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Abstract

We consider open and closed multiclass queueing networks with Poisson arrivals (in open

networks), exponentially distributed class dependent service times, and with class depen-

dent deterministic or probabilistic routing. For open networks, the performance objective

is to minimize, over all sequencing and routing policies, a weighted sum of the expected

response times of different classes. Using a powerful technique involving quadratic or higher

order potential functions, we propose variants of a method to derive polyhedral and non-

linear spaces which contain the entire set of achievable response times under stable and

preemptive scheduling policies. By optimizing over these spaces, we obtain lower bounds

on achievable performance. In particular, we obtain a sequence of progressively more com-

plicated nonlinear approximations (relaxations) which are progressively closer to the exact

achievable space. In the special case of single station networks (multiclass queues and

Klimov's model) and homogenous multiclass networks, our characterization gives exactly

the achievable region. Consequently, the proposed method can be viewed as the natural

extension of conservation laws to multiclass queueing networks. For closed networks, the

performance objective is to maximize throughput. We similarly find polyhedral and non-

linear spaces that include the performance space and by maximizing over these spaces we

obtain an upper bound on the optimal throughput.

We check the tightness of our bounds by simulating heuristic scheduling policies for

simple open networks and we find that the first order approximation of our method is at

least as good as simulation-based existing methods. In terms of computational complexity

and in contrast to simulation-based existing methods, the calculation of our first order

bounds consists of solving a linear programming problem with both the number of variables

and constraints being polynomial (quadratic) in the number of classes in the network. The

i-th order approximation involves solving a convex programming problem in dimension

O(Ri+l), where R is the number of classes in the network, which can be solved efficiently

using techniques from semi-definite programming.



1 Introduction

A multiclass queueing network is one that services multiple types of customers which may

differ in their arrival processes, service requirements, routes through the network as well as

costs per unit of waiting time. The fundamental optimization problem that arises in open

networks is to determine an optimal policy for sequencing and routing customers in the

network in order to minimize a linear combination of the expected sojourn times of each

customer class. The fundamental optimization problem that arises in a multiclass closed

network is the maximization of the throughput. There are both sequencing and routing

decisions involved in these optimization problems. A sequencing policy determines which

type of customer to serve at each station of the network, while a routing policy determines

which route each type of customer should follow to get through the network. In this paper

we consider optimization problems involving both routing and sequencing decisions.

There are several important applications of the described problems: Packet-switching

communication networks with different types of packets and different priorities between

these packet-types, job shop manufacturing systems, scheduling control of a multi-processor

and multi-programmed computer system, to name a few.

The control of multiclass queueing networks is a mathematically challenging problem.

In order to achieve optimality, stations have to decide how to sequence competing customer

types at each point in time, based on information about the load conditions of various other

stations. Additionally, customers can choose their route through the network taking into

account the current state of various queues. These interactions between various stations

create serious dependencies among them and prevent not only optimization but even per-

formance analysis of a given policy. To indicate the difficulty of the problem it is worth

mentioning that even in the case of Poisson arrivals, and class dependent exponential service

times, the simplest possible policy, FCFS, does not lead to product form solutions and it is

not known how to analyze FCFS analytically. Naturally, optimizing a multiclass queueing

network is an even harder problem. Thus, not surprisingly, simulation is the most com-

mon practice among researchers and practitioners as a tool of evaluating heuristic policies.

But even if simulation is used for a proposed heuristic policy, it is not clear how close to

optimality this policy is.

These considerations lead us to the first contribution of the present paper. In the
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tradition of discrete optimization in the mathematical programming community, we develop

a sequence of lower bounds to the optimal cost. We also compare the lower bounds with

proposed heuristic policies in order to evaluate the closeness to optimality of these policies.

In the relatively simple examples that we studied, we found that our first order bounds

are approximately within the same order of magnitude as "pathwise" bounds derived in

[OuWe] with a technique that needs a simulation experiment for the calculation of the

bound. Moreover, our first order bound consists of solving a linear programming problem

with O(R 2 ) variables and O(R2 ) constraints, R being the number of classes in the network.

In general our i-th order bound consists of solving a nonlinear programming problem with

O(Ri+l) variables and O(Ri + l) constraints.

A second, and in our opinion, significant contribution of the present work is to expand

on the idea that rather than optimizing a stochastic and dynamic system (in particular a

multiclass queueing network), it is important to characterize all the achievable performance

vectors (in the case of a multiclass open queueing network, the vector of expected waiting

times for the different classes in the network). In this way, one is able to formulate a

stochastic and dynamic optimization problem as a mathematical programming problem.

This has serious advantages because one can use advanced algorithmic methods from a

mature field, and also consider more general objective functions (in particular involving

variances). With respect to this objective, we obtain a sequence of progressively more

complicated nonlinear approximations (relaxations) which are progressively closer to the

exact achievable space. We note, that except for a simple example in [GeMi], we do not

know of any other example of a nonlinear characterization. In the first order approximation,

where most of the emphasis is placed for tractability purposes, we find two polyhedra that

contain the achievable region of expected waiting times for the different classes in open and

closed multiclass networks.

In the case of simpler systems (a multiclass queue [GeMi, Klv2], a single server network

[Klim, Tsou] and a homogeneous open network [RoYa]) our first order characterization is

exact, i.e., it is identical to the characterization in [GeMi] and [RoYal for the multiclass

queue and homogeneous network respectively, and consistent with the characterization of

Tsoucas [Tsou] derived using conservation laws. In all of these cases we also find a reformu-

lation of the achievable space with a polynomial number of variables and constraints, which

is interesting from a combinatorial point of view. As a result, our approach can be seen
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as the natural extension of conservation laws to multiclass queueing networks. Obviously,

optimizing over these spaces we obtain bounds to the optimal value and in the case where

the characterization is exact we find the exact value as well as the optimal policy.

The third methodological contribution of the paper is the use of potential functions to

derive mathematical programming formulations for stochastic systems. Potential function

methods in science have a rather rich history and a vast literature. From Liapunov func-

tions to prove stability of dynamical systems, to proof methods in linear programming and

network flows in recent times, potential function methods have been established as a very

powerful proof technique. For stochastic, systems Kushner in the 1960s has used poten-

tial function methods to prove stability. Regarding the use of potential function methods

to bound performance in queueing systems, Kumar [Kuma] uses a method of Meyn and

Down [MeDo] (who used it to prove stability of generalized Jackson networks) to derive

one inequality (as opposed to a family of inequalities) and obtain a bound on the achiev-

able performance in an open network with deterministic routing (re-entrant line). Kumar

points out in his paper that his bound is rather weak. In the present paper we realize the

full potential of the method and significantly expand its power by introducing an arbitrary

potential function that gives a family of bounds (linear and nonlinear) that takes into ac-

count high order interactions of various classes. We also introduce the idea of choosing

the best possible potential function to obtain the tightest possible bounds by allowing the

flexibility of unknown coefficients. We also propose an algebraic way based on manipulation

of multivariable polynomials for automatically deriving the constraints of the approximat-

ing spaces. One could imagine that this automatic generation could be combined with an

algorithm that finds lower bounds on the achievable performance by progressively adding

constraints to the problem. This is exactly how large scale combinatorial problems are

solved to optimality using polyhedral methods.

The fourth methodological contribution of the paper is a separate general technique to

generate nonlinear (convex) constraints. We show that optimization over this set of con-

straints can be achieved by cutting plane methods very efficiently (in polynomial time) using

techniques from semi-definite programming. Our ideas are influenced by the recent devel-

opments in deriving lower bounds for integer programming problems using semi-definite

programming (Lovasz and Schrijver [LoSc], Alizadeh [Al]).
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Literature review

With respect to characterizing the performance region of stochastic and dynamic systems

there have been some interesting developments in the last decade. Gelenbe and Mitrani

[GeMi] first showed using conservation laws that the performance region of a multiclass

queue can be described as a polyhedron. Federgruen and Groonvelt [FeGr] advanced the

theory further by observing that in certain special cases of multiclass queues the polyhedron

has a very special structure (it is a polymatroid) that gives rise to very simple optimal

policies (the c rule). Shantikumar and Yao [ShYa] generalized the theory further by

observing that if a system satisfies conservation laws, then the underlying performance

space is necessarily a polymatroid polytope. They also prove that the optimal policy is

a strict priority rule. Their results partially extend to some rather restricted queueing

networks, in which they assume that all the different classes of customers have the same

routing probabilities, and the same service requirements at each station of the network (see

also [RoYa]). Tsoucas ([Tsou]) derives the achievable region for scheduling a multiclass non-

preemptive M/G/1 queue with Bernoulli feedback introduced by Klimov ([Klim]). Finally,

Bertsimas and Nifio-Mora [BeNi] generalize the idea of conservation laws and show that for

all systems that satisfy these generalized conservation laws, their underlying performance

space is a polyhedron with very strong structural properties, called an extended polymatroid

in [BGT]. Optimization of a linear function over extended polymatroids can be achieved by

an adaptive greedy algorithm (see [BGT] and [BeNi]). The framework of [BeNi] includes all

the cases we mentioned before, as well as the multi-armed bandit problem (Gittins [Gi]),

branching bandits (Weiss [We]) and deterministic scheduling problems. In this way Klimov's

algorithm and Gittins indices for the multi-armed bandit problem are special cases of the

adaptive greedy algorithm for optimizing a linear function over an extended polymatroid.

Perhaps one of the most successful approaches for controlling multiclass queueing net-

works in heavy traffic, which offers valuable new insights, is to use Brownian network models,

where the stochastic processes in the network are modeled as Brownian motions. Introduced

by Harrison ([Ha]) and further explored by Wein, this approach proposes heuristic policies

which typically outperform more traditional ones. This approach has been more successful

in closed networks ([HaWe2]) and networks with controllable input ([Weil], [Wei2]), but

has not been as successful in scheduling open networks. In particular, Harrison and Wein

show in [HaWel] that a threshold policy is consistent with the optimality conditions for a
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Brownian two-station, three-class network which we also consider in this paper (Section 3).

