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John N. Tsitsiklis jnt@mit.edu
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology, Cambridge, MA 02139

Jia Yuan Yu jia.yu@mcgill.ca

Department of Electrical and Computer Engineering

McGill University, Québec H3A-2A7
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Abstract

We study online learning where a decision maker interacts with Nature with the objec-
tive of maximizing her long-term average reward subject to some sample path average
constraints. We define the reward-in-hindsight as the highest reward the decision maker
could have achieved, while satisfying the constraints, had she known Nature’s choices in
advance. We show that in general the reward-in-hindsight is not attainable. The convex
hull of the reward-in-hindsight function is, however, attainable. For the important case of
a single constraint, the convex hull turns out to be the highest attainable function. Using
a calibrated forecasting rule, we provide an explicit strategy that attains this convex hull.
We also measure the performance of heuristic methods based on non-calibrated forecasters
in experiments involving a CPU power management problem.

1. Introduction

We consider a repeated game from the viewpoint of a decision maker (player P1) who
plays against Nature (player P2). The opponent (Nature) is “arbitrary” in the sense that
player P1 has no prediction, statistical or strategic, of the opponent’s choice of actions.
This setting was considered by Hannan (1957), in the context of repeated matrix games.
Hannan introduced the Bayes utility with respect to the current empirical distribution of
the opponent’s actions, as a performance goal for adaptive play. This quantity, defined as
the highest average reward that player P1 could have achieved, in hindsight, by playing
some fixed action against the observed action sequence of player P2. Player P1’s regret is
defined as the difference between the highest average reward-in-hindsight that player P1
could have hypothetically achieved, and the actual average reward obtained by player P1.
It was established in Hannan (1957) that there exist strategies whose regret converges to
zero as the number of stages increases, even in the absence of any prior knowledge on the
strategy of player P2. For recent advances on online learning, see Cesa-Bianchi and Lugosi
(2006).

c©2008 Mannor et al.
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In this paper we consider regret minimization under sample-path constraints. That is,
in addition to maximizing the average reward, or more precisely, minimizing the regret,
the decision maker has some side constraints that need to be satisfied on the average. In
particular, for every joint action of the players, there is an additional penalty vector that is
accumulated by the decision maker. The decision maker has a predefined set in the space of
penalty vectors, which represents the acceptable tradeoffs between the different components
of the penalty vector. An important special case arises when the decision maker wishes to
keep some constrained resource below a certain threshold. Consider, for example, a wireless
communication system where the decision maker can adjust the transmission power to
improve the probability that a message is received successfully. Of course, the decision
maker does not know a priori how much power will be needed (this depends on the behavior
of other users, the channel conditions, etc.). Still, a decision maker is usually interested
in both the rate of successful transmissions, and in the average power consumption. In
an often considered variation of this problem, the decision maker wishes to maximize the
transmission rate, while keeping the average power consumption below some predefined
threshold. We refer the reader to Mannor and Shimkin (2004) and references therein for a
discussion of constrained average cost stochastic games and to Altman (1999) for constrained
Markov decision problems. We note that the reward and the penalty are not treated the
same; otherwise they could have been combined into a single scalar value, resulting in a
much simpler problem.

The paper is organized as follows. In Section 2, we present formally the basic model,
and provide a result that relates attainability with the value of the game. In Section 3,
we provide an example where the reward-in-hindsight cannot be attained. In light of this
negative result, in Section 4 we define the closed convex hull of the reward-in-hindsight, and
show that it is attainable. Furthermore, in Section 5, we show that when there is a single
constraint, this is the maximal attainable objective. In Section 6, we provide a simple
strategy, based on calibrated forecasting, that attains the closed convex hull. Section 7
presents heuristic algorithms derived from an online forecaster, while incorporating strictly
enforced constraints. The application of the algorithms of Section 7 to a power management
domain is presented in Section 8. We finally conclude in Section 9 with some open questions
and directions for future research.

2. Problem definition

We consider a repeated game against Nature, in which a decision maker tries to maximize
her reward, while satisfying some constraints on certain time-averages. The underlying
stage game is a game with two players: P1 (the decision maker of interest) and P2 (who
represents Nature and is assumed arbitrary). For our purposes, we only need to define
rewards and constraints for P1.

A constrained game with respect to a set T is defined by a tuple (A,B,R,C, T ) where:

1. A is the set of actions of P1; we will assume A = {1, 2, . . . , |A|}.

2. B is the set of actions of P2; we will assume B = {1, 2, . . . , |B|}.

3. R is an |A|×|B| matrix where the entry R(a, b) denotes the expected reward obtained
by P1, when P1 plays action a ∈ A and P2 action b ∈ B. The actual rewards obtained
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at each play of actions a and b are assumed to be IID random variables, with finite
second moments, distributed according to a probability law PrR(· | a, b). Furthermore,
the reward streams for different pairs (a, b) are statistically independent.

4. C is an |A| × |B| matrix, where the entry C(a, b) denotes the expected d-dimensional
penalty vector incurred by P1, when P1 plays action a ∈ A and P2 action b ∈ B. The
actual penalty vectors obtained at each play of actions a and b are assumed to be IID
random variables, with finite second moments, distributed according to a probability
law PrC(· | a, b). Furthermore, the penalty vector streams for different pairs (a, b) are
statistically independent.

5. T is a set in Rd within which we wish the average of the penalty vectors to lie. We
assume that T is convex and closed. Since the entries of C are bounded, we will also
assume, without loss of generality, that T is bounded.

The game is played in stages. At each stage t, P1 and P2 simultaneously choose actions
at ∈ A and bt ∈ B, respectively. Player P1 obtains a reward rt, distributed according
to PrR(· | at, bt), and a penalty ct, distributed according to PrC(· | at, bt). We define P1’s
average reward by time t to be

r̂t =
1
t

t∑
τ=1

rτ , (2.1)

and P1’s average penalty vector by time t to be

ĉt =
1
t

t∑
τ=1

cτ . (2.2)

A strategy for P1 (resp. P2) is a mapping from the set of all possible past histories to
the set of mixed actions on A (resp. B), which prescribes the (mixed) action of that player
at each time t, as a function of the history in the first t − 1 stages. Loosely, P1’s goal is
to maximize the average reward while having the average penalty vector converge to T ,
pathwise:

lim sup
t→∞

dist(ĉt, T )→ 0, a.s., (2.3)

where dist(·) is the point-to-set Euclidean distance, i.e., dist(x, T ) = infy∈T ‖y − x‖2, and
the probability measure is the one induced by the policy of P1, the policy of P2, and the
randomness in the rewards and penalties.

