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ABSTRACT

Flexibility or adaptivity in public program evaluation can lead

to large savings in time and money, with little or no loss in accuracy,

if used properly. In this paper, guidelines are suggested for the employ-

ment of classical statistics in adaptive evaluation methodology. Through

the case setting of a flu clinic, candidate techniques are demonstrated

for handling problems in hypothesis testing, estimation, adaptive allocation

of information-gathering resources, and before-and-after-type comparisons.

In some cases, classical statistics proves quite adaptable to the require-

ments of the situation, while in others, its introduction is more artificial.



Adaptive Evaluation Methodology Prototypes: Examples

I. Introduction

Adaptive evaluation methodology is still in its formative stages.

The techniques that currently compose itQ frame have been primarily

adapted from other fields. While these techniques may be very successful

on their home ground, the peculiarities of public program evaluation

might render them ineffective, impractical, or inferior to other available

methods. In this short paper, an hypothetical situation will be

presented, and several attractive candidates for the new methodology

that were nominated previously (see [4]) will be fitted to it. In

this manner, we hope to make a start at forging usable adaptive techniques,

and to diagnose their strengths and weaknesses.
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II. Situation

The case setting for this study will be that of a public clinic

provided by a hospital for some service; suppose it is a flu immuniza-

tion program for the elderly. The clinic provides this service to

the community at low or no cost. However, the program's throughput is not

what had been forecast. State experts differ on the reasons for this

decline. Some say it is poor clinic service, others a lack of awareness

of the clinic's existence. Correspondingly, these experts offer

different solutions. A team of evaluators is commissioned to inves-

tigate the roots of this problem, and to predict the effectiveness

of possible solutions.

Some of the questions that may be worth asking in this situation

are:

*What do former patients think of the clinic?

* How do those involved with the operation of the clinic regard it?

* How many people use the clinic per day?

*What proportion of the local population is aware of the clinic's
existence?

*How do the answers to the last two questions change during and
after a local promotional campaign for the clinic?
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III. Approaches

Several years ago, we (the evaluators) would have proceeded at

once with fixed techniques. That is, we would totally plan each

investigation in advance and never waver from the plan during the course

of the sampling. Now we endeavor to be adaptive; if we really think

we know the answer before time is up, let us try to wrap things up

early and move on. Towards his end, we select our initial arsenal

from among the techniques mentioned in [41: The Sequential Probability

RAtio Test [SPRT], double sampling, and stratified sampling. For a

detailed description of these techniques, see the above-mentioned paper

and its references.

Let us review the nature of each technique briefly. The SPRT

tests the cumulative body of data collected as each new datum comes

in. The decision after each test is to terminate and decide in

favor of one hypothesis. or to continue sampling. Double sampling is a

looser term, as it can be applied to testing or to estimation. Only one

such "terminate or continue" decision is made; it may be regarded

as "less adaptive". Stratified sampling, not inherently a sequential

technique, apportions sampling weight optimally over sampling roups

under certain assumptions. We would like to make use of these ideas,

if not the techniques themselves, in our handling of the flu clinic

problems.
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IV. Examples

Example . Patients' Opinion of the Clinic

One possible reason for low clinic usage rates might be that those who

have received service were not happy with the treatment they received.

We will set out to determine what proportion of those treated felt

that service was satisfactory. Consider what one might call a "confirma-

tory investigation". In this example, clinic proponents suggest that

clinic service should be of a quality that would have 80% of those

treated feel that they were treated satisfactorily. An unacceptable

proportion would be, say, 50%. The evaluation is set up to test the

null hypothesis that 80% of those treated were satisfied versus the

alternative hypothesis that 50% were satisfied.

SPRT: First let us use the SPRT in this situation. Essentially,

we set bounds on the cumulative likelihood function so that

surpassing a bound tells us to stop sampling and gives us our decision.

Fixed bounds may be directly determined by selecting desired Type I

and Type II error rates, and , respectively. Wald [5] gives us that

bounds A = and B = will produce and as Type I and Type II

error rates,approximately. If we work with the logarithm of the

cumulative ratio, then the bounds are transformed to log A and log B.

After the bounds have been set, we may begin taking observations.

Suppose an observation consists of having a patient fill out a

questionnaire (after receiving service) which includes a question such

as, "Overall, did ou feel that the service ou received at the clinic

was satisfactory?" I this is patient i, then x = 1 if the patient

answers "yes", x. = 0 otherwise. After each observation, we calculate

log f(i; 1) -log f (xi; e),where f xi; 

where f (xi; 6.) is the likelihood of observing xi if the parameter
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O =6.. For our binomial case, this works out to:
J a

K Z1-91 Zlog e (1 xl) + log ( 1 )[k- x.],
0 i=l 1-e i =l 

0

where k is the number of patients interviewed thus far, 80=.8,

and 1= 5. If the above expression falls below log A on the kth

trial, then we accept the null hypothesis that 80% are satisfied.

