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We study the pure and random-bond versions of the square lattice ferromagnetic Blume-Capel model, in
both the first-order and second-order phase transition regimes of the pure model. Phase transition temperatures,
thermal and magnetic critical exponents are determined for lattice sizes in the range L=20–100 via a sophis-
ticated two-stage numerical strategy of entropic sampling in dominant energy subspaces, using mainly the
Wang-Landau algorithm. The second-order phase transition, emerging under random bonds from the second-
order regime of the pure model, has the same values of critical exponents as the two-dimensional Ising
universality class, with the effect of the bond disorder on the specific heat being well described by double-
logarithmic corrections, our findings thus supporting the marginal irrelevance of quenched bond randomness.
On the other hand, the second-order transition, emerging under bond randomness from the first-order regime of
the pure model, has a distinctive universality class with �=1.30�6� and � /�=0.128�5�. These results amount to
a strong violation of universality principle of critical phenomena, since these two second-order transitions, with
different sets of critical exponents, are between the same ferromagnetic and paramagnetic phases. Furthermore,
the latter of these two sets of results supports an extensive but weak universality, since it has the same magnetic
critical exponent �but a different thermal critical exponent� as a wide variety of two-dimensional systems with
and without quenched disorder. In the conversion by bond randomness of the first-order transition of the pure
system to second order, we detect, by introducing and evaluating connectivity spin densities, a microsegrega-
tion that also explains the increase we find in the phase transition temperature under bond randomness.

DOI: 10.1103/PhysRevE.79.011125 PACS number�s�: 75.10.Nr, 05.50.�q, 64.60.Cn, 75.10.Hk

I. INTRODUCTION: STRONG VIOLATION OF
UNIVERSALITY

Universality, according to which the same critical expo-
nents occur in all second-order phase transitions between the
same two phases, erstwhile phenomenologically established,
has been a leading principle of critical phenomena �1�. The
explanation of universality, in terms of diverse Hamiltonian
flows to a single fixed point, has been one of the crowning
achievements of renormalization-group theory �2�. In rather
specialized models in spatial dimension d=2, such as the
eight-vertex �3� and Ashkin-Teller �4� models, the critical
exponents nevertheless vary continuously along a line of
second-order transitions. We shall refer to these cases as the
weak violation of universality. We have established in the
current study a much stronger and more general instance of
universality violation, under the effect of quenched bond ran-
domness. It has been known that quenched bond randomness
may or may not modify the critical exponents of second-
order phase transitions, based on the Harris criterion �5,6�. It
was more recently established that quenched bond random-
ness always affects first-order phase transitions by conver-
sion to second-order phase transitions, for infinitesimal ran-
domness in d=2 �7,8�, and after a threshold amount of
randomness in d�2 �8�, as also inferred by general argu-
ments �9�. These predictions �7,8� have been confirmed
by Monte Carlo simulations �10,11�. Moreover,
renormalization-group calculations �12� on tricritical systems
have revealed that not only first-order transitions are con-
verted to second-order transitions, but the latter are con-

trolled by a distinctive strong-coupling fixed point.
In the current Wang-Landau �WL� study yielding essen-

tially exact information on the two-dimensional �2d� Blume-
Capel model under quenched bond randomness, we find dra-
matically different critical behaviors of the second-order
phase transitions emerging from the first- and second-order
regimes of the pure model. These second-order transitions
with the different critical exponents are between the same
two phases indicating a strong violation of universality,
namely different sets of critical exponents on two segments
of the same critical line. Moreover, the effect of quenched
bond randomness on the critical temperature is opposite in
these two regimes, which we are able to explain in terms of
a microsegregation mechanism that we observe. Finally, in
proving a general strong violation of universality under
quenched bond randomness, our study supports a more deli-
cate and extensive weak universality �13,14�: In the random-
bond second-order transition emerging from the pure-system
first-order transition, the magnetic �but not thermal� critical
exponent appears to be the same as that of the pure 2d Ising
model, as has also been seen in other random and nonrandom
systems.

The Blume-Capel �BC� model �15,16� is defined by the
Hamiltonian

Hp = − J �
�ij�

sisj + ��
i

si
2, �1�

where the spin variables si take on the values −1, 0, or +1,
�ij� indicates summation over all nearest-neighbor pairs of
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sites, and the ferromagnetic exchange interaction is taken as
J=1. The model given by Eq. �1�, studied here in 2d on a
square lattice, will be referred to as the pure model. Our
main focus, on the other hand, is the case with bond disorder
given by the bimodal distribution

P�Jij� =
1

2
���Jij − J1� + ��Jij − J2�� ,

J1 + J2

2
= 1, r =

J2

J1
, �2�

so that r reflects the strength of the bond randomness. The
resulting quenched disordered �random-bond� version of the
Hamiltonian defined in Eq. �1� reads now as