We will often consider the important special case where T = {c ∈ Rd : c ≤ c0}, for some
given c0 ∈ Rd, with the inequality interpreted component-wise. We simply call such a game
a constrained game with respect to (a vector) c0. For that special case, the requirement (2.3)
is equivalent to:

lim sup
t→∞

ĉt ≤ c0, a.s..

For a set D, we will use the notation ∆(D) to denote the set of all probability measures
on D. If D is finite, we will identify ∆(D) with the set of probability vectors of the same
size as D. If D is a subset of Euclidean space, we will assume that it is endowed with the
Borel σ-field.
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2.1 Reward-in-hindsight

We define q̂t ∈ ∆(B) as the empirical distribution of P2’s actions by time t, that is,

q̂t(b) =
1
t

t∑
τ=1

1{bt=b}, b ∈ B. (2.4)

If P1 knew in advance that q̂t will equal q, and if P1 were restricted to using a fixed action,
then P1 would pick an optimal response (generally a mixed action) to the mixed action q,
subject to the constraints specified by T . In particular, P1 would solve the convex program1

max
p∈∆(A)

∑
a,b

p(a)q(b)R(a, b), (2.5)

s.t.
∑
a,b

p(a)q(b)C(a, b) ∈ T.

By playing a p that solves this convex program, P1 would meet the constraints (up to small
fluctuations that are a result of the randomness and the finiteness of t), and would obtain
the maximal average reward. We are thus led to define P1’s reward-in-hindsight, which we
denote by r∗ : ∆(B) 7→ R, as the optimal objective value in the program (2.5), as a function
of q. The function r∗ is often referred to as the Bayes envelope.

For the special case of a constrained game with respect to a vector c0, the convex
constraint

∑
a,b p(a)q(b)C(a, b) ∈ T is replaced by

∑
a,b p(a)q(b)C(a, b) ≤ c0 (the inequality

is to be interpreted component-wise).
The following examples show some of the properties of the Bayes envelope. Consider a

2× 2 constrained game with respect to a scalar c0 specified by:

(
(1, 0) (0, 1)
(0, 1) (1, 0)

)
,

where each entry (pair) corresponds to (R(a, b), C(a, b)) for a pair of actions a and b. (Here
a and b correspond to a choice of row and column, respectively.) Suppose first that c0 = 1.
In that case the constraint does not play a part in the problem, and we are dealing with a
version of the matching pennies game. So, if we identify q with the frequency of the first
action, we have that r∗(q) = max(q, 1 − q). Suppose now that c0 = 1/2. In this case, it
is not difficult to show that r∗(q) = 1/2, since P1 cannot take advantage of any deviation
from q = 1/2 while satisfying the constraint.

The next example involves a game where P2’s action does not affect the constraints;
such games are further discussed in Section 4.1. Consider a 2 × 2 constrained game with
respect to a scalar c0, specified by:

(
(1, 1) (0, 1)
(0, 0) (1, 0)

)
,

1. If T is a polyhedron (specified by finitely many linear inequalities), then the optimization problem is a
linear program.
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where each entry (pair) corresponds to (R(a, b), C(a, b)) for a pair of actions a and b. We
identify q with the frequency of the second action of P2 as before. Suppose first that
c0 = 1. As before, the constraint has no effect and r∗(q) = max(q, 1− q). Suppose now that
c0 = 1/2. It is not hard to show that in this case r∗(q) = max(q, 1/2). Finally, if c0 = 0,
P1 is forced to choose the second action; in this case, r∗(q) = q. The monotonicity of r∗(q)
in c0 is to be expected since the lower c0 is, the more stringent the constraint in Eq. (2.5).

2.2 The Objective

Formally, our goal is to attain a function r in the sense of the following definition. Naturally,
the higher the function r, the better.

Definition 1 A function r : ∆(B) 7→ R is attainable by P1 in a constrained game with
respect to a set T if there exists a strategy σ of P1 such that for every strategy ρ of P2:

(i) lim inft→∞(r̂t − r(q̂t)) ≥ 0, a.s., and

(ii) lim supt→∞ dist(ĉt, T )→ 0, a.s.,

where the almost sure convergence is with respect to the probability measure induced by σ
and ρ.

In constrained games with respect to a vector c0 we can replace (ii) in the definition
with

lim sup
t→∞

ĉt ≤ c0, a.s.

2.3 The value of the game

In this section, we consider the attainability of a constant function r : ∆(B) 7→ R, i.e.,
r(q) = α, for all q. We will establish that attainability is equivalent to having α ≤ v, where
v is a naturally defined “value of the constrained game.”

We first introduce the assumption that P1 is always able to satisfy the constraint.

Assumption 1 For every mixed action q ∈ ∆(B) of P2, there exists a mixed action p ∈
∆(A) of P1, such that: ∑

a,b

p(a)q(b)C(a, b) ∈ T. (2.6)

For constrained games with respect to a vector c0, the condition (2.6) reduces to the in-
equality

∑
a,b p(a)q(b)C(a, b) ≤ c0.

If Assumption 1 is not satisfied, then P2 can choose a q such that for every (mixed)
action of P1, the constraint is violated in expectation. By repeatedly playing this q, P1’s
average penalty vector will be outside T , and the objectives of P1 will be impossible to
meet.

The following result deals with the attainability of the value, v, of an average reward
repeated constrained game, defined by

v = inf
q∈∆(B)

sup
p∈∆(A):

P
a,b p(a)q(b)C(a,b)∈T

∑
a,b

p(a)q(b)R(a, b). (2.7)
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The existence of a strategy for P1 that attains the value was proven in (Shimkin, 1994) in
the broader context of stochastic games.

Proposition 2 Suppose that Assumption 1 holds. Then,

(i) P1 has a strategy that guarantees that the constant function r(q) ≡ v is attained with
respect to T .

(ii) For every number v′ > v there exists δ > 0 such that P2 has a strategy that guarantees
that either lim inft→∞ r̂t < v′ − δ or lim supt→∞ dist(ĉt, T ) > δ, almost surely. (In
particular, the constant function v′ is not attainable.)

