
OPTIMAL CONTROL OF A TWO-STATION
TANDEM PRODUCTION/INVENTORY

SYSTEM

Michael H. Veatch
Lawrence M. Wein

OR 264-92 February 1992





OPTIMAL CONTROL OF A TWO-STATION TANDEM

PRODUCTION/INVENTORY SYSTEM

Michael H. Veatch

Operations Research Center, M.I. T.

Lawrence M. Wein

Sloan School of Management, M.I. T.

Abstract

A manufacturing facility consisting of two stations in tandem operates in a make-

to-stock mode: after production, items are placed in a finished goods inventory that

services an exogenous demand. Demand that cannot be met from inventory is back-

ordered. Each station is modelled as a queue with controllable production rate, and

the problem is to control these rates to minimize inventory holding and backordering

costs. Optimal controls are computed using dynamic programming and compared

with kanban and buffer control mechanisms, popular in manufacturing, and with

the base stock mechanism popular in inventory/distribution systems. Conditions are

found under which certain simple controls are optimal using stochastic coupling ar-

guments. Insights are gained into when to hold work-in-process and finished goods

inventory, comparable to previous studies of production lines in make-to-order and

unlimited demand ("push") environments.
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Considerable attention has been given in recent years to viewing manufacturing

facilities as production/inventory systems. This framework recognizes the importance

not only of inventory control but also of queueing due to capacity constraints and

uncertainty. In this paper, we consider a production/inventory system that consists

of several stages in series that produce a single product. Each stage of the facility

contains a single workstation that is modelled as a queue with controllable service

rate. Once completed, items are counted as finished goods until they are consumed

by an exogenous demand. As in inventory/distribution systems, production is driven

by demand, but unlike standard inventory models there are capacity constraints and

queueing in the production process. Demand that cannot be met from inventory is

backordered and met by the next available finished item. Holding costs are incurred

at each stage, as well as finished goods holding and backordering costs.

We consider the problem of finding optimal controls of the production rates for a

long-run average or discounted cost criterion. In contrast, most studies of production

line control problems assume that a relatively simple mechanism, such as buffers or

kanbans, is used to control the system. Its performance is evaluated or the best

policy using that mechanism is found. Restricting attention to a certain mechanism

may be practical, given that optimizing a cost function is difficult and "optimal"

policies may be impractical to implement; however, it is also desirable to know how

the mechanisms compare to each other and to the optimal policy.

The demand environment of our production/inventory system is make-to-stock

with complete backordering; other environments have been more widely studied. A

make-to-order environment, where production of an item cannot begin until a demand

is received, may be dictated by customization requirements on orders or chosen for

economic reasons when customers will tolerate the waiting time. This environment

corresponds to a tandem queue; its optimal control has been studied by Rosberg,

Varaiya and Walrand (1982) and Weber and Stidham (1987), among others. A buffer
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control mechanism results in a tandem queue with blocking; lost sales can be incor-

porated in this model by including a finite first buffer. Approximate performance

evaluation and optimal buffer placement have been studied; see Perros (1984), Smith

and Daskalaki (1988), Hillier, Boling and So (1986), and the references therein. All of

the environments described thus far are exogenous demand, or "pull" systems. Un-

limited demand "push" systems can be modelled as closed queueing networks; buffer

placement for these systems has been studied by Conway et al. (1988). Kanban poli-

cies, pioneered by Toyota (Sugimori et al. 1977), are studied by Mitra and Mitrani

(1990) and Muckstadt and Tayur (1991) in an unlimited demand setting.

Several previous studies of multi-stage, single-product production/inventory sys-

tems have obtained approximate results for evaluating a specific control mechanism.