If it rises above log B, the 50% alternative would be accepted. In

either case, we terminate the sampling but if neither holds true on the

kth trial. we roceed to the k+lst observation as above.

How do the evaluators select a and ? We might simply opt for the

traditional 5% significance levels ut this tends to be rather naive.

We would probably do better y considering the relative costs involved:

the cost of making a wrong decision one way or the other, the cost of

each observation, and budget constraints on both this investigation and the

overall-evaluation. There are any nulber of ways to incorporate these con-

siderations into our bounds. Let us try one of the possible tactics.

Suppose it is felt (by the evaluators, the administrators, or the

institution initiating the evaluation) that it is somewhat more costly

to infer incorrectly that only 50% are satisfied when the actual

proportion is 80%, as opposed to stating that 80% are satisfied when

only 50% are. For instance, the consequence of accepting the 50%

hypothesis may be to throw more money into facilities and personnel

training, whereas an 80% conclusion indicates a small promotional

campaign be run, whose cost is about half that of the clinic renovation.

More money is wasted (or misguided) concluding for 50% erroneously than for

80% erroneously. So let us arrange the bounds to give us a smaller

chance of making the first type of error, a Type I error. This means
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selecting a. and such that a is lower. Guided by costs, we take

a=5% and =10%. The difference in error rates might be made more

severe if relative cost of the two types of errors showed a greater

imbalance.

The weak point in this method of boundary construction as it

stands arises from the possibility that the sampling budget may run

out before a boundary is crossed if precautions are not taken to prevent

selected error rates from being over-ambitious. Ideally, we would make

our choices of a and also dependent on budget and time constraints,

null and alternative hypotheses, and perhaps an hypothesized distribution

for the true underlying parameter. Any attempt to interrelate these

factors is likely to meet up with incorrigible mathematical expressions

in even the simplest cases, though. We would be better off making do

with gross approximations or a worst-case analysis, if possible. We

might aim to approximate worst-case sample size for a given set of

error rates and hypotheses, and see if this is in line with budget

constraints. If it exceeds them, error rates can be magnified. A

series of simulations might even be performed to gauge an "optimal"

set of error rates, though the optimality would carry only as far as

the approximations could. This type of procedure relies heavily on

computer availability, which is very often a factor in determining how

effective a sequential technique may be utilized.

In this example, suppose that at most 40 observations can be taken.

With a=5% and =10%, we ask, "Is this feasible?" Fortunately, we have

an expression for the expected number of observations in the worst

case for the parameter e (from Wald [5]):

$ 1-8
-- * log-

-log 1-a alog

log (l/0e log (1 0/1- )log /~1
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For the numbers given, and e0=80%, e1=50%, this works out to slightly

over fifteen. Thus, the 40 possible observations would be sufficient

to cover the worst expected number of observations. Whether we feel

safe enought that the actual number will not exceed 40 is more difficult

to answer. If we are uncomfortable, we may select less stringent

error rates.

If the budget should run out before a decision is reached, we

must then exercise a decision rule that will judge the final outcome.

Such a rule might be: if the final cumulative log-likelihond i positive-

select the alternative hypothesis; if negative, take the null as true.

Such a rule will alter projected error rates, as they will no longer be

a and . Again, actual evaluation may be complex, so we might settle

for diminishing the chance that no boundary will-be crossed, and

keeping a simple "tiebreaker" rule handy. Truncated SPRT theory does

exist, though. Another possibility would be tapered boundaries that

meet at the budget limit, allowing no possibility for arbitrary tie-

breakers. The mathematical machinery behind such techniques are beyond

the scope of this paper, though we might hope to fashion some sort of

aesthetic graphical technique.

To get a more concrete view of what this all means, let us produce

some fictitious numbers. The series of l's and O's that follows

indicates the result of a sample of 40 former patients, asked whether the-e

thought the service they received at the clinic was satisfactory

(1 if yes):

100111010101110111011111011011111110110110

In testing the hypotheses 0=.8 vs 0l=.5 at significance levels =5% and
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B=10%, we would use log bounds -2.25 and 2.89. A marker is shown above at

the point where the test would terminate (marker #1). Here, for the first time,

one of the boundaries is crossed. It is the lower boundary, for the cumulative

log likelihood for 23 ones and 9 zeroes is -2.56. We would then rule in

favor of the null hypothesis, that the clinic performed satisfactorily to

80% of the patients seen. If the budget only allowed for 25 sample points, no

decision would have been reached. Since the likelihood ratio was negative

at that point, we would probably decide in favor of the null hypothesis,

but would not be as sure.

Graphically, we might try methods like those shown in Figure 1.

1.

Ex.
1

i=l

k
k k-Zx.

k
k-Ex.

1 1

(A) (B)

Figure 1: Possible Decision Regions for SPRT

The way these graphs would be utilized is: When a "yes" response comes in,

draw a line segment from the last endpoint one unit vertically; when a "No"

is received, draw it horizontally. When a boundary is crossed, decide according

to which region the path ends in.