H = − �
�ij�

Jijsisj + ��
i

si
2. �3�

II. TWO-STAGE ENTROPIC SAMPLING

We briefly describe our numerical approach used to esti-
mate the properties of a large number, 100, of bond disorder
realizations, for lattice sizes L=20–100. The pure-system
properties are also obtained, for reference and contrast. We
have used a two-stage strategy of a restricted entropic sam-
pling, which is described in our recent study of random-bond
Ising spin models in 2d �17�, very similar to the one applied
also in our numerical approach to the three-dimensional �3d�
random-field Ising model �18�. In these papers, we have pre-
sented in detail the various sophisticated routes used for the
restriction of the energy subspace and the implementation of
the WL algorithm �19,20�. The identification of the appropri-
ate energy subspace �E1 ,E2� for the entropic sampling of
each random-bond realization is carried out by applying our
critical minimum energy subspace �CrMES� restriction
�21,22� and taking the union subspace at both pseudocritical
temperatures of the specific heat and susceptibility. This sub-
space, extended by 10% from both low- and high-energy
sides, is sufficient for an accurate estimation of all finite-size
anomalies. Following Ref. �17�, the identification of the ap-
propriate energy subspace is carried out in the first multi-
range �multi-R� WL stage in a wide energy subspace. The
WL refinement levels �G�E�→ fG�E�, where G�E� is the
density of states �DOS�; for more details see Ref. �17�� used
in this stage �j=1, . . . , ji ; f j+1=�f j� were ji=18 for L�80
and ji=19 for L�80. The same process was repeated several
times, typically 	5 times, in the newly identified restricted
energy subspace. From our experience, this repeated applica-
tion of the first multi-R WL approach greatly improves ac-
curacy and then the resulting accurate DOS is used for a final
redefinition of the restricted subspace, in which the final en-
tropic scheme �second stage� is applied. In this stage, the
refinement WL levels j= ji , . . . , ji+4 are used in a one-range
�one-R� or in a multi-R fashion. For the present model, both
approaches were tested and found to be sufficiently accurate,
provided that the multi-R uses adequately large energy sub-
intervals. This fact will be illustrated in the following sec-
tion, by presenting the rather sensitive double-peak �DP�

structure of the energy probability density function �PDF� in
the first-order regime of the model. Noteworthy, that most of
our simulations of the 2d BC model at the second-order re-
gime ��=1� were carried out by using in the final stage a
one-R approach, in which the WL modification factor was
adjusted according to the rule ln f 	 t−1 proposed recently by
Belardinelli and Pereyra �23�. Our comparative tests showed
that this alternative approach yields results in agreement with
the one-R WL approach.

Let us close this brief outline of our numerical scheme
with some appropriate comments concerning statistical er-
rors and disorder averaging. Even for the larger lattice size
studied here �L=100�, and depending on the thermodynamic
parameter, the statistical errors of the WL method were
found to be of reasonable magnitude and in some cases to be
of the order of the symbol sizes, or even smaller. This is true
for both the pure version and the individual random-bond
realizations. These WL errors have been used for the pure
system in our finite-size scaling �FSS� illustrations and fitting
attempts. For the disordered version only the averages over
the disorder realizations, denoted as �¯�av, have been used
in the text and their finite-size anomalies, denoted as �¯�

av
* ,

have been used in our FSS attempts. Due to very large
sample-to-sample fluctuations, mean values of individual
maxima ��¯*�av� have not been used in this study. However,
for the finite-size anomalies of the disordered cases, the rel-
evant statistical errors are due to the finite number of simu-
lated realizations. These errors were estimated empirically,
from runs of 20 realizations via a jackknife method, and used
in the corresponding FSS fitting attempts. These disorder-
sampling errors may vary, depending again on the thermody-
namic parameter, but nevertheless were also found to be of
the order of the symbol sizes. For the case �=1, these are
hardly observable, as illustrated in the corresponding graphs.

III. PHASE TRANSITIONS OF THE PURE 2d BC
MODEL

A. First-order transition of the pure model

The value of the crystal field at the tricritical point of the
pure 2d BC model has been accurately estimated to be �t
=1.965�5� �24–28�. Therefore, we now consider the value
�=1.975, for which the pure model undergoes a first-order
transition between the ferromagnetic and paramagnetic
phases, and carry out a detailed FSS analysis of the pure
model. Our first attempt to elucidate the first-order features
of the present model will closely follow previous analogous
studies carried out on the q=5,8 ,10 Potts model �29–33�
and also our study of the triangular Ising model with com-
peting nearest- and next-nearest-neighbor antiferromagnetic
interactions �34�. As it is well known from the existing theo-
ries of first-order transitions, all finite-size contributions en-
ter in the scaling equations in powers of the system size Ld

�35�. This holds for the general shift behavior �for various
pseudotransition temperatures� and also for the FSS behavior
of the peaks of various energy cumulants and of the magnetic
susceptibility. It is also well known that the DP structure of
the energy PDF, P�e�, where e=H /L2, is signaling the emer-
gence of the expected two �-peak behavior in the thermody-
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namic limit, for a genuine first-order phase transition �36,37�,
and with increasing lattice size the barrier between the two
peaks should steadily increase. According to the arguments
of Lee and Kosterlitz �30,31� the quantity �F�L� /L
= �kBT ln�Pmax / Pmin�� /L, where Pmax and Pmin are the maxi-
mum and minimum energy PDF values at the temperature Th
where the two peaks are of equal height, should tend to a
nonzero value. Similarly to the above, the logarithmic de-
rivatives of the powers of the order parameter with respect to
the inverse temperature K=1 /T,

� ln�Mn�
�K

=
�MnH�
�Mn�

− �H� , �4�

and the average absolute order-parameter derivative,

��
M
�
�K

= �
M
H� − �
M
��H� , �5�

have maxima that scale as Ld with the system size in the FSS
analysis of a first-order transition. In the case of a second-
order transition, the quantities in Eqs. �4� and �5�, respec-
tively, scale as L1/� and L�1−��/� �10,11,38�, to be used further
below.