Mitra and Mitrani (1991) and Cheng and Yao (1991) both study kanban policies;

they also establish sample path and stochastic dominance of kanban mechanisms

over traditional buffer mechanisms. The dominance is essentially due to the move-

able buffers within a kanban cell, in contrast with the traditional fixed buffers. Base

stock policies, motivated by distribution/inventory systems, are evaluated by Lee and

Zipkin (1990) and Buzacott, Price and Shanthikumar (1991) using stage decomposi-

tion approximations. Base stock is not really a new concept in manufacturing since,

as the second paper points out, MRP systems essentially use a base stock mechanism

with a demand forecast included in the target stock levels. Constant work-in-process

(CONWIP) can be viewed as a special case of this policy.

Our approach is to find optimal policies, using analytical and numerical methods,

and compare them with some of the simpler control mechanisms being used in man-

ufacturing. To accomplish this program, a simple two-station problem is considered.

It is assumed that demand is Poisson, service times are exponential, and there are

no set-up costs. It is hoped that the insights gained from this idealized system, with

careful attention to its limitations, will be applicable to more realistic systems. It
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is encouraging to note that van Ryzin, Lou and Gershwin (1991) and Lou and van

Ryzin (1989) obtained similar numerical results for a similar system in which the

only source of uncertainty is unreliable machines, indicating that there is at least

some robustness to our findings.

Two types of results are obtained in this paper. First, very simple policies are

shown to be optimal under certain extreme conditions on the problem parameters.

Veatch and Wein (1991) established that the optimal policies generally consist of

a switching curve for each station, dividing the state space into an idle and busy

region. We use stochastic coupling arguments to show that, for certain parameter

values, these switching curves become essentially static priority rules. Conditions are

found under which no inventory is held, as well as conditions under which all inventory

is converted to finished goods (FG), i.e., the downstream station never idles unless

it is starved. These results are comparable to those of Bielecki and Kumar (1988)

for a single-stage production/inventory system. Interestingly, the popular base stock

policy is shown to never be exactly optimal.

Second, numerical results are obtained using dynamic programming. These re-

sults further illustrate the tradeoffs of whether or not to hold inventory and whether

to hold work-in-process (WIP) or FG. Holding WIP may seem to fly in the face of

the just-in-time goal of eliminating WIP; in fact, our model provides a cost basis for

deciding whether or not to hold WIP and FG. In a production/inventory system,

WIP can perform two functions: not only does it serve as a buffer between asyn-

chronous stations to increase throughput capacity (as in make-to-order systems), it

can also supplement finished goods (FG) inventory to reduce backorders. The deci-

sion of where to place inventory depends on the relative holding costs and the rate

at which WIP can be converted into FG. Less WIP is held when its holding cost is

high, the utilization of the upstream station is low, or the discount rate is high.
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Optimal policies are also compared to the best base stock, kanban, and fixed

buffer policies. It is found that base stock policies are nearly optimal when the

upstream station is heavily utilized and the discount rate is small or zero. Kanban

policies outperform base stock policies when the downstream station is a bottleneck or

discounting is significant. Fixed buffer policies are consistently the worst, though the

degradation is not always significant. It is encouraging that base stock and kanban

policies are within a few percent of optimal for most test cases, since a swithcing

curve policy would be more difficult to implement. Every type of policy is sensitive

to the stock levels or buffer sizes, so that obtaining accurate demand and production

rate data and setting these levels correctly remains a very important issue.

The patterns that appear in the numerical study can only be extrapolated to

more complex systems tentatively and qualitatively. It is reasonable to expect that

the desirabilty of holding WIP would be similar for systems with more stations,

probably with most WIP being held downstream. However, the amount of WIP held

is always modulated by the service time variability, which is sometimes less in real

systems than our exponential assumption. It also should be noted that we apply a

cost to the average WIP; most studies of buffer allocation apply a cost or constraint

to the maximum WIP, e.g., total buffer capacity (see McClain and Moodie 1991). As

is well known, WIP can have other adverse effects than just the inventory holding

cost (see, for example, Schonberger 1982).