The graph in Figure 1A is the SPRT on graph paper. By the parallel

boundaries we see that there exist response paths for which the sampling

never ends. While these paths occur with probability zero, their existence

Ex i

i=l

il I
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implies the existence of response patterns with a significant chance of occurring

that are associated with drawn-out experiments. The graph in Figure lB

avoids this possibility by tapering the boundaries inward so that one must be

crossed by a certain point. This is a more desirable scheme, but it is harder

to calculate error rates. One might start with a graph like that in Figure 1A

and slowly taper the boundaries in after a certain point, until they meet at

the budget constraint. Such a proposal, along with a hypothetical experiment, is

shown in Figure 2. k

k , 
1.

i=l

ple result

k
-Ex.

4U i

Figure 2: A Proposed New Set of "Tapered Decision" Regions

In the illustrative result of the test shown, the decision is to declare H true.
0

Double Sampling: Double sampling represents the other end of the sequential

continuum. Only one sequential-type decision is made. This decision is like

an SPRT decision, in that one must decide whether to terminate or to continue.

However, if the decision is to continue, one must realize that the next

sample to be taken is the final one. Also, one must decide how many points to

sample in the second stage. This may be determined before the experiment,

when the initial size is also set, or one might await the result of the first

sample before fixing the decision, and use that information. It is evident

that there are many ways to go about double sampling. The literature on double

sampling is quite diffuse, making it difficult to select one technique as "best"

for evaluation research. It may well turn out that different situations call

_I1_IIII1IIXIL_·_llYI_111·-. 1-1--�--1 11�-�11·1111
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for different approaches. Here, let us use a simple-minded technique to

demonstrate the main ideas.

Before the experiment that generated the yes-no series above, we evaluators

examine the alternative hypothesis. After n observations, we can reasonably say:

if eO were correct, the standard deviation for the average of n observations
o.8x0.2

of x (thp yes-no variable) would be n if 1 were correct, it would be
I u.x.O;

n . If this were a single-sample experiment, we might want to choose a
n

value c such that if x > c, we would accept H and otherwise, accept H1
i=l

If c is positioned so that = 5% and = 10% then (assuming we can use the

Ganssian distribution to approximate) we should have:

c-.8 -l 5_
= 1 (.05)=-1.645 and c-.5 = -1(.90)=1.28

/ .8.2 /.5.5
n f n

where -l(x) is that point of the standard normal distribution at which the area to the

left under the representative curve is x. We. can solve these for n & c, yielding c =.65,

n = 19. To implement a double sampling scheme, we divide n into a 3/5 part and a 2/5 part

so that we have n = 11 and n2 = 8 (this has certain nice minimax properties;

see Hald [3 ]). These shall be our first and second sample sizes, respectively.

Now we need stopping and decision criteria for the decision point after the

first batch of observations. This means selecting C0 and C such that: if
11 11
i=l x > C, we stop and accept H0; if Z xi < C we stop and accept Hi

i=l 1

and if neither holds, we sample eight more. To maintain =5% and =10%, we

need

(cO/ll)-.5( 0/)- = 1.28 orc = .69x11=7.6
0.5x.5
~/11



11.

and

(Cl/ll-..8 
1C/l 8 = -- 1.645 => C = .60xll = 6.6. . ~~~1

/0.8x0.2

11

Thus, if after sampling eleven points, we find ZEK x. > 7.6 or that we
i=l 1

have eight or more "yes" responses, stop and conclude H0. If we find we

have only six or fewer, we accept H. If we have seven, then we sample eight
1

more, and our final criterion value is c x n = 0.65 x 19 = 12.35. We decide for

H0 if we have thirteen or more "yes" responses, for H otherwise.

Using the same series of responses as before, we see that the first

eleven points produce six ones. This is a "terminate and conclude H"

result. Had we sampled eight more, we would have come up with twelve "yes"

responses, and should conclude H again. Note the differences between this and

the SPRT results. On the same set of data, we took fewer observations with

double sampling, and made the opposite conclusion.

This difference can be attributed in part to the data pattern, as

the later responses are predominantly "yes". Also, the two tests are very

different in nature.

The second sample size in the double sample need not have been fixed

before the experiment. Another option within the double sample is to use

the information received in the first sample, primarily that relating to estimated

variance. That is not of too much service here, for variance is directly related

to the parameter and the sample size in the binomial distribution. Predicted

variance would not change unless we changed an hypothesis. First sample size

would be much more valuable when the variable under investigation is Gaussian,

where hypotheses about the means have little bearing on the variances. Assuming

that a prediction of variance was needed to determine the first sample size,

an estimated variance not in line with this prediction should direct a better



12.

second sample size than can be decided beforehand. One other aside: we might

switch to t-distributions if we feel that the data are not inherently Gaussian

and that sample sizes are too small for Gaussian approximations. Computation

with the t-values can be more difficult, though, because they often depend on

n.

The foregoing example is also illustrative of the benefits of adaptivity.