Proof The proof relies on Blackwell’s approachability theory (Blackwell, 1956a). We con-
struct a nested family of convex sets in Rd+1 defined by Sα = {(r, c) ∈ R×Rd : r ≥ α, c ∈ T}.
Obviously, Sα ⊂ Sβ for α > β. Consider the vector-valued game in Rd+1 associated with
the constrained game. In this game, P1’s vector-valued payoff at time t is the d+ 1 dimen-
sional vector mt = (rt, ct) and P1’s average vector-valued payoff is m̂t = (r̂t, ĉt). Since Sα is
convex, it follows from approachability theory for convex sets (Blackwell, 1956a) that each
Sα is either approachable2 or excludable3. If Sα is approachable, then Sβ is approachable
for every β < α. We define v0 = sup{β | Sβ is approachable}. It follows that Sv0 is ap-
proachable (as the limit of approachable sets; see Spinat (2002)). By Blackwell’s theorem,
for every q ∈ ∆(B), an approachable convex set must intersect the set of feasible payoff
vectors when P2 plays q. Using this fact, it is easily shown that v0 equals v, as defined by
Eq. (2.7), and part (i) follows. Part (ii) follows because a convex set which is not approach-
able is excludable.

Note that part (ii) of the proposition implies that, essentially, v is the highest average
reward P1 can attain while satisfying the constraints, if P2 plays an adversarial strategy.
By comparing Eq. (2.7) with Eq. (2.5), we see that v = infq r∗(q). On the other hand, if
P2 does not play adversarially, P1 may be able to do better, perhaps attaining r∗(q). Our
subsequent results address the question whether this is indeed the case.

Remark 3 In general, the infimum and supremum in (2.7) cannot be interchanged. This is
because the set of feasible p in the inner maximization depends on the value of q. Moreover,
it can be shown that the set of (p, q) pairs that satisfy the constraint

∑
a,b p(a)q(b)C(a, b) ∈ T

is not necessarily convex.

2. A set X is approachable if there exists a strategy for the agent such that for every ε > 0, there exists an
integer N such that, for every opponent strategy:

Pr

 
dist

 
1

n

nX
i=1

mt, X

!
≥ ε for some n ≥ N

!
< ε.

3. A set X is excludable if there exists a strategy for the opponent such that there exists δ > 0 such that
for every ε > 0, there exists an integer N such that, for every agent strategy:

Pr

 
dist

 
1

n

nX
i=1

mt, X

!
≥ δ for all n ≥ N

!
> 1− ε.
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2.4 Related works

Notwithstanding the apparent similarity, the problem that we consider is not an instance
of online convex optimization (Zinkevich, 2003; Hazan and Megiddo, 2007). In the latter
setting, there is a convex feasible domain F ⊂ Rn, and an arbitrary sequence of convex
functions ft : F → R. At every step t, the decision maker picks xt ∈ F based on the past
history, without knowledge of the future functions ft, and with the objective of minimizing
the regret

T∑
t=1

ft(xt)−min
y∈F

T∑
t=1

ft(y). (2.8)

An analogy with our setting might be possible, by identifying xt and ft with at and bt,
respectively, and by somehow relating the feasibility constraints described by F to our
constraints. However, this attempt seems to run into some fundamental obstacles. In
particular, in our setting, feasibility is affected by the opponent’s actions, whereas in online
convex optimization, the feasible domain F is fixed for all time steps. For this reason, we do
not see a way to reduce the problem of online learning with constraints to an online convex
optimization problem, and given the results below, it is unlikely that such a reduction is
possible.

3. Reward-in-Hindsight Is Not Attainable

As it turns out, the reward-in-hindsight cannot be attained in general. This is demonstrated
by the following simple 2× 2 matrix game, with just a single constraint.

Consider a 2× 2 constrained game specified by:

(
(1,−1) (1, 1)
(0,−1) (−1,−1)

)
,

where each entry (pair) corresponds to (R(a, b), C(a, b)) for a pair of actions a and b. At a
typical stage, P1 chooses a row, and P2 chooses a column. We set c0 = 0. Let q denote the
frequency with which P2 chooses the second column. The reward of the first row dominates
the reward of the second one, so if the constraint can be satisfied, P1 would prefer to choose
the first row. This can be done as long as 0 ≤ q ≤ 1/2, in which case r∗(q) = 1. For
1/2 ≤ q ≤ 1, player P1 needs to optimize the reward subject to the constraint. Given a
specific q, P1 will try to choose a mixed action that satisfies the constraint (on the average)
while maximizing the reward. If we let α denote the frequency of choosing the first row, we
see that the reward and penalty are:

r(α, q) = α− (1− α)q , c(α, q) = 2αq − 1,

respectively. We observe that for every q, r(α) and c(α) are monotonically increasing
functions of α. As a result, P1 will choose the maximal α that satisfies c(α) ≤ 0, which is
α(q) = 1/2q, and the optimal reward is 1/2 + 1/2q − q. We conclude that the reward-in-
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r* (q
)

2x2 R−C game

Figure 1: The reward-in-hindsight of the constrained game. Here, r∗(q) is the solid line,
and the dotted line connects the two extreme values, for q = 0 and q = 1.

hindsight is:

r∗(q) =


1, if 0 ≤ q ≤ 1/2,
1
2

+
1
2q
− q, if 1/2 ≤ q ≤ 1.

The graph of r∗(q) is the solid line in Figure 1.
We now claim that P2 can make sure that P1 does not attain r∗.

Proposition 4 If c0 = 0, then there exists a strategy for P2 such that r∗ cannot be attained.

Proof Suppose that the opponent, P2, plays according to the following strategy. Initialize
a counter k = 1. Let α̂t be the empirical frequency with which P1 chooses the first row
during the first t time steps. Similarly, let q̂t be the empirical frequency with which P2
chooses the second column during the first t time steps.

1. While k = 1 or α̂t−1 > 3/4, P2 chooses the second column, and k is incremented by
1.

2. For the next k times, P2 chooses the first column. Then, reset the counter k to , and
go back to Step 1.

We now show that if

lim sup
t→∞

ĉt ≤ 0, a.s., (3.9)
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then a strict inequality holds for the regret:

lim inf
t→∞

(r̂t − r∗(q̂t)) < 0, a.s.

Suppose that Step 2 is entered only a finite number of times. Then, after some finite time,
P2 keeps choosing the second column, and q̂t converges to 1. For P1 to satisfy the constraint
lim supt→∞ ĉt ≤ 0, we must have lim α̂t ≤ 1/2. But then, the condition α̂t−1 > 3/4 will
be eventually violated. This shows that Step 2 is entered an infinite number of times.
In particular, there exist infinite sequences ti and t′i such that ti < t′i < ti+1 and (i) if
ti < t ≤ t′i, P2 chooses the second column (Step 1); (ii) if t′i < t ≤ ti+1, P2 chooses the first
column (Step 2).

