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A. ANALYTIC NONLINEAR SYSTEMS

1. Definitions, Norms, Transforms

An analytic system (1) is a device whose output g(t) can be expressed in terms of
its input f(t) as

g(t) = ho +

-00

hl(T) f(t-T) dT +

00 00

-0O -00

h?(T 1 , T,)f(t - T 1 f(t - T)dT 1 dT + ...

Sn

= . .. hn 1  f(t - Ti) dT
n=0 -oo i=

The functions hn(T 1 .. T n) will be called the system functions. We shall also make
use of the system transforms

0f00
H ( . n ) = . . .-o -0o 0

n

h n(T' T. nTn )  e - 3 i T dr i

i=l

The system of Eq. 1 will be denoted by Xl; thus, we write g = df, or g(t) = #f(t).
The norms of the system functions will be defined in the L 1 sense:

I hn =
-o00

Ihn(T 1i ... Tn) dT 1 .. dTn

The norm of the system f is a function of a positive real variable x, and is

defined by the power series

00

13f L (x) = Ih xn (4)
n=O

The radius of convergence of this series will be called the radius of convergence of the
system, and will be denoted by p( '). It is clear that if the input is suitably bounded,
f(t)I < M < p('), then the output will be defined and bounded, I 30f(t) I < II JI(M).

A system will be called analytic only if its norm exists and its radius of convergence
is not zero.

The notation of script letters for systems, lower-case letters for system functions,

0C



(VIII. STATISTICAL COMMUNICATION THEORY)

and capital letters for transforms will be used consistently.

2. Simple Networks: Algebra of Systems

It will be convenient to have an algebra of systems in which the operations of addi-

tion and multiplication correspond to the elementary ways of combining systems. It

is also convenient to have a method of computing the results of these operations. We

shall find formulas, not only for the system functions of the resulting systems, but

also for bounds on their norms and radii of convergence.

Figure VIII-I illustrates the sum of two systems. The defining equation is

(pr+'x) f = rf + Jf

For its system functions, we immediately obtain

(h+k)n (T 1 ... n) = hn (T1 ... n) + kn(T1 ' .... n )

and for its system transforms,

(H+K) n( 1 . . . W) = Hn(w1 , ... w n ) + Kn(w1 .. . n )

We also immediately obtain for the norm,

(7)

(8)and, for the radius I (x)+ I x)convergence,
and, for the radius of convergence,

Addition of systems is evidently commutative and associative.

Fig. VIII- 1. Parallel combination
X% + .

Fig. VIII-2. Cascade combination

The product of two systems is illustrated in Fig. VIII-2. The defining equation is

(10)

p (dC+X) ;> mintp(-V), p (X )l

(Ple ) f = r(Xf)
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We have found (1) that

f-oo
00

-0

i km ( r
" 1- 1

hn(T
1 ... T n )

+1 1 r.+m.
1 1

where r. = r i + mi. 1 and r I = 0. In terms of transforms,

(HK)p(Ol5 .. . W n) =
n=0 n

7

H n (Q1' Q f2n) F

i=l
mi=P

Kmi(ri.+ '

m.

Z =  rJ
j= 1

To determine a bound on the norm of the product, we note that

1hnl( Z
m=0

n

Jjkm 
xm )

n

11hnll 1km.i1

00
n=O n

mi=P
i=l

and, comparing this equation with Eq. 11, using a generalization of the theorem (2) on

the L 1 norm of a convolution, we find that

(14)

The series converges if (I fI(x) < p(3 ); hence p(f 'Y) is not less than the least upper

bound of all x < p(XY) that satisfy this condition.

p(f ) > least upper bound {xlx < p(X), I (x)( < p (( )

Multiplication is associative, but not commutative, dC'X% ? #X-.

(15)

It is not left-

distributive over addition, *(+f) Y.09 + .YX, but the definition of addition

(Eq. 5) shows that it is right-distributive, (A'+X)_ = 9fYY + X Y.

oo00

(hk) p(l P T p) =
n=O n

i=1

(11)

where

S...W ri+mi)
1 1mi

(12a)

(12b)

00oo

= Z
n=0

00

(13)

11 11 lX l(x))

11 (x)-< I I (11 I x))
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The product of two analytic systems does not always exist as an analytic system.

The norm of X , from Eq. 4, has Iko as its minimum value. If IkoJ > p(X'), then

there is no x satisfying I/t Il(x) < p($), and Eq. 15 then shows that p(IXU) may be

zero. There are two ways of eliminating this possibility in advance: arrange, by an

appropriate choice of reference levels, to deal only with systems with no constant term;

or, deal only with systems with infinite radii of convergence.

Table VIII-1. All Ordered Sets of
Whose Sum is p.

n Numbers

In Eqs. 11 and 12a, the second Z is a summation over all ordered sets of n num-

bers m. whose sum is p. It is convenient to have a table of these sets; Table VIII-1 is
1

a partial table. The most important feature of this table is not that the number of

these sets becomes very large for large n and p [equal to the binomial coefficient
n+p-1 ] but that for a given p there are terms for every n. For example, the

constant term in Eq. 12a is

(HK)o = H + H 1 (0) K + H(0, 0) K2 + H3 (0, 0) K 3 +0 0 0 3 (' O0 " (16)

Therefore, the system functions cannot be computed exactly. Two remedies are pos-

sible: one is to consider only systems with a finite number of terms (which, inciden-

tally, have infinite radii of convergence); the other is to consider only systems with no

constant terms. Table VIII-2 gives the ordered sets of m i for systems without

constant terms [here the number of sets for given n and p is (-1)i; for a given p

we need consider only n < p. The first three terms then are

0 1 2 3

0 empty 0 00 000
set

1 --- 1 10 100

01 010

001

2 --- 2 11 110

02 101

20 011

200

020

002
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L 1(w) 
= H 1 (w)K1 (w)

L Z(1' 2) = H( I + W2 )K 2( 1 2 ) + H2(O, 1 2)K 1 )KI(o2)

L3(w1 52' 3) = Hi(+ 1 + W2 3 )K 3(1' 2' 3 ) + H 2 (cO1 + W? W3)KZ(,1' Z)Kl("3)

+ H2(W, + WK3 )K 1(W)K 2(, 2 , W3) + H3( ' ' 3 )K ( 1)K (2) K1 (3)
(17)

We complete our algebra with two more definitions. The identity operator J is
defined by Jf = f for all f; its first system function is 6(T) and all others are zero.
The negative of a system is defined by (-3 ) f = -(A'f); its system functions are the
negatives of those of the original system.

Table VIII-2. All Ordered Sets of n Nonzero
Numbers Whose Sum is p.

1 2 3 4

1 1

2 2 11

3 3 21 111

12

4 4 22 211 1111

13 121

31 112

3. Feedback Networks

The most general feedback loop involves

one in the feedback path, as in Fig. VIII-3.

two systems, one in the forward path and

As shown, this general loop can be trans-

formed into a simpler loop in cascade with another system, so that we lose no general-
ity by considering the elementary loop of Fig. VIII-4. We further simplify the network

Fig. VIII-3. Reduction of the general feedback loop.
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Fig. VIII-4. Elementary feedback loop.

by noting that if the system d has a constant term, this is simply a constant added to

the input, and we may suppose that this constant is added in another system in cascade

with the feedback network.

We therefore consider the elementary feedback loop of Fig. VIII-4, in which h ° = 0.

