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We present a protocol for error characterization and its experimental implementation with four qubits in
liquid state NMR. The method is designed to retrieve information about spatial correlations and scales as
O�nw�, where w is the maximum number of qubits that have non-negligible interaction. We discuss the
practical aspects regarding accuracy and implementation.
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I. INTRODUCTION

Precise and reliable control of the system constituting a
quantum information processor �QIP� remains one of the
biggest challenges in the quantum information field. In order
to assess the reliability of a device and to tailor quantum
error correction schemes to a faulty one, we need to charac-
terize the errors occurring in the system. Quantum process
tomography �QPT� �1� presented a first answer to this prob-
lem, providing full characterization of the process under
analysis. Experimental implementations of QPT have been
already conducted in a variety of small systems �2–5�. Nev-
ertheless, QPT becomes impractical beyond a few qubits, as
it requires O�24n� experiments for a system of n qubits. In
recent years, the idea of getting less information at a lower
cost has become a popular strategy in tackling error charac-
terization, and several works have been devoted to the sub-
ject �6–12�. Our proposal fits in this context, providing a
subset of information yet still using scalable resources.

The scheme we present selectively keeps information
about the spatial correlations of the errors occurring in the
process under study �a gate, a noisy channel, etc.�. Both the
magnitude and the structure of the errors are relevant to
evaluate fault-tolerance. In particular, fault-tolerance thresh-
old theorems are designed for certain conditions of spatial
correlation �also termed range or locality� �13�. So even
when it is experimentally determined that only up to w qubits
are involved in an error process, we have to further establish
in which way the � n

w � possible sets are being affected.
We have implemented our protocol in a liquid state NMR

four-qubit QIP. The core mathematical work for this protocol
was introduced in �7�. Here we extend our proposal to a more
general setting and include an experimental realization. Our
basic method, like others proposed �1,6–8,10,11�, assumed
error-free implementation stages. This idea is of course un-
realistic in practice, and implementation errors complicate
the task of reliable error characterization. Thus here we have
included an analysis of their effect.

II. THEORY BEHIND THE PROTOCOL

We start by describing the action of a general map on the
state of an n-qubit system �D=2n�, described by an initial
state �0, as

S��0� =� p��� �E��� ��0E†��� �d�� . �1�

The vector �� denotes D2 complex coefficients ��0 ,�l , l
=1, . . . ,D2−1� that parametrize E, an arbitrary operator in
the Hilbert space HD, as

E = �0I + �
l=1

D2−1

�lOl, Ol = �
j=1

n

Ol
�j�, �2�

where each Ol
�j� is an element of the Pauli group

�I ,�x ,�y ,�z� but at least one factor in each Ol is a Pauli
matrix. Notice that Tr�OlOl��=D�l,l�. When p��� � is a �real�
non-negative distribution, Eq. �1� describes an arbitrary com-
pletely positive �CP� map, and the condition 	p��� �
�� 
2d��
=1 guarantees the preservation of Tr���. This representation
of a CP map is an operator-sum representation with continu-
ous parameters. We prefer this form as it is more suitable to
describe nonunitary dynamics arising from stochastic Hamil-
tonians. Our parameters, the �� , are trivially related to the
parametrizations of the operator-sum representations used in
other works �8,10�. Also, for small �l, it is possible to relate
Eq. �1� to a description of the noise in terms of generators
rather than propagators �7�.

When necessary, we shall denote the �l in more detail as
� j,k. . .

p,q. . ., where j�k� . . . label qubits, and p ,q , . . . =x ,y ,z.
Therefore � j,k. . .

p,q. . . labels a term in Eq. �2� that is a product of
�p for qubit j, �q for qubit k, etc., and I for the qubits absent
in the subscript. Notice that the number of qubits in the sub-
script gives the Pauli weight �also Hamming weight� of the
term �14�.

