
MIT Open Access Articles

A Nearly Optimal Oracle for Avoiding Failed Vertices and Edges

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bernstein, Aaron, and David Karger. “A nearly optimal oracle for avoiding failed vertices 
and edges.” Proceedings of the 41st annual ACM symposium on Theory of computing. Bethesda, 
MD, USA: ACM, 2009. 101-110.

As Published: http://dx.doi.org/10.1145/1536414.1536431

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/51821

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/51821
http://creativecommons.org/licenses/by-nc-sa/3.0/


A Nearly Optimal Oracle for Avoiding Failed Vertices and
Edges

Aaron Bernstein
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, MA, 02139

bernstei@gmail.com

David Karger
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence
Laboratory

77 Massachusetts Avenue
Cambridge, MA, 02139

karger@mit.edu

ABSTRACT
We present an improved oracle for the distance sensitiv-
ity problem. The goal is to preprocess a directed graph
G = (V, E) with non-negative edge weights to answer queries
of the form: what is the length of the shortest path from x
to y that does not go through some failed vertex or edge
f. The previous best algorithm produces an oracle of size

Õ(n2) that has an O(1) query time, and an Õ(n2√m) con-
struction time. It was a randomized Monte Carlo algorithm
that worked with high probability. Our oracle also has a

constant query time and an Õ(n2) space requirement, but it

has an improved construction time of Õ(mn), and it is de-
terministic. Note that O(1) query, O(n2) space, and O(mn)
construction time is also the best known bound (up to loga-
rithmic factors) for the simpler problem of finding all pairs
shortest paths in a weighted, directed graph. Thus, barring
improved solutions to the all pairs shortest path problem,
our oracle is optimal up to logarithmic factors.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

1. INTRODUCTION

1.1 The Problem
In the distance sensitivity problem, we wish to construct
a data structure (called an oracle) for a directed graph G
= (V,E) with m edges, n vertices, and non-negative edge
weights. The oracle should support the following queries:
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• Given vertices (x,y,v), return the length of the shortest
path from x to y that avoids v.
• Given vertices (x,y,u,v), return the length of the shortest
path from x to y that avoids edge (u,v).
• The path queries corresponding to the above distance
queries

There are two main motivations for this problem. The first
is modeling a network where vertices (or edges) occasionally
fail. We might not be able to afford to stall distance queries
and recompute shortest paths every time a vertex fails. We
could use a dynamic shortest path algorithm to reduce the
stall time, but this would still require lengthy update peri-
ods. A sensitivity oracle, on the other hand, allows us to
prepare for a single failure ahead of time. That is, when
a vertex or edge fails, we can continue to answer queries
quickly with our oracle while constructing a new oracle (for
the graph with a vertex deleted) in the background. Our

construction time is only Õ(mn) 1, so as long as failures are
relatively rare, we can finish constructing the new oracle be-
fore another vertex fails.

The second motivation is Vickrey pricing [10]. This is a
method for determining the value of an edge in a network
where edges are owned by independent agents. If we want to
send information between two points, then intuitively, the
value of an edge e depends on how much harder it would be
to send that information without using e. In particular, we
determine the value of e by comparing the original shortest
path between the points to the shortest path that avoids e.
This is precisely what distance sensitivity oracles allow us
to compute, so they are by far the fastest option if we want
to find Vickrey prices for many shortest paths in a graph.

1.2 Existing Algorithms
The naive approach to our problem would be to store the

shortest distance between every pair (x, y) avoiding every
edge (u, v), but this would require O(mn2) space and m all
pairs shortest path computations. We can improve upon
this by noticing that for any pair (x, y), removing an edge
that was not on the original shortest path does not change
anything. Thus, for the pair (x,y), we only have to store dis-
tances avoiding the O(n) edges on the original path. More-
over, only edges in the shortest path tree of x affect distances
from x, so we can compute all the necessary information by

1We say that f(n) = Õ(g(n)) if f(n) = O(g(n)polylog(n))



doing n single source shortest path computations per vertex
(one for each edge in the shortest path tree). Using Di-
jkstra’s algorithm [7] to compute shortest paths, this tech-
nique reduces the space to O(n3) and the construction time

to Õ(mn2). The query is just a table look up so it takes
constant time.

The first non-trivial algorithm for the problem was de-
veloped by Demetrescu et al [6]. They managed to keep

the constant query time and the Õ(mn2) construction time

while reducing the space requirement to Õ(n2). Soon after-
wards, Chowdhury and Ramach [5] claimed to have devel-

oped an oracle with a construction time of Õ(mn), but they
later discovered a mistake in their algorithm. The state of
the art algorithm was developed by Bernstein and Karger
[4]. Their oracle also had a constant query time and an

Õ(n2) space requirement, but the construction time was im-

proved to Õ(n2√m). However, unlike in the other papers,
the construction was randomized (Monte Carlo).

1.3 Our Contributions
We present an oracle with O(1) query time, O(n2 log n)

space requirement, and a O(mn log n + n2 log2 n) = Õ(mn)
randomized (Monte Carlo) construction time. We also
present a deterministic oracle, with space and time bounds
worse by a factor of O(log n). This is a surprising result
because O(1) query, O(mn) construction time, and O(n2)
space is the best known bound (up to log factors) for the
simpler problem APSP: finding all pairs shortest paths in
a weighted, directed graph. Thus, barring an improvement
for APSP, our oracle is optimal up to log factors.