Wein [Weil, Wei2] proposes priority rules and admission control policies in open networks

where admission control is allowed. For a nice survey of the heavy-traffic approach for

optimization of multiclass networks the reader, is referred to Kelly and Laws [KeLa]. For a

thorough survey of the rather vast literature on routing in stochastic systems see Walrand

[Wa].

In the only study that concerns lower bounds for general networks, Ou and Wein [OuWe]

derive pathwise lower bounds for general open queueing networks with deterministic routing.

They also calculate steady-state bounds by averaging over all sample paths. A distinct

characteristic of their approach is that simulation is needed for the computation of the

bounds, to be contrasted with our approach where bounds are calculated by solving a

mathematical programming problem (linear or nonlinear) with all the parameters known in

closed form from the data of the network.

Chen et al. [ChYY] follow a stochastic intensity control approach for the specific network

topology studied in [HaWel], which we also study in Section 3. They model the arrival

and service processes as counting processes with controllable stochastic intensities, their

objective being to minimize a discounted cost function over an infinite time horizon, and

they establish a switching curve structure.

Structure of the paper

The rest of the paper is organized as follows: In Section 2, we formally define the sequencing

problem for multiclass open networks as well as the class of policies that we are considering.

In Section 3, we start with a well-studied, simple, open network in order to illustrate the

fundamental ideas in our approach without excessive notation. The particular structure of

this network allows us to derive further bounds, which are based on different ideas. In Sec-

tion 4, we introduce two variations of a method for obtaining polyhedral descriptions (first

order methods) of a general open multiclass network with Poisson arrivals and exponen-

tially distributed, class dependent service times with deterministic or probabilistic routing.

In Section 5, we apply our methodology to obtain bounds for multiclass networks involving

both routing and sequencing decisions. In Section 6, we extend one of the methods of Sec-

tion 4 to closed networks. In Section 7, we explain how the methodology can be extended

to derive tighter nonlinear approximations of the achievable region and to take into account

higher order interactions. As an example, we derive the second order approximation (a
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nonlinear characterization) of a general multiclass open network. We also describe how

ideas from semi-definite programming can be used to tighten nonlinear approximations to

the achievable region. In Section 8, we prove that we can get the exact characterization for

an M/M/1 multiclass queue, for Klimov's problem with Poisson arrivals and exponentially

distributed service times and for homogeneous networks. In Section 9, we apply our first

order methods to three specific network examples considered in the literature and report

numerical results. Finally, in Section 10, we include some concluding remarks.

2 Problem Formulation

In this section, we define the class of queueing networks we will consider, the class of policies

we allow and establish our notation.

In this section, as well as in Sections 3 and 4, we will consider an open multiclass

queueing network involving only sequencing decisions (the routing is given) with N single

server stations (nodes) and R different job classes. The class of a job summarizes all relevant

information on the current characteristics of a job, including the node at which it is waiting

for service. In particular, jobs waiting at different nodes are by necessity of different classes

and a job changes class whenever it moves from one node to another. Let a(r) be the node

associated with class r and let Ci be the set of all classes r such that oa(r) = i. When a job

of class r completes service at node i, it can become a job of class s, with probability pr,,

and move to server a(s); it can also exit the network, with probability pro = 1 - I=l Prs-

There are R independent Poisson arrival streams, one for each customer class. The arrival

process for class r customers has rate AOr and these customers join station a(r). The service

time of class r jobs is assumed to be exponentially distributed with rate ir. Note that jobs

of different classes associated with the same node can have different service requirements.

We assume that service times are independent of each other and independent of the arrival

process.

Whenever there is one or more customers waiting for service at a node, we can choose

which, if any, of these customers should be served next. (Notice, that we are not re-

stricting ourselves to work-conserving policies.) In addition, we allow for the possibility of

preemption. A rule for making such decisions is called a policy. Note that for the time

being only sequencing decisions are involved; the routing probabilities Pro are given. Let
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n,(t) be the number of class r customers present in the network at time t. The vector

n(t) (ni(t),..., nR(t)) will be called the state of the system at time t. A policy is called

Markovian if each decision it makes is determined as a function of the current state. It is

then clear that under a Markovian policy, the queueing network under study evolves as a

continuous-time Markov chain.

For technical reasons, we will only study policies satisfying the following assumption:

Assumption A a) The Markov chain n(t) has a unique invariant distribution.

b) For every class r, we have E[n2(t)] < 0o, where the expectation is taken with respect to

the invariant distribution.

Let n, be the steady-state mean of n,(t), and Xr be the mean response time (waiting

plus service time) of class r customers. We are interested in determining a scheduling

policy that minimizes a linear cost function of the form iR=l crr. We approach this

problem by trying to determine the region of achievable performance, that is, the set of

all vectors (xl, ... , xR) that are obtained by considering different policies. By minimizing

the cost function ER=l c,z, over this region, we can then obtain the cost of an optimal

policy. Given that the exact characterization of the achievable region appears to be very

difficult, in general, we provide methods that approximate the achievable region by a larger

set. Minimizing ER=1 c,z, over this larger set provides us with a lower bound on the cost

of an optimal policy.

3 A Simple Two-Station Network

In this section, we use a simple example to illustrate the methodology that will be developed

in its full generality in the next sections.

We consider the network, with two types (not classes) of customers, depicted in Figure 1.

Type 1 customers visit stations 1 and 2, in that order, before exiting the network and type

2 customers visit only station 1 before exiting the network. We define class 1 customers

to be type 1 customers at station 1, class 2 customers to be type 2 customers at station 1

and class 3 customers to be type 1 customers at station 2. Let A1 and A2 be the arrival

rates for customers of class 1 and 2, respectively. Let tll, tL12, t13 be the service rates for

the different classes. We assume that t1 = 12; that is, both customer types have the

same service requirements at the first server. We will denote the common service rate at
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the first server by /. In order to ensure that at least one stable policy exists, we assume

that A1 + A2 < Al and A1 < AL3-

Let ni and zi be as defined in Section 2. We are interested in a scheduling policy

that minimizes a linear cost function of the form E31 cizi where cl, cz, c3 are given finite

weights. Note that for this problem, a policy amounts to a rule according to which the first

server can decide which customer class, if any, to serve.

I

Type 1

-- 3-"

Type 2

LL11111
I

Q--

Figure 1: A simple two-station network

In the remainder of this section, we illustrate our methodology for deriving a lower

bound on the optimal cost. To this effect, we show a systematic procedure for obtaining

23 - 1 inequalities that must be satisfied by the vector ( 1, x2, X3). (Note that we have one

inequality for each non-empty set of classes). The derivation of these inequalities readily

extends to more general networks (Section 4). We also obtain some additional inequalities

by less systematic (but still generalizable) methods.
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3.1 The Main Inequalities

The result that follows is derived by making use of potential functions (RS(t)) 2 where

RS(t) = E fs(i)ni(t),
iES

S is a set of classes and the quantities fs(i) are positive constants, which we will call

f-parameters.

Theorem 3.1 For the network defined in this section and for every policy satisfying As-

sumption A, the following inequalities hold:

Alzl + A2X2

xz >

22 >

1 + A2

- - - A2

1
,L1 - A1

1
L - A2

1

A2X2 + A1r 3

2A1z1 + A2X2 + Alxz

3>1 + A2- AL + PL2 - A2

3Ž > 3A + A2
(L1 + PL2 - 2A1 - A2

Proof: We will only prove (2). The other inequalities can be derived similarly. For

the interested reader, the complete derivation can be found in [Pasc].

The analysis is much simplified by "uniformizing" the Markov chain under study, so

that the total transition rate out of a state is the same for all states. To this effect, we

visualize the process as if server 2 were always working on a class 3 customer; however, if

n3 (t) = 0, we say that server 2 is working on a fictitious customer and a service completion

does not lead to a new state. Similarly, we visualize the first server as if it were always

working concurrently on a customer of class 1 and a customer of class 2, at a total rate of

sllu +12. A service completion at server 1 corresponding to a class 1 customer is a fictitious

9
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(4)

X3 > -
P2

1
X1 + X3 > _l

(L2 - A1

(5)

(6)
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one that leaves the state unchanged, unless nl (t) # 0 and the scheduling policy had decided

that a class 1 customer should be served. With the above conventions, the transition rate

is

A1 + A2 + 2 A1 + 2

which we assume, for convenience, to be equal to 1.

Let rk be the sequence of times at which a transition (due to real or fictitious customer)

occurs. We assume that the state vector in(t) is a right-continuous function of time so that

i(Trk) refers to the state right after the kth transition. We will be using the notation 1{.}

to denote the indicator function; that is, 1{A} = 1 if event A occurs and zero otherwise.

Finally, by B,(t) we denote the event that node a(r) is busy with a class r customer at

time t, and by Br(t) the event that node a(r) is not busy with a class r customer at time t.

The derivation of (2) uses the function R(t) = f(1)n1 (t) + f(2)n 2(t). We have

E[R2 (rk+l) I n(Tk)= A(R(rk) + f(1))2 + A2(R(tk) + f(2))2 +

p1j{Bl(rk)}(R(k) - f(1))2 + pil1{Bl,(k)}R (k) +

I1{B2(,Tk)}(R(t-k) - f(2))2 + 11{B2('k)}R 2 (Tk) +

A2 R
2

(7k)

We expand the squared terms and observe that if we set f(1) = f(2) = f, the term:

2pjl1{Bl(rTk)}R(rk)f(1) + 2l1{B2 (Tk)}R(k)f(2)

is equal to 2l 11{server 1 busy at k}R(r,)f. Using the fact

1{server 1 busy at Tk} < 1, (9)

we obtain

E[R2(k+l) I (Tk)1 > R 2(k) + Alf 2 + 2f +

jall{B1(rk)}f 2 + 11j{B 2(k)}f 2 -

2plR(rk)f + (2A 1 f + 2A 2 f)R(rk) (10)
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Recall that after uniformizing the Markov chain under consideration, the transition rate

out of a state became the same for all states. Given this property, it is easily verified

that the unique invariant distribution of the continuous-time Markov chain is the same as

the (necessarily unique) invariant distribution of the embedded discrete-time Markov chain

n(Trk). In particular, under the invariant distribution of the two chains, we have

E[R(rk+l)] = E[R(rk)] = E[R(t)], Vt, k. (11)

and

E[R2 (rk+i)] = E[R2 (rk)] = E[R2(t)], Vt, k. (12)

Furthermore, (12) and Assumption A imply that E[R2 (Tk)] is finite.

