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The dynamics of hard-core interacting Brownian particles in an external potential field is studied in one

dimension. Using the Jepsen line we find a very general and simple formula relating the motion of the

tagged center particle, with the classical, time dependent single particle reflection R and transmission T
coefficients. Our formula describes rich physical behaviors both in equilibrium and the approach to

equilibrium of this many body problem.
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Introduction.—Single file diffusion of a tagged
Brownian particle, interacting with other Brownian par-
ticles, is a model for motion of a molecule or particle in a
crowded one-dimensional environment, such as a biologi-
cal pore or channel [1,2] and for experimentally studied
physical systems such as zeolites [3] and confined colloid
particles [4,5]. The confinement of the tagged particle by
the other particles is strong and severely restricts the
motion of the particle. The description of this single file
motion has been of much theoretical interest [1,6–15]. For
an infinite system and uniform initial particle density,
Harris [6] and Levitt [7] first showed that a tagged particle

exhibits anomalous diffusion hðxTÞ2i � t1=2, rather then
normal diffusion hðxTÞ2i � t, due to the strong many
body confinement effect. This many body problem and
related ones can be treated using the methods of Percus
[8,16], Lebowitz [17] and Jepsen [18] which exploit non-
obvious relations between the dynamics of the interacting
system with the motion of a free particle.

In recent years, two new directions of research have
emerged. First, the effect of an external force field acting
on the particles is important since, in many cases, pores
induce entropic barriers [1] and are generally inhomoge-
neous; hence, single file motion in a periodic potential [12]
and a confining box [13] were investigated. Second, initial
conditions have a profound effect on single file motion
[14,15]: for example, particles with initial delta function
distribution in space (rather than a uniform distribution as
assumed in [6,7]) yield normal diffusion [14]. This is
important since if a potential field is acting on the particles,
thermal initial conditions will have a Boltzmann weight-
ing, leading to generally nonuniform initial conditions. In
this direction Kalinay and Percus [19] found a general
nonlinear transformation relating diffusion in the interact-
ing system with the dynamics of a noninteracting particle
[20]. Here we provide a general and surprisingly simple
theory of single file diffusion of the center particle valid in
the presence (or absence) of a potential field, VðxÞ, as well
as for thermal and nonthermal initial conditions. Our gen-
eral result reproduces those previously obtained as well as

many new ones, by mapping the many particle problem
onto a solvable single particle model.
Model.—In our model, 2N þ 1 identical particles with

hard-core particle-particle interactions are undergoing
Brownian motion in one dimension, so particles cannot
pass one another. An external potential field VðxÞ is acting
on the particles. We tag the central particle, which has N
other particles to its left, and N to its right. Initially the
tagged particle is at x ¼ 0. The motion of a single particle,
in the absence of interactions with other particles, is over-
damped Brownian motion so that the single noninteracting
particle Green function gðx; x0; tÞ, with the initial condition
gðx; x0; 0Þ ¼ �ðx� x0Þ, is obtained from the Fokker-
Planck equation [21]
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and FðxÞ ¼ �V0ðxÞ is the force field.
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FIG. 1. Schematic motion of Brownian particles in a harmonic
potential (the parabola) where particles cannot penetrate through
each other. The straight line is called the Jepsen line, as ex-
plained in the text. The center tagged particle is labeled 0. In an
equivalent noninteracting picture, we allow particles to pass
through each other, and we follow the trajectory of the particle
which is at the center.
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Methods and general results.—In Fig. 1 a schematic
diagram of the problem is presented. The straight line is
called the Jepsen line, which starts from the origin x ¼ 0
and follows the rule xðtÞ ¼ vt, where v is a test velocity
[7]. In the interacting system we label particles according
to their initial position increasing to the right (see Fig. 1).
As noticed in [7,18], since the Brownian particles are im-
permeable, every time a particle crosses the Jepsen line
from the right (or left), the particle number immediately to
the left of the line will be raised (or lowered) by one, re-
spectively. Hence, the particle number immediately to the
left of the Jepsen line defines a stochastic process decreas-
ing and increasing its value þ1 or �1 or zero randomly.

Following Levitt [7] we now consider a noninteracting
system, equivalent to the interacting one in the large N
limit. We let particles pass through each other, but switch
labels upon collision, and introduce the counter �ðtÞ which
increases by þ1 if a particle crosses the Jepsen line from
left, and decreases by �1 when a particle crosses this line
from right. The event when the counter � has the value
zero, is equivalent to finding the tagged particle to the left
of the Jepsen line in the interacting system. This is the case
since then the total number of crossings from left to right is
equal the number of crossings from right to left. So the
probability of the tagged particle being in the vicinity of
xT ¼ vt is given by the probability that � ¼ 0, i.e., by the
statistics of the number of transitions of the Jepsen line [7].
In what follows we depart from the approach in [7,22].