Let the composite system be denoted by %. Then, if the input is f, the output is fXf,
and we have

Jf = f + . f

Xf = J+ ~7x (18)

A solution for XJr can be obtained formally by noting that if two systems are equal their

system functions are equal. For the constant terms in Eq. 18 we have (cf. Eq. 16)

K = H(0 ) K + HZ(0,0) K o + H (0,0,,0) K 3 + ... (19)
o 0o 3 o

Equation 19 may have many solutions, but it will always have the solution K ° = 0, and

this is the solution that must be chosen if zero initial conditions are assumed. With

Ko = 0, we can use Table VIII-2 and Eq. 17. For the first-degree terms, we have

Kl(w) = + H 1(0) K 1(o)

K I() = - H )  (20)

For the second-degree terms, we have

K 2( 1' , ) = H1 (, 1 + 02 ) K 2 ( 1 , w'2 ) + H 2 (c 1' ) K1 (O 1 ) Kl(w2 )

H Z(W W 2 ) K1( 1 ) K1l(W 2 )
K (1' 1 + H ( 1 + l2) (21)

H 2 (1', W 2)
[1 + H 1 ( 1 + w 2 )][l + H 1(w)][l + H1 (w2 )]

and it is evident that we can continue this process to compute any desired number of

system transforms of X .

This formal solution is based on the assumption that there is an analytic 6X that

satisfies Eq. 18. It is, therefore, correct if and only if such a f3 exists. It will be
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shown that this assumption is correct if kl(T), which can be computed from its trans-

form given in Eq. 20, is absolutely integrable -that is, if Ikl I1 is finite. This is,

essentially, the condition that the linearized system be stable.

Bounds on p(,) and 1I I (x) can be obtained if we separate - into two parts, the

linear part e'" and a part C" = - d' that has no linear term. Then we havex
p(X) > least upper bound -I I " I(x) (22)

x < p (.1 ) IIk 1II

and, for all x less than the radius of convergence guaranteed by Eq. 22, we have

I (x)I < y(x) (23a)

where y(x) is the smallest positive y that satisfies

y
x = -I -r " (y) (23b)

Ilk111

Before presenting the proof of these conclusions, we note that every bound that has

been given for the norm and radius of convergence of a composite system remains valid

if every norm that appears on the right-hand side is replaced by its upper bound and

every radius of convergence that appears on the right-hand side is replaced by its lower

bound.

Now consider Eq. 18. Assume that kl(T) has been computed and that Ilkl1 I is finite.

Define XK' by specifying its first system function as kl(T) and its other system functions

as zero. Then X1K' is linear, p(') = oo, 1IX' l(x)= Ilkll x, and

x .f+ I y,±' =(24)

Define

2 = _"e ' (25)

- has no linear part, since 3'" has none. Define & as the solution of

= f + - (26)

Now

= J+ 09' + ay'X'

j + .d"y21 ' + .IX" 1

= J + d.XU%' (27)

hence ' satisfies the equation defining X. Therefore,
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4' , (28)

We now prove that 9 is analytic. First, note that Eq. 26 can be solved formally

just as we solved Eq. 18. Next, consider the equation in the positive real variables x

and y

y = x + _4(y) (29)

where y is to be determined as a function of x. This can be considered as the equation

of a no-memory feedback loop analogous to that of Eq. 26. Equation 13 can be used as

a formula for cascading two no-memory analytic systems, and as such it is analogous

to Eq. 12. Therefore, we can solve Eq. 29 formally and obtain a solution analogous to

that of Eq. 26. Using, again, the generalized theorem on the L 1 norm of a convolution,

we conclude that the series for Y is dominated by the series for y(x). Hence 9 is

analytic if y(x) is an analytic function, p(s) is at least equal to the radius of conver-

gence of the Taylor expansion of y(x) about zero, and Y (x) is not greater than y(x).

Equation 29 can be solved for x(y):

x= y - 9 I(y)

oo (30)

Sy Jqnl yn
n=2

which is valid for y < p (2). We also have

dx n-1
dy 1 - n qnl y (31)

n=Z

Then dx/dy = 1 when y = 0, and decreases for increasing y. Let A be the least upper

bound of all y for which dx/dy is positive; then x(y) is an increasing function if and only

if y < A. Let B be the least upper bound of all x(y) for y < A; then B is also the least

upper bound of all x(y) for y < p(-). Then for all x < B, y(x) is an increasing function,

y(x) < A.

Now extend x(y) analytically into the complex plane and consider x and y as com-

plex variables. For lyl < A, we find that ldx/dyf > 0; hence dy/dx, the reciprocal of

dx/dy, exists and y(x) is analytic. The circle lyI = r < A is mapped into a closed curve

in the x-plane on which the minimum value of x I is x(r). Hence, for IxI < B, y(x) is

analytic. We conclude that y(x) can be expanded about zero in a Taylor series with B

as its radius of convergence.

Therefore,
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p(Y) > B = least upper bound x(y)
y< p(2)

> least upper bound {y - I.11 (y)} (32)
y < p(W)

But, from Eqs. 25 and 14, we have

S " (k 1I y) (33)

and from Eq. 15, we have

p(9) > least upper bound {(x Ilk1 x < p((f")}

> - (34)
1lk1 l I k1lJ

Hence

p(F) > least upper bound {y - I "III (kII y)} (35)

y<
IlkllJ

Further, from Eqs. 28 and 15,

p(J) > least upper bound {x x < p(P)}

> p (9) (36)

and Eq. 22 is obtained by a change of variable.

To obtain a bound on If 1 (x), we have that for x < B,

I 19 1(x) < y(x) (37)

where y(x) is defined by Eq. 29. Note that we want the value of y that is less than A;

there may also be one greater than A. Equations 28 and 14 give

l(x)< Ilk, 1I 1 l (x)

I kll II y(x) (38)

Now, Eq. 30 defines x(y) as an increasing function for the range to which we are

restricted. If in that equation we replace 11-21(y) by lIlj" lll (Ilkll y), which is not

only smaller but has a smaller derivative, the new x(y) will be smaller but will still

be an increasing function; hence the new y(x) will be larger. Therefore, Eq. 37 will

still hold if we define y(x) by
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x = y - d Q" k1  y) (39)

Then we obtain Eq. 23 by a change of variable.

M. B. Brilliant
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B. INVARIANCE OF CORRELATION FUNCTIONS UNDER NONLINEAR

TRANSFORMATIONS

Previous work (1) on the invariance of correlation functions under nonlinear trans-

formation was directed at obtaining sufficient conditions for the invariance property to

hold for a class of nonlinear devices. It was shown that certain relations among cross-

moments were sufficient, although not necessary.

A different method of attack on the problem has resulted in both a necessary and

sufficient condition to be imposed upon the input statistics in order for the invariance

property to hold. For completeness, we restate the invariance property: If, in the

system of Fig. VIII-5, the crosscorrelation function of the two outputs is identical to

the crosscorrelation function of the two inputs for every nonlinear no-memory device

(for which the output crosscorrelation function exists), except for a scale factor Cf

dependent on the particular nonlinear device, the invariance property is said to hold

for that particular pair of inputs.

Let us define the input crosscorrelation function as

)x 1 x2 p(x1, x 2 ; T) dx 1 dx 2  (1)

and the output crosscorrelation function as

4f(T) =f x 1 f(x2 ) P(x 1 , x2 ; T) dx 1 dx2  (2)

where p(x 1, x 2 ; T) is the joint probability density function of the system inputs, assumed

stationary for the present. The nonlinear device is assumed time-invariant. (All

integrals are over the whole range of the variables.)

Realizing that the output crosscorrelation function 4f(T) exists, for all T, only for

certain nonlinear devices, let us denote this class of allowable nonlinear devices by P.

This class P depends only upon the joint probability density function p(x 1, x 2 ; T).
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x (t) y'(t)

INPUTS x (t) NONLINEAR 2(t)=f [X (t) OUTPUTS

NO-MEMORY
DEVICE

Fig. VIII-5. Nonlinear no-memory transformation of the input process.

