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Abstract

Changeover costs (and times) are central to numerous manufacturing operations. These

costs arise whenever work centers capable of processing only one product at a time switch

from the manufacture of one product to another. Although many researchers have

contributed to the solution of scheduling problems that include changeover costs, due to the

problem's combinatorial explosiveness, optimization-based methods have met with limited

success. In this paper, we develop and apply polyhedral methods from integer programming

for a dynamic version of the problem. Computational tests with problems containing one to

five products (and up to 225 integer variables) show that polyhedral methods based upon a

set of facet inequalities developed in this paper can effectively reduce the gap between the

value of an integer program formulation of the problem and its linear programming

relaxation (by a factor of 94 to 100 per cent). These results suggest the use of a combined

cutting plane/branch and bound procedure as a solution approach. In a test with a five

product problem, this procedure, when compared with a standard linear programming-based

branch and bound approach, reduced computation time by a factor of seven.
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Production planning and scheduling systems have a significant impact on the

performance of manufacturing operations and, hence, have been the subject of extensive

research. A question that has received considerable attention is how to schedule a

production facility that processes one product at a time and incurs a changeover cost (and/or

time) whenever it switches from the manufacture of one product to another. This problem

has become a prototypical model in the operations management literature because it

represents planning and scheduling decisions in numerous contexts. For example, in a paper

mill, a paper machine incurs changeover costs (and time) when it switches from processing

one grade of paper to another. These costs arise because a machine produces inferior quality

paper and incurs breakage until it can be fully adjusted for the new grade. In the paint

industry, the blending machines incur changeover costs between a change of colors due to

the loss in production time and the use of expensive materials to clean the equipment. This

model also describes certain assembly line operations, when they manufacture a few models

of the same product on common assembly lines and incur substantial cost for setting up a

line for a particular model. The Kool King case study in Marshall et al. (1975) describes the

production of different models of air conditioners on such a facility.

Even though this scheduling problem has attracted much attention, researchers and

practitioners can solve it for only special cases. Existing research has focused on the

constant demand, infinite horizon version of the problem and the heuristics developed for

this special case do not perform well for the general dynamic, deterministic problem.

In this paper, we study the polyhedral structure of an integer programming formulation

of the dynamic, deterministic problem. The objective is to use these results to obtain

improved formulations of the problem as well as to develop efficient solution methods for the

general problem. This research is in part motivated by increasing empirical evidence that

suggests that both pure and mixed integer programming problems can be solved to
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optimality in reasonable computation times by methods that use results about the

underlying polyhedral structure of these problems. See, for example, the work of Crowder

and Padberg (1980), Padberg and Hong (1980), Crowder, Johnson and Padberg (1983) and

Johnson, Kostreva and Suhl(1985). Several of these studies address problems that arise in

real world industrial applications. Recently, researchers have also investigated the

polyhedral structure of the lot size model and reported considerable success using these

results to solve larger problems that contain these models as substructures. See Barany,

Van Roy and Wolsey (1984a, 1984b), Eppen and Martin (1985), Pochet (1986) and Leung,

Magnanti and Vachani (1987). For additional references concerning the computational use

of polyhedral methods, see the bibliography compiled by Gr6tschel (1985) and the survey by

Hoffman and Padberg (1985).

This paper is organized as follows. The next section reviews the existing research on the

changeover cost problem. The subsequent sections present an integer programming

formulation for the problem, derive a class of non-trivial facets for the single product version

of the problem and identify conditions under which these inequalities are also facets of the

multiple product problem; they also show that our formulation of the problem is equivalent

to a fixed charge network flow problem and that the facet inequalities can be interpreted as

'cut-set' inequalities for this network. The network flow interpretation provides further

insight into the problem and also suggests additional valid inequalities. The final section

describes a strong cutting plane algorithm for the problem that uses the facet inequalities to

generate the cuts, and presents computational results. The computational results indicate

that the facet inequalities significantly reduce the gap between the objective values of the

original problem and its linear programming relaxation and lead to efficient solution

techniques.
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1. Literature

Much of the research to date, which has assumed constant demand and an infinite

planning horizon, has attempted to develop a cyclic schedule that minimizes average costs.

Elmaghraby (1978) calls this special case of the problem the Economic Lot Scheduling

Problem (ELSP) and surveys methods that researchers have proposed for its solution. See,

for example, Bomberger (1966), Stankard and Gupta (1969), Hodgson (1970), Doll and

Whybark (1973) and Haessler (1979) for a description of some of the heuristics proposed to

solve the ELSP. Although these heuristics provide reasonably good solutions to the ELSP,

they do not perform well for the general case.

Several researchers have proposed dynamic programming methods for the general,

deterministic version of the problem. Glassey (1968) and Tenzer (1969) considered the

special case of unit changeover costs. Mitsumori (1972) and Gascon and Leachman (1985)

extended Glassey's method to solve the problem with non-sequence dependent changeover

costs. Driscoll and Emmons (1977) present an algorithm that allows sequence dependent

changeover costs. The running time of all these algorithms increases exponentially with the

number of products and the number of time periods and, hence, their use is limited to small

problems.

Other researchers have proposed alternative approaches to solve the dynamic,

deterministic problem. Geoffrion and Graves (1976) proposed a quadratic assignment

approach to solve the multi-machine scheduling problem with sequence dependent

changeover costs. Karmarkar, Kekre and Kekre (1987) discuss solution methods for the

single item version of the problem. Schrage (1982) suggests a linear programming based

method that is similar to the approach proposed by Manne (1958) for the lot size problem.

Recently, Karmarkar and Schrage (1985) have proposed a formulation for the single facility

problem that is similar to the one we study in this paper, and have discussed its solution
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using Lagrangean relaxation. However, they report that their computational results are not

very encouraging. Eppen and Martin (1985) have reformulated the single item

uncapacitated problem with both setup and changeover costs as a shortest path problem and

obtained integer solutions to the original problem by solving the shortest path

reformulation. They report good computational results for the multiple item capacitated

problem using the the single item reformulation as a substructure.

Vergin and Lee (1978), Graves (1980) and Leachman and Gascon (1985a, 1985b) have

studied the stochastic version of the problem.

2. Problem Statement and Formulation

The scheduling problem studied in this paper is defined by several modeling

assumptions.

Al: The changeover time is zero, i.e., the capacity available for production in any period

is not affected by whether or not the schedule commences production for any product

in that period. This assumption is reasonable when the changeovers are made

outside the regular production hours, for example at the end of the regular shift, or

when the changeover times are small.

A2: The setup of the machine can be maintained even if the machine is idle in a

particular period. This assumption is reasonable in situations such as paint

manufacturing since once the equipment has been cleaned for the production of a

particular color, it can be used to blend that color even after an idle period.

A3: The changeover costs are not sequence dependent, i.e., the changeover cost in any

period depends only on the product for which the facility is to be setup and not on the

product it was manufacturing earlier.
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The formulation we propose is robust in the following sense: modifications of it that

incorporate changes to some of these assumptions are amenable to analysis similar to that

obtained in this paper. Consequently, it is possible to extend results for the original model to

obtain facets for the new models (see Vachani, 1986, for details).