Our oracle is based on two novel techniques. Bernstein and
Karger [4] showed that the problem of having to avoid every
vertex on a particular x-y path can be reduced to that of
avoiding just a few sub-paths of the x-y path. But avoiding
whole sub-paths is hard, so in section 4 we show that we can
actually get away with just avoiding a single “key”vertex on
each sub-path. In particular, the key vertex of a sub-path is
the single vertex on that sub-path that is hardest to avoid.
Thus, we have reduced the problem of avoiding every ver-
tex on an x-y path to that of only avoiding a few key vertices.

Section 5 assumes that we have already found these key
vertices, and it presents an algorithm for actually avoiding
them. The basic idea is that we follow the intuition behind
Dijkstra’s single source shortest path algorithm [7] and ex-
press the shortest distance to x avoiding a key vertex as
a function of the distances to the neighbors of x. The re-
sulting recurrence relation is somewhat more complicated
than that of Dijkstra’s algorithm, but we show that we can
nonetheless turn our recurrence relation into an instance of a
shortest path problem. That is, we create a new graph (with
a source) where each value we want to compute (a shortest
distance avoiding a key vertex) is the shortest distance to
some vertex in the new graph. We then compute our values
by running Dijkstra’s algorithm on this graph.

More generally, section 5 presents a somewhat different way
of thinking about dynamic programming. Given a set of
values to compute, our approach does not require us to ex-
plicitly define the order in which we compute these values.
Instead, we simply express each value as a function of the

other values. This leads to a natural dynamic programming
graph where vertices correspond to values we want to com-
pute, and edges correspond to dependencies between these
values. By running Dijkstra’s algorithm on this graph, we
are able to implicitly determine the correct order of compu-
tation.

Finally, section 6 presents an efficient algorithm for finding
the key vertices on every shortest path.

Remark 1. We only show how to answer distance queries
avoiding a failed vertex because it is easy to extend our
oracle to answer the other queries, without increasing the
space or time parameters. See Demetrescu et al [6] for a
description of how an oracle for avoiding vertices can also
be used to avoid edges. Path queries take O(L) time to
answer, where L is the length of the output path (the same
query time as for the traditional all pairs shortest paths data
structure).

1.4 Related Work
As mentioned in section 1.1, our oracle allows us to find

the edge whose loss is most damaging to a given shortest
path. That is, the edge whose removal causes the maximum
increase in the shortest distance between the two points. A
natural generalization would be to find the k edges whose
removal causes the largest change in distance. However, Bar-
Noy et al [2] showed that this problem is NP-hard for general
k.

The single-pair version of the distance sensitivity problem
is known as the replacement path problem. Given a pair
of vertices (s, t) we must find, for every edge on the short-
est path between s and t, the new shortest path avoiding
that edge. The naive approach would be to remove each
edge, one at a time, and compute shortest paths from s

each time. This takes Õ(mn) time. In fact, no o(mn) ap-
proach is known for the general case of weighted, directed
graphs. This is surprising because our sensitivity oracle im-
plicitly computes replacement paths for all pairs, yet it has

the same Õ(mn) construction time (although it is slower by
a polylogarthimic factor). The only known lower bound for
replacement paths in general graphs, proved by Hershberger
et al [11], is O(m

√
n) in the path comparison model.

There exist much faster algorithms for the replacement path
problem in specific classes of graphs. In undirected graphs,
Ball et al [1] presented an algorithm with an O(m +n log n)
running time. For directed, unweighted graphs, Roditty and

Zwick [13] developed an Õ(m
√

n) algorithm. Finally, Emek

et al [8] developed an Õ(n) algorithm for general planar
graphs.

2. NOTATION
We use the same notation as Demetrescu et al [6]. Let G

= (V,E) be the graph in question. We denote the edge from
u to v (if it exists) by (u,v), and we let w(u,v) be its weight.
Like other papers in this field, we assume W.L.O.G that
shortest paths are unique, since we can always add small
perturbations to break any ties.



Figure 1: A detour avoiding the interval [u,v] on πx,y

Let πx,y be the unique shortest path from x to y. Let Ĝ be
the graph G, only with the edges reversed, and let π̂x,y be

the shortest x-y path in Ĝ. Note that since shortest paths
are unique, πx,y contains the same edges as π̂y,x, and for
any v in πx,y, both πx,v and πv,y are subpaths of πx,y.
Let w(π) be the weight of a path π, and let dx,y = w(πx,y).

Also, let πx,y,S be the shortest path from x to y that avoids
the set of nodes S, and define dx,y,S analogously. For sim-
plicity, we write πx,y,{v} as πx,y,v.

Finally, let Tx be the shortest path tree rooted at vertex

x, and define T̂x analogously for Ĝ. Given any vertex v, Let
Tx(v) be the subtree of Tx that is rooted at v.