In our protocol we measure a subset of m qubits at a time,
which will allow us to extract the magnitude of the errors
involving that subset. So we now break the system in two: m
qubits belonging to the Hilbert space HM, which will be the
ones measured, and m̄=n−m qubits belonging to the
complementary space HM̄, HD=HM � HM̄. We require the
initial state to be separable in these two spaces, and within
HM, thus

�0 = �0
�M�� �0

�M̄� and �0
�M� = �

j�M

�0
�j�. �3�

We now perform a U�2��m twirl on the target map S,
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�1 =
1

Km�
k=1

Km

Ck
†S�Ck�0Ck

†�Ck, �4�

where the Ck are m-fold tensor products of the twirl operators
on one qubit, for the m qubits in HM. For the task we pro-
pose, a subset of K=6 operators from the Clifford group will
suffice. We refer to this minimum set of operators required to
apply the twirl �Eq. �4�� as the 6m-Clifford element pool �see
Appendix A for references and some mathematical details on
this twirling�.

The reduced density matrix �1
�M�=TrM̄��1� is the state of

the m qubits we measure. In general, the fidelity decay,
which gives a measure of how �1 differs from the initial �0,
encodes information about the map S we are characterizing
�6,7�. In particular, considering only the qubits we will mea-

sure and expressing �0
�M̄�= �I�m̄+�dev

�M̄�� /2m̄, we obtain

Tr���0
�M��2� − TrM��0

�M��1
�M�� = ��M� − �dev

�M�, �5�

��M� = �
l

�
�l
2� �
j�M

P j − �
j�M

C j�l�� , �6�

and �dev
�M�=0 if �dev

�M̄�=0 ��dev
�M� for �dev

�M̄��0 can be exactly com-
puted if desired�. The quantity defined in the left-hand side
of Eq. �5� is the fidelity decay rate �6,7� we will analyze in
this work. In Eq. �6� we have denoted �. . .�=	p��� � . . .d�� ,
P j =Tr���0

�j��2� the initial purity of each of the M-qubits, and

C j�l� = ��2/3��1 − P j/2� if Ol
�j� = �x,�y,�z

P j if Ol
�j� = I .

� �7�

For the derivation of Eqs. �5� and �6� we use the equivalence
between a Clifford twirl and a Haar twirl �15�, and apply the
tools developed in �16�. See also Appendix A.

In sum �6�, a l-term vanishes when Ol is the identity op-
erator for the m qubits being measured. So by choosing dif-
ferent sets of M-qubits, it is possible to leave out certain �l in
a given �. Note however that C j does not distinguish the
direction of the Pauli matrices, so there is an implicit coarse-
graining of all the Ol that have the identity I for the same
subset of m qubits. This is how we get the “collective coef-
ficients” �l

col,


� j
col
2 = �

p=x,y,z

� j

p
2, 
� j,k
col
2 = �

p,q=x,y,z

� j,k

p,q
2, etc. �8�

For example, the terms �x
�1��x

�3� and �x
�1��z

�3� contribute col-
lectively to �1,3

col.
By combining the �’s from different M-sets it is possible

to further isolate the collective coefficients. If we prepare a
and b in a pure state so Pa=Pb=1, we obtain

9

4
���a� + ��b� − ��a,b�� = �
�a,b

col
2� + �
j

�
�a,b,j
col 
2� + ¯ . �9�

�Please refer to Appendix B for the formulas of the �’s in-
volved in this example.� If three-body and higher multibody
terms can be neglected, Eq. �9� gives �
�a,b

col
2�. Similarly, the
combination of the seven ��j�, ��j,j��, and ��j,j�,j�� for a set of
three qubits a ,b ,c would return �
�a,b,c

col 
2�, and so on. The

collective coefficients then report on the spatial correlations
of errors.

III. PROTOCOL

We present now a systematic protocol for measuring the
collective coefficients involving the m qubits of a particular
subset.

�i� Prepare each of the qubits to be measured in the initial
state 
0�. Prepare each of the other m̄ qubits in the maximally
mixed state I /2.

�ii� Apply one of the m-fold Clifford operators from the
6m-Clifford element pool.

�iii� Implement the target gate or noise under study.
�iv� Invert the Clifford operator applied in �ii�.
�v� Measure the projection of the resulting state on the

initial state 
0�, for each of the qubits being measured.
To implement the twirl, we repeat �i�–�v� each time taking

a different operator from the 6m-Clifford element pool, and
average the results.

