
MIT Open Access Articles

An Integrated Proof Language for Imperative Programs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Zee, Karen, Viktor Kuncak, and Martin C. Rinard. “An integrated proof language for
imperative programs.” SIGPLAN Not. 44.6 (2009): 338-351.

As Published: http://dx.doi.org/10.1145/1543135.1542514

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/51822

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Attribution-Noncommercial-Share Alike 3.0 Unported

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/51822
http://creativecommons.org/licenses/by-nc-sa/3.0/

An Integrated Proof Language for Imperative Programs

Karen Zee
Massachusetts Institute of Technology

CSAIL, Cambridge, MA, USA
kkz@csail.mit.edu

Viktor Kuncak
École Polytechnique Fédérale de Lausanne

IC, Lausanne, VD, Switzerland
viktor.kuncak@epfl.ch

Martin C. Rinard
Massachusetts Institute of Technology

CSAIL, Cambridge, MA, USA ∗

rinard@csail.mit.edu

Abstract
We present an integrated proof language for guiding the actions of
multiple reasoning systems as they work together to prove com-
plex correctness properties of imperative programs. The language
operates in the context of a program verification system that uses
multiple reasoning systems to discharge generated proof obliga-
tions. It is designed to 1) enable developers to resolve key choice
points in complex program correctness proofs, thereby enabling au-
tomated reasoning systems to successfully prove the desired cor-
rectness properties; 2) allow developers to identify key lemmas for
the reasoning systems to prove, thereby guiding the reasoning sys-
tems to find an effective proof decomposition; 3) enable multiple
reasoning systems to work together productively to prove a single
correctness property by providing a mechanism that developers can
use to divide the property into lemmas, each of which is suitable for
a different reasoning system; and 4) enable developers to identify
specific lemmas that the reasoning systems should use when at-
tempting to prove other lemmas or correctness properties, thereby
appropriately confining the search space so that the reasoning sys-
tems can find a proof in an acceptable amount of time.

The language includes a rich set of declarative proof constructs
that enables developers to direct the reasoning systems as little or
as much as they desire. Because the declarative proof statements
are embedded into the program as specialized comments, they also
serve as verified documentation and are a natural extension of the
assertion mechanism found in most program verification systems.

We have implemented our integrated proof language in the con-
text of a program verification system for Java and used the resulting
system to verify a collection of linked data structure implementa-
tions. Our experience indicates that our proof language makes it
possible to successfully prove complex program correctness prop-
erties that are otherwise beyond the reach of automated reasoning
systems.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

∗ This research was supported in part by DARPA Cooperative Agree-
ments SA 8750-06-2-0189 and FA 8750-04-2-0254; United States Na-
tional Science Foundation Grants 0341620, 032583, 0509415, 0811397,
and 0835652; and Swiss National Science Foundation Grant “Precise and
Scalable Analyses for Reliable Software”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

General Terms Algorithms, Languages, Reliability, Verification
Keywords verification, theorem prover, proof system

1. Introduction
We have developed a system, Jahob, for specifying and verifying
Java programs [46]. Because Jahob uses higher-order logic as its
specification language, it can express very sophisticated correctness
properties. Instead of relying on a single monolithic prover, Jahob
uses integrated reasoning — it contains interfaces to a variety of
internal and external reasoning systems and uses these systems in
a coordinated way to prove complex verification conditions. This
approach allows Jahob to quickly exploit new reasoning systems
as they become available and to incorporate specialized decision
procedures that can prove important properties within arbitrarily
narrow domains.

Jahob currently interfaces to first-order provers (SPASS [43]
and E [41]), SMT provers (CVC3 [22] and Z3 [15]), MONA [39],
and the BAPA decision procedure [27, 29]. If all of these provers
working together fail to prove a verification condition, the devel-
oper can manually prove the desired property using Jahob’s inter-
faces to interactive theorem provers (Isabelle [35] and Coq [10]).1

In theory, this approach makes it possible to solve program ver-
ification problems requiring arbitrarily complex reasoning. But in
practice, to exploit this capability, developers must become pro-
ficient in both the verification system and an interactive theorem
prover — two separate systems with radically different basic con-
cepts, capabilities, and limitations. This approach also requires de-
velopers to maintain, in addition to the annotated program, a set
of associated proof scripts. And although the interactive prover en-
ables developers to manually prove verification conditions that fail
to prove automatically, it also divorces the proof from its original
context within the annotated program and denies the developer ac-
cess to the substantial automated reasoning power available via the
Jahob prover interfaces.

1.1 Integrated Proof Language
The Jahob proof language addresses these issues by making it pos-
sible for developers to control proofs of program correctness prop-
erties while remaining completely within a single unified program-
ming and verification environment. The proof commands are di-
rectly included in the annotated program and are verified by the un-
derlying reasoning system as part of the standard program verifica-
tion workflow. Because the proof language is seamlessly integrated
into the verification system, all of the automated reasoning capabil-
ities of the Jahob system are directly available to the developer. We
have found that this availability enables developers to avoid the use
of external interactive theorem provers altogether. Instead, devel-
opers simply use the Jahob proof language to resolve key choice
points in the proof search space. Once these choice points have

1 The complete source code for Jahob, along with examples of its use, is
available at javaverification.org.

been resolved, the automated provers can then perform all of the
remaining steps required to discharge the verification conditions.
This approach effectively leverages the complementary strengths
of the developer and the automated reasoning system by allowing
the developer to communicate key proof structuring insights to the
reasoning system. These insights then enable the reasoning system
to successfully traverse the (in practice large and complex) proof
search space to obtain formal proofs of the desired verification con-
ditions. The following techniques are of particular interest:

• Lemma Identification: The developer can identify key lem-
mas for the Jahob reasoning system to prove. These lemmas
can then help the reasoning system find an appropriate proof
decomposition. Such a proof decomposition can be especially
important when multiple provers must cooperate to prove a sin-
gle correctness property. In this case separating the property
into lemmas, each of which contains facts suitable for a spe-
cific prover, then combining the lemmas, may be the only way
to obtain a proof.
• Witness Identification: The developer can identify the witness

that enables the proof of an existentially quantified verification
condition. Because there are, in general, an unbounded number
of potential witnesses (very few of which may lead to a suc-
cessful proof), the difficulty of finding an appropriate witness
is often a key obstacle that prevents a fully automated system
from obtaining a proof. But our results show that enabling the
developer to remove this key obstacle usually leaves the au-
tomated system easily able to successfully navigate the proof
search space to prove the desired correctness property.
• Quantifier Instantiation: The developer can identify how to

instantiate specific universally quantified formulas. The poten-
tially unbounded number of possible quantifier instantiations
can make developer insight particularly useful in enabling suc-
cessful proofs.
• Case Split Identification: The developer can identify the spe-

cific cases to analyze for case analysis proofs.
• Induction: The developer can identify an induction variable

and induction property that lead to a successful proof by in-
duction.
• Assumption Base Control: Modern theorem provers are usu-

ally given a set of facts (we call this set the assumption base),
then asked to prove a consequent fact that follows from this set.
An assumption base that contains irrelevant facts can produce
an overly large proof search space that impedes the ability of
the provers to find a proof of the consequent. Our integrated
proof language enables developers to control the assumption
base (and thereby productively focus the proof search space on
the property of interest) by identifying a set of relevant facts
for the provers to use when proving a specific verification con-
dition. We have found this functionality essential in enabling
modern provers to successfully prove the complex verification
conditions that arise in proofs of sophisticated program correct-
ness properties.

1.2 Correctness of Linked Data Structures
Because of the challenges that aliasing, indirection, and an un-
bounded number of objects pose for automated reasoning systems,
recursive linked data structures comprise an especially challeng-
ing verification problem [46]. This paper presents our experience
using our integrated proof language to verify the correctness of a
collection of linked data structures. Because the correctness proofs
establish complex correctness properties of the data structure im-
plementations, the verification conditions involve constructs (such
as transitive closure and quantifiers) that are known to be intractable

for automated reasoning systems [23, 28]. Despite this intractabil-
ity, we are able to use the integrated proof language to successfully
identify key proof structuring choices and thereby enable the auto-
mated reasoning system to perform the required correctness proofs.
This approach eliminates the need to use external interactive the-
orem provers, leaving the integrated provers able to successfully
carry almost all of the formal reasoning burden.

1.3 Contributions
This paper makes the following contributions:

• Language: It presents our integrated proof language for prov-
ing correctness properties of Java programs. The language in-
cludes a rich set of declarative proof constructs that enable de-
velopers to direct the reasoning system as little or as much as
desired. Because the declarative proof statements are embed-
ded into the program as specialized comments, they also serve
as verified documentation and are a natural extension of the as-
sertion mechanism found in most program verification systems.
• Soundness: It presents a proof that our integrated proof lan-

guage is sound.
• Design: It presents the rationale behind the design of the inte-

grated proof language. The basic idea is to provide constructs
that allow the developer to identify key choice points in the
proof search space, then guide the proof by specifying how to
resolve these choice points. This approach appropriately lever-
ages the developer’s insight to enable the automated reason-
ing system to successfully prove complex program correctness
properties.
• System: We have implemented our proof language as an ex-

tension to Java. To the best of our knowledge, this is the first
system to integrate a sophisticated proof language into an exist-
ing programming language with mutable state and object refer-
ences and to use this proof language to show the correctness of
a substantial collection of linked data structures.
• Results: We have used our language to prove the correctness of

a collection of mutable linked data structure implementations.
Our results show that:

Elimination of Interactive Theorem Proving: Despite the
complex and in some cases inherently intractable proper-
ties that arise in verifying mutable linked data structure im-
plementations, our integrated proof language eliminates the
need to use external interactive theorem provers to estab-
lish the correctness of our data structure implementations.
Developers instead stay completely within a single unified
development and verification environment, with no need to
learn a second external system with very different basic con-
cepts, capabilities, and limitations.
Usage Patterns: In most cases, the identification of several
key lemmas is all that is required to enable the automated
reasoning system to prove the desired verification condi-
tions. But even though more sophisticated techniques are,
in comparison, used less frequently, they are required for
proofs of the complex correctness properties that occasion-
ally arise in our set of data structures.