Another result that may be of use in future research is a transformation of make-

to-stock systems into make-to-order systems. This equivalence allows some of the

methods developed for traditional tandem queues to be applied to make-to-stock

systems. For example, approximate evaluation of stationary distributions for tandem

queues with blocking can be used to quickly identify suboptimal policies for our

system.
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Figure 1: A Two-Stage Production/Inventory System

The remainder of the paper is organized as follows. The problem is formulated

mathematically in Section 1 and several control mechanisms are defined in Section

2. The optimality of simple controls under special parameter values is proven in

Section 3, with some of the proofs deferred to the Appendix. A connection with

traditional make-to-order queues is made in Section 4 and dynamic programming

numerical results are presented in Section 5.

1 Problem Desciption

Consider the two-stage tandem production system of Fig. 1. Jobs are released into

the system, processed at stage 1, then held in a work-in-process (WIP) buffer. When

released into stage 2, they are processed there and then placed in a finished goods

(FG) inventory that services an exogenous demand. Demand that cannot be met from

inventory is backordered and recorded as a negative inventory. Denote the system

state at time t by X(t) = (Xl(t), X 2 (t)), where X1 is the number of jobs available for

stage 2 processing (including any item being processed at stage 2) and X 2 is the FG

inventory. Because the supply of raw material is unlimited, there is no queueing and

no state variable at stage 1.
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Figure 2: State Space Diagram

Stage i consists of a single machine that operates as a /M/1 queue with pro-

duction rate i controlled between 0 and >i. Associated with these controls are the

transitions x - x + di, where dl = el for p1 and d2 = e2 - el for u2, as shown in

Fig. 2. Here e is the unit vector along the ith axis. Demands occur according to

a Poisson process with rate A and cause the transition do = -e 2. Stability of the

system requires that A < i for i = 1,2. An admissible control policy 7r is a function

p(X,t) that is nonanticipating, i.e., depends only on {X(s);s < t}, and obeys the

control limits 0 < pi < i and pi(X,t) = 0 if X(t-) + di¢ X = {x E Z 2 : x1 > 0}.

Let denote the class of admissible policies. Because the system is memoryless, a

Markov policy depending only on the current state x will be optimal; we denote this

policy (zx) = (l(x), t 2(x)) for x E X.

The objective is to minimize WIP holding cost (incurred at a rate of one per job

per unit time), FG holding cost h > 1, and FG backorder cost b, all discounted at a

6
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rate a > 0 over an infinite time horizon. For policy 7r, the expected cost is

Vr(x) = E. J etc(X(t))dt, (1)

where c(x) = x + hx+ + bx-. Here E denotes expectation given the initial state

X(O) = x and policy r. The optimal policy (x) achieves the minimum

V(x) = min V (x) (2)

simultaneously for all x. We will uniformize the process as in Lippman (1975) by

defining the potential event rate A = 7i1 + 7j2 + A. The n-stage cost function satisfies

the dynamic programming equations

Vn+1(x) = TV.(z) (3)

1
TV(x) = A [c(x) + AV(x - e2) + 71 min{V(x), V(x + el)}

+ 2 min{V(x), V(x - e + e2)}], (4)

where we define Vo(x) = 0 and Vn(x) = oo, x V X. The infinite-horizon cost function

satisfies

V(x) = TV(x). (5)

The form in which we have written (4) emphasizes that the optimal policy is

bang-bang, i.e., i(x) = 0 or 7i. Such a policy is specified by its idle and busy sets

I = {x E X : (x) = 0} and B = X \ Zi. The existence of a Markov policy

that achieves the minimum in (2) and the convergence of the n-stage policy and cost

function to the infinite-horizon optimal policy and cost follow from the fact that only

finitely many controls are considered at each state; see Bertsekas (1976).

An undiscounted, long-run average cost criterion will also be considered. In this
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Figure 3: Properties of Optimal Policies

case the average cost per stage, g, and the relative cost of starting in state x, V(x),

satisfy

V(x) + g = TV(x), (6)

where we arbitrarily set V(O,0) = 0. Existence and convergence results can be

obtained for (6) by letting a - 0 in (4) and exploiting the fact that there are only a

finite number of "good" states; see Weber and Stidham (1987).