Figures 1�a� and 1�b� illustrate that the traditionally used

divergences in FSS of the specific heat C and susceptibility 	
follow very well a power law of the form 	Ld, as expected
for first-order transitions �36,37�. Furthermore, Figs. 1�c� and
1�d� demonstrate that the divergences corresponding to the
first-, second-, and fourth-order logarithmic derivatives of
the order parameter defined in Eq. �4� and the absolute order-
parameter derivative defined in Eq. �5� follow also very well
the same Ld behavior, as expected. Figure 1�e� shows the
pronounced DP structure of the energy PDF of the model at
T=Th for L=60, obtained by the two different implementa-
tions of the WL scheme. This graph illustrates that the DP
structure is not very sensitive to the multi-R WL process, in
contrast to our recent findings for some first-order-like be-
havior of the 3d random-field Ising model. It also illustrates
the accuracy of the implementation schemes. As mentioned
above, from these DP energy PDF’s one can estimate the
surface tension 
�L�=�F�L� /L and the latent heat �e�L�,
whose values remain finite for a genuine first-order transi-
tion. Figure 1�f� shows the limiting behavior of these two
quantities and verifies the persistence of the first-order char-
acter of the transition at �=1.975. The limiting values of

�L� and �e�L� are given in the graph by extrapolating at the
larger lattice sizes studied. We close this section by noting
that the transition temperature T*��=1.975� is estimated to

FIG. 1. Behavior of the pure 2d BC model at �=1.975: �a� FSS behavior of the specific heat peaks giving a clear L2 divergence. �b� The
same for the susceptibility maxima. �c� Simultaneous fitting of the maxima of the averaged logarithmic derivatives of the order parameter
defined in Eq. �4�. �d� Power-law behavior of the averaged absolute order-parameter derivative in Eq. �5�. �e� The DP structure of the energy
PDF at T=Th via the two different implementations of the WL scheme. The multi-R implementation is displaced very slightly to the right.
�f� Limiting behavior for the surface tension 
�L� defined in the text and the latent heat �e�L� shown in panel �e�. The linear fits shown
include only the five points corresponding to the larger lattice sizes.
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be, in the limit L→�, T*=0.574�2�. This value interpolates
and agrees with the general phase diagram points summa-
rized in Ref. �28�.

B. Second-order transition of the pure model

The 2d BC model with no quenched randomness, Eq. �1�,
at the crystal field value �=1, undergoes a second-order
transition between the ferromagnetic and paramagnetic
phases, expected to be in the universality class of the simple
2d Ising model �26�. In the following, we present the FSS
analysis of our numerical data for this case, to verify this
expectation and to set any contrast with the behavior under
quenched randomness, presented further below. Figure 2�a�
gives the shift behavior of the pseudocritical temperatures
corresponding to the peaks of the following six quantities:
Specific heat, magnetic susceptibility, derivative of the abso-
lute order parameter, and logarithmic derivatives of the first,
second, and fourth powers of the order parameter. Fitting our
data for the larger lattice sizes �L=50–100� to the expected
power-law behavior T=Tc+bL−1/�, we find that the critical
temperature is Tc=1.3983�5� and the shift exponent is 1 /�
=1.013�14�. Almost the same estimate for the critical tem-
perature is obtained when we fix the shift exponent to the
value 1 /�=1. Thus, the shift behavior of the pseudocritical
temperatures indicates that the pure 2d BC model with �
=1 shares the same correlation length exponent � with the 2d
Ising model. Figure 2�b� gives the FSS of the specific heat
peaks. Here, the expected logarithmic divergence of the spe-
cific heat is very well obtained even from the smaller lattice
sizes as shown in the main frame. The inset is a linear fit of
the specific heat data on a log scale for L�50. Finally, Figs.
2�c� and 2�d� present our estimations for the magnetic expo-
nent ratios � /� and � /�. In panel �c� we show the FSS
behavior of the susceptibility peaks on a log-log scale. The
straight line is a linear fit for L�50 giving the estimate
� /�=1.748�11�. For the estimation of � /� we use the values
of the order parameter at the estimated critical temperature
�Tc=1.3983�. As shown in panel �d�, on a log-log scale, the
linear fit provides the estimate � /�=0.127�5�. Thus, our re-
sults for the pure 2d BC model at �=1 are in full agreement
with the findings of Beale �26� and with universality argu-

ments that place the pure BC model in the Ising universality
class.

IV. PHASE TRANSITIONS OF THE RANDOM-BOND 2d
BC MODEL

A. Second-order transition emerging under random bonds
from the first-order transition of the pure model

Figure 3 illustrates the effects, at �=1.975, induced by
bond randomness for different disorder realizations, on the
DP structure for lattices with linear size L=30 �Figs.
3�a�–3�c�� and L=50 �Fig. 3�d��. It is immediately seen that
the introduction of bond disorder has a dramatic influence on
the DP structure of the energy PDF. The very rough energy
PDF of the pure model, with the huge oscillations observed
in relatively small lattices, is radically smoothed by the in-
troduction of disorder �Figs. 3�a� and 3�b�� and the energy
barrier is highly reduced as the disorder strength is increased.
This barrier reduction effect depends of course on the disor-
der realization, as can be easily observed by comparing Figs.
3�a�–3�c�, but its main dependence comes from the value of
the disorder strength r and already for r=17 /23�0.74, the
DP structure is completely eliminated. This is clarified by
showing the five realizations of size L=50 in Fig. 3�d�. Note
here that, for this value of the disorder strength r=17 /23
�0.74, only a very small portion ��8% � of the realizations
at the size L=30 shows a DP structure in the energy PDF, but
now with a very tiny energy barrier, whereas for the same
disorder strength, all realizations at L=50 have a single peak
energy PDF. We continue our illustrations of the disorder
effects by showing in Figs. 3�e� and 3�f� the energy �e�-T
behavior and the order-parameter �M�-T behavior, for the
disorder realization with seed 99. It is clear from these fig-
ures that, in effect, only the disorder strength r=0.9 re-
sembles a first-order behavior, whereas all other disorder
strengths resemble the usual second-order behavior. In other
words, only for very weak disorder strengths the finite-size
rounded anomaly resembles a discontinuity in the energy and
the order parameter.