Note that Steps 1 and 2 last for an equal number of time steps. Thus, we have q̂ti = 1/2,
and r∗(q̂ti) = 1, for all i. Furthermore, ti+1 − t′i ≤ t′i, or t′i ≥ ti+1/2. Note that α̂t′i ≤ 3/4,
because otherwise P2 would still be in Step 1 at time t′i+1. Thus, during the first ti+1 time
steps, P1 has played the first row at most

3t′i/4 + (ti+1 − t′i) = ti+1 − t′i/4 ≤ 7ti+1/8

times. Due to the values of the reward matrix, we have lim supt→∞ r̂t < lim supi→∞ r̂ti . In
particular, we have r̂ti+1 ≤ 7/8, and lim inft→∞(r̂t − r∗(q̂t)) ≤ 7/8− 1 < 0.

Intuitively, the strategy that was described above allows P2 to force P1 to move, back
and forth, between the extreme points (q = 0 and q = 1) that are linked by the dotted
line in Figure 1. Since r∗(q) is not convex, and since the dotted line is strictly below r∗(q)
for q = 1/2, this strategy precludes P1 from attaining r∗(q). We note that the choice
of c0 is critical in this example. With other choices of c0 (for example, c0 = −1), the
reward-in-hindsight may be attainable.

4. Attainability of the Convex Hull

Since the reward-in-hindsight is not attainable in general, we have to settle for a more
modest objective. More specifically, we are interested in functions f : ∆(B) → R that are
attainable with respect to a given constraint set T . As a target we suggest the closed convex
hull of the reward-in-hindsight, r∗. After defining it, we prove that it is indeed attainable.
In the next section, we will also show that it is the highest possible attainable function,
when there is a single constraint.

Given a function f : X 7→ R, over a convex domain X, its closed convex hull is the
function whose epigraph is

conv({(x, r) : r ≥ f(x)}),

where conv(D) is the convex hull, and D is the closure of a set D. We denote the closed
convex hull of r∗ by rc.

We will make use of the following facts. Forming the convex hull and then the closure
results in a larger epigraph, hence a smaller function. In particular, rc(q) ≤ r∗(q), for all q.
Furthermore, the closed convex hull is guaranteed to be continuous on ∆(B). (This would

9
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not be true if we had considered the convex hull, without forming its closure.) Finally, for
every q in the interior of ∆(B), we have:

rc(q) = inf
q1,q2,...,qk∈∆(B),α1,...,αk

k∑
i=1

αir
∗(qi) (4.10)

s.t.
k∑
i=1

αiqi(b) = q(b), ∀b ∈ B,

αi ≥ 0, i = 1, 2, . . . , k,
k∑
i=1

αi = 1,

where k can be taken equal to |B|+ 2 by Caratheodory’s Theorem.
The following result is proved using Blackwell’s approachability theory. The technique is

similar to that used in other no-regret proofs (e.g., Blackwell (1956b); Mannor and Shimkin
(2003)), and is based on the convexity of a target set in an appropriately defined space.

Theorem 5 Let Assumption 1 hold for a given convex set T ⊂ Rd. Then rc is attainable
with respect to T .

Proof Define the following game with vector-valued payoffs, where the payoffs belong to
R × Rd ×∆(B) (a |B| + d + 1 dimensional space, which we denote by M). Suppose that
P1 plays at, P2 plays bt, P1 obtains an immediate reward of rt and an immediate penalty
vector of ct. Then, the vector-valued payoff obtained by P1 is

mt = (rt, ct, e(bt)) ,

where e(b) is a vector of zeroes, except for a 1 in its bth component. It follows that the
average vector-valued reward at time t, which we define as m̂t = 1

t

∑t
τ=1mτ , satisfies:

m̂t = (r̂t, ĉt, q̂t), where r̂t, ĉt, and q̂t were defined in Eqs. (2.1), (2.2), and (2.4), respectively.
Consider the sets:

B1 = {(r, c, q) ∈M : r ≥ rc(q)}, B2 = {(r, c, q) ∈M : c ∈ T},

and let B = B1 ∩ B2. Note that B is a convex set. We claim that B is approachable. Let
m : ∆(A)×∆(B)→M describe the expected payoff in a single stage game, when P1 and
P2 choose actions p and q, respectively. That is,

m(p, q) =
(∑
a,b

p(a)q(b)R(a, b),
∑
a,b

p(a)q(b)C(a, b), q
)
.

Using the sufficient condition for approachability of convex sets (Blackwell, 1956a), it suf-
fices to show that for every q there exists a p such that m(p, q) ∈ B. Fix q ∈ ∆(B). By
Assumption 1, the constraint

∑
a,b p(a)q(b)C(a, b) ∈ T is feasible, which implies that the

program (2.5) has an optimal solution p∗. It follows that m(p∗, q) ∈ B. We now claim that a
strategy that approaches B also attains rc in the sense of Definition 1. Indeed, since B ⊆ B2

we have that Pr(d(ct, T ) > ε infinitely often) = 0 for every ε > 0. Since B ⊆ B1 and using
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the continuity of rc, we obtain lim inf (r̂t − rc(q̂t)) ≥ 0.

We note that Theorem 5 is not constructive. Indeed, a strategy that approaches B,
based on a naive implementation Blackwell’s approachability theory, requires an efficient
procedure for computing the closest point in B,and therefore a computationally efficient
description of B, which may not be available (we do not know whether B can be described
efficiently). This motivates the development of the calibration based scheme in Section 6.

Remark 6 Convergence rate results also follow from general approachability theory, and
are generally of the order of t−1/3; see (Mertens et al., 1994). It may be possible, perhaps,
to improve upon this rate and obtain t−1/2, which is the best possible convergence rate for
the unconstrained case.

Remark 7 For every q ∈ ∆(B), we have r∗(q) ≥ v, which implies that rc(q) ≥ v. Thus,
attaining rc guarantees an average reward at least as high as the value of the game.

4.1 Degenerate Cases

In this section, we consider the degenerate cases where the penalty vector is affected by
only one of the players. We start with the case where P1 alone affects the penalty vector,
and then discuss the case where P2 alone affects the penalty vector.

If P1 alone affects the penalty vector, that is, if C(a, b) = C(a, b′) for all a ∈ A and
b, b′ ∈ B, then r∗(q) is convex. Indeed, in this case, Eq. (2.5) becomes (writing C(a) for
C(a, b))

r∗(q) = max
p∈∆(A):

P
a p(a)C(a)∈T

∑
a,b

p(a)q(b)R(a, b),

which is the maximum of a collection of linear functions of q (one function for each feasible
p), and is therefore convex.

If P2 alone affects the penalty vector, that is, if c(a, b) = c(a′, b) for all b ∈ B and
a, a′ ∈ A, then Assumption 1 implies that the constraint is always satisfied. Therefore,

r∗(q) = max
p∈∆(A)

∑
a,b

p(a)q(b)R(a, b),

which is again a maximum of linear functions, hence convex.
We conclude that in both degenerate cases, if Assumption 1 holds, then the reward-in-

hindsight is attainable.