3. AN OVERVIEW OF EXISTING
TECHNIQUES

Our algorithm relies on machinery developed by Deme-
trescu et al [6] and Bernstein and Karger [4], so we start
with an overview of existing techniques. The first step is
compute and store all-pairs shortest paths (no failed ver-

tices), which can be done in Õ(mn) time using Dijkstra’s
algorithm [7]

3.1 Detours

Definition 1. Let a,b be vertices on πx,y . If x and y are
clear from context we say a < b if a comes before b on πx,y .
Assuming a ≤ b, let the interval [a,b] be the set of vertices
v such that a ≤ v ≤ b.

We now present a basic property of paths avoiding failed
vertices. Let u < v be vertices on πx,y and say that we
want to find πx,y,[u,v]. Since πx,y,[u,v] avoids [u, v], it needs
to deviate from πx,y at some vertex a < u, and then merge
back at b > v. Moreover, πx,y,[u,v] cannot deviate at both
a < u and a < a′ < u, since it would be better to just
take the subpath πx,a′ (of πx,y), and only deviate from a′.
Similarly, πx,y,[u,v] only merges back at one vertex b > v
(Figure 1). This yields:

Definition 2. Let x ≤ a ≤ b ≤ y be vertices on πx,y. A
path pa,b from a to b is said to be a detour of πx,y if pa,b

⋂
πx,y = {a, b}

Lemma 3.1. [6] Any path πx,y,[u,v] can be decomposed into
three subpaths πx,a ◦ pa,b ◦ πb,y, where ◦ is path concatena-
tion, and pa,b is a detour of πx,y such that pa,b = πa,b,[u,v]

(Figure 1).

3.2 Path Cover
One difficulty we have to overcome is that it takes O(n3)

space to naively store dx,y,v for all triplets (x,y,v). The solu-
tion is to decompose every path πx,y into a small number of
intervals, and store dx,y,I for each interval I (instead of stor-
ing every dx,y,v). We now present a lemma of Demetrescu
et al [6] which shows how dx,y,I relates to dx,y,v for v ∈ I .

Lemma 3.2. The Path Cover Lemma [6]
Let x ≤ s < v < t ≤ y be vertices on πx,y (v is the failed
vertex). Then,

dx,y,v = min{dx,s + ds,y,v, dx,t,v + dt,y, dx,y,[s,t]}
Proof. (sketch) By Lemma 3.1, we get that each term

in the min clause corresponds to one of three cases: πx,y,v

diverges from πx,y after s, merges before t, or avoids all of
[s, t].

3.3 Covering With Centers
The path cover lemma suggests an approach for only stor-

ing a small number of values. To compute dx,y,v, we simply
need to find vertices s and t to the left and right of v for
which we already store ds,y,v, dx,t,v, and dx,y,[s,t]. Just as
Bernstein and Karger [4], we do this by designating some
vertices as centers, which store more information than ordi-
nary vertices.

Definition 3. Given x, y ∈ V , we say that x covers v in
our oracle if we store dx,y,v for every y in Tx(v) (defined in
notation section). That is, x covers v if we store all shortest
distances from x avoiding v.

By the intuition above, we want to find centers cx ∈
πx,v, cy ∈ πv,y that cover v; this will give us the first two
terms of the path cover lemma, which is a good start (of

course, cy should cover v in Ĝ because we want the distance
to cy). We could ensure that cx and cy cover v by making
centers cover every vertex, but then we could only afford a
small number of centers because covering takes space per
vertex. Thus, we use a slightly different approach.

Say, for intuition, that we picked our centers randomly from
V. Then, a path with many vertices is likely to contain a



Figure 2: Using centers to apply the path cover lemma

center. But if πx,v has few vertices then we would need to
sample a lot of centers to ensure a center on πx,v. Note,
however, that if πx,v has few vertices then a center cx on
πx,v would still cover v even if cx only covered vertices in a
small ball around itself, as opposed to covering every vertex
(Figure 2). So we have different types of centers: rare ones
cover large balls, while common ones cover small balls.

But what about the third term in the path cover lemma? By
the argument above, this term will have the form dx,y,[cx,cy ],
where cx and cy are centers that cover v. More formally:

Definition 4. A covering chain of πx,y is a sequence of
centers c1, ... ,cj such that [c1, cj ] = πx,y, and ci covers
all vertices in [ci−1, ci], and [ci, ci+1] (see figure 3). That
is, it is a decomposition of πx,y into intervals such that all
the vertices in an interval are covered by the endpoints of
that interval. We refer to the intervals [ci, ci+1] as covering
intervals of πx,y

Note that if we have a covering chain for πx,y and we store
dx,y,I for all covering intervals I = [ci, ci+1], then we can
efficiently compute dx,y,v for any v. For given v ∈ πx,y ,
let [ci, ci+1] be the interval containing v; we know that ci

and ci+1 cover v, so if we also know dx,y,[ci,ci+1] we can use
the path cover lemma. Of course, we can only afford to
store dx,y,I for a small number of intervals I , so section 3.5
describes how we can pick centers that ensure the existence
of covering chains with few intervals.

3.4 Excluding Vertices
In order for this approach to have a small preprocessing

time, we need an efficient algorithm for making a common
center cover a small ball around itself. The problem is that
we cannot just naively avoid every vertex in the ball because
a “small” ball may still contain many vertices: “small”’ only
refers to the number of edges in shortest paths within the
ball.