A4: The facility is scheduled using the following "discrete production policy": in any

period, the production level is either zero or equal to capacity in that period.

Schrage (1982) refers to this policy as an "all or nothing policy." An alternative continuous

policy would permit the production in a period to vary between zero and the available

capacity in that period. Though the discrete policy is obviously a restricted version of the

continuous one, it is a reasonable production policy in several contexts. For example, in some

situations it may be very expensive to run a production line at less than full capacity. Also, if

demand is high and the facility is capacity constrained, the discrete policy may be a

reasonable production plan. The discrete policy may also be easier to implement and control.

Moreover, the cost of a discrete policy can be made as close as desired to the cost of a

continuous policy by redefining the length of the time periods. Therefore, it is reasonable to

assume that the facility uses a discrete production policy and we discuss only this case.

Problem Formulation

Let T denote the finite horizon over which the facility is to be scheduled and let P denote

the number of products to be processed on the facility. We assume that the relevant costs for

any production policy are the inventory holding costs, the changeover costs and the fixed

costs for producing in any period. Let h'pt be the inventory holding cost per unit of product p

in period t, Kpt be the changeover cost that is incurred to setup the facility whenever

production of product p commences in period t, and pt be the fixed cost (perhaps zero) to

maintain the setup for product p in period t. Finally, let d'pt be the demand for product p in

period t and let cp be the capacity of the production line for product p (since this model is not
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used for long range planning, it is reasonable to assume that the capacity is constant over

the horizon).

The demand constraints for the problem can be formulated as follows.

t t

w. (/c) d'P for all p,t. (1)

j=1 j=1

In this expression, the decision variable wpt E {O(, 1} equals 1 if product p is produced in

period t (at production level cp) and 0 if it is not produced in the period. These constraints

require that cumulative production for each product p up to any time period t must meet the

cumulative demand for that product up to period t. Since Wpt {0,1} for all p and t, the

lefthand side of inequality (1) is integral and hence, it is possible to replace the righthand

side by (1/cp) E d'pj 1, where xl denotes the smallest integer greater than or equal to x.

Redefining the demand in each period as

t t-1

dPt= r (1/c) i 1 - F (1/c) Pi .1
j=1 j=1

permits us to reformulate the demand constraints (1) as

t t

wP . dj. for allp,t.
j=1 j=1

Further, since the (scaled) production wpt in any period t cannot exceed 1, the resulting

demands dpt can be adjusted so that dpt E {O, 1} for all p and t. For example, if dpj > 1, then

setting dpj = 1, dpj-l = dpj-l + (dpj -1) results in an equivalent formulation. If the new dpj 1

is now greater than 1, repeat the procedure until dpt {0,1} for all p and t or the problem

becomes infeasible (when dpl > 1).
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These observations permit us to formulate the scheduling problem, which we call CSP

(for Changeover CostScheduling Problem), as follows. The decision variables in this model

are wpt, which equals 1 if product p is produced in period t and 0 if it is not; Ypt, which equals

1 if the machine is setup for product p in period t and 0 if it is not; and Zpt, which is 1 if the

machine is changed over to product p in period t and 0 otherwise.

CSP
T P

Minimize X' {KZpt + spYp + hptWpt }
t=lp=l

subject to
t

PJ
j=1

w .
PJ

T

j=l

wpt

t

E d.

j=1

T

d.
PJ

j=l

- pt

Zpt + Yp,t-1 - Ypt

P

> pt
p=l

O Wpt 1 O Y < 1, 0pt~~~--

for allp,t

(2)

(3)

forallp

forallp,t< 0

0

(4)

(5)

(6)forallp,t

1

zpt

Wpt integer, Ypt integer, zpt integer

for all t (7)

for allp,t (8)

for allp,t. (9)

Let w = (wpt), y = (Ypt), and z = (Zpt) denote vectors of the corresponding decision

variables. Constraints (4) specify that the ending inventory for each of the products be zero
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(any other closing inventory policy could be imposed instead). Forcing constraints (5) state

that Ypt = 1 if product p is produced in period t. Constraints (6) require the changeover

variable Zpt to equal 1 if the machine is setup for product p in period t but not in period t-1

(i.e., if the machine changes over to product p in period t from some other product or from not

being setup for production). Constraints (7) restrict the machine to be setup for at most one

product in any period. The demands dpt {0, 1} for all p and t, the objective function

coefficients hpt of wpt are derived from the original inventory holding costs h'pt and the

constant term involving d'pt in the objective function has been dropped.

Let v(CSP) denote the optimal value of the objective function for the problem. Similarly,

for any problem Q, let v(Q) denote its optimal objective value. Orlin (1986) has shown that

problem CSP is NP-complete. Thus, the problem is not likely to be solved by any polynomial

time algorithm. CSP can, in fact, be solved as a shortest path problem in O({(T + P)/P}P TP3)

(see Vachani, 1986). However, this procedure is not efficient if both T and P are reasonably

large.

Let CSPL denote the linear programming relaxation of CSP, i.e., CSPL is obtained from

CSP by omitting constraints (9). It is relatively straightforward to show that, in the worst

case, the gap between the optimal values of CSP and CSPL can be arbitrarily large.

Therefore, CSPL, the linear programming relaxation, may not provide a tight lower bound

for the optimal value of CSP. If we use Lagrangean relaxation to solve CSP by relaxing

either constraints (5) or (6), then the resulting subproblem can be transformed into a

network flow problem which satisfies the integrality property (Geoffrion, 1974). Hence, the

lower bound derived from relaxing either of these constraints will not be better than

v(CSPL). Karmarkar and Schrage (1985) solved the continuous production policy version of

this scheduling problem (a problem that differs from CSP in the formulation of the demand

constraints (3) and (4) since the continuous policy allows production of product p in period t

to be any amount between 0 and cp, instead of either 0 or cp) by relaxing constraints (7) and
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reported that the computational results were not very encouraging. Thus, in general,

Lagrangean relaxation may not be a good solution strategy for problem CSP. We would,

therefore, like to construct better solution strategies for the problem; the success of cutting

plane procedures using facet inequalities in other problem domains prompts our study of the

polyhedral structure of CSP.

3. Polyhedral Structure of the Single Product Model

Let SCSP denote the single product version of the scheduling problem (P= 1). SCSP

differs from CSP only by the exclusion of constraints (7) which are now included as a part of

constraints (8). Our goal in characterizing the structure of SCSP is not to develop a cutting

plane procedure for SCSP itself (since it can be solved as a shortest path problem in O(T2)

time), but to develop insights into the multiple product problem. In fact, as shown later, the

results for SCSP can be directly extended to CSP. We discuss the single product problem first

because the arguments are simpler.

