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A. SOME GENERALIZATIONS OF LINEAR NETWORK ANALYSIS THAT

ARE USEFUL WHEN ACTIVE AND/OR NONBILATERAL ELEMENTS

ARE INVOLVED

Procedures for the analysis of linear networks are ordinarily confined to a consider-

ation of configurations in which the branches or elements are two-terminal devices,

such as the familiar resistances, inductances, and capacitances that characterize

passive circuits. When active elements,

such as vacuum tubes or transistors, are
5 - TERMINAL

ELEMENT included, this simple topological picture

no longer applies, since these elements

<_ jare characterized schematically as

rboxes from which three or more termi-

Snals emanate. A network containing

such elements, as well as the ordinary

two-terminal elements, is shown in

Fig. XIV-1. We shall show that only a

Fig. XIV-1. Network containing multi- minor addition to the existing analysis
terminal elements, as well
as the usual two-terminal procedure is needed to accommodateas the usual two-terminal
elements. this more general type of network.

It is well known that a box with p + 1

terminals is uniquely characterized by p voltages and p currents. The volt-ampere

relations for the multiterminal device may be written

v I = rllj + ... + rlp p

(1)

v = r + ... + r
p plul + ppjp

or in inverse form,

j1 g 1 1 v + ' + glp p

(2)

p gplv 1 + ... pp p

in which jl...jp are currents that enter terminals 1, 2,... p, and return through the

common terminal 0 (see Fig. XIV-2a), and vl... vp are voltage drops measured from
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4 4 the corresponding terminals to the com-

3 3 mon datum.
2 2

Topologically, the device may be

0 o replaced by the set of ordinary branches,
(O) (b)

as shown in Fig. XIV-2b. This schematic

Fig. XIV-2. (a) Five-terminal element. is topologically adequate for the repre-
(b) Topological equivalent sentation of the multiterminal device, and
of (a).

relations 1 or 2 are analytically adequate.

The procedure for setting up equilibrium

equations on either a node or loop basis follows well-established channels (1).

Figure XIV-3 is a version of the circuit of Fig. XIV-1 that treats the multiterminal

elements in the manner shown in Fig. XIV-2. To this network graph we apply the

familiar methods of choosing and algebraically defining an appropriate set of current

or voltage variables. These defining equations, together with the pertinent Kirchhoff

equations and volt-ampere relations for the branches, are combined to obtain the desired

equilibrium equations. If the multiterminal device incorporates any current or voltage

constraints, then, in the corresponding volt-ampere relations, the appropriate quan-

tities vk and jk are replaced by (vk + esk) and (jk + isk)', just as they are with the ordi-

nary two-terminal elements. Sources may thus be dealt with in normal fashion.

If the volt-ampere relations (Eq. 1 or Eq. 2) exhibit a dissymmetrical matrix, the

multiterminal device is nonbilateral; if this matrix defines a nonpositive quadratic

form, the device is active. It may be either, or both, or neither.

If a given linear network contains active and/or nonbilateral elements, it may, for

all analysis and synthesis purposes, be replaced by a passive, bilateral, reference

network in which either the excitation or response quantities (for example, source

voltages or loop currents) are subjected to an appropriate real nonsingular transforma-

tion. In order to demonstrate the truth of this statement, and to show how a pertinent

transformation can be constructed, it is necessary to recall some fundamental analysis

theory developed by the writer a long time ago and published in the form of class

notes (2). Although these ideas are merely of collateral interest as far as a discussion

of passive bilateral network analysis is concerned, they give the key to the application

of transformation theory to the analysis and synthesis of linear active and/or non-

bilateral networks. A condensed presentation of this approach to the analysis problem

is therefore essential at this point.