Given some source x, and a failed node v, we can trivially

compute dx,y,v for all y ∈ V in Õ(m) time by doing a single-
source shortest path computation on the graph G - {v}. But
this is wasteful because removing a vertex might only affect

small portions of Tx (recall that Tx is the shortest path tree
from x), in which case we would like to avoid examining all
of G.

Demetrescu et al [6] formalize this idea. Let x be our source,
and let v be the vertex we want to avoid. Recall that Tx(v)
is defined as the subtree of Tx rooted at v. Note that re-
moving v only affects vertices in Tx(v) because if y /∈ Tx(v),
then we must have dx,y,v = dx,y. Thus, intuitively, we only
need to focus on vertices in Tx(v) (and edges incident upon
those vertices). More formally:

Lemma 3.3. [6] Given a source x and a vertex v, we can
make x cover v in O(|Tx(v)|) time (here, |Tx(v)| also en-
compasses edges incident upon vertices in Tx(v)).

Definition 5. Let Lx(L) be the set of all vertices at level
L in Tx. That is Lx(L) contains all v for which πx,v contains
exactly L edges.

Corollary 3.4. [6] Given a source x and a level L, we

can make x cover all vertices in Lx(L) in Õ(m) time. That
is, we can compute dx,y,v ∀ y ∈ V, v ∈ Lx(L).

Remark 2. This corollary implies that we can make x

cover all vertices at level ≤ L in Õ(mL) time. This is exactly
what we wanted since a“small ball” around x is precisely the
set of vertices of small level in Tx.

Proof. All vertices at level L in Tx have disjoint sub-
trees, so by lemma 3.3 we explore each vertex in the graph
at most once. Similarly, each directed edge is incident upon
at most one subtree.

3.5 Picking Centers
We use the method of Bernstein and Karger [4] to pick

centers that ensure the existence of covering chains with few
intervals. To formalize the idea of large and small centers we
use O(log n) priorities: centers with low priority are com-
mon, but only cover small balls.

Definition 6. We say that a vertex is a k-center if it has
priority k. We define Rk to be the set of k-centers. We say
that a k-center c is bigger than some k’-center if k > k’. We
set R1 = V



Figure 3: An example of a covering chain for πx,y. Note that every vertex is a 1-center, so even though x, y
are arbitrary, they still cover tiny balls

Desired Properties: We require that |Rk| = Õ(n/2k),

and that any shortest path with Õ(2k) vertices contains a
k-center. Again, note that high priority centers are rare.

Picking Centers: An easy approach is to obtain Rk by
sampling each vertex, independently, with probability
Θ(1/2k). This ensures that the desired properties hold with
high probability (see Bernstein and Karger [4]). See Remark
4.1 for a deterministic construction.

Center Information: We make a k-center c cover all ver-
tices in Tc (and T̂c) that are not in the subtree of some
(k+1)-center. That is, c moves down Tc, covering vertices
until it reaches a (k+1)-center. Note that for any x, y, v, the
biggest center on πx,v covers v, as does the biggest center

on πv,y (the latter covers v in Ĝ).

Covering Chains: Our choice of centers leads to a very
natural covering chain with few intervals. Given a path πx,y ,
we find a list of centers in ascending priority; so c1 = x, c2

is the first center on πx,y bigger than c1, c3 is the first cen-
ter bigger than c2, and so on. Note that there can only be
O(log n) centers in this list because there are O(log n) cen-
ter priorities. Once we get to the biggest center on πx,y we
begin to descend in priority in a similar fashion (see Figure
3). It is easy to verify that this is indeed a covering chain.

We store this information in a lookup table Dk, where
Dk[c,y,v] stores dc,y,v if c is a center that covers v. We also

store D̂k for Ĝ. As proved in section 5 of Bernstein and
Karger [4], we get:

Theorem 3.5. [4] We can initialize Dk in Õ(mn) time,

and Õ(n2) space.

Proof. (sketch) Since any shortest path with Õ(2k) ver-
tices contains a (k+1)-center, any k-center c only has to

cover vertices up to depth Õ(2k) in Tc. Thus, each k-center

only requires Õ(n·2k) space, and by lemma 3.3, all Õ(2k)

levels can be covered in Õ(m·2k) time. The theorem then

follows from the fact that there are Õ(n/2k) k-centers.

4. BOTTLENECK VERTICES
Recall that our choice of centers leads to a covering chain

with few intervals for each shortest path πx,y. In particular,
given any v ∈ πx,y the endpoints of the interval that con-
tains v are guaranteed to cover v, so we can compute the
first two terms of the path cover lemma. Thus, all we have
left to do is compute dx,y,I for each interval I on the chain
(this is the last term of the path cover lemma).

Unfortunately, we do not know how to compute dx,y,I ef-
ficiently. Bernstein and Karger [4] overcome this problem
by showing that instead of storing dx,y,I , we can store any
function Fx,y,I that satisfies certain requirements. But even
this is difficult because it requires us to work with whole
intervals. Our solution is to show that each interval can be
effectively condensed to a “key” vertex, so that instead of
having to avoid the whole interval, we can just avoid that
one vertex.