Let F(SCSP) denote the set of feasible solutions for problem SCSP, and let C denote the

convex hull of F(SCSP). In any given instance of SCSP, let tl, t 2, ..., tn, denote the periods

with nonzero demand, i.e., the total demand over the planning horizon is n units. We can

assume without loss of generality that T = tn, since there will be no production in periods

beyond t n in any feasible solution. To exclude uninteresting cases, we also assume that tl 2

2, since, if for somel < j < n, t = 1, t2 = 2,..., tj = j and tj+l > j+1, then wt = yt = 1,

1 < t j, for all feasible solutions, and Z = 1 - yo, zt = 0, 2 < t < j in any optimal solution

(assuming Kt > 0). Therefore, the scheduling problem needs to be solved only for periods

j + 1 through T, with the first period of nonzero demand being period j + 2 or later, which is

equivalent to a problem with t - 2.
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Non-Trivial Facets

Consider the inequality

j-1

E Wt+ Wt+ Ea + E t 2 
t= 1 tEQ tES tEC

with tq_l+ j t P = j+l ... tQ, Q P, S P, Q n S = 0andC = P\{QUS}.

We refer to inequalities PI as partitioning inequalities since they partition the interval P

into the sets Q, S and C. The inequality includes the wt variables corresponding to the

Quantity produced in the periods Q, the Setup variables in the periods S, and the

Changeover variables in the periods C. Note that since j ' tql + 1, the total production up to

period j-1 must be at least q-1 to meet demand up to period tql. Therefore, inequality PI

states that if the total production up to period j-1 is exactly q-l, i.e., it cannot meet demand

up to period tq, then the facility must either produce in one of the periods in the set Q, or be

set up in one of the periods in the set S, or incur a changeover in one of the periods in the set

C. The next proposition shows that PI is valid for C if the index sets Q, S and C satisfy

certain additional conditions.

Proposition 1. PI is a valid inequality for C if it satisfies the following conditions.

(i) j C, i.e., zj is not in the inequality, and

(ii) if t E Q then t+ 1 E C, i.e., if wt is in the inequality, then zt+l is not.

If j > 1, then the conditions of the proposition are also necessary for the inequality to be

valid.

Proof. Condition (i) is necessary (if j > 1) because even if production up to period j-1 is

exactly q-1, the facility can produce in period j with zj = O, i.e., without incurring a
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changeover in period j. For example, the inequality

j-1

EW t + zj q
t=l

with j = tq is not valid since a feasible solution with Yt = 1 for all 1 t tq, wt = 1 for t =

tl, t 2, ..., tq, and zl = l-yo, zt = 0 for 2 t tq, violates it. Similarly, any version of this

inequality with t E Q and t+ 1 E C, e.g., wl + z2 2 1 forj = 1 and t = 2, is not valid since a

feasible solution with ya = Y2 = 1, w1 = 0, w2 = 1, Zl = 1 and z2 = 0 violates it. If yo = 0

and j = 1, then condition (i) is not necessary since z + z2 + ... + zt1 > 1 is a valid

inequality. However, it is implied by Yl + z2 + ... + zt, 1 since Zl 2 yl in this case. Thus,

even though the inequality may be valid it cannot be a facet unless condition (i) is satisfied

since it is dominated by another valid inequality.

To establish that PI is valid if it satisfies both the conditions, let (w, y, z) be any feasible

solution for SCSP. Since E1' wi 2 q - 1 to meet demand, PI is trivially satisfied unless

-'- wi = q-1. In this case, the inequality states

. wt + ~ Y + zt 2 1.
tEQ tES tEC

Since tq di = q and E '-l wi = q-1, the facility must produce in at least one period between j

and tq. Let i be the first period between j and tq for which Yi = 1 and let a > i be the first

period for which wt = t = 1. If i S U C or a Q U S, then PI is satisfied (if i C, then by

condition (i), i > j and zi must be 1 since i-1 = 0). So consider i Q and a C, i.e.,wi and Za

are in the inequality. By condition (ii), for some i + 1 < b < a-1, Yb, Zb +1, b+2, ..., Za are all

in the inequality. If Yb = 1, then PI is satisfied. If Yb = 0, then since Ya = 1, at least one of

Zb+ 1, Zb+2, ..., Za equals 1 and PI is again satisfied. I
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Theorem 1. The partitioning inequality PI is a facet of C if and only if Q, S and C satisfy

the following conditions.

(i) j C, i.e., zj is not in the inequality,

(ii) if t Q then t+ 1 f C, i.e., if wt is in the inequality, then zt+1 is not,

(iii) if t S then t + 1 C, i.e., if yt is in the inequality then so is Zt+ 1 and, in particular, tq S,

(iv) if Q = P, then q n and tq+ 1 > tq + l,i.e., dtq+ = 0,

(v) ifq = n, thenISI = 1.

Proof.

Necessity of the Conditions

Proposition 1 shows that (i) and (ii) are necessary for the inequality to be valid (or a facet

ifj = 1). To establish necessity of the other conditions, we show that if a particular condition

is not satisfied, then PI is dominated by some other valid inequality I, i.e., I implies PI, but

the converse is not true.

If yt is in the inequality but zt + 1 is not, then, by Proposition 1, yt can be replaced by wt to

obtain another valid inequality I. Since wt yt for all t (and wt yt for all feasible

solutions), I dominates PI and hence, condition (iii) is necessary for PI to be a facet.

If Q = P, then PI is the same as the demand constraint (3). If q = n, then (4) requires

that PI be satisfied at equality and hence, PI cannot be a facet. If dtq+ 1 = 1, then the demand

constraint for period tq + 1 implies the demand constraint for period tq, i.e., implies PI, since

wt 1 for all t. Therefore, condition (iv) is necessary as well.

If q = n, then condition (iv) requires that Q P and hence, SI 1 (since j EC). Suppose

ISI > 1. Consider the following inequality with ISI = 2 and tq = j + 3 = T.
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Ij-1 + Yj + Zj+l + Yj+2 + Zj+3 2 1 (10)

Let C* = {(w, y, z) C I (w, y, z) satisfies PI at equality} and let (w, y, z) be any point in C*.

Since j+3 = T, Ij1 + wj + wj+l + wj+2 + wj+3 = 1 for all feasible solutions to SCSP, and

hence, wj+2 + wj+3 < 1. If wj+ 2 + Wj+3 = 0, then Ij.1 + wj + wj+l = 1 to satisfy demand

in period j + 3, and consequently, Ijl + yj + zj + 1 = 1 and Yj+ + zj + 3 = 0. Similarly, if wj + 2

+ wj+3 = 1, then Yj+2 + zj+3 = 1. Therefore, for any point (w, y, z) in C*, wj+2 + Wj+3 =

Yj+2 + zj+3. However, since all feasible solutions to SCSP that satisfy wj+2 + wj + 3 = Yj+2

+ zj+3 are not necessarily in C*, (10) cannot be a facet. This argument can be generalized

to any other inequality with ISI > 1. Therefore, if q = n, then SI = 1 for PI to be a facet.

Sufficiency of the Conditions

For anyj, 1 j < T, it is easy to construct a feasible solution with Ij1 = 0: the machine

is off in periods j, j + 1, ... , tq - 1, i.e., wt = t = zt = 0 for all j t < tq - 1, and the machine

produces one unit in period tq, i.e., wtq = Ytq = Ztq = 1. Since this solution satisfies PI at

equality, PI is a face of C. Similarly, it is straightforward to construct another feasible

solution with the machine on in all periods and the changeover variable also equal to 1 in all

periods, i.e., Yt = zt = 1 for all and the machine produces in periods 1, tl, t 2 , ..., tn-1. This

solution has Ij. 1 = 1 for allj > 2 (and w1 = yl = 1) and wtk = Ytk = Ztk = 1 for all k < n - 1.