Our aim is to calculate the probability of the random
variable �, PNð�Þ, and then switch vt ! xT to find the
probability density function (PDF) of the tagged particle.

For that we designate PLLðx�j
0 Þ as the probability that a

nontagged particle j starting to the left of the Jepsen line

x�j
0 < 0, is found also at time t on the left of this line. PLR

is the probability of a particle starting to the left of the
Jepsen line to end on the right, and similarly for PRR and
PRL. Consider first N ¼ 1, that is, one particle which starts
at x10 > 0 and a second particle which starts at x�1

0 < 0.
Then clearly we have either � ¼ �1 or � ¼ 0. The prob-
abilities of these events are easily calculated, for example
PN¼1ð� ¼ 1Þ ¼ PLRðx�1

0 ÞPRRðxþ1
0 Þ is the probability that

one particle crossed from L to R and the other remained in
domain R. Similarly PN¼1ð�¼0Þ¼PLLðx�1

0 ÞPRRðxþ1
0 Þþ

PLRðx�1
0 ÞPRLðxþ1

0 Þ and PN¼1ð� ¼ �1Þ ¼ PLLðx�1
0 Þ �

PRLðxþ1
0 Þ. Since in the noninteracting picture, the motion

of the particles are independent, we can use random walk
theory and Fourier analysis [23] to find the behavior for
any N

PNð�Þ ¼ 1

2�

Z �

��
d��N

j¼1�ð�; x�j
0 ; xj0Þei��; (2)

where the structure function is

�ð�; x�j
0 ; xj0Þ ¼ ei�PLRðx�j

0 ÞPRRðxj0Þ þ PLLðx�j
0 ÞPRRðxj0Þ

þ PLRðx�j
0 ÞPRLðxj0Þ

þ e�i�PLLðx�j
0 ÞPRLðxj0Þ: (3)

We average Eq. (2) with respect to the initial conditions xj0
and x�j

0 , which are assumed to be independent identically

distributed random variables and we find

hPNð�Þi ¼ 1

2�

Z �

��
d�h�ð�ÞiNei��; (4)

where from Eq. (3) the averaged structure function is

h�ð�Þi ¼ ðhPRRi þ e�i�hPRLiÞðhPLLi þ ei�hPLRiÞ: (5)

The averages in Eq. (5) are easy to find in principle, in
terms of the Green function of the noninteracting particle
and the initial density of particles, for example

hPLRi ¼
Z 0

� �L
fLðx0Þ

Z �L

xT

gðx; x0; tÞdxdx0 (6)

where the mentioned replacement vt ! xT was made
(similar averages appeared already in [19]). Here fLðx0Þ
is the PDF of initial positions of the particles which ini-
tially are at x0 < 0, similarly fRðx0Þ describes the initial
conditions of the right particles. In Eq. (6) �L is the system
size, which can be taken to infinity in the usual way.
Equation (4) describes a random walk where the number

of particles N serves as an operational time. We may use
the Gaussian central limit theorem (CLT) to analyze this
walk, when N ! 1. In that limit the first two moments of
the structure function, �1 and �2, found in the small �
expansion

h�ð�Þi ¼ 1þ i�1�� 1

2
�2�

2 þOð�3Þ (7)

are the only two parameters needed to determine the
behavior of PNð�Þ. Defining the variance �2 ¼
�2 � ð�1Þ2, using Eq. (5) and the normalization condition,
e.g., hPLRi þ hPLLi ¼ 1 we find the expected result

�1 ¼ hPLRi � hPRLi (8)

�2 ¼ hPRRihPRLi þ hPLLihPLRi: (9)

Using the CLT we have the probability of zero crossing,
namely � ¼ 0 in the N ! 1 limit

PNð� ¼ 0Þ � expð� Nð�1Þ2
2�2 Þffiffiffiffiffiffiffiffiffiffi

2�N
p

�
: (10)

This is our first general result, valid for a large class of
Green functions and initial conditions and thus suited for
the investigation of a wide range of problems.
Symmetric potential fields VðxÞ ¼ Vð�xÞ, and symmet-

ric initial conditions are now investigated. The latter sim-
ply means that the density of the initial positions of the left
particles, i.e., those residing initially in x0 < 0, is the same
as that of the right particles, fRðx0Þ ¼ fLð�x0Þ. In this case
the subscript R and L is redundant and we use fðx0Þ ¼
fRðx0Þ ¼ fLð�x0Þ to describe the initial conditions [24].
From symmetry it is clear that the tagged particle is un-
biased, namely hxTi ¼ 0. Further, since N is large we may
expand expressions in the exp in Eq. (10) in xT , to obtain
leading terms
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�1 ¼ �JxT þOðxTÞ2 (11)

where we used the symmetry of the problem which implies
ðhPLRi � hPRLiÞxT¼0 ¼ 0, and by definition