• Experience: It discusses our experience using our approach to
verify a set of mutable linked data structure implementations.
This discussion illuminates the interplay between the various
different components of our integrated reasoning system and il-
lustrates how the integrated proof language makes it possible
to build on existing automated reasoning systems to verify very
sophisticated program correctness properties with tractable de-
veloper effort.

1.4 Implications
To date, the vast majority of automated reasoning systems have fo-
cused on checking relatively simple consistency properties. As the
field matures, the focus will shift to more sophisticated properties
involving inherently less tractable formalisms. We believe the basic
concepts behind our integrated proof language (extensive use of au-
tomated reasoning combined with appropriate developer guidance
at key points in the proof search space) will play a prominent role
in enabling the continued expansion in the sophistication and utility
of the properties that our community is able to verify.

2. Example
We next present an example that illustrates the use of our integrated
proof language. Figure 1 presents state declarations and two meth-
ods from the ArrayList class.2 The concrete state of an ArrayList
object consists of an array elements, which stores the objects in
the ArrayList, and size, which stores the number of objects in
elements. The abstract state consists of content, which represents
the abstract state of the ArrayList as a set of int, obj pairs; csize,
which contains the number of pairs in content; and init, which
is false before the list has been initialized and true after. The two
vardefs declarations comprise an abstraction function which define
the relationship between the abstract and concrete states.3

The remove(o) method removes the object o from the array list
if it is present. The modifies clause indicates that the method may
change the content and csize components of the abstract state. The
ensures clause contains the method postcondition. This postcon-
dition identifies two possible cases. In the first case the array list
contains o. In this case, the method removes the first occurrence of
a pair containing o from content, shifts the remaining pairs down
to occupy the gap left by the removal and maintain a dense relation,
and returns true. In the second case the array list does not contain
o. In this case the method does not change the abstract state and
returns false.

The body of the remove method searches for the first occurrence
of o in the array. The while loop has an invariant that formalizes the
properties that characterize the search. If the loop finds o, it invokes
the private helper method shift to shift the elements above o down
one position in the array (thereby overwriting o), then returns true.
Note that the specification for shift expresses its postcondition in
terms of the private concrete state, as opposed to the public abstract
state (this is permissible because shift is private).

At this point Jahob must use the postcondition of the shift
method and the other facts that it knows after the call to shift
to prove the postcondition of the remove method. Unfortunately,
the provers are unable to automatically prove the postcondition of
remove. In part this is because irrelevant assumptions in verifica-
tion conditions create a large search space that the provers fail to
successfully explore in a reasonable amount of time. What makes
the problem even more difficult is that the assumptions contain uni-
versally quantified formulas while the postcondition contains an
existentially quantified formula. In the absence of developer guid-
ance, the provers must therefore (in this case unsuccessfully) search

2 The example uses mathematical notation for concepts such as set union
(∪) and universal quantification (∀). Developers can enter these symbols
in Jahob input files using X-Symbol ASCII notation, and view them in
either ASCII or mathematical notation using the ProofGeneral editor mode
for emacs [5].
3 The ArrayList class also contains additional class invariants and methods,
which, for clarity, we omit in Figure 1. We also omit certain conjuncts in
loop invariants and postconditions. The complete source code for all of our
benchmarks, including ArrayList, and the complete source code for Jahob
itself are available at javaverification.org.

public class ArrayList
{

private Object [] elements;
private int size ;
/∗: public specvar init :: bool;

public specvar content :: ”(int ∗ obj) set”;
vardefs ”content == {(i,n). 0≤i∧i<size∧n=elements.[i]}”
public specvar csize :: int ;
vardefs ” csize == size” ∗/

public boolean remove(Object o)
/∗: requires ” init ”

modifies content, csize
ensures

”(result → (∃ i. (i,o)∈old content ∧
(¬∃ j. j<i ∧ (j,o)∈old content) ∧
(∀ j e. 0≤j∧j<i→(j,e)∈content=(j,e)∈old content) ∧
(i≤j∧j<csize→(j,e)∈content=(j+1,e)∈old content)) ∧

(¬result → (content=old content∧¬∃i. (i,o)∈old content))” ∗/
{

int index = 0;
while /∗: inv ”(∀j. 0≤j∧j<index→o 6=elements.[j]) ∧

0≤index ∧ size=old size” ∗/
(index < size) {

if (elements[index] == o) {
shift (index);
/∗: note ObjectRemoved:
”∀j e. (0≤j∧j<index→(j,e)∈content=(j,e)∈old content) ∧

(index≤j∧j<csize→(j,e)∈content=(j+1,e)∈old content)”
from shift Postcondition , LoopInv, LoopCondition

content def , csize def ;
witness index for

”∃i. (i ,o)∈old content ∧ (¬∃j. j<i ∧ (j,o)∈old content) ∧
(∀j e. (0≤j∧j<i→(j,e)∈content=(j,e)∈old content) ∧
(i≤j∧j<csize→(j,e)∈content=(j+1,e)∈old content))” ∗/

return true ;
}
index = index + 1;
}
return false ;
}
private void shift (int index)
/∗: requires ” init ∧ 0≤index ∧ index<size”

modifies elements, size , content, csize
ensures

”(∀j. 0≤j∧j<index → elements.[j]=old elements.[j])) ∧
(∀j. index≤j∧j<size → elements.[j]=old elements.[j+1])) ∧
elements .[size]=null ∧ (size=old size−1)” ∗/
{. . .}
}

Figure 1. Array List Example

a large space of possible witnesses for the existentially quantified
formula as they attempt to prove the postcondition.

The developer first uses a note statement to instruct Jahob to
prove an intermediate assertion (labeled ObjectRemoved in Fig-
ure 1). The ObjectRemoved assertion is simpler than the remove
postcondition — it serves as a lemma that helps the provers struc-
ture the subsequent successful proof of the postcondition. To elim-
inate irrelevant assumptions, the developer uses the from clause to
indicate that the proof of the lemma needs to use only 1) the post-
condition of shift, 2) the loop invariant and exit condition from the
closest enclosing loop, and 3) the definitions of content and csize.
All of these facts are automatically available in the Jahob sys-
tem and are accessible using standard names. With this guidance,
the theorem provers easily establish the ObjectRemoved lemma,
which is then available for subsequent reasoning.

The developer next uses a witness statement to identify the wit-
ness index for the existentially quantified formula in the postcondi-
tion. In this way, the developer resolves the witness selection choice
point in the proof, which eliminates the need for the provers to
search for an appropriate witness. Given the resulting existentially
quantified formula and the ObjectRemoved lemma, the provers
easily prove the postcondition and all other proof obligations for
remove.

As this example shows, the automated provers are very effec-
tive at performing the vast majority of the required proof steps. But
insight from the developer at key choice points in the proof search
space is occasionally required to enable the full proof to go through.
In this example, this insight takes the form of a note statement that
identifies a key lemma and the facts from which this lemma fol-
lows, and a witness statement that identifies a witness for an exis-
tentially quantified formula. In general, the developer can express
this insight using other proof statements that draw on the devel-
oper’s understanding of how the program works.

3. Program Verification in Jahob
This section briefly describes the Jahob verification system (for
details, see [46]).
Specification Constructs. Following standard practice [9, 16, 46],
developers specify Jahob programs using specification variable
declarations, method contracts, class invariants, and loop invari-
ants. Specification constructs contain formulas whose syntax and
semantics follow Isabelle/HOL [35]. When an annotation contain-
ing a formula F occurs at program point q, v in F denotes the value
of v at q; old v denotes the value of v at the entry of the currently
verified procedure.
Verification Condition Generation. Jahob produces verification
conditions by transforming the annotated Java code into extended
guarded commands (Figures 2, 3) that contain both code and proof
constructs. It then transforms extended guarded commands into
simple guarded commands (Figures 4, 6, 8), and then finally gener-
ates verification conditions using weakest liberal precondition se-
mantics (Figure 5).
From Java to Guarded Commands. Jahob simplifies code into
three-address form to make the evaluation order in expressions ex-
plicit and inserts assertions that check for null dereferences, array
bounds violations, and type cast errors. It converts field and array
assignments into assignments of global variables whose right-hand
side contains function update expressions. Having taken side ef-
fects into account, it transforms Java expressions into mathematical
expressions in higher-order logic.
The Extended Guarded Command Language. Figures 2 and 3
present the syntax of the extended guarded command language. In
addition to standard control-flow and state change constructs, the
language contains assert, assume, and havoc. These constructs fa-
cilitate the staging of verification condition generation into multi-
ple translation steps. They also provide the foundation for the inte-
grated proof language described below in Section 4.