The definition of loop currents is given by writing I equations that express these

currents as any desired linear combinations of the b branch currents. Since the matrix

of these equations is not square, we cannot, by the simple process of inversion, obtain

the corresponding expressions for the branch currents in terms of the loop currents

defined by the matrix. This fundamental dilemma in the usual approach to network
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analysis is resolved here by observing

that n additional equations of the same

type as the I defining equations for the

loop currents are provided by the Kirchhoff

relations that express source currents

applied to node pairs as linear combina-

tions of branch currents in the pertinent

cut sets. When these are also written,

we have a set of b equations with a square
Fig. XIV-3. Topological equivalent for

the network of Fig. XIV-1. matrix which is nonsingular if the loopthe network of Fig. XIV-.
currents and the cut sets are properly

chosen. The procedure for obtaining

inverse relations expressing the branch currents in terms of the loop and source cur-

rents is now straightforward, and there is no ambiguity about the uniqueness of this

relationship, as there seems to be in the usual approach to this problem.

We recognize, moreover, that there is a kinship between loop currents and source

currents. The latter are loop currents also, for they circulate upon contours that can

be selected in the same forthright manner that characterizes the familiar choice of

loop currents when they are defined topologically rather than algebraically. This fact

may seem a bit puzzling at first, since a source current applied to a node pair actually

distributes itself throughout all branches of the network. Nevertheless, arbitrary

circulating paths can be assumed for the source currents, since circulating currents

automatically fulfill Kirchhoff's current law, which is the only law that currents need

to fulfill.

This kinship between loop and source currents renders the distinction between the

two kinds of currents rather flexible. In fact, we may say that there is no distinction

between them except that the source currents are the currents whose values we know,

and the loop currents are the currents whose values we do not know. We do not even

have to commit ourselves at the outset as to which is which.

Another rather interesting result follows from this attitude. Since the number of

loops I equals the number of loop currents, and the number of node pairs n equals

the number of source currents, we see that although i + n = b remains fixed, the split

as to the integer assigned to I and that assigned to n remains flexible. If we decide

that the value of a certain source current is unknown and allot that current to the group

of loop currents, then the pertinent source becomes a voltage and we must concede that

we now know one of the node-pair voltages. (A source, in contrast with a passive ele-

ment for which a volt-ampere relation exists, is a branch for which either the current

is fixed and the voltage remains arbitrary or the voltage is fixed and the current remains

arbitrary.) We have one more unknown on the loop basis, and one less on the node basis.
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The complete set of relations expressing loop and source currents in terms of

branch currents reads

Cll + al2i 2 + ... + albj b = i l

all j l + alj 2 +... + abb i

at,+, 1 Jl + a+l, , 2 + " .' + a+ 1, b b = is 1

ablJl + ab2j2 + '* + abbb = isn

If we define the column matrices

j = . and i=

_Jb

11

isl

sn

and denote the matrix of 3 by a, then the matrix equivalent of 3 reads

aj = i

and the inverse reads

-1.
a i = j

The first I equations in the set 3 define the loop currents; the remaining n equa-

tions are Kirchhoff current-law equations. The quantities i sl'..sn appearing on the

right-hand sides of these equations are current sources that feed the pertinent

node pairs. The last n rows of the matrix a yield the cut-set schedule, as usually

defined.

If a tree is chosen and the link currents, numbered from I to 1, are identified

with loop currents, then the a matrix assumes the special form
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1 0 ... 0 0 ... ... O0

0 1 ... 0 0 ... ... O0

0 0 ... 1 0 ...... O

a1 (7)aLl, C 1 aI l, 2 " a1+l, 1 0 "

at+2, 1 a1+2, 2 " a 1+2, 0 1 ...

ab ab2 . .. ab 0 0 ... 1

which may be abbreviated as

1u 0
ca = (8)

in which the submatrices u and un are unit matrices of order I and n, respectively,

the zero in the upper right-hand corner is an I X n null matrix, and ani is a submatrix

of n rows and I columns. Its elements are ±1 or zero, according to whether the branch

in question is or is not contained in the pertinent cut set. Since the tree branches,

numbered I + 1 to b, are contained singly in the respective cut sets, the last n columns

and the last n rows of a form a unit matrix of order n (the submatrix un in Eq. 8).

Analogously, on a voltage basis, we define node-pair voltage variables as linear

combinations of the branch voltages. Algebraically, we obtain n equations which may

be arbitrarily written, subject only to the condition that they be independent of each

other and of the equations in a set of I Kirchhoff voltage-law relations that express

source voltages as linear combinations of branch voltages. The complete set of b

equations thus obtained may be inverted to yield the branch voltages in terms of the

node-pair and source voltages.