From the order-parameter behavior shown in Fig. 3�f� it
should be observed that the low-temperature behavior, for

FIG. 2. Behavior of the pure 2d BC model at �=1: �a� Simultaneous fitting of six pseudocritical temperatures defined in the text for
L�50. �b� FSS of the specific heat peaks. The inset shows a linear fit of the specific heat data on a log scale for L�50. �c� FSS of the
susceptibility peaks on a log-log scale. �d� FSS of the order parameter at the estimated critical temperature also on a log-log scale. Linear fits
are applied in panels �c� and �d�.
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strong disorder strengths, shows an unexpected and rather
complex behavior, which is most prominent for r=1 /3
=0.33¯. Figure 3�g� further clarifies this low-temperature
effect, by presenting one more disorder realization �seed
1721� for several disorder strengths ranging from r=1 /7
�0.14 to r=17 /23�0.74. It is clear from this figure that for
these strong disorder strengths the ground state of the model
deviates appreciably from the all si= +1 or the all si=−1
ferromagnetic state. Apparently, this deviation strongly de-
pends on the disorder strength as shown in Fig. 3�h�, where
the low-temperature behavior of the order parameter is pre-
sented for three different disorder realizations. From this il-
lustration it appears that, in the strong disorder regime, the
T→0 value of the order parameter averaged over the disor-
der will depend on the disorder strength. This observation
will have direct relevance to the ferromagnetism enhance-
ment �from quenched bond disorder!� and to the conversion
of first-order transitions to second-order transitions, through
the microsegregation mechanism to be presented and quan-
tified further below. In fact, we have fully verified the above
observation for a small 44 square lattice, for which the
exact enumeration of the spin configurations �316� is feasible,
using 50 disorder realizations.

It is evident from the DP structures of Fig. 3 that one
should avoid working with values of J2 very close to J2=1
�pure model�, since the first-order characteristics of the pure
model may be very strong and finite-size effects will obscure
any FSS attempt in relatively small lattices. We therefore
carried out extensive simulations at r=17 /23�0.74 and r
=3 /5=0.6. Figure 4�a� contrasts the specific heat results for
the pure 2d BC model and both disordered cases, r=17 /23
�0.74 and r=3 /5=0.6. This figure illustrates that the satu-

ration of the specific heat is very clear in both cases of the
disorder strength. However, the presented specific heat be-
havior for both disorder strengths is unsuitable for any FSS
attempt to estimate the exponent ratio � /�, as a result of the
early saturation of the specific heat. However, the early satu-
ration of the specific heat definitely signals the conversion of
the first-order transition to a second-order transition with a
negative critical exponent �. Furthermore, using our numeri-
cal data, we attempted to estimate a complete set of critical
exponents for both values of the disorder strength considered
here. For r=17 /23�0.74, our FSS attempts indicated that
we are still in a crossover regime for the lattice sizes studied.
On the other hand, for the disorder strength r=3 /5=0.6, the
FSS attempts, using the larger lattice sizes studied �L
=50–100�, provided an interesting and reliable set of esti-
mates for the critical exponents, which seems to satisfy all
expected scaling relations. Figure 4�b� gives the behaviors of
five pseudocritical temperatures T�Z�

av
* corresponding to the

peaks of the following quantities averaged over the disorder
realizations: susceptibility, derivative of the absolute order
parameter, as defined in Eq. �5�, and first-, second-, and
fourth-order logarithmic derivatives of the order parameter,
as defined in Eq. �4�. The five lines shown are obtained via a
simultaneous fitting of the form T�Z�

av
* =Tc+bL−1/� for the

larger lattice sizes L�50. The overall shift behavior is very
convincing of the accuracy of our numerical method. This
accuracy is due to the fact that for each realization, the WL
random walk has been repeated in the first stage of the en-
tropic scheme 5 times, thus reducing significantly the statis-
tical errors, which are then further refined in the second stage
of the entropic process. Furthermore, since these points are
derived from the peaks of the averaged curves and not from

FIG. 3. �Color online� Behavior of the random-bond 2d BC model at �=1.975: �a�–�d� Softening effects on the first-order transition
features of the 2d BC model, induced by bond randomness of various strengths. In �a� and �b�, the very rough P�e� is for the pure model,
whereas the smoothed curves are for r=0.90 �deeper� and r=0.82 �shallower�. The curves in �c� and �d� are for different seeds. Panels �e�–�h�
illustrate the �e�-T behavior and �M�-T behavior, for the size L=30 and various disorder strengths r for different disorder realizations. The
curves in �e� and �f� are for r=0.90,0.67,0.54,0.43,0.33, top to bottom on the right of �e�, bottom to top on the right of �f�, and top to bottom
on the left of �f�. The curves in �g� are for r=0.74,0.60,0.54,0.48,0.43,0.33,0.14 top to bottom on the left and bottom to top on the right.
The curves in �h� are for different seeds.
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the individual maxima of the realizations, they do not suffer
from sample-to-sample fluctuations and large statistical er-
rors. This good behavior allows us to estimate, as shown in
Fig. 4�b�, quite accurately both the critical temperature Tc
=0.626�2� and the correlation length exponent �=1.30�6�.
Regarding the latter, we shall see below that it agrees with
the estimate obtained via the FSS of the logarithmic deriva-
tives of Eq. �4� and this will be a very strong indication of
the self-consistency of our scheme.

