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A. SECOND-ORDER SADDLEPOINTS ON THE RIEMANN SPHERE

Second-order saddlepoints play a fundamental role in methods of approximate

integration. In these methods not only the trajectories of the saddlepoints in the com-

plex frequency plane (s-plane) but also the varying velocities of the saddlepoints along

the trajectories are of great interest. Two engaging questions are: With what speed do

two second-order saddlepoints coalesce, thereby creating a third-order saddlepoint?

With what speed do they afterward separate in directions 90* from the incoming direc-

tions? These matters can be studied easiest by giving an example.

The Bessel function Jo(t) has the Laplace transform

F(s) = (s 2 + 1) - 1/ 2

The trajectories of the two second-order saddlepoints that belong to the inverse

Laplace transform have been calculated (1)
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The trajectories are sketched in Fig. XVI-1. A third-order saddlepoint is created at

s = 1 for t = 1/2. A simple calculation shows that one of the two saddlepoints starts out

at infinity (primary saddlepoint) and the other at s = 0 (secondary saddlepoint) with

initial velocities (v)s t= = (-)oo and (v2) t= = (+)1. While the primary saddlepoint

slows down and then accelerates to v = (-) o at s = 1, the secondary saddlepoint accel-
si

erates continuously to v = (+)oo at s = 1. After coalescence, the two primary saddle-
s2

points move along the unit circle with a decreasing speed that varies from infinity at

s = 1 to zero at s = ±i.

An interesting representation of the saddlepoint movements is obtained by map-

ping the complex frequency plane stereographically on the Riemann unit sphere.

See Fig. XVI-2.

Simple calculations show that the line L 1 through the saddlepoints at t = 0 coincides

with the z-axis. For t > 0, L 1 moves along the x-axis with a velocity dx/dt = 2; at the

same time being parallel to the z-axis. Its polar, L 2 , starts out with infinite velocity

at infinity and slows down according to the law dx/dt = (-)1/2t 2 . At t = 1/2, the two

lines L1 and L2 are both tangent to the sphere at the point (1, 0, 0); the velocities are the

same [(+)2 and (-)2]. For t > 1/2, the two saddlepoints are obtained as points at which

the line L2 cuts the surface of the sphere. The velocity of L 2 approaches zero as L 2
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Fig. XVI-1. Saddlepoint trajectories in Fig. XVI-2. Saddlepoint trajectories on
the s-plane. the Riemann unit sphere.

approaches the y-axis; simultaneously, its polar L 1 moves with constant speed toward

infinity.

The movements of the lines L1 and L 2 in three-dimensional (hyperbolic) space and

the interpretation of the saddlepoints as being the points where L 1 or L 2 cuts the sur-

face of the sphere furnish the explanation for the infinity of the saddlepoint velocities at

a third-order saddlepoint in the complex frequency plane. The saddlepoint movements,

which seem to be highly discontinuous in the s-plane, can actually be considered quite

smooth when they are on the surface of a sphere. An interesting analogy exists between

the movements of saddlepoints with time on the surface of the Riemann sphere and the

movements of fixed points of impedance transformations with the variation of, let us

say, an element of a network in network theory (see Sec. XVII-C).

E. F. Bolinder

References

1. M. V. Cerrillo, Technical Report 55:2a, Research Laboratory of Electronics,
M.I.T., May 3, 1950.