The situation, again, is clearly unambiguous and unique, although no a priori dis-

tinction need be made between source voltages and node-pair voltages, which are alike

in kind and differ only in that the former are presumably known and the latter unknown.

Again, the division of the integer b into its additive components I and n may be

revised according to what we wish to regard as known and unknown. The same kinship

exists between the source voltages that act around loops and the node-pair voltages

that exist, on a current basis, between the loop and the source currents.

In writing the complete set of b equations in this case, we write the Kirchhoff equa-

tions first and the defining equations for the node-pair voltages last. Thus we have
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11"+ 1 1 2 v 2 + ... + b1bvb = esl

S1pV1 +1  2 v 2 + ... bb = esl

+1, 1 +  +1, 2 V2 + -* + P+1, b Vb = el

blV 1 + b2V2 + ... + Pbbvb = en

If we define the column matrices

v 1

v = and e =

L vb

esl

(10)

and denote matrix 9 by 3, then these equations in matrix form read

3v = e

with the inverse

-le = v
3 e= v

(11)

(12)

The quantities es1. . . esk are voltage sources acting upon the contours of loops for

which the Kirchhoff voltage-law equations are written. The first I rows of the matrix

3 yield the tie-set schedule, as usually defined.

If a tree is chosen and the tree-branch voltages, numbered from I + 1 to b, are

identified with node-pair voltages, then the P matrix assumes the special form

1 0

0 1

0 0

.. . 0 p1, 1 +1 P1, +2 "

... o 0 2, 1+1

... O 1,

0 1

0 0

o0 0

12, +2

1, I+2

0

1

0

Plb

... 2b

... PO

. 1

(13)
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which may be abbreviated as

= | (14)

n0 n

Its interpretation is analogous to that discussed for the abbreviated matrix 8. Elements

in the submatrix BIn are ± 1 or zero, according to whether the branch in question is or

is not part of the pertinent tie set. Since the links, numbered 1 to 1, are contained

singly in the respective tie sets, the first I columns and the first I rows of P form a

unit matrix of order I (the submatrix u in Eq. 14).

We recall that the columns of a cut-set schedule yield the coefficients in a set of

equations that expresses the branch voltages in terms of the node-pair voltages; and

that the columns of a tie-set schedule yield the coefficients in a set of equations that

expresses the branch currents in terms of the loop currents. The latter may be

regarded as expressed by Eq. 6 and the former by Eq. 12, since the matrices a and

3 may be interpreted as representing cut-set and tie-set schedules in which the normal

loop currents are augmented by including the source currents, and the normal node-

pair voltages are augmented by including the source voltages. If the closed paths for

which Kirchhoff voltage-law equations are written are the same as those used to define

loop currents, and if the cut sets for which the Kirchhoff current-law equations are

written pertain to the same node pairs that are used to define node-pair voltages, then

we observe that the columns in the matrix P yield coefficients in the relations expressed

by.Eq. 6, while columns in the matrix a yield coefficients in the relations expressed by

Eq. 12. Under these conditions, which we refer to as "consistency conditions" because

the Kirchhoff equations are consistent with the defining equations for the variables, it

follows that P is the inverse transpose (or the reciprocal) of a and vice versa. That is,

-1 -1 *= at = a and. = 3 = (15)

It follows from Eqs. 8 and 14 that in this case Pp n is the negative of the transpose of

%Ln -(nl)t (16)

which may be readily verified, since the matrix 8 multiplied by the transpose of matrix

14 (or vice versa) must yield a unit matrix of order b.

Matrix Eqs. 5 and 11 (or their inverses, Eqs. 6 and 12) contain the information about

Kirchhoff relations, as well as the definition of voltage or current variables. All that

need be added in order to construct the equilibrium equations, on either a voltage or

current basis, is the set of volt-ampere relations linking the branch currents with the
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branch voltages. In matrix form (3) these read

-I
v = Dj or j = D Iv (17)

in which the operator matrix D contains the branch inductance, resistance, and

elastance parameter matrices. If an active and/or nonbilateral multiterminal device

is involved, the branch resistance matrix (and in D-1 the branch conductance matrix)

is no longer diagonal but contains some nondiagonal elements. However, the formation

of D or of D-l follows precisely the same pattern as for the ordinary linear passive

two-terminal elements and needs no further elaboration.

