
OPERA TIONS RESEARCH CENTER

Working Paper

A Multi-Exchange Neighborhood Search Heuristic for an
Integrated Clustering and Machine Setup Model for PCB

Manufacturing
by

M. J. Magazine
G. G. Polak
D. Sharma

OR 352-01 March 2001

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

1

A Multi-Exchange Neighborhood Search Heuristic for an Integrated
Clustering and Machine Setup Model for PCB Manufacturing

Michael J. Magazine, Department of QAOM, University of Cincinnati,
Cincinnati, Ohio 45221-0130, telephone (513) 556-7191, Fax (513) 556-5499

michael.magazine@ uc.edu

*George G. Polak, MSIS Department, Wright
Dayton, Ohio 45435, telephone (937) 775-3489,

george.polak@wright.edu

State University,
Fax (937) 775-3545

Dushyant Sharma, Operations Research Center,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,

telephone (617) 253-3601, Fax (617) 258-9214
dushyant@ mit.edu

* Please address all correspondence to this author.

2

A Multi-Exchange Neighborhood Search Heuristic for an Integrated
Clustering and Machine Setup Model for PCB Manufacturing

Abstract

In the manufacture of printed circuit boards, electronic components are

attached to a blank board by one or more pick-and-place machines. Frequent

machine setups, though time consuming, can reduce overall processing time.

We consider the Integrated Clustering and Machine Setup (ICMS) model, which

incorporates this tradeoff between processing time and setup time and seeks to

minimize the sum of the two. Solving this model to optimality is intractable for

very large-scale instances. We show that ICMS is NP-hard and consequently

propose and test a heuristic based on multi-exchange neighborhood search

structures. Initial numerical results are very encouraging.

Keywords: Printed circuit board assembly, feeder slot assignment, product
clustering, integer programming, computational complexity, heuristics.

3

1. Introduction

Printed Circuit Board (PCB) production in its entirety is a complex multi-stage

operation comprising many interrelated decisions. In each planning period, a

manufacturer typically produces a multitude of distinct types of PCB. Each type

includes varying numbers of different electronic components, e.g., capacitors,

resistors, and microprocessors. For practical reasons, approaches to modeling

and optimization have typically treated individual subproblems within an overall

production planning framework. Our work concerns an integrated approach to

two of these subproblems, that of machine setup and product clustering.

Broadly speaking, the former seeks to configure an assembly machine to

minimize processing time for a particular production run. The latter seeks sets of

PCB jobs that can be efficiently processed together, each under a common

machine setup.

There is an extensive literature on the optimization of PCB operations,

and we cite a set of works that in some sense spans this field. Ball and Magazine

formulated a type of directed postman problem to determine the best sequence

of insertion operations and developed an algorithm which is exact under certain

conditions, and approximate within constant performance bounds when these

conditions are relaxed.' Hashiba and Chang formulated an integer program to

minimize the number of setups over all sequences of jobs in a PCB assembly

shop. In lieu of an exact algorithm, they proposed and tested a three-stage

heuristic. 2 Sadiq, Landers and Taylor presented and tested a two-stage heuristic

known as the intelligent slot assignment algorithm to minimize total

4

manufacturing time. The first stage sequences jobs to minimize setup time, and

given this sequence, the second assigns components to sleeves to minimize

processing time.3 Bard, Clayton and Feo developed a series of heuristics for

solving the linked subproblems of component placement sequencing, machine

setup, and component retrieval within an iterative procedure. 4

A series of articles by Moyer and Gupta in the mid-1990s proposed new

optimization models to keep pace with rapidly advancing technology in PCB

manufacturing.58 First, they developed and tested two heuristics for machine

setup, in which component types were assigned to slots in the feederbank to

best provide for a specified placement path on the substrate board.5 Next, they

proposed a heuristic they called the Acyclic Assembly Time (AAT) Algorithm for

determining the component placement sequence for implementation by a type of

assembly machine known as a High Speed Chip Shooter.6 A subsequent work

presented another heuristic for this problem, along with detailed numerical

experiments.7 Finally, they showed how component placement could be

significantly speeded by orienting substrate boards at an appropriate angle

relative to the placement table. 8

Jain, Safai and Johnson developed a nonlinear integer model for

sequencing jobs in order to minimize setup time, and obtained approximate

solutions using a suite of four heuristics. In shop floor testing at Hewlett Packard

facilities, these solutions exhibited a tradeoff between setup time and processing

time: for large jobs, setup time reduction was surpassed by increased processing

time.9 Assembly operations at Hewlett Packard also motivated a study by Hillier

and Brandeau, who proposed a model for optimally assigning PCB types and

components to manual processes as well as to machines. They also developed

a heuristic that provides near optimal solutions.10 Gnther, Grunow and

Schorling proposed a highly aggregated linear programming model to maximize

system throughput in a high mix, low volume facility. To lessen the error of

aggregation, the authors used a fuzzy estimation of the number of setups.1

There is related research in the broader context of group technology and

product clustering. Group technology (GT) takes advantage of similarity within

groups of products or parts, with goals that include curtailing machine setups,

reducing work-in-process inventory, and improving work center balance.