We now consider the Markov chain in(rk) under its invariant distribution and take ex-

pectations of both sides of (10). We use (11) to replace E[R(Tk)] by E[R(t)], (12) to cancel

the R2 terms, and the relation

E[l{Bj(Tk))] = j = 1,2.

We then rearrange terms to obtain

E[R(rk)] > (Al A2)
fIt- A - A2

We finally use the relation ni = Aixi, i = 1, 2, to obtain (2). 

Discussion : Note that equation (2) is the same as the conservation law for the

multiclass M/M/1 queue (see [GeMi, Chap. 6]), with an inequality sign instead of an

equality. Within the class of policies we are considering the conservation law does not hold

since we allow idling. If, however, we restrict ourselves to work-conserving policies then it

is possible to derive the conservation law using our approach. See Section 8 for more details

on the application of our approach to the multiclass queue.

Note also, that equations (3) and (4) have a very intuitive explanation; they are the

two inequalities that together with the conservation law define the achievable region for the

multiclass queue at station 1. In Section 8 we prove for the general case of the multiclass

queue and for work-conserving policies, that equations (3), (4) hold with equality if we give
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preemptive priority to customers of class 1, class 2, respectively.

3.1.1 Additional Inequalities

We note that (5) simply states that the mean response time of class 3 is no smaller than

its mean service time 1/p2. In fact, the inequalities of Theorem 3.1 allow x3 to be as small

as 1/p2. This is reasonable because policies of the following type lead to zero waiting time

for class 3 customers: serve class 1 customers only if server 2 is idle and has no customers

in its queue. On the other hand, any such policy runs the risk of being unstable. To see

this, suppose that A2 = 0. For the system to remain stable, there have to be 2A 1 service

completions per unit time. Given that the above described policies only allow one server to

work at a time, such policies are unstable if 2A 1 > max(pl, P2). We conclude that 3 must

be strictly larger than 1//3 if a policy is stable and 2A1 > max(p1, P3). This argument can

be carried out in more detail and leads to the following result; its proof is omitted and can

be found in [Pasc].

Theorem 3.2 Suppose that 2A 1 > max(pl, /12). Then, for every policy satisfying Assump-

tion A, we have

2A1 - max(pll, 2 ) (13 12r3 >-~ -- * + (13)
I11 + 2 - max(2l,112 ) 2(t11 + 2) L2

Another bound is obtained as follows. If we set cl = c = 1 and c2 = 0, it is obvious that

an optimal policy gives lowest priority to class 2 customers and processes customers of class

1 or 3 without any idling. But then, customers of class 1 and 3 evolve according to a tandem

queue for which the value of zX + X3 is known to be equal to 1/(l - A1) + 1/(L 2 - A1). For

an arbitrary policy, the value of zl + X3 is at least that large and we have

1 1
X + X3 > + . (14)

t,-A l 1+ 2 -A1- [l - A1 [2 - A1

We were able to derive the bound (14) because we could find a choice of the cost

coefficients ci for which an optimal policy and its cost is known. This suggests that we also

consider the case where 3 = 0. For this case, we are dealing with the problem of priority

scheduling of a two-class queue. An optimal policy is given by the well-known c-rule and

its cost is also known. However, for reasons that will become clearer in Section 8, the

bounds that are obtained via this approach do not provide any new information but are

subsumed by the bounds of Theorem 3.1.
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As discussed in Section 2, we can use the bounds derived in this section to provide a lower

bound on the cost of an optimal policy. This lower bound can be computed by minimizing

E=I cixi subject to the constraints of Theorems 3.1 and 3.2, and the additional constraint

(14). Some numerical results can be found in Section 9.

4 Sequencing of Multiclass Open Networks: Approximate

Polyhedral Characterization

In this section, we derive bounds on the achievable performance region for a general open

multiclass queueing network when only sequencing decisions are involved. We will be using

the model and the notation of Section 2. We first derive a set of inequalities by generalizing

the method of the previous section. We then propose a nonparametric variation of the

method that yields tighter and computationally more efficient bounds.

4.1 A Parametric Method

The traffic equations for our network model take the form

R

A, = Ao, + E A,'pr,, = 1, ... ,R. (15)

We assume that the inequality

E - <1
rECi r

holds for every node i. This ensures that there exists at least one policy under which the

network is stable.

Let us consider a set S of classes. We consider a potential function of the form (RS(t))2

where

RS(t) = E fs(r),r(t), (16)
rES

and where fs(r) are constants to be referred to as f-parameters. For any set S of classes,

we will use a different set of f-parameters, but in order to avoid overburdening our notation,

the dependence on S will not be shown explicitly.

We will impose the following condition on the f-parameters. Although it may appear

unmotivated at this point, the proof of Theorem 4.1 suggests that this condition leads to
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tighter bounds. We assume that for each S we have:

For any node i, the value of the expression

flr [ Prrt(f(r) - f(r')) + E p.r.f(r)] (17)
r'ES rlS

is nonnegative and the same for all r E Ci n S, and will be denoted by fi. If

Ci n S is empty, we define fi to be equal to zero.

We then have the following theorem:

Theorem 4.1 For any set S of classes, for any choice of the f-parameters satisfying the

restriction (17), and for any policy satisfying Assumption A, the following inequality holds:

A,Ef(r)xr D'(S) (18)
- D'(S)

where:

N'(S) = A Aof 2(r) + , A, Z Prr'f2(r') +
rES rS r'tS

Ar [ Prrl(f(r)- f(r'))2 + E P.rf (r)]
rES r'ES rt'S

D'(S) = 2 fi Aorf(r)
=l rES

S being a subset of the set of classes and t, the mean response time of class r.

Proof: The steps are similar to the proof of Theorem 3.1. We first uniformize the

Markov chain so that the transition rate at every state is equal

"= S AO,r + E AirS
r r

The idea is again to pretend that every class is being served with rate r,, but a service

completion is a fictitious one unless a customer of class r is being served in actuality.

Without loss of generality we scale time so that v = 1. Let rk be the sequence of transition
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times for the uniformized chain. Again, by Br(t) we denote the event that node a(r) is

busy with a class r customer at time t, and by Br(t) the event that node oa(r) is not busy

with a class r customer at time t. As in Theorem 3.1, we assume that the process in(t) is

right-continuous.

We have the following recursion for R(rk)

E[R2 (T-k+l) I n(k) =

E Ao(R(Tk) + f(r))2 + E AOrR 2 (Tk) +
rES rOS

41 { Br(k)} [ prr'(R(Tk)- f(r) + f(r'))2 + E PrrI(R(Tk)- f(r))2] +
rES r'ES rO S

E prl{Br(-)}R
2 (k) +

rES

A /rl{ Br(k)} [ prr(R(Tk) + f(r))2 + E prrR2 (T)] +
rOS [raES r'fs

PL1{Br( Tk)}R(Tk)
rOs

In the above equation, we use the convention that the set of classes r' ' S also contains

the case r' = 0, which corresponds to the external world of the network. (Recall that Pr is

the probability that a class r customer exits the network after completion of service.) We

now assume that the f-parameters satisfy (17) because as we will see later in the proof this

choice leads to tighter bounds. Then, the term

2 / Prl{B.(rTk)} [ PrrR(Tk)(f(r)- f(r')) + E PrrR(rk)f(r)]
rES r'E $ r'S

can be written as

N

5 fiR(rk)1{server i busy from some class r E S n Ci at rk}.
i=l

(Recall that we defined fi = 0 for those stations i having Ci n S empty.) To bound the

above term, we use the fact

1{server i busy from some class r E S n Ci at k} < 1. (19)
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It should now be apparent why we selected f-parameters satisfying (17). By doing so, we

were able to aggregate certain indicator functions and use the inequality (19), instead of

using the less tight inequalities 1{Br(rk)} < 1.

In addition, to bound the term

E 2I l{Br(Tk)} pt,,lR(Tk)f(r')
rqs r'ES

we use the inequality 1{Br(Tk)} > 0.

We apply all of these bounds to our recursion for R(rk). We then take expectations of

both sides. For the same reasons as in the proof of Theorem 3.1, we can take expectations

with respect to the invariant distribution (these expectations are finite due to Assumption

A) and we can replace E[R(rk)] by E[R(t)]. After some elementary algebra and rearrange-

ments, using (17) and the relation (valid in steady-state)

E[{B,(rk)}] =-
pLr

we finally obtain (18). 

Remarks: In order to apply Theorem 4.1, we must choose some f-parameters that

satisfy (17). We do not know whether there always exists a choice of the f-parameters that

provides dominant bounds. But, even if this is the case, it will probably be difficult to

determine these "best" f-parameters. Later in this section, we show that finding the best

f-parameters is not so important because there is a nonparametric variation of this bounding

method that yields tighter bounds.

The proof method in Theorem 4.1 is similar to the one used by Kurnar in [Kuma] (who

attributes it to Meyn [MeDo]). He dealt with a network with deterministic routing and

with special structure (re-entrant line), and only considered the case where the f-parameters

were the "remaining number of stages" in order to obtain a single and fairly crude lower

bound on the average number of customers in the system. The flexibility in the choice of

the f-parameters that we have introduced, along with the aggregation of certain indicator

functions, yields much tighter bounds.