If we want the equilibrium equations on a loop basis, we begin with Eq. 11 whose

first I rows are the Kirchhoff voltage-law equations. Since we want these expressed

in terms of the loop currents, we express v in Eq. 11 in terms of j by means of Eq. 17,

and subsequently express j in terms of i by means of Eq. 6. This double substitution

yields

-l
XDX a Xi= e (18)

If we want the equilibrium equations on a node basis, we begin with Eq. 5 whose

last n rows are the Kirchhoff current-law equations. Since we want these expressed

in terms of the node-pair voltages, we express j in Eq. 5 in terms of v by means of

Eq. 17, and subsequently express v in terms of e by means of Eq. 12. This double

substitution yields

aX D -1  -1 X e = i (19)

which we recognize as the inverse of Eq. 18. In this approach the equilibrium equa-

tions on the loop and node bases are contained in matrix equations that are mutually

inverse.

Equations 18 and 19 contain, besides the desired equilibrium equations, some rather

interesting by-products which we shall place in evidence by partitioning the rows and

columns of the resultant matrices into groups of I and n. We shall assume henceforth

that consistency conditions 15 are fulfilled, so that the resultant matrices in Eqs. 18

and 19 become symmetrical. We then have for the loop basis,

XD X ptx i = e (20)

and for the node basis,

-1
aXD x at X e = i (21)

Suppose that we let

p x DX Pt = Z (22)
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and

a XD X t = Y = Z (23)

and partition these resultant matrices as follows:

Z = I(24)

Zni Znn]

Y = n (25)
Y Yni nnj

If, correspondingly, we partition the column matrices e and i,

e

e = .. and i = K ] (26)

in which e and i represent source quantities, and e and i represent variables, then

Eqs. 20 and 21 become

Z i + Zi = e
f v fn s s

(27)
Zn i +Z i = eni v nn s v

and

Y e +Y e = i
Yi es + Yln v Ss n v v (28)

Y e +Y e = ini s nn v s

Equilibrium, on the loop basis, is expressed by the first of the matrix Eqs. 27 in

which the second term effects the conversion of current sources into equivalent voltage

sources. The second of Eqs. 28, similarly, expresses equilibrium on the node basis,

and the conversion of voltage sources to equivalent current sources is given by the

first term. The second equation in Eqs. 27 or the first in Eqs. 28 relates the node-

pair voltages and the loop currents. These relations may be useful, for example, if

for some reason it is desirable to express equilibrium in terms of some loop currents

and of some node-pair voltages, on a sort of mixed basis. Since the relations between

loop currents and node-pair voltages are available, we can trade variables of one sort

for variables of another.

Now if an active and/or nonbilateral element is embedded in an otherwise passive

bilateral network, then the branch resistance or conductance matrix has embedded in
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it a submatrix like that pertaining to either Eq. I or Eq. 2, which does not

define a positive quadratic form and may be dissymmetrical. The operator matrix
-1

D in Eq. 20 or D-1 in Eq. 21 exhibits corresponding deviations from the form

for passive bilateral networks. (We shall refer to the corresponding network as

being non-P and/or non-B, as distinguished from the designation PB in the passive

bilateral case.)

By well-known methods, it is always possible to find a real nonsingular matrix
-1

t of order b so that D- Xt has PB character. Equation 21 is rewritten in the

form

a(D-t) at a t t at e =  i (29)

Let

-1 -1
a t  t at = T (30)

and

e = e' (31)

Then Eq. 21 or Eq. 29 becomes

-l
a(D t) a e' = i (32)

-i

Since D1 t is PB, and transformation 31 is real and nonsingular, Eq. 32 represents

the equilibrium, on a node basis, of a linear, passive, bilateral, reference network

in which the voltage variables are uniquely and reversibly related to those in the origi-

nal non-P, non-B network. The matrix T which yields this relationship is easily

obtainable from the transformation matrix t by the collinear transformation expressed

by Eq. 30.