Assuming that 4(T) exists as a finite-valued Lebesgue double integral for all T in

S (Eq. 1), where S is an arbitrary set of the real line, and defining the function g as

g(X 2 , T) = x I p(x, X2 ; T) dx 1  (3)

we can now state the main result of this report:

g(x 2 , T) = h(x 2 ) (T) almost everywhere in x 2 , for T in S (4)

is a necessary and sufficient condition for the invariance property to hold for T in S.

The function h(x 2 ) is a function only of x 2 , and not of T. Satisfaction of Eq. 4 will be
called separability (of the g function). It is seen that the function g of two variables

breaks into a product of two functions, each with one variable as its argument. Because
of its length, the proof of this theorem is not presented.

Sufficiency of Eq. 4 has been demonstrated by Luce (2). However, necessity was
shown only under very restrictive conditions on 4(T) and g(x 2, T).

It is to be noted from Eq. 3 that g depends only upon the joint probability density
function of the system inputs. Since its determination requires only one integration,

the satisfaction of Eq. 4 is easily determined. Equation 4 can be shown to generalize
previous results (3, 4) on the invariance property.

For the special, but important, case in which xl(t) = x 2 (t) in Fig. VIII-5, it can be
shown, that if g is separable, then

-2

g(x 2, T) = - 2 p(X 2 ) p(T) (5)

where p(x 2 ) is the first-order probability density function of xZ(t). That is, h(xz) in
Eq. 4 can be evaluated very simply. It then follows that the constant Cf that relates
output crosscorrelation function to input crosscorrelation function can be determined as

Cf = -2 x 2 f(x2) p(x2) dx 2 = -2 x 2 (t) f[x 2 (t)] (6)

No such simple formula as Eq. 5 holds for g when x 1 (t) and x 2 (t) are different proc-
esses, even when g is separable. In this latter case, g must be found from Eq. 3.

For some purposes, computation of g from Eq. 3 is tedious. Accordingly, an
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alternative method of determining separability can be demonstrated in terms of char-

acteristic functions. We compute

G(u., T) xl(t) ejuzx2 (7)

S x eju p(x 1 , x2 ; T) dx 1 dx 2  (8)

1 af(ul, u 2; T)
S au (9)
j 8u ul=0

where f(ul, u 2 ; T) is the characteristic function of the processes:

ulx 1 ju 2 x 2
f(ul, u ; T) = e e p(x 1 , x2 ; -) dx 1 dx 2  (10)

Now if G is separable, i.e.,

G(u 2 , T) = G 1 (u2 ) GZ(T) (11)

then g may be shown to be separable, and conversely. Thus, our question of separa-

bility is answered by a differentiation of the characteristic function rather than by an

integration of the joint probability density function. This differentiation operation is,

in some cases, much simpler to work with. For the cases in which some physical

properties of the time functions are apparent, Eq. 7 offers advantages in calculation

and determination of separability.

In addition, to illustrate the connection of separability with more familiar notions,

the following statement can be made for a separable g function:

x ( t ) x (t+T) = b n (7T) b real (12)1 n n

for all n for which the left-hand side exists. Conversely, if Eq. 12 is satisfied for all

n, then g is separable. Thus, we see that the question of separability is tied up with

the question of whether or not the crosscorrelation of x 1 (t) with any power of x2 (t) is

the same except for scale factors. It is worth noting that a reservation is stated with

Eq. 12 regarding the existence of x 1 (t) xn(t+T). Thus, Eq. 12 and separability of g are

not equivalent. Separability is a much more lenient condition. The necessity of Eq. 12

could never be pointed out in the general case. Such was the trouble in the original

method of attack on the problem (1).

The extension to nonstationary inputs and time-dependent devices will be stated

briefly in the following paragraphs.



(VIII. STATISTICAL COMMUNICATION THEORY)

g(x 2 ; t, t 2 ) = h(x2', t 2 ) c(tl, t 2 ) for all t 1 , t 2 , almost everywhere in x2  (13)

is a necessary and sufficient condition for the invariance property to hold for a particu-

lar joint probability density function. If, in addition, we have the same input processes,
and g is separable, we can show that

g(x 2 ;t, t ) = -2 (t 2 ) x2  (x 2, t 2) (tlt 2 ) (14)

and we can evaluate

Cf(t 2 ) = f(x 2 't 2 ) 2 2 p(x 2 ,t 2 ) dx 2  (15)
fa- (t 2 )

The parameter t 2 in Cf must be kept because we are allowing time-varying networks.

If we restrict ourselves to time-invariant networks, but allow nonstationary inputs, we

get

g(x 2 ;t l ,' t 2 ) = h(x 2 ) 1(t ,t 2) for all tl' t 2 , almost everywhere in x 2  (16)

as a necessary and sufficient condition for the invariance property to hold. This rela-

tion is somewhat more restrictive than Eq. 13.

Our statement of the invariance property can be generalized to (the stationary case

again)

if(T) = C f (T) + Cf for all T, for any f in P (17)

in which case it may be shown that the necessary and sufficient condition on the input

statistics is

g(x 2 , T) = hl(x 2 ) c(T) + h 2 (x 2 ) almost everywhere in x 2 , for all T (18)

This is, of course, more general that Eq. 4. All of the previous results have analo-

gous ones under this more general formulation of the invariance property. This will

not be demonstrated here. Barrett and Lampard's formulation (4) is included in the

formulation of Eq. 17.

Suppose we insert, in Fig. VIII-5, another nonlinear device f' in the top lead, and

then ask, What (if any) is the necessary and sufficient condition that must be imposed

on p(x 1 , x 2 ; T) for the invariance property to hold for any pair ff'? The answer will

be stated here only for the simplest case: when we have stationary inputs, time-

invariant devices, and no additive constant (Cf ) , as in Eq. 17, the necessary and suf-

ficient condition is

p(x 1 , x 2 ; T) = h(x 1 , x 2 ) 4(T) for all T, almost everywhere in x 1, x 2 (19)
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Luce (2) proved the sufficiency of this relation but was unable to prove its necessity

except under very restrictive conditions. Extensions to nonstationary cases are

straightforward.

A. H. Nuttall
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C. A THEORY OF SIGNALS

The object of this research is to study the possibilities of representing signals in

ways other than the usual one of identifying them with functions. It is reasonable to

suppose that other representations may exist and, in fact, be more economical than the

functional one, because the function representation does not take into account - except,

perhaps, as an afterthought - any of our limitations in performing measurements.

Since all of our measuring instruments have only finite accuracy, it seemed that it

might be profitable to try to make this feature an intrinsic part of our description,

rather than to regard it as an undesirable complication to be neglected as often as pos-

sible. Various representations were considered and, while the analysis will not be

reported here, the conclusion seems to be that the proper subject of study is the meas-

urement process itself, that is, the detector. This is plausible when we consider that

a signal is completely unknown to us until it is detected, and what it is after being

detected depends very much on what we detect it with. For example, consider the dif-

ference in the nature (and hence in the most cogent or economical description) of signals

as seen through a zero-crossing detector and as seen on a linear oscilloscope.

Our object, then, is to develop a description of signals that incorporates, as much

as possible, the peculiarities and limitations of a given detection process. A good

description should retain only signal information that is actually distinguishable to the

detector. Clearly, no single general description will do: the appropriate description

will be different for each significantly different detector. In the remainder of this
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r -- -
S I . . ..I I I I . .