• Assert: An assert G annotation at program point q in the body
of the method requires the formula G to be true at the program
point q. Jahob assertions produce proof obligations that Jahob
statically verifies to guarantee that G will be true in all program
executions that satisfy the precondition of the method.
• Assume: An assume G statement is dual to the assert state-

ment. Whereas an assert requires Jahob to demonstrate that G
holds, an assume statement allows Jahob to assume that G is
true at a given program point. In general, developer-supplied
assume statements may violate soundness. The assume state-
ment is therefore designed to support the automated translation

c ::= p
| skip
| x := F
| c1 8 c2 | c1 ; c2

| if(F) c1 else c2

| loop inv(I) c1 while(F) c2

| assume l: F
| havoc ~x suchThat F

Figure 2. Extended Guarded Commands

p ::= p1 ; p2

| assert l: F from ~h

| note l:F from ~h
| localize in (p ; note l:F)
| mp l:(F →G)
| assuming lF :F in (p ; note lG:G)

| cases ~F for l:G
| showedCase i of l : F1 ∨ . . . ∨ Fn

| byContradiction l:F in p
| contradiction l:F
| instantiate l:∀~x.F with ~t
| witness ~t for l:∃~x.F
| pickWitness ~x for lF :F in (p ; note lG:G)
| pickAny ~x in (p ; note l:F)
| induct l:F over n in p

Figure 3. Integrated Proof Language Constructs

c ::= assume l: F

| assert l: F from ~h
| havoc ~x
| skip
| c1 8 c2 | c1 ; c2

Figure 4. Simple Guarded Commands

wlp((assume l: F), G) = F [l]→G

wlp((assert l: F from ~h), G) = F [l;~h] ∧G
wlp((havoc ~x), G) = ∀~x. G
wlp((skip), G) = G
wlp((c1 8 c2), G) = wlp(c1, G) ∧ wlp(c2, G)
wlp((c1 ; c2), G) = wlp(c1, wlp(c2, G))

Figure 5. Weakest Preconditions for Simple Guarded Commands

for v fresh variable, Jx := F K = havoc v ; assume (v = F) ;
havoc x ; assume (x = v)

Jif(F) c1 else c2K =(assume F ; Jc1K) 8
(assume ¬F ; Jc2K)

Jloop inv(I) c1 while(F) c2K =
(where ~r = mod(c1; c2) denotes variables modified in c1, c2)

assert I ; havoc ~r ; assume I ;
Jc1K ;
(assume (¬F) 8(assume F ;

Jc2K ; assert I ;
assume false))

Jhavoc ~x suchThat F K = assert ∃~x.F ;
havoc ~x ; assume F

Figure 6. Translating Code into Simple Guarded Commands

of higher-level constructs into a lower-level intermediate lan-
guage, with soundness ensured by the form of the translation.
• Non-deterministic change: A statement havoc x suchThat G,

where x is a variable and G is a formula, changes the value of
x subject only to the constraint G (for example, the statement
havoc x suchThat 0 ≤ x sets x to an arbitrary non-negative
value). To ensure that the statement does not have the effect
of assume(false), Jahob emits an assertion that verifies that at
least one such value of x exists.

From Code to Simple Commands. Figure 6 presents the transla-
tion of the code portion of the extended guarded command lan-
guage into simple guarded commands. Jahob translates assign-
ments into a series of havoc statements and equality constraints,
which reduces all state changes to havoc statements. Conditional
statements become non-deterministic choice with assume state-
ments, as in control-flow graph representations. The Jahob encod-
ing of loops with loop invariants is standard and analogous, for
example, to the sound version of the encoding in ESC/Java [20].
Proving Verification Conditions. Verification conditions gener-
ated using the rules in Figure 5 can typically be represented as
a conjunction of a large number of formulas. Figure 7 describes
Jahob’s splitting process, which produces a list of implications
whose conjunction is equivalent to the original formula. The in-
dividual implications correspond to different paths in the method,
as well as different conjuncts of assert statements, operation pre-
conditions, invariants, postconditions, and preconditions of invoked
methods. The splitting rules in Jahob preserve formula annota-
tions, which are used for assumption selection. During splitting Ja-
hob also eliminates simple syntactically valid implications, such as
those whose goal occurs as one of the assumptions, or those whose
assumptions contain false.

4. The Integrated Proof Language
Our integrated proof language is designed to allow developers to
provide additional guidance to the system to enable the automated
provers to succeed in proving the desired verification conditions.
Figure 3 presents the constructs in this language. These constructs
appear in comments embedded within the Java source code, and
are preserved by the translation to the extended guarded command
language. Figure 8 presents the semantics of the proof language
constructs as a translation into the simple guarded command lan-
guage.

A primary goal of the design of the integrated proof language
is to enable the developer to provide the system with as little or as
much guidance as desired. At one extreme the provers should be
able to prove verification conditions with no developer guidance at
all if they have this capability. At the other extreme the language
should enable the developer to perform every proof step explicitly
if so desired. The language should also flexibly support intermedi-
ate points at which the developer and provers cooperate, with the
developer providing only the minimal guidance needed to enable
the provers to complete the proof. The Jahob proof language sup-
ports this wide range of behaviors by providing not only high-level
constructs that leverage the substantial automated reasoning power
of the Jahob system, but also low-level constructs that allow the
developer to precisely control proof steps to enable a successful
proof.

4.1 The Assumption Base
A verification condition in Jahob has the form of an implication
F →G where the antecedent F is a conjunction of facts. This
conjunction F is the assumption base that the provers use when
they attempt to prove the consequent G.

~A→G1 ∧G2 ; ~A→G1, ~A→G2

~A→ (~B→G[p])
[q]

; (~A ∧ ~B[q])→G[pq]

~A→∀x.G ; ~A→G[x := xfresh]

Figure 7. Splitting Rules for Converting a Formula into an Impli-
cation List (F [c] denotes a formula F annotated with a string c)

The translations of the proof language constructs use assume
commands to add facts to the assumption base.4 The soundness of
the assume commands in this context is guaranteed by the form of
the translation.

Some translations contain the following pattern:

(skip 8 (c ;JpK ; assert F ; assume false)) ; assume G

The net effect of this pattern is to soundly add G to the orig-
inal assumption base. The pattern achieves this effect as fol-
lows. The first branch of the non-deterministic choice operator
(skip) propagates the original assumption base. The second branch
(c ;JpK ; assert F ; assume false) generates the proof obligations
required to ensure that G actually holds. The assume false at the
end of the second branch conceptually terminates the computation
at the end of the branch so that the verification condition gen-
erator does not take the computational path through the second
branch into account when generating the verification condition at
the program point after the choice. This mechanism ensures that
the second branch generates no proof obligations other than those
required to ensure that G holds.

In effect, the second branch uses the assume false statement
to create a new local assumption base in which the developer can
guide the proof of the properties required to ensure that G holds.
Because this assumption base is local, none of the assumptions or
intermediate lemmas in the proof propagate through to the program
point after the choice. This local assumption base mechanism there-
fore ensures that only G is added to the original assumption base
at the program point after the translated proof language construct,
and that local assumptions that are only sound in the context of the
proof are not propagated to the original assumption base.

The command c contains statements introduced as part of the
translation; p contains proof statements provided by the developer
and originally nested inside the proof construct under translation.
The command c can include constructs that may modify the pro-
gram state, such as assume and havoc constructs. The form of the
translation ensures that these constructs are used in a sound way.

4.2 The note Construct
The note construct translates into an assert followed by an assume
of the same formula. The net effect is to identify a formula for
Jahob to prove, then add the verified formula to the assumption
base. Because Jahob proves the formula before adding it to the
assumption base, the use of note is sound. A note statement of the
form note l:F from ~h assigns a name l to the formula F and asks
Jahob to prove F using the named formulas ~h.
Proof Decomposition. The note statement enables the developer
to guide the decomposition of the proof by instructing the com-
bined proof system to prove certain lemmas. The availability of
these lemmas is often sufficient to guide the provers through the
(usually unbounded) proof search space to successfully find a proof
for the verification condition of interest.

4 Specifically, the verification condition generation rule in Figure 5 for
statements of the form assume l: F produces a verification condition of
the form F [l]→G, which, in effect, adds F to the set of facts available to
the provers when they attempt to prove the consequent G.