Relevant to PCB manufacturing, Carmon, Maimon and Dar-EI proposed a

heuristic group set-up (GSU) method for a two-machine PCB assembly process,

with an overall objective of increasing throughput.12 Davis and Selep described

the implementation of a "greedy board" GT heuristic to organize PCB board

types into clusters, with a primary objective of reducing total setup time.13

Luzzatto and Perona proposed a multi-criteria heuristic for grouping PCB jobs,

which they tested in turn by a simulation model.14 Ben-Arieh and Chang

modified the p-median clustering model to treat p, the number of clusters, as a

decision variable. Their objective of minimizing the total measure of dissimilarity

among the clusters can be interpreted to be a surrogate for some measure of

processing cost or time in the context of manufacturing.15

To better deal with this vast body of knowledge, Crama, van de Klundert

and Spieksma proposed a common framework for classification of PCB

6

assembly optimization problems. They defined eight subproblems occurring at

one of three levels of a hierarchical planning scheme: assembly shop, assembly

lines or manufacturing cells, and individual machines.16

Prior to the Integrated Clustering and Machine Setup (ICMS) model of

Cohn, Magazine and Polak, PCB Product Clustering and Machine Setup had

been treated as separate but linked problems. Unlike conventional clustering

approaches that rely on surrogate metrics for similarity of PCB jobs, ICMS forms

clusters of PCB jobs by process commonality, i.e. prescribing groups of PCB

jobs by common machine setup. Thus clustering and setup are solved jointly,

avoiding the suboptimization inherent in a hierarchical or sequential solution.

Their formulation is a set partitioning integer programming model with an

exponential number of columns. To solve it, they applied a branch-and-price

algorithm that included a specialized combinatorial search procedure for column

generation.17 Norman devised a set of ICMS test problems and evaluated

several classes of heuristics, including clustering by various metrics and genetic

algorithms.18 When the assembler constrains product clustering by fixing the

sequence of jobs during the kitting phase of planning without input from the

assembly shop floor, as sometimes occurs in practice, Magazine and Polak

showed that ICMS can be solved efficiently as a shortest path problem.

Moreover they proceeded to analyze the opportunity cost of the organizational

barriers that necessitate such procedures.19

Section 2 describes PCB manufacturing, defines terminology and lists

assumptions. In Section 2 we also consider a special case of ICMS, and analyze

7

the processing-setup tradeoff. In Section 3, we formulate a combinatorial

optimization problem that underlies ICMS. Working from this formulation, we

prove that ICMS is NP-hard, motivating development of a heuristic based on

multi-exchange neighborhood search structures in Sections 4. Results of initial

numerical testing of the heuristic and concluding remarks round out the work.

2. PCB Assembly

2.1 Component Insertion

Ball and Magazine identified six principal steps: (i) production order

release, from materials requirement planning; (ii) kitting, the organizing of kits of

appropriate components and the sequential release of jobs; (iii) prepping, the

operations preparatory to insertion; (iv) insertion of components into PCB units;

(v) inspection and soldering of components; and (vi) testing of PCB units for

defects, failure, and functionality.1 In this work our focus falls on steps (ii), (iii)

and (iv).

Components are inserted onto a PCB by a pick-and-place machine that

uses either through-hole or surface mount technology. In the former, a substrate

(blank board) is pre-drilled, and a component pin is inserted into each hole.

Solder circuitry is then applied to underside of the substrate. In surface

mounting, solder paste is applied to the substrate and each component placed

appropriately. The solder paste liquefies in an oven, yielding a finished board

when cooled.

Figure 1 illustrates essential features of the pick-and-place machine

relevant to ICMS. It has a component magazine known as a feederbank, which is

8

a linear array of sleeves or slots used to store the various components needed in

the manufacture of PCB units. An insertion head moves from its home position

at the midpoint of the array to pick an appropriate component from a sleeve and

then returns to the home position to insert into a PCB. The board itself moves to

the correct position during this head movement and does so quickly enough not

to be an issue in this study. These operations are all numerically controlled.

Though this technology is neither as new nor as fast as that used for large job

fabrication, it is still common today, especially in high voltage or high amperage

applications.

[Figure 1 about here.]

2.2 Definitions and Assumptions

We now review the terms and assumptions underlying ICMS. There is a set K of

jobs, each job comprising a batch of bk units of a board of type k, assembled

from a set of M types of components in varying amounts. Each type k of board

has a distinct component profile, that is, any PCB of type k requires rkof

component type i. The position of any component on the board is not relevant to

our model because the positioning of the substrate for placement is always

quicker than the pick, or retrieval. The pick-and-place machine has a set of N

uncapacitated sleeves, each of which can hold exactly one type of component.

Each delivery and insertion from sleeve j requires d seconds and consists of

moving the insertion head to that sleeve to pick a component, returning it to the

home position, and placing the component on the board. Thus the time to

process, i.e., time spent by the pick-and-place machine in component delivery

9

and insertion, all components of type i M used by job k E K from sleeve je N is

CY = bkdjrik

Next, a setup is defined to be an assignment of components by type to

feederbank sleeves such that each type of component is assigned to exactly one

sleeve and that each sleeve contains exactly one type of component. A machine

setup consists of an assignment of component types to sleeves, i.e. a matching

from M to N, and has a constant time of o. We let j(i) denote the sleeve to which

component i is assigned in a setup. Total manufacturing time for a set of jobs

consists of the sum of processing time and setup time.

Given any partition = {S1, S2, ... , SL} of the set K of PCB jobs, each

L
nonempty Si cK is termed a cluster. Recall that Si r) Sj = 0 for i j and USi =

i=1

{1, ... , K}; of course, we must have 1< L< Kfor the number of clusters L. Each

cluster requires a setup taking units of time, independent of the choice of

assignment, and independent of any prior assignment.

The assumptions below best characterize through-hole insertion

technology, but hold reasonably well in the more complicated surface mount

environment:

(1) The time to pick and place any component is proportional to the distance of

its sleeve from the home position in the feederbank and independent of

placement sequence on the substrate board. Because the substrate board is

small relative to the feeder bank, positioning for placement is relatively quick,

while the pick is the bottleneck operation.