LINEAR BAND-LIMITED
IMPL FIERS

I SOURCE I
(BAND- I I

I LIMITED) 
CRO

L__ -__

S(t) OSCILLOSCOPE DETECTOR

Fig. VIII-6. Comparison measurement of Fig. VIII-7. Measurement arrange-
two signals on a band-limited, ment equivalent to that
linear oscilloscope. of Fig. VIII-6.

report, we present an algebra of signals appropriate to the linear, finite-accuracy
measurement process.

We begin with two signals fV(t) and fH(t) which are unrestricted in any way except
that they must be of finite duration T, and attempt to compare them by observing them
on an oscilloscope, as in Fig. VIII-6. As for the oscilloscope, we assume that it has
identical horizontal and vertical band-limited, linear amplifiers, a screen of finite
size, and a trace of finite width. In the laboratory, we say that two signals are equal
(within equipment accuracy) if the trace on the CRO screen is a straight line at 45'.
Let fV(t) and fH(t) be the signals applied to the vertical and horizontal deflection plates,
respectively, and suppose that the screen shows a line of width E- at 45*. If the
equally adjusted CRO amplifiers were flat (with linear phase) out to infinite frequencies,
we would then know that IfV(t) - fH(t) I < E for all values of t. But how similar do fV
and fH have to be to produce a line when the CRO has band-limited amplifiers? What
features of the signals are distinguishable to the oscilloscope, and how can these
features be summarized concisely, disregarding those that are indistinguishable?
These questions are the subject of the present analysis.

To achieve a neater presentation, we shall think of our signals as impulse responses
of networks. This can always be done, since the signals are of finite duration. We
shall excite two networks with signals from a band-limited source (having the same
spectrum as the CRO amplifiers) and compare the network outputs on an oscilloscope
of finite trace length and width, but equipped with ideal amplifiers. The diagram is
shown in Fig. VIII-7. Clearly, the results of measuring with this arrangement are the
same as the results obtained with the arrangement of Fig. VIII-6. We regard the
source-CRO combination as the detector to be studied. Besides linearity, only three
features of the detector are relevant: (a) the source, band-limited to the radian-
frequency interval (-W, W), but with an arbitrary spectrum in that interval; (b) the
finite trace width of the oscilloscope; (c) the finite diameter of the oscilloscope screen,
and consequent finite trace length. Each one of these characteristics yields an
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important part of the analysis.

The source, as long as it is band-limited, may be periodic, almost periodic, or

aperiodic. The present analysis will be limited to the aperiodic case; in fact, to

aperiodic functions whose square is integrable. Since we are assuming our source to

be band-limited, we could use the Shannon sampling theorem to characterize the allow-

able source functions, by requiring that they all be expressible in the form

0 sin W(t - t )
Sf(tn) W(t - t n)

n=-oo

with the sampling points t n suitably chosen. This is inconvenient because it is more

awkward to work with infinite series than with integrals. A different way of character-

izing band-limited source functions is made possible by the following result.

THEOREM 1: f(t) is a source function [i.e., a function whose Fourier transform

is zero outside of the band -W < c < W] if and only if it is a solution of the

equation

00

f(t) = _ f (T) W (t-T ) dT (1)

-00

where

w(t) = 2W sin Wt2)

The proof is very easy. Note first that the Fourier transform 4W(w) of cw(t) is a rec-

tangular pulse, of unit height for WE(-W, W) and zero outside this interval. Then, taking

Fourier transforms of both sides of Eq. 1 [and writing F(o) for the transform of f(t)],

we obtain

F(w) = F(c) 1)W(W)

Clearly, this equation is true if and only if F(w) is limited to a band smaller than or

equal to (-W, W).

The second important feature of the detector is that the CRO trace has finite width.

This immediately implies a finite measurement error, which in turn allows us to sub-

stitute, for the impulse response h(t) of a network, a singular impulse response of the

form

N

an -n)(3)
n= 6(t 

(3)

n= 1
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(where 6(t) denotes a unit impulse) without a distinguishable difference in the outputs

resulting from band-limited inputs. A possible set of specific conditions under which

the substitution is possible is given in reference 1. Here we need only notice that this

result allows us to represent networks (and therefore signals) by numerical operators

N -t4)
S an E n (4)

n=l

-t -t
where E n is the shift operator, defined by E nf(t) = f(t - tn). Thus, as soon as the

trace has finite width, however small, networks can be represented by finite linear

combinations of shift operators.

Before passing to a study of the third property of the detector, we pause to notice

that, if we combine Eqs. 1 and 4, we can express the effect of any network on our

source functions in the form

2f(t) = f(T) [2 #W(t-T)] dT (5)

The interchange of operation and integration follows from the fact that 2 operates on

functions of time only, and is just a finite linear combination of shifts. Of course, by

making the change of variable p = t - T, Eq. 1 can be rewritten as

001
f(t) f(t- ) W(v ) d (6)

-00

in which case

00

1f(t) [ f (t- ) (4) dp (7)

In view of Theorem 1, Eq. 7 proves the obvious fact that if the input of a linear,

time-invariant network is band-limited, then so is its output. Equation 5 is more

interesting: it states that the effect of an operator 2 on any input f(t) can be deter-

mined simply by knowing how 2 affects pw(t).

The third important feature of the detector is the finite CRO trace length. In the

laboratory, this makes it necessary to adjust the source and the CRO amplifiers so

that the display will fit inside the screen. In our analysis, it makes it necessary to

normalize the outputs of our networks. This is accomplished in two steps: first, we

normalize the inputs, that is, the set of allowable source functions; then we normalize

the set of allowable operators.
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Let S be the set of aperiodic, band-limited functions of integrable square. Our

first step is made possible by the following result.

THEOREM 2: If f c S and has an energy (into a one-ohm load) equal to that of

w(t), then If(t) I w(0). (Roughly, Cw(t) is the tallest function in 5, energies

being equal.)

The proof, which is simple, will be omitted.

Let us now modify every f E S by multiplying it by a constant so chosen that the

total energy of f (into one ohm) is w/W. That is, choose K so that

K2

K2

:o0

f (t) dt wW (8)

Since f is of integrable square, an appropriate finite K always exists. Call the set of

modified source functions . Then, if f E S, we can apply the Schwartz inequality to

Eq. 1 to obtain

S 00
If(t) I < 2, oo

f2dtj l2
f dt

00o

1/2

W dt
1 1i /

(4rrW) = 1 -2W
2W

We proceed now to the second step in the normalization process.

the Schwartz inequality, we have that

1/2

f2 (t) dt r
-cc

From Eq. 5 and

[1 /2

[Q W(t)] 2 dtIf now f(t)

If now fE S,
S1/2

[£ 4) (t) 2 dtl

-1 1/2

[£ CW(t) 2 dt

(47TW) / :
Therefore, we can place a bound on Jf(t) I simply by knowing how the operator 2 acts

on PW(t), thus making it possible to normalize operators independently of inputs. Let

2 be the set of all finite operators, that is, of all operators 2 of the form of Eq. 4.

These operators themselves have an arbitrary multiplicative constant, corresponding

to the gains of the CRO vertical and horizontal amplifiers. Let us modify each £2 E

by multiplying it by the constant K that makes

00

f-0o

[Qcw(t)] 2 dt = 4wW

(10)j~f(t~l~ 2r
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and call the new set of modified Q 's . Since 2 is a finite operator and W is inte-

grable square, an appropriate finite K always exists. It now follows from Eq. 10 that,

for any f E S and any 2 E 6 , £Of(t)l < 1. The normalization process is complete.