5. Tightness of the Convex Hull

We now show that rc is the maximal attainable function, for the case of a single constraint.

Theorem 8 Suppose that d = 1, T is of the form T = {c | c ≤ c0}, where c0 is a given
scalar, and that Assumption 1 is satisfied. Let r̃ : ∆(B) 7→ R be a continuous attainable
function with respect to the scalar c0. Then, rc(q) ≥ r̃(q) for all q ∈ ∆(B).
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Figure 2: In either part (a) or (b) of the figure, we fix some q ∈ ∆(B). The triangle is the
set of possible reward-cost pairs, as we vary p over the set ∆(A). Then, for a
given value c in the upper bound on the cost (cf. (5.12)), the shaded region is the
set of reward-cost pairs that also satisfy the cost constraint.

Proof The proof is constructive, as it provides a concrete strategy for P2 that prevents P1
from attaining r̃, unless rc(q) ≥ r̃(q) for every q. Assume, in order to derive a contradiction,
that there exists some r̃ that violates the theorem. Since r̃ and rc are continuous, there
exists some q0 ∈ ∆(B) and some ε > 0 such that r̃(q) > rc(q) + ε for all q in an open
neighborhood of q0. In particular, q0 can be taken to lie in the interior of ∆(B). Using
Eq. (4.10), it follows that there exist q1, . . . , qk ∈ ∆(B) and α1, . . . , αk (with k ≤ |B| + 2,
due to Caratheodory’s Theorem) such that

k∑
i=1

αir
∗(qi) ≤ rc(q0) +

ε

2
< r̃(q0)− ε

2
;

k∑
i=1

αiq
i(b) = q0(b), ∀ b ∈ B;

k∑
i=1

αi = 1; αi ≥ 0, ∀ i.

Let τ be a large positive integer (τ is to be chosen large enough to ensure that the events
of interest occur with high probability, etc.). We will show that if P2 plays each qi for dαiτe
time steps, in an appropriate order, then either P1 does not satisfy the constraint along the
way or r̂τ ≤ r̃(q̂τ )− ε/2.

We let qi, i = 1, . . . , k, be fixed, as above, and define a function fi : Rd → R∪{−∞} as:

fi(c) = max
p∈∆(A)

∑
a,b

p(a)qi(b)R(a, b), (5.11)

subject to
∑
a,b

p(a)qi(b)C(a, b) ≤ c, (5.12)

where the maximum over an empty set is defined to equal −∞. Observe that the feasible set
(and hence, optimal value) of the above linear program depends on c. Figure 2 illustrates
how the feasible sets to (5.12) may depend on the value of c. By viewing Eqs. (5.11)-(5.12)

12
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Figure 3: An example of functions fi ordered according to ∂f+
i .

as a parametric linear program, with a varying right-hand side parameter c, we see that
fi(c) is piecewise linear, concave, and nondecreasing in c (Bertsimas and Tsitsiklis, 1997).
Furthermore, fi(c0) = r∗(qi). Let ∂f+

i be the right directional derivative of fi at c = c0,
and note that ∂f+

i ≥ 0. From now on, we assume that the qi have been ordered so that the
sequence ∂f+

i is nonincreasing (e.g., as in Figure 3). To visualize the ordering that we have
introduced, consider the set of possible pairs (r, c), given a fixed q. That is, consider the
set M(qi) = {(r, c) : ∃p ∈ ∆(A) s.t. r =

∑
a,b p(a)qi(b)R(a, b), c =

∑
a,b p(a)qi(b)C(a, b)}.

The set M(qi) is the image of the simplex under a linear transformation, and is therefore
a polytope, as illustrated by the triangular areas in Figure 2. The strategy of P2 is to first
play qi such that the p that maximizes the reward (Eq. (5.11)) satisfies Eq. (5.12) with
equality. (Such a qi results in a set M(qi) like the one shown in Figure 2(b).) After all these
qi are played, P2 plays those qi for which the p that maximizes the reward (Eq. (5.11))
satisfies Eq. (5.12) with strict inequality, and ∂f+

i = 0. (Such a qi results in a set M(qi)
like the one shown in Figure 2(a).)

Suppose that P1 knows the sequence q1, . . . , qk (ordered as above) in advance, and that
P2 follows the strategy described earlier. We assume that τ is large enough so that we can
ignore the effects of dealing with a finite sample. Let pi be the average of the mixed actions
chosen by P1 while player P2 plays qi. We introduce the constraints

∑̀
i=1

αi
∑
a,b

pi(a)qi(b)C(a, b) ≤ c0

∑̀
i=1

αi, ` = 1, 2, . . . , k.

These constraints must be satisfied in order to guarantee that ĉt has negligible probability
of substantially exceeding c0, at the “switching” times from one mixed action to another.
If P1 exploits the knowledge of P2’s strategy to maximize her average reward at time τ ,
the resulting expected average reward at time τ will be the optimal value of the objective

13
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function in the following linear programming problem:

max
p1,p2,...,pk

k∑
i=1

αi
∑
a,b

pi(a)qi(b)R(a, b)

s.t.
∑̀
i=1

αi
∑
a,b

pi(a)qi(b)C(a, b) ≤ c0

∑̀
i=1

αi, ` = 1, 2, . . . , k, (5.13)

p` ∈ ∆(A), ` = 1, 2, . . . , k.

Of course, given the value of
∑

a,b p
i(a)qi(b)C(a, b), to be denoted by ci, player P1 should

choose a pi that maximizes rewards, resulting in
∑

a,b p
i(a)qi(b)R(a, b) = fi(ci). Thus, the

above problem can be rewritten as

max
c1,...,ck

∑
αifi(ci)

s.t.
∑̀
i=1

αici ≤ c0

∑̀
i=1

αi, ` = 1, 2, . . . , k. (5.14)

We claim that letting ci = c0, for all i, is an optimal solution to the problem (5.14). This
will then imply that the optimal value of the objective function for the problem (5.13) is∑k

i=1 αifi(c0), which equals
∑k

i=1 αir
∗(qi), which in turn, is bounded above by r̃(q0)− ε/2.

Thus, r̂τ < r̃(q0) − ε/2 + δ(τ), where the term δ(τ) incorporates the effects due to the
randomness in the process. By repeating this argument with ever increasing values of τ (so
that the stochastic term δ(τ) is averaged out and becomes negligible), we obtain that the
event r̂t < r̃(q0)− ε/2 will occur infinitely often, and therefore r̃ is not attainable.