Observe that these manipulations are not possible unless the cut-set matrix a

possesses an inversel That is why the modified approach to the analysis problem given

here is essential.

By analogy with Eq. 23, we can write

-1 A
a(D t) at = Y (33)

and regard Y as the node-admittance matrix of the PB reference network. Equations 21,

23, 31, and 32 then yield

A
Y= YT (34)

A
and if we partition Y and T in the manner shown for Y in Eq. 25, we find that
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A A
Yi Y I In Tnf

A A
Yin ii Tin in nn

A A (35)
Yn = Yn Tp Y 7

A A

Ynn Yni n nIn nn Tnn

If we are interested in the set of driving-point and transfer impedances of a passive,

bilateral network with embedded active nonbilateral elements, then we are interested

in the quantities e relative to i in the second of Eqs. 28 for e - 0; that is to say, we
v s s

are interested in the inverse of the submatrix Y given by the last of Eqs. 35. Evennn
if the passive, bilateral elements are restricted to R's and C's, we see that the deter-

minant of Y may have zeros anywhere in the complex s-plane, and hence the elementsnn
of Y-l (the open-circuit, driving-point, and transfer impedances) can have zeros and

nn
poles anywhere in the frequency plane.

If we wish, we can express the non-P, non-B system as a PB reference system

in which the currents, instead of the voltages, are subjected to a real nonsingular

transformation. To obtain this result we manipulate Eq. 21 as follows:

-1 -1 -1
at a at D at e = i (36)

Then, we let

-i
ata 7 T (37)

and

i'= Ti (38)

whereupon premultiplication of Eq. 36 by T yields

a(TD 1) ate = i' (39)

The matrix t is here chosen so that tD- 1 is PB. The matrix

-1 A
a(tD )a t = Y (40)

is then the node-admittance matrix of a PB reference network for which the equilibrium

equations are contained in

A
Ye= i' (41)

and we now have, in contrast to Eq. 34

-1A
Y = T Y (42)
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Conclusions drawn from this result are similar to those just given with regard to

Eqs. 34 and 35.

These methods make it possible to express the response functions of active and/or

nonbilateral networks as linear or bilinear combinations of the response functions of a

passive, bilateral, reference network. The application of this technique to synthesis

problems will be discussed in later reports.
E. A. Guillemin
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B. DERIVATION OF HILBERT TRANSFORMS AND THE PALEY-WIENER

CRITERION FROM CAUCHY'S INTEGRAL FORMULA

The following discussion will show how these relations can be extracted directly

from the Cauchy integral formula. Let y(s) be analytic in the right half of the

s-plane, inclusive of the j-axis.

Physically, y(s) may be a propa-
JW gation function, in which case we

have y = a + jP with a and P equal

s-PLANE to the loss and phase functions,
oS

or it may be a driving-point or

0 ' " transfer impedance function. In

either case, we can apply Cauchy's
-S

integral formula to the region

bounded by the contour shown in

Fig. XIV-4, which consists of the

Fig. XIV-4. Contour appropriate to the j-axis and a semicircular arc of

evaluation of several integrals. arbitrarily large (but finite) radius

that lies entirely in the right half-

plane. If s denotes an internal point, and X a point on the boundary, we have

Ij y(k) dX
.y(s) = - (1)
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and for the external point -s the Cauchy integral law yields

0 / (X) dX

0 2rj (+s

By addition or subtraction of Eqs. 1 and 2, we obtain

y(s) = I 1j1 )y(k) d

That is to say, either

s y y(X) dX
y(s) = s2 2 (3)

or

1 y(X) dX
=y(s) = (4)

S2 2

In either of these integrals, the path of integration may be abridged to the j-axis if

the contribution from the arc is zero. If the asymptotic behavior of y(X) is described

by -y() - ka for X - oo, then in Eq. 3 the contribution from the arc is zero if a < 1, and

in Eq. 4 if a < 0. Under these conditions, we can write integrals 3 and 4 in the forms