�J ¼ @

@xT
½hPLRðxTÞi � hPRLðxTÞi�jxT¼0: (12)

Similarly

�2 ¼ 2hPRRðxTÞi½1� hPRRðxTÞi�jxT¼0 þOðxTÞ: (13)

We designate hPRRðxTÞijxT¼0 ¼ R as a reflection coeffi-

cient, since it is the probability that a particle starting at
x0 < 0 is found at x < 0 at time t when an average over all
initial conditions is made

R ¼
Z �L

0
fðx0Þ

Z �L

0
gðx; x0; tÞdxdx0: (14)

As usual the transmission coefficient T ¼ 1�R is de-
fined through T ¼ hPRLðxTÞijxT¼0. Notice that these re-

flection and transmission coefficients are time dependent
single particle quantities which give useful information
for the many body problem. Also from symmetry we
have @

@xT
hPRLðxTÞijxT¼0¼� @

@xT
hPLRðxTÞijxT¼0 in Eq. (12).

Hence we define j ¼ �@hPLRðxTÞi=@xTjxT¼0 where from

its definition Eq. (6)

j ¼
Z �L

0
fðx0Þgð0; x0; tÞdx0: (15)

So j is the density of noninteracting particles at x ¼ 0 for
an initial density fðx0Þ. Using Eqs. (10)–(13) we find our
main result the PDF of the tagged particle

PðxTÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hðxTÞ2i

p exp

�
� ðxTÞ2

2hðxTÞ2i
�
; (16)

where hðxTÞ2i ¼ RT =ð2Nj2Þ is the mean square displace-
ment (MSD).

Gaussian packet.—Consider particles without external
forces VðxÞ ¼ 0, in an infinite system with symmetric

Gaussian initial conditions with width �: fðx0Þ ¼ffiffiffi
2

p
expð� x20=ð2�2ÞÞ= ffiffiffiffiffiffiffiffiffi

��2
p

(x0 > 0). The free particle

Green function is

gðx; x0; tÞ ¼
expð� ðx�x0Þ2

4Dt Þffiffiffiffiffiffiffiffiffiffiffiffi
4�Dt

p : (17)

Using Eqs. (14)–(17) we find the MSD of the tagged
particle [25]

hðxTÞ2i � �2 �

N

�
1þ 2Dt

�2

��
1

4
� 1

�2
arccot2

� ffiffiffiffiffiffiffiffiffi
2Dt

�2

s ��
:

(18)

This solution exhibits a transition from anomalous subdif-
fusion to normal diffusion. At short times 2Dt=�2 � 1

hðxTÞ2i � �
ffiffiffiffiffiffi
2Dt

p
N while at long times hðxTÞ2i � �Dt

2N . For

short times the particles do not have time to disperse;
hence, the motion of the tagged particle is slower than

normal, increasing as t1=2 since it is confined by the other
particles in the system.
Particles in a box.—Consider the example of particles in

a box extending from � �L to �L, which was recently inves-
tigated using the Bethe ansatz and numerical simulations
[13]. The tagged particle initially on x ¼ 0 has N particles
uniformly distributed to its left and similarly to its right. In
this case fðx0Þ ¼ 1= �L for 0< x0 < �L. The green function
gðx; x0; tÞ of a single particle in a box with reflecting walls
is found using an eigenvalue approach [21], similar to the
method of solution of the undergraduate quantum me-
chanical problem of a particle in a box. We find

R ¼ 1

2
þ 4

�2

X1
n¼1;odd

exp½�D ð�2n2Þ
4 �L2 t�

n2
(19)

so at t ¼ 0,R ¼ 1 since all particles initially (0, �L) did not
have time to move to the other side of the box, and
limt!1R ¼ 1=2 since in the long time limit there is equal
probability for a noninteracting particle to occupy half of
the box. The eigenvalues of the noninteracting particle
control the exponential decay of R (19) which in turn
determines the dynamics of the interacting tagged particle.
We also find j ¼ 1=2 �L using Eq. (15). For short times
D�2t=4 �L2�1 we can replace the summation in Eq. (19)
with integration and then using Eq. (16) and 	 ¼ N= �L