10

(2) Setup times are independent of the partition of jobs into clusters. Each setup

is "full tear-down", and no "partial" setups of the type described by Jain et al are

considered. 9 That is, all feeders were removed from the bank at the end of each

run, and this activity is quite invariant in time or cost. The full tear-down setup is

widely practiced for several reasons: it allows optimal placement of components

for each cluster of jobs, it reduces opportunities to make mistakes, and it allows

restocking of all feeders at once.

As a consequence of Assumptions (1) and (2), the processing time of a

cluster is independent of the sequence of boards and the total manufacturing

time is independent of the sequencing of clusters.

(3) The feederbank sleeves are uncapacitated. For many machines, to reload a

sleeve is a simple operation requiring very little down time, while other machines

are equipped with bulk feeders appropriate for many types of components. In

practice, sleeve capacity is quite flexible. The full tear-down mode of setup also

affords an opportunity to restock all sleeves so that component "stockouts" are a

rare occurrence during processing.

(4) Managerial concerns dictate that each job k belongs to one and only one

cluster and cannot be split among several clusters.

Dummy components or sleeves can be employed when the number of

components differs from the number of sleeves. If there are more sleeves than

types of components, a dummy component indicates an empty sleeve. In the

number of component types is larger, then a component that is assigned to a

dummy sleeve is actually inserted offline, as described by Hillier and Brandeau.10

11

2.3 Special Case: Single Common Setup

For illustration, consider the special case in which there is only one type of

PCB to assemble. Figure 2 shows the "pipe organ" arrangement of the

constituent components by type, familiar in material handling, which minimizes

total processing time, b rdj(i). (Superscripting by job is superfluous in this
ieN

case.) That is, the greater the population of a component type, the closer its

assigned sleeve should be to the home position. This follows from a classical

result of Hardy, Littlewood and Polya, which ensures that rdi is minimized
ieN

when nonnegative sequences {r} and {di} are arranged monotonically in opposite

senses.20

[Figure 2 about here.]

The same result applies to a cluster S of jobs given a common machine

setup: processing time lbkr kdj(i) is minimized by the pipe organ setup,
keS iEN

where the component type with the greatest population over the cluster is loaded

nearest the home position. We let f(S) denote minimal processing time for the

cluster and js (i) denote the optimal sleeve assignment for component ie N under

the pipe organ setup for cluster S.

2.4 The Processing-Setup Tradeoff

A machine setup that minimizes processing time for cluster S need not minimize

processing time for any individual job in the cluster. To understand this, suppose

that S consists of two jobs, A and B, each possessing a different optimal pipe

organ setup. Aggregating their component populations by type can clearly result

12

in an optimal pipe organ setup for S that differs from that for either constituent

job.

Consequently, processing time is superadditive, i.e., f(S) 2 f(T) + f (U)

given any cluster ScK and subsets T cS and U cS such that TuU=S and TnU =

0, a fact that we next establish.

Proposition 1. Optimal processing time is a superadditive function on clusters.

Proof. The requirement of any component i aggregated over the jobs in cluster

S is obtained by simply adding the requirements for T and U,

rS = riT + r, V i E N . By definition of the optimal processing function,

f(S)= E ds(i)ris

iE N

jr + EdirU
ieN i

= f(T) + f(U) r
i i I

= f(T) + f(U).

The inequality holds because, for any component i, sleeve assignment jif(i) and

j*(i)are assumed optimal for sub-clusters T and U, respectively, while j(i)

need not be optimal for either. ·

It follows that frequent setups for smaller clusters, though time consuming,

can reduce overall processing time. This is the fundamental tradeoff that

underlies ICMS.

3. Computational Complexity of ICMS

13

3.1 The Set Partitioning Integer Programming Model

Each of the 2K -1 nonempty subsets of the set K is a possible cluster of

jobs. Consider a binary decision variable xc for each of these possible clusters,

Sc c K. If xc = 1, then cluster Sc is chosen; if xc = 0, then it is not. Accordingly

Cohn et al proposed the following set partitioning integer programming

formulation 7:

ICMS Minimize C [a+ f(S)]xc (1)
ScK

st

xc = 1 for any board type k E K (2)
{ S:keSc

xc{O0,1, Vc s.t.S ScK,Sc{}.

Recall that f(.) is defined to be the optimal processing cost function of a cluster,

i.e. according to the pipe organ arrangement of the set of components

aggregated over all the jobs in the cluster. Since the manufacturing time

associated with cluster Sc is the sum of the fixed setup time, 6, plus the

processing time associated with an optimal machine setup, the objective function

(1) represents the total manufacturing time summed over all clusters in the

partition of K. The set partitioning constraints (2) ensure that each board type k

is included in exactly one cluster Sc. Using branch-and-price, a combination of

branch-and-bound to find integer solutions and delayed column generation to

manage the exponential number of variables, these authors were able to solve

instances of ICMS with as many as 60 PCB jobs and 100 components. (See

Barnhart, Johnson, Nemhauser, Savelsbergh, and Vance for a detailed

treatment of branch-and-price. 21)

14

3.2 Formulation as a Combinatorial Optimization Problem

High mix applications of ICMS can involve hundreds of PCB jobs, which at

present are beyond the capabilities of any known algorithmic approach. To

investigate the computational complexity of ICMS, we formulate an equivalent

problem posed purely in terms of sets and set functions.