Note that every interval I on πx,y contains some vertex w
that is hardest to avoid (w maximizes dx,y,w over w ∈ I).



We show that instead of avoiding all of I, we can get away
with avoiding w.

Definition 7. Given an interval I on πx,y, define the bot-
tleneck vertex of I (with respect to x and y) to be w =
argmaxv∈I{dx,y,v}. We sometimes refer to w simply as the
bottleneck of I.

Lemma 4.1. Bottleneck Lemma [4] Let x ≤ s < v < t
≤ y be vertices on πx,y (v is the failed vertex), and let w be
the bottleneck of [s,t]. Then,

dx,y,v = min{dx,s + ds,y,v, dx,t,v + dt,y, dx,y,w}
Note that this is almost identical to the path cover lemma,
except that instead of avoiding all of [s,t], we just avoid the
bottleneck of [s,t].

Proof. We consider two cases. If πx,y,v avoids all of [s, t]
then it is a feasible path avoiding w (the bottleneck), so
dx,y,v ≥ dx,y,w; but w is the bottleneck of [s,t], so we cannot
have dx,y,v > dx,y,w, so we must have dx,y,v = dx,y,w. If
πx,y,v does not avoid all of [s,t] then it must go through
either s or t, in which case dx,y,v = dx,s + ds,y,v or dx,t,v +
dt,y.

Thus, instead of avoiding every interval on a covering chain,
we can avoid the bottleneck vertex of each interval, which
is substantially easier. We are now ready to describe our
general framework.

Definition 8. Now that we have constructed a covering
chain for every path πx,y (section 3.5), we define CI [x, y, i]
to be the ith covering interval on the covering chain for πx,y

(see definition 4 for covering interval). Recall that every
v ∈ πx,y is contained by some covering interval CI [x, y, i].

Definition 9. Define BV[x,y,i] to be the bottleneck vertex
of CI[x,y,i].

Definition 10. Given v on πx,y, and letting CI [x, y, i] =
[cx, cy ] be the covering interval on πx,y that contains v, we
define

MTC(x, y, v) = min{dx,cx + dcx,y,v, dx,cy,v + dcy,y}
(that is, the shortest path through the two centers covering
v). MTC stands for minimum through centers. We refer
to the path corresponding to MTC(x,y,v) as the shortest
centered path from x to y avoiding v. Note that by the
bottleneck lemma,

dx,y,v = min{MTC(x, y, v), dx,y,BV [x,y,i]}
Theorem 4.2. Once we compute dx,y,BV [x,y,i] for every

triplet (x,y,i) (i is a center priority), we can construct an

Õ(n2) space oracle that can compute dx,y,v in constant time
for any triplet (x,y,v).

Proof. Our proof directly follows the one used in sec-
tion 6 of Bernstein and Karger [4], except that bottleneck
vertices allow us to avoid dealing with whole intervals, so
where they use EP [x, y, i] we just use dx,y,BV [x,y,i]. Except
for a few auxiliary structures (which we omit – see Bernstein
and Karger [4] for details), the only things we store are the
bottleneck values dx,y,BV [x,y,i], the center information ta-
ble Dk, and the shortest distances in the original graph (no
failed vertices).

Given a triplet (x, y, v), we find the endpoints of the covering
interval CI [x, y, i] that contains v (this is easy to do). Be-
cause of how we constructed covering chains, these endpoints
must cover v, so using our center information we can find the
shortest paths that go through these endpoints. This gives
us the first two terms of the bottleneck lemma. We know
the third term because we have avoided the bottleneck ver-
tex on every covering interval. Thus, we can find dx,y,v in
constant time by simply taking the minimum of these three

terms. The space is Õ(n2) because Dk (the center infor-

mation table) requires Õ(n2) space (Theorem 3.5), as does
storing every dx,y,BV [x,y,i]: there are only O(log n) covering

intervals per path πx,y, so there are Õ(n2) bottlenecks in
total (one per covering interval).

Theorem 4.3. If we can compute dx,y,BV [x,y,i] for every
triplet (x, y, i) in a total of T time, then we can construct

the framework of Theorem 4.2 in O(T ) + Õ(mn) time.

Proof. Once we have the bottleneck values dx,y,BV [x,y,i],
all we have left is to construct the center information table
Dk and some auxiliary structures. By theorem 3.5 we can

construct Dk in Õ(mn) time; we can construct all of the
auxiliary structures even faster. See Section 6 of Bernstein
and Karger [4] for details on the auxiliary structures.

Remark 1. Bernstein and Karger [4] gave a randomized
construction of Dk, but there exists a deterministic con-
struction. We can directly apply a technique of King [12] to
deterministically pick centers with the required properties
specified in section 3.3. This construction is less efficient in
both time and space by a factor of O(log(n)).

5. AVOIDING BOTTLENECK VERTICES
There are two things left to show: how to find a bottle-

neck BV[x,y,i] for each CI[x,y,i] (definitions 8, 9), and how
to compute dx,y,BV [x,y,i] once we know BV[x,y,i]. In this
section, we focus on the latter, so we assume the following
theorem.

Theorem 5.1. We can find BV[x,y,i] for every triplet

(x,y,i) in a total of Õ(n2) time.