In a canonical QIP, the implementation of this protocol to
measure the decay rates involving m qubits will require N
realizations. This will take care of: �1� preparing the desired
initial state as in step �i� �starting from the 
0��n state, and
randomly flipping the m̄ qubits we do not measure�; �2� mea-
suring the �’s through repeated projective measurements of
the m qubits as prescripted in step �v� �notice Eq. �5� be-
comes 1−TrM��0

�M��1
�M��=��M� for the proposed initial state�;

�3� implementing the twirl approximately, by randomly
drawing the twirl operators for steps �ii� and �iv� from the
corresponding 6m-Clifford element pool �or from an infinite
pool of one-qubit random rotations�.

With this strategy, the outcome of the measurement step
�v� is a Bernoulli variable, and thus N can be estimated from
usual statistics. More precisely, the standard error in our es-
timation of the decay rate will be ��	1 /�N �following the
central limit theorem� so for a desired precision � we must
have N
�−2. On the other hand, the Chernoff bound tells us
that, for a desired precision � and an error probability �N
�1, we must have N=log�2 /�N� / �2�2�, which is a stronger
requirement when �2e−2. In any case, N is independent of
the number of qubits; thus the efficiency of the protocol is
independent of the size of the system.

In the case of liquid state NMR ensemble QIP,
pseudopure state preparation allows for initialization in the
I /2 state over the ensemble of molecules, and ensemble mea-
surements avoid the need of repeated realizations in order to
perform step �v� by quantum state tomography �QST�. This
is the case in our experiment.

The measurement step �v� retrieves the information to cal-
culate the decay rates for the m qubits and for any smaller
subset of qubits within those. For example, twirling qubits a
and b only �m=2�, we can obtain ��a�, ��b�, and ��a,b� in one
shot, and calculate �
�a,b

col
2� as in Eq. �9� neglecting the higher
multibody terms. This procedure can be repeated for the
� n

2 �=n�n−1� /2 pairs of qubits, and by doing so all the col-
lective coefficients for one- and two-body terms can be ex-
tracted.

The scalability of the method goes as follows. If we can
neglect the multi-body terms above a certain Pauli weight w,

LÓPEZ, LÉVI, AND CORY PHYSICAL REVIEW A 79, 042328 �2009�

042328-2



and N is the number of realizations required to measure the
fidelity � for w qubits, then with N� n

w �	Nnw /w! experi-
ments we can estimate all the non-negligible coefficients.
This should be compared against N24n, the overhead in the
number of experiments required for QPT. We emphasize here
that our proposal seeks to characterize the correlations
among up to w qubits in order to establish the range of the
noise, not to characterize the process fully.

To use our protocol, the negligibility of multi-body terms
above a certain Pauli weight w must be established a priori.
In a canonical QIP we could apply our protocol to measure
all the n qubits, obtain all the decay rates
��j� , ��j,k� , . . . ,��1,. . .,n�, and extract all the collective coeffi-
cients after only N experiments �independently of n�. In this
way we can handle all the Pauli weights, from zero to n. But
the error in the decay rates �� propagates into the �col for m
qubits inefficiently, roughly as ��2 ��� j=0

w � n
j ���. Therefore

our strategy is to look for spatial correlations after establish-
ing a cutoff Pauli weight w: to our knowledge, neither QPT
nor other proposals so far are able to make use of the negli-
gibility of high order correlations in order to gain further
insight. In general, even after it has been established that a
subset of parameters is null, it is not trivial to direct the
measurement procedure to target the non-null ones exclu-
sively.

An approach to establishing this cutoff w, demanding the
same resources as our protocol, is to apply the method de-
veloped by Emerson et al. �8� which gives the probability of
errors happening, distinguishing them only by Pauli weight
�this is an average of all the � n

w � collective coefficients hav-
ing Pauli weight w�. It is worth pointing out that both meth-
ods require the same experimental work: the algorithms re-
trieve different information because the measurement and
processing of the data is different, but actually both protocols
can be implemented simultaneously and used complementa-
rily.

