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The stretching response of a single collapsed homopolymer is studied using Brownian dynamic

simulations. The irreversibly dissipated work is found to be dominated by internal friction effects below

the collapse temperature, and the internal viscosity grows exponentially with the effective cohesive

strength between monomers. These results explain friction effects of globular DNA and are relevant for

dissipation at intermediate stages of protein folding.
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Conformational kinetics are crucial for the function of
biopolymers: e.g., the muscle protein titin unfolds at a
particular loading force in a highly dissipative manner,
irreversibly converting most of the mechanical work into
heat [1], while in myoglobin ligand dissociation induces a
global conformational change of the protein [2–4]. Such
transitions involve spatial protein reorganization, and thus
internal dissipation mechanisms on different conforma-
tional levels in addition to solvent viscosity become im-
portant in determining the dynamic response to a given
stimulus.

Different contributions to internal polymeric friction
have experimentally been distinguished [5]: On the small-
est length scale are conformational molecular transitions
involving torsional bond degrees of freedom [6,7]. For
polymer solutions above the overlap concentration or for
polymers in confined geometries, entanglement effects
become important and contribute significantly [8].
Finally, for collapsed polymers or folded proteins, the
continuous breakage and reformation of cohesive bonds
gives rise to an extra contribution to the viscosity inside a
globule [9,10]. The significant consequence particularly
for protein science is that internal friction may dictate the
rate of conformational kinetics and thus protein function
dynamics. In all of these experimental studies, care is taken
to isolate internal friction effects from the (in the present
context uninteresting) hydrodynamic drag of the solvent
by, for example, variation of the solvent viscosity [7].

Coarse-grained stochastic models that involve activated
hopping events in smooth and idealized energy landscapes
nicely explain experimental titin unfolding force curves
and provide insight into the dissipation mechanism involv-
ing two-step unfolding [11]. A different mechanism is
expected for globular homopolymers, proteins in the mol-
ten globular state [12], and some disordered intermediates
that occur during conformational protein transformations
[13]. Here many near-optimal competing states exist, the
energy landscape is rough, and structural changes occur

gradually through a whole spectrum of intermediate states
[14,15]. Many cohesive bonds are broken and reformed
repeatedly during unfolding, and the concept of an internal
effective viscosity naturally arises [9,10]. There have been
quite a few simulation studies on the forced unfolding of
bead-spring models for proteins [16] and globular poly-
mers [17,18], but the concept of an internal viscosity has
not been applied to models including chain conformational
fluctuations.
In this Letter, we study the rate-dependent forced un-

folding of a flexible homopolymer model above and below
the collapse transition using Brownian dynamic simula-
tions. By measuring the dissipated work, we characterize
the internal viscosity at the single molecule level. In par-
ticular, we find that the internal viscosity decreases as one
lowers the monomer cohesive strength and vanishes at the
collapse point. This behavior is surprisingly well captured
by a simple stochastic theory that mimics strand-on-strand
friction by the forced motion of a single particle in a
corrugated potential landscape [14] and also matches
well experimental results for the forced unfolding of col-
lapsed DNA [10]. Our results demonstrate how small-scale
conformational barriers in highly confined globular chains
give rise to an effectively increased internal viscosity.
Furthermore, our approach is quite general as it is based
on the response of a complex medium (the polymer) to an
external force from which the friction coefficient can be
obtained in a straightforward way. This approach can, in
principle, be used to access rate-dependent dissipative
mechanisms that are otherwise inaccessible and sets the
stage for tackling more complicated models involving
sequence-specific effects.
We model the homopolymer by N freely jointed beads

of radius a interacting through a potential U. The position
ri of the ith bead obeys the Langevin equation @ri=@t ¼
��0rriU½frNg� þ ffiffiffiffiffiffi

�0
p

�iðtÞ, where �0 ¼ 1=ð6��0aÞ is

the Stokes mobility and �0 the solvent viscosity.
Hydrodynamic interactions are neglected since we are
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interested in friction generated by monomer interactions.
The vector random force �i satisfies h�iðtÞ�jðt0Þi ¼
2kBT1�ij�ðt� t0Þ, where kBT denotes the thermal energy

and 1 is the unit matrix. The potential energy U is written
as U ¼ Uel þULJ þUstr. The elastic term Uel ¼ ð�=2Þ�P