Let us now specify which choice of the f-parameters satisfies (17). For every set S of

16



classes, (17) yields

fi = rf(r) Z Prr' - Pr j Prrl f(r') + lrf(r) E Prr'
r'ES r'ES r'VS

which implies

= f(r)- E prr'f(r'), 'r S
P'r r'E S

Thus, due to (17), in order to explicitly determine the f-parameters, it suffices to select

nonnegative constants fi, for each station i with Ci n S non-empty. One natural choice of

these fi's that appears to provide fairly tight bounds is to let fi = 1, for all stations i with

Ci n S non-empty. This leads to fs(r) being equal to the expected remaining processing

time until a job of class r exits the set of classes S. With this choice, the parameters fs(r)

can be determined by solving the system of equations

fs(r) = - + , prr'fs(r'), r E S. (20)
Pr ,Er' S

Moreover this choice of the f-parameters causes the denominator of (18) to be of form

1 - Eros Ar/Pr, which is the natural heavy traffic term; this is a key reason why we believe

that it leads to tight bounds. Our claim is also supported by the fact that in Klimov's

problem (see Section 8), this choice of the f-parameters yields an exact characterization.

Based on Theorem 4.1, a lower bound on the optimal cost can be found as follows. For

every nonempty set of classes S, choose some f-parameters that satisfy the assumptions of

Theorem 4.1 and obtain a linear inequality on the vector (l,. .. , XR). Then, a lower bound

is obtained by minimizing ER=l c,xr subject to these 2R - 1 inequalities. Note that this is

a linear programming problem.

4.2 A Nonparametric Bounding Method

In this subsection, we present a nonparametric method for deriving constraints on the achiev-

able performance region. We use again a function of the form

R

R(t) = f(r)nr(t) (21)
r=1

17



where f(r) are scalars that we call f-parameters. We let again Tk be the sequence of transition

times (due to real or fictitious customers) in the uniformized Markov chain. As in Section

4.1, we denote by B,(t) the event that node a(r) is busy with a class r customer at time t,

and by B,(t) the event that node a(r) is not busy with a class r customer at time t. We

finally introduce Boi(t) to denote the event that node i is idle at time t. We then define

Ir, = E[1{Br(Tk)}nr(rk)] (22)

and

Nir, = E[1{Boi(rk)}nrt(rk)], (23)

where 1{.} is the indicator function and the expectations are taken with respect to the

invariant distribution.

Theorem 4.2 For every scheduling policy satisfying Assumption A, the follouwing equalities

hold:

R

2arIrr - 2 E rp.r.rIr.r - 2A0 Ar,.r = Aor + Ar(1 - prr) + E Ar'Pr..
r=1 rt'7r

r = 1,...,R (24)

R R

PltIr + PrIIrIr - d wwpwrtrl - A twPwrIwr - AOrArxr, - AOrrXr =

w=1 w=1

-APrr - A,,pr,,, Vr, r' such that r > r'. (25)

Proof: We uniformize as in Theorem 4.1 and proceed similarly to obtain the recursion

E[R2 (rk+l) n(Trk)] =

R

E Ao,(R(Tk) + f(r))2 +

R R

m P{Br(Tk)} prrl(R(rk) - f(r) + f(r')) + Pro(R(Tk) - f(r)) +

E Prl{Br (-k)}R-(rk)
r=l
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Rearranging terms, taking expectations with respect to the invariant distribution, and using

the fact that at steady-state we have

A,.
E[l{Br(7k)}] = A,

where A, is the solution of the traffic equations (15), we get:

2 EYr pr,(f(r) - f(r)) + prof(r) E[l{Br(rk)}R(Tk)] -
r=l rl=l

R

2 E Arf (r)E[R(rk)] =
r=1

E Aorf 2 (r) + E Ar E Prrl(f(r) - f(r'))2 + Prof2 (r) (26)
r=l r=l rt=l

Moreover, it is seen from (21) and (22) that

R

E[1l{Br(rk)}R(Tk)] = E f(r)Irrl-.
r1

=l

Let us define the vector f = (f(l),..., f(R)). We note that both sides of (26) are quadratic

functions of f. In particular, (26) can be written in the form

f TQf = f T Qof, (27)

for some symmetric matrices Q, Qo. Since (27) is valid for all choices of f, we must have

Q = Qo. It only remains to carry out the algebra needed in order to determine the entries

of the matrices Q and Qo. From (26), equality of the rth diagonal entries of Q and Qo

yields the equation below. (One easy way of obtaining that equation is to consider (26) for

the special case where f is the rth unit vector.)

2r, (pro + d pr,, Irr - 2 E l,rPrrIrlr - 2AorAx =
r'ir rlsr

AOr + Ar (Pro + 5 Prrl) + E Arplr,

from which we easily obtain (24) since the transition probabilities add up to one.
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Equality of the off-diagonal terms of Q and Qo, similarly yields the next equation.

(Equating the (r, r')th entries of Q and Qo is the same as considering (26) for the special

case where f is a vector whose rth and r'th entries are 1 and all other entries are zero.)

Due to symmetry, it suffices to consider r > r'. We have

r (Pro + o Prr) Irrl' - rPrrlIrr + rl (PrIO + E Prlw) Irr - r:Pr rIrrI -

I AwPw - E /L wPwrlIwr - AOrArXr, - AOrArr =
wr,rl w.r,rl

-ArPrr' - ArlPrlr

which implies (25). 

In addition to the equalities in Theorem 4.2, some more equalities are provided by the

result that follows.

Theorem 4.3 For each node i of the network, each class r', and for every policy satisfying

Assumption A, the following equality holds, in steady-state:

E Irr + Nir, = ArX,,r (28)
rECi

Proof: Let us fix some node i. We note that the events

Br(Tk) = "server i busy from class r at rk", r E Ci,

and the event

Boi(rk) = "server i idle at rk"

are mutually exclusive and exhaustive. Thus:

E [nrl(rk) (>i 1{Br(k)} + 1{BOi(rk)})] = nr = ArXri

Using the definitions (22), (23), we obtain (28). 

The equations provided by Theorems 4.2 and 4.3, together with the obvious inequalities

Irr, > O,Nir, > 0 and xi > 0, define a polyhedron. This polyhedron contains as much

information on the region of achievable performance as the polyhedron obtained by the
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approach of Theorem 4.1. This is due to the fact that both polyhedra are derived using the

same basic recursion for R(rk). Moreover in the nonparametric approach no inequalities

are introduced, in contrast to the approach of Theorem 4.1 where certain inequalities were

used to bound certain terms leading to possible loss of tightness. Our next theorem proves

formally such a relation between the two polyhedra and establishes that the nonparametric

approach is at least as powerful as our first approach.

Theorem 4.4 If the variables {x,, Irr,,, Ni,r; r, r' = 1,..., R, i = 1,..., N} are nonnega-

tive and satisfy the equalities in Theorems 4.2 and 4.3, then the variables {xr, r = 1,..., R}

satisfy the inequalities of Theorem 4.1.

Proof: Let the variables {,, Irr,,,, Ni,; r,r' = 1,...,R, i = 1,...,N} have the

stated properties. Since equation (27) holds for every choice of the f-parameters, it is seen

that we can write down an equality for every nonempty set of classes S, if we set to zero

the f-parameters corresponding to classes outside S. For any such S, it is apparent from

(28) that

Irr + E Ir, + Nirl,. = ArZr
rESnCj roSSnCi

which implies that

I, < nr
rESnC,

and

E[l{server oa(r) busy from some class r S n Ci at rk}nr(rk)] < nrl (29)

Now recall that in the proof of Theorem 4.1 we used that:

l{server oa(r) busy from some class r E S n Ci at rk} < 1 (30)

and

1{B,(rk)} > 0 (31)

in order to get the bound (18). That is, we first wrote down the recursive equation, we

then applied (30) and (31) and we finally took expectations to get (18). It can be seen that

exactly the same bound is obtained by first writing down the recursive equation, then taking

expectations and finally using (29) along with the positivity constraint for the variables Ir,..
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Thus, from the equality in (27) corresponding to the subset S, the inequality (18) is derived

by using (28). 

Remarks: We can intuitively argue that (28) contains more information than the

somewhat "crude" (29). Thus, we strongly believe that there are, in general, {X,, r =

1,..., R} satisfying the inequalities of Theorem 4.1, such that there are no nonnegative

values for the variables I,,, Nir, with which

{xr, Ir,., Nir,; r,r' = 1,...,R, i = 1,...,N}

would satisfy the equalities in Theorems 4.2 and 4.3.

We can now obtain a new bound on the optimal cost, by minimizing ER=1 Cr, subject

to the equality constraints of Theorems 4.2 and 4.3 and the nonnegativity constraints on all

of the variables involved. As a consequence of Theorem 4.4, we see that this lower bound

will be tighter (that is, at least as large) than the lower bound obtained using Theorem

4.1. In addition, the linear program that has to be solved in order to compute this lower

bound only involves O(R 2) variables and constraints. This should be contrasted with the

linear program associated to our nonparametric variation of the method which involved R

variables but 0( 2 R) constraints.

5 Routing and Sequencing

In this section we relax the assumption that only sequencing decisions are involved. We

extend our nonparametric variation of the method to multiclass open queueing networks

that allow both routing and sequencing decisions.

The framework and the notation is exactly the same as in Section 4. We let again rk

be the sequence of transition times (due to real or fictitious customers) in the uniformized

Markov chain. We also denote, as in Section 4.2, by B,(t) the event that node a(r) is busy

with a class r customer at time t, by B,(t) the event that node a(r) is not busy with a

class r customer at time t and by Boi(t) the event that node i is idle at time t. Instead

of the routing probabilities Pr,, being given, we control whether class r becomes class r'.

For this reason we introduce Prr(Tk) to denote the probability (which is under our control)

that class r becomes r' at time k+l, given that we had a class r service completion at time
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7 k+1. For each class r, we are given a set Fr of classes to which a class r customer can be

routed to. If Fr is a singleton for all r = 1,..., R the problem is reduced to the class with

no routing decisions allowed. By modifying the sets Fr we can adjust the level of routing

control we can apply to the network.

We define the following variables:

ur = E[1{Br(rk)}], (32)

D,,, = E[l{B,(rk)}prr,(Tk)], (33)

G,,j = E[l{B,(rk)}pr,,(k)nj(rk)], (34)

Irj = E[1{B(rk)}nJ(rk)], (35)

where 1{.} is the indicator function and the expectations are taken with respect to the invari-

ant distribution. Notice that 1{B,(rk)}, p,,,(rk) express the sequencing and routing deci-

sions respectively. Using the nonparametric method on the function R(t) = ER=l f(r)n,(t)

we can prove the following theorem.