It is shown in Veatch and Wein (1991) that optimal policies have the following

monotonicity property: there exist switching functions si(x1) such that pi(x) = 0

if and only if x2 > s(xl). Furthermore, these functions have derivatives (or more

precisely, differences, since they are defined on Z+) s(xl) < -1 and s'(x 1 ) > 0, as

illustrated in Fig. 3.
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Figure 4: Material and Information Flow

2 Control Mechanisms

This section describes several control policies that have been studied and used in

production lines. In order to describe the mechanism by which they are usually

implemented, we begin with a more detailed model of material and information flow

through the system. Associated with each station is a physical or organizational cell.

As shown in Fig. 4, orders (hereafter called demands) are placed on cell 1 according to

a policy that depends only on the state of cell 2. Either a release occurs immediately

or the demand is backordered until there is inventory at the cell 1 output buffer.

Define

Di(t) = demand placed by cell i on cell i- 1 in (0, t]

D(t) = exogenous demand in (0, t]

R (t) = work released into cell i in (0, t]

Si(t) = service completions at station i in (0, t]

Wi(t) = work at station i at time t

Ii(t) = inventory position, cell i output buffer at time t.

9



The controls can be desribed in terms of demands as follows. Station i is idle when

Wi = 0 and busy when Wi > 0; this defines Si(t). The dynamic equations are

Rl(t) = Dl(t) (7)

Ri(t) = min{Di(t),Ii(O)+ Si_1(t)}, i= 2,3 (8)

Ii(t) = Ii(O) + Si_l(t) - Di(t) (9)

Wi(t) = Ri(t) - Si(t), i = 1,2. (10)

In the notation of section 1, WIP is xl = I2+ + W 2, FG is x2 = 13, and the dynamic

equations are

xl(t) = xl(0) + Sl((t) - S 2 (t)(11)

X2 (t) = X2(0) + S 2(t) - D(t). (12)

Base Stock

Under a base stock, one-for-one ordering policy each cell places an order upstream

as soon as it receives an order. Hence, demands propagate through the system im-

mediately and Di(t) = D(t). The application of this policy to production/inventory

systems is discussed in Buzacott, Price and Shanthikumar (1991). Let cl and c2 be

the base stock levels for WIP and FG, respectively. The policy is characterized by

the busy sets B1 = {X : x + X2 < C1 + C2 } and 32 = {x: xl > 0, X2 < 2}-

Kanban

A kanban policy has been applied to the make-to-stock environment by Mitra

and Mitrani (1991). In terms of our model, the number of kanbans or cards in cell i

is c = I- + Wi + I+l; I represents the bulletin board and I&+, the output hopper

in cell i. Demands occur when a job is released to the next cell, freeing a card:

Di(t) = Ri+l(t). The policy is B1 = {x: x1 + X2+ < C1 + C2} and 32 = {x: X1 > 0,
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x 2 < c2 }.

Fixed Buffer

Under a finite buffer policy (see, e.g., Conway et al. 1988) the system operates as

two tandem, finite capacity ./M/1/ci queues. The buffer size is c between stations

and c2 for FG; the policy is Bl = f{x: x1 < c} and 32 = {x: x 1 > 0, 2 < c2 }.

This policy is also known as fixed buffer to distinguish it from a kanban policy where

buffers are dynamically shifted as cards move in a cell, or local control because control

of a station depends only on the number of jobs immediately downstream; i.e., station

1 is independent of the FG inventory.

CONWIP

The constant work-in-process (CONWIP) policy can be viewed as a kanban sys-

tem with a single kanban cell (Muckstadt and Tayur 1991). For make-to-order or

unlimited demand systems, CONWIP keeps the number of unfinished jobs in the sys-

tem constant; for a make-to-stock system, the analogous policy is to keep WIP plus

FG inventory constant. This policy is a special case of base stock with cl = 0.