It remains to establish the claimed optimality of (c0, . . . , c0). Suppose that (c1, . . . , ck) 6=
(c0, . . . , c0) is an optimal solution of the problem (5.14). If ci ≤ c0 for all i, the monotonicity
of the fi implies that (c0, . . . , c0) is also an optimal solution. Otherwise, let j be the smallest
index for which cj > c0. If ∂f+

j = 0 (as in the case shown in Figure 2(b)) we have that fi(c)
is maximized at c0 for all i ≥ j and (c0, . . . , c0) is optimal. Suppose that ∂f+

j > 0. In order
for the constraint (5.14) to be satisfied, there must exist some index s < j such that cs < c0.
Let us perturb this solution by setting δ = min{αs(c0 − cs), αj(cj − c0)}, increasing cs to
c̃s = cs + δ/αs, and decreasing cj to c̃j = cj − δ/αj . This new solution is clearly feasible.
Let ∂f−s = limε↓0(fs(c0) − fs(c0 − ε))/ε, which is the left derivative of fs at c0. Using the
concavity of fs, and the earlier introduced ordering, we have ∂f−s ≥ ∂f+

s ≥ ∂f+
j . Observe

that

fs(c̃s) = fs(cs) + ∂f−s δ/αs,

fj(c̃j) = fj(cj)− ∂f+
j δ/αj ,

so that αsfs(c̃s) + αjfj(c̃j) ≥ αsfs(cs) + αjfj(cj). Therefore, the new solution must also
be optimal, but has fewer components that differ from c0. By repeating this process, we
eventually conclude that (c0, . . . , c0) is an optimal solution of (5.14).
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To the best of our knowledge, this is the first tightness result for a performance envelope
(the reward-in-hindsight) different than the Bayes envelope, for repeated games. On the
other hand, we note that our proof relies crucially on the assumption of a single constraint
(d = 1), which allows us to order the ∂f+

i .

6. Attaining the Convex Hull Using Calibrated Forecasts

In this section, we consider a specific strategy that attains the convex hull, thus providing
a constructive proof for Theorem 5. The strategy is based on forecasting P2’s action, and
playing a best response (in the sense of Eq. (2.5)) against the forecast. The quality of
the resulting strategy depends, of course, on the quality of the forecasts; it is well known
that calibrated forecasts lead to no-regret strategies in standard repeated matrix games.
See (Foster and Vohra, 1997; Cesa-Bianchi and Lugosi, 2006) for a discussion of calibration
and its implications in learning in games. In this section we consider the consequences of
calibrated play for repeated games with constraints.

We start with a formal definition of calibrated forecasts and calibrated play, and then
show that calibrated play attains rc in the sense of Definition 1.

A forecasting scheme specifies at each stage k a probabilistic forecast qk ∈ ∆(B) of
P2’s action bk. More precisely a (randomized) forecasting scheme is a sequence of maps
that associate with each possible history hk−1 during the first k − 1 stages a probability
measure µk over ∆(B). The forecast qk ∈ ∆(B) is then selected at random according to the
distribution µk. Let us clarify that for the purposes of this section, the history is defined to
include the realized past forecasts.

We shall use the following definition of calibrated forecasts.

Definition 9 (Calibrated forecasts) A forecasting scheme is calibrated if for every (Borel
measurable) set Q ⊂ ∆(B) and every strategy of P1 and P2

lim
t→∞

1
t

t∑
τ=1

1{qτ ∈ Q}(e(bτ )− qτ ) = 0, a.s., (6.15)

where e(b) is a vector of zeroes, except for a 1 in its bth component.

Calibrated forecasts, as defined above, have been introduced into game theory in (Foster
and Vohra, 1997), and several algorithms have been devised to achieve them (see (Cesa-
Bianchi and Lugosi, 2006) and references therein). These algorithms typically start with
predictions that are restricted to a finite grid, and gradually increase the number of grid
points.

The proposed strategy is to let P1 play a best response against P2’s forecasted play
while still satisfying the constraints (in expectation, for the single stage game). Formally,
we let:

p∗(q) = argmax
p∈∆(A)

∑
a,b

p(a)q(b)R(a, b) (6.16)

s.t.
∑
a,b

p(a)q(b)C(a, b) ∈ T,
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where in the case of a non-unique maximum we assume that p∗(q) is uniquely determined
by some tie-breaking rule; this is easily done, while keeping p∗(·) a measurable function.
The strategy is to play pt = p∗(qt), where qt is a calibrated forecast of P2’s actions4. We
call such a strategy a calibrated strategy.

The following theorem states that a calibrated strategy attains the convex hull.

Theorem 10 Let Assumption 1 hold, and suppose that P1 uses a calibrated strategy. Then,
rc is attained with respect to T .

Proof Fix ε > 0. We need to show that by playing the calibrated strategy, P1 obtains
lim inft→∞(r̂t − rc(q̂t)) ≥ 0 and lim supt→∞ dist(ĉt, T ) ≤ 0, almost surely.

Fix some ε > 0. Consider a partition of the simplex ∆(B) to finitely many measurable
sets Q1, Q2, . . . , Q` such that q, q′ ∈ Qi implies that ‖q − q′‖ ≤ ε and ‖p∗(q) − p∗(q′)‖ ≤ ε.
(Such a partition exists by the compactness of ∆(B) and ∆(A). The measurability of the
sets Qi can be guaranteed because the mapping p∗(·) is measurable.) For each i, let us fix
a representative element qi ∈ Qi, and let pi = p∗(qi).

Since we have a calibrated forecast, Eq. (6.15) holds for every Qi, 1 ≤ i ≤ `. Define
Γt(i) =

∑t
τ=1 1{qτ ∈ Qi} and assume without loss of generality that Γt(i) > 0 for large t

(otherwise, eliminate those i for which Γt(i) = 0 for all t, and renumber the Qi). To simplify
the presentation, we assume that for every i, and for large enough t, we have Γt(i) ≥ εt. (If
for some i, and t this condition is violated, the contribution of such an i in the expressions
that follow will be O(ε).)

By a law of large numbers for martingales, we have

lim
t→∞

(
ĉt −

1
t

t∑
τ=1

C(aτ , bτ )

)
= 0, a.s. (6.17)

By definition, we have

1
t

t∑
τ=1

C(aτ , bτ ) =
∑
i

Γt(i)
t

∑
a,b

C(a, b)
1

Γt(i)

t∑
τ=1

1{qτ ∈ Qi}1{aτ = a}1{bτ = b}.