Figures 4�c�–4�f� give the FSS behavior of the first-,
second-, and fourth-order logarithmic derivatives of the or-
der parameter defined in Eq. �4�, the magnetic susceptibility,
the absolute order-parameter derivative defined in Eq. �5�,
and the order parameter at the critical temperature estimated
in Fig. 4�b�. Figure 4�d� shows a simultaneous fit for three
moments and for lattice sizes L�50. The resulting value for
the exponent �=1.35�5� indeed agrees with our earlier esti-
mate from the shift behavior in Fig. 4�b� and also fulfills the
Chayes et al. inequality ��2 /d �39�. Figure 4�c� presents
the behavior of the peaks of the average susceptibility on a
log-log scale and the solid line shows a linear fit for sizes
L�50. The estimated value for the exponent ratio � /�
shown in this panel is very close to 1.75 and it is well known
that this value of the ratio � /� is obeyed not only in the
simple Ising model but also in several other cases in 2d. In
particular, it appears that it is very well obeyed in the cases
of disordered models, including the site-diluted, bond-

diluted, and random-bond Ising model �17,40–55�. Further-
more, it has been shown that is also very well obeyed in both
the pure and random-bond version of the square Ising model
with nearest- and next-nearest-neighbor competing interac-
tions �17,56�, as well as the case of the second-order phase
transition induced by bond disorder from the first-order be-
havior in the q=8 Potts model �10,11�. Figure 4�e� is a first
estimate for the exponent ratio � /�=0.12�1� obtained from
the FSS behavior of the maxima of the average absolute
order-parameter derivative �Eq. �5�� with the solid line
shown being a linear fit, again for L�50. Finally, Fig. 4�f�
shows the conventional FSS method of estimating the ratio
� /� by considering the scaling behavior of the average order
parameter at the estimated critical temperature Tc=0.626.
The solid line is a linear fit for L�50 giving the value
� /�=0.128�5�. These latter two estimates are very close to
the value � /�=0.125 and combining the above results one
finds that the random-bond version of the model appears to
satisfy the scaling relation 2� /�+� /�=d. Thus, a kind of
weak universality appears �47,57�.

B. Second-order transition emerging under random bonds
from the second-order transition of the pure model

We now present our numerical results for the random-
bond 2d BC model with �=1 for disorder strength r=0.6.
Bond randomness favoring second-order transitions, this sys-

FIG. 4. Behavior of the random-bond 2d BC model at �=1.975: �a� Illustration of the clear saturation of the specific heat ��C�
av
* � for the

random-bond �open symbols� 2d BC model. �b� FSS behavior of five pseudocritical temperatures defined in the text for r=3 /5=0.6. The
lines show a simultaneous fit for the larger lattice sizes L�50. �c�–�f� Estimation of critical exponents �, � /�, and � /� for the case of
r=3 /5=0.6. In all panels the fits have been performed for the larger lattice sizes shown �L�50�.
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tem is also expected to undergo a second-order transition
between the ferromagnetic and paramagnetic phases and it is
reasonable to expect that this transition will be in the same
universality class as the random-bond 2d Ising model. As far
as we know, there has not been any previous attempt to com-
pare the behaviors of the random-bond BC model and the
random-bond Ising model. The latter model is a particular
case of the more general random Ising model �random-site,
random-bond, and bond-diluted� and has been extensively
investigated and debated �17,40–55�. Using renormalization-
group and conformal field theories, the marginal irrelevance
of randomness at the second-order ferromagnetic-
paramagnetic transition has been predicted. According to
these theories, the effect of infinitesimal disorder gives rise
only to logarithmic corrections as the critical exponents
maintain their 2d Ising values. On the other hand, there is not
full agreement in the literature for the finite disorder regime.
Two existing scenarios are mutually exclusive: The first view
predicts that the specific heat slowly diverges with a double-
logarithmic dependence, with a corresponding correlation-
length exponent �=1 �42–45�. Another scenario predicts a
negative specific heat exponent � leading to a saturating be-
havior �47�, with a corresponding correlation length expo-
nent ��2 /d. Let us now present the FSS analysis of our
numerical data.