Our initial double sampling calculation told us that we should sample 19 points

if we wanted to conduct a single-sample test. Yet in performing double

sampling, we realized we could quit after 11 observations. This represents a

savings of 8 x(cost per observation) in sampling costs. Adaptivity allowed us

to devote some of the resources' which we might have spent on sampling under a

fixed plan, to investigation of other questions. Or, we might content ourselves with

a reduced cost per fixed amount of information collected. On the other hand,

the SPRT employed here overruns the projected single sample size. This demon-

strates some of the risk involved in using an open-ended test of its nature. We

do not mean to imply that the SPRT is inferior to the double sample. We hope to

undertake a project in the near future which will run simulations to compare

sample sizes and resource savings under double sampling and various forms of the

SPRT.

Example 2: Several Groups' Opinions of the Clinic

We now expand the previous example to the task of evaluating the performance

of the clinic as seen by a variety of groups. Suppose the evaluators wish to

assess the proportion of people satisfied with the clinic's performance simultaneously

from the categories clinic doctor, clinic nurse, clinic administrator, past

patient, and local resident (who has never used the clinic). We shall put

ourselves under a budget constraint for this survey. Assume no "program"

such as a promotional campaign is in action. Let us see how stratified sampling

may be used to perform this evaluation adaptively.

Stratified Sampling: The guiding principle to stratified sampling is to
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sample within each stratum, or group, a number that is directly proportional

to the size of the stratum and to its true standard deviation, and inversely

proportional to the square root of the cost per observation of sample points

in that group. Symbolically,

Nh Sh

h

The nh's we actually use will depend either on the total number to be sampled,

or the total budget alloted. This rule is designed to measure some parameter

in aggregate by looking at homogeneous groups. It is optimal in the sense

that it minimizes the variance of the overall estimate for a given total observa-

tion cost, or minimizes the cost for given variance. This is not strictly our

situation, in that some of these groups may be quite heterogeneous, and we might

be interested in the individual group estimates. Nevertheless, if it is taken as

an heuristic, rather than as an optimal rule, we might find that it is a sensible

approach.

Let us consider some specific numbers. Denoting by d, n, a, p, and 1 the

categories doctor, nurse, administrator, patient, and local resident, respectively,

take these as values for population size and cost per observation:

Nd = 5 Cd = 5

N =15 C = 1
n n

N =10 C = 3
a a

N =300 C = 3
P P

N1 = 20,000 C1 2

The missing element here is the standard deviation.

There are two ways to handle the problem of not knowing standard deviations.

The first sampling period may be devoted to estimating these quantities, perhaps

by sampling an equal number of points from each group, or expert opinions may

be solicited to provide working guesses. In cases such as this one (binomial), an

opinion on the proportion satisfied is itself an opinion regarding the standard
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deviation (see Example 1).

We shall take the first option. It is decided to sample three doctors,

five nurses, three administrators, and ten each of former patients and

local residents during the first sampling period. Where do we come up with these

numbers? Let us say that relative costs and numbers per group, plus the objective

of acquiring standard deviation estimates, were the main factors. Using the

same response code as in Example 1, the results of this first sample are:

Category Result Mean Sh (Standard deviation)
h 1

d 111 1.00 .00

n 10010 0.40 .22 Cost: 79

a 010 0.33 .27

p 1001110101 0.60 .15

1 1111011011 0.80 .13

We immediately detect that the results from the interview of doctors show

perfect homogeneity: all are satisfied. This is an estimate of zero for the

standard deviation, which sounds fairly certain. Yet we should have no reason to

believe that the other two doctors are satisfied. So, for the sake of complete-

ness of information, we decide to include the other two doctors in the next

sample.

We see another problem brewing. Sampling proportionately to size of

group would prompt a groundswell of local resident interviews, while few of

the people in the other groups would be surveyed. For this reason, we ought to

consider scrapping pure sample size as a criterion and favor a measure to

describe how important it is to know each group's opinion. We probably do

not care too much what the local residents think, since they have no first-hand

experience with the clinic. We feel it is mildly desireable to be aware of

their impressions. The logical fix-up would seem to replace number in

group" with "information weight of group", and substitute this weight Wh for
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Nh.

This seems all well and good. We can define, for instance, 10,000 local

residents to be one sampling unit, comparable to five former patients or one

doctor. We must caution ourselves that if we change the sampling unit, so too

must we change the sampling cost per unit. Given the weight, Wh, and the

number in group h, Nh) we must also calculate the number of sampling points per

unit weight, UNh = Nh/Wh, and the cost per unit weight, UCn=Ch x UNh. With

these figures in hand, we may go about allocating the sampling budget along strati-

fied sampling guidelines.

Let us continue our example of the clinic. For the second sampling period,

we decide to sample the two remaining doctors, and spread $80 worth of sampling

among the four other groups. Through casual interviews with people who want

and people who know, we weight the four remaining groups as shown in column Wh,

according to how valuable the opinion of each group is, with former patients

the standard at 100:

Group Wh UNh UCh RSSWh PSSWh

n 100 0.15 0.15 56.8 .74

d 40 0.25 0.75 14.4 .19

p 100 3 9 5.0 .07

1 20 100 200 0.18 .0024

UNh and UCh are also listed above. In the second to last column are the raw

stratified sampling weights determined as:

Wh x Sh

RSSWh =
UCh

The final column shows the proportion each RSSWh forms of the total. We may now

proceed to the next step.