(s) T 2 2

and

(s) = y(X) dX (6)
Ts 0 2 2

where the change in algebraic sign of the integrand is the result of traversing the j-axis

in the opposite direction from that shown in Fig. XIV-4. Since X is now restricted to

the j-axis, we shall write X = j and consistently have

y(X) = y(jA) = C(a) + j p() (7)

where a() and P(a) are the loss and phase functions along the j-axis, as usually

defined. Since these functions are even and odd, respectively, integrals 5 and 6

become
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s a( ) d
y(s) = s

-1 3(J) 5 d 5
y(s) 0 S

2 2
-00 s +

(8)

(9)

These results may be regarded as a slightly generalized version of the Hilbert

transforms that enables computation of the complex propagation function y for any

right half-plane point, as well as for points on the j-axis, since s = - + j and a- may

have any finite positive value, as well as the value zero. Specifically, for the inter-

pretation of Eqs. 8 and 9 with s = jo, we must recognize that

zj s j

2 uo( - ) + u(&+6) - _

s-J
= u o() - uo(~) - 2 2

Co

in which u (c) is the unit impulse function occurring at 0 = 0. In other words, we must
not overlook the j-axis impulses that result when the left-hand functions in Eqs. 10 and
11 are evaluated along the j-axis of the s-plane.

For integral 8, we thus obtain

a(w) + jp() = 1

001

u o(W-) + uo(W+0( a(g) d + j

-00 0 - 2 2-0 -Co(

The first of these integrals yields a(w), and, therefore, we have

) a( ) d _ Z0o a( ) d

r2 2
00 - W - o

Similarly, integral 9 with Eq. 11 substituted gives

a() + j( ) = - U o(W+) p() d 0() ~

-00 - ( C

and, since the first of these integrals yields j3(C), we have
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-1 p( ) d5 0P(0 ) d
-a( ) = (15)

T2 2 2 2

Equations 13 and 15 are the familiar Hilbert transforms in the form in which the

even and odd character of a(w) and P(w) are taken into account. In Eq. 13 we observe

that if the asymptotic behavior of a(,) is indicated by writing a(S) - a for - oo, then

a finite value for this integral can result only if a < 1. Essentially, this condition is

the Paley-Wiener criterion. If we consider integral 8 whence Eq. 13 stems, we can

say that the asymptotic character of a( ) must be such that this integral has a finite

value for all finite values of s in the right half-plane. For this to be so, it is obviously

sufficient that the integral have a finite value for s = 1 or that

0 () d

(16)

be finite, which is the more common form in which the Paley-Wiener criterion is

stated.

A related question is: How must the behavior of p(,) in Eq. 15 be restricted for

S- oo if this integral is to have a finite value? Here we find that if we write P(,) -. a

for - oo, we must require a < 0. In fact, the conditions a < 1 for a(,) and a < 0 for p(g)

are just the conditions assumed initially for the asymptotic behavior of y(X) in Eqs. 3

and 4, in order to render the contributions from the semicircular arcs zero, so that the

subsequent derivation of the Hilbert transforms can be carried out. The resulting

restriction upon a(g) we accept without reservation because it coincides with that

imposed by the Paley-Wiener criterion; but the restriction just stated with respect to

P() is somewhat puzzling because we know that phase functions of minimum phase-shift

networks are not so restricted. The condition a < 0 states that p(g) must become zero

for - oo; and we know that in networks whose transfer functions have zeros at s = 0o,

the phase approaches a constant nonzero asymptote. In fact we can conceive of mini-

mum phase-shift networks with continuously increasing phase, for which, therefore,

P(g) - g for g - oo. What is the explanation of this seeming inconsistency?

It is simply that a(w) in Eq. 15 (unlike P(w) in Eq. 13) is determined only within an

arbitrary additive constant; and the value of this constant is sometimes infinite. It is

infinite, for example, in any situation in which the phase p(w) approaches a constant

asymptote. In such a case we should not try to compute a(w) from P(w) but instead find

a(w) - a(0) =2 (17)- (iv)
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in which any additive constant in the function a(w) drops out. In other words, integral 17

yields the functional variation in a(w), which is really all that we are interested in. For

its determination according to integral 17, we see that the asymptotic character

described by P( ) - a for - c allows a to be larger than unity as long as a < 2. This,

then, is the true restriction upon the phase function.