Thus, (w, y, z) f C* unless q = n and Q = P. However, by condition (iv), if Q = P, then q :

n. Therefore, (w, y, z) f C* and dim C* - dim C - 1. To prove that dim C* = dim C - 1, let aw

+ y + yz = represent an arbitrary equation that is satisfied by all (w, y, z) E C*, where

a E RT, p E RT, y E RT and 8 E R. We show that aw + y + yz = 8 must be a linear

combination of

j-1

E Wt+ Wt+ Y1 + E = q (11)
t=1 tEQ tES tEC
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T T

and w t = d t (12)
t=l t=l

which are satisfied by all points in C*. The proof constructs a sequence of points (wl, yl, zl),

(w2 , y2 , z2), ..., all in C*, and uses the fact that aw l + Pyl + yzl = aw2 + py 2 + yz 2 = ... to

prove that (i) yt = 0 for all t C, (ii) Pt = 0 for all t S, (iii) at = a for all 1 t < j-1 or t E

Q, at = a* for all other t, and (iv) 6 = aq + a* (ZT di - q). These conclusions establish the

desired result. To prove that Yt = 0 for a given t requires the construction of two solutions in

C*, one with zt = 0, the other with zt = 1, and all other variables the same for both

solutions. Note that if yt - Yt-1 - 0, then forcing constraint (6) allows zt to take value 0 or 1.

We make use of this fact to construct the two solutions. Similarly, if it is possible to

construct a pair of solutions in C*, one with yt = 0, the other with yt = 1, and all other

variables the same for both solutions, then Pt must be 0. Defining wt = 0 and zt = 1 allows yt

to be either 0 or 1. To prove that ai = at for i t requires two solutions in C*, one with wi =

0, wt = 1, the other with wi = 1, wt = 0, and all other variables the same in both solutions.

We now provide the details of the proof.

(1) Yt = 0 for all t EC and ft = 0 for all t S.

Since t > 2, it is easy to construct a solution in C* with yt = zt = 0 for any t < j-1.

Setting zt = 1 in this solution and keeping all other variables the same yields another

solution in C* and hence Yt = 0. Similarly, setting both yt = 1 and zt = 1 instead of 0 in the

original solution still keeps the solution in C* and shows that Pt = 0 as well (since Yt = 0).

Thus, Yt = Pt = O for all t < j - 1. Now consider t 2 tq + 1. If dtq+1 = 0, then as for t < j-1, it

is easy to construct a solution in C* with yt = 0 for any t tq+1. If dtq+1 = 1, then

condition (iv) of the Theorem requires that Q , P, i.e., S :t 0. Let b S. In this case,

construct a solution in C* with Ij-l = , wb = b+ l = , Yb = Yb+ = 1 (i.e., Itq = 1), Zb+ =

0 and yt = 0 for any t > tq + 1. Therefore, yt = Pt = 0 for all t < j - 1 or t 2 tq + 1.
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Constructing another solution in C* with Ij1_ = 1 and wt = Yt = zt = 0 for all t E P shows

that Yt = t = 0 for all t E Q and Yt = O for all t E S. (If j = , the argument can easily be

modified.) To show that Pt = 0 for t E C, let b E C. By definition of PI, either b-1 E S or b-1 E

C. Suppose b-1 E S. We can now construct a solution in C* with Ij.1 = 0, Wb- = Yb-1 = b-1 =

1 and wt = Yt = zt = 0 for all other j t < tq. Changing Yb to 1 instead of 0 in this solution

keeps the solution in C* (since b E C) and shows that 13b = 0. A similar construction shows

that ft = o if t-1 E C. Therefore, t = 0 for all t E C.

(2) at = a whenever 1 t < j-1 or t E Q, and at = a* for all other t.

Since tl - 2, construct a solution in C* with wl = 0 and wt = 1 for a given t, 2 t < j-1

or t E Q. Letting wl = 1 and wt = 0 in this solution and keeping all other variables the same

yields another solution in C* and shows that at = al for 1 t < j - 1 or t E Q. If Q = P, then

dtq+ 1 = 0 and a similar argument shows that at = a* for all other t. Now suppose that Q X

P and q ~ n. As in the proof of (1), for any t E S U C and t + 1 E C , construct a solution in C*

with Yt = Yt + 1 = 1. The form of this solution allows the shifting of a unit of production from

any period after tq to either of the periods t or t + 1. Hence, at = a* for all t E S U C or t -

tq + 1. If Q P but q = n, then S = 1 and we can similarly show that at = a* for all t E S U

C.

Therefore, aw + y + yz = is of the form

j-1

a w +a Zwt+ Ptyt+ Ytz+a* . w*=S. (13)
t= 1 tEQ tES tEC tFQ, tj

Constructing a solution in C* with EJ-1 wi = q and wt = t = zt = 0 for all t E P shows that

6 = aq + a* (T di - q). Constructing another solution in C* with E- ' wi = q - 1 and wt = yt
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=zt = 1 for some t E P, t Q shows that Pt = a - a* for all t E S and Yt = a - a* for all t E

C. Therefore, (13) is equivalent to

j-1 T T

a' { Wt + wt + E 't + Zt}+ a* Wt = a'q + a* dt (14)
t=l tEQ tES tEC t=1 t=1

where a' = a - a*. (14) is a linear combination of (11) and (12). Hence, dim C* = dim C - 1,

and PI is a facet of C. I

Trivial Facets

Arguments similar to those used to prove Theorem 1 establish the following results.

Proposition 2. The constraint wj - yj < 0 is a facet of C for all 1 j c T.

Proposition 3. The inequality zj + j- - yj 2 0 is a facet of C for all 1 5 j < T if the

following two conditions are satisfied (i) if j = 1, then yo = 0, and (ii) tq > q + 2, where tql-

+ 1 j < tq . (Note that t 2 implies tq q + 1 for all q.) If tq = q + 1, then the

inequality zj + Yj-1 - yj 0 can be replaced by the stronger inequality zj + j- - 1 > 0

which is a facet of C for this case.

Proposition 4. The demand constraint E1 wi - j di is a facet of C if j tl1, t 2, ..., tn 1}

and dj + 1 = 0. If dj + 1 = 1 or if j , t,, t., tn-1}, then the demand constraint is redundant. If

j = tn = T, then the constraint 2 1T wi ET di is an improper face of C.

Proposition 5. The constraint yj < 1 is a facet of C for all 2 j < T; Yl < 1 is also a facet

if y = 1. (If j = 1 and yo = 0, then z < 1 and z y - yo = y together imply Yl 1.

Hence, yjl 1 cannot be a facet in this case.)

Proposition 6. The constraint zj - 1 is a facet of C for all 1 < j < T.
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Proposition 7. For any j, 1 j < T, the constraint wj 2 0 is a facet of C if the demand

period tq, defined by tql + 1 < j < tq, satisfies tq q + 2. (If tq = q + 1, then wj 0

cannot be a facet since it is implied by Elq+1 wi 2 Elq+1 di = q and wi < 1 for all i.)