Figure 5�a� presents again the shift behavior of six pseud-
ocritical temperatures, as defined above for the pure model,
but here using the peaks of the corresponding quantities av-
eraged over the disorder realizations. Fitting our data for the
larger lattice sizes �L=50–100� to the expected power-law
behavior, T=Tc+bL−1/�, we find that the critical temperature
is Tc=1.3812�4� and the shift exponent is 1 /�=1.011�22�.
This latter estimate is a first indication that the random-bond
2d BC at �=1 has the same value of the correlation-length
critical exponent as the pure version and therefore as the 2d
Ising model. Figure 5�b� illustrates the FSS of the specific
heat maxima averaged over disorder, �C�

av
* . Using these data

for the larger sizes L�50, we tried to observe the goodness
of the fits, assuming a simple logarithmic divergence, a
double-logarithmic divergence, or a simple power law. Al-
though there is no irrefutable way of numerically distin-
guishing between the above scenarios, our fitting attempts

indicated that the double-logarithmic scenario applies better
to our data. The double-logarithmic fit is shown in the main
panel and also in the inset of Fig. 5�b�. Finally, Figs. 5�c� and
5�d� present our estimations for the magnetic exponent ratios
� /� and � /�. In panel �c� we show the FSS behavior of the
susceptibility peaks on a log-log scale. The straight line is a
linear fit for L�50 giving the estimate 1.749 �7� for � /�. For
the estimation of � /� we have used the values of the order
parameter at the estimated critical temperature Tc=1.3812.
This traditional method, shown in panel �d� on a log-log
scale, provides now the estimate � /�=0.126�4�. From the
above findings, we conclude that, at this finite disorder
strength, the random-bond 2d BC model with �=1 belongs
to the same universality class as the random Ising model,
extending the theoretical arguments based on the marginal
irrelevance of infinitesimal randomness. Most strikingly, it is
undisputable from our numerical results that the second-
order phase transitions emerging, under random bonds, from
the first-order and second-order regimes of the pure model,
have different critical exponents although they are between
the same two phases, thereby exhibiting a strong violation of
universality. We note that, since our bond disorder occurs as
the variation of the bond strengths that all are in any case
nonzero, no Griffiths line �58� divides the paramagnetic
phase here.

Finally, we discuss self-averaging properties along the
two segments �ex-first-order, Sec. IV A, and still second-
order, Sec. IV B� of the critical line. A useful finite-size mea-
sure that characterizes the self-averaging property of a sys-
tem is the relative variance RX=VX / �X�av

2 , where VX= �X2�av
− �X�av

2 , of any singular extensive thermodynamic property X.
A system exhibits self-averaging when RX→0 as L→�, or
lack of self-averaging �with broad probability distributions�
when RX→const�0 as L→�. The FSS scenario of Aharony
and Harris �59� describes self-averaging properties for disor-
dered systems and has been validated by Wiseman and
Domany �60–62� in their study of random Ising and Ashkin-
Teller models. From these papers, the disordered system re-
sulting in Sec. IV B from the introduction of bond random-
ness to the marginal case of the second-order transition of the
pure 2d BC model is expected to exhibit lack of self-
averaging. This expectation also agrees with our recent study

FIG. 5. Behavior of the random-bond �r=0.6� 2d BC model at �=1: �a� Simultaneous fitting of six pseudocritical temperatures defined
in the text for L�50. �b� FSS of the averaged specific heat peaks. A double-logarithmic fit is applied for L�50. The inset shows a linear fit
on a double-logarithmic scale. �c� FSS behavior of the averaged susceptibility peaks on a log-log scale. �d� FSS of the averaged order
parameter at the estimated critical temperature, also on a log-log scale. Linear fits are applied for L�50.
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of the self-averaging properties of the 2d random-bond Ising
model �63�. In the current work, the FSS behaviors of the
relative variances, obtained from the distributions of the
magnetic susceptibility maxima �X=	*�, were observed.
Their behavior clearly indicates that the disordered systems
exhibit lack of self-averaging along both segments of the
critical line, since these relative variances show a monotonic
behavior and are still increasing at the maximum lattice sizes
studied. For �=1, R	*�L=90��0.0011 and R	*�L=100�
�0.0014, whereas for �=1.975, R	*�L=90��0.015 and
R	*�L=100��0.016. Thus, the latter case, i.e., the ex-first-
order segment, gives a much larger effect, by a factor of
	12. A similarly stronger lack of self-averaging was ob-
served for the disordered system resulting from the case of
competing interactions on the square lattice, than for the dis-
ordered system resulting from the marginal case of the
simple Ising model, in our recent study �63�. Moreover, the
discussion in Sec. VII A in the paper by Fisher �64� is rel-
evant here, explaining the expectation for extremely broad
distributions near ex-first-order transitions in systems with
quenched randomness. This discussion points out also that
ex-first-order transitions may have several � exponents
�39,64–66� and provides the background for understanding
why our finite-size correlation-length exponent obeys the
Chayes et al. inequality �39�.

C. Contrasting random-bond behavior of critical temperatures,
connectivity spin densities, and microsegregation

In most spin models, the introduction of bond randomness
is expected to decrease the phase-transition temperature and
in several cases the critical temperature goes to zero at the
percolation limit of randomness �r=0 and J2=0�. For less
randomness, only a slight decrease is expected, if the average
bond strength is maintained. Indeed, in the second-order re-
gime of the pure 2d BC model, �=1, the introduction of
bond randomness has slightly decreased the critical tempera-
ture, by 1% �Sec. IV B�. On the other hand, in sharp contrast,
for the same disorder strength r=0.6 applied to the first-order
regime of the pure model �Sec. IV A�, at �=1.975, we find a
considerable increase of the critical temperature, by 9%.