IV. EXPERIMENTAL RESULTS

We implemented our protocol in a liquid state NMR QIP
using the four 13C-labeled carbons of crotonic acid �17� in a
400 MHz Bruker spectrometer. The initial state preparation
and all the gates required by the protocol were implemented
with rf pulse sequences engineered using either gradient as-
cent pulse engineering �GRAPE� �18� or strongly modulating
pulses �SMP� �17�c�� methods. Their simulated gate fidelities
Fg were on average 0.98. The typical experimental perfor-
mance of one-qubit gates on the spectrometer is 1%–2% be-
low their simulated fidelities. See �2� for details on the model
used in the simulation.

We studied the following processes �see Table I for more
details�: �i� A time suspension sequence IE since it is impor-
tant to study our ability to “do nothing” in a system with a
natural Hamiltonian that is always on. �ii� An engineered
error creating a coupling between qubits 1 and 2, of the form
C12���=exp�−i��z

1�z
2�. We chose �=0.1, and �=0.4 �the

previous one applied consecutively four times�. �iii� A
controlled-NOT �CNOT� gate between qubits 1 and 2: CNOT

=0.5�I+�z
�1�+�x

�2�−�z
�1��x

�2��. Also, this gate applied twice:

CNOT2 = I. These gates are more complex than one-qubit op-
erations �which are typically less than 1 ms long� and they all
involve refocusing idle times �periods of free evolution un-
der the internal Hamiltonian� in their pulse sequences.

The results on the measurement of the collective coeffi-
cients for the qubit pairs �1,2�, �2,3�, and �1,4� are presented
in Table I. The pair �1,2� is the one targeted by the C12 and
CNOT gates while the other two are the pairs involving qubits
1 or 2 with the highest J-coupling �17�. We expect the errors
for the three chosen pairs to be larger �due to internal evolu-
tion that is not perfectly refocused�. See Appendix C for
more details on the experiment and simulations using liquid
state NMR QIP.

The resulting �
�a,b
col
2� for the various pairs of qubits

shown in Table I exhibit good agreement with the predicted
ones. Notice that the largest differences between measured
and predicted appear on the pair �1,2�, and on the most com-
plex gates: CNOT2, CNOT, and C12�0.4�. This indicates that
these deviations are due to the errors expected from spurious
processes in our QIP, particularly an imperfect refocusing
during the gate sequence rather than from an imperfect
implementation of the protocol.

TABLE I. Measured �meas� collective coefficients for selected
pairs of qubits, for the various gates studied. theo are the theoretical
values for these gates as described in the text. The sim values come
from numerical simulation: simG are the values obtained by the
calculation of the propagator as given from the rf pulse sequence
corresponding to the gate �G� alone; simE are the values obtained
by completely mimicking the experiment �E�, considering the aver-
age of 36 simulations, each applying rf pulses to prepare the initial
state and implement the Cliffords gates and the gate under study.

Gate �
�1,2
col
2� �
�2,3

col
2� �
�1,4
col
2�

IE meas 0.02 0.02 0.01

12.2 ms theo 0.00 0.00 0.00

Fg=0.96 simG 0.01 0.02 0.00

simE 0.01 0.03 0.00

C12�0.1� meas 0.02 0.02 0.01

4.88 ms theo 0.01 0.00 0.00

Fg=0.99 simG 0.02 0.00 0.00

simE 0.02 0.00 0.00

C12�0.4� meas 0.26 0.03 0.03

19.52 ms theo 0.15 0.00 0.00

Fg=0.87 simG 0.23 0.01 0.00

simE 0.24 0.02 0.02

CNOT meas 0.32 0.01 0.03

11.88 ms theo 0.25 0.00 0.00

Fg=0.99 simG 0.25 0.01 0.00

simE 0.28 0.02 0.00

CNOT2 meas 0.07 0.05 0.04

23.76 ms theo 0.00 0.00 0.00

Fg=0.97 simG 0.01 0.01 0.00

simE 0.01 0.02 0.00
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The simulations account for well-known sources of error
in liquid state NMR QIP �imperfect pulse design �17�c��, rf
field inhomogeneities �2�, and the presence of the magneti-
cally active hydrogens in crotonic acid �17��. It is worth
mentioning that the main errors occurring in one-qubit gates
are correlated one-body errors �this is, a one-qubit rotation
that is slightly off�, and they do not introduce two-body er-
rors, which are the main target of a spatial correlation analy-
sis. This can be noticed also in the fact that the simG values
are similar to the simE values �a change of 0.00–0.01, except
in two cases where we found 0.02 and 0.03�. Moreover, there
is a contribution arising from T2 relaxation. However, a cal-
culation over the theoretical propagator and the numerics
over the simulated one show a change on the order of 0.01.