Proposition 8. The constraint zj > 0 is a facet of C for all 2 j < T; z - 0 is also a facet

if yo = 1. (If j = 1 and y = 0, then yl 2- 0and Zl 2 yl - y = yl together imply zl>-0.

Hence, Zl > 0 cannot be a facet in this case.)

Note that the remaining constraints, yj > 0 and wj < 1, are redundant for SCSP and

obviously cannot be facets of C.

4. Interpreting the Single Product Model as a Fixed Charge Network

Flow Problem

This section shows that the single product scheduling problem SCSP is equivalent to a

fixed charge network flow problem and that the partitioning inequalities PI can be

interpreted as "cut-set" inequalities for this network. Two observations motivate this line of

inquiry. First, it may enable us to use results from the network design literature to gain

further understanding of this scheduling problem as well as allow us to explore solution

methods that have been used successfully to solve general network design problems (for

example, see Balakrishnan, Magnanti and Wong (1987)). Second, our results concerning the

structure of the scheduling problem may provide new insights about the general network

design problem or about other special versions of the general problem.

To show that problem SCSP is equivalent to a fixed charge network flow problem,

consider a 5 period example with unit demand in periods 2 and 5. It is easy to extend the
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arguments used to construct the network corresponding to this example to the general

problem. Figure 1 shows the network for the 5 period problem. The dotted arcs in the

network represent arcs with fixed charges and the solid arcs represent arcs with no fixed

costs. The network has 3T+ 1 nodes (16 in this case), including a single source node S with

supply of T dt units (2 in this example). Nodes t, t' and t" in the network correspond to

period t in the original problem. Only nodes t can have positive demand; all other nodes,

other than node S, are transshipment nodes (i.e., have 0 demand and supply). In this

example, nodes 2 and 5 have positive demand, corresponding to the periods with positive

demand in the original problem.

The flow on arc (t',t) is wt and corresponds to production in period t in the original

problem. The cost per unit flow on this arc is ht and the arc has a capacity of 1 unit. The flow

on arc (t,t+ 1) is It, the ending inventory in period t, with 0 cost per unit flow since ht

includes the inventory holding cost. Variable Yt is an indicator variable that equals 1 if the

solution sends any positive flow on arc (t",t') and equals 0 otherwise. Thus, if yt is 1, the

solution incurs a fixed charge of st for flow on arc (t",t'). Note that if wt > 0, i.e., if the

solution sends flow on arc (t',t), then it must also send flow on arc (t",t') since all paths from S

to t' include arc (t",t'). Thus, yt = 1 if wt > 0, which is equivalent to the forcing constraint (5)

of the original problem. Similarly, zt is an indicator variable that equals 1 if the solution

sends any positive flow on arc (S,t") and, therefore, incurs a fixed cost of Kt. From the

network construction, it is again easy to see that if yt = 1, i.e., the solution sends flow on arc

(t",t'), then it must send flow on either arc (S,t") or (t"-l,t'-1), i.e., either zt = 1 or Yt- = 1 or

both, which is the "changeover variable" requirement (7) imposed in SCSP. The variable

cost of unit flow is 0 on all arcs other than arcs (t',t) and the model imposes no upper bound

on the flow in any of the arcs other than arcs (t',t).

These observations establish the equivalence between SCSP and NP, the network flow

problem described in Figure 1. To interpret the partitioning inequalities for this network
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Figure 1 Network Corresponding to Single Product Scheduling Problem

flow problem, let fij represent the flow on arc (ij) in any solution to NP and let N denote the

set of nodes in the network design model. Figure 1 also shows a cut-set (X,X') with X' = 1, 2,
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1', 2', 2'} and X = N \ X'. Since the set X' has 1 unit of demand that must be met by flow from

X to X', the following inequality is valid for all solutions to the problem.

flil' + fs2" -f2'3"- 2 1

4 f1 l1' + f2" 1

Y + z2 -1. (15)

Similarly, the cut-set (Y, Y') with Y' = {3', 3, 4", 4', 4, 5", 5', 5} and Y = N \ Y' yields the

following valid inequality for the problem.

I2 + f3"3' + f4" + fs5" 1

I2 + Y3 + z4 + z5 1

X wl + w2 + Y3 + z4+ z5 2 2, (16)

since 2 = wl + w2 - 1. Both inequalities (15) and (16) correspond to partitoning inequalities

for SCSP. Note that both these inequalities (as well as the general partitioning inequalities)

are derived from a special type of cut (W, W') in the network -- node tq E W' for some q and

the other nodes in W' are a subset of the nodes that correspond to periods j, j + 1, ..., tq with

tq- l+1 j < tq. This observation suggests that it may be possible to generalize the

partitioning inequalities by examining other types of cut-sets for NP.

Generalizing the Partitioning Inequalities

Consider (Z, Z'), with Z = {S, 1"} and Z' = N \ Z, a different type of cut-set for the 5-period

single product example. From this cut-set, we obtain the following valid inequality for NP

fl 1T + fs2" + fS3" + fS4" + fss" 2 (17)

since the set Z' has a demand of 2 units that must be met by flow from Z to Z'. Note that the

flow in either of the arcs (1",1') or (S,2") used to meet demand in the set Z' cannot exceed 2

units since Z' has a demand of only 2 units. Therefore, fl''Il < 2yl and fS2" - 2z2. Similarly,

fs3" < Z3, fs4" < z4 and fss5 < z5 and we can replace (17) by

2yl + 2z2 + z3 + z4 + z5 2. (18)
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Note, though, that this inequality is implied by the partitioning inequality Y + z2 1.

However, a different procedure for replacing the flow variables in (17) by the design

variables y and z yields a new inequality. We first show that

f"l' + fs2" <i Y1 + Y2. (19)

Iffl"1, = 1 and fS2" = 0, then f1"1' + fs2" yl. Now suppose that fll' = 2. Since arc (1',1)

has a capacity of 1 unit, at least one unit of the flow in (1",1') must flow through arc (2",2').

Hence, if fl"1' = 2, both yl and Y2 must equal 1 and fl 1' < yl + Y2. Similarly, if fs2" > 0,

then both z2 and Y2 must equal 1. However, since fplT1 + fs2" < 2 in all cases, (19) is valid.

Therefore, (18) can be replaced by

Y1 + 2 + Y2 + z3 + z4 + z5 2 2. (20)

Inequality (20) is not implied by any of the partitioning inequalities; in fact, it is a facet for

the convex hull of solutions to this particular problem instance. This discussion suggests

that we can derive valid inequalities for the general problem SCSP that are similar to (20).

Consider the inequality

j-1

W + E W + E + E + f W+ E + E Zt> q+l (21)
t=1 tEQl tES1 tEC1 tEQ2 tES2 tEC2

with t 1 + 1 < j tq, P1 = (,j+ 1, ... t1, P2 = tq+ 1, t+ 2, ... tq+1}

Q1 uS1 uC1 =P1, Q1 nS1i = ,Q1 nC1i = 0,

Q2 c P2, S2 C P2, Q2 n S2 = 0 and C2 = P2\{Q2US2 .