Jnote l:F from ~hK = assert l: F from ~h ;
assume l: F

Jlocalize in (p ; note l:F)K = (skip 8(JpK ; assert F ;
assume false)) ;

assume l: F
Jmp l:(F →G)K = assert F ; assert (F →G) ;

assume l: G
Jassuming lF :F in (p ; note lG:G)K = (skip 8(assume lF : F ;

JpK ; assert G ;
assume false)) ;

assume lG: (F →G)

Jcases ~F for l:GK = assert F1 ∨ . . . ∨ Fn ;
assert (F1→G) ; . . . ; assert (Fn→G) ;
assume l: G

JshowedCase i of l : F1 ∨ . . . ∨ FnK = assert Fi ;
assume l: F1 ∨ . . . ∨ Fn

JbyContradiction l:F in pK = (skip 8(assume ¬F ;
JpK ; assert false ;
assume false)) ;

assume l: F
Jcontradiction l:F K = assert F ; assert ¬F ; assume false

Jinstantiate l:∀~x.F with ~tK = assert ∀~x.F ;
assume l: F [~x := ~t]

Jwitness ~t for l:∃~x.F K = assert F [~x := ~t] ;
assume l: ∃~x.F

JpickWitness ~x for lF :F in (p ; note lG:G)K =
(where ~x is not free in G) (skip 8(assert ∃~x.F ;

havoc ~x ;
assume lF : F ;
JpK ; assert G ;
assume false)) ;

assume lG: G
JpickAny ~x in (p ; note l:G)K = (skip 8(havoc ~x ;

JpK ; assert G ;
assume false)) ;

assume l:∀~x.G
Jinduct l:F over n in pK = (skip 8(havoc n ;

assume 0 ≤ n ;
JpK ; assert F [n := 0] ;
assert (F →F [n := n+1])
assume false)) ;

assume l: ∀n.(0 ≤ n→F)

Figure 8. Translating Proof Language Constructs into Simple Guarded Commands

Multiple Provers. The note statement also enables developers
to decompose a proof obligation so that multiple provers (with
arbitrarily narrow areas of specialization) can work together to
prove it. Consider, for example, a proof obligation that involves
both arithmetic reasoning and reasoning about the shape of a given
data structure. By using one group of note statements to identify
relevant arithmetic properties and another group of note statements
to identify relevant data structure shape properties, the developer
can decompose the proof obligation to expose specific parts of the
proof obligation to different provers. A final note statement can
then combine the results to deliver the complete proof obligation. A
potential advantage of this approach is that the set of provers, when
working together, may be able to provide sophisticated reasoning
capabilities that are beyond the reach of any single general system.

Controlling the Assumption Base. Many provers perform a
search over a (potentially unbounded) proof space. In practice,
we have found that increasing the size of the assumption base may
degrade the ability of the prover to find proofs for facts that it is
otherwise perfectly capable of proving. Note statements allow de-
velopers to give names to specific facts (these facts can either be
available directly in the assumption base or provable from the as-
sumption base), then use the names to identify a specific set of facts
that the prover should use when attempting to prove a new fact. The
net effect is to eliminate irrelevant facts from the assumption base
to productively focus provers on the specific facts they need to use.

4.3 The localize Construct
The localize construct allows the developer to create a new local as-
sumption base for the proof of an arbitrary formula, then add only
this proved formula back into the original assumption base. The
construct therefore makes it possible to use intermediate lemmas
to guide the proof of a formula without adding these intermediate
lemmas back into the original assumption base. Excluding inter-
mediate lemmas from the original assumption base when the lem-
mas are not relevant for subsequent verification conditions can help
keep the assumption base (and resulting proof search space) small
enough to enable the provers to find proofs of subsequent verifica-
tion conditions in an acceptable amount of time. Note that because
the local assumption base is initially the same as the original as-

F G

F ∧G

F ∧G

F

F ∧G

G

false

F true

Figure 9. Implicit First-Order Logic Rules

sumption base, any formulas verified in the local assumption base
also hold in the original assumption base. This property ensures
that the construct is sound.

4.4 First-Order Logic Constructs
The first-order logic proof constructs encode standard rules of nat-
ural deduction systems [38, Section 2.12], [21, Section 5.4]. When
combined with the proof rules implicit in the splitting process, these
constructs give our system the completeness of first-order logic.
(Note that for arbitrary higher-order logic formulas we cannot hope
to obtain a proof system complete with respect to the standard mod-
els [2].) During splitting, Jahob implicitly splits top-level conjunc-
tions of assumptions and goals, eliminating the need for conjunc-
tion introduction and elimination commands. Jahob also implicitly
incorporates the standard rule for deriving any formula when false
is one of the assumptions. Figure 9 shows the rules that Jahob au-
tomatically applies as part of the splitting process.
The assuming construct encodes the implication introduction
rule for first-order logic. It enables the developer to guide the proof
of a fact of the form F →G. The fact F is first added to a new local
assumption base, in which the developer can guide the proof of G.
F →G is then added back into the original assumption base.

The assuming construct makes it possible to decompose the
components of an implication. Without such a construct, many
intermediate lemmas in a proof of F →G would themselves be
implications that could not be decomposed, increasing the difficulty
of the proof task. In practice, we have found the assuming construct
particularly useful when G becomes complex, because the provers
often fail to find the proof in such cases without guidance.
The mp construct encodes the modus ponens rule of inference. It
enables the developer to conclude a goal G from known facts of the
form F and F →G.

The pickAny construct encodes the universal introduction rule. It
enables the developer to guide the proof of a fact of the form ∀~x.G
by choosing arbitrary values for ~x in a new local assumption base,
then allowing the developer to guide the proof of G. ∀~x.G is then
added to the original assumption base.
The instantiate construct encodes the universal elimination rule.
It enables the developer to establish a fact of the form G[~x := ~t] by
guiding the proof of a fact of the form ∀~x.G, then adding G[~x := ~t]
to the assumption base.
The witness construct encodes the existential introduction rule.
It enables the developer to establish a fact of the form ∃~x.G by
guiding the proof of a fact of the form G[~x := ~t], then adding
∃~x.G to the assumption base.
The pickWitness construct encodes the existential elimination
rule. It enables the developer to instantiate a formula of the form
∃~x.F (i.e., eliminate the existential quantifier and name the values
that satisfy the constraint F) in a new local assumption base, guide
the proof of a formula G, then add the proved goal G back into the
original assumption base. To ensure soundness, ~x — the variable(s)
with which the developer is instantiating ∃~x.F — must not be free
in G.

By enabling the developer to name values of ~x for which the
constraint F is true, the pickWitness construct makes it possible to
replace an existentially-quantified formula with an instantiated ver-
sion, then state additional facts about the named values. This func-
tionality broadens the applicability of provers with limited abil-
ity to reason about existentially quantified formulas. Without the
pickWitness construct, every subgoal that depended on the con-
strained values would have the form ∃~x.(F →G). Such a subgoal
is beyond the reach of any prover that cannot reason effectively
about existentially quantified formulas. The pickWitness construct
enables the developer to soundly eliminate the existential quanti-
fier, thereby transforming existentially quantified proof goals into a
form that such provers can more effectively handle.
The cases construct enables the developer to decompose a goal
using case analysis. It ensures that the set of cases fully cover the
space of the proof, proves each case, then soundly concludes the
goal.
The showedCase construct encodes the disjunction introduction
rule. It enables the developer to establish a fact of the form F1 ∨
. . . ∨ Fn by guiding the proof of a case Fi in the disjunction.
The byContradiction construct enables the developer to prove
an arbitrary formula F using proof by contradiction. It allows
the developer to add ¬F to a new local assumption base, then
use this assumption base to guide the proof of false. The verified
formula F can then be soundly added to the original assumption
base. The developer can also use this construct to perform negation
introduction by directing Jahob to prove a formula of the form ¬F .
The contradiction construct enables the developer to derive false
from a contradiction. It allows the developer to guide the proof of
a formula F and its negation ¬F to soundly conclude false.

4.5 The induct Construct
The induct construct enables the developer to prove facts of the
form ∀n.(0 ≤ n→F) using mathematical induction. As the trans-
lation in Figure 8 illustrates, the induct statement encodes math-
ematical induction by choosing an arbitrary value of n such that
0 ≤ n holds, then allowing the developer to guide the proof of the
base case F [n := 0] and the inductive step F →F [n := n + 1].
The introduction of the constraint 0 ≤ n makes it possible to sim-
ulate mathematical induction over natural numbers using integers.

The induct construct is particularly important because the fully
automated provers that we use are generally unable to derive facts

whose proofs require mathematical induction. Without this con-
struct, the only recourse for the developer would be to perform the
proof using an external interactive theorem prover.

4.6 Executable Code Inside Proof Constructs
Many proof language constructs can (recursively) contain other
proof language constructs (see Figure 3). It is possible to gener-
alize this formulation and introduce sound constructs that contain
not only proof constructs, but also executable code that may mu-
tate the Java program state. In particular, it is possible to generalize
pickWitness and pickAny to enclose the general extended guarded
command c (which may contain executable Java code as well as
proof constructs) instead of just the proof command p. The gen-
eralization of pickWitness makes it possible to choose a witness
for an existentially quantified formula in the assumption base, then
use that witness at multiple program points throughout a sequence
of Java statements. The dual generalization of pickAny makes it
possible to prove a universally quantified formula at the end of
a sequence of Java statements by 1) introducing a fresh variable
that denotes an arbitrary value at the start of the sequence, 2) using
this new variable to refer to its value at multiple program points
throughout the sequence of statements, then 3) concluding the uni-
versally quantified formula at the end of the sequence. This ap-
proach is particularly useful in simplifying proofs of program prop-
erties that would otherwise require the reasoning systems to work
with universally quantified loop invariants.

To enable the flexible combination of Java code and proof com-
mands, we propose a proof language construct, fix, that subsumes
both pickWitness and pickAny and can enclose executable code
that may mutate the Java program state. Appendix B presents the
fix construct, including its syntax, its semantics through a transla-
tion into simple guarded commands, and a proof of its soundness.

5. Soundness
The translation rules in Figure 8 define the semantics of our proof
language constructs. We show the soundness of each of these rules
using properties of weakest liberal preconditions [6]. We define the
relation v such that c v c′ if and only if wlp(c, F)→wlp(c′, F)
for all formulas F . In this case we say that c is stronger than c′.