For any given feasible solution, the corresponding partition of the set K

is explicit in the objective function (1). On the other hand, the matching of

components to sleeves, i.e., the machine setup, within each cluster is implicit in

the term f(e). If we reverse these rolls so that each matching is explicitly

represented while the choice of partition is implicit, we obtain the following

combinatorial optimization problem:

ICMS-CO Minimize{cfF+ c Fis a feasible component assignment} (3)
(i,j,k)F

Here we define a feasible setF=UF(k), where for each job k, F(k) is a matching
kE K

from M to N, i.e., from component types to sleeves. (Not all the sets F(k) need be

distinct matchings.) We define IF] to be the cardinality of the feasible set in terms

of the number of matchings represented, i.e. the number of distinct matchings

among the indexed sets {F(k)}kK. This in turn is the number of machine setups,

and also of clusters, since a cluster consists of all products sharing an identical

setup. The first term a IF I in (3) therefore represents setup time and the second

15

, ci processing time; together they constitute total manufacturing time,
(i,j,k)F

identical in value to (1) for any partition of K.

Now we turn to characterize the computational complexity of ICMS-CO.

Proposition 2. The ICMS-CO (decision) problem is NP-complete.

Proof. The decision version of this problem is "Given the sets M, N, and K, costs

{c': i c M, j N, k K} and a positive integer B, is there a feasible component

assignment F such thata I F + ECk < B ? First we establish the fact that ICMS-
(i,j,k)eF

CO is in NP by showing that a yes answer to an instance of the decision version

of ICMS-CO can be verified in polynomial time. Given a set of triples {(i,j,k): i M,

je N, ke K }, we can verify that the subset for any fixed k E K is a matching from

M to N in O(max{IM, IN}), while to verify that IFI is the number of distinct

matchings can be done by comparing each pair of sets in {F(k): k E K} element

by element, and thus O(IK 2min{Il4,INI}) comparisons. The bound can likewise

be verified in a polynomial number of operations.

Now we show that ICMS-CO contains a known NP-complete problem, the

Uncapacitated Facilities Location Problem (UFLP), as a special case. Consider a

set L of candidate facility locations, a set C of clients, a "fixed" cost a of placing

a facility at location i, and a cost c' of servicing the demand by client j from

location i; see Figure 3. UFLP seeks a subset of locations to service all clients at

least total cost, that is:

UFLP Minimize aiYi + ci/xi (4)
i L isL jC

16

st

xj =1, t j L (5)
iE F

X/ - Yi <0, V iL, V jEC (6)

x/, y, E(0,1}, V i L, V j C

Here

1, if a facility is placed in location i;

Yi = {
0, otherwise, V i E L.

and

1, if client j is serviced from location i;

x/i = {

0, otherwise, ViE L, j C.

The objective function (4) sums the fixed costs of facilities and the servicing

costs from these facilities. Constraint system (5) ensures that each client is

serviced from exactly one facility, while (6) forces each servicing decision to be

consistent with a facility choice.

[Figure 3 about here.]

UFLP (i.e. the decision version) is known to be NP-complete; see Cornuejols,

Fisher and Nemhauser22 or Karp.23 Moreover, we do not affect the

computational complexity of the problem by using a uniform fixed cost

vi = a, for each location i F.

Consider now an instance ICMS-CO in which the set M of component

types corresponds to the set of candidate locations L in UFLP, and K to the set

17

of clients C. The set of sleeves N is {1, ... , IMI}. Lastly, we choose the costs CL =

Ck and Ck = 0 for j = 2,..., IMI.

In this instance, the objective function of the ICMS-CO for a feasible

component assignment F is c F I + Ick . For each k E K, let i(k) be the
(i,l,k)EF

component such that (i(k), 1, k) E F. Given a feasible component assignment F,

we can construct a feasible solution (x, y) for the given UFLP instance as:

xi = 1 if (i, 1, k) E Ffor some k, and 0 otherwise.

yi = 1 if i = i(/), and 0 otherwise.

The cost of (x, y) for the UFLP instance is at most I F I + ck. Similarly,
(i,l,k)E F

given a solution (x, y) for UFLP, we can create a feasible component assignment

F for ICMS-CO such that the objective value of F for ICMS-CO is equal to the

cost of (x, y) for UFLP. Hence, the optimal values of both the UFLP and the

created ICMS-CO instance are equal and the corresponding decision problems

are equivalent. This implies that the ICMS-CO (decision problem) is NP-

complete.E

Because ICMS-CO is an optimization problem equivalent to ICMS (Garey

and Johnson24), we have the following result.

Corollary. ICMS is NP-hard.

18

4. Multi-exchange Neighborhood Search Structures

In this section, we present a neighborhood search based heuristic for ICMS.

Neighborhood search algorithms have been successfully applied to solve several

hard optimization problems. The primary reasons for the widespread application

of neighborhood search techniques in practice are their intuitive appeal, flexibility

and ease of implementation, and their excellent empirical results. The standard

neighborhood search algorithm for a cost minimization problem P proceeds by (i)

constructing a feasible solution, called the current solution, x' E P; (ii) defining a

neighborhood of x', say N(x'), which is the set of solutions of x E P close to x' in

some clearly specified manner; (iii) selecting a neighbor x" E N(x), and (iv)

replacing the current solution x' by x" if the cost of x" is lower than the cost of x'.