Elements outside our model of the system, which would
explain further the gap between theory and experiment, are
B0 �static� field inhomogeneities, the presence of transients
and residual nonlinearities in the spectrometer circuitry, and
an imperfect spectral fitting of the measured signal. These
are well-known issues in liquid state NMR QIP, whose effect
falls within the 1%–2% error.

We must differentiate between the implementation errors
in the protocol �initial state preparation, one-qubit twirling,
and readout�, and the errors in the gate under study. The
former ones affect the accuracy of protocol, which accounts
for the measured non-null coefficients that are expected to be
zero. As discussed, rf field inhomogeneities, the presence of
hydrogen, and T2 relaxation already give an error bar ��2

�0.03. There are still other sources of error mentioned
above that could make ��2 larger, but within that order.

Moreover, a fiducial initial state preparation is critical to
the success of the algorithm. We can quantify this as follows.
If we call �0 the error in the initial state preparation, and
similarly we call �1 the error in the implementation of the
Clifford gates, an error propagation in the formula for the �’s
gives ��

2 	�0
2�1+4��+�1

2, and then it is simple to propagate
this into the formulas for the 
�l

2
: for example, for a pair of
qubits a and b, we follow Eq. �9� and obtain ��2

= 9
4���a

2 +��b

2 +��a,b

2 . These �’s account for nonstatistical er-
rors �typically correlated one-body errors� and set the accu-
racy of the method. Given the low complexity of initial state
preparation and one-qubit operators, these �’s are smaller
than the errors in target operations �a fact reflected, for ex-
ample, in the gate fidelities�. This is why even though the
theory was developed for error-free initial state preparation
and twirl, the actual implementation can still retrieve infor-
mation about the target operations.

V. DISCUSSION ON THIS AND OTHER PROPOSALS

Our protocol belongs to the family of characterization
strategies based on the use of twirling to coarse-grain the
original O�24n� complex parameters to a poly�n� number of
parameters �cf. the work by Emerson and co-workers in
�6,8��. In our case, we gain detail about the process under
study �spatial correlations�. Note also that the required re-
sources in our proposal are within the minimal performance
expected from a functional QIP: fiducial state preparation
and readout, and a set of 6n one-qubit gates.

One of the protocols presented by Bendersky et al. in �10�
also returns similar information �although our method per-
forms a coarse graining of the directions�. Nevertheless, their
proposal requires more demanding resources �although still
scaling as poly�n��: a full twirl on U�D� and the implemen-
tation of the Ol operators.

Other characterization methods include the ancilla-
assisted ones in �10,11� but unfortunately they have a rather
strong requirement: one or more clean error-free qubits
within the system. Contrasting with all the proposals dis-
cussed so far, the method developed by Knill et al. in �9�
does not require error-free stages, allowing for certain type
of errors to occur during the whole computation. Unfortu-
nately it is not yet evident how to take their scheme beyond
one-qubit QIP �12�.

On a different note, we would like to point out a particular
feature of the variables �
�l
2�, which are the diagonal ele-
ments of the so-called � matrix in the Ol basis �cf. the ai in
�8�, or the �m,m in �10��. When the error E acts on a short
time we can expect the coefficients to be small and Eq. �2�
can be taken instead as a first-order Taylor expansion of E,
where the �l with l
1 play the role of a generator of the
error. This idea was originally developed in �7� under the
same setting but aiming to study the generators directly led
to limitations in the error model. Nevertheless, drawing the
connection between the two opens the possibility of identi-
fying a generator, which is essentially a Hamiltonian with
varying parameters �l whose dynamics we can only observe
on average through the �
�l
2�. This interpretation allows a
different insight into the dynamics of the system, as many
physical processes are better described by the action of a
stochastic Hamiltonian rather than by an operator-sum repre-
sentation arising from a system+bath picture.