Theorem 5.1 For every scheduling policy satisfying Assumption A, the achievable space

{(n,., u,, D,,,, G,,,rrj, Ij)} is contained in the following polyhedron:

R

pr- lDIr = A0 r r = 1,...,R (36)
1=1

R

2irIrr - 2 GGlrr - 2Aorn,. =

/=1

Aor + Lr(ur - D,,) + E, 1 DI, = 1,. .. ,R (37)
1er

and

R R

.rIr.i, + ,r r- E p,,,Gwrr - ,E ,,,Gn,r, - Ao,-son, =
w=1 1=l

-prUrDrr, - prlurDrlr Vr, r' such that r > r'. (38)

Eu r< 1 i= 1, ... ,N (39)
rECi
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r=1,...,R; i = 1,...,NIr < nj
rECi

R

Ur= E Drl

1=0

R

Ij = E Grl
1=0

r,j = 1,...,R

(41)

(42)

D,,, = G,rr,,j = 0 if r' F,, j = ,...,R

nro u,, Dr,r Grr,,j Irj > O.

Proof: We uniformize as in Theorem 4.1 and proceed similarly to obtain the recursion

E[R(rk+l) I n(Tk)] =

E Ar(R(r) + f(r)) +
r=l

L,.r{Br(,rk)} ,r,(rk)(R(k)-f(r) + f(r')) + po(rk)(R(rk)-f(r)) +

E PIrl{Br(-rk)IR(rk)

r=1

Rearranging, taking expectations and demanding that the above relations should hold for

all f-parameters, (36) follows, which is the usual traffic equation involving routing decisions.

Applying the methodology to E[R2 (rk+l)] we establish (37) and (38). Finally (39), (40),

(41), (42) are obvious from the definition of the variables. 

6 Closed Networks: Approximate Characterization

In this section we briefly outline how the nonparametric variation of the bounding method

is applied to closed queueing networks. The methodology is very similar to the one in open

networks, although there are some differences.

Consider a closed multiclass queueing network with N single server stations (nodes) and

R different job classes. There are F customers always present in the closed network. We

use exactly the same notation as in the open case with the only difference being that there

are no external arrivals (Ao, = 0) and the probability that a customer exits the network is

equal to zero (pro = 0). We do not allow routing decisions. How to incorporate routing
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decisions should be obvious by now.

The goal in closed networks is to maximize throughput or equivalently maximize the

percentage of time servers are busy. As in the open case we only consider sequencing deci-

sions and policies satisfying Assumption A(a) (Assumption A(b) is automatically satisfied).

We use the notation of Section 2 and also the function

R

R(t) = E f(r)nr(t).
r=l

In addition, we will use the definitions (22) and (32). In a closed network we are interested

in maximizing the weighted throughput

R

E crALrE[1{Br(rk)}],
r=1

where the maximization is over all policies satisfying Assumption A(a), and c, the benefit

from maximizing the throughput of class r. The following theorem provides a polyhedron

that contains the achievable space of {(nr, Irr, u,r)}.

Theorem 6.1 For every scheduling policy satisfying Assumption A (a) the achievable space

is contained in the following polyhedron:

R

IY Ur -AllUPlr = 0 r = 1 ... ,R (43)

R

1=1 li:r

and

R R

.rIrr, + ,LrIIrr - E ,LwPwrIw.rl - E luPurIwr =
w=l w=1

-1rUrPrr, - rurlPrlr Vr, r' such that r > r'. (45)

Z Ir < n r = 1,...,R, i= 1,...,N (46)
lECi

R

Znr = F (47)
1=1
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Proof: We initially apply our bounding technique to the function R(t). We uniformize

as in Theorem 4.1 and proceed similarly to obtain the recursion

E[R(k+,) n(k)] =

El i{Br( ()} Pr((R(Tk)- f(r) + f(r')) +

r=1

Rearranging terms and taking expectations with respect to the invariant distribution we

obtain
R R R

E f(r)rur - euZll E plrlf(r') = 0.
r=l 1=1 r'=1

Since this equality holds for all f-parameters we obtain (43).

Applying the methodology to the potential function R 2(t) we obtain

E[R 2 (k+) I n(rk)]=

R R

5A ir{Br(Tr)} Eprr(R(m)k)-f(r) + f(r))2 +
r=l rl=l

Z l{B,(-rk)R(2,k)
r=l

As in the proof of Theorem 4.2, we define a vector f = (f(l),..., f(R)). Rearranging terms,

taking expectations with respect to the invariant distribution we obtain that

f T Qf = f T Qof,

for some symmetric matrices Q, Qo, and from that Q = Qo. From this (44), (45) follow,

expressing the equality of the diagonal and off-diagonal terms of Q and Qo respectively.

Finally, (46) is obvious while (47) expresses the fact that there F customers in the closed

network. 1

Obviously, maximizing the linear function r=l, Cr Pr u, over the polytope of the previous

theorem yields an upper bound on the optimal weighted throughput.
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7 Higher Order Interactions and Nonlinear Characteriza-

tions

Until now the methodology we have developed offers polyhedral spaces that contain the

achievable region and takes into account pairwise interactions among classes in the network.

In this section we significantly extend the methodology and its power as follows:

1. We take into account higher order interactions among various classes by extending

the potential function technique developed thus far.

2. We obtain nonlinear characterizations of the achievable space in a systematic way by

using ideas from the powerful methodology of semi-definite programming.

In this way, we obtain a sequence of progressively more complicated nonlinear approxi-

mations (relaxations) which are progressively closer to the exact achievable space. We note

that there are no examples of nonlinear characterizations of the achievable region in the

literature with the exception of a simple example in [GeMi].

7.1 Higher Order Interactions

Let us reflect on the methodology used so far. We use the function R(t) = E R 1 f(r)n,(t).

The dynamics of the system are then expressed in terms of the recursion

E[R(-k+l) I ni(rk)] = G(R(Tk), n(Tk), f{A(Tk)}, A),

where G(.) is a function that expresses the dynamics, {A(rk)} is the vector of the possible

events and decisions that can take place in the system and A is the set of parameters,

which is known as data and fully describe the system. Demanding that the recursion

E[R(Tk+l) I (rk)] holds for all f-parameters, we obtain the traffic flow equations. From the

recursion E[R2 (rk+l) I (rk)] and by selecting proper f-parameters (parametric method),

or by demanding that the recursion holds for all f-parameters (nonparametric method) we

obtain linear inequalities (parametric method) or a set of R(R + 1)/2 linear equalities in

terms of new variables (nonparametric method). In this respect the nonparametric method

is more powerful, because it is independent of the choice of parameters and leads to sharper

characterizations as we have proved in Section 4. By its nature, the methodology will

27



only take into account pairwise interactions among the various classes, which are present

if one expands the square terms in the recursion. For example the nonparametric method

introduces variables E[1{B,(rk)}nj(rk)], taking into account the interactions of classes r

and j.

These observations naturally lead us to the following generalizations of the methodology,

which we apply to a multiclass open queueing network, where only sequencing decisions

are involved. Using the notation of Section 2, we apply the nonparametric method to

E[R3 (rk+l) I (rk)], and define, in addition to Ij = E[l{Br(rk)}nj(rk)], new variables

H,jk = E[l{Br(k)}nj(Tk)nk(rk)]

Mjk = E[nj(rk)nk(Tk)]

Jjk = E[nr(Tk)nj(Tk)nk(k)]

and obtain a set of linear equalities in the set of the new variables as follows. We modify

Assumption A(b) and assume that E[nr(t)] < oo.

Theorem 7.1 In a multiclass open queueing network, where only sequencing decisions are

involved, and for every scheduling policy satisfying the modified Assumption A, the achiev-

able space {(n, Ij, Hjk, Mjk Jrjk)} is contained in the following space:

R

- A,. + A,pi. + 3ttr(1 - Prr)Ir, + 3 p t,'prrIrlr - 3rH,r, +
r=1 rlr

R

3 Irp,rH,B , + AOr + 3Ao,rnr + 3AM, = r = 0 1,...,R (48)
rl=l

3A0rM,r + 3A 0,n,, + 6A 0o,M,,r + 3A,p,l - 3A,p,,, + 3ti(1 - pr)I -
R

6rPrrI-r -
6 r'Pr'.,'r+,. ± 3E WPrIwl,. + 3 E pIrIHIrr -

wr 1=1

R

3aHr..,r - 6PrH,rr + 6 PWPw,H,,rI Vr, r' such that r > r'. (49)
- =l 1

AkMrj + AorMjk + ojMk - Pr,(1 - p,,)H,jk - j( - pjj)Hj,k - k( -Pkk)Hkrj +
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E 1PlrpHlk + E ILpljHlrk + E IlplkHirj - ftlrPriIrk + LrPrjHrrk -
1fr,j,k tlr,j,k lir,j,k

prprkIrj + urPrkHrrj - PLjpjkIjk + tLjPjrHjjk - tljPjkIj + PjpjkHjjr -

kPkrIkj + PkpkrkHkk - lkpkjIkr + /lkPkjHkkr = 0 Vr, j, k such that r < j < k. (50)

Ir < n, r = 1,...,R, i= 1,...,N (51)
lECi

Hk < jk j,k = 1,...,R, i = 1,..., N (52)
IECi

nr, Irj, Hrjk, Aljk Jrjk > 0. (53)

Proof: We uniformize as in Theorem 4.1 and proceed similarly to obtain the recursion

for R3 (t). We express the recursion as a third degree multivariable polynomial of f which

should be identically equal to zero for all f-parameters. Equating the R coefficients of the

monomials f(r)3 , the R(R - 1) coefficients of the monomials f(r)2 f(r') and the ER=(k -

1)(k - 2)/2 coefficients of the monomials f(r)f(j)f(k) for r < j < k, we obtain (48), (49),

(50), respectively, after some algebra. (51), (52) and (53) are obvious. 

The new variables we introduced take into account interactions among three classes

in the system and as such we expect that they lead to more powerful characterizations.