3 Optimal Controls

It seems impossible to find a general solution to this control problem. For given

parameter values A, l, 72, h and b, an optimal policy can be found numerically using

dynamic programming; this is done in Section 5. One can also analyze a proposed

policy 7r to determine conditions on the parameters under which it is optimal. The

method used here to prove optimality is to establish bounds on V"(x + di) - V'(x)

using stochastic coupling arguments (see Hajek 1984 for another example of this
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technique). In special cases, these bounds can be used to verify that a policy is

optimal.

For a given Markov policy r, let Ai(x) = Vr(x + e) - Vr(x) and A12(x) =

V"(x - el + e2) - Vr(x). The optimality condition (5) can be written

Al(x) < 0 iff E Bl (13)

A 1 2 (z) < 0, X E B 2 (14)

A1 2(x) > 0, x E 2 and x1 > 0. (15)

Note that (14) and (15) only apply to points with xl > 0. We will write pi for ji; and

yuo for A when convenient. The subsections below make use of the following results.

A cost of c(x) = 1 applied indefinitely yields a discounted cost of 1/a. Generalizing

(5) to arbitrary policies gives

V'(x) = I c(x)+ZpjV r(x+dj) (16)
) ( A(z) + [C(x ) +- ElaiVr(x + di)] (16)

where A(x) is the transition rate out of state x and the sum is taken over transitions

i that are active in state x.

Let (X(t), Y(t)) be a coupled Markov process with state space

C = {(x,y) : x, y E X and y = x, x + el, + e2, or x - el + e 2 }, (17)

where X(t) and Y(t) each have the same marginal distribution as the process of

Section 1 under policy 7r with initial states X(O) and Y(O), and they share the same

Poisson point processes of potential transitions. For example, in state (x, x + el) the

process transitions at rate 'l, to (x + el,x + el) if x E L1 and x + el E Z1, at rate P2

to (x,x +e 2) if x E 12 and x +e l E 2, at rate u1 to (x+ e l , x+2el) if x,x + el E 81,

at rate 2 to (x-el + e2, x + e2) if x, x + el E L32, and at rate A to (x-e 2 , x + el - e 2).
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Only the first two transitions change the relative position Y(t) - X(t). We say that

the process merges at the first time at which Y(t) = X(t); then Y(s) = X(s) for all

s > t. We consider only policies that have the monotonicity properties of Fig. 3 (all

optimal policies have these properties), thus limiting Y(t) -X(t) to the values in C.

For example, if x E B1 then x - el + e2 E B1, and transitioning from (x, x - el + e 2)

to ( + e 1, - el + e2 ) is impossible.

The usefulness of the coupled process lies in the fact that Ai(x) is the total

cost resulting from a cost rate c(Y(t)) - c(X(t)) at time t, where X(O) = x and

Y(O) = x + ei, and similarly for A 12(x), except that Y(O) = x - el + e2. The possible

values of the cost rate are 0, 1, h, h - 1, -b, and -b - 1, corresponding to the values

of y - x for (x, y) E C.

3.1 No Inventory

Perhaps the simplest policy is to never hold inventory, releasing a job into station 1

only when there are backorders and station 2 is starved: 1 = {x : xl = 0, 2 <

0}. Assume that station 2 is busy in states (1, -1), (1, -2), (1, -3) ... so that the

set of recurrent states is {(0, 0), (0, -1), (0, -2),... ; (1, -1), (1, -2), (1, -3),.. .}. For

completeness, assume that the optimal control is used for station 2 in other, transient

states. The task of checking optimality is much easier if only the recurrent states are

checked. Although this condition is not sufficient for general Markov chains, it is for

the chain defined here, as the following lemma shows.

Lemma 1 For the no-inventory policy, (13) is implied by

Al(0, x 2 ) < 0, x2 < 0 (18)

A1 (1, 2) > 0, x2 < 0 (19)
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A1 (o, ) > o.