Observe that whenever qτ ∈ Qi, we have
∥∥pτ − pi∥∥ ≤ ε, where pτ = p∗(qτ ) and pi = p∗(qi)

because of the way the sets Qi were constructed. By martingale convergence, the frequency
with which a will be selected whenever qτ ∈ Qi and bτ = b, will be approximately pi(a).
Hence, for all b,

lim sup
t→∞

∣∣∣∣∣ 1
Γt(i)

t∑
τ=1

1{qτ ∈ Qi}1{aτ = a}1{bτ = b} − pi(a)
1

Γt(i)

t∑
τ=1

1{qτ ∈ Qi}1{bτ = b}

∣∣∣∣∣ ≤ ε,
almost surely. By the calibration property (6.15) for Q = Qi, and the fact that whenever
q, q′ ∈ Qi, we have ‖q − q′‖ ≤ ε, we obtain

lim sup
t→∞

∣∣∣∣∣ 1
Γt(i)

t∑
τ=1

1{qτ ∈ Qi}1{bτ = b} − qi(b)

∣∣∣∣∣ ≤ ε, a.s.

4. When the forecast µt is mixed, qt is the realization of the mixed rule.
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By combining the above bounds, we obtain

lim
t→∞

∣∣∣∣∣∣ĉt −
∑
i

Γt(i)
t

∑
a,b

C(a, b)pi(a)qi(b)

∣∣∣∣∣∣ ≤ 2ε, a.s. (6.18)

Note that the sum over index i in Eq. (6.18) is a convex combination (because the
coefficients Γt(i)/t sum to 1) of elements of T (because of the definition of pi), and is
therefore an element of T (because T is convex). This establishes that the constraint is
asymptotically satisfied within O(ε). Note that in this argument, whenever Γt(i)/t < ε, the
summand corresponding to i is indeed of order O(ε) and can be safely ignored, as stated
earlier.

Regarding the average reward, an argument similar to the above yields

lim inf
t→∞

r̂t ≥ lim inf
t→∞

∑
i

Γt(i)
t

∑
a,b

R(a, b)pi(a)qi(b)− 2ε, a.s.

Next, observe that∑
i

Γt(i)
t

∑
a,b

R(a, b)pi(a)qi(b) =
∑
i

Γt(i)
t

r∗(qi) ≥ rc
(∑

i

Γt(i)
t

qi
)
,

where the equality is a consequence of the definition of pi, and the inequality follows by the
definition of rc as the closed convex hull of r∗. Observe also that the calibration property
(6.15), with Q = ∆(B), implies that

lim
t→∞

∥∥∥∥∥q̂t − 1
t

t∑
τ=1

qτ

∥∥∥∥∥ = 0, a.s.

In turn, since
∥∥qτ − qi∥∥ ≤ ε for a fraction Γt(i)/t of the time,

lim sup
t→∞

∥∥∥∥∥q̂t −∑
i

Γt(i)
t

qi

∥∥∥∥∥ = lim sup
t→∞

∥∥∥∥∥1
t

t∑
τ=1

qτ −
∑
i

Γt(i)
t

qi

∥∥∥∥∥ ≤ ε, a.s.

Recall that the function rc is continuous, hence uniformly continuous. Thus, there exists
some function g, with limε↓0 g(ε) = 0, such that when the argument of rc changes by at
most ε, the value of rc changes by at most g(ε). By combining the preceding results, we
obtain

lim inf
t→∞

r̂t ≥ rc(q̂t)− 2ε− g(ε), a.s.

The above argument involves a fixed ε, and a fixed number ` of sets Qi, and lets t
increase to infinity. As such, it establishes that for any ε > 0 the function rc − 2ε− g(ε) is
attainable with respect to the set T ε defined by T ε = {x | dist(x, T ) ≤ 2ε}. Since this is
true for every ε > 0, we conclude that the calibrated strategy attains rc as claimed.
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7. Algorithms

The results in the previous section motivate us to develop algorithms for online learning with
constraints, perhaps based on calibrated forecasts. For practical reasons, we are interested
in computationally efficient methods, but there are no known computationally efficient
calibrated forecasting algorithms. For this reason, we will consider related heuristics that
are similar in spirit, even if they do not have all the desired guarantees.

We first consider a method based on the weighted average predictor. The algorithm in
Table 1 keeps track of the performance of the different actions in the set A, updating a
corresponding set of weights accordingly at each step. The main idea is to quantify “per-
formance” by a linear combination of the total reward and the magnitude of the constraint
violation. The parameter λ > 0 of the algorithm, which acts similar to a Lagrange multi-
plier, determines the tradeoff between these two objectives. When the average penalty is
higher than c0 (i.e., there is a violation), the weight of the cost term increases. When the
average penalty is lower than c0, the weight of the cost term decreases. The parameters M
and M are used to bound the magnitude of the weight of the cost term; in the experiments
reported in Section 8, they were set to 1000 and 0.001, respectively.

1. Set λ, w0, M , and M .

2. For t = 1, 2, . . .:

(a) Sample an independent random variable at distributed so that

at = a, with probability
wt(a)∑
a∈Awt(a)

for a ∈ A. (7.19)

(b) Compute:

wt(a) = wt−1(a) exp
(
η
(
R(a, bt)− λC(a, bt)

))
, a ∈ A. (7.20)

(c) For t = 1, 2, . . ., update λ:

λ :=
{

min(2λ,M), if ĉt > c0,
max(λ/2,M), otherwise.

Table 1: Exponentially weighted average predictor.

The second algorithm uses the tracking forecaster (Mannor et al., 2007) as the forecasting
method. This forecaster predicts that the distribution of the next action as a weighted
average of previous actions, weighing recent actions more than less recent ones others. For
the special case of only two actions, it is calibrated, but not calibrated in general. There
are, however, some special cases where it is calibrated, in particular if the sequence it tries
to calibrate comes from a source with some specific properties; see Mannor et al. (2007) for
details. The algorithm is presented in Table 2. If there is a current violation, it selects an
action that minimizes the immediate forecasted cost. If the current average penalty does
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not violate the constraint, it selects a best response to the forecasted action of P2, while
satisfying the constraints.

1. Set ρ ∈ (0, 1), c0, and f0 = (1/|B|)~1.

2. For t = 1, 2, . . .:

(a) If t = 1 or ĉt > c0, choose an action that minimizes the worst-case cost:

at ∈ argmin
a∈A

(C(a, b)ft−1(b)) ,

(b) Otherwise (if ĉt ≤ c0 and t > 1), solve

max
p∈∆(A)

∑
a,b

p(a)R(a, b)ft−1(b),

subject to
∑
a,b

p(a)C(a, b)ft−1(b) ≤ c0.

and choose a random action distributed according to the solution to the above
linear program.