Another advantage of the methodology is that now one can obtain lower bounds for more

general objective functions involving the variances of the number of customers of class r,

since the variables Mjj = E[n3(rk)] are now in the augmented space.

Naturally one can continue with this idea further by applying the nonparametric method

to E[Ri(rk+l) I il(rk)] for i > 4. In this way, we take into account interactions among i

classes in the system. There is an obvious trade-off between accuracy and tractability in this

approach. If we denote with Pi the space obtained by applying the nonparametric method

to E[Ri(rk+) I n(rk)], the approximating space up to ith order interactions is n=lPl . The

dimension of the space and the number of constraints is O(Ri), which even for moderate i

is quite expensive.

The explicit derivation of the equalities of these spaces is algebraically involved but

conceptually very simple. Since the only operations involved in the derivation is manipula-

tion of multivariable polynomials we used the software program Mathematica to derive the

equations in Theorem 7.1. Since it is rather routine for Mathematica to automatically gen-
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erate constraints, one could imagine that this automatic generation could be combined with

an algorithm to find lower bounds for the achievable performance that would progressively

add constraints in the problem. This is exactly how large scale combinatorial problems are

solved to optimality using polyhedral methods.

7.2 Nonlinear Interactions

We briefly outline in this section how ideas from semi-definite programming can be used to

obtain nonlinear constraints on the achievable space.

Let Y be a vector of random variables. Let Q be a symmetric positive semi-definite

matrix. Clearly,

E[(V - E[f])T Q( - E[I1])] > 0,

which implies that

E[f T Qf] > E[VIT ]QE[], (54)

which is Jensen inequality applied to the convex function zTQz. Notice that (54) should

hold for every symmetric semi-definite matrix Q. By selecting particular values for matrices

Q, one obtains a family of inequalities.

This methodology can be used to generate families of quadratic inequalities for the

model of the previous subsection as follows. As an example, for a fixed r = 1,..., R by

selecting as the random vector Y the vector (l{B,(rk)}nj(rk)), j = 1,..., R and using the

identity 1{Br(rk)} = (1{B,(rk)}) 2, we obtain the quadratic inequalities

E HrijQij > E QijIriIrj, r = 1,...,R. (55)
i,j ij

Choosing specific Q values we could generate families of quadratic inequalities. Instead

we will impose the constraints of the form (54) for all choices of Q. Let Z be the polyhedral

space of Theorem 7.1. A lower bound on the optimal solution value has the form:

R

ZLB = min E Crr,
r=1

subject to:

(n,,Irj, H,jk, Mjk, Jrjk) E Z
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EHrijQij > QijIriIrj, r = 1,...,R, VQ > 0. (56)
i,j i,j

For every fixed Q > 0 (semi-definite) the constraint (56) is convex in the variables Iri. As

a result given a subfamily of constraints of the form (56) we have a convex programming

problem. On the other hand, the optimal solution value ZLB can be obtained by a cutting

plane type algorithm which solves at each stage the following separation problems:

SEPARATION: Given a (n,, Irj, Hrjk, Mjk, Jrjk) E Z solve for each r:

zSEP = min E HrijQij - Z Qij riIrj
ij i,j

subject to:

Q > 0

If ZSEP > 0 for r = 1,..., R, then the current vector satisfies all constraints of the

form (56) and it is optimal. If not, then a semi-definite matrix Q has been found for

which the corresponding constraint is violated by the current vector. We can then add this

constraint to the current subfamily of constraints, resolve the convex programming problem,

and continue similarly.

We note that the separation problem is an instance of a semi-definite progranmming

problem which can be solved efficiently by a simplex type and interior point methods (see

[Al]). Therefore, the overall algorithm would be very efficient. From a complexity point of

view the overall algorithm would run in polynomial time if one uses the ellipsoid algorithm

or a variant like Vaidya's algorithm, since the separation problem is solvable in polynomial

time by an interior point algorithm.

In order to add higher order nonlinearities we can also add some more general nonlinear

constraints involving polynomials of degree i - 1 of the type

E[1{Br(rk)}nj(rk)] > E[nj(rk)}]h, h = 1,...i- 1,

which hold because of Jensen inequality, since the variables involved are nonnegative and

hence the functions h are convex. In this way we obtain a sequence of progressively more

complicated nonlinear spaces that approximate the achievable region.
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8 Single Station Networks and Homogeneous Open Net-

works: Complete Characterizations

In this section we investigate the connections of our methodology with mostly known (al-

though we do obtain a new result) exact characterizations of the achievable region in simpler

systems based on conservation laws. Our overall goal in this section is to show that our

first order methods are equally powerful with conservation laws and lead to explicit charac-

terizations. Moreover, the nonparametric method offers a reformulation of the achievable

space, with a polynomial number of variables and constraints, which is interesting both

from a probabilistic, but also from a combinatorial point of view.

We show that our bounds give an exact characterization of the achievable region for a)

single station systems and b) open networks in which all classes are stochastically the same

as soon as the classes enter the network, i.e., Pr,r, = Pi,;, for all r, r' such that: a(r) = i

and a(r') = i' and Pr = i for all r with v(r) = i. Regarding multiclass single stations, we

examine a multiclass M/M/1 queue with (Klimov's problem [Klim]) and without Bernoulli

feedback, where each class can have distinct service requirements under work-conserving,

preemptive policies. The achievable region for the multiclass queue is derived in [GeMi]

based on conservation laws. The achievable region for Klimov's problem with preemption is,

to the best of our knowledge, not known. Tsoucas [Tsou] derives the form of the achievable

region for Klimov's problem under non-preemptive policies and general service requirements.

We address the preemptive case for exponential service requirements. Our results in this case

are explicit, since we compute all the parameters in closed form, while Tsoucas does not give

explicit formulae for some of the parameters in his characterization. Regarding homogeneous

open networks, we remark that our methods reproduce the exact characterization obtained

in Ross and Yao [RoYa] using conservation laws. We do not reproduce the results here since

they are identical with those obtained in [RoYa] and the methodology to obtain them is

the same as in the multiclass queue. We introduce conservation laws and their connections

with polyhedral performance regions.

8.1 Strong conservation laws and extended polymatroids

In this section we summarize briefly some material from Shantikumar and Yao [ShYa] and

Bertsimas and Nifio-Mora [BeNi].
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Let E = {1,..., n} be a finite set. Let x denote an n-vector, with components xi, for

i E E. For S C N, let us write S t = E \ S. Let 2E denote the class of all subsets of E. Let

b: 2 E ~R+ be a set function, that satisfies b(0) = 0. Let f = (fS)iEE, SCE be a matrix

that satisfies

fis > 0, for i E S and f = 0, for i E SC. (57)

Let r = (7rl, ... Trn) be a permutation of E. Let v(7r) be the unique solution of the linear

system

Z af4i', ·· lx'i = b({7rl,...,iri), for i = l,...,n. (58)
i=l

Let

P(f,b) = {tx E _: fSxi > b(S), for S C E} (59)
iES

and

B(f, b) = {x E +: fsx > b(S), for Sc E and ffxei =b(E)}. (60)
iES iEE

The following definition is due to Bhattacharya et al. [BGT].

Definition 8.1 (Extended Polymatroid) We say that the polyhedron P7(f, b) is an ex-

tended polymatroid with base set E if for every permutation r of E, v(ir) E P(f, b). In this

case we say that the polytope B(f, b) is the base of the extended polymatroid P(f, b).

Notice that if fS = 1 then the polyhedron P(f, b) is a classical polymatroid.

Shantikumar and Yao [ShYa] formalized a definition of strong conservation laws for per-

formance measures in general multiclass queues, that implies a polymatroidal structure in

the performance space. Bertsimas and Nifio [BeNi] present a more general definition of

strong conservation laws that implies an extended polymatroidal structure in the perfor-

mance space that has several interesting and important implications. Consider a general

multiclass queueing system and let U be the class of all nonidling and nonanticipative

scheduling policies (see Gelenbe and Mitrani [GeMi]). We consider U to be the class of

admissible policies. Let x be a performance measure of class i jobs, i E E = {1,..., n}

under policy u U. We assume that x is an expectation. Let xu be the corresponding
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performance vector. Let az denote the performance vector under an absolute priority rule

that assigns priorities to jobs according to the permutation r = (rl,..., r,,) of E, where

jobs of class nr, have maximum priority.

Definition 8.2 (Strong Conservation Laws) The performance vector x is said to sat-

isfy strong conservation laws if there exist a function b: 2E R+ such that b(0) = 0 and a

matrix f = (fiS)iEE,SCE satisfying (57) such that:

(a) b(S)= fziT, for all r: {rl,...,rIsl} = S and S C E; (61)
iES

(b) E fisxy > b(S), for all S C E and fiEx' = b(E), for all u E U.
iES iEE

(62)

The connection of conservation laws and extended polymatroids is reflected in the following

theorem.

Theorem 8.1 (Bertsimas and Nifio [BeNi]) Assume that the performance vector satisfies

strong conservation laws (61) and (62). Then

(a) The vertices of B(f, b) are the performance vectors of the absolute priority rules, and

xr = v(7r), for every permutation r of E.

(b) The extended polymatroid base 3(f, b) is the performance space.

The previous theorem makes it relatively easy to check whether the performance space has

an extended polymatroid structure.

The fundamental structural property of an extended polymatroid is that minimizing

a linear function iEE cini over B(f, b) can be achieved by the following adaptive greedy

algorithm originally proposed by Klimov [Klim] and proven using dynamic programming.

For a proof of its optimality using linear programming duality (the variables ys defined in

the course of the algorithm are the optimal dual variables corresponding to the LP: min c n,

n E (f, b) see [BeNi], where c, n, are the vectors of ci's, ni's, respectively).