Let skip be the no-op command. We use induction on p to
show p v skip for all p. This is sufficient for soundness because
it ensures that any property provable for the annotated program
containing proof language constructs also holds in the unannotated
program (which is equivalent to the annotated program with all
proof constructs replaced with skip).

The induction hypothesis is wlp(JpK, H)→H , where H is an
arbitrary formula. For each proof language construct p, we apply
the translation rules in Figure 8, the rules of weakest liberal pre-
conditions in Figure 5, the induction hypothesis, and the standard
rules of logic to show that wlp(JpK, H) → H — i.e., that p is
stronger than skip.

As a sample inductive step, consider the assuming construct.
By applying the translation rule for assuming, the rules of weakest
liberal preconditions, and the standard rules of logic, we obtain:

wlp(Jassuming F in (p ; note G)K, H)
= wlp(((skip 8(assume F ;JpK ; assert G ; assume false)) ;

assume (F →G)), H)
= ((F →G)→H) ∧ (F →wlp(JpK, G))

According to the induction hypothesis, wlp(JpK, G)→G. There-
fore, ((F →G)→H) ∧ (F →wlp(JpK, G)) implies the formula
((F →G)→H) ∧ (F →G), which implies H . Consequently,
assuming is stronger than skip and its translation is sound. The
proofs for the other constructs, including induct, pickAny, and
pickWitness, are similar and are given in Appendix A.

Local Data
Java Java Verification Specification Specification Structure Loop note localize

Data Structure Methods Statements Time (s) Variables Variables Invariants Invariants Statements Statements
Hash Table 15 90 497.6 5 3 20 4 176 (93) 12
Priority Queue 12 60 130.2 5 0 9 2 105 (47) 0
Binary Tree 9 134 6519.9 2 4 7 6 98 (15) 2
Array List 23 121 194.5 4 0 10 10 27 (11) 0
Circular List 5 57 119.2 4 1 9 1 3 (0) 0
Cursor List 9 51 36.2 6 0 16 1 2 (0) 0
Association List 11 65 10.8 3 1 7 3 0 (0) 0
Linked List 6 38 5.3 3 0 8 2 0 (0) 0

assuming mp pickAny instantiate witness pickWitness cases induct
Data Structure Statements Statements Statements Statements Statements Statements Statements Statements
Hash Table 26 3 17 8 0 0 3 0
Priority Queue 28 0 11 1 1 4 2 2
Binary Tree 0 0 0 0 0 0 0 0
Array List 3 0 1 0 1 0 0 0
Circular List 0 0 0 0 0 0 0 0
Cursor List 0 0 0 0 0 0 0 0
Association List 0 0 0 0 0 0 0 0
Linked List 0 0 0 0 0 0 0 0

Table 1. Method, Statement, Specification, and Integrated Proof Language Construct Counts for Verified Data Structures

6. Experimental Results
We next discuss our experience using our integrated proof language
in the specification and verification of a collection of linked data
structures. The complete source code for the data structures (in-
cluding implementations and specifications) as well as the Jahob
verification system (including source code) are all available at
javaverification.org.
6.1 Construct Counts and Verification Times
Table 1 presents the verification times for the data structures as
well as counts of various Java and Jahob constructs. The first
and second columns present the number of Java methods and Java
statements, respectively, in the data structure implementations. The
third column presents the time required for Jahob to verify each
implementation.

The remaining columns present the counts of the different
Jahob constructs. Each method’s specification typically contains
requires, modifies, and ensures clauses, although some requires
and modifies clauses are empty and therefore omitted from the
specification. The remaining columns present counts of the various
specification and proof language constructs, including the number
of specification variables, local specification variables, data struc-
ture invariants, loop invariants, and proof statements. There is one
column for each type of proof statement used in our data structures.

The note Statements column contains entries of the form n(m).
In these entries n counts the total number of note statements that
appear in the data structure implementation. Of these n statements,
m have a from clause that is used to identify a set of named facts for
the provers to use when proving the new fact in the note statement.
Because the typical motivation for including a from clause is to
limit the size of the assumption base so that the provers can prove
the new fact in a reasonable amount of time, these numbers provide
some indication of how sensitive the provers are to the size of the
assumption base in each data structure.

In general, the data structures use note statements much more
extensively than any other proof language construct. This fact re-
flects the strength of the underlying provers — it is often possible
to guide the provers to an effective proof by either providing a few
lemmas that effectively guide the proof decomposition or by appro-
priately limiting the assumption base.

Without Proof With Proof
Language Constructs Language Constructs

Data Methods Sequents Methods Sequents
Structures Verified Verified Verified Verified
Hash Table 6 of 15 949 of 982 15 1226
Priority Queue 9 of 12 555 of 563 12 792
Binary Tree 1 of 9 776 of 866 9 1294
Array List 18 of 23 886 of 891 23 928
Circular List 2 of 5 212 of 226 5 237
Cursor List 8 of 9 353 of 354 9 356
Association List 11 of 11 349 of 349 11 349
Linked List 6 of 6 168 of 168 6 168

Table 2. Effect of Proof Language Constructs on Verification

6.2 Effect of Proof Language Constructs
Table 2 presents numbers that summarize the effect that the proof
language constructs have on the verification. The first two columns
present the number of methods and sequents verified without proof
language constructs. We obtained these numbers by removing all
proof statements from the program, then attempting to verify the
data structure. Each prover runs with a timeout — if the prover
fails to prove the sequent within the timeout, Jahob terminates it
and moves on to the next prover. In general, the more complex the
data structure, the more guidance the provers need to verify the data
structure.

The final column in Table 2 presents the total number of se-
quents required to fully verify the corresponding data structure
implementations after adding the necessary proof language state-
ments. Note that the number of sequents increases, in some cases
significantly. This is because the proof statements force the provers
to prove additional lemmas, which in turn correspond to additional
sequents. The increase in the number of sequents reflects the dif-
ficulty of proving the complex sequents that failed to verify in the
absence of developer guidance.

We next discuss the use of the proof language constructs in
the Hash Table, Priority Queue, Binary Tree, and Array List data
structures in more detail.

6.3 Hash Table
Hash Table implements a relation between keys and values. It uses
the standard array of linked lists implementation, with each element
in each list storing one of the key, value pairs in the relation.

The data structure uses note statements primarily for two pur-
poses: to control the assumption base, and to instruct the provers
to prove key lemmas involving the relationship between the con-
crete and abstract states. For example, the implementation often
performs an operation on the linked list to which a specific key
hashes. In this case a note statement often instructs the provers
to prove a formula stating that if the abstract relation contains a
specific key, value pair, then the element storing that pair is in the
list stored at the offset in the array given by the key’s hash value.
Other note statements involve data structure consistency properties
— for example, that once a given key, value pair has been removed
from the hash table, there is no list element in the table whose next
pointer refers to an element with that same key, value pair.

In comparison with the other data structures in our benchmark
set, the hash table is a fairly complex data structure with many rep-
resentation invariants. Even though the provers are capable of prov-
ing many of the desired properties, the presence of all of the invari-
ants produces an assumption base large enough to significantly im-
pair the ability of the provers to find the proofs within a reasonable
amount of time. Many of the note statements are therefore present
primarily to restrict the assumption base to relevant facts, thereby
enabling the provers to focus their efforts on a productive part of
the search space so that they can successfully prove the verification
conditions within a reasonable amount of time.

In addition to the note statement, the hash table also uses the
localize, assuming, mp, pickAny, instantiate, and cases state-
ments. The hash table uses localize statements to limit the scope of
intermediate lemmas, since adding extraneous facts to the assump-
tion base can degrade the effectiveness of the provers in proving
subsequent verification conditions. Note that localize statements
also make certain aspects of the proof structure (specifically, the
correspondence between intermediate lemmas and verification con-
ditions) explicit. They therefore make the proofs easier to under-
stand.

The hash table uses assuming and pickAny statements primarily
in the proof of data structure invariants, which typically have the
general form ∀x.(x ∈ C→P) (for all objects x that belong to
the class C, the property P holds). As a result, the proof of a data
structure invariant often has the following general form:

pickAny x in
(assuming x ∈ C in

(p ; note P) ;
note P)

The hash table uses instantiate statements to appropriately in-
stantiate the universal quantifiers in data structure invariants to ob-
tain intermediate lemmas to prove other goals.

6.4 Priority Queue
Priority Queue implements a priority queue with a set interface.
The queue itself is implemented as a complete binary tree stored in
a dense array. The children of a parent element stored at index i are
stored at indices 2i+1 and 2i+2. An important ordering invariant
is that each parent’s key is greater than the keys of its two children.
The greatest element is therefore the root of the tree.

The majority of the note statements appear in methods that up-
date the tree, either to insert a new element or to remove the greatest
element. During these methods some of the invariants are temporar-
ily violated as the tree is updated. Many of the note statements
appear in groups that identify these regions. Conceptually, the pur-
pose of these statements is often to identify the updated region,

instruct the provers to prove lemmas stating that the invariants hold
outside of the updated region, and identify the properties that char-
acterize the updated region. Given this guidance, the provers are
then able to prove that a completed update restores the invariants to
implement the desired operation.