The algorithm terminates when N(x) has all solutions with the same cost or

higher than that of the current solution, in which case the current solution is

referred to as a locally optimal solution (defined with respect to the given

neighborhood). In practice, one usually applies a local improvement algorithm

multiple times with different starting solutions, called different runs, and selects

the best solution obtained among different runs. Neighborhood search has been

used in PCB manufacturing earlier by Bard to sequence multiple jobs on a

machine to minimize component changes while scheduling different jobs. Using

a swap neighborhood for job sequences, he was able to find solutions that were

either optimal or close to optimal in reasonable amount of computational time. 25

The performance of a neighborhood search algorithm critically depends upon

the neighborhood structure, the manner in which we define neighbors of a

19

feasible solution. We present a cyclic exchange neighborhood structure for

ICMS. It is based on the cyclic transfer neighborhood structure in Thompson and

Orlin. 26 This neighborhood structure has been used effectively earlier for solving

set partitioning problems such as Vehicle Routing Problem by Thompson and

Psaraftis2 7 and Capacitated Minimum Spanning Tree Problem by Ahuja, Orlin

and Sharma. 28 We also present a construction heuristic to generate good initial

solutions for the neighborhood search.

4.1 Cyclic Exchange Neighborhood for ICMS

We start by presenting some notation to simplify the discussion on cyclic

exchange. Recall that we represent a solution to ICMS as a partition p = {S1, S2,

... , SL} of the PCB jobs in the set K. Each of the subsets Si is a cluster of jobs

processed together with a single optimal setup. Given a solution S, we use Cl(k)

to denote the cluster, which contains the board type k in the current solution, i.e.,

if board type k belongs to Si, we set Cl(k) = i. The optimal processing cost for

manufacturing the batches of board types in S.is denoted by f(Si).and that the

L

total cost of the solution S is c(S) = oL + ,f(Si).
i=l

We consider two types of exchanges in our neighborhood structure-

cyclic exchanges and path exchanges. We represent a cyclic exchange as k1-k2-

...- krk, where the board types k1, k2, ... , kr belong to different clusters, that is,

Cl(ki) X Cl(kj) for i X j. The cyclic exchange k1-k2-...- kkl represents the following

changes: board type k1 moves from the cluster Cl(k1) to the cluster Cl(k2), board

type k2 moves from the cluster Cl(k2) to the cluster Cl(k3), and so on, and finally

20

board type kr moves from the cluster Cl(kr) to the cluster Cl(k1). Let S' denote the

new feasible solution. We define the cost of this cyclic exchange as c(S') - c(S).

Observe that

c(S') - c(S) r=l(f({kl}USCl(kp) \{kp})- f(Scl(kp))) (7).

where ko denotes kr. In other words, the difference between the costs of new

clusters and the previous clusters gives the cost of the cyclic exchange. We call

the cyclic exchange profitable if c(S') < c(S) and non-profitable otherwise. We

illustrate the cyclic exchange using the numerical example shown in Figure 4.

[Figure 4 about here.]

We now define a path exchange. We represent a path exchange as k1-k2-

...-kr, where the nodes k, k2, ... , kr belong to different clusters. The path

exchange k-k 2- ...-kr represents the following changes: board type k moves

from the cluster Cl(k1) to the cluster Cl(k2), board type k2 moves from the cluster

Cl(k2) to the cluster Cl(k3), and so on, and finally board type kr, moves from the

cluster Cl(kr-1) to the cluster Cl(kr). This exchange is similar to the cyclic

exchange except that no board type moves from the cluster Cl(kr) to the cluster

Cl(k1). In this exchange, the cluster Cl(k1) loses one board type and the cluster

Cl(kr) gains one board type. Note that if the cluster Cl(k1) only contained k in S,

than the path exchange decreases the number of clusters. Similarly, if Cl(kr)

denotes an empty cluster than the path exchange creates a new cluster

containing element kr-i. We do not allow the intermediate clusters to be empty. In

21

order to take into account the changes in fixed cost due to increase or decrease

in the number of clusters by a path exchange, we define the function f (S) as:

f)(S) if S 0
f) otherwise

If S denotes the changed solution after this path exchange has been

performed, then the cost of this path exchange is

c(S)-c(S)- = (SC(k,, \{k}) - f(Sl(k,))

p 2 (f({kP l} U Scl(k,) \{kp })- (Sc(k)))

+ 7({kr,_l}USCl(kr)) - (SCI(kr)) (8).

This path exchange is profitable if c(S') < c(S) and non-profitable

otherwise. We illustrate a path exchange using the numerical example shown in

Figure 5 below.

[Figure 5 about here.]

Note that the expression (7) for the change in cost due to a cyclic exchange is

unaffected if we replace f by f.

The Neighborhood of a Solution

For a given solution S, we define another solution S' as a neighbor of S if

S' can be obtained from S by performing a cyclic or path exchange. We define

the neighborhood of S as a collection of all solutions that are neighbors of S.

The neighborhood based on the cyclic and path exchanges is very large and

examining the entire neighborhood to identify a profitable exchange may be an

22

extremely time-consuming task if we use a brute force method to examine the

whole neighborhood. We shall use the concept of improvement graph developed

earlier in Ahuja et a28 to suggest a heuristic that does not enumerate the entire

neighborhood but is quite effective in practice.

Improvement Graph for multi-exchange exchange neighborhood

We use S = {S1, ... , SL} to denote the current solution and G = (N, A) to denote

the corresponding improvement graph. The graph G contains a node for each

board type and for each cluster in S. The arc set in G is defined in a manner so

that each cyclic or path exchange with respect to S defines a directed cycle in G,

and the cost of the cycle equals the cost of the corresponding exchange.

We now explain how to construct the improvement graph G for solution S.

