the current density Zeni Vi. The perpendicular compo-

nent of i1, defined in (4.19), is given by

Sb x (1 x b) b x (.b - v + Vb vL), (I.1)

where I use that (V x v±) x b = b.Vv± -Vv-b and Vv -b = -Vb v. Employing

(V x b) x v = v . Vb - Vb -v 1 and b x [(V x b) x vi] = -vi(b. V x b), I find

= b x (b . Vv + v Vb) + -v±( Vx b). (1.2)

Then, the integral niV4i± becomes

1-
n = x dv fv d3v figv vI - Vb)

1bd
+O- xI b d"v fvIvi (1.3)~;2i" ~ J ~ ~YI I
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Adding equations (4.45) and V - {(c/B)[equation (4.38)] x b}, I find

Ow G =C 7 .- +
tG = V . J + Jgd Ji + Zeni V + ZeniVic + Bb x (V. 7igx)

cc
b - x FiB - -b x Fic, (1.4)

B B

with WG defined in (4.51). In this equation, adding -(c/B) b x FiB and the expression

in (1.3) for ZeniVi, two terms cancel to give

ZeniVi1 - -b x FiB = x f d3v fgVIv± Vb

-+M - vo 6 fV 1,v - Zec b x d3v fAMi(V X Vb) - v. (1.5)B V d3v b x d (

The last term in this equation is absorbed in the definition of Ji¢ in (4.55). I can

further simplify by realizing that b x f d3v figVIv • Vb = b x [V (f d3 v figv±llvb)],

giving

Ji + ZeniVi2 - -b x FiB = Ji[ f b x v f vMvb

+ BCb -V 6 f lv . (1.6)

The integral f d3v figMvvllb is part of the definition of "iG in (4.54), so I can finally

write

CC c C 4-*

Ji + ZeniVi2 + b x (V. igx) - -b x FiB = Ji + -b x (V" 'tiG)
B B B

+ -b -Vx b dbv figVlv±. (1.7)

Employing this result in equation (1.4) and using the fact that the divergence of

ZeniV llb and (Mc/B)b - V x b f d3v figvllV± is negligible, I recover equation (4.53).

The divergence of Zeni4lljb - 62kipienevi is small because the parallel gradient is

only order 1/L, giving V - (ZeniVlljb) - 6k±penev/L; which is negligible with

respect to the rest of the terms, the smallest of which is order 6i(k±pi)2enevi/L. The

divergence of (Mc/B)b -V x b f d3v figvlly - 6i2k±pienevi has only one term that is
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of order 6i(kipi)2enevi/L, given by

V B6 -V x d3v figVIvi 2 V x dv viiv. Vfig. (1.8)

Since the only dependence of fi, on yo is in Rg = r + Ql 1 v x b, I find that v -Vfig =

Qi(&fig9p o). Thus, the divergence of (Mc/B)b. V x b f d3v figVvll± vanishes to the

relevant order due to the gyrophase integration

V ( b. V x V dd3 figvV Vi Zeb. Vx b dvvL = 0. (1.9)
_M% x I 0
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Appendix J

Flux surface averaged gyrokinetic

vorticity equation

In this Appendix, I obtain the long wavelength limit of the flux surface averaged

vorticity equation (4.62). The long wavelength limit of wG is given by wcG -* =

V - [(Ze/Qi)niVi x b], as proven in (4.52). Then, upon using (2.16) and integrating

once in ', equation (4.62) becomes

(cRniMVi ), =0t
(Jie -

-(V. 'iG) (b x Vt) + Zen
B

Vb + I(V. 'rigll - iE)

Vic. Vb - cRFic -.

I will evaluate all the terms on the right side of equation (J.1) to order 6kjlpienevi V,1

for k Ipi -- 0.

J.1 Limit of ((cI/B) V. 7rigll), for kpi -+ 0

The term ((cI/B)V - 7ri9 1 ),, is written as

cI
,7VigiIl

1 0

V' 0

cIS V rigll
B

CI igll

The term rioll - V(cI/B) is neglected because it is of order 63enevijV|.
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definition of 7rigll in (4.39), one of the terms is - f d3 v fig(c/B)(V(O) x b) Mvl. The

difference between fig(c/B)V(O) x b and f(c/B)V x b gives rise to the term

B 3 Mv, [fig(V() x b) - f (VO x b)] VV =

B2f dv Mv [ZT fi (V¢ x b) - fig B( - V (J.3)

in (I/B)rigI -V4, where I use f- fig = -(Ze¢/T)fMi to obtain the second equality.