PðxTÞ �
ffiffiffiffi
	

p
2ð�DtÞ1=4 exp

�
�	ðxTÞ2

ffiffiffiffi
�

p
4

ffiffiffiffiffiffi
Dt

p
�
: (20)

Thus the tagged particle undergoes a single file subdiffu-

sive process [6,7] hðxTÞ2i � 2ðDtÞ1=2=ð	 ffiffiffiffi
�

p Þ, since for
short times the particles do not interact with walls. In the
long time limit, the tagged particle reaches an equilibrium
easily found using Eqs. (16) and (19)

pðxTÞ �
ffiffiffiffi
N

p
ffiffiffiffi
�

p
�L
e�NðxT Þ2= �L2

(21)

and limt!1hðxtÞ2i ¼ �L2=ð2NÞ. More generally from
Eq. (16), hðxTÞ2i ¼ 2Rð1�RÞ �L2=N which nicely
matches and simplifies considerably, the Bethe ansatz so-
lution [13] already for N ¼ 70 [26].
Thermal initial conditions.—If we assume that initially

the particles are in thermal equilibrium, our simple formu-
las simplify even more. If fðx0Þ¼2expð�Vðx0Þ=kbTÞ=Z
where the normalizing partition function is

Z ¼
Z 1

�1
exp

�
�VðxÞ

kbT

�
dx (22)

then j ¼ 1=Z. To see this, note that since we have a
symmetric case VðxÞ ¼ Vð�xÞ then gð0;�x0; tÞ ¼
gð0; x0; tÞ and j ¼ 2

R1
0 exp½�Vðx0Þ=kbT�gð0; x0; tÞdx0=Z

gives
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j ¼
Z 1

�1

exp½� Vðx0Þ
kbT

�
Z

gð0; x0; tÞdx0; (23)

where we assume that the potential is binding so a sta-
tionary solution of the Fokker-Planck equation is reached;
i.e., the free particle Eq. (17) is excluded. Therefore
j (23) is the probability of finding noninteracting particles
on the origin, with thermal equilibrium initial conditions.
Since the latter is the stationary solution of the Fokker-
Planck operator, j is time independent and equal to j ¼
exp½�Vð0Þ=kbT�=Z. We can always choose Vð0Þ ¼ 0 and
then j ¼ 1=Z. Using Eq. (16) we find the MSD of the
tagged particle

hðxTÞ2i ¼ RT Z2

2N
: (24)

Single file motion in harmonic potential.—Consider par-
ticles in a harmonic potential VðxÞ ¼ m!2x2=2 where! is
the frequency and initially the particles are in thermal
equilibrium. The corresponding single particle green func-
tion gðx; x0; tÞ describes the Ornstein-Uhlenbeck process

[21]. Defining the thermal length scale �th ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbT=m!2

p
and using thermal initial conditions fðx0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=��2

th

q
�

exp½�ðx0Þ2=2�2
th�, we find using Eqs. (14), (22), and (24)

hðxTÞ2i ¼ �

N
ð�thÞ2

�
1

4
� 1

�2
arccot2½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð2~tÞ � 1

q
�
�

(25)

where ~t ¼ Dt=ð�thÞ2 is dimensionless time. For short

times ~t � 1 we obtain subdiffusive behavior hðxTÞ2i �
�th

ffiffiffiffiffiffiffiffiffi
2Dt

p
=N since then the effects of the binding field

are negligible, while the tagged particle motion is re-
stricted by all others leading to subdiffusive behavior. For
long times the tagged particle reaches an equilibrium
hðxTÞ2i � �ð�thÞ2=4N.

Equilibrium of tagged particle.—In the long time limit,
and for binding potential fields we find again a simple
limiting behavior. First, note that limt!1R ¼ 1=2 as is
easily obtained from Eq. (14) and physically obvious for
the symmetric system under investigation. Second, for any
initial condition limt!1gð0; x0; tÞ ¼ 1=Z, i.e., the Green
function reached an equilibrium and hence we find
limt!1j ¼ 1=Z. Therefore

lim
t!1hðxTÞ

2i � Z2

8N
: (26)

Consistently, this result can be derived directly from the
canonical ensemble, using the many body Hamiltonian of
the system, in the large N limit, without resorting to
dynamics.

Conclusion.—We have mapped the many body problem
of interacting hard-core Brownian particles to a single
particle problem where calculation of the reflection coef-
ficient R and j yield the motion of the tagged particle.

Information on the motion of the tagged particle is con-
tained in the single particle Green function gðx; x0; tÞwhich
can be calculated with known methods. Rich physical
behaviors emerge, which depend on the initial distribution
of the particles and the force field.
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