In order to simplify the explanation, we shall denote the board types by indices in

{1, ... , K} and their corresponding nodes in G by the same indices. We use Sj to

refer to the node in G corresponding to cluster S in S. Lastly, we assume that

the current solution S contains one empty cluster in order to allow for possibility

of generating new clusters by path exchanges. For each ordered pair of board

types i and j such that CI(i) ¢ CI() we add arc (i, J) in A. An arc (i,) between two

board types in G signifies that board type i leaves the cluster Sc{(,) and joins the

cluster ScO) and simultaneously board type j leaves the cluster ScO). We define

the cost cij of arc (i, J) between nodes corresponding to two board types as

Cu = f({i} U SCI() \ {}) - f(SCl(J)) (9)

For each ordered pair (i, S) of a board type and a cluster such that Cl() j

we add arc (i, S) to A. Such an arc signifies that board type i leaves the cluster

23

ScI(,) and joins cluster Si. We define cost cisj of arc (i, S) between nodes

corresponding to a board type and a cluster respectively as:

cis = f({i}uSj)- f(Sj) (10)

We call a directed cycle k 1-k2- ...-krk1 in the improvement graph subset-disjoint

if Cl(kp) X Cl(kq) for p X q. Similarly we call a directed path of the form k-k 2-...-

kr-,-Sj a subset-disjoint if Cl(kp) X Cl(kq) for p X q and Cl(kp) ¢ j for p = 1, ... ,r-1.

Based on the construction of improvement graph G, we state the following result.

Proposition 3. There is a one-to-one correspondence between cyclic(path)

exchanges with respect to the solution S and directed subset-disjoint

cycles(paths) in G, and both have the same cost.

In order to compute the cost of an arc in the improvement graph, we need to

evaluate the two expressions on the right hand side in (9) or (10). Computing the

values f({i}uScl() \{j})(or f({i}uSj)) and f(Sj)can be done in O(INI loglNI)

time if we maintain the total demand for each component from the board types in

Sca). Note that IAI < IK2, therefore we can determine the cost of all the arcs in

O(IKI21NI log INI) total time. Observe that we have defined our processing cost

function for a specific kind of pick-and-place technology but the neighborhood

structure defined here can be applied to other such technologies as well. In

particular, this neighborhood could be used in any setting where the processing

cost of a cluster can be computed using only information about the board types

24

in that cluster. This would not be the case, e.g., for sequence dependent

processing and setup costs.

Enumerative Strategy for Negative Subset-Disioint Cycles and Paths

Although there are several efficient algorithms to identify negative (directed)

cycles, finding a negative subset-disjoint cycle (path) can be shown to be an NP-

complete problem. We shall present an exact algorithm for finding subset disjoint

cycles and paths that has an exponential worst case complexity but is very

effective empirically.

Our algorithm proceeds by systematically enumerating subset disjoint

paths (cycles) of increasing length starting with canonical paths of length 1, i.e.

the arcs in G. The primary motivation for this technique is that most of the

improving exchanges that are identified during the neighborhood search are

short, therefore we can identify them early during the enumeration without

significant computational overhead. However, note that even for paths with small

length, for example 5, enumeration might require examining O(K5) paths in

general. In order to counter this problem we use a property related to the sub-

paths associated with a negative cost cycle or path. Given a cycle k 1-k2-...- krk

we call a path k 1-k2-...- kj, j < r as k - kj sub-path in the cycle. The following

proposition has been found to be substantially useful in restricting the number of

paths examined in practice:

25

Proposition 4. Given a negative cost subset disjoint cycle C = k-k 2-....-krk,

there exists a node ki in k1, k2, ... , kr such that each ki-kj sub-path starting at k in

the cycle is a negative cost path.

Proof: Suppose node k does not satisfy this property. Consider the k - k sub-

path with the largest cost in the cycle, such that k - ki is longest of all paths with

the largest cost. Note that the cost of cycle C, Cost(C), is equal to the cost of

subpath k - ki, Cost(k - k) plus the cost of subpath k - k, Cost(k - k).

Therefore, Cost(k1-ki) + Cost(krk1) < 0. Also Cost(k - t j) < 0 for all j=i+l,...,r,1

because k - k is the longest path with largest cost. Further since Cost(k - kp) <

Cost(k - k) for all p = 2, ... , i -1, Cost(k - k) + Cost(k1 - kp) < 0. In other words,

all k,- kj sub-paths have negative cost. ·

Using Proposition 4, we only need to enumerate subset disjoint paths of

negative cost in our algorithm. Figure 6 gives a formal statement of our negative

cost subset disjoint path (cycle) finding algorithm.

[Figure 6 about here.]

Our empirical investigations revealed that the total number of subset disjoint

paths generated by the cycle-path finding routine are linear in the number of

boards.

4.2 Creating an Initial Solution

The quality of starting solution plays a big role in the success of a neighborhood

search solution. Starting a neighborhood search many times with different

feasible solutions has been found to be effective in several combinatorial

optimization problems, see Festa and Resende. 29 We thus need a mechanism

26

to generate multiple good feasible solutions for ICMS, and for this purpose

employ a maximum savings heuristic. The heuristic starts with IKI clusters each

containing a single board type. At each iteration, the algorithm identifies a pair of

clusters such that the savings in processing cost achieved by the join operation

are maximized. We randomize this heuristic by determining the p most profitable

join operations and choosing one from them randomly. Since at each step it

performs one of the p most profitable join operations, the solution obtained is

generally a good tree. In our investigations, we used p = 2. Note that after any

iteration we only need to update the benefit of joining the newly formed cluster

with other clusters if we maintain all the benefit values in a table. Therefore the

computational work required at each iteration is at most O(IKlINI loglNI).

Constructing the initial table of benefit values takes O(IKI21NI logINI) time, and

hence the total time needed to compute a solution is at most O(IKI21NI loglNI).