Proof. We must show that Al(x) > 0 when x1 > 1 or x 2 > 0 (all cost functions are

for the no-inventory policy). First, establish the condition for the states {(0, x 2) :

x2 > 0} using induction on x 2. To evaluate Al(0,x 2), we must consider the states

(1, x 2). Since station 2 uses the optimal control in these states, monotonicity holds:

station 2 is busy up to some x2 and idle beyond. For states (1,x 2) E 32, we will

establish that Al(0,x 2) is increasing. Initially A1(0,0) > 0 > A 1 (0, -1). Assume

that A 1(0, x 2) > Al(O,x 2 - 1) for some x2 > 0. Since (0,x 2 + 1) E I1 n 2 and

(1, x2 + 1) E Z1 n 62, there are two transitions for the coupled process corresponding

to Al(0,x2 + 1), and (16) yields

1
A(0, 2 + 1) = + + a + + A,1 (, 2) + 2A2 (0, 2 + 1)]. (21)

Similarly, using the transitions from (x, x + e2) gives

1
A 2(0, x2 + 1) = AI [h + AA 2(0,X 2 )]. (22)

Since the cost rate for the coupled process is never more than h, A 2(0,x 2) < h/a;

eliminating h in (22) gives A 2(0,x 2 +1) > A 2 (0, x2). Using this fact and the inductive

hypothesis in (21),

1
l1 (0, X2 + 1) A + /12+ a [1 + AA/(0, 2 - 1) + 2 A 2 (0, 2 )] (23)

A i(0, 2 ) (24)

Therefore Al(0, x 2) > A 1(0,0) > 0 for (1,x 2 ) E 32. For (1,x 2) E 12, the last term

in (21) is omitted and a simple induction argument shows that A1(O, x2 + 1) remains

nonnegative.

14
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Now consider il(x) for states with x > 0. The corresponding coupled process

has a cost rate of one until the first time t such that X(t) = y for some y such that

y = 1 and y 2 < 0, or yl = 0 and y 2 > 0. Thereafter the cost rate is the same as for

Al(y). But Al(y) > 0 for such y; hence, Al(x) > 0. 

Using rather crude stochastic coupling bounds, the following parameter ranges

are obtained from (14), (15), and (18-20).

Theorem 1 The following conditions are sufficient for the no-inventory policy to be

optimal:

b/12 > 11 + a, (25)

1 + A2min{¢, } + 1 + 2 + [(b + 1) 1 

and 1 +1 ( >0 (27)
/11 + 2 + a a A + ca a

where ¢ = 2 2 A b + 1. (28)
P·2 + a +a 1 -+ 2 + a l + 2 A + a a

The proof of Theorem 1, which is a lengthy application of the coupled process, is

given in the Appendix. Conditions (25-27) only hold for very large a, on the order of

I2; one example is h = 2, b = 4, 8/a = 2, P 2 /a = 1, and A/a = 1/2. This result is

reasonable because a policy of not holding inventory is very shortsighted. It can be

optimal only if the time horizon 1/a is sufficiently short.

3.2 No FG Inventory

Now consider a policy that consists of the optimal control of station 1 and operating

station 2 only when there are backorders: B2 = {(: xl > 0, x 2 < 0}. A lemma again
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allows us to omit the transient states {x : x2 > 0} from the optimality check. Here

the assumption that h > 1 is critical; otherwise all WIP would be converted to FG.

Lemma 2 For the no-FG inventory policy, A 1 2(Xl, 0) > 0 implies (15).

Proof. Again using the coupled process, A12(x) for x2 > 0 corresponds to the cost

rate h - 1 until X 2 (t) = 0, then the same costs as A1 2(Y1, 0) for some Yl. Both of

these costs are nonnegative. 

Theorem 2 The following conditions are sufficient for the no-FG inventory policy

to be optimal:

a (A ) ( )h - A-a, (29)

h - 1 + (-b- 1 + AV5 + 2V 3 ) > 0, (30)
A + [2 + a

and h -1 + AV2 > 0, (31)

where V3 = 01[+2 +a + (1 +AV 5)] (32)

V5 = -(b+ 1)/a (33)
1

01 + (+ - (34)( + )( + + ) - AY2

V2 = 02 -b-1 + X + a(1 + A( + AV5)j (35)

( + a)(A + /2 + a)
2 = + )( + + [ )2 - A' (36)

In particular, it is optimal for sufficiently large /12.