In order to microscopically explain the above observation
of ferromagnetic order enhanced by quenched disorder, let us
define the following connectivity spin densities, Qn= �si

2�n,
where the subscript n denotes the class of lattice sites and is
the number of the quenched strong couplings �J1� connecting
to each site in this class. Figure 6 illustrates the temperature
behavior of these densities averaged over 10 disorder real-
izations for a lattice of linear size L=60. For �=1.975, it is
seen that the si=0 preferentially occur on the low strong-
coupling connectivity sites. The si= �1 states preferentially
occur with strong-coupling connectivity, which �1� naturally
leads to a higher transition temperature and �2� effectively
carries the ordering system to higher nonzero spin densities,
the domain of second-order phase transitions. Figure 6 con-
stitutes a microsegregation, due to quenched bond random-
ness, of the si= �1 states and of the si=0 state. We note that
microsegregation is reached by a continuous evolution
within the ferromagnetic and paramagnetic phases. A similar

mechanism has been seen in the low-temperature second-
order transition between different ordered phases under
quenched randomness �67�.

On the other hand, for �=1 and in the neighborhood of
the critical temperature, the difference between the smallest
and the largest of the connectivity densities is 0.177, whereas
for �=1.975, this difference is 0.449 in the corresponding
critical region. Thus, the microsegregation does not occur in
the regime of the second-order transition of the pure model
and the effect of quenched disorder is the expected slight �the
average bond strength is maintained� retrenchment of ferro-
magnetic order. Microsegregation does occur in the first-
order regime of the pure model where macrosegregation oc-
curs in the absence of bond randomness. The result is a local
concentration of si= �1 states, leading to the enhancement
of ferromagnetism. The above-mentioned spreads in the
connectivity-density values are very slowly changing with
the lattice size. For instance, for L=20 the corresponding
values are, respectively, 0.175 and 0.445.

V. CONCLUSIONS: STRONG VIOLATION OF
UNIVERSALITY AND WEAK UNIVERSALITY

In conclusion, the second-order phase transition of the 2d
random-bond Blume-Capel model at �=1 appears to belong
to the same universality class as the 2d Ising model, having
the same values of the critical exponents, i.e., the critical
exponents of the 2d Ising universality class. The effect of the
bond disorder on the specific heat is well described by the
double-logarithmic scenario and our findings support the
marginal irrelevance of quenched bond randomness. On the
other hand, at �=1.975, the first-order transition of the pure
model is converted to second order, but in a distinctive uni-
versality class with �=1.30�6� and � /�=0.128�5�.

These results, on the 2d square lattice, amount to a strong
violation of universality, since the two second-order transi-
tions mentioned in the preceding paragraph, with different
sets of critical exponents, are between the same ferromag-

FIG. 6. �Color online� Temperature behavior of the connectivity
spin densities Qn defined in the text for �=1 �upper curves� and
�=1.975 �lower curves� for disorder strength r=0.6 and lattice size
L=60. In each group, the curves are for n=0,1 ,2 ,3 ,4 from bottom
to top.
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netic and paramagnetic phases. This result was also obtained
by renormalization-group calculations �12� in 2d and 3d that
are exact on hierarchical lattices and approximate on square
and cubic lattices. The mechanism in these renormalization-
group calculations is that the second-order transitions,
emerging under random bonds from the first-order transitions
of the pure model, have their own distinctive unstable zero-
temperature fixed point �12,68�.

Furthermore, the latter of these two sets of results sup-
ports an extensive but weak universality, since the latter of
the two transitions mentioned above has the same magnetic

critical exponent �but a different thermal critical exponent� as
a wide variety of 2d systems without �13,14� and with
�17,47,56,57� quenched disorder.

ACKNOWLEDGMENTS

This research was supported by the special Account for
Research Grants of the University of Athens under Grant No.
70/4/4071. N.G.F. acknowledges financial support by the Al-
exander S. Onassis Public Benefit Foundation. A.N.B. ac-
knowledges support by the Academy of Sciences of Turkey.

�1� H. E. Stanley, Introduction to Phase Transitions and Critical
Phenomena �Oxford University Press, Oxford, 1971�.

�2� K. G. Wilson, Phys. Rev. B 4, 3174 �1971�; 4, 3184 �1971�.
�3� R. J. Baxter, Ann. Phys. 70, 193 �1970�.
�4� J. Ashkin and E. Teller, Phys. Rev. 64, 178 �1943�.
�5� A. B. Harris, J. Phys. C 7, 1671 �1974�.
�6� A. N. Berker, Phys. Rev. B 42, 8640 �1990�.
�7� M. Aizenman and J. Wehr, Phys. Rev. Lett. 62, 2503 �1989�;

64, 1311�E� �1990�.
�8� K. Hui and A. N. Berker, Phys. Rev. Lett. 62, 2507 �1989�;

63, 2433�E� �1989�.
�9� A. N. Berker, Physica A 194, 72 �1993�.

�10� S. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. Lett.
69, 1213 �1992�.

�11� S. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. E 52,
1377 �1995�.

�12� A. Falicov and A. N. Berker, Phys. Rev. Lett. 76, 4380 �1996�.
�13� M. Suzuki, Prog. Theor. Phys. 51, 1992 �1974�.
�14� J. D. Gunton and T. Niemeijer, Phys. Rev. B 11, 567 �1975�.
�15� M. Blume, Phys. Rev. 141, 517 �1966�.
�16� H. W. Capel, Physica �Utrecht� 32, 966 �1966�; 33, 295

�1967�; 37, 423 �1967�.
�17� N. G. Fytas, A. Malakis, and I. A. Hadjiagapiou, J. Stat.