Note that for any j and tql + 1 < j < tq, this inequality considers two sets of periods -- P1 =

j, j + 1, ..., tq} and P2 = {tq + 1, tq + 2 , ..., tq + 1. The set P1 is divided into the subsets Q1, S1

and C1 and the set P2 is divided into Q2, S2 and C2. Note, further, that we do not require S1

n Cl = 0. Inequality (20) is a special case of(21) withj = 1, Q1 = Q2 = 0, S1 = {1, 2}, C1
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= {(2 and C2 = 3, 4, 5}. Also note that if Q1 = P1, then inequality (21) is the same as the

partitioning inequality, i.e., the partitioning inequalities are a special case of inequalities

(21).

Arguments similar to those used to show that (20) is valid for the example of Figure 1,

establish the following proposition. A number of the conditions of this proposition are

similar to the conditions of Proposition 1.

Proposition 9. Inequality (21) is valid for SCSP if the following conditions are satisfied.

(i) j C1, i.e., zj is not in the inequality,

(ii) if tq+ 1 E C2, then tq E S1 and C1, i.e., if ztq+ 1 is in the inequality, then so are Ytq and Ztq,

(iii) for t P1, if t C1 only, then t-1 S1 and C1, i.e., for tq-l + 1 t c tq, if Zt is in the

inequality (but Yt is not), then both zt-l and Yt-1 are in the inequality,

(iv) if t E Q1 U Q2, then t + 1 £ C1 U C2, i.e., if wt is in the inequality, then Zt+ 1 is not.

Some additional conditions, similar to those of Theorem 1 for the partitioning

inequalities, ensure that inequality (21) is also a facet of SCSP. However, we do not discuss

these conditions since inequality (21) can be generalized further and we address this

question in our future research. It is important to pursue this line of inquiry further for two

reasons. First, it will identify additional facets for this problem and second, it will provide

insight into how to strengthen cut-set inequalities, similar to (17), for the general network

design problem.

5. Structure of the Multiple Product Model

This section shows that results for the single product model can be extended to the

multiple product problem. As in our discussion for the single product model, let tpl, tp 2, ...,
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tpnp denote the periods with positive demand for product p. Further, let Cm denote the convex

hull of solutions to PCP, i.e., Cm = conv {(w, y, z) I (w, y, z) satisfies (3) - (9)}. The partitioning

inequalities PI are still valid for PCP and for any product b can be stated as

j-1

Wbt + W + y + Z2, q (PIb )
t=1 tEQ tES tEC

with tb,q-l +1 j < tbq, P = {j,j+ ... , t, Q c P, S c P, Q n S = 0 and C = P\{QUS}.

As in the single product model, to exclude uninteresting special cases, we assume that a

feasible solution with Ypl = 0 for all p, i.e., the demand pattern of the products permits the

machine to be off in period 1. (A necessary and sufficient condition for this solution to exist is

Ep C,-t dpi < (t-l) for all t.) Arguments similar to those used to prove Theorem 1 establish

the next theorem.

Theorem 2. PI is a facet of Cm if and only if Q, S and C satisfy the following conditions.

(i) j C, i.e., zbj is not in the inequality,

(ii) if t Q, then t+ 1 f C, i.e., if wbt is in the inequality, then zb,t+ 1 is not,

(iii) if t E S, then t + 1 C, i.e., if Ybt is in the inequality, then so is zb,t+ 1 and, in particular,

tbqf S,

(iv) if Q = P, then q ,e nb and tb,q+l > tbq + 1, i.e., db,tq+1 = 0,

(v) ifq = nb, then ISI = 1, and

(vi) if t C and t < tbq, then Ep E, t dp1
< t-2.

Proposition (9) concerning the more general inequality (21) and results regarding the trivial

facets can be extended similarly; we omit the details.
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6. Separation Problem

If we want to use the partitioning inequalities as part of a cutting plane procedure to

solve CSP (or any problem that contains CSP as a subproblem), then given a fractional point

(w, y, z) that is feasible for the linear programming relaxation of CSP (or the larger

problem), we need to identify a partitioning inequality that cuts it off or determine that no

such inequality exists. This problem is referred to as the separation problem and the

following algorithm solves it.

Let (w, y, z) denote a given fractional solution that is feasible for the linear programming

relaxation of CSP. For any given q andj, with tq-l + 1 ' j < tq and q E {1, 2, ..., n}, let P = {j,

j + 1, ..., tq}. If CEal wt 2 q, then (w, y, z) satisfies PI for all Q, S and C that are subsets of the

given set P. Now suppose that 1Jl' wt < q. In that case, define Q*, S* and C* as follows:

E t+ E mt + E = minQC{ i Wt + E + E Zt }
tEQ* tES* tEC* tEQ tES tEC

with the minimum of the righthand side determined over all sets Q, S and C that satisfy

conditions (i) - (v) of Theorem 1 and let

tEQ* tES* tEC*

If f(tq) < q - El-l'wt, then Q*, S* and C* identify a violated inequality. Otherwise, by

definition of Q*, S* and C*, there is no violated inequality for the given q and j.

For a given j and q, the following procedure finds f(tq) (and Q*, S* and C*). For any i

satisfying, j < i < tq, define g(i, w) {g(i, y), g(i, z)} as
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g(i,w)= min y Wt + Y + Zt,
tEW tEY tEZ

whereW U Y U Z = {j,j+1,...i}, W n Y = , W n Z= , Y n Z= , iW{i Y, i Z},

and, in addition, W, Y and Z satisfy: (i) j f Z, (ii) if t W, then t+1 f Z, and (iii) if t Y,

then t+ 1 Z. Since condition (i) requires thatj f Z, define g(j, z) = o. By definition of g(i,. ),

g, w) j, g(j, y) = yj, g, z) = ,

and for i >j,

g(i, w) = {w. + min [ g(i- 1, w), g(i- 1, z)] },

g(i,y) = {yi + min[g(i-1, w),g(i-1,z)]},

g(i,z) = {z. Zi+ min[g(i-1,y),g(i-1,z)]},

and Aft ) = min {g(tq,w), g(tq,z)}, since condition (iii) requires tq f Y.

If f(tq) < q - El'wt, the sets Q*, S* and C* and the violated inequality can be constructed

by backtracking. It is easy to see that given (w, y, z), and j and q, it takes O(T) time to

compute f(tq) and construct a violated inequality if one exists for the given j and q. Since

there are exactly T possible combinations of j and q, the procedure for checking if a given

fractional point violates any partitioning inequality PI, and constructing a violated

inequality if one exists, takes O(T 2) time. A similar procedure solves the separation problem

for the more general valid inequalities (21). Recall that the single product problem SCSP can

be solved as a shortest path problem in O(T2) time. Therefore, we would not want to develop

a strong cutting plane procedure to solve this version of the problem. The fact that we can

solve the separation problem efficiently is important when we implement a cutting plane

procedure for CSP or any larger problem that contains CSP as a substructure. The next
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section describes such an algorithm that uses the separation problem procedure to identify

cuts to be added to the current linear programming relaxation.