The priority queue uses the induct statement to prove that the
element stored at index 0 of the array is the maximal element in
the tree. The provers are not able to prove this property without
assistance, but by using the induct statement as well as other
proof statements to resolve key choice points in the intermediate
steps of the proof, it is possible to establish this property from
the ordering invariant. Of the remaining constructs, the priority
queue uses the assuming and pickAny statements the most, to
establish data structure invariants and to establish equality between
sets using proofs of the following form:

pickAny x in
(assuming x ∈ A in

(pf ; note x ∈ B) ;
note lf :x ∈ B) ;

pickAny x in
(assuming x ∈ B in

(pb ; note x ∈ A) ;
note lb:x ∈ A) ;

note l:A = B from lf , lb

The pickAny and assuming statements establish that ∀x.x ∈
A→x ∈ B and ∀x.x ∈ B→x ∈ A. The final note statement
establishes from these two facts that the sets A and B are equal.

6.5 Binary Tree
Binary Tree stores a set of elements in a binary search tree. It ex-
ports a set interface to the elements in the tree. It is a challenging
data structure to verify because the verification conditions involve
a wide range of different kinds of properties: data structure shape
properties, ordering properties involving the elements in the tree,
and abstraction properties that relate the tree to the abstract set it
implements. Moreover, the interactions between these properties
make it difficult for any single prover to prove the generated verifi-
cation conditions by itself.

The binary tree uses primarily note statements. The vast ma-
jority of the note statements in the data structure implementation
are present to facilitate the interaction between the different provers
that work together to verify the implementation. Specifically, these
note statements identify specific shape properties that the Mona
decision procedure is then able to prove. The first-order theorem
provers use these shape properties as lemmas to establish the re-
lationships between the shape properties, ordering properties, and
abstraction properties required to prove the verification conditions.
In effect, the note statements serve a dual purpose: guiding the
provers to an effective proof decomposition by instructing them to
prove data structure shape lemmas and enabling the successful ap-
plication of multiple provers to a single verification problem by
identifying relevant facts for the specialized Mona decision proce-
dure to prove.

6.6 Array List
Array List implements a mapping from integers to objects. It stores
the mapping in an array; the position of the element in the array
corresponds to the element’s index in the mapping. The note state-
ments are often used to instruct the provers to prove lemmas that
relate the contents of regions in the updated array to the contents
of corresponding regions in the original array. For example, the
method that adds an element at a specific index copies the block
of items above the index up one position to make space for the new
element.

The array list also contains a pickAny statement and several
assuming statements. These are used to guide the proofs of several
universally quantified lemmas that relate membership in different
versions of the array with restrictions on the corresponding index
of the element. For example, one of the lemmas states that if the
element was in the array prior to the insertion of a new element, its
index was less than the active size of the array. These formulas are
used to prove a set equality relationship involving the old content
before an insertion and the new content after the insertion.

As discussed above in Section 2, the array list also contains a
witness statement that enables the developer to identify the witness
for one of the clauses of the postcondition of the remove method.

7. Related Work
Interactive theorem provers include Isabelle/HOL [35], PVS [37],
Boyer-Moore provers [11], and Coq [10]. Most of these provers
provide facilities for exporting executable definitions of mathe-
matical functions into purely functional programs. It is natural to
consider combinations of automated techniques to increase the
granularity of interactive proof steps in interactive provers. Such
integration is used in PVS [37], Boyer-Moore provers [11], and
Isabelle [33]. We adopt declarative-style proofs, which are also
supported by the Isabelle’s Isar notation [44] and are present in the
Mizar [40] and Athena [4] systems. We adopted the names (but not
the exact semantics) of terms such as pickWitness and assumption
base from the Athena system [3, 4].

The difference between the approach used in interactive theo-
rem provers and the approach used in our proof language is that
the former aims to incorporate executable programs into the uni-
verse of proofs, while our proof language aims to bring proofs into
the universe of executable programs. In particular, our proof lan-
guage is able to naturally embed proofs into imperative programs.
Most interactive theorem provers operate over functional program-
ming languages in an environment designed for proofs. Our proof
language is integrated into the underlying imperative programming
language and naturally extends its assertion mechanism. This ap-
proach provides the developer with an accessible way of reasoning
not only about the effect of executing a method but also about the
intermediate states during the execution, which is often necessary
when verifying complex program properties.

Although Jahob supports the use of interactive provers, its
proof commands provide an alternative way of decomposing proof
obligations without ever leaving the world of the original Java
program. The fact that these proof constructs naturally translate
into guarded commands suggests that they are intuitive for the
verification of imperative programs.

We note that some theorem provers support primarily tactic-
style proofs. In comparison with our declarative approach, tactics
must be executed to show the intermediate facts that support the
proof, which can lead to problems with robustness and maintain-
ability in the presence of changes to the names of intermediate vari-
ables and theorem prover tactics.
Programs as proofs. The Jahob proof system differs from sys-
tems based on interpreting programs as proofs [13, 36, 45] and
systems such as Ynot [34] based on monadic computations within
Coq. The semantic basis of Jahob is the (first-order) guarded com-
mand language (as opposed to lambda calculus). Instead of in-
troducing a fundamental distinction between programs as proofs
and types as propositions, Jahob views programs as guarded com-
mands and (through the weakest precondition rules) as the corre-
sponding propositions. Jahob adopts the idea that certain propo-
sitions are simple enough to serve as their own proofs. The goal
of Jahob’s proof language then becomes soundly modifying the
guarded commands to decompose the generated formulas into
simpler ones until they become self-evident. The notion of self-

evidence is in principle given by the rules of first-order and higher-
order logic, but is in practice determined by the state of the art
in automated reasoning. In comparison with the alternatives, we
believe that this approach is easier for developers to use.
Software verification tools. Software verification tools that can
prove properties of linked data structures include Hob [25, 30, 31],
Spec# [9], ESC/Modula-3 [16], ESC/Java [18], ESC/Java2 [12],
and Jahob [46], [24]. Jahob has already been used to verify a col-
lection of linked data structures [46], but in certain cases relied on
the developer to use Isabelle to interactively prove verification con-
ditions that the provers were unable to verify. Our results in Sec-
tion 6 show that our integrated proof language completely elim-
inates the need to use external interactive theorem provers even
when proving such complex properties. LOOP, KIV, KeY, Jive,
and Krakatoa have been used to verify a variety of Java programs
[1, 8, 14, 14, 17, 42]. Several of these verification environments aim
to avoid the disconnect between source code and the proof obli-
gation by incorporating the notion of imperative programs into the
notion of proof and building interactive interfaces that enable ma-
nipulations of annotated source code. Instead, Jahob shows how to
introduce small extensions into a standard programming language
to facilitate proof decomposition. To the best of our knowledge,
no other system has been used to verify a collection of linked data
structures of comparable sophistication to the ones in Section 6.

The working draft of the Boogie 2 language reference man-
ual [32] presents the call-forall statement as a means to introduce
lemmas for helping the program verifier in more advanced verifi-
cations. Lemma procedures, in conjunction with the call and call-
forall constructs, make it possible to verify certain universally-
quantified lemmas and implications.
Using specification variables to prove quantified properties.
The idea of using specification variables with arbitrary values to
verify universally quantified assertions appears in extensions of
predicate abstraction [7, 19]. The fix construct makes this concept
directly available to the developer, providing greater control over its
use. We have also identified conditions under which this approach
is sound.
Summary. Over the past several decades, researchers have pro-
posed a range of program verification approaches and tools. Sound-
ness is an essential property for any such approach and we have
demonstrated the soundness of our approach. The next most im-
portant question in practice is the feasibility of the proof system in
verifying complex program properties. Our experience shows that
our system effectively supports this task for a wide range of data
structures. We attribute the effectiveness of our system to 1) its inte-
gration with the underlying imperative programming language and
2) its ability to incorporate the full range of automated reasoning
procedures based on fragments of well-understood classical logics.
We believe our system is unique in the extent to which it supports
these two features.

8. Conclusion
Automated reasoning systems are becoming increasingly powerful
and therefore increasingly useful in a range of domains. But despite
these advances, proofs of many complex properties remain beyond
the reach of fully automated techniques. Our results show that
our integrated proof language can enable developers to effectively
resolve key proof choice points to obtain, with reasonable effort,
proofs of very sophisticated program correctness properties that
otherwise lie beyond the reach of automated techniques. These
results suggest that the incorporation of a reasonable amount of
developer guidance can dramatically increase the sophistication of
the range of important program correctness properties that it is
possible to formally prove. We anticipate that similar techniques
would provide similar benefits in other domains.

References
[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle,

W. Menzel, W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt.
The KeY tool. Software and System Modeling, 4:32–54, 2005.

[2] P. B. Andrews. An Introduction to Mathematical Logic and Type
Theory: To Truth Through Proof. Springer (Kluwer), 2nd edition,
2002.

[3] K. Arkoudas. Denotational Proof Languages. PhD thesis,
Massachusetts Institute of Technology, 2000.

[4] K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard. Verifying a file
system implementation. In ICFEM, volume 3308 of LNCS, 2004.

[5] D. Aspinall. Proof general: A generic tool for proof development. In
TACAS, 2000.

[6] R.-J. Back and J. von Wright. Refinement Calculus. Springer-Verlag,
1998.

[7] I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by predicate
abstraction. In VMCAI’05, 2005.

[8] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal
system development with KIV. In FASE, number 1783 in LNCS,
2000.

[9] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte.
Verification of object-oriented programs with invariants. Journal of
Object Technology, 3(6):27–56, 2004.

[10] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development–Coq’Art: The Calculus of Inductive Constructions.
Springer, 2004.