The proof in the Appendix suggests that other conditions for optimality could be

obtained if desired.
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3.3 Non-Idling at Station 2

In some sense the opposite of the previous policy is to never idle at station 2: B2 =

{x : x1 > 0} and optimal control of station 1. Reversing the cost structure so that it

is more costly to hold WIP than FG makes this policy optimal.

Theorem 3 If h < 1 then non-idling at station 2 is optimal.

Proof. Suppose a policy r includes idling at station 2 in some state x with xl > 0.

For this initial state x, construct a policy 7r' that is identical to 7r except that the

start time of the next job at station 2 is moved up to zero. Their cost rates differ by

h - 1 or -b - 1, both nonpositive, for the time interval between the completion of

the next job at station 2 under 7r' and under 7r. Therefore V"'(x) < Vr(x) and only

policies that are non-idling at station 2 are optimal. O

Theorem 3 can be strengthened to the case h = 1 using a more elaborate proof. A

situation where h < 1 might occur when the benefits of just-in-time manufacturing

are incorporated as additional WIP holding costs.

When h > 1 the decision of whether to operate station 2 depends on the likelihood

of incurring FG holding costs as a result. If the optimal control for station 1 prevents

FG inventory from being held, then non-idling is optimal at station 2.

Theorem 4 If 13 n {x : 2 > 0} = 0 then it is optimal not to idle at station 2 in all

states that are recurrent under some station 2 control.

Proof. Let B1 = {x : x C B1 or x - d 1}. Recall from Section 1 that B 1, and

also B 1, consists of all states below a switching curve sl(xl) with slope s(xl) < -1.

Thus, regardless of the station 2 control the system cannot leave L1. Other states
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cannot be recurrent because the transition dl cannot occur outside of B1. Now, for x

recurrent with xl > 0, we must have x E B 1 and x2 < 0. Hence, from the initial state

x, X(t) E Bi for all t and the coupled process cost rate for A12(x) is either -b- 1 or

-b. This implies that A 12(x) < 0 and non-idling is optimal at station 2. 0

The above proof also generalizes the proof of (14) for the no-inventory policy of

Theorem 1.

3.4 Base Stock Policies are Never Optimal

Despite their popularity in inventory systems, base stock policies are never optimal

for this problem because they can accumulate large amounts of WIP that, due to the

capacity constraint, will remain in the system for long periods of time.

Theorem 5 The base stock policy of Section 2 is not optimal.

Proof. Consider a base stock policy with B1 = {x: xl + x 2 < c 1 + c2 } and B2 = {x:

xl > 0, x2 < c2 }. For the coupled process associated with Al(x), let T1 be the time

of first departure from a cost rate of one, T, be the merge time, p(x) = Pr{T1 <Tm },

V1 be the discounted cost until T1, and V2 be the discounted cost from T1 to Tm given

that T1 < Tm. Then

Al(x) = V1 +p(x)V2. (37)

We will show that, for x = (xi, cl + c2 -X 1 - 1) and x - oo, p(x) - O. Since V1 > 0

and V2 < h/a, this implies that Al(x) > 0 for some x = (xl, cl + c2 -x - 1) and the

base stock policy is not optimal.

From the initial state x, the event {T1 < Tm} requires Xl(t) = 0 for some t < Tm;

hence, no merge can occur during the first xl potential transitions of X. Let No,
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N 1, and N 2 be the number of the first x1 transitions that are of type A, , and 2,

respectively, and T be the time of the x 1-th transition. Then

p(x) < Pr{T > T} (38)

< Pr{N- No < 1}, (39)

since N1 - No > 1 implies that the first occurance of X 1 (t) + X 2(t) = cl + c2 was

at some time t < T and the process merged at that time. But (No, N 1, N 2 ) have a

multinomial distribution with x1 trials and probabilities (A/A, tpi/A, u 2/A), so that

p1 > A implies that Pr{N - No < 1} -4O as xl - oo. 