Proof. Section 6 describes an algorithm for doing this.
Intuitively, the bottleneck for CI[x,y,i] is the vertex that
maximizes a certain function, which we show to be rather
well behaved. This allows us to binary search on CI[x,y,i] to
find the bottleneck vertex.

5.1 A Recurrence Relation for Bottleneck
Values

To recap, theorem 4.2 reduces the problem of computing
O(n3) different values dx,y,v to the simpler problem of com-

puting Õ(n2) different bottleneck values dx,y,BV [x,y,i]. To
solve this simpler problem, we rely on the intuition behind
Dijkstra’s single source shortest path algorithm [7]: we ex-
press the distance to a vertex as a function of the distances
to its neighbors.

More formally, for any vertex y, let IN(y) = {y′ ∈ V | (y′, y)
∈ E}. We know that for any triplet (x, y, v) we have

dx,y,v = min
y′∈IN(y)

(dx,y′,v + w(y′, y))



But this is a recurrence relation between all O(n3) values
dx,y,v, and we cannot afford to look at O(n3) values. Instead,

we want a recurrence relation between the Õ(n2) bottleneck
values.

So what is our relation for dx,y,BV [x,y,i]? Well, letting v =
BV [x, y, i], we start in the same fashion: we recall that
dx,y,v = min

y′∈IN(y)
(dx,y′,v + w(y′, y)). But since dx,y′,v it-

self might not be a bottleneck value, we use the bottleneck
lemma to express it as the minimum of a bottleneck value
and an MTC term. This gives us:

dx,y,v = min
y′∈IN(y)

(dx,y′,v + w(y′, y))

= min
y′∈IN(y)

(min{MTC(x, y′, v), dx,y′,BV [x,y′,j]}+ w(y′, y))

where j in BV [x, y′, j] is the center priority for which
CI [x, y′, j] contains v. Rearranging, we get

dx,y,v = min{ min
y′∈IN(y)

(MTC(x, y′, v) + w(y′, y))(term 1),

min
y′∈IN(y)

(dx,y′,BV [x,y′,j] + w(y′, y))(term 2)}
(1)

(technical note: there may be some y′ ∈ IN(y) for which
v is not on πx,y′ , so MTC(x, y′, v) and BV [x, y′, j] are not
even defined. But in this case we simply have dx,y′,v = dx,y′ ,
which we already know. Thus, we can handle this spe-
cial case by just defining MTC(x, y′, v) to be dx,y′ (when
v /∈ πx,y′), and defining dx,y′,BV [x,y′,j] to be infinity).

At first, this may not seem like a relation between the bot-
tleneck values because we have all these MTC terms. But
recall that we can compute any MTC(x, y, v) in constant
time using the center information that we precomputed in
section 3.5. Thus, the MTC terms are just constants, so
Equation (1) is in fact a direct recurrence relation (recall
that in the equation v = BV [x, y, i], so dx,y,v is also a bot-
tleneck value).

5.2 Using the Recurrence Relation
Notice that the recurrence in Equation (1) closely resem-

bles the recurrence in Dijkstra’s algorithm, and would re-
semble it even more if not for term 1 in the equation. The
main difference is that term 1 sets an initial constant upper
bound on each bottleneck value. This suggests the possib-
lity of using Dijkstra’s algorithm to solve our recurrence.

Let us make this more explicit. We create a new directed
graph Gbv = (Vbv, Ebv) with non-negative weight function
wbv . We let Vbv consist of a source s and the vertices
{v[x, y, i]}: our goal is to construct the graph in such a
way that the shortest distance from s to v[x, y, i] is pre-
cisely dx,y,BV [x,y,i]. To construct Ebv note that since term 2
in Equation (1) is precisely the recurrence relation in Dijk-
stra’s algorithm, we just include the edges that are implicitly
present in that second term. In particular, we add an edge
from v[x, y′, j] to v[x, y, i] if y′ ∈ IN(y) and j is the index
for which CI [x, y′, j] contains BV [x, y, i]. We set the weight
of edge (v[x, y′, j], v[x, y, i]) to be w(y′, y).

But what about the first term in Equation (1)? Well, hav-
ing this initial upper bound is equivalent to adding an edge
from the source s to every vertex v[x, y, i] with weight equal
to term 1 in Equation (1) (this term is different for each
dx,y,BV [x,y,i]). The reason for this is that the first step of
Dijkstra’s algorithm relaxes all edges from the source, which
effectively initializes each vertex v[x, y, i] with the constant
in term 1. Dijkstra’s algorithm then tries to find shorter dis-
tances by exploiting the dependencies between the vertices
(i.e. it tries to find shortest paths that do not directly use
the source edge).

Since the base case and the recurrence for shortest paths in
Gbv is the same as our recurrence for detour paths in Equa-
tion (1), we indeed have that the shortest distance from
s to v[x, y, i] is dx,y,BV [x,y,i]. Thus, we can compute the

bottleneck values in Õ(|Vbv| + |Ebv|) time by just running
Dijkstra’s algorithm on Gbv with source s. But note that
for every v[x, y, i] ∈ Vbv we added at most |IN(y)| edges to
Ebv. Since every y is in O(n log(n)) triplets (x, y, i) we have
|Ebv| = O(n log(n)

∑
y∈V |IN(y)|) = O(mn log(n)), so the

total running time is Õ(mn).