[11] R. S. Boyer and J. S. Moore. Integrating decision procedures into
heuristic theorem provers: A case study of linear arithmetic. In
Machine Intelligence, volume 11, pages 83–124. OUP, 1988.

[12] P. Chalin, C. Hurlin, and J. Kiniry. Integrating static checking and
interactive verification: Supporting multiple theories and provers in
verification. In VSTTE, 2005.

[13] T. Coquand and G. P. Huet. The calculus of constructions. Inf.
Comput., 76(2/3):95–120, 1988.

[14] A. Darvas and P. Müller. Formal encoding of JML Level 0
specifications in JIVE. Technical Report 559, Chair of Software
Engineering, ETH Zurich, 2007.

[15] L. de Moura and N. Bjørner. Efficient E-matching for SMT solvers.
In CADE, 2007.

[16] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended
static checking. Technical Report 159, COMPAQ Systems Research
Center, 1998.

[17] J.-C. Filliatre. Verification of non-functional programs using
interpretations in type theory. Journal of Functional Programming,
13(4):709–745, 2003.

[18] C. Flanagan, K. R. M. Leino, M. Lilibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended Static Checking for Java. In Proc. ACM PLDI,
2002.

[19] C. Flanagan and S. Qadeer. Predicate abstraction for software
verification. In Proc. 29th ACM POPL, 2002.

[20] C. Flanagan and J. B. Saxe. Avoiding exponential explosion:
Generating compact verification conditions. In Proc. 28th ACM
POPL, 2001.

[21] J. Gallier. Logic for Computer Science. http://www.cis.upenn.
edu/~jean/gbooks/logic.html, revised on-line edition, 2003.

[22] Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification
conditions using satisfiability modulo theories. In CADE, 2007.

[23] N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and G. Yorsh.
The boundary between decidability and undecidability for transitive-
closure logics. In Computer Science Logic, pages 160–174, 2004.

[24] V. Kuncak. Modular Data Structure Verification. PhD thesis, EECS
Department, Massachusetts Institute of Technology, February 2007.

[25] V. Kuncak, P. Lam, K. Zee, and M. Rinard. Modular pluggable
analyses for data structure consistency. IEEE Transactions on
Software Engineering, 32(12), December 2006.

[26] V. Kuncak and K. R. M. Leino. In-place refinement for effect check-
ing. In Second International Workshop on Automated Verification of
Infinite-State Systems (AVIS’03), Warsaw, Poland, April 2003.

[27] V. Kuncak, H. H. Nguyen, and M. Rinard. Deciding Boolean Algebra
with Presburger Arithmetic. J. of Automated Reasoning, 2006.
http://dx.doi.org/10.1007/s10817-006-9042-1.

[28] V. Kuncak and M. Rinard. Existential heap abstraction entailment is
undecidable. In Static Analysis Symposium, 2003.

[29] V. Kuncak and M. Rinard. Towards efficient satisfiability checking
for Boolean Algebra with Presburger Arithmetic. In CADE-21, 2007.

[30] P. Lam. The Hob System for Verifying Software Design Properties.
PhD thesis, Massachusetts Institute of Technology, February 2007.

[31] P. Lam, V. Kuncak, and M. Rinard. Cross-cutting techniques in
program specification and analysis. In 4th International Conference
on Aspect-Oriented Software Development (AOSD’05), 2005.

[32] K. R. M. Leino. This is Boogie 2. http://research.microsoft.com/ leino/-
papers/krml178.pdf, June 2008. (working draft).

[33] J. Meng and L. C. Paulson. Translating higher-order problems to
first-order clauses. In ESCoR: Empir. Successful Comp. Reasoning,
pages 70–80, 2006.

[34] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: dependent types for imperative programs. In ICFP, pages
229–240, 2008.

[35] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer-
Verlag, 2002.

[36] B. Nordstroem, K. Petersson, and J. Smith. Programming in Martin-
Loef’s Type Theory: An Introduction. Oxford University Press, 1990.

[37] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In 11th CADE, 1992.

[38] L. C. Paulson. Logic and Computation: Interactive Proof with
Cambridge LCF. CUP, 1987.

[39] S. Ranise and C. Tinelli. The SMT-LIB Standard: Version 1.2.
Technical report, Department of Computer Science, The University
of Iowa, 2006. Available at www.SMT-LIB.org.

[40] P. Rudnicki and A. Trybulec. On equivalents of well-foundedness. J.
Autom. Reasoning, 23(3-4):197–234, 1999.

[41] S. Schulz. E – A Brainiac Theorem Prover. Journal of AI
Communications, 15(2/3):111–126, 2002.

[42] J. van der Berg and B. Jacobs. The LOOP compiler for Java and
UML. Technical Report CSI-R0019, Computing Science Institute,
Univ. of Nijmegen, Dec. 2000.

[43] C. Weidenbach. Combining superposition, sorts and splitting. In
A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning, volume II, chapter 27. Elsevier Science, 2001.

[44] M. Wenzel. Isabelle/Isar — a versatile environment for human-
readable formal proof documents. PhD thesis, TU München, 2002.

[45] H. Xi. Dependent ML: An approach to practical programming with
dependent types. J. Funct. Program., 17(2):215–286, 2007.

[46] K. Zee, V. Kuncak, and M. Rinard. Full functional verification of
linked data structures. In Proc. ACM PLDI, June 2008.

A. Soundness Proofs
Using the proof methodology described in Section 5, we prove the
soundness of the translations for each of the proof language con-
structs given in Figure 3. Figures 10 and 11 present these soundness
proofs. The simplicity of these proofs illustrates the methodologi-
cal advantages of defining proof constructs through a translation
into guarded commands.

p wlp(JpK, H)

p1 ; p2 wlp(Jp1 ; p2K, H)
= wlp((Jp1K ; Jp2K), H)
= wlp(Jp1K, wlp(Jp2K, H))
→ wlp(Jp2K, H)
→ H

assert F wlp(Jassert F K, H)
= wlp((assert F), H)
= F ∧H
→ H

note F wlp(Jnote F K, H)
= wlp((assert F ; assume F), H)
= F ∧ (F →H)
→ H

localize in (p ; note F) wlp(Jlocalize in (p ; note F)K, H)
= wlp((skip 8(JpK ; assert F ;

assume false)) ;
assume F), H)

= (F →H) ∧ wlp(JpK, F)
→ (F →H) ∧ F
→ H

mp (F →G) wlp(Jmp (F →G)K, H)
= wlp((assert F ; assert (F →G) ; assume G), H)
= F ∧ (F →G) ∧ (G→H)
→ G ∧ (G→H)
→ H

assuming F in (p ; note G) wlp(Jassuming F in (p ; note G)K, H)
= wlp(((skip 8(assume F ;

JpK ; assert G ; assume false)) ;
assume (F →G)), H)

= ((F →G)→H) ∧ (F →wlp(JpK, G))
→ ((F →G)→H) ∧ (F →G)
→ H

cases ~F for G wlp(Jcases ~F for GK, H)
= wlp((assert F1 ∨ . . . ∨ Fn ;

assert (F1→G) ; . . . ; assert (Fn→G) ;
assume G), H)

= (F1 ∨ . . . ∨ Fn) ∧ (F1→G) ∧ . . . ∧ (Fn→G) ∧ (G→H)
→ G ∧ (G→H)
→ H

showedCase i of F1 ∨ . . . ∨ Fn wlp(JshowedCase i of F1 ∨ . . . ∨ FnK, H)
= wlp((assert Fi ; assume F1 ∨ . . . ∨ Fn), H)
= Fi ∧ ((F1 ∨ . . . ∨ Fn)→H)
→ H

byContradiction F in p wlp(JbyContradiction F in pK, H)
= wlp(((skip 8(assume ¬F ;

JpK ; assert false ; assume false)) ;
assume F), H)

= (F →H) ∧ ((¬F)→wlp(JpK, false))
→ (F →H) ∧ ((¬F)→ false)
→ H

contradiction F wlp(Jcontradiction F K, H)
= wlp((assert F ; assert ¬F ; assume false), H)
= F ∧ ¬F
→ H

Figure 10. Soundness Proofs for Translations of Proof Language Constructs (continued in Figure 11)

p wlp(JpK, H)

instantiate ∀~x.F with ~t wlp(Jinstantiate ∀~x.F with ~tK, H)
= wlp((assert ∀~x.F ; assume F [~x := ~t]), H)
= (∀~x.F) ∧ (F [~x := ~t]→H)
→ F [~x := ~t] ∧ (F [~x := ~t]→H)
→ H

witness ~t for ∃~x.F wlp(Jwitness ~t for ∃~x.F K, H)
= wlp((assert F [~x := ~t] ; assume ∃~x.F), H)
= F [~x := ~t] ∧ ((∃~x.F)→H)
→ (∃~x.F) ∧ ((∃~x.F)→H)
→ H

pickWitness ~x for F in (p ; note G)
(where ~x is not free in G)

wlp(JpickWitness ~x for F in (p ; note G)K, H)
= wlp(((skip 8(assert ∃~x.F ; havoc ~x ; assume F ;

JpK ; assert G ;
assume false)) ;

assume G), H)
= (G→H) ∧ ∃~x.F ∧ ∀~x.(F →wlp(JpK, G))
→ (G→H) ∧ ∃~x.F ∧ ∀~x.(F →G)
→ (G→H) ∧G
→ H

pickAny ~x in (p ; note G) wlp(JpickAny ~x in (p ; note G)K, H)
= wlp(((skip 8(havoc ~x ;