In conclusion, we have presented a method to characterize
the spatial correlations occurring in a gate or process under
study, showing its potential through a liquid state NMR QIP
experiment. Second, we have pointed out the need of experi-
mental feedback in order to arrive to a not only scalable but
also feasible protocol, as the one we introduced. Finally, we
have analyzed the relevance of implementation errors, show-
ing the need for strategies that are not only scalable but also
robust.
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APPENDIX A: ON THE CLIFFORD TWIRL

Consider the twirling of the map S for m qubits in the
Hilbert space HM, of dimension 2m. As shown in �15�, a Haar
twirl is equivalent to Clifford twirl as follows

�1 = �
U�M�

dUU†S�U�0U†�U �A1�
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=
1

Km�
k=1

Km

Ck
†S�Ck�0Ck

†�Ck, �A2�

where dU denotes the Haar measure on the unitary group
U�2m�. The sum on Eq. �A2� runs over all the elements of the
Clifford group for U�2m�. In particular, this equation holds
for a twirl on U�2��m, where the Ck are m-fold tensor prod-
ucts of the K=24 elements of the Clifford group for one
qubit, for the m qubits in HM.

We can write the Clifford operators for one qubit as
products SP of an element S of the symplectic
group �exp�−i��� /3���x+�y +�z� /�3� , �=0,1 ,2 ;
exp�−i�� /4��p� , p=x ,y ,z� and an element P of the Pauli
group �I ,�x ,�y ,�z�. Due to some redundancy in the sym-
plectic twirling, the minimum number of elements to achieve
the two-design property �Eq. �A1� and �A2�, as defined in
�15�� is actually half of the whole Clifford group: S can be
taken from either S1= �exp�−i��� /3���x+�y +�z� /�3� , �
=0,1 ,2� or S2= �exp�−i�� /4��p� , p=x ,y ,z�.

This number can be further decreased to K=6 if we take
an initial state �0 as described in the main text �Eq. �3�� and
we remark that we will be only interested in the projection of
�1

�M� onto given initial states of the form �0
�j�= �I+�z� /2.

There is then an additional redundancy in the values of these
projections which enables us to chose P in the set �P1 , P2�
with P1= I or �z and P2=�x or �y. Here we have chosen �0

�j�

along z for definiteness �which is what we use in the experi-

ment� but an equivalent result can be obtained for the x or y
directions. Notice that the number of elements K required in
Eq. �A2� depends on what quantity we will measure. In
U�2��m �as it is in our case�, whether some elements are
redundant can be proved simply by straightforward calcula-
tion.

Implementing a Haar twirl as defined on Eq. �A1� would
require sampling over an infinite pool of random rotations
Uk. The equivalence with the Clifford twirl allows us to
implement the twirling with a finite set of gates: the Km

Clifford operators in U�D�. Nevertheless, although not infi-
nite, the pool is of exponential size in m, thus again calling
for a sampling strategy to implement the twirl approximately.
Of course, for m small enough, it may be possible to imple-
ment the twirl exactly �as in our experiment, where m=2 and
the Clifford pool has size 36�. But on general grounds we can
take on any of the two approaches.

Depending on the experimental setup in question, one
twirl may be more robust than the other �depending on what
type of errors are expected for one-qubit gates�, and also one
pool may be easier to construct than the other.

APPENDIX B: COMBINING �(a), �(b), AND �(a,b)

TO RETRIEVE Š��a,b
col�2‹

To illustrate the mechanism of combining different �’s,
consider measuring one and two qubits as follows. With A j
= �4P j −2� /3:

��a� = Aa�
�a
col
2� + �

j�a

�
�a,j
col
2� + �

k�j�a

�
�a,j,k
col 
�2 + ¯� and similarly ��b�,

��a,b� =
8PaPb + 2�Pa + Pb� − 4

9 �
�a,b
col
2� + �

j�a,b
�
�a,b,j

col 
2� + ¯� + AaPb�
�a
col
2� + �

j�a,b
�
�a,j

col
2� + �
k�j�a,b

�
�a,j,k
col 
2� + ¯�

+ PaAb�
�b
col
2� + �

j�a,b
�
�b,j

col
2� + �
k�j�a,b

�
�b,j,k
col 
2� + ¯� ,

where . . . denote the corresponding higher order multi-body
terms. If we prepare the qubits in a pure state so Pa=Pb=1,
the combination

��a� + ��b� − ��a,b� =
4

9�
�a,b
col
2� + �

j�a,b
�
�a,b,j

col 
2� + ¯�
leaves only the collective coefficients involving both the qu-
bits a and b.