Note, by the way, that Eq. 10 is useful for a far better purpose than just normaliza-

tion. For if 2 happens to be an error operator, i.e., 2 = Q1 - 22, where 21 and £2
are two operators that are being compared, then Eq. 10 tells us that we can get a con-

servative estimate of the maximum error which will be incurred with any f E S simply

by knowing what the error is for 4w(t), and then evaluating

00

[Qw(t)]2 dt (11)

We might guess, from the special nature of the function W and the finiteness of 2,

that Eq. 11 could be expressed in numerical or algebraic form. It turns out that this

can actually be done, as is shown by the following theorem.

THEOREM 3:t If 2 is any finite operator (i. e., Q2E 0) then

00

0 [ w(t)]2 dt = 2r £ 2W(0)  (12)

where

N N-t +t
Q = a E n and = an E n

n=l n=l

(That is, 2 is just 02 folded over, so as to sample forward instead of backward.)

PROOF: Since £Qw(t) is a band-limited function, it can be written in the form

£24w(t) - [£2 W(T)] W(t-T) dT (13)

If £ is given by

N -t

Q = an E n

n=l

then Eq. 13 can be written more explicitly as

Besides its usefulness in our problem, and its being a source of curious identities
and inequalities, Eq. 12 is interesting in itself for the numerical evaluation of certain
types of definite integrals.
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00

~2 W(t) - ZorQ' W W ?
[2 n an tW(T - tn)] W(t-T) dT

If we operate on w(t) with 52, we obtain

-1
nw(t 2 r

00

-0

1

-00

At t = 0,

14 aw(0)

-00

[Cn an W(T - tn) ] [P W (t-T)] dT

[ n a n W (T - t n) ] [m am w(t + t m - T)] dT

[Tn an 4W(T - tn)] [Z m am KW(tm - T)]dT

Because of the evenness of pw(t), W (t - T) = mW(T - tm). If we make this

change, the two brackets in the integrand become equal and Eq. 12 is obtained.

Theorem 3 is one of the main results of this work, as will be seen presently, when

we discuss the algebra of signals. Meanwhile, we note that, using Theorem 3 in

Eq. 10, we obtain, for any f E S,

1 [ 1 /2
f(t) < r[2RO (0)

(4TW) 1 / 2

1 /1/2

(2W)/2

We have all the results necessary to establish that the operators 2, together with

the ordinary linear-circuit laws of combination, constitute an algebra. Remembering

that the 2's represent networks or signals, this is our desired signal algebra. We

notice first that the set 0 of all finite operators Q, together with addition and multi-

plication by a scalar (linear amplification) defined as usual, satisfies the axioms of a

linear vector space (2). (Observe that the definition of 67 does not make a distinction

between forward and backward operators, so that whenever 2 E 0, -2 belongs also.

Physical realizability, of course, establishes a distinction between forward and back-

ward sampling, but this fact is irrelevant here.) The importance of Theorem 3 is that

it provides us with a reasonable definition for the norm Iall of any operator 2 E 0.

That the norm (or length) of an operator might be meaningful is suggested by Eq. 14.

We define the norm of Q by

1/2

(15)I£2 [~2 ~~o)1/2 [L 00 oPQ = [ W(-)]1/2W Z-r o

(14)

[a W(t) ]2 dt
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It is easy to check that IIall = lal - IIQR1 (a real), and that II2QI > 0 for 2 0, since

the integrand in Eq. 15 is always positive and the wf's are linearly independent with

respect to shifts. The third requirement that aI Q has to satisfy to be a norm (3) is

the triangle inequality

IHl + Qt1 II ' 1 + IHQ2H

To prove this, we start from the definition of norm and note that

[(Q 1 + Q 2 pW 2  1 Y 2 2+ [QW ]2 + 2 [l w]IQ2 W

or

+ 21 2+ + 222 1 W [2 W?

Using the Schwartz inequality, we have

1 [I1 W][ 2  ] 1 2WL [221 W 1/2 1l, " 22

Therefore,

1 + Q2 I I 2 + I I 2  + ?2HIIQ I = IIQ I I + Q

Taking square roots of both sides establishes the desired result.

Therefore, 6 is a normed vector space. But it is more: the necessary and suf-

ficient condition (3) for the existence of an inner product giving rise to a preassigned

norm Q I I is the general validity of

Q1+ Q212 + 2[2 I12 + 2Q 1?- III +Q 2 ]
Straightforward substitution of Ilf = [ a Qw(0)]1/2 immediately establishes this

result. Therefore, the normed vector space based on 0 is, in fact, a unitary

space. The advantage of a unitary space is that it gives us a natural defini-

tion of orthogonality (between networks or signals) in addition to a natural

definition of distance.

One more operation is physically meaningful, and that is multiplication of the ele-

ments of 0, corresponding to the cascading of two networks or the passage of a signal

through a network. It is easy to see that multiplication should be defined by
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12 = al Et a 2 Et

1 a

(t .i+t 2j)

=.
a li azj E 11 2j

i,j

just as it is for polynomials. In terms of the impulse responses associated with the

Q's, this definition corresponds to the ordinary convolution process. Clearly, the

result of multiplication is again an element of 0, and the operation is associative and

distributive (in fact, for time-invariant systems it is even commutative). The unitary

space based on 0, plus multiplication, constitutes an algebra of signals appropriate to

our detector.

To make the algebra useful for practical problems, we have to be able to go back

from the elements of 6 to smooth responses or signals. This can be done; the

reconstruction process is simple and the error is controlled at every step. The

derivation of these results will be published in the Quarterly Progress Report,

July 15, 1057.

R. E. Wernikoff
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D. AN ANALOG PROBABILITY DENSITY ANALYZER

The analog probability density analyzer described in previous issues of the Quarterly

Progress Report was experimentally tested to evaluate its performance. The analyzer

was initially checked by comparing the experimental probability density of a sine wave

to calculated values. Further testing was concerned with determining the frequency

response and drift stability of the analyzer. A summary of these test results and

examples of probability density functions are included in this report.

An experimental probability density function of a 1-kc sine wave analyzed by 50

amplitude intervals is shown in Fig. VIII-8a. Calculated values of sinusoidal probability

density for 50 intervals are shown on the same figure by crosses. Comparison of the

experimental curve and the calculated values reveals that error is present in regions
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Fig. VIII-8. Amplitude probability density functions. (a) Sine wave.
(b) Gaussian noise. (c) Clipped saw tooth and envelope
of gaussian noise. (d) Sine wave and gaussian noise.
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(c) (d)

Fig. VIII-9. Pulses resulting from the analysis of a sine wave. (a) l-kc sine wave.
(b) 2-ke sine wave. (c) 10-kc sine wave. (d) 20-ke sine wave.
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where the slope of the probability density is large. Verification that this error is pro-

duced by the recorder was obtained by replacing the recorder with a voltmeter. Values

of probability density read from the voltmeter showed no deviation from the calculated

values. Reversing the sequence of scanning the amplitude intervals, scanning from nega-

tive amplitudes to positive rather than from positive amplitudes to negative, resulted in

no change of the recorded sine-wave density function. The analyzer output is therefore

symmetrical, and the dissymmetry of the recorded curve is introduced by the recorder.

Since this error is small, useful results have been obtained with this recorder; however,

it is useful to know that the error is not an inherent part of the system.