Theorem 8.2 The performance vector corresponding to the optimal priority rule

{71,7r2 , -.. rn}
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for the problem min c n, n E B(f, b) is the solution of the system of equations:

i f""r2 ...... = b({, 7r, 2, 7rk}) k = 1, 2, .. (63)
i=1

where the optimal ordering rl, t2,..., r, is given by the algorithm:

Step 1:

E° E

YEo° = min c i

r = arg in fo(i)

Step 2: For k = 1,2,...,n - 1

Ek Nk - l \ {7r'-k+ }

t C to fEj MIYEj
YEk = min - fE(i)y 

iEEk fEk (i) 

7r-k = argnfin{ - -fE r(i) y

8.2 A Multiclass Queue

We consider a multiclass queue with n customer classes (Figure 2). Customers of class i

enter the station in a Poisson stream of rate Ai. The station has a single server and each

class of customers requires service time exponentially distributed with rate pi. Let ni(t) be

the number of class i customers present in the system at time t. Let zi, ni be the expected

response time and the expected number of class i customers in steady state, respectively.

Let E be set of classes. Let pi = A)i/pi be the traffic intensity of class i customers.

Theorem 8.3 The polyhedron:

P1: E > EiE(Pi/,l) VS C E (64)

iES 1 = EiES Pi

iEi 1- Z-ZEN i(65)
iEN Pi 1 - EiEN Pi
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1

2 

n

Figure 2: A multiclass queue

ni E R+

is the achievable space for the multiclass queue for work-conserving policies satisfying As-

sumption A.

Proof: We uniformize the underlying chain and define the uniform rate to be:

n

V = E(Ai + pi)
i=l

Without loss of generality we assume that v = 1. Following the steps of our method for a

subset S of E = {1, 2,..., n} we define the potential function (RS(t))2 where

RS(t) = Efs(i)ni(t)
iES

Dropping S from Rs(t) and fs(i) we get:

E[R2(rk+l) I (rk)] = E Ai(R(Tk) + f(i))2 + E AiR 2(7k) +
iEs ifs

Z i 1{Bi(rk)(R(rk) - f(i)) 2 +
iES

iES

ifs

We choose

f(i) = 1, Vi E S,fpi
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and using:

1{server busy from some class i E S at k } 1 (66)

we obtain (64).

Therefore, (P1) includes the achievable region. We next observe that inequality (64)

holds with equality for work-conserving policies, when preemptive priority is given to the

classes in the subset S. If preemptive priority is given to the classes in S we have:

R(rk)l{server busy from some class i E S at rk} = R(rk)

because when R(rk) $ 0 (that is a customer of some class i E S is present) and preemptive

priority is given to the classes i E S, then the server should definitely be working on a

customer of classes i E S. Otherwise, when R(rk) = 0 the above equation holds trivially.

Therefore, (64) holds with equality in this case. In particular, for S = E, then equation

(64) holds with equality for work-conserving policies and thus for work conserving policies

we obtain (65).

In order to show that (P1) is exactly the performance space we observe that the per-

formance vector (ni/i) satisfies strong conservation laws in the sense of Definition 8.2.

Applying Theorem 8.1 we establish that (P1) is a polymatroid having n! extreme points

corresponding to the n! preemptive priorities rules and the performance vector of each pri-

ority rule is achievable. Thus, since every point in the polyhedron can be written as a

convex combination of its extreme points zl,..., Zn! with coefficients al,.. ., an!, there ex-

ists a randomized policy that uses the priority rule corresponding to zi with probability ai

that achieves the performance at this point. Therefore, (P1) is exactly the performance

space of the multiclass queue. 

Remarks: Polyhedron (P1) is a polymatroid and therefore, the greedy algorithm of

Theorem 8.2 solves the problem of minimizing a linear function over (P1) giving rise to the

c/i rule.

We now apply the nonparametric method to find an alternative characterization of the

achievable region that has a polynomial number of variables and constraints. Let Bo(t) be

the event that the single server is idle at time t.
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Let us first define in analogy with (22) and (23):

ij = E[1{Bi(rk)}nj(-k)] (67)

Nj E[1{Bo(rk)}nj(k )]. (68)

Note that for work conserving policies Nj = 0.

Theorem 8.4 For the multiclass queue and for work-conserving policies satisfying the As-

sumption A the following polyhedron P2:

P2: piIii - i=, = ... ,n (69)

AiIij + Atjlji - Ajni - Ainj = 0 Vi, j, i j (70)

E Iij = nj j = ,. .. ,n (71)
iEN

ni, Iij E R+

projected in the ni, i = 1, 2,..., n space yields P1.

Proof: Applying Theorem 4.2 for the multiclass queue, we immediately obtain that

the nonparametric method yields polyhedron P2. Let P2' the projection of P2 in the space

of ni's. We want to show that P2' _ P1. In Theorem 4.4 we have shown that P2' C P1.

Since P1 is exactly the achievable space it follows that P1 C P2', from which the result

P2' P1 follows. For a purely combinatorial derivation see [Pasc]. 

The previous theorem is an interesting reformulation of conservation laws. It states

that a polymatroid polytope which is defined by 2 - 1 constraints can be transformed to a

polytope defined in an augmented space of dimension O(n 2) that has O(n 2) constraints. It

has been conjectured in the combinatorial optimization community that problems solvable

in polynomial time have polynomial formulations. The previous theorem shows that this

conjecture is indeed correct for the special case of the polymatroid polyhedron in a multiclass

queue.
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8.3 Klimov's Problem

Consider the single-server station of Fig. 3. Customers of class i E E = {1, 2,.. ., n} arrive

in the system according to a Poisson process of rate Ai and have an exponentially distributed

service time with mean 1/pi. Upon service completion a class i customer is fedback in the

system as a class j customer with probability Pij, while with probability pio he leaves the

system. Let ni be the expected number of customers of class i in steady state.

pij2 C..

piO

n

Figure 3: Klimov's problem.

The server is using a preemptive, work conserving discipline satisfying Assumption A.

We show that for this problem also the polyhedron obtained from our method in Section 4

characterizes the achievable region exactly. The derived polyhedron has exactly the same

structure as the polyhedron derived in [Tsou] for the M/G/1 case, under non-preemptive

policies. In fact, the explicit form of the polytope is not given in [Tsou]; the rhs of the

inequalities that define the polytope is an unknown function satisfying some properties. In

contrast, we will explicitly define the polyhedron.

The traffic equations for the above system are:

n

= Ai + E Ajpi. (72)
j=1

Our characterization is as follows:

Theorem 8.5 For every work-conserving policy satisfying Assumption A, the achievable

space for the Klimov problem is given by the polyhedron:

P3: N( fs(i)ni > N(S) VS C E (73)
iES
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fs(i)i = '(E) (74)
iEE DI(E)

ni E 3+

where:

iEs iEs jE js ifs jES

D'(S) = 2 [1 - Z Aifs(i)

and

fs(i) = + EPijfs(j) (75)
jES

Proof: In order to show that inequalities (73) are necessary we apply Theorem 4.1

directly for this case, where the f-parameters are chosen in (75). As in Theorem 8.3 we

observe, using the method of deriving these inequalities, that inequality (73) holds with

equality, for work-conserving policies when preemptive priority is given to the set S of

classes. In particular, for S = E (73) holds with equality, and therefore (74) is necessary.

Therefore, the performance vector n satisfies strong conservation laws. Applying Theorem

8.1 we establish that (P3) is a polymatroid having n! extreme points corresponding to the

n! preemptive priorities rules and the performance vector of each priority rule is achievable.

Thus, since every point in the polyhedron can be written as a convex combination of its

extreme points z1,..., Z,! with coefficients al,..., an!, there exists a randomized policy that

uses the priority rule corresponding to zi with probability ai that achieves the performance

at this point. Therefore, (P3) is exactly the achievable space. l

9 Numerical Results for Open Networks

In this section we provide some numerical results in order to evaluate the performance of

our bounding techniques for open networks where only sequencing decisions are involved.

In particular, we provide three network examples and for each of these examples and for

various traffic conditions we calculate:

40



1. The lower bound on achievable performance according to the approach developed in

Section 4.1.

2. The lower bound on achievable performance according to the nonparametric variation

of the method developed in Section 4.2.

3. The performance of the FCFS policy.

4. The performance of the best policy we were able to found which serves as an upper

bound.

In this way, we are able to evaluate the tightness of our lower bound. In fact, since the

optimal is not known for each case, we cannot calculate the closeness of our lower bound

to the optimal policy. Instead, we will calculate its closeness to the upper bound which of

course is an overestimate. In particular, we will calculate the efficiency of the bound which

we define as:
Best Lower Bound

efficiency = - 100%
Best Upper Bound

9.1 A Simple Two-Station Network; Revisited

Consider the two-station network example studied in Section 3 and depicted in Figure 1.

Table 1 compares our lower bounds on attainable performance with FCFS and the following

threshold policy:

Policy 1 : Give priority to type 1 customers at station 1 when there are B

or fewer customers at station 2. Otherwise give priority to type 2 customers.

Never idle.

An alternative policy is:

Policy 2 : Give priority to type 1 customers at station 1 when there are B or

fewer customers at station 2. Otherwise give priority to type 2 customers. Idle

at station 1 when there are B or more customers at station 2 and no type 2

customer is present at station 1.

The threshold B in both policies is constant and its optimal value was calculated via sim-

ulation. Policy 1 was proposed in [HaWel] where the Brownian network model approach
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was used. Intuition seems to suggest that when cl and C3 are comparable, policy 1, which is

work-conserving is preferable. But when c3 > cl then policy 2 should be closer to optimal.

"Lower Bnd. 1" and "Lower Bnd. 2" in the table correspond to the bound developed

in Section 4.1 and Section 4.2, respectively. Costs were chosen in order to have as objective

function the total expected number of customers in the network, i.e., (cl = C = A1, c2 = A2).

For this is the reason, threshold policy 1 was simulated and not the threshold policy 2. Note

that the performance reported in the table for the threshold policy corresponds to the op-

timal value of the threshold B which was found for each case by doing several simulation

runs. Table 2 contains the data used for each case reported in Table 1. Finally, note that

by PA, PB we denote the total traffic intensities at station 1 and station 2, respectively.