Suppose we use our $80 to sample the value SW worth of sampling weight.
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Then we will sample .74 SW nurse weight units, .19 SW administrator weight units,

etc. This leads to the cost equation:

[(.74SW) x.15] + [(.19SW) x.75] + [(0.75SW)x 9 + [(.0024 SW) x 200] = 80,

which we can solve for SW. Here, SW turns out to be around 59. We apply this to

the PSSWh column,multiplying the two to determine total weight sampled from each

group, and convert this to number of people:

Group Wh nh % X Ch

n 43.67 6.55+7 7

d 11.21 2.80+3 9

p 4.13 12.39-+12 36

1 0.14 14 28

We will spend $80, which is exactly what we wished to.

After this sample, we may compute new standard deviations {Sh } based

on the current knowledge profile and apply this technique again. However, there

will be few unsampled people left in the nurse and administrator categories, so

we might alter our plan. We may feel certain enough with what we already

know about these two groups, or we might sample the remaining personnel in

these groups and only apply the technique to the patient and resident categories.

This depends on what our goals are, how much time we have, and how large our

overall sampling budget is.

Example 3: Number of People Who Use the Clinic Per Day

If we consider the arrivals of prospective patients at the clinic to be

a Poisson process (verified perhaps through a goodness-of-fit test), then the

parameter of interest in an investigation would likely be the rate parameter A,

the mean number of arrivals per day. Suppose that the evaluators decide to employ

this criterion as a measure of clinic use. Suppose, also, that the government

will soon be starting a promotional campaign that is intended to make the community

better aware of the existence of the clinic and its capabilities. The evaluators
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want to measure the change in X after the promotional campaign has started.

To measure a change, we must have a measurement of the state of things as

they were, and an idea of what has happened since. Toward this goal, we

initially set up our evaluation under a two-stage plan. First, we take samples

of clinic usage during the baseline period, which means prior to the promotional

campaign; then, after the campaign has been run for some length of time, clinic

usage will again be sampled, to establish a mean arrival rate in the experimental

period.

Above all, we want to be adaptive; we only want to sample as much as we need

to become reasonably sure of the underlying baseline rate, and then move on to the

experiment. We believe this will prove to be more cost-efficient than if fixed

sample sizes are arranged beforehand. Here, resources might be diverted to the

experimental phase if it is felt this would acquire more valuable information.

If we take the long7 range goal of state government to be that of bringing

clinic usage up to projected levels, we must ascertain that this is not the case

already. We could go to the clinic files and calculate an estimate of b

from records of the last couple of weeks, but that would not be instructive.

So, let us propose that the records had been kept in a nearby town which has

just been ravaged by earthquake, flood and famine. There is now no way of

saying anything about Xb without someone staying at the clinic and counting

patient arrivals. We do not want to do this for very long, either.

Being adaptive folks, we decide to set up a SPRT pitting the null hypothesis

Xb = 4 patients/day, which represents a significant below-projected level, against

the alternative hypothesis b = 9 patients/day, which had originally been projected.

The costs of wrong decision are somewhat opposite to what they were in Example 1,

for we are looking at the other possible root of the problem. For variety's

sake, let us set = 5% and = 2%. These give us bounds on the log likelihood

ratio of -3.86 and 2.98. The log likelihood ratio after k trials can be expressed



18.

as

Zx X Z i -kXo
xi X OK~~~x

log [( xle ! e 

... xk! 1..

= Zxi log (/Xo) -k(X0 - X1).K 

If we had observed for ten days, we would have observed the following number of

patients each day:

2 10 3 4 5 3 7 5 4 8

Using the SPRT, we would have concluded our investigation in four days, where

the log ratio is -4.59< -3.86. We accept that b is currently at the rate below

the projected, desirable rate, at 4 rather than 9 patients/day.

Now we would like to run the promotional campaign and, perhaps after two

weeks, resume looking at patient arrivals per day to measure X . Before we do
e

this, we ought to backtrack a little. So far, we have come away from the base-

line period with the educated opinion that b = 4 rather than 9. If we wanted

to eventually construct a confidence interval for the difference between b

and X (maybe as a measure of the campaign's effect), we would need an estimate of
e

Xb rather than a hypothesis about it, and an associated standard error of the

estimate. If we merely wanted to state whether the promotional campaign brings

about a significantly greater rate of patient visits, we also ought to work

with an estimate of X . While the previous SPRT confirmed our suspicions about

usage rates, a 90% confidence interval for Xb based on the four days observed

would stretch from 0.52 to 8.98! We definitely need more observation time at the

baseline stage.