7. Computational Results

Based on our characterization of the polyhedral structure of CSP, we implemented a

strong cutting plane algorithm to solve the problem. The algorithm starts by solving CSPL,

the linear programming relaxation of the given problem. If the linear programming solution

is fractional, then the algorithm checks if this solution violates any of the facet inequalities

of CSP. We use both the partitioning inequalities and a special class of the more general

valid inequalities (21) to generate cuts to eliminate the fractional solution. The cuts are

identified by solving the separation problem for these inequalities. If the algorithm finds

such a violated inequality, it adds it to the current linear programming relaxation of the

problem and then solves the updated linear program. Our implementation repeats this

procedure until either the linear programming solution is integral or it violates none of the

facet inequalities. On termination, if the linear programming solution is not integral, then

the algorithm uses branch and bound to obtain an optimal integral solution to the original

problem.

Our computational experiments have two major objectives: (i) to estimate empirically

the reduction in the integrality gap, i.e., the gap between the optimal values of the original

problem and its linear programming relaxation, both before and after the addition of facet

inequalities, and (ii) to determine if any specific subclass of the facet inequalities is more

effective in reducing this gap. Identifying such a subclass would provide insight into

modeling these problems and suggest linear programming-based solution methods that

include these inequalities a priori. Our goal is not to develop the most efficient cutting plane

procedure that exploits our description of the problem's polyhedral structure; therefore, for
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each fractional solution encountered in the algorithm, we solve the separation problem,

rather than use a faster heuristic, to identify a violated inequality. Moreover, instead of

testing when it is best to add violated inequalities and when to invoke branch and bound, we

use branch and bound only when no more valid inequalities can be added to tighten the

linear program. A number of such implementation issues needs to be resolved in order to

develop a computationally efficient algorithm.

We performed all the computations on a PRIME 850 computer using the LINDO mixed

integer programming package for solving the linear programs and for conducting the branch

and bound computations. The matrix generators and the cut generation routines were coded

in FORTRAN as part of the USER subroutine available with LINDO.

Data Sets

The literature contains very little test data for this scheduling problem. Karmarkar and

Schrage (1985) report computational experience for a similar problem, but with a continuous

production policy instead of a discrete production policy (refer to the earlier sections for a

discussion of the relationship between the two policies). They use Lagrangean relaxation to

solve problem instances of up to 4 products and 8 time periods. Their method for generating

the data allows any particular instance to be infeasible if the initial inventory is zero.

Therefore, they modify the problem to allow for any amount of initial inventory to be

available at a cost that will discourage the use of this inventory unless the problem is

infeasible without it.

For model CSP, it is easy to check if a given instance of the problem, with any given

initial inventory, is feasible or not. (If the initial inventory for all the products is zero, then

the problem is feasible if and only if pi<t dpi < t for all t.) Therefore, for our computational

study, we generate a set of feasible problem instances with zero initial inventory. Further,
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instead of allowing demand to vary arbitrarily and then scaling it in units of capacity to

obtain dpt {0, 1} for all p and t, we set the capacity equal to 1 for all the problem instances

and set demand equal to 0 or 1 in every period for each of the products. We generate a set of

problems with 1, 2 or 5 products and 10, 15 or 20 time periods. The largest problem instance

we tested was a 5-product, 15-period problem. The number of 0-1 variables in these problems

is equal to 3PT, (P is the number of products and T is the length of the horizon). Therefore,

for the problems we solved, the number of 0-1 variables varied between 30 and 225.

All the problem instances set the initial inventory for each of the products equal to 0 and

assume the machine is off at the start of the horizon. The other parameters of the problem

are determined as follows.

(i) The utilization of the facility varies between 30% and 100%. For example, a 10-period

problem with 50% utilization has a total demand of 5 units for all the products.

(ii) The total demand for the facility is divided equally between the products (or as close to

equal as possible since demand for the products is integral). Thus, a 2-product, 10-period

problem with 50% utilization has a demand of 3 units for product 1 and 2 units for product 2.

For each product, the periods with positive demand are distributed uniformly over the

horizon, subject to the requirement that the resulting problem be feasible. We ensure

feasibility of the problem instance by first generating the demand for product 1. We then

determine the first period with positive demand for the next product. If the demands

generated so far satisfy Epit dpi < t for all t, then the problem is feasible and we generate

the next period of positive demand for this product. If, however, pzit dpi > t for some t,

then it is not feasible to allow positive demand in the last period generated and we

determine another period instead. Proceeding sequentially in this manner, we generate

demand for all the products. If none of the products has positive demand in period T, the last

period of the horizon, then we change the last period with positive demand for product 1 to
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equal T, thereby ensuring that at least one of the products has positive demand in the last

period of the horizon.

(iii) The cost parameters are the same for all the products and are constant over the horizon.

The inventory holding cost for all the problem instances is equal to 10/unit/period. Note that

this cost of 10 implies that the coefficient ht of wt in problem CSP is 10(T-t), where T is the

length of the horizon. The setup cost st is equal to 20 for all the single product problems and 0

for all the 2 and 5 product problems (we explain the reason for this difference later). For each

combination of number of products, number of time periods and capacity utilization, we

generate 3 problems with the changeover cost Kt equal to 50, 100 or 200. These choices

permit us to determine whether the problem becomes harder to solve as the changeover cost

increases.

Before presenting the results, we make a few observations about specific problem

instances. Let CSPL1 denote the linear programming relaxation of CSP with the following

additional constraints

Ypl + p2 + + Zpt > 1 forallp
p1

included. Recall that tpl denotes the first period with positive demand for product p. For the

single product version of the problem, with st = 0 for all t, it is easy to show that v(CSPL1) =

v(CSP). Therefore, in this case, only a single additional constraint is needed to close the

integrality gap to 0. To exclude this simple case from our computations, we let the setup cost

for the single product problems equal 20.

For the multiple product case, we first generated several pairs of problems with identical

parameters except that one had a setup cost equal to 0 and the other equal to 20. We found

that there was no significant difference between the integrality gaps for any pair of

problems and that, further, the algorithm generated the same cuts to tighten the linear
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program for most of the pairs. Therefore, we then generated problems with setup cost equal

to 0 and report results only for this case.

For the multiple product version of the problem, with only a single unit of demand for

each product over the horizon, it is also straightforward to show that v(CSPL1) = v(CSP).

Thus, in this case, only P additional constraints are needed to close the integrality gap to 0.

We report on some 5 product problems of this type in our computational results. In some of

these instances, the system generated more than 5 cuts since the separation algorithm first

generates all inequalities violated by the first product before checking for inequalities

violated by the next product.

In our initial experiments, we also found that most of the cuts generated by the system to

tighten the linear programming relaxation were of the following type

j-!

wt pY +z p +z +p + + Zpt q (22)

with tp,q-1 + 1 j < tpq. Therefore, for all the test problems, we also computed the objective

value of the linear programmimg relaxation with inequalities (22) included a priori, for all j

and p, to determine the effectiveness of these inequalities in reducing the integrality gap.