5. Numerical Results

We have begun to test the multi-exchange neighborhood search heuristic on

several different PCB planning scenarios, including board profiles, batch sizes,

and setup costs devised by Norman.'8 The production environment in each

scenario was classified as low mix (K = 16 board types), medium mix (K = 32

board types), or high mix (K = 60 board types). Component variety was either

low (N = 16 types) or high (N = 100 types). Board profiles were classified as flat,

60/40, or 80/20. A flat profile indicates that all component requirements were

sampled from a single uniform distribution. A 60/40 profile indicates that 60% of

the component requirements were sampled from one uniform distribution and

27

40% from another, while an 80/20 profile indicates that 80% of the component

requirements were sampled from one uniform distribution and 20% from another.

Each setup time was chosen to be the simple average of a "low" value at which a

selected clustering heuristic placed each job in a cluster by itself, and a "high"

value at which the heuristic placed all jobs in a single cluster. Table 1 displays

results for twelve test problems obtained on a desktop PC.

[Table 1 about here.]

28

6. Future Directions and Conclusions

The Integrated Clustering and Machine Setup Problem is an integer

programming model that incorporates two fundamental problems in PCB

production planning. Optimal solutions to many large scale industrial instances

are out the reach of even a state-of-the-art branch-and-price algorithmic

approach. We have shown that ICMS is NP-hard, and consequently have

proposed a heuristic based on multi-exchange neighborhood search structures.

During initial testing, this heuristic has in each instance obtained a solution as

good or better than the best heuristic solution reported to date. Moreover our

heuristic found an optimal solution to ICMS for each case in which one is known.

Clustering problems arise in many manufacturing and logistical

operations, which exhibit a similar tradeoff between processing and setups and

moreover have underlying combinatorial structures such as matchings and

paths. In railroad freight transportation, for instance, railcars with several different

origin-destination pairs of nodes in a network are clustered together in a block in

classification yards (see Barnhart, Jin, and Vance30). The block itself is

characterized by an origin-destination pair that may differ from that pair

associated with any given constituent car. Problems of this type present an

opportunity for research on set partitioning models that generalize ICMS. Based

on our experience, multi-exchange neighborhood search heuristics are likely to

present a promising approach to such large scale instances of such problems.

29

References

1. Ball, M.O. and M.J. Magazine, "Sequencing of Insertions in Printed Circuit
Board Assembly", Operations Research 36(2) (1988),192-201.

2. Hashiba, S. and T.-C. Chang, "PCB Assembly Reduction Using Group
Technology", Computers and Industrial Engineering 21(1-4) (1991), 453-457

3. Sadiq, M., T.L. Landers and G.D. Taylor, "A heuristic algorithm for minimizing
total production time for a sequence of jobs on a surface mount placement
machine", International Journal of Production Research 31(6) (1993), 1327-
1341.

4. Bard, J.F., R.W. Clayton and T.A. Feo, "Machine Setup and Component
Placement in Printed Circuit Board assembly", International Journal of
Flexible Manufacturing Systems 6 (1994), 5-31.

5. Moyer, L. and Gupta, S. M., "SMT Feeder Slot Assignment for Predetermined
Component Placement Paths", Journal of Electronics Manufacturing 6(3)
(1996), 173-192.

6. Moyer, L. and Gupta, S. M., "Simultaneous Component Sequencing and
Feeder Assignment for High Speed Chip Shooter Machines", Journal of
Electronics Manufacturing, 6(4) (1996), 271-305.

7. Moyer, L. and Gupta, S. M., "An Efficient Assembly Sequencing Heuristic for
Printed Circuit Board configurations", Journal of Electronics Manufacturing,
7(2) (1997), 143-160.

8. Moyer, L. and Gupta, S. M., "Development of the Surface Mount Assembly
Process Through and Angular Board Orientation", International Journal of
Production Research, 36(7) (1998), 1857-1881.

9. Jain, S., M.E. Johnson and F. Safai, "Implementing Setup Optimization on the
Shop Floor", Operations Research 43(6): (1996), 843:851.

10. Hillier, M.S. and M.L. Brandeau, "Optimal Component Assignment and Board
Grouping in Printed Circuit Board Manufacturing", Operations Research
46(5) (1998) 675-689.

11. Gunther, H.-O., M. Grunow and C. Schorling, "Workload planning in small lot
printed circuit board assembly", OR Spektrum 19 (1997)147-157.

12. Carmon, T.F., O.Z. Maimon, and E.M. Dar-EI, "Group set-up for printed
circuit board assembly", International Journal of Production Research, 27(10)
(1989),1795-1810.

30

13. Davis, T. and E. Selep, "Group Technology for High-Mix Printed Circuit
Assembly", IEEE International Electronic Manufacturing Technology
Symposium [proceedings], 264-269, 1990.

14. Luzzatto, D. and M. Perona, "Cell formation in PCB assembly based on
production quantitative data", European Journal of Operations Research,
69(3) (1993),12-329.

15. Ben-Arieh, D. and P.T. Chang, "An Extension to the p-Median Group
Technology Problem", Computers and Operations Research 21(2)
(1994),119-125.

16. Crama, Y., J. van de Klundert, and F. C.R. Spieksma, "Production Planning
Problems in Printed Circuit Board Assembly", GEMME 9925, University of
Liege, Liege, Belgium, 1999.

17. Cohn, A.M., M.J. Magazine and G.G.Polak, "An Optimal Algorithm for
Integrating Printed Circuit Board Manufacturing Problems", University of
Cincinnati QAOM Working Paper, 2001.

18. Norman, S.K., "Heuristic Approaches to Batching Jobs in Printed Circuit
Board Assembly", Ph.D. dissertation, QAOM Department, the University of
Cincinnati, 2001.