N�1
i¼1 ðriiþ1 � 2aÞ2, with � ¼ 200kBT=a

2 and rij ¼ jri �
rjj, controls chain stretching. The Lennard-Jones potential

ULJ ¼ �
P

ij½ð2a=rijÞ12 � 2ð2a=rijÞ6� describes monomer

cohesion: Increasing � drives the polymer from the swollen
to the collapsed state [17]. The unfolding/refolding is
enforced by two symmetrically moving harmonic springs
Ustr ¼ ð�=2Þf½r1 þRðtÞ�2 þ ½rN �RðtÞ�2g connected to
the end beads. We periodically change RðtÞ between R ¼
x̂L=20 and R ¼ x̂L=2 at velocity v, thereby changing the
polymer end-to-end distance between jr1 � rNj ¼ L=10
and jr1 � rNj ¼ L, where L ¼ 2aN is the chain contour
length. The cycle is repeated at least 10 times, over which
force traces are averaged separately for the stretch and
relax parts. For the numerical integration we discretize
the Langevin equation with a time step �t. We rescale
distance by the bead radius a, time by the bare monomer
diffusion time � ¼ a2=ð�0kBTÞ, and energies by kBT. Our
dimensionless parameters are thus the rescaled pulling
velocity ~v ¼ v�=a, the Langevin time step �~t ¼ �t=� ¼
2� 10�4, and the cohesive strength ~� ¼ �=kBT.

Typical force-extension traces, averaged over 10 relax-
stretch cycles, are shown in Fig. 1 for two different cohe-
sive strengths ~� at velocity ~v ¼ 0:0045, together with
snapshots for ~� ¼ 2:08. For ~� ¼ 2:08, the hysteresis be-
tween the relax and stretch force traces is small, indicating
quasiequilibrium and suggesting that the cycle time T ’
L=v is larger than the globule relaxation time. For the
higher cohesion ~� ¼ 4:1, hysteresis is noticed; in addition,
a force dip at almost complete stretching appears which
reflects the existence of a nucleation barrier for small
globules (a nucleating globule seed for ~� ¼ 2:08 is high-
lighted by a broken circle in the snapshots) [17].
The dependence of the force on ~� is demonstrated in

Fig. 2(a), where we plot the force vs extension profiles for
different cohesive strengths at the lowest pulling speed
probed in this study. We determine average plateau forces
Fp as indicated by horizontal broken lines, which are

plotted in Fig. 2(b) for two different chain lengths. Since
dissipation is almost negligible at this small stretching
velocity, the plateau force Fp corresponds to the equilib-

rium free energy of globule formation per unit length,
which scales as Fpa=ðkBTÞ � ~�� ~�c in the collapsed re-

gime. Linear fits to the data in Fig. 2(b) yield the collapse
points of ~�c � 0:6� 0:1 (N ¼ 50) and ~�c � 0:5� 0:1
(N ¼ 100), in good agreement with previous studies [19].
We now focus on dissipative contributions to the stretch-

ing force. The dissipated work is defined as �Wðv; ~�Þ ¼
Wðv; ~�Þ �Weqð~�Þ, where Wðv; ~�Þ is the velocity-

dependent work done during unfolding, and Weqð~�Þ corre-
sponds to the equilibrium work of unfolding a globule, i.e.,
at v ! 0. Figure 3(a) shows force traces upon stretching
for different velocities ranging from ~v ¼ 0:0045 to ~v ¼
0:1125 at fixed cohesive strength. The measured force goes
up with increasing velocity due to larger internal friction
contributions. The dissipated work is shown in the inset for

FIG. 1 (color online). Top: Snapshots of a relax-stretch cycle
for a polymer with N ¼ 100 monomers and cohesive strength
~� ¼ �=kBT ¼ 2:08. The stills are taken at equally spaced times
and span a whole cycle; i.e., the first and the final snapshots
correspond to fully elongated configurations. Bottom: Force-
extension traces for ~� ¼ 2:08 and 4.1. The blue and red curves
correspond to relaxation and stretching, respectively, as indi-
cated in the lowest panel. The stretching velocity in all plots is
set to ~v ¼ v�=a ¼ 0:0045.