Let us then organize our investigation into three stages. The first stage

shall be a "needs assessment" determination; i.e., we check whether we need

to introduce a change or not. If not, we might terminate this portion of the

evaluation. The second stage will be devoted to estimating the baseline value



19.

for the parameter(s) of interest. We may use data collected during the first

stage, if we consider it still valid, but we probably need more data than it alone

provides us. The third stage consists of initiating the experiment and estimating

or testing the parameter's value during this period. At the end of this stage,

we draw our conclusions and may make recommendations.

Such a game plan as described above does not apply uniquely to adaptive

evaluation. To make it adaptive, we want flexible time boundaries between stages.

This involves the generation of a set of criteria for switching stages, and for

drawing intra-stage and inter-stage conclusions. There could be many ways to do

this. In keeping with the spirit of this paper, we will look at a couple of

strategies for dealing with our flu clinic example. The two strategies differ

primarily in what they do at the third stage. One prepares a confidence interval

for the difference between baseline and experimental parameter values; the other

tests for whether the experiment is an improvement (higher parameter value)

over the normal state of affairs. This difference implies different goals

during the second stage, too, so we will treat each strategy separately (assuming

we have completed stage one and are continuing).

Estimate/Estimate: The objective is to measure a difference in underlying

parameters. The stated form of this difference will be a point estimate and

associated confidence interval (CI). Were it possible to perform baseline and

and experiment in parallel, we could use one of these formulas for determining

the confidence interval with confidence level (CL) of l-a:

2 2 2
If we can assume ab = = C , then from [2] we have

e

(1) cI = (xb- x )± t S + 1
~e(1) CI nb+ n 2; 1 - /2S nb ne

e

for nb points sampled from baseline and ne from experiments with associated

sample means xb and xe , Sw the pooled estimate of a , and tn + n 2; 1 - a/2
e
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the 1-a/2 percent point of a t-distribution with nb + ne - 2 degrees of freedom.

Otherwise, we must resort to

S2 2
Sb Se

(2) CI = (+ e) ± tm 1() (xb Xe)t l-/2 nb ne

where m, the modified degrees of freedom, is found by

1 C2 1 C2
- +-

(3) m nb-1 n -1

C comes from

S2/nSb 1%
(4) C 2 2

Sb/ + Se /n
nb e

2 2and Sb and S are the estimated variances by group.
b e

Let the task be to shrink the width of the CI within a certain criterion

at some pre-specified CL. The rationale for this might be, we make out pretty

well if we are off by no more than a certain amount in our estimate. Also,

if we can produce a guess at the average loss suffered through being outside our

CI, as opposed to inside it, we can better select a CL. We might take a "Tarzan"

approach to this problem, swinging from assumption to assumption grabbing as much

data as we can hold along the way. We shall estimate by double sampling, that being

the only single-group estimation method we are looking at in this paper.

The following proposed scheme illustrates one way of approaching the defined

task. The operation sequence can get convoluted at certain points, so we advise

the reader to follow the action on the flowchart depicted in Figure 3. The main

points to keep in mind are that:

*We would like to use Equation (1) to transform proposed sample sizes

into projected interval widths, and thereby select the lowest sample size that

will do the job;
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*To use (1), we need to assume that the baseline and experiment period variances

are the same, for if not, we have to employ the more complicated Equation

(2)-(4).