The analyzer frequency response may be investigated by either comparing sine-

wave density functions for a range of frequencies or by examining the shape of the pulses

which are averaged by the integrator to produce the probability density function. The

pulses that are averaged when analyzing the center amplitude interval of a 1-kc, 2-kc,

10-kc, and a 20-kc sine wave are shown in Fig. VIII-9. The time base of 2 psec/cm

used for the l-kc and 2-kc pulses is changed to 0. 2 sec/cm for the 10-kc and 20-kc

pulses to facilitate comparison of the pulse shape. Examination of Fig. VIII-9 shows

that the 1-kc and 10-kc pulses enclose almost equal areas, but that the 20-kc pulse

encloses more area than the 2-kc pulse. The stretching of the 20-kc pulse is a result

of rise-time limitations of the diode level selector and pulse amplifier and results in

approximately a 10 per cent positive error in the probability density for amplitudes

near the axis of a 20-kc sine wave. Since the probability density function is a minimum

at the axis, a 10 per cent error in this region is 1 per cent of the maximum value of

the sinusoidal density function. The lower bound of the analyzer frequency response is

equal to the frequency response of the amplifier used to amplify the input signal and is

30 cps for the analog probability density analyzer. This limit, however, could be

extended to direct current if a stable amplifier was available, since the other parts of

the analyzer have direct-current response.

Experimental determination of the analyzer drift stability is readily accomplished

by comparing repeated probability density functions. This process is facilitated, since

the analog analyzer employs a periodic scanning system which automatically repeats the

probability functions. Various functions have been repeated for periods of 6 and 8 hours

with no deviations between the repeated curves greater than 2 per cent of the maximum

value of the function. Since the analyzation time for a density function may be varied

from 10 minutes to 5 hours, no difficulty has been encountered with analyzer drift.

Some other examples of probability density functions determined by the analog

probability density analyzer and the corresponding time functions are shown in

Fig. VIII-8b, c, and d. Future experimental work will be concerned with determining

the probability density of functions that require longer integration times than those

shown in Fig. VIII-8.
H. E. White
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E. ON THE SYNTHESIS OF LINEAR SYSTEMS FOR PURE TRANSMISSION,

DELAYED TRANSMISSION, AND LINEAR PREDICTION OF SIGNALSt

VI. DELAYED TRANSMISSION

6.0 OBJECTIVE OF THIS CHAPTER

We now propose to give in condensed form some results associated with the delayed

transmission of a signal c(t). This solution is represented by the expression

y(t) = 4(t - T )

where To is the delay time.

The measures of the windows that form the distribution are given by expression

4(11-2. 5), which is repeated for convenience

a. oI p 1(VI-6. 0)
p=0 i

For simplicity in the use of this formula, the delay time will be measured by taking as

the unit of time the aperture 6 of a window. We shall then set

T = t 6 2(VI-6. 0)
o o

When the window distribution has a constant aperture, we have

kp = (p+l)6 p = O, 1, ... m

Then

a. = j (to 3(VI-6. 0)

p=0

6.1 INTRINSIC DELAY

In the transmission of signals with delay we consider two cases similar to those

found in pure transmission: (a) intrinsic transmission and (b) weighted transmission.

In this section we refer to intrinsic transmission. To simplify the discussion, we

t(Continued from the Quarterly Progress Report of Jan. 15, 1957.) Translated by R. E. Wernikoff from the Spanish - with
some corrections and additions that were made, particularly in the sections dealing with error analysis, by Mr. Wernikoff in
cooperation with Dr. Cerrillo.

[Editor's note: This material, which was published under the title "Sobre la Sintesis de Sistemas Lineales para la Transmision
sin Retraso, Retrasada, y Prediccion Lineal de Senales," in Revista Mexicana de Fisica, is an application of the theory given in
Technical Report 270, by Dr. Cerrillo, "On Basic Existence Theorems. Part V. Window Function Distributions and the Theory
of Signal Transmission" (to be published). The direct connection of the present paper with the work of the Statistical Communica-
tion Theory group and other groups in the Laboratory led to its translation, by Mr. Wernikoff, and its presentation here.]
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consider again the polynomial G(j)(~L) defined by Eq. 1(11-2. 22) and we recall its basic

property

=0 for p = 0,1 ... ,j-l,j+l ... ,m
G() 61 (VI-6. 1)

G~j 0 for p j

Expression 1(VI-6. 0) may be written in terms of this polynomial as follows:

G(j) (to )

a. = 2(VI-6. 1)
3 G(j) (j)

Having stated this, we can define intrinsic delay as that which is equal to one of the

values 4. Let us say

to = j 3(VI-6. 1)

Introducing this condition in Eq. 2(VI-6. 1), we have

f0 for k = 0, 1,...,j-l,j+l ... ,m

ak for k =j

th
which indicates that the window distribution contains only the j window, independent

of the number m. Figure 1(VI-6. 1) shows the graphical interpretation of the convolu-

tion integral. We see that the contribution to the response comes from just one window

operating at time t = T o = itj. Hence

the term "intrinsic." The linear system

( To) behaves like a simple delay system, the

response function being precisely the input

function at time t - T O

It is worth while to interpret this result
ST-- in connection with the ideas of present, past,

and future, mentioned before. Comparing,

Fig. (VI-6. 1). Operation of intrinsic at the same time, the excitation c(t) and
Fig. 1(VI-6. 1). Operation of intrinsic

delayed transmission, the response 4(t - To) is equivalent to

thinking that exciting the system at time t

generates a "memory" of the system of a past (t - T ) which occurred T0 units of

time before. This memory is formed by the behavior of the excitation function at the

precise instant t - To when the transmission is intrinsic. This memory is also called

"intrinsic. "
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6. 2 WEIGHTED TRANSMISSION

When T o  pj, j = 0, 1 ... ,m, then all m + 1 measures a k , k = 0, 1,...,m, are non-

zero. The response is

m

y(t) - c(t - To) = ap (t - p)

p= 0

1(VI-6. 2)

which is formed by the weighted sampling of the function 4(t) not at the time t - T o , but

at the times t - p. Comparing the function (t) and (t - To), we now say that the sys-

tem produces a weighted memory.

Table 1(VI-6. 2)

m=0 m=1 m= 2 m=3 m=4

t
2 

- 5t + 6 t - 9t
2 + 26t - 24 t - 14t + 71t - 154t + 120

a -(t - 2) o o o o o o o o o
o o 2 6 24

t
3 

- 8t
2 

+ 19t - 12 t 4 
- 13t

3 
+ 59t - 107t + 60

t 1 2 4t +3) o o o o o o o
a I  i i -(t -4to3) 2 - 6

t 2 - 3t + 2 t 3 - 7t 2 + 14t - 8 t 4 -12t 3 + 49t 2 - 78t + 40
O O O O O O O O O

a 2  2 2 4

t - 6t
2 + lit - 6 t - lit + 41t - 61t + 30

O O O O O O O
a3 6 6

t - 10t 3 + 35t 2 - 50t + 24
O O O O

a 4  24

Use of formula 3(VI-6. 0) produces the results given in Table I(VI-6. 2). As a

numerical example, we give the distributions corresponding to the delays T = 10 and
0

T o = 20, with m = 3. See Fig. 1(VI-6. 2), which is not to scale. Note the strong growth

of the measures in going from T = 1 to T  = 10 to T = 20.

In delayed transmission the measures a have an important property that follows

from expression 3(II-2. 4), which is

m

S(p+ 1 )k a =tk
p o

p=O

k = 0, 1, . . ., m 1(VI-6. 2)
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S c(t)

2584

mo3 20
T o0 20

m=3
S(t) 189 o= 10 969

84

o0 t- 0 t-

56T 216
5816

2736

Fig. 1(VI-6. 2). Distributions corresponding to the delays
T = 10 and T = 20, with m = 3.

o o

6.3 DETERMINATION OF THE ERROR

We start from the general expression for the error, Eq. 5(11-2. 7), which we repeat

for convenience

(m)(8) 8m ml

(m+)+k) a k  
1(VI-6. 3)

It is difficult to gain an idea of the magnitude of the error by using Eq. I(VI- 6. 3) as it

stands. To make the equation more useful, we must find a simpler expression for the

sum, or at least a simple upper bound for the magnitude of the sum.