I will show below that the difference (J.3) is of order 6fk±pipiRRV and therefore

negligible compared to the other terms in (I/B)rigll Vi that are of order 6bpiRIV*I.

Then, in (I/B)7rjgll VV the difference between fjg(c/B)V(O) x b and fi(c/B)V x b

can be neglected to write equation (J.2) as

cI  I..1 a c I
B V 'T7rigll ¢ - V----; ' g-- - V , (J.4)

with 3 Mc 3V fiVI.

rig = dv fg(vMo + iT1)Mv - xb d3 i (J.5)

Equation (J.4) is then seen to be of order 62k±pienviV'I.

I will now prove that the difference (J.3) is of order 6k±pipiRIV |. In equation

(J.3), short wavelength components of 0, $ and fig can beat nonlinearly to give a

long wavelength component, and these functions cannot be Taylor expanded around

r. However, the total long wavelength contribution (J.3) can be expanded. The

gyrophase dependence in R, then gives a contribution of order 6ik±pipiPiRVj that

can be ignored when integrating over velocity space to order 6 piR V I. The result

is (cl/B2 ) f d3v(Ze/T)fifMvL (vj b)x V because the rest of the terms have

vanishing gyroaverages to the order of interest. Since both fAj and ¢ are even in vii,

this integral vanishes, and (J.3) is higher order than 5 piRIVO|.
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J.2 Limit of (Jq¢.VO - (c/B)(V. iG) (b x V)) for

I simplify the terms (Ji -VO)4 and -((c/B)(V. iG) (b x Vo))4, by first calculating

the divergence of Ji4 + (c/B)b x (V. * iG). I employ the long wavelength result for

V J- ji in (4.56) to obtain

x (V. iG)] =V
c
Bb x (V riG riG),

rG = M d3v figvl (bVy + v±b) 6ik pipi

iG- d3 v fig(VMO + Vi)M - Vc x b7riG B VO X d3v fiV_ 62pi.

Flux surface averaging equation (J.6) and integrating once in 4', I find the order

6jkLpienevi Vj term

- 1 a VV'V 8#- riG .(b x VO), (J.9)
B

where I neglected c 7riG: V[(b x V4)/B] ~ 6enevilV4l, I used the definition of
+-+I +-+/

ri in (J.7) to obtain VO. r'1r
G in (.7) to obtain V4 G *(b x V) = 0, and I will next prove that (7riG:

V[(b x V)/B]),¢ vanishes.

To see that (riG: V[(b x V4)/B]), = 0, the velocity integral f d3v figvljv_ in riG

has to be found to order 6ik 1 pinev?. This integral only depends on the gyrophase

dependent piece of fig, given to the required order by

1 1fi - -( v x b) Vfio + 22 (v x b)(v x b) V Vfi 0,S- f2 2 ~-( (J.10)

with fio - fi(r, E0 , Po, Vpo) as defined in (4.8) and, thus, gyrophase independent. The
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integral involving V V fio vanishes, leaving

7rig: V ( B ) =

Sd3v 1 [(v x b) -Vfio](bv± + v b) : V B

V - d3 Mvl (v x b)( bv± + v b) :

where terms of order 6ipi are neglected. Integrating in gyrophase and flux surface

averaging, equation (J.11) reduces to

d3 v fi" [b(1 x VO) + (b

SxB

( ( Vx?))

-iG

x V)b] :

This expression vanishes because [b(b x V4) + (b x VO)b] : V[(b x V b)/B] = 0.

To prove this, I employ equation (2.16) to write V[(b x VO)/B] = V(Ib/B) -

V(RC). The tensor V(RC) = (VR)C - C(VR) gives zero contribution because it is

antisymmetric and it is multiplied by the symmetric tensor [b(b x VO) + (b x V4)b].