Remark 2. Note that in general terms, our algorithm can
be thought of as a different way to go about dynamic pro-
gramming. If we are given a set of values that we want to
compute, traditional dynamic programming requires us to
explicitly define an order in which to compute these values.
For example, we might know to put our values into a table
M [m, n] and then compute in the order M [1, 1], M [2, 1],
M [1, 2], M [3, 1], M [2, 2], ..., M [m, n].

Our approach, on the other hand, does not require us to
determine this order ahead of time. Instead, all we do is
express each value as a function of the other values. In par-
ticular, we store our values in a directed graph instead of
a table, where each vertex corresponds to a value we want
to compute, and the value at a vertex is a function of the
values of its neighbors. As long as this function satisfies
certain “monotonicity” properties, Dijkstra’s algorithm will
implicitly discover the correct order of computation for us.
By “monotonicity” properties, we simply mean that if we
need the value at u to compute the value at v then the value
at u must be smaller than the value at v (e.g. the triangle
inequality for shortest paths).

This approach bears some similarity to memoization, but
it is more powerful because the use of a Dijkstra like al-
gorithm on our dependency graph allows us to implicitly
break cycles for a large class of dependency functions. For
example, our approach encompasses shortest paths in gen-
eral graphs, while memoization only encompasses shortest
paths in acyclic graphs.

6. FINDING BOTTLENECK VERTICES
We now turn to proving theorem 5.1 in section 5 (see section
4 for a review of basic definitions). We focus on efficiently
finding the bottleneck of a specific interval CI [x, y, i] =
[cx, cy]. The following lemma provides a useful way to think
about bottleneck vertices. (technical note: a covering inter-
val can have multiple bottleneck vertices, but it does not
matter which one we choose, so for the sake of clarity we
assume that the bottleneck of CI [x, y, i] is unique).



Figure 4: The case in algorithm FindBot([s,t]) where L(x, y, v) > R(x, y, v)

Lemma 6.1. The bottleneck of CI[x,y,i] is the vertex w ∈
CI [x, y, i] that maximizes MTC(x, y, w). In other words, re-
moving the bottleneck vertex maximizes the distance through
the centers.

Proof. By definition, the bottleneck vertex maximizes
dx,y,w among w ∈ CI [x, y, i]. But by the path cover lemma,
dx,y,w =
min{MTC(x, y, w), dx,y,CI[x,y,i]}. The second term is the
same for all vertices in CI [x, y, i], so we only have to worry
about maximizing the first term.

Definition 11. Given v in [cx, cy] define

L(x, y, v) = dx,cx + dcx,y,v

That is, L(x, y, v) is the length of the shortest path avoiding
v that goes through cx. Similarly, let

R(x, y, v) = dx,cy,v + dcy,y

Then

MTC(x, y, v) = min{L(x, y, v), R(x, y, v)}
Thus, our goal is to find the vertex that maximizes the mini-
mum of {L(x, y, v), R(x, y, v)}. Note that using our precom-
puted center information from section 3.5, we can compute
R(x, y, v) and L(x, y, v) in constant time for any vertex v.
The problem is that individually checking every vertex in
[cx, cy ] takes too long.

Thus, the basic intuition behind out algorithm is that in-
stead of computing L(x, y, v), R(x, y, v) for every vertex, we
will only compute it for a few specific vertices. For each such
vertex v, comparing L(x, y, v) and R(x, y, v) will gives us in-
formation about the shortest centered path avoiding v (see
definition 10), which will in turn give us information about
where to look for the bottleneck. The following lemma elu-
cidates how L(x, y, v) and R(x, y, v) relate to the shortest
centered path.

Lemma 6.2. Let v be some vertex in [cx, cy ], and let π be
the shortest centered path avoiding v.
• if L(x, y, v) < R(x, y, v) then MTC(x, y, v) = L(x, y, v)
and π goes through cx but not cy.
• if L(x, y, v) > R(x, y, v) then MTC(x, y, v) = R(x, y, v)
and π goes through cy but not cx.
• if L(x, y, v) = R(x, y, v) then MTC(x, y, v) = L(x, y, v) =
R(x, y, v)

Proof. This stems directly from the definitions, since
L(x, y, v) is the shortest distance through cx, R(x, y, v) is
the shortest distance through cy , and the shortest centered
path must go through at least one of cx or cy .

Lemma 6.2 only gives us information about the short-
est centered path avoiding a specific v, so the question is
which vertices will give us information about the interval as
a whole. We want to pick vertices that already have some
significance, so we will pick vertices with large values for
L(x, y, v). Note that maximizing just L(x, y, v) is much eas-
ier than maximizing min{L(x, y, v), R(x, y, v)}

Definition 1. Given an interval I ⊂ [cx, cy ] let vL(x, y, I)
be the vertex v in I that maximizes L(x, y, v). That is,
vL(x, y, I) = argmaxv∈IL(x, y, v)

So intuitively, we want to use vL to find important ver-
tices v, and then use lemma 6.2 to glean information about
these vertices that tells us where to look next. We first show
how to compute vL(x, y, I) in constant time, and then use
this to compute a bottleneck for [cx, cy ] in O(log(n)) time.