Load Lower Lower FCFS Thresh. Effic.
Node 1-Node 2 Bnd. 1 Bnd. 2 Policy

HEAVY-HEAVY 14.15 14.15 19.43 16.98 83%
HEAVIER-HEAVIER 19.9 19.9 28 23.76 84%

VERY HEAVY-VERY HEAVY 49.96 49.96 73 57.38 87%
MEDIUM-HEAVY 9.18 9.18 10.5 10.44 88%
LIGHT-MEDIUM 1.61 1.61 2.17 2.16 75%
HEAVY-MEDIUM 9.6 9.6 10.5 9.98 96%
MEDIUM-LIGHT 1.9 1.9 2.17 2.14 89%

Table 1: Numerical results for the network of Figure 1.

Load PA PB A1 A2 ll 2
HEAVY-HEAVY 0.93 0.86 0.86 1 2 1

HEAVIER-HEAVIER 0.95 0.90 0.90 1 2 1
VERY HEAVY-VERY HEAVY 0.98 0.96 0.96 1 2 1

MEDIUM-HEAVY 0.6 0.9 0.9 0.3 2 1
LIGHT-MEDIUM 0.4 0.6 0.6 0.2 2 1
HEAVY-MEDIUM 0.9 0.6 0.6 1.2 2 1
MEDIUM-LIGHT 0.6 0.4 0.4 0.8 2 1

Table 2: Data for the experiments of Table 1.

It is interesting that the efficiency of our lower bound is of approximately the same order

of magnitude as the efficiency of the "pathwise bound" derived in [OuWe], which is based

on simulation. Note also that the threshold policy clearly outperforms FCFS. From Table 1
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it is apparent that as p --+ 1 the efficiency of the bound increases for both balanced and

imbalanced traffic conditions. We believe that this behaviour is mainly due to the fact that

the threshold policy behaves better as the traffic gets heavier (see [HaWel]). Moreover, the

efficiency of the bounds is better in imbalanced traffic conditions.

9.2 A Four-Class Network Example

Consider the network of Figure 4. Customers enter the network in a Poisson stream of

rate A and they visit stations 1,2,1,2, in that order before exiting the network, forming

classes 1,2,3,4 respectively. The single servers at stations 1,2 has service times exponentially

distributed with rates P1 ,P2 respectively.

~~~1 2

Figure 4: A Four-Class Network Example.

Table 3 compares our lower bounds on attainable performance with FCFS and the best

found policy for various load conditions, providing also the efficiency of the bound. "Lower

Bnd. 1" and "Lower Bnd. 2" in the table correspond to the bound developed in Section

4.1 and Section 4.2, respectively. Costs throughout the experiments reported in the table

were chosen to be:

cl = 1.5, c2 = 1.3, c3 = 1.2, c4 = 1.

In this specific example the best policy we were able to find, for each load condition

we considered, happens to be a strict priority one. Note that we only considered non-

preemptive policies. It is interesting that not a single policy was optimal for every case we

considered. More precisely the following two policies were competing:

Policy 1: Give at station 1 highest priority to class 3 and lowest to class 1

(3 - 1) and give at station 2 highest priority to class 4 and lowest to class 2

(4 -2).

Policy 2: Give at station 1 highest priority to class 3 and lowest to class 1
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(3 - 1) and give at station 2 highest priority to class 2 and lowest to class 4

(2 -,4).

with the one outperforming the other in some cases and vice versa. In the table, next to

the performance of the best policy for each case, we are giving in parenthesis the policy

identifier, denoting by pl and p2, policy 1 and policy 2, respectively. Table 4 contains the

data used for each case reported in Table 3. Note that by PA, PB we denote the total traffic

intensities at station 1 and station 2, respectively.

Load Lower Lower FCFS Best Effic.
Node 1-Node 2 Bnd. 1 Bnd. 2 Policy

HEAVY-HEAVY 42.24 45.36 70.55 65.58 (p2) 69%
MEDIUM-MEDIUM 16.07 20.07 28.83 27.88 (pl) 72%
MEDIUM-HEAVY 17.06 17.35 23.2 20.55 (pl) 85%
LIGHT-MEDIUM 3.44 3.69 5.23 5.00 (pl) 74%
HEAVY-MEDIUM 20.08 20.55 25.93 22.00 (p2) 94%
MEDIUM-LIGHT 4.25 4.56 5.56 5.29 (pl) 86%o

Table 3: Numerical results for the network of Figure 4.

Load . PA PB A I 12 
HEAVY-HEAVY 0.85 0.80 0.17 0.40 0.43

MEDIUM-MEDIUM 0.57 0.63 0.13 0.46 0.41
MEDIUM-HEAVY 0.6 0.9 0.5 1.67 1.12
LIGHT-MEDIUM 0.4 0.6 0.5 2.5 1.67
HEAVY-MEDIUM 0.9 0.6 0.5 1.12 1.67
MEDIUM-LIGHT 0.6 0.4 0.5 1.67 2.5

Table 4: Data for the experiments of Table 3.

The efficiency of our lower bound is again of approximately the same order of magnitude

as the efficiency of the "pathwise bound" derived in [OuWe]. As we argued in the beginning

of this section the efficiency of the bounds depends both on the their closeness to optimality

and on the suboptimality of the upper bound. In order to understand which factor is

more important we calculated the performance of the optimal policy for one specific case

via dynamic programming. In particular, we applied the value iteration algorithm for the

MEDIUM-MEDIUM traffic case. The dynamic programming algorithm yielded an optimal

for the objective function of 27.7 proving policy p almost optimal.
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9.3 A Six-Class Network Example

Consider the network depicted in figure 5. Customers of type 1 enter the network in a

Poisson stream of rate Al and they visit stations 1,2,1,2, in that order, before exiting the

network, forming classes 1,2,3,4 respectively. Customers of type 2 enter the network in a

Poisson stream of rate A2 and they visit stations 1,2 before exiting the network, forming

classes 5,6 respectively. The single servers at stations 1,2 have service times exponentially

distributed with rates 1 ,p2 respectively.

Tve 1
-JrTy -

Type 2 5

1

2

Figure 5: A Six-Class Network Example.

Table 5 compares our lower bounds on attainable performance with FCFS and the best

found policy 1 for various load conditions, providing also the efficiency of the bound. "Lower

Bnd. 1" and "Lower Bnd. 2" in the table correspond to the bound developed in Section

4.1 and Section 4.2, respectively. Costs throughout the experiments reported in the table

were chosen to be:

c = 1.5, c2 = 1.3, c3 = 1.2, c4 = 1 c5 = 1.1, c6 = 1.1.

In this specific example, also, the best policy we were able to find, for each load condition

we considered, happens to be a strict priority one. Note that we only considered non-

preemptive policies. It is interesting that not a single policy was optimal for every case we

considered. More precisely the following two policies were competing:

Policy 1: Give at station 1 highest priority to class 3 and lowest to class 5

(3 - 1 -, 5) and give at station 2 highest priority to class 6 and lowest to class
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2 (6 -, 4 -+ 2).

Policy 2: Give at station 1 highest priority to class 1 and lowest to class 5

(1 -- 3 - 5) and give at station 2 highest priority to class 2 and lowest to class

6 (2 - 4 -, 6).

with the one outperforming the other in some cases and vice versa. In the table, next to

the performance of the best policy for each case, we are giving in parenthesis the policy

identifier, denoting by pl and p2, policy 1 and policy 2, respectively. Table 6 contains the

data used for each case reported in Table 5. Recall that by PA, PB we denote the total

traffic intensities at station 1 and station 2, respectively.

Load Lower Lower FCFS Best Effic.
Node -Node 2 Bnd. 1 Bnd. 2 Policy

HEAVY-HEAVY 15.72 16.67 30.56 26.89 (p2) 62%
MEDIUM-MEDIUM 5.83 6.17 9.86 9.25 (p2) 67%
MEDIUM-HEAVY 15.77 15.85 21.26 18.20 (pl) 87%o
HEAVY-MEDIUM 1 18.77 18.79 23.00 19.80 (pl) 95%

Table 5: Numerical results for the network of Figure 5.

Load X PA PB i A A2 ll L2 I
HEAVY-HEAVY 0.85 0.90 0.5 0.7 2 1.89

MEDIUM-MEDIUM 0.7 0.7 0.5 0.7 2.43 2.43

MEDIUM-HEAVY 0.6 0.9 0.5 0.7 2.83 1.89
HEAVY-MEDIUM 0.9 0.6 0.5 0.7 1.89 2.83

Table 6: Data for the experiments of Table 3.

9.4 Summary

Our computations results suggest:

1. The lower bound obtained by the nonparametric variation of the method is at least

as good as the lower bound obtained by the parametric method as expected from

Theorem 4.4. In the more complicated examples with four and six classes it was
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strictly better. The reason is that the nonparametric method takes more into account

the interactions among various classes.

2. The efficiency of our lower bounds is approximately the same order of magnitude as

the efficiency of the "pathwise bound" derived in [OuWe].

3. The bounds are very efficient in imbalanced traffic conditions. In these conditions the

efficiency of the bounds increases with the traffic intensity. We believe that the reason

for this is that in imbalanced conditions there is only one bottleneck, so the behavior

of the system is dominated by only one station. But in single station systems our

bounds are exact, which explains the tightness of our bounds.

4. In balanced traffic conditions, the bounds also behave well especially when the traffic

intensity is not very close to one. But, even in these heavy-balanced traffic conditions,

in the examples that we studied the efficiency does not get worse than 62%o.

10 Reflections

In this paper we proposed new techniques for describing the region of achievable perfor-

mance for multiclass open and closed queueing networks, with Poisson arrivals (in open

networks) and exponentially distributed service times. Our techniques use linear and non-

linear potential function methods. We introduced an arbitrary potential function that gives

a family of bounds (linear and nonlinear) that take into account high order interactions of

various classes. We also introduced the idea of choosing the best possible potential function

to obtain the tightest possible bounds by allowing the flexibility of unknown coefficients.

We believe that the power of the method stems from the fact that it takes into account

higher order interactions among various classes. Our first order method is as powerful as

conservation laws since it leads to exact characterizations (single station network, homoge-

neous networks). As such, this approach can be seen as the natural extension of conservation

laws. It is desirable to check the tightness of the various bounds derived in the paper in

actual applications. The numerical results we report are encouraging but certainly more

work is needed to illustrate especially the power of the higher order formulations.
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