Then, I am only left with V(Ib/B), giving

[b(b x V) + (b x V)b] : V(bx b V)
[(B')+ B . (J.13)

To simplify, I use relation (2.8), with b -Vb = n, to write b -Vb~ ( x VV) = -(V x

b) ). V = -V. (b x VV)). Finally, I employ (2.16) and (. V(I/B) = 0 = V. (RBC)

due to axisymmetry to obtain

[b(b x VO) + (b x V)b] : x V X )= iV . V (I)
~BJ

I
I - (Ib) = 0.B

192

(J.11)

1 0
V' 0¢~V' (M (J.12)

(J.14)

V B



J.3 Limit of ((cl/B)FiE), for k1 pi-- 0

The function FiE, defined in (4.41), is written as

FiE = Ze dEo dPo do B f ( V + x (J. 15)

where I use d3v = (B/vll)dEo dpo d oo and v 1 = Ovii/&Eo. Integrating by parts in E,

and making use of Od/OEo = 0, OfMi/OEo = (-M/T)fmi and i = (vll/i)V x v1 ,

I find
Ze

FiE = M dEo dpodoB i fiM(viib + ) " . (J.16)

Multiplying equation (J.16) by cI/B and writing the result as a divergence give

cFEI cP I - Id3 Z2 V V \I (J.17)
B VB T i , Yi

with 7rE = f d3v (Ze/T)fM(v11b + ~1)Mvll. Here, I employ b. V(fMi/Ti) = 0,

and neglect the integral Mcf dEo dpo dpoZe$V. (lIfMai/Ti) because it is of order

6ieneviV4'I. I will now consider the two integrals in equation (J.17). Upon using

(2.15), the flux surface average of the first integral gives

c1 Zek Ivl (,1 VK. i d Mc d Z Jdv- V . (J.18)

B iE V' Ti B

Multiplying equation (2.16) by v, I find Iv l/B = Rv. + (v x b). VP/B. Substituting

this result in equation (J.18), I find that the integral of v x b vanishes because q and

fziv are even in v11, and 1 is odd. Thus, the first integral of equation (J.17) gives

( iE = V c d3v Ze fMRM(v - ) -VV) (J.19)

In the second integral of (J.17), I need to keep '(R,, po, o, t) _~ (r, PPo, Po, t) +
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Ql (v x b) *V¢. Using f doo ¢(r, po, po t) = 0 leaves

Sd3v

Ze

Q B

L2

Ze
d3v fMii (V x

Ti

'Ifd3vZe fA
.fAiL

Z2e f 2^

Ti
) Ivb) vvb - ]

(J.20)

where terms of order 56enevii V4 are neglected to obtain the second equality. Using

vllj -V(Ivll/i) = VMo -VO in equation (J.20) and flux surface averaging, I find

Kd3v Z fivll b

MC Zef (vx) V VM
f Ti B

(J.21)

Here, equation (2.16) multiplied by v gives (v x b) - VO/B = Ivll/B - Rv - C. The

integral of Ivll/B vanishes because both q and fMi are even in vii. Thus, equation

(J.21) gives to relevant order

10
V'

K d31

KC Id 3V

Z2e2 r
v - fuilb

Ti

e
fzMiR Mi(v

Ti
(J.22)

Substituting equations (J.19) and (J.22) into the flux surface average of equation

(J.17), I obtain

0 V/ c d3v(fi, -

where I use fi - fig = -(Ze¢/Ti)fMi.
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J.4 Limit of (ZeniVic -V - cRFic. ()0 for k pi -+ 0

This collisional combination vanishes. According to (H.17), for k±ipi < 1, (ZeniVic -

Vo), is given by

1 0
(ZeniVic -V)-, = V'V/ Oft

c
Bay

d3v C{fi}lVO 2  ±. (J.24)
2

Equation (H.19), on the other hand, gives

1 V
(cRFic. ), = - V'Vf allO

C

BQi2
d3vC{fi}lV2Mv2 )V

2

where I use equation (2.1) to obtain V4. (b x C) = IVV| 2 /RB.

Finally, since the collisional piece vanishes to relevant order, I just need to sub-

stitute equations (J.4), (J.9) and (J.23) into equation (J.1) and employ (2.16) to find

(4.63).
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Appendix K

Gyroviscosity in gyrokinetics

In this Appendix, I show why the gyroviscosity must take the form given in equa-

tion (4.65), and later I simplify that expression for up-down symmetric tokamaks by

proving that the collisional piece must vanish.

K.1 Evaluation of equation (4.65)

To prove equation (4.65), I employ that VM0o V = v1 -V(Iv/Qi) and ,1 - V) =

-vll ( V[Q -(v x b) . V0], proven below in (K.2), to write

Mc Il (vx ) -V MC
(VMO + -) v= b V [ ( . V[R(v )], (K.1)

where I use equation (2.16) to find the last equality. Notice that in l - V =

(vl /l )( x v±) -V7 = (vjl/Qi)V. (v1 x V4), both v± and VO are perpendicular to

b. Then, vI x V must be parallel to b, giving v 1 x VO = -b[(v x b) -VO], and

9 V = -VI [b(v x b) . V] = -Vli. V (v × - (K.2)

Substituting equation (K.1) into equation (4.65) gives

Sdv fiRM(v - )(vmo + tr) -VO)
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M2C dV fi -J v [R2 (V - )2]v_.