*We check our assumptions statistically, using an F-test to test

2 2
ab = o ·b "e

2 2 2.Assume b = a = initially, and gather some sample large enough toe
~~~~~~~~~~~22estimate , but not too large. Substitute this estimate in for s in (1),

W

and attempt to maximize the CL, staying within the budget constraints and the

interval criterion, by fiddling with nband n in (1). (Alternatively, one
eI

could set a CL and minimize the width of the CI.). Let the second sample size

in the baseline segment be nb- (first sample size), and finish baseline sampling.

(We may, at this point, alter our first stab at ne, based on the new data.)

We enter the experimental period at this point, so initiate the experiment.

Then take, say, (3/5) x ne (prompted by double sampling) sample points for the

2 2.first segment in the experimental period. Test whether ab = Ce is valid,

and if not, "swing" to equations (2) - (4). Given sb 2 s 2 it stands now,-~~~~~ as it stands now,

and nb, maximize the CL (or attempt to hit the CL and CI) through appropriate

choice of ne. The second sample size is n - (first exp. sample size). Then look~~~~~~~~~ee
2 2 2 2

at sb and s , decide whether it is reasonable to assume ab = , and use
e b e

the appropriate expression for determination of the CI, swinging back to equation

(1) if the coast is clear.

Let us "test drive" this technique with some numbers back at the flu clinic.

We have just confirmed that b is more likely 4 than 9, so we will run the promos.

2We can use the data from the first stage to estimate sw, treating things as if

they were Gaussian, or, initially, we can use our xb estimate, as we are working

with the Poisson distribution. This would give us s = 2.18. Suppose we want

wto be no more than one unit off in either direction in our estimate of the difference,
to be no more than one unit off in either direction in our estimate of the difference,
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and that we want to hit an 80% CL. The width of the CI is

2 tnb + n -2; 1 0 s - -

which we want to be less than or equal to 2. Also assume our budget and/or time

constraints limit us to 40 observations overall. If we shoot for equal sample sizes,

to simplify their determination, we find that nb = n = 16 about does what we
"b=e

want.

Our determination of nb = 16 directs us to take 16 - 4 = 12 more observations

during the baseline. Take them to be:

5375 4 8 7 5 8 6 4 1

We conclude the baseline with xb = 5.13 and sb = 2.42. Taking s = S

recalculating n to get a CI of length 2 and a CL of 80%, we discover that n
e e

should be around 26. This would have us exceed 40, so we use ne = 24, and

the first experimental sample comes out to (3/5) x 24 % 14.

The first batch of the patients-per-day figures to come in during the

experiment are:

14 5 9 9 11 8 3 5 12 7 8 9 6 6 .

2
Thus far, S = 8.92. The F-test Nor equality of variances (two-sided)

Sb
arises from testing the ratio -- against

S
e

2

F l * l 2 and F = 0.657 > 0.487
nb-1, ne-1; 1-a/2 nb-1, n e-1; a/2. S

S2e

= F h hh th ~~ ~~~~2 2F15 13;.90, so we can't reject the hypothesis that b = e This

2 2 2 2
means we can pool sb and s to get s . At this point, s =

e w w

2 2
(nb-1)sb + (n-1)Se

( + )-2- = 7.28, s = 2.70. n ought to be even higher
nb + ne -2 w e

than was determined before, since the S we are using has increased. Since

we were already straining our budget, we will simply collect the last 10 days
we were already straining our budget, we will simply collect the last 10 days
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worth of observations, reaching the end of the budget strings.

Our final batch of values looks like this:

-- ~~~2
8 13 3 8 7 7 9 5 7 9; x = 7.83; S = 7.80

e e
2 2 2 2 2

S is even closer to Sb , so we are going to again accept that ab = e = a .
e~~~~~~ 2

Our final estimate of a is S 2 = 7.03, which gives us a final C for
w

X X of
~~~e b 1 + 1

e- xb) t38, .10 x Sw nb ne = (1.58, 3.82),e~~~~~~~~~~~~~~~~~ '

with a CL of 80%. The length of the interval is only slightly greater than two.

With a slightly larger initial sample and looser budget, we might have been able

to hit the objectives more readily.

Estimate/Test: Here we would like to double sample during the baseline

to get a CI for Ab' The most straightforward way to pre-select its width and

CL follows the approach used in "Estimate/Estimate": establish a significant

difference or maximum-tolerable error, double that for CI goal width, then

select a CL in line with budget constraints to minimize expected loss. This is

easy to say, probably difficult to put into practice, but we hope to illustrate

the basic ideas in an example to follow.

After we conclude the baseline, we should have a CI plus the corresponding

point estimate. Now, with the experiment running, we want to establish whether

there has been some improvement in the state of affairs, or no change. Change

must be measured against the baseline rate. Theoretically, the parameter's

value could lie anywhere within the CI, although if we had to give one number,

we would likely give the point estimate, which lies at the center of the CI.

Let improvement indicate e > b (we could follow similar reasoning for the

case where the parameter should decrease under improvement). Denote the

upper and lower limits of the CL by Ah and A' respectively. Let the CL be

1-a. Then we might say that h > Ab with probability -a, because with
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probability -a, Xb lies between Xl and Xh . We can even add a/2 to this

probability for the result Xb<Xl if we distribute the remaining a worth of

probability uniformly over <X1 and >Xi, bringing our confidence in

Ah> Xh to l-a/2.

Now suppose we test H : Xe=Xh+6 vs H:X =x b during the experimental

phase, where 6 is an arbitrarily positive number. If we decide for the null

hypothesis, then we conclude that X is significantly greater than Xb , we
e b

can make large enough so that a difference h+6-X e indicates significant

improvement. If we reject the null hypothesis, we are left to conclude that

Xe=Xb--no improvement. If we had set the test up to give us Type I and

Type II error rates of y and X, respectively, then we might employ a

probability tree to give us overall predicted rates of these four outcomes:

(1) Correct, an improvement occurred

(2) correct, no improvement occurred;

(3) wrong, there really is an improvement;

(4) wrong, there really is no improvement.
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We would like to input a priori hunches P0 and P concerning whether X > b

or X = Xh + 6, respectively. This complicates the issue, so to bow out grace-
eh

fully, we will assume that PO - P = 1/2, and only consider ranges for Xh + 6 - b

that would not give us any a priori reason to believe in one particular hypothe-

sis more than the other (P0 is actually some complicated function of ). Then

the tree looks like:

,b < A h

A ~ he X= X b

e b
e h

- 1e = tb

Xt = X
e h

Baseline

Xb = 

~-5/Xe = b

e
Ae = Xheh

(2)

+ 6 (4)

(3)

+ (1)

(2)

+ 6 (4)

Xb > 

Experiment

Xe = Xb

b h + 6.
A e = h + 6

Truth is We say Outcome
type

If we associate a loss L. with outcome (i), we might try to minimize:

L1 [(1 -)(1-y)]+L 2 [½(1-a)+ +L (1 -)y] + L4[8 a+ [ (1-Y)I

Pri
deci

poi

(2)

(4)
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by appropriate selection of y and . We can add a term for expected cost of

observations given y and , or simply check that a chosen and is feasible

as far as sampling goes.