Mech.: Theory Exp. �2008� P11009.
�18� N. G. Fytas, A. Malakis, and K. Eftaxias, J. Stat. Mech.:

Theory Exp. �2008� P03015.
�19� F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 �2001�.
�20� F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 �2001�.
�21� A. Malakis, A. Peratzakis, and N. G. Fytas, Phys. Rev. E 70,

066128 �2004�.
�22� A. Malakis, S. S. Martinos, I. A. Hadjiagapiou, N. G. Fytas,

and P. Kalozoumis, Phys. Rev. E 72, 066120 �2005�.
�23� R. E. Belardinelli and V. D. Pereyra, Phys. Rev. E 75, 046701

�2007�.
�24� D. P. Landau and R. H. Swendsen, Phys. Rev. Lett. 46, 1437

�1981�.
�25� D. P. Landau and R. H. Swendsen, Phys. Rev. B 33, 7700

�1986�.
�26� P. D. Beale, Phys. Rev. B 33, 1717 �1986�.
�27� J. C. Xavier, F. C. Alcaraz, D. Pena Lara, and J. A. Plascak,

Phys. Rev. B 57, 11575 �1998�.
�28� C. J. Silva, A. A. Caparica, and J. A. Plascak, Phys. Rev. E 73,

036702 �2006�.
�29� M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B 34,

1841 �1986�.
�30� J. Lee and J. M. Kosterlitz, Phys. Rev. Lett. 65, 137 �1990�.
�31� J. Lee and J. M. Kosterlitz, Phys. Rev. B 43, 3265 �1991�.
�32� C. Borgs and W. Janke, Phys. Rev. Lett. 68, 1738 �1992�.
�33� W. Janke, Phys. Rev. B 47, 14757 �1993�.
�34� A. Malakis, N. G. Fytas, and P. Kalozoumis, Physica A 383,

351 �2007�.
�35� M. E. Fisher and A. N. Berker, Phys. Rev. B 26, 2507 �1982�.
�36� K. Binder and D. P. Landau, Phys. Rev. B 30, 1477 �1984�.
�37� K. Binder, Rep. Prog. Phys. 50, 783 �1987�.
�38� A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081

�1991�.
�39� J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Phys.

Rev. Lett. 57, 2999 �1986�.
�40� G. Grinstein and A. Luther, Phys. Rev. B 13, 1329 �1976�.
�41� R. Fisch, J. Stat. Phys. 18, 111 �1978�.
�42� V. S. Dotsenko and V. S. Dotsenko, JETP Lett. 33, 37 �1981�.
�43� B. N. Shalaev, Sov. Phys. Solid State 26, 1811 �1984�.
�44� R. Shankar, Phys. Rev. Lett. 58, 2466 �1987�.
�45� A. W. W. Ludwig, Nucl. Phys. B 285, 97 �1987�.
�46� J.-S. Wang, W. Selke, V. S. Dotsenko, and V. B. Andreichenko,

Physica A 164, 221 �1990�.
�47� J.-K. Kim and A. Patrascioiu, Phys. Rev. Lett. 72, 2785

�1994�.
�48� V. Dotsenko, M. Picco, and P. Pujol, Nucl. Phys. B 455, 701

�1995�.
�49� F. D. A. Aarão Reis, S. L. A. de Queiroz, and R. R. dos Santos,

Phys. Rev. B 54, R9616 �1996�.
�50� H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A.

Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, J. Phys. A
30, 8379 �1997�.

�51� W. Selke, L. N. Shchur, and O. A. Vasilyev, Physica A 259,
388 �1998�.

�52� G. Mazzeo and R. Kühn, Phys. Rev. E 60, 3823 �1999�.
�53� P. H. L. Martins and J. A. Plascak, Phys. Rev. E 76, 012102

�2007�.
�54� I. A. Hadjiagapiou, A. Malakis, and S. S. Martinos, Physica A

387, 2256 �2008�.
�55� M. Hasenbusch, F. P. Toldin, A. Pelissetto, and E. Vicari, Phys.

Rev. E 78, 011110 �2008�.
�56� N. G. Fytas, A. Malakis, and I. Georgiou, J. Stat. Mech.:

Theory Exp. �2008� L07001.
�57� J.-K. Kim, Phys. Rev. B 53, 3388 �1996�.
�58� R. B. Griffiths, Phys. Rev. Lett. 23, 17 �1969�.

STRONG VIOLATION OF CRITICAL PHENOMENA… PHYSICAL REVIEW E 79, 011125 �2009�

011125-9



�59� A. Aharony and A. B. Harris, Phys. Rev. Lett. 77, 3700
�1996�.

�60� S. Wiseman and E. Domany, Phys. Rev. E 52, 3469 �1995�.
�61� S. Wiseman and E. Domany, Phys. Rev. Lett. 81, 22 �1998�.
�62� S. Wiseman and E. Domany, Phys. Rev. E 58, 2938 �1998�.
�63� N. G. Fytas and A. Malakis, e-print arXiv:0810.5438.
�64� D. S. Fisher, Phys. Rev. B 51, 6411 �1995�.

�65� V. Privman and M. E. Fisher, J. Stat. Phys. 33, 385 �1983�.
�66� D. A. Huse and D. S. Fisher, Phys. Rev. B 35, 6841 �1987�.
�67� C. N. Kaplan and A. N. Berker, Phys. Rev. Lett. 100, 027204

�2008�.
�68� V. O. Özçelik and A. N. Berker, Phys. Rev. E 78, 031104

�2008�.

MALAKIS et al. PHYSICAL REVIEW E 79, 011125 �2009�

011125-10