M2C (Jd32 v 2V *)2]vb.fi (K.3)

Only the axisymmetric, short radial wavelength pieces of fi contribute to (K.3) be-

cause of the flux surface average. To find this portion of fi, I employ equations (4.10),

(4.11), (4.12), (4.13), (4.14) and (4.15) to obtain the gyrokinetic equation

tfi + (b + vmo + ) V - Ze - ( f)A\ + VEO Vfig = (C{fi}). (K.4)
r,v

In this equation, I will only keep terms of order 6ifMivi/L or larger. These terms will

give R- .V' 6ipRIV I as seen from (K.3).

In the nonlinear term VEO Vfig, different components of (0) and fig beat together

to give an axisymmetric, short radial wavelength contribution to (K.4). The term

VEO Vfig can be treated as the term vE - VRfi in the axisymmetric piece of equation

(4.1), where it was neglected. In equation (K.4), VEO iVf2 g - k±p6jifMUv/L <K

6fAfivi/L is negligible, too. This is another form of the conclusion of section 4.1, i.e.,

the long wavelength, axisymmetric flows are neoclassical.

Neglecting VEO Vfig and using fig = fi + (Ze5/Ti)fMi in equation (K.4), I find

that the axisymmetric, short radial wavelength portion of fi must satisfy

Ofj Ze Oft Ze
+ vi jb Vf y + fMiVo) + -- Aiif - (vM0 - rl). V

at T& T /
= (C{ff}). (K.5)

Here, the terms that contain (VMO + 91) -V and (vMo + r1) -V(fAMi) are neglected

because they are smaller than the rest of the terms by a factor k±pi since q - 5iTe/e _

kjpi(¢). Additionally, I used V± - V(O/f0) since only short radial wavelength

effects matter in (K.4). Finally, substituting equation (K.1) into (K.5) gives

Of Ze + -Mc (fi +Ze ) vj- R(v .

+v b. Vf+ +f + flb"[R(v. )]
rv + vTiA Ze o T

= (C{fj}).(K.6)
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I substitute vll. V f from equation (K.6) into equation (K.3) to find

K dv f RM(v - )(vuo + vi) - V4) =

dC v [R (V _)2] ( - (C{~})) , (K.7)

where I use (Ze/T)b. V f dvy fMivll[R 2(v .)2] = 0 and

M3 d v + V vi b - /[R(v - )]R (V. )2
6Z2 e2  J VVl V -

M 3  c2  d b - O + f mi (v. 3 V . 0. (K .8)

To obtain the first equality in equation (K.8), terms that contain b - V(Of,/00) and

b V(ao/ao) are neglected.

Finally, using k±pi < 1 in (K.7), the replacements fi - fi and (C{fi}) - Cfi}

lead to (4.65).

K.2 Collisional piece in up-down symmetric toka-

maks

To prove that the collisional contribution to equation (4.65) vanishes for up-down

symmetric tokamaks I employ the drift kinetic equation (4.1) for the long wavelength,

axisymmetric component of 7i. I already proved that the term VE VRfi can be safely

neglected. Additionally, I assume that the time derivative is small once the statistical

equilibrium is reached, and I split the distribution function into f = fi Mi(, Eo) + hi,

with hi(C, 0, Eo, Po, t) < fAi, giving

vi - V [- + aIVi C) , (K.9)

where I use VMo - v l = v11b -V(Ivl /Qi). Since the tokamak is up-down symmetric,
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Ivll / i is symmetric in 0 and its derivative is antisymmetric.

In equation (K.9), replacing 0 by -0, vii by -vii and hi by -hi does not change

the equation. Then, hi changes sign if both 0 and vjj do. Due to this property, the

collisional integral in (4.65) is given by

2Bi JdVC(e){hi } (IV 2 + I2v ) 0. (K.10)

In the contributions to this integral, the piece of the distribution function with positive

vII in the upper half (0 > 0) of the tokamak cancels the piece of the distribution

function with negative vl in the lower half (0 < 0). Similarly, the piece with negative

vI! in the upper half cancels the piece with positive vji in the lower half.
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