As an example of the use of Eq. 17 we readily compute for the specification

p()=n-m for -1< <1

p(a) = nrrw for -1 < (18)

the solution

a() - a(0) = nln I1 - - ncn -nIn - (19)

which checks with the solution to this situation obtained by other methods.

Again, for p(,) = , Eq. 17 gives a(w) - a(O) - 0, which agrees with the well-known

physical fact that a linear phase shift over the infinite spectrum is associated with a

constant attenuation, albeit an infinite attenuation if we conceive of obtaining this result

with a minimum phase-shift network.

It is generally thought that the usefulness of Hilbert transforms is restricted to

situations in which the given real or imaginary part is either graphically or analytically

specified over intervals of the j-axis, as, for example, in specification 18, or in the

computation of the phase associated with an attenuation function defined by confluent

straight-line segments or arcs. Computation of the imaginary part from Eq. 13, when

the real part is given as a rational function of the frequency variable s, is regarded as

leading to an integral that is difficult to evaluate; and so such problems are usually

solved by other methods (the Bode or Gewertz or Miyata methods). Through use of

Eq. 5 or Eq. 8 (equivalent to Eq. 13) together with methods of complex integration, we

can use the Hilbert transforms for problems of this sort with the same facility as the

algebraic methods. In fact, we shall show that use of the Hilbert transform (Eq. 13)

or of Eq. 8 leads directly to Bode's form of the algebraic solution.

Let us do this for an impedance Z(s), for which we write Z(jw) = R(c) + jX(c), and

have Eq. 13 in the form

X(- ) 2 (20)

The j-axis real part of the impedance Z(s) is expressible in the familiar form

R(w) = -[Z(s) + Z(-s)], = [R(-s2) (21)2 s=] s:j (

118



(XIV. NETWORK SYNTHESIS)

in which R(-s2 ) is the even part of Z(s). Since we want to use the methods of complex

integration for the evaluation of Eq. 20, it must be converted into a contour integral.

This process is obviously just the reverse of the above derivation of Eq. 13 from

Eqs. 5 and 8. If we use Eq. 5, and close the path of integration by adding the semi-

circular arc, as shown in Fig. XIV-4, we obtain

2 2

where traversal of the path is again counterclockwise. Since the even part of any physi-

cal impedance must be regular at infinity, the conditions for zero contribution from the

semicircular arc are obviously fulfilled.

If the left half-plane poles of Z(s) are denoted by ki, and the residues of Z(s) in

these poles are ki, then a partial-fraction expansion of R(-k2) reads

( )1 k i

12 k. (23)i i

because the residues of R(-k 2) in its left half-plane poles are (according to Eq. 21)

equal to ki/2, while those in the right half-plane poles are the negatives of these values,

as is clear from the quadrantal symmetry of the pole-zero pattern of R(-X ).

The partial-fraction expansion of the integrand in Eq. 22 is then seen to be

s R(- 2) R(-s2) R(-s) 1 s ki i 1
+ i _ iI (24)

2 2 2(x - s) 2(X + s) - s i 1

By Cauchy's residue theorem the value of the integral in Eq. 22 is equal to 2Trj multi-

plied by the sum of the residues of the integrand in those poles enclosed by the contour

of Fig. XIV-4. These poles are at k = s and k = -k.. The residues are evident in
1

Eq. 24, and so, for the evaluation of Eq. 22, we have

sk.
Z(s) = R(-s) 2 2 (25)

i 
-

which, with Eq. 23, becomes

1 k. k. k k.
Z(s) +

or s + s s

or
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k.

Z(s) (26)
i

Hence the impedance generated by the rational even-part function R(-k 2) is found as

readily through use of the Hilbert transform and complex integration as it is by Bode's

algebraic method. In fact, the computational work is exactly the same in the two

procedures.

