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A. NOISE

1. Noise Measurements

Both noise measuring systems were shut down for modifications and repairs; there-

fore no work is reported.

2. Low-Noise Traveling-Wave Tube at 500 Mc

The first tube, described in past Quarterly Progress Reports, was completed and

tested. The gain is about 15-18 db, and the noise figure is 12-13 db. Some of the obvious

reasons for the high noise figure are: (a) The intercepted current is 1-2 per cent. This,

because of the large value of C (approximately 0. 14), produces much larger excess noise

than is found in conventional tubes with C - 0. 03. (b) The gun is movable in the envelope,

but apparently it cannot move far enough away from the helix to reach the optimum noise

position.

A new tube is being designed with the same electrical parameters but with better

mechanical assembly techniques.

S. Saito, L. D. Smullin

3. Noise Measure of a Transistor

Study of the noise measure of a transistor continues. The noise measure of an

amplifier can be defined as

F-lM =
1

i--

where F is the noise figure, and G

The value of M was determined

function of the generator resistance

tion was asked: What happens if we

operation?

For an ideal transistor (rB = 0),

made as large as possible, where

is the available gain.

for a transistor, and its behavior was studied as a

and the transistor biases. In particular, the ques-

optimize M instead of F in order to obtain low-noise

with only shot noise being considered, 42 should be

*This work was supported in part by Purchase Order DDL-B158. (See the Introduction.)
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2
a r

2 c
4r = maximum available gain of transistor with rB = 0

E

We make rc large by making the collector voltage Vcl large (that is, if we neglect the

Early effect; otherwise, rc cannot be changed, if IVcl is greater than approximately

0. 5 volt). We can make rE small by increasing IE , the dc emitter current.

If we take into account the finite base resistance rB , the situation changes and there

will be, in general, an optimum set of values for IE and V . Finally, if we take into

account 1/f noise that is proportional to some power of the collector voltage, there will

be another optimum set of values for IE, V c

To reduce 1/f noise we must reduce Vc . For very small Vcl ,the back resistance

of collector diode, r , will become quite small and so will the gain. Optimizing the

noise measure will set IVcl at a value at which the gain is small but finite. Whereas,

if we adjust in order to optimize F, we may reduce the gain to unity. In any case, we

shall be uncertain where to stop, since the gain is not contained in the noise figure

expression.

B. W. Faughnan

B. HIGH-POWER MICROWAVE TUBES

1. Multiple-Cavity Klystrons

a. Theory

A detailed analysis of the small signal gain-bandwidth relationships of stagger-tuned

multi-cavity klystrons was developed. The results will be presented in a paper at the

AIEE-IRE Conference on Electron Devices, at Boulder, Colorado, June 29, 1956.

A. Bers

b. Experiment

Since the theory mentioned above is entirely small-signal, an experimental study

of the effect of stagger tuning on the efficiency of pulsed klystrons is being planned.

Preliminary measurements were attempted on a General Electric Company Z5076 four-

cavity, 20-kv tube; future measurements will be made on the Varian Associates V-87

four-cavity klystron.

Experiments were made on the General Electric Company tube to test the effective-

ness of reducing collector voltage in increasing tube efficiency. Since the tube was

*This work was sponsored in part by the Office of Naval Research under contract
Nonr 1841 (05), NR 373-043.
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not designed with this feature in mind, the results indicated only a minor change in

efficiency. The body currents were relatively large under conditions of reduced

collector potential; hence we cannot draw any firm conclusions. Future experiments

are planned.

B. A. Highstrete

C. A SYNCHROTRON INJECTION SYSTEM

An injection system for an alternating-gradient (AG) synchrotron is being investi-

gated in connection with the synchrotron to be built by the Cambridge Accelerator group.

1. Synchrotron Acceptance

If a procedure developed by Slater (1) and by Twiss and Frank (2) is generalized,
a Hamiltonian function can be set up to describe the oscillation of particles in any syn-

chronous machine.

2
H' = - V(cos + ' sin Vo) (1)

where o is the phase stable position, ' is the deviation from this position, H' is the

Hamiltonian of the oscillation, p' is the excess momentum, m' is the mass associated

with the oscillation, and V is a voltage parameter that is dependent upon the particular

type of accelerator used. For an AG synchrotron of the type proposed by Courant,

Livingston, and Snyder (3), V is just the total gain in voltage around a single turn at

maximum field; m' also varies from one type of machine to another. For the strong-

focused synchrotron, we have

2
Po

m' - (2)kaE

a mass reduced by the factor ka, where k is the ratio of radiofrequency to orbit fre-

quency, and a is the momentum compaction factor.

A given set of input conditions of phase and energy will correspond to a particular

Hamiltonian function H'. The orbits of H' that are closed curves in phase space will

represent values at which particles will be accepted into stable orbits. From the

Hamiltonian function, we can also find the extent of the radial oscillation in the syn-

chrotron from the relation

Ar p'- a (3)r P

The quantity V will be so chosen that it accepts most of the input beam for a given
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energy and phase spread at injection. This energy and phase spread must then be limited

in order not to exceed the radial oscillations allowed by the width of the vacuum chamber.

2. The Injection System

The injection system, besides limiting energy and phase spread, must also inject

the particles at a fairly high energy, of the order of 20 mev. This requirement

is necessary because of remnant magnetic fields in the synchrotron. Using a linear

accelerator is probably the most convenient way of achieving the required energy with

the necessary beam current.

In a linear accelerator with a bunching section, as described in the Stanford Acceler-

ator Report (4), both phase and energy spread at the output can be controlled to some

extent. In the bunching section, these quantities vary reciprocally, although they vary

together in the relativistic section. The linear accelerator can be operated either at

the fundamental frequency of the synchrotron or at some higher harmonic. If a harmonic

frequency is used, the output of the linear accelerator will have a number of pulses of

output for each synchrotron cycle that corresponds to the harmonic number used. Since

this would be equivalent to a large phase spread at injection, it must be used with a

supplementary bunching system. If a current grid or cavity prebuncher is operated

at the synchrotron frequency, most of the charge can be concentrated in a single linear-

accelerator cycle for each synchrotron cycle. With such a bunching system, the phase

spread at injection becomes negligibly small. The problem then becomes one of reducing

the energy spread as much as possible.
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Fig. VI-1. Charge accepted versus energy spread for different harmonic
numbers of the linear accelerator.
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If we use a Hamiltonian formulation similar to the one given in Section VI-C. 1, a

general expression for the energy spread can be derived. From this expression, a study

of any given parameter can be made while the others are held fixed, in order to mini-

mize the output energy spread - subject to practical limitations. One study was made

to compare the operation of the linear accelerator at various harmonic frequencies from

one to six. A cavity prebuncher was used. The following buncher parameters were

chosen:

Total energy, 4 mev Injection field, 0. 5 mev/meter

Injection velocity, 1/3 C 4o at injection, 15"

Maximum field, 5 mev/meter co at exit, approximately 80*

The total linear-accelerator energy was 20 mev. The percentage of charge accepted

with a given energy spread was plotted for various harmonic numbers between one and

six. See Fig. VI-1.

A. J. Lichtenberg
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D. TECHNIQUES

In order to insure a high vacuum in the low-noise traveling-wave tube, the collector

is made of titanium; by means of a bias resistor it is run about 20-50 volts below the

helix. In this way, we use the principle of the titanium vacuum pump.

The same technique is most readily applied to the reflector of a reflex klystron.

This should allow very high vacua to be attained, thus reducing ion-oscillation modu-

lation products.

L. D. Smullin