Owing to the complex nature of the preceding minimization task, we present

an alternative. Outcomes (1) and (2) signify "correct" statements. We can

redefine our confidence in terms of the predicted probability of being correct.

Since we went into the investigation seeking a 1 -t CL in our original CI, let

us shoot for overall 1- a confidence. Setting P{outcome (1)} + P{outcome (2)} =

1 - , we wind up with the following relationship:

3
ay + - y = .

If we ignore the small ay term and figure on choosing y = 8, we are thus guided

3
to use = = 3c a. One could alternatively select y and B to fit the above

relationship exactly, perhaps using costs of wrong decisions.

At this point we might feel ready to begin. (The following decision process

is summarized in the flow chart in Figure 4.) Suppose we proceed with base-

line measurement , gathering the first two batches of data, and come up with

2
an estimate of variance Sb . We would want to sample nb overall in the baseline

stage, such that

CI width = 2 t -1; 1-a/2 · Sb 1= 2d = 2 x (max.tolerable error).

We can tinker with nb to find an appropriate baseline sample size. We can also

use Sb to estimate, assuming variance changes little moving to the experimental
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phase, the overall experimental sample size. Since we have assumed = ,

then the criterion value c will lie midway between b and Xh + 6 which ought

to be d + 6 apart. Therefore, using the Gaussian to approximate:

- (d+6) e
2 ne) 3a

sb 4

We can solve this for n . If the overall evaluation sample size or samplinge

cost exceeds our initial allotment , we know we must make adjustments, raising

a and thereby and . If there is some slack, we may ask if we desire more

accuracy. Perhaps we may just use some of the slack in the experimental phase,

honing y or (or both). Or we may conserve valuable information-gathering

resources, perhaps to use in other investigations.

Whatever our adjustments, if any, we take a second baseline sample to bring

our overall baseline sample size to nb. We have Xb and Xh out of this, as well

2
as a new Sb , which we use to guide our double sample hypothesis test in the

experimental period. The first experimental sample might tell us to use a

different standard error in our determination of n . Finally, we take our second

sample and form conclusions.

We are going to play with the numbers one final time. Using the same

arrival series as was generated before, we take 7 observations to estimate Sb

initially. For

2 10 3 4 5 3 7

We get Sb = 2.79. This tells us that, in order to get an 80% CL on a CI for

Xb of length 2, we need about 14 observations. We also guess at n to gauge
b ~~~~~~~~~~~e

the feasibility of our objectives. Suppose 6 = 1 and d = 1. Then we find that

n should be about nine. We can even make this ten or fifteen to compensate
e
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for not using the t-distribution, and we still have predicted (nb + ne) < 30.

Assuming the same 40 observation limit, we have plenty of room to work in,

so we take the next seven observations to conclude the baseline.

5 4 8 7 5 8 6,

and calculate the results Xb = 5.50, Sb = 2.28, CI = (4.48, 6.32).

Note that we have determined a CI whose width falls inside our desired goal.

We are appreciative, but we now must decide where we want to put our null hypo-

thesis for X . Let us stick it where h = 6.32 becomes the criterion c of the
eh

experimental period; this occurs where = 7.14 (we by no means imply that
e

this is the "only" or "best" place to put it). Now, using t-values, we would

surmise that we need a sample size of ne = 15, for

1

t14;0.5 · 2.28 5 z - 0.82 = 6.32 - 7.14.

(3/5) x n = 10; let us take ten observations for our first experimental batch.
e

This is no sooner said than done using the previous numbers, so we would

see:

14 5 9 9 11 8 3 5 12 7; s = 3.43.

e

se is somewhat different than sb here. This is a sign that we should re-calculate

ne based on this s e, for which we would require ne = 37. This is way over budget,

so it looks as if we should either just sample out the rest of our budget, or

reconsider our desired error rates. We might have foreseen this complication

if we took the "Poisson-ness" of these observations into account, meaning that
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variance increases as mean does. We will not push this example any further,

though.

V. Summary

We have looked at several possible routes toward a sensible approach to

adaptive evaluation of public programs using classical statistics. The SPRT,

double sampling, and stratified sampling techniques were singled out for particu-

lar exploration. Although no samples involving estimation of Gaussian parameters

were shown, Gaussian approximations were employed to a degree that should give

sufficient insight into how they should be handled. And with that, we can see

how this small group of techniques might be used to handle a wide variety of

problems. The final verdict on these techniques lies a good way off; more

empirical and analytical investigation is necessary to determine the worth of

the contents of this paper.
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