Let

m

T = (l+k) m + l ak

k=0

Expanding the summand by the binomial theorem, using Eq. l(VI-6. 2), and after some

manipulating, we obtain

m m

S (+k)m+l a m + -(t - 1 )m+l + km+l ak 2(VI-6. 3)

k=0 k=0
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In the sum

l = km+l

k=0

3(VI-6. 3)

the polynomial km+1 takes on m + 1 values. But it is well known that we can find a

polynomial P (x) of order m which, at the m + 1 points xmml
on the same values as k . Let this polynomial be

= k (k = 0, 1,..., m), takes

P (x) = P xm + -1 x-1 +

m

... + Po = C PjSj=
j=0

Then a-l is also given by

m i k

z j ki a k
j=0

m

k= 0

If we invert the order of summation, this becomes

m

'1 =j

j=0

m

P z
(k=0

kJ ak)

Now, we can easily derive from Eq. I(VI-6. 2) that

m

Sk j ak = (t - 1)

k=0

so that Eq. 5(VI-6. 3) becomes

m

l = Pj(to- 1)j

j=0

But this is just our polynomial Pm(x) evaluated at x = (to - 1). Thus we have

ao1 = P (to - 1)

This answer is exact, and holds for all values of t .

Since we constructed P (x) in such a way that P (x) = x when x = k (k = 0, m),m m
for integer values of to with the property that 0 < (to - 1) < m, we have

r = Pm(to - ) = (to - )m + 1 9(VI-6. 3)

4(VI-6. 3)

5(VI-6. 3)

6(VI-6. 3)

7(VI-6. 3)

8(VI-6. 3)
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For other values of to, this simple form cannot be used, and the whole polynomial

4(VI-6. 3) must be evaluated. This is no simpler than the original sum, Eq. 3(VI-6. 3);

thus nothing has been gained. However, for very large values of to , only the highest

term of the polynomial 4(VI-6. 3) is important, and so, for to - oo (or actually, to >> m),

we have

T-1 = P  (to - 1)= m (t - 1)m

Substituting Eqs. 9(VI-6. 3) and 10(VI-6. 3) in Eq. 2(VI-6. 3), we have

lO(VI-6. 3)

m+l for 0 <t <m + 1 ll1(VI-6. 3)

12(VI-6.3)*-. pm to for t >> m
M 0 0

Putting these results in the error expression 1(VI-6. 3), we find that, for intrinsic

transmission (0 < to 4 m) and also for to = m + 1, the error is given by

Q(m)(6) 5mIE~m)J = ltm+1
while for large(m+ 1)!delays, t o

while for large delays, to oo, the error is given by

13(VI-6. 3)

14(VI-6. 3)
S(m)(5) 6m

(mll ( Ip+mt 0

For intermediate values of t o , Eq. 14(VI-6. 3) can be used to obtain an upper bound

on the error, since the error grows monotonically with to .

*Nothing has been said about how to determine pm, However, if we recall that only

one polynomial of order m can be passed through m + 1 points, pm is uniquely deter-

mined and can be obtained from any polynomial that satisfies the stated requirements.
m+l

In particular, if we represent x by the Lagrange polynomial of order m, we

immediately obtain

m (-l)m-j (j)m+l

Pm j=0 j! (j=O j! ( -j)!
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6.4 TRANSFER FUNCTION ASSOCIATED WITH THE CASE OF DELAYED

TRANSMISSION

Taking into account expression 1(V-5. 7), which is repeated for convenience, we

have, in general,

m

k [S (t)] = H(s) e s 6  a e - (p+l)8s 1(VI-6. 4)

p=0

and, for delayed transmission, we have

2[Sc(t)] = H(s) e s 8  t -j e-(P+1)6 s  2(VI-6.4)

p=O j=O

Equation 2(VI-6. 4) is difficult to discuss and interpret and in direct application it is

practically useless in this form. To clarify the situation somewhat, we proceed as

follows. Let us take the general formula I(VI-6. 4) and let us write

m 0o (p+l)6 k

Y [Sc(t) ]  H(s) e s  a 1) s

p=0 k=0O

0 ( )km

H(s) es 5  - a (p+ 1 )k 3(VI-6. 4)

k=0 p=0

If we use expression 1(VI-6. 2) as though it held for all k, we have

00 (s)k -s t
Y [S (t)] = H(s) e s  t = H(s) e e o4(VI-6. 4)

k! o
k=0

Thus we see that the transfer function which is obtained has the expected form. For

example, for a singular distribution Sc(t ) , we have H(s) e s 6 =1. (See Chapter V,

section 5. 7.) In this way we obtain the ideal case

-sT
S[S (t) ] = e o 5(VI-6. 4)

When we substitute the function y *(t) for y(t) it is equivalent to using only the first m

terms of the Taylor series of p[t - (k+1)6]. The relation

m

S(p+ 1 )k a =tk
p 0

p=0
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obtains only for the values k = 0, 1,...,m, but not for k -m + 1,

sion 4(VI-6. 4) does not follow exactly from expression 3(VI-6. 4)

the transfer function formed with m windows, except as m - co.

transfer function associated with m windows, let us write

m

1) a = (1 - k)
p=O

Consequently, expres-

and does not represent

To understand the

k = m+1, ...

where Pk is defined by the equation itself, Substituting this expression in Eq.

we finally obtain

Y [Sc(t)] : H(s) e s e sT

00

-kZ
k::m+l

(-s t) k

6(VI-6. 4)

3(VI-6. 4),

7(VI-6. 4)

which is the desired formula.

Expression 7(VI-6. 4) gives immediately the complementary filter. The transfer

function of the complementary filter is

o)k
s (-s to )

F(s) = H(s) es6 k! Pk

k=m+l

For a singular distribution,

00 (-s t )k

F(s) k! Pk

k=m+l

8(VI-6. 4)

9(VI- 6. 4)

Finally, let us consider the form, analogous to the form of Eq. 9(VI-6. 4), of the

complementary filter in the case of pure transmission. Let us also consider the gen-

eral formula 3(VI-6.4). The case of pure transmission is characterized by the condition

m k

S(p+l)k a =
p=0

1 for k = 0

0 for k= 1, 2... m

Thus, the transfer function associated with transmission without delay is

S[Sc(t)] = H(s)e s 1 -
00 S) k

m+1k!
k=m+l

where

10(VI-6. 4)
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m

Zk = (p+l)k a k = m+l,

p=0

and the complementary filter has the transfer function

00 (s 6 )k

F(s) = H(s) e s 6  k kk 11(VI-6. 4)

k=m+l

VII. ADVANCED TRANSMISSION - LINEAR PREDICTION

7.0 OBJECTIVE OF THIS CHAPTER

We shall give in condensed form some results associated with the advanced trans-

mission of a signal p(t). Some important points which are obscure will be clarified by

the accompanying discussion. The mathematical similarity between the results for

delayed and advanced transmission, when T o is exchanged for -To0 facilitates this con-

cise presentation.

Since the effect cannot precede the cause in the physical systems considered here,

the solution of the problem of prediction does not exist in an absolute sense. However,

solutions of a relative character can be found, as the discussion will show.