FIG. 2 (color online). (a) Averaged stretching curves for N ¼
50 and different cohesive strengths ~� ¼ 0, 1.25, 2.08, 2.91, and
4.1 (from bottom to top) at ~v ¼ 0:0045. The dashed lines
indicate the fitted plateau force Fp. (b) Fp as a function of ~�

for two different chain lengths. The lines are linear fits to the data
(see text for details).
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a given velocity. We note that the work integral is done over
the whole length interval studied, i.e., 0:1L < x < L.

The dissipative work can be written in general as

�W ¼
Z L

0
dx�ðvÞv; (1)

which defines the rate-dependent friction coefficient �ðvÞ
(to simplify notation, we extend the lower boundary of the
integral to zero and neglect that two strands are simulta-
neously pulled out). In what follows, we concentrate on the
linear-response regime and neglect any velocity depen-
dence of �, as appropriate for low enough pulling speeds
(and corroborated by the simulation results). In analogy to
Stokes friction of a sphere, we define the friction coeffi-
cient to scale as �� �GaN

�
G, where �G is the internal

globule viscosity and NG � ðL� xÞ=ð2aÞ corresponds to
the number of monomers in the globule. The exponent �
reflects the dissipation mechanism at work during globule
dissolution. For local intensive dissipation one expects � to
be independent of N (i.e., � ¼ 0), while for global exten-
sive dissipation a finite fraction of the globule rearranges
during pulling and � ¼ 1. The dissipative work follows as

�W � �Ga
2vN�þ1: (2)

In Fig. 3(b), we present the dissipation per monomer
�W=ðNkBTÞ as a function of rescaled velocity ~vN. For
small values of ~vN, a few conclusions can be drawn from

this scaling plot: (i) All data are linear in the scaling
variable ~vN for fixed N, showing that the friction coeffi-
cient � is indeed independent of ~v and our simulations
reach the experimentally relevant linear-response regime.
(ii) Furthermore, data for different chain lengths super-
impose, indicating that �W=N � N and thus � ¼ 1. We
conclude that the dissipation is extensive and involves a
finite fraction of the globule. (iii) The data for a phantom
chain ~� ¼ 0 (crosses and plus signs) and for a self-avoiding
but noncollapsed chain ~� ¼ 0:41 (stars) show identical
slopes, suggesting that for uncollapsed chains, i.e., ~� <
~�c, friction due to monomer-monomer attraction and en-
tanglements is negligible in the present simulation proto-
col. (iv) For ~� > ~�c, on the other hand, cohesive forces
hamper the unfolding and thus enhance the internal vis-
cosity �G, which according to Eq. (2) follows from the
slope of the linear fits in Fig. 3(b). In the noninteracting
limit � ¼ 0, the simulated dissipation is solely due to the
background solvent viscosity �0, and we thus expect the
total globule viscosity �G to tend towards �0 as � ! 0.
This allows us to eliminate numerical prefactors from
Eq. (2) by writing �W=�W0 � 1 ¼ ð�G � �0Þ=�0, where
� ¼ 1 and �W0 is the dissipation for � ¼ 0. We plot in
Fig. 4 �W=�W0 � 1 as extracted from the linear fits in
Fig. 3(b), which thus is a measure of the relative excess
internal viscosity. As anticipated, the internal friction only
gives a sizable contribution in the collapsed phase. The
data for the highest cohesion ~� ¼ 4:16 in Fig. 3(b) show
deviations from the simple scaling at large velocities ~v,
which can be traced to the fact that under these conditions
the globule relaxation dynamics becomes slower than the
externally imposed unfolding cycle, and linear-response
theory becomes invalid (see the supplementary informa-
tion [20]).
To account for the observed behavior, we consider the

simplest model for internal friction in a globule: a mono-
mer moving in a corrugated potential created by its neigh-
bors [14]. More quantitatively, one considers a Brownian
particle moving in a sinusoidal potentialUeffðxÞ ¼ ð	=2Þ�
ð�� �cÞ sinð�x=aÞ, where x is some suitably chosen re-
action coordinate. This corrugated potential mimics the
intermonomer cohesion, which disappears at the collapse
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FIG. 4. Rescaled dissipated work, equivalent to the excess
internal viscosity �W=�W0 � 1 ’ �G=�0 � 1, obtained from
the linear fits in Fig. 3(b) as a function of the effective cohesive
strength ~�� ~�c. The broken line denotes Eq. (3) with 	 ¼ 1:125
and the solid lines the confidence interval due to the error in ~�c.