APPENDIX C: DETAILS ON THE EXPERIMENTAL
IMPLEMENTATION

The internal Hamiltonian of the system in the rotating
frame is given by

Hint = ��
j=1

4
��,j

2
�z

�j� + � �
k�j=1

4
�Jj,k

2
�z

�j��z
�k�, �C1�

where the chemical shifts, at our 9.4 T spectrometer, are of
the order of kHz: ��,1=6650.6 Hz, ��,2=1695.8 Hz, ��,3
=4210.0 Hz, and ��,j =−8796.7 Hz. The J-couplings are
J12=72.6 Hz, J23=69.8 Hz, and J14=7.1 Hz while J24
=1.6 Hz, J13=1.3 Hz, and J34=41.6 Hz �according to the
characterization of the sample we used; see also �17��.

The experimental initial state preparation over the four
qubits reported a correlation with the theoretical one that was
on average 0.99 �0.98 the lowest�. The correlation for the
targeted qubits �a pair of qubits� was, in each case, between
1.00–0.99 �the pseudopure state preparation was designed to
optimize this correlation�.
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We implemented the twirl of pairs of qubits exactly using
36 Clifford operators. We had to pick one of the eight avail-
able six-element subsets of Clifford operators for each qubit,
and we chose the subset that performed best experimentally:
we applied each candidate to the thermal equilibrium state
and compared the experimental performance with the theo-
retical one. This criterion coincided with choosing the subset
that best took the equilibrium state to the I /2 state for the
qubit being twirled.

To perform QST on four qubits with a liquid state NMR
QIP, we used a set of 18 readout pulses. Therefore the num-
ber of experiments required to measure one collective coef-
ficient �
�a,b

col
2� for a given pair of targeted qubits �a ,b� for a

particular gate under study was 648, plus 18 experiments to
characterize the initial state 
00��00
�I /2��2 corresponding to
preparing that pair in a pseudopure state. We performed QST
of the full system therefore having a broader knowledge of
the experimental performance but this is not required by the
protocol: only the target qubits must be measured.

The negligibility of higher order multibody terms in the
gates under study is to be expected in liquid state NMR QIP.
In a simple model, these gates consist basically of periods of
free evolution of length � �the corresponding propagator is
U�=exp�−iHint� /��� separated by �-pulses on some of the
qubits �so U�=exp�−i�� /2+���x,y

j �, already accounting for
some error ��. For example, the sequence for the gate IE is

�� − ��x
3,4 − �� − ��x

2 − �� − ��x
3,4 − �� − ��x

1,4 − �� − ��−x
3,4 − �� − ��−x

2 − �� − ��−x
3,4 − �� − ��−x

1,4,

where � denotes free evolution for a time �, and ���p
j denotes a � pulse �180° rotation� around the p axis for the qubits j.

Using the Baker-Campbell-Hausdorff �BCH� formula �19� is straightforward to see that in the building block U�U�,
three-body and higher order terms will appear with a factor at least J�

�/2 smaller with respect to any possible one-body and
two-body terms. For the values of Jj,k� involved in our experiment, we have J�

�/2 	0.14. This means that any possible
three-body and four-body terms would appear with a coefficient ten times smaller than the ones for one-body and two-body
terms.

On the other hand, the simulation of the engineered pulse sequences used in the experiment showed that all the three-body
and four-body terms appear with collective coefficients 
� j,k,j�

col 
2 , 
� j,k,j�,k�
col 
20.005 for the CNOT and C12�0.4� gates, and

0.002 for the rest. These are much smaller than the differences between measured and predicted values of 
�a,b
col
2, which can

be better explained as implementation errors in the protocol or genuine gate errors arising from imperfect refocusing.
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