(c) After observing bt, update the forecast ft on the probability distribution of the
next opponent action bt+1:

ft = ft−1 + (1/t)ρ (ebt − ft−1),

where eb is a unit vector in R|B| with the element 1 in the component corre-
sponding to b ∈ B.

Table 2: Tracking forecaster.

8. Experimental setup

Our experiment addresses the problem of minimizing power consumption in a computer
with a human user. The agent is a low-level software controller that decides when to put
the central processor (CPU) into a low-power state, thereby reducing power expenditures
during periods when the user is idle. The system is driven by a human user, as well as
different hardware processes, and can be realistically assumed to be non-stationary. The
actions of the system correspond to hardware interrupts (most interrupts are generated by
hardware controllers on the motherboard such as direct memory access, hard disk interrupts
and networking interrupts) and the ongoing running processes. In the particular application
at hand, there is a software interrupt (generated by the Windows operating system) every
16 milliseconds. The times of these interrupts are the decision epochs, at which the software
controller can decide if and when to put the CPU to sleep before the next scheduled periodic
interrupt.
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However, saving energy by putting the processor in the low-power state comes at a
cost. In the low-power state, a delay is incurred each time that the processor moves back
into the high-power state in response to user-generated interrupts. We wish to limit the
delay perceived by the human user. For this purpose, we assign a cost to the event that an
interrupt arrives while the processor is in the low-power state, and impose a constraint on
the time average of these costs. A similar model was used in Kveton et al. (2008), and we
refer the reader to that work for further details.

We formulate the problem as follows. We divide a typical 16 millisecond interval into ten
intervals. We let P1’s action set be A = {0, 0.1, 0.2, . . . , 1}, where action a corresponds to
turning off the CPU after 16a milliseconds (the action a = 1 means the CPU is not turned
off during the interval while the action a = 0 means it is turned off for the whole interval).
Similarly, the action set of P2 is B = {0, 0.1, 0.2, . . . , 0.9}, where action b corresponds to an
interrupt after 16b milliseconds. (Note that the action b = 0 means there is no interrupt
and that there is no point in including an action b = 1 in B since it would coincide with the
known periodic interrupt.) The assumption is that an interrupt is handled instantaneously
so if the CPU chooses a slightly larger than b it maximizes the power savings while incurring
no penalty for observed delay (it is assumed for the sake of discussion that only a single
interrupt is possible in each 16 millisecond interval). We define the reward at each stage as
follows:

R(a, b) =


1− a, if b = 0 or a > b, i.e., if no interrupt occurs or an interrupt occurs

before the CPU turns off,
b− a, if b > 0 and a ≤ b, i.e., if there is an interrupt

after the CPU is turned off.

The cost is:

C(a, b) =

{
1, if a ≤ b and b > 0,
0, otherwise.

In “normal” operation where the CPU is powered throughout, the action is a = 1 and in
that case there is no reward (no power saving) and no cost (no perceived delay). When
a = 0 the CPU is turned off immediately and in this case the reward will be proportional
to the amount of time until an interrupt (or until the next decision). The cost in the case
a = 0 is 0 only is there is no interrupt (b = 0).

We used the real data trace obtained from what is known as MobileMark 2005 (MM05),
a performance benchmark that simulates the activity of an average Microsoft Windows user.
This CPU activity trace is 90 minutes long and contains more than 500,000 interrupts, in-
cluding the periodic scheduled interrupts mentioned earlier. The exponentially weighted
algorithm (Table 1) and the tracking forecaster (Table 2) were run on this data set. Fig-
ure 4 shows the performance of the two algorithms. The straight line shows the tradeoff
between constraint violation and average reward by picking a fixed action over the entire
time horizon. The different points for the exponential weighted predictor (Table 1) or the
tracking forecaster (Table 2) correspond to different values of c0. We observe that for the
same average cost, the tracking forecast performs better (i.e., gets higher reward).

We selected c0 = 0.3 and used both algorithms for the MM05 trace. Figures 5(a)
and 5(b) show the instantaneous cost incurred by the tracking forecaster and the weighted
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Figure 4: Plot of average reward against constraint violation frequency from experiments
in power management for the MM05 data.
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Figure 5: Instantaneous cost incurred by the tracking forecaster and weighted average pre-
dictor with target constraint c0 = 0.3 for the MM05 data.

average forecaster over the same short period. It should be observed that the cost of the
algorithms is different, reflecting the fact that different policies are employed. Figures 6(a)
and 6(b) show the time evolution of the average reward and average cost for the same exper-
iment. In spite of not being calibrated, the tracking forecast based algorithm outperforms
the exponentially weighted based algorithm.

9. Conclusions

There are several open problems and directions for future research that are worth mention-
ing. First, the issue of convergence rate is yet to be settled. We noted that there exists
an algorithm based on approachability that converges at the rate of t−1/3, and that the
usual lower bound of t−1/2 holds. The other algorithm based on calibration suffers from
potentially even worse convergence rate, as we are not aware of any approximate calibra-
tion algorithm with comparable convergence rates. Second, the complexity of these two
online learning algorithms leaves much to be desired. The complexity of a policy based on
approachability theory is left undetermined because we do not have a specific procedure for
computing P1’s action at each stage. The per stage complexity is unknown for calibrated
forecasts, but is exponential for approximately calibrated schemes (Cesa-Bianchi and Lu-
gosi, 2006). Moreover, it is not clear whether online learning with constraints is as hard
computationally as finding a calibrated forecast. Third, we only established the tightness
of the lower convex hull of the Bayes envelope for the case of a one-dimensional penalty
function. This is a remarkable result because it establishes the tightness of an envelope
other than the Bayes envelope, and we are not aware of any such results for similar settings.

21



Mannor et al

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 r
ew

ar
d 

an
d 

co
st

Time

 

 

Average cost
Average reward

(a) Tracking forecaster

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 r
ew

ar
d 

an
d 

co
st

Time

 

 
Average cost
Average reward

(b) Weighted average predictor

Figure 6: Time evolution of average reward and average cost for the tracking forecaster and
weighted average forecaster with c0 = 0.3 for the MM05 data.

However, it is not clear whether such a result also holds for two-dimensional penalties. In
particular, the proof technique of the tightness result does not seem to extend to higher
dimensions.

Our formulation of the learning problem (learning with pathwise constraints) is only a
first step in considering multi-objective problems in online learning. In particular, other
formulations, e.g., that consider the number of time-windows where the constraints are
violated, are of interest; see Kveton et al. (2008).
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