Computational Results

We solved 18 single-product problems, 21 2-product problems and 15 5-product

problems. Table 1 summarizes the results for a sample of these problems. In this table, v(LP)

refers to the optimal value of the linear programming relaxation CSPL, v(LP1) refers to

the optimal value of the linear programming relaxation with inequalities (22) included,

v(LP2) to the optimal value of the linear program with all the violated facet inequalities

included and v(IP) to the optimal value of the original problem. The results in this table,

show that the facet inequalities are very effective in reducing the integrality gap for all the

-31-



a , o o o, O N 1 O ' O O O O

. . O O O ,'" 0 ' (N - .O O O O

'-00' 0'- (N '4 O0 '-LA 0000

oo ' '.m,-g- m '- :4 , : :'-

E O O O C a O O O O N O O OZ4-

E, o o oo o o, o L o - o o o o-Q.. '' o ,, 1 n OUd O 1 - N, ,lO NM N N mq m

.

0Z°O D ,, m m 00 0 O o 0 m o o oDv N 0 0 N

z . '4'-' - 0 -(N '4000 r- -" O O O O O O Ln O O O O O O O O> : m O 0 0 O O N Oo O O O o LnOL r o 0 r- o n '4 m * o' Oo -( - N
h" > (N 4 m r(N Nm

a) _ -~ 0) O 4 O 0 r~. O O m 0 M r- m 0 0 0 0
=3- m O O O Un L 00 r O O O O

(BJ '4 ( N O ' 00 MM 0 '- m N .
(L a( > LAL _N' NO (N N N r4 4 n_

0 O 0 0 - O D M Wm O O O0 O

(N -(O QN 00 - -- Q- - o -
> _ Ln Ln Ln o( I oot oo N o M bm ai

o a) w C CD 00 0 O$ O O o 0 o

r o N N N NN N LA N N 

oO

NN N L L

Z .m __ __ _ __ _

-32-

-oE
O

,_.

I ~

Q,

10E

Eo
OL



instances considered; for a majority of the instances, the addition of these inequalities

resulted in an integer solution and the system did not require branch and bound. Even when

the facet inequalities were not sufficient to ensure an integer solution, they narrowed the

gap considerably so that branch and bound could easily find an optimal integer solution. In

all cases, the facet inequalities reduced the gap to less than 4% even though the original gap

was over 40% in some cases. We further find that inequalities (22) are by themselves very

effective in reducing the integrality gap in most cases.

Table 2 provides summary information concerning the average integrality gaps for all

the 1-, 2- and 5-product test problems. A surprising conclusion emerged from these results:

the cutting plane routine finds an integer solution for all the 5-product problems, whereas

the algorithm requires branch and bound for some of the single-product and 2-product

problems. Further, the addition of only inequalities (22) to the linear programming

relaxation CSPL is sufficient to obtain an integer solution for all the 5-product problems.

However, even for some of the single product and 2-product problems for which the addition

of all violated inequalities results in an integer solution, the inclusion of inequalities (22)

alone is not enough to obtain this solution. We do not have a good explanation for this result

(However, see our comment just prior to the inequality (21).) Perhaps, the result is just a

consequence of the particular problem instances generated.

Table 2

Average Integrality Gaps for the Scheduling Problems

Average Average Average
No. of v(IP)-v(LP) v(IP)-v(LP1) v(IP)-v(LP2)

products v(IP) v(IP) v(IP)

1 13.4 1.8 0.8

2 24.8 2.4 0.8

5 24.9 0.0 0.0

a
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Comparing the results for problems that are similar except for the changeover costs, we

find that though the integrality gap is larger the higher the changeover cost, in most

instances the system generates the same cuts to tighten the linear program and reduces the

integrality gap to approximately the same amount. Thus, the performance of the cutting

plane procedure seems to be independent of the value of the changeover costs.

We examined the possibility of obtaining an upper bound on the optimal value for the

problem by constructing a feasible solution from the fractional solution obtained at the end

of the cutting plane routine. However, the structure of the fractional solutions makes it

difficult to develop a simple heuristic that will provide a good upper bound. Moreover, since

in most instances the algorithm require very few branches to find an optimal integer

solution, we do not think it worthwhile to pursue this issue further.

Finally, note that for the smaller problem instances, it is quite possible that using

branch and bound directly after solving the linear programming relaxation of the problem,

with no additional constraints added, will be as effective a method as our cutting plane

procedure. To provide some comparison between these two approaches, in Table 3 we provide

the solution times for a few problems using (i) our cutting plane/branch and bound procedure

described earlier, and (ii) branch and bound directly after solving the linear programming

relaxation. The results in this table suggest that the cutting plane method does not offer

much computational advantage for the smaller problems, but that it does significantly

reduce the solution time for the larger problem
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Table 3

Comparison of Solution Times for the Changeover Cost Scheduling Problem

CPU time for CPU time for
No. of No. of Total Changeover cutting plane branch &

products periods demand cost algorithm bound after
(sec.) lp (sec.)

1 10 3 200 12 17

1 15 5 200 37 54

2 10 7 200 44 75

5 15 10 200 783 5773

8. Conclusions

Our objective in this paper has been to study the polyhedral structure of a prototypical

scheduling model in the production planning literature and to subsequently use the results

to develop efficient solution methods. Our research was motivated by the following

observations. First, even though this problem has been the focus of extensive study,

available results from the literature have been effective in obtaining good solutions only for

special cases. Second, as for any integer programming problem, the problem can be

formulated in several different ways and results about the structure and properties of

alternative formulations should provide useful insights about modeling. Finally, the success

of cutting plane procedures using facet inequalities in other problem domains indicates that

these methods can be very effective in solving large integer programming problems to

optimality in reasonable computation times.

In this study, we proposed an integer programming formulation for the problem and

identified a family of non-trivial facets of the convex hull of solutions to the problem. We
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also presented an efficient algorithm to solve the separation problem for this class of facets.

This characterization of the polyhedral structure permitted us to implement and test a

strong cutting plane procedure. Our computational results suggest that these facet

inequalities are very effective in reducing the integrality gap -- for a large number of the

problems tested, the addition of these inequalities resulted in an optimal integer solution,

and even when the added constraints did not produce an integer solution, they considerably

narrowed the integrality gap so that branch and bound could easily find an integer solution.

Though our computational results are very encouraging and indicate that these

inequalities are effective in reducing the integrality gap, much more remains to be done.

One potentially fruitful avenue for future investigation would be to obtain a more complete

description of the convex hull of solutions to the problem. The multiple product problem is

NP-complete and, hence, we do not expect to be able to obtain a compact characterization of

the convex hull for this version of the problem (see, Gr6tschel, Lovasz and Schrijver, 1981

and Karp and Papadimitriou, 1982). On the other hand, the single product problem can be

solved in polynomial time via dynamic programming and a complete characterization

should be possible in this case. Results about how to tighten the general cut-set inequalities

for the equivalent network design problem should yield additional facet inequalities for this

problem and also provide insights that might prove to be useful for the general network

design problem. Perhpas the most immediately useful follow on study, however, would be to

perform further empirical tests and to implement, and as a result refine, the ideas presented

in this paper on problems met in practice.
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