Let tp be the life of the distribution of windows Sc(t). Let us suppose initially that

the excitation p(t) is continuous, and is sufficiently differentiable to validate the methods

used for the determination of the measures a of the window distribution, which are given

by the fundamental expression 2(II-2. 22). We consider two cases:

1. -o0 < t < tf (0 < tp = constant)

2. tf < t < o

In the first case the response of the system, y (t), does not represent the function y(t),

because the pertinent interval belongs to the aperture set [a ]. In the second case the

transition situation is finished. Then the window distribution begins to produce a

weighted sampling, which, in turn, produces a weighted extrapolation of the function

4(t), taking elements from the interval t - tl, t. The response is expressed by means

of Eq. 1(111-3. 32) as follows:

m

c(t + To) = Z ak 4[t - (k+1)5]

p=0

which indicates that the predicted function is formed from a weighted sampling of the
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present, corresponding to the window a , and of the past of P(t) in the interval t - tl, t.

This is the relative sense of prediction considered here.

7. 1 MEASURES OF THE WINDOWS

The problem of advanced transmission is characterized by the expression

*(t) = c(t + T o) (t > t )

m

k =  (p + )k ap = TP
p o

p=0

m T + G(-T )

p=0 )j p G( )

(k = 0, 1, ... m)
1(VII-7. 1)

taken from section 2. 5. Let us add here, for future convenience, the expression

m

(p+1 )k a T k

p=0

k = m+l, . . . 2(VII-7. 1)

The third equation in Eqs. 1(VII-7. 1), which gives aj, shows that there is no intrin-

sic future, since for all values of T (T > 0) all the measures a. exist and are nonzero.
o o

7. 2 EXPLICIT EXPRESSION OF THE a's FOR m = 1,2, 3, 4

For windows of equal apertures, if we measure the advance time in units of 6, we

have the expression

a ( 1) m j' to + p + 1

p=0

The a's calculated for m = 1, 2, 3, 4 yield the values given in Table 1(VII-7. 1).

Figure 1(VII-7. 2) shows the window distributions corresponding to the advance

times T = 10 and T = 20, with m = 3. Note the fast increase of the measures
o o

a with T . For this reason, it is necessary to include linear amplifiers in the

passive circuits that represent the system. For example, the practical arrange-

ments which synthesize the system corresponding to T o = 20, with m = 3, is shown

schematically in Fig. 2(VII-7. 2). The numbers indicate the gain that each amplifier

must have.
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Fig. 1(VII-7.2).

524

2024

m=3

ro= 10

286

1001

Window distributions
times T = 10 and T

o o

,5544

m= 3

To = 20

1771

.5796

corresponding to the prediction
= 20, with m = 3.

TRANSMISSION LINES

1.771 AMPLIFIERS

INVERTERS

OUTPUT y(t) = (t +20)

Fig. 2(VII-7. 2). Synthesis of the prediction system for T o = 20, with m = 3.

INPUT

FINAL AMPLIFIER
1000
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Table 1(VII-7. 1)

7.3 DETERMINATION OF THE ERROR

The procedure is identical with that for delayed transmission, with T o exchanged

for -T . Then the expression for tolerance 1(VI-6. 3) is valid here also.

7.4 ASSOCIATED TRANSFER FUNCTION

The transfer function for prediction is

Y[Sc(t)] = H(s) e s 5
ST0

e o

k=m+

(s6 t )k

k! Pk 1(VII-7. 4)

If the distribution is singular, we have

H(s) e s = 1

7.5 COMPLEMENTARY FILTER

The transfer function of the complementary filter is

F(s) H(s) es

k=m+1

(s to )k

k! Pk 1(VII-7. 5)

m= m=2 m=3 m=4

t 2 + 5t + 6 t 3 +9t 2 + 6t + 24 t 4 + 14t 3 + 71t 2 + 154t + 120
a t + O O O O O O 0 0 0 0
o o 2 6 24

3 2 4 3 2
t 3 + 8t + 19t + 12 t + 13t + 59t + 107t + 60

2 o o o o o o o
a 1  -1 -t -t + 4t + 3

1o o 2 6

t2 + 3t + 2 t 3 + 7t 2 + 14t + 8 t 4 + 12t3 + 49t 2 + 78t + 40
O O O O O O O O O

aZ 2 2 4

t 3 + 6t 2 + lit + 6 t 4 + llt 3 + 41t 2 + 61t + 30

a3 - 6 6

t 4 + 10t 3 + 35t 2 + 50t + 24

a 4 24
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If the distribution is singular, we have

H(s) e = 1

VIII. DIFFERENTIATION OF SIGNALS - COMPLEMENTARY FILTERS

8.0 OBJECTIVE OF THIS CHAPTER

The theory presented in this report allows us to obtain easily a four-terminal system

whose response is the k t h derivative of the excitation 4(t), when c(t) possesses that

derivative. We limit ourselves here to two objectives:

1. Producing the measures a that characterize the appropriate distributions.

2. Applying them to complementary filters.

8. 1 MEASURES OF THE DISTRIBUTION

The problem of differentiation is expressed by

dk
y*(t) k (t)

dt
1(VIII-8. 1)

Formula 2(II-2. 6) gives the a's. It is repeated here for convenience

(-1) k  sk)

3 m
p ( - Ip)
p=O ' p

2(VIII-8. 1)

Table 1(VIII-8. 1) shows the distributions for m = 1, 2, 3, 4 for the first four derivatives.

8.2 APPLICATION TO THE SYNTHESIS OF COMPLEMENTARY

TRANSMISSION FILTERS

The equations that produce the transfer functions of the complementary filters in

the three cases of transmission studied here may be written:

Pure transmission

Delayed transmission

F(s) = sm+1 H(s) e s 6 Mp(s)]

F(s) = sm+ [H(s) e s6 MD(s)] 1 (VIII- 8. 2)

Advanced transmission F(s) = sm+l [H(s) es MA(s)

wherein
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j=0

MD(S) =
j=0

MA(S) = Z
j=0

( 6)m+l+J

(m+l +) k ( m + l +j ) s(m+1+j)!

(-6 t )m+1 +j

(m+ 1 +j)! P(m+1+j) s

(6 t )m+1+j

(m+ 1 + j)! (m+l+j) s

We propose to synthesize, in schematic form, the systems whose transfer func-
tions are given in Eq. 1(VIII-8.2). Because of the analytical resemblance between

the functions Mp(s), MD(s), and MA(s), we shall consider only one of them. In the
complementary filters H(s) es6 may be considered almost equal to one. If not, we

expand it in a power series in s and form the products with the series Mp, MD
MA, in order to construct a new power series, the synthesis procedure for the
brackets in Eqs. 1(VIII-8. 2) being similar to that for Mp, MD , M A . The problem is

divided into two parts:

1. Synthesize the system corresponding to the power series. These synthesis
methods are well known (1). The corresponding network is indicated by the symbol

M(s) in Fig. 1(VIII-8. 2).

(t) OPERATION OF DIFFERENTIATION AMPL _FIERS

S(t) M(S) (t) AMPLIFIERS

0 -V

SINVERTERS

-AMPLIFIERS

f(t)I
Fig. 1(VIII-8. 2). Method of synthesizing the complementary

filter described in section 8. 2.
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2. Let

x(t) =i-1 M(s)

y(t) = - 1 F(s)

If we assume sufficient continuity in x(t), we have

dm+1

y(t) d m+1 (t)
dtm+

This operation is performed by the arrangement shown in Fig. 2(1-1. 51). The sketch

of the method of synthesis of the complementary filters is shown in Fig. 1(VIII-8. 2).

The operation of differentiation is performed by using the distribution whose measures

are given by expression l(VIII-8. 1).

8.9 NOTE

The transmission filters described here are fundamentally low-pass filters. Their

complementary systems are high-pass filters in the complementary frequency band.

They are complementary with respect to frequency. With respect to time, one filter

acts as a transmitter of functions that possess a modulus of oscillation which is small

in the interval 6. The complementary filter acts as an annihilator of such functions.

The annihilator property allows the use of complementary filters in noise reduction.

M. V. Cerrillo
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