JpK ; assert G ;
assume false)) ;

assume ∀~x.G), H)
= ((∀~x.G)→H) ∧ ∀~x.wlp(JpK, G)
→ ((∀~x.G)→H) ∧ ∀~x.G
→ H

induct F over n in p wlp(Jinduct F over n in pK, H)
= wlp(((skip 8(havoc n ; assume 0 ≤ n ;

JpK ; assert F [n := 0] ; assert (F →F [n := n+1])
assume false)) ;

assume ∀n.(0 ≤ n→F)), H)
= ((∀n.(0 ≤ n→F))→H)∧

∀n.(0 ≤ n→wlp(JpK, (F [n := 0] ∧ (F →F [n := n+1])))
→ ((∀n.(0 ≤ n→F))→H) ∧ ∀n.(0 ≤ n→(F [n := 0] ∧ (F →F [n := n+1])))
→ ((∀n.(0 ≤ n→F))→H) ∧ ∀n.(0 ≤ n→F)
→ H

Figure 11. Soundness Proofs for Translations of Proof Language Constructs (continued from Figure 10)

B. Definition and Soundness of the Fix Construct
Figure 12 gives the translation for the fix construct, which enables
the developer to establish a formula of the form ∀x.(F ′→G).
Unlike the other proof constructs we have presented, which can
only enclose other proof statements, the fix construct may en-
close statements that change the program state. In the statement
fix ~x suchThat F in (c ; note G), F and G are formulas that may
contain free occurrences of the variables ~x. The command c is an
extended guarded command that may include commands that mod-
ify the program state, including, for example, Java code that has
been translated into the extended guarded command language. Of
course, c may also contain proof language constructs, including
nested fix constructs.

The fix construct enables the developer to select arbitrary values
of ~x that satisfy F ′ (provided that such values exist), where F ′

is the formula F evaluated at the program point before c. The
proof commands and loop invariants in c can refer to ~x, but may
not change ~x (e.g., assigning a variable in ~x to a new value is
prohibited). Thus, the formula F ′ has the same meaning at all

program points in c, even though the commands in c may change
the program state.

Jfix ~x suchThat F in (c ; note G)K =

~z0 := ~z ;
assert ∃~x.F ′ ; havoc ~x ; assume F ′ ;
JcK ;
assert G ;
assume ∀~x.(F ′→G)

where:

• ~x does not appear outside F , G, and proof commands and loop
invariants of c;
• ~z = mod(c) denotes variables modified in c (disjoint from ~x);
• ~z0 are fresh variables (used to save old values of ~z);
• F ′ stands for F [~z := ~z0].

Figure 12. The fix Construct and Its Translation

At the program point after c, the translation asserts that G holds
for the arbitrary values of ~x selected to satisfy F ′. If the assertion
holds, the translation adds ∀~x.(F ′→G) to the assumption base.

Note that fix can be viewed as a generalization of the pickAny
construct from Figure 8 in two ways. First, it permits statements
that change the program state in c. Second, it allows the quan-
tification over ~x to bind only those values that satisfy F ′. Thus,
~x can be assumed to satisfy F ′ in c. Note that, in contrast to the
assuming construct (Figure 8), the translation of the fix construct
(Figure 12) must ensure that the generated assume statement will
not restrict the values of any variables other than ~x, such as, for ex-
ample, Java variables within c. Indeed, if, for example, the body
c of fix were the statement u.f = v, and F ′ were the formula
(x 6= null ∧ u 6= null), then blindly assuming F ′ would trivialize
the null dereference check on u. To enforce soundness, it is there-
fore necessary to ensure, before assuming F ′, that, for the current
values of the program variables, there exists at least one value for
~x that satisfies F ′. The command assert ∃~x.F ′ ensures that this is
the case.

The use of assert ∃~x.F ′ has, simultaneously, another role: it
ensures that fix serves as a generalization of pickWitness. The fix
construct can be viewed as a generalization of the pickWitness
construct from Figure 8 by taking as G the formula true. In this
case fix picks ~x as the witness for the existentially quantified state-
ment assert ∃~x.F ′. Note that, if G is true, then the meaning of the
translation of fix from Figure 12 is precisely havoc ~x suchThat F ′.
Therefore, fix can be used as a generalization of pickWitness that
allows the use of Java code in its body c.

Soundness. To show the soundness of the proof constructs together
with fix, we build on and generalize the proof in Section A. We
show that inserting a set of proof commands and fix commands into
a piece of Java code generates weakest preconditions that imply
the weakest precondition of the concrete semantics given by the
conjunction of the weakest precondition over all possible paths in
the program. The soundness then essentially reduces to positive
conjunctivity of commands [6, 26].

Consider an innermost occurrence of fix that contains no nested
fix commands within its body c. Then we can 1) eliminate any proof
commands p from c, to obtain a weaker command, then 2) replace
the loop desugarings of Figure 6 with the actual loop semantics,
which (by soundness of the desugaring) produces another weaker
command. We finally eliminate fix itself. To show soundness, it
therefore suffices to show that

wlp(fix ~x suchThat F in (c ; note G), H0) → wlp(c, H0) (1)

where c does not contain any proof language constructs p or
fix. Here the postcondition H0 of fix does not contain ~x, which
is justified by the assumption in Figure 12 that ~x does not oc-
cur outside F , c, and G. Furthermore, the loops within c are
not desugared but remain in the syntax tree. The semantics of
loop inv(I) c1 while(D) c2 is given by the exact fixpoint semantics
that ignores loop invariants, that is, as countable non-deterministic
choice 8n cn over cn for n ≥ 0, where cn is

c1 ;(assume (D) ; c2 ; c1)
n ; assume (¬D) (2)

We represent the remaining (non-loop) executable code constructs
from Figure 2 by their desugaring (Figure 6) into the simple
guarded commands of Figure 4. We define the command change
as follows:

change ≡ assert ∃~x.F ′ ; havoc ~x ; assume F ′

To show (1), we show0B@change ;
c ;
assert G ;
assume ∀~x.(F ′→G)

1CA v
S1

0B@ c ;
change ;
assert G ;
assume ∀~x.(F ′→G)

1CA v
S2

c

(3)
We first show the step S1 by showing, by induction on the syntax
tree of c, that change ; c v c ; change. We treat the loop
command from Figure 2 as one abstract syntax tree node.
Case of non-structured commands. Let c be a havoc or assume
command that occurs in the body of fix. We then show

change ; c v c ; change

By definition, this condition reduces to showing that

(∃~x.F ′) ∧ ∀~x.(F ′→wlp(c, H))

implies wlp(c, (∃~x.F ′) ∧ ∀~x.(F ′→H)), where H may contain
~x. First consider the case of a command assume A.

By the assumption that the body of fix cannot contain ~x except
in loop invariants, ~x does not appear in A. The property thus
reduces to showing that (∃~x.F ′) ∧ ∀~x.(F ′→(A→H)) implies
A→((∃~x.F ′) ∧ ∀~x.(F ′→H)), which easily follows for A not
containing ~x.

Next consider an occurrence of havoc ~y that occurs within the
body of fix. In that case ~y belongs to the modified variables ~z
of Figure 12, which means that F ′ does not contain any of the
variables ~y and that ~x and ~y are disjoint variables. This case then
reduces to showing that (∃~x.F ′) ∧ (∀~x.(F ′→∀~y.H)) implies
∀~y.((∃~x.F ′) ∧ (∀~x.F ′→H)) under these assumptions on free
variables, which is straightforward.
Case of sequential composition. If by the inductive hypothesis
change ; c1 v c1 ; change and change ; c2 v c2 ; change, then

change ; c1 ; c2 v c1 ; change ; c2 v c1 ; c2 ; change

Case of non-deterministic choice. Similarly, by the induction
hypothesis

change ;(c1 8 c2) = (change ; c1) 8(change ; c2)
v (c1 ; change) 8(c2 ; change)
= (c1 8 c2) ; change

From the above steps, by induction we obtain change ; c v
c ; change for all commands c without loops.
Case of loop. Consider L of the form loop inv(I) c1 while(D) c2.
For each n in the semantics of loops (2) the condition change ; cn v
cn ; change follows by the previous inductive proof for loop-free
commands. From the definition of change we have that its weakest
precondition is positively conjunctive, so wlp(change,∧n≥0Pn) =
∧n≥0wlp(change, Pn). Using this fact we have the following.

wlp(change ; 8n cn, H) = wlp(change, wlp(8n cn, H))
= wlp(change,

V
n≥0 wlp(cn, H))

=
V

n≥0 wlp(change, wlp(cn, H))
→

V
n≥0 wlp(cn, wlp(change, H))

= wlp(8n cn, wlp(change, H))

This shows (change ; L v L ; change) for a loop L.
Change meets assert. It remains to show the step S2 of (3). Define
f0 ≡ change ; assert G ; assume ∀~x.(F ′→G). We show
wlp(f0, H0)→H0. Computing wlp(f0, H0) gives

(∃~x.F ′) ∧ ∀~x.(F ′→(G ∧ ((∀~x.(F ′→G))→H0))

which, after splitting the conjunct G ∧ ((∀~x.(F ′→G)) → H0)
implies first ∀~x. F ′→H0. From this and ∃~x.F ′, as well as the fact
that ~x does not appear in H0, we obtain H0.