19. Magazine, M.J. and G.G.Polak, "Product Clustering and Machine Setup in
PCB Manufacturing and the Impact of Job Release Policy", University of
Cincinnati QAOM Working Paper, 2001.

20. Hardy, G.J., Littlewood and G. Polya, Inequalities, Second edition, Oxford
University Press, 1952.

21. Barnhart, C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H.
Vance, "Branch-and-Price: Column Generation for Solving Huge Integer
Programs", Operations Research 46(3) (1998), 316-329.

22. Cornuejols, G., M.L. Fisher and G.L. Nemhauser, "Location of Bank
Accounts to Maximize Float: An Analytic Study of Exact and Approximate
Algorithms", Management Science 23(8) (1977) 789:810.

23. Karp, R.M., "On the Computational Complexity of Combinatorial Problems",
Networks 5 (1975) 45-68.

24. Garey, M.R. and D.S. Johnson, Computers and Intractability: A guide to the
Theory of NP-Completeness, W.H. Freeman and Company, 1979.

31

25. Bard, J.F., "A Heuristic for Minimizing the Number of Tool Switches on a
Flexible Machine", lIE Transactions 20(4) (1988) 382-391

26. Thompson, P.M. and J. B. Orlin. "The Theory of Cyclic Transfers" M.I.T.
Operations Research Center Report OR 200-89, 1989.

27. Thompson, P.M. and H.N. Psaraftis (1993), "Cyclic Transfer Algorithms for
Multivehicle Routing and Scheduling", Operations Research 41(5) (1993)
935-946.

28. Ahuja, R.K., J.B. Orlin, and D. Sharma, "Multi-Exchange Neighborhood
Search Structures for the Capacitated Minimum Spanning Tree Problem", in
review for Mathematical Programming, 2001.

29. Festa, P. and M.G.C. Resende, "GRASP: An annotated bibliography", To
appear in Essays and Surveys on Metaheuristics. P. Hansen and C.C.
Ribeiro, eds, Kluwer Academic Publishers, 2001.

30. Barnhart, C., H. Jin and P.H. Vance, "Railroad Blocking: A Network Design
Approach", Operations Research 48(4) (2000) 603-614.

32

Figure 1. A pick-and-place machine. The insertion head is shown
in home position at the midpoint of the feederbank.

Magazine, Polak and Sharma: Figure 1.

33

Figure 2. An optimal machine setup, i.e., assignment of component types to
feeder sleeves. The greater the population of a type, the closer its assigned
sleeve to the insertion head's home position.

Magazine, Polak and Sharma: Figure 2.

fixed cost of a facility
at ar

L, the set
of
candidate
facility
locations

C, the set of
clients to be
serviced

c/ , the cost of
servicing client j
from location i.

Figure 3. A graph to illustrate UFLP. A subset of locations is chosen to
service all clients to minimize total fixed plus servicing costs.

Magazine, Polak and Sharma: Figure 3.

34

35

1@1G

S3

(a) (b)

Figure 4: (a) Initial clustering, (b) Clustering after cyclic exchange
6 - 4 - 5 - 11 - 6.

Magazine, Polak and Sharma: Figure 4.

"~1

36

(a) (b)

Figure 5: (a) Initial clustering, (b) Clustering after path exchange
11 - 6 - 4 - S 3.

Magazine, Polak and Sharma: Figure 5.

37

FindPathOrCycle(G = (N, A))

begin
Let P1 = {(i, j)eA: cij < 0} # The set of all subset disjoint paths of length 1
i:= 1;
while size(P) > 0 do
begin

Look for subset disjoint paths and cycles in Pi
for each path P = i- ... -j in Pi do
begin

if j is a board type than
begin

if Cost(P) + cji < 0 than
return cycle i- ... -j- i;

end
else return path i- ... -j;

end
Find the path set Pi+1
for each path P= i- ... -j in Pi do
begin

for each edge (j, k) in A such that i- ... -j- k is subset disjoint
if Cost(P) + jk< 0 then

add path i- ... -j- kto Pi+,;
end

end
end.

Figure 6: Algorithm for finding negative cost subset-disjoint paths and
cycles in a graph.

Magazine, Polak and Sharma: Figure 6.

38

Mix Var. Prof. Setup ME Nbd. Best IP Optimal
cost Clustering

(ob ective value, number of clusters)
1 32 16 Flat 11000 5577218, 5 5580694, 5 5577218, 5
2 100 100 Flat 31000 42057513, 42097933,

27 28

3 10 16 60/40 66200 2683010, 3 2687385, 4 2683010, 3
4 32 16 60/40 6800 673052, 6 675758, 7 673052,6
5 10 16 80/20 154800 2356487, 4 2356487, 4 2356487, 4
6 32 100 80/20 748900 28846510, 8 29414535, 9 28846510, 8
7 100 16 Flat 3000 7241320, 21 7246040, 20
8 32 16 Flat 700 814009, 5 814260, 5 814009,5
9 32 16 60/40 69600 6942929, 6 6956230, 7 6942929, 6
10 10 100 60/40 320400 16043774, 5 16043774, 5 16043774, 5
11 100 16 80/20 50000 4178090,14 4281886, 15
12 32 16 80/20 14300 456590, 5 458146, 5 456590, 5

Table 1 . Results of Multi-Exchange Neighborhood Search Heuristic for 12
test problems. Alongside each objective function value attained are given
the best reported heuristic value from Norman 18, and optimal solutions
(where available) as reported by Cohn et al. 17 An asterisk * means that an
optimal solution is not known.

Magazine, Polak and Sharma: Table 1.