E. A. Guillemin

C. AN INDEPENDENT PROOF OF THE DARLINGTON THEOREM

Darlington showed that any positive real rational function (realizable driving-point

impedance) can be constructed as the impedance on the input side of a lossless two

j LOSSLESS 2 I LOSSLESS 2i
NETWORK NETWORK

(1+z22 ) Y22

Fig. XIV-5. Network for relating open- Fig. XIV-6. Network for relating short-
circuit transients to imped- circuit transients to imped-
ance functions, ance functions.

terminal-pair network terminated in a 1-ohm resistance. The following independent

proof of this theorem makes use of well-known properties of Hurwitz polynomials and

reactance functions, together with the fact that the open- and short-circuit natural

frequencies of a network are the poles and zeros of its driving-point impedance.

Let the impedance Z 1 in Fig. XIV-5 be indicated by

m 1 + n 1  P(s)
m - (1)

1 m2 + n2 Q(s)

in which, as usual, m and n denote the even and odd parts of either polynomial P(s)

or Q(s). If the network in Fig. XIV-5 is excited somehow (by having a little boy throw

coulombs at the capacitors), its natural frequencies are the poles of Z (s) or the zeros

of (1 + z 2 2 ), and hence are zeros of Q(s) = m 2 + n 2 . Here z 2 2 is the open-circuit

impedance of the lossless network at its terminal pair 2, and (1 + z 2 2 ), therefore, is

the impedance that would result from cutting into the output mesh, as indicated in

Fig. XIV-5. It follows that we must have
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m 2 + n 2  m 2Case A: 1 + z 21 + - (2)
22 n2  n2

or

m? + n 2  n 2Case B: 1 + z - 1 + -- (3)
22 m, m 2

If the network in Fig. XIV-6 is excited, the natural frequencies are zeros of Zl(s),

and hence zeros of P(s) = m 1 + n 1; but they must also be zeros of 1 + (1/y 2 2 ), where

YZ2 is the short-circuit admittance of the lossless network at its terminal pair 2. We

have

1 m1 + nl n1
Case A: 1 + - 1 + (4)

Y22 ml ml

or

1 ml + nl ml
Case B: 1 + - 1 + (5)

Y22 n1 n1

Let z 1 1 denote the open-circuit impedance of the lossless network at its terminal

pair 1. We may then say that the poles of z 1 1 are poles of z 2 2 , and zeros of z 11 are

poles of 1/y 2 2 . From Eqs. 2, 3, 4, and 5 it follows that

For case A: zll = ml/n 2  (6)

or

For case B: z11 = nl/m 2  (7)

Let yll denote the short-circuit admittance of the lossless network at its terminal

pair 1. The poles of yll are the poles of y2' and the zeros of yll are poles of 1/z 2 2 .

These conclusions (as well as those in the previous paragraph) follow from the con-

sideration that the critical frequencies in question are natural frequencies of the lossless

network under identical terminal constraints. For example, for the poles of y 1 1, the

constraints are: terminal pair 1 shorted, terminal pair 2 shorted; the same holds for

the poles of YZ2 . For the zeros of yll or for the poles of 1/z2 2 , the constraints are:

terminal pair 1 open, terminal pair 2 shorted. Thus, we have

For case A: yll = m 2 /n 1  (8)

or

For case B: yll = n./m1 (9)

From the fact that reactance or susceptance functions must be ratios of two
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polynomials, one of which is even and the other odd, it follows, incidentally, that

cases A and B are mutually exclusive.

From the separation property of the zeros and poles of reactance functions, and of

the even and odd parts of Hurwitz polynomials, it follows that P(s) and Q(s), as well

as P+(s) = m i + n 2 and Q (s) = m 2 + nl, are Hurwitz polynomials. We may conclude

that the so-called double-alternance (1) property holds for the polynomials m 1 m 2 , and

n 1 n 2 . As Reza has shown (1), this double-alternance property is a necessary (not

sufficient) condition to ensure the positive real character of Z (s). He also showed

that a rational function with this property can be made to fulfil positive real conditions

merely through assigning to either m 1 m 2 or n n 2 an appropriate constant multiplier,

which in our situation amounts to scaling the impedance level of one end of the lossless

network. It follows, therefore, that the physical representation in Fig. XIV-5 enables

the construction of any given positive real impedance function Z (s). Q.E.D.

E. A. Guillemin
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