FIG. 3 (color online). (a) Stretching traces for N ¼ 100 and
~� ¼ 2:08 at different pulling velocities ~v ¼ 0:1125, 0.09, 0.045,
0.0225, and 0.0045 (from top to bottom). Inset: The dissipated
work �W is defined as the area between the top trace (here ~v ¼
0:09) and the one for ~v ¼ 0:0045. (b) Dissipated work per
monomer �W=ðNkBTÞ as a function of the rescaled velocity
~vN for different cohesive strengths ~� and N. Linear fits accord-
ing to Eq. (2) with � ¼ 1 yield the internal viscosity �G.
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transition, i.e., for � ¼ �c, and 	 is a fitting parameter. The
solution to the one-dimensional diffusion problem in the
viscous limit within linear response gives an effective
viscosity �G=�0 ¼ I20ð	ð�� �cÞ=2kBTÞ [14], where I0ðzÞ
is the zeroth order modified Bessel function with the limits

I0ðzÞ � 1þ z2=4 for z � 1 and I0ðzÞ � ð2�zÞ�1=2ez for
z � 1. Hence, our final scaling form for the excess internal
viscosity follows as

ð�G � �0Þ=�0 ’ I20

�
	ð�� �cÞ
2kBT

�
� 1; (3)

which is shown in Fig. 4 as a broken line with the fitted
factor 	 ¼ 1:125. This value is very close to 1, implying
that the height of the potential is essentially that of the
effective cohesive potential ~�� ~�c, where ~�c has been
evaluated independently from Fig. 2(b). The solid lines
represent the confidence interval of Eq. (3) due to the error
in ~�c. As can be seen, the scaling form Eq. (3) is in good
agreement with the numerical data for strongly collapsed
globules, suggesting a simple exponential dependence of
�G on the effective cohesive strength. This shows that,
although the dissipation mechanism is extensive and in-
volves a constant fraction of the globule, the arising fric-
tion follows the functional form of a single particle moving
in a corrugated potential with an amplitude corresponding
approximately to the cohesive energy of a single monomer-
monomer bond, clearly an unexpected result. On the other
hand, near the collapse transition where our model does not
perform as well, we expect that force-induced globule
rotation due to topological constraints becomes important
and leads to the discrepancies observed in the plot.

Finally, we compare our results with experiments on
collapsed DNA [10,21]. The effective internal friction
constant was measured to be �eff � 10�7 kg=s for

-DNA condensed with 400 �M spermidine. Using our
result Eq. (2) and the stretching distance L ¼ 2aN �
8 �m [10], the internal viscosity �G is obtained as �G ’
2:6� 10�3 kg=ms, and thus ð�G � �0Þ=�0 � 1:6, where
we used the water viscosity �0 � 10�3 kg=ms. From
Fig. 4, we read off an attractive energy �� �c � 2:5kBT.
That cohesive energy can be directly compared with equi-
librium dissolution forces of condensed DNA globules by
locating the plateau force of unfolding. From our data
[Fig. 2(b)], we find Fp ’ 2:9ð�� �cÞ=a for N ¼ 100.

Substituting effective monomer radius (or persistence
length), a ’ Lp � 30 nm [21] and using kBT ’
4:4 pN nm, we predict a plateau force Fp � 1 pN, which

is fairly close to the experimentally reported value Fp �
0:7 pN [10]. This shows that our treatment of internal
globular friction gives a consistent description when com-
pared to the corresponding equilibrium globular dissolu-
tion plateau forces of DNA.

In summary, we have presented a general approach to
calculate friction coefficients at the single molecule level
by directly measuring the dissipated work during unfolding
of a polymeric globule. Within the linear-response regime,
we show that the internal viscosity outweighs the solvent
viscosity already for moderate values of the cohesive
strength. The agreement with experimental results for col-
lapsed DNA is promising. We plan to extend our results to
the nonlinear regime and to sequence-specific systems
such as proteins or RNA.
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