By definition 1, to compute vL(x, y, I) we just need to com-
pute argmaxv∈I(dcx,y,v). But we already know dcx,y,v for
every v ∈ [cx, cy ] ⊃ I (this is our center information). The
naive way of storing this center information is to use an ar-
ray A where A[i] = dcx,y,vi (vi is the ith vertex on [cx, cy ]).
To compute vL we need a more complicated structure that
allows us to find the maximum value in any sub-array I of
A in constant time.

Fortunately, this structure already exists: it is called the
range maximum query data structure [3]. An array can be
turned into a range maximum data structure in linear space
and time, so using range maximum data structures does
not increase the required space or preprocessing time of our
center information. note that although we cannot afford to
spend linear time for finding every bottleneck vertex, we can
afford linear time in our center information. The reason for
this is that our center information is indexed by a center and
a vertex covered by that center, whereas bottleneck vertices
are indexed by two arbitrary vertices.

We now present a recursive algorithm FindBot, where given
any I = [s, t] ⊂ [cx, cy], FindBot(I) returns the bottle-
neck vertex of I (that is the vertex v ∈ I that maximizes
MTC(x, y, v)) – see figure 5 for pseudo code. In essence,
FindBot is just a binary search. Let q be the midpoint of
[s, t], and let v = vL(x, y, [q, t]). We now consider two cases
(for the sake of clarity we ignore minor technical details such
as the case where [s, t] only contains 1 vertex. These are
handled in the pseudo code).



Suppose that L(x, y, v) ≤ R(x, y, v). Then, by definition,
MTC(x, y, v) = L(x, y, v). But for any other w ∈ [q, t] we
have

MTC(x, y, w)

≤ L(x, y,w)

≤ L(x, y, v)(since we chose v to maximize L(x, y, w))

= MTC(x, y, v)

Hence, v maximizes MTC(x, y,w) over w ∈ [q, t], so by
Lemma 6.1 v is the bottleneck of [q, t]. Thus, to compute
FindBot([s, t]) we just compare v and FindBot([s, q]). Note
that this is not technically a pure binary search, since we do
not just recurse to the half-interval [s, q]. Rather, we recurse
to a half-interval and a single vertex.

Say that L(x, y, v) ≤ R(x, y, v). Then, by lemma 6.2,
MTC(x, y, v) = L(x, y, v). But we chose v to maximize
L(x, y, v), so v must be the hardest vertex to avoid on all
of [q, t]. More formally, note that for any w ∈ [q, t] we have
MTC(x, y,w) ≤ L(x, y, w) ≤ L(x, y, v) = MTC(x, y, v).
Hence, v is the bottleneck of [q, t], so to compute
FindBot([s, t]) we just compare v and FindBot([s, q]). Note
that this is not technically a pure binary search, since we do
not just recurse to the half-interval [s, q]. Rather, we recurse
to a half-interval and a single vertex.

Alternatively, say that L(x, y, v) > R(x, y, v). Then, let-
ting π be the shortest centered path avoiding v, we know
that π goes through cy but not cx (lemma 6.2). But this
means that π avoids v and cx, so it avoids all of [cx, v], so it
certainly avoids [s, q] (figure 4). In particular, v must be at
least as hard to avoid as any vertex in [s, q], so it is a better
candidate for the bottleneck than any vertex in [s, q]. More
formally, if w ∈ [s, q] then π is a path through cy that avoids
w, so MTC(x, y,w) ≤ w(π) = R(x, y, v) = MTC(x, y, v).
Thus, the bottleneck cannot be in [s, q], so FindBot([s, t]) =
FindBot([q, t]).

In either case, it takes constant time recurse to an interval
of half the size (and possibly check another single vertex).
Thus, it takes O(log(n)) time to find the bottleneck ver-
tex for CI [x, y, i], which leads to an overall running time of

Õ(n2) for finding all the bottleneck vertices.

Figure 5: Pseudo Code for the algorithm FindBot
in section 6
Input: An interval I = [s, t] ⊆ CI [x, y, i]
Output: A vertex w = argmaxv∈IMTC(x, y, v)
0. IF |[s, t]| ≤ 2

Return argmaxw∈[s,t](MTC(x, y, w))
1. q ← �(s + t)/2
2. v ← vL(x, y, [q, t])
3. IF L(x, y, v) ≤ R(x, y, v)

w ← FindBot([s,q])
to-output ← argmaxv,w{MTC(x, y, v), MTC(x, y, w)}

4. IF L(x, y, v) > R(x, y, v)
to-output ← FindBot([q,t])

5. Return to-output

7. CONCLUSION
We have presented a deterministic distance sensitivity or-

acle with O(1) query time, Õ(n2) space requirement, and

Õ(mn) construction time. We cannot really hope to im-
prove upon the static version, but can we make the ora-
cle dynamic: if we delete a single vertex, can we do better
than constructing another oracle from scratch? Also, can
we efficiently handle more than one vertex failure at a time?
Finally, can we achieve better results by settling for approx-
imate shortest paths?
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