4 An Equivalent Make-to-Order System

The production/inventory system of Section 1 is not a tandem queue in the usual sense

because backorders (x2 < 0) are allowed; instead, it has been viewed as a queueing

network with assembly where demands enter a queue and are joined with FG (Mitra

and Mitrani 1991). However, if total inventory is bounded, we can transform this

system into an equivalent make-to-order system. Consider only policies r and initial

states X(O) = (cl,c 2) for which X 1(t)+X 2 (t) < C1 +c 2, or equivalently, Si(t) < D(t),

with probability one. Define

Zl(t) = cl + c2 - Xl(t) - X 2 (t) (40)

Z 2(t) = Xl(t). (41)

Then Z is a make-to-order system (a tandem queue) with infinite first buffer; rates

A, pi, and 2; and cost function cZ(z) = cX(z 2, c1 + c2 - zl - Z2 ) = Z2 + h(ci + C2 -

Z1 - 2)+ + b(ci + c2 - Z - Z2)-. All statistics of X can be recovered from Z by
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solving (40) and (41) for X. The distinguishing feature of a make-to-stock system is

seen to be its concave (as opposed to linear) cost function, not its dynamics. Such a

transformation can be made for n-stage systems as well.

Because of this equivalence, any method that obtains the state probability dis-

tribution for tandem queues can be used to evaluate a make-to-stock system under

the corresponding control policy. The fixed buffer mechanism provides a good ex-

ample. A fixed buffer of size cl (with infinite first buffer) for Z gives the policy

B1 = {x: x1 + x 2 < C1 + C2, X1 < C1 } and 62 = {x: x1 > 0} for X, where c2 is

arbitrary. This control mechanism, motivated by the linear cost function of make-to-

order systems, will not always be appropriate for the concave cost function. However,

when it is reasonable, the following method could be used to obtain a nearly optimal

policy of this form. For a given cl, generate a steady-state distribution using one of

the approximations noted in Smith and Daskalaki (1988). Then, given c2, compute

the appropriate cost measure. Use an optimization scheme to find the best cl and c2.

5 Dynamic Programming Computational Results

Dynamic programming value iteration was used on a truncated state space to compute

the optimal policy for several cases. For undiscounted problems, the average cost per

unit time g/A is reported; in the discounted case, the cost V(0, 0) is reported. Up to

2000 iterations were required to achieve four digit accuracy. Larger and larger state

spaces were tested until the results were insensitive to increasing the state space. The

largest state space required was 21 by 43. To avoid solving large linear systems, value

iteration was also used to evaluate candidate policies. A coordinate search algorithm

was employed to find the best parameters (cl, c2 ) for a given type of policy. The

algorithm assumes convexity of Ve; to check this assumption different initial values
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Table 1: Gain per Unit Time Under Various Policies ( = 1, h = 2, b = 4, a = 0)

Policy
Optimal
Best Base Stock
Best Kanban
Best Fixed Buffer
Revised Base Stock

Case 1
1 = 2 = 1.2

21.50
21.57
22.1
23.7

21.54

Case 2

1 = 2, /12 = 1.2
14.88
15.9
15.3
16.4
15.2

Case 3

yl = 1.2, /t2 = 2
11.48
11.56
11.63
11.83
11.56

Table 2: Suboptimality and Stock Levels for Various Policies ( = 1)

(1, 2, h, b, a)
1.2,1.2,2,4,0.00
2.0,1.2,2,4,0.00
1.2,1.2,2,4,0.10
2.0,2.0,2,4,0.00
2.0,1.2,1,1,0.00

Base Stock
% Subopt (cl, C2 )

0.3 4,8
7 1,6

1.2 1,3
0.9 1,2
24 1,3

Kanban
% Subopt (cl, c 2)

3.0 6,8
3 1,6

0.8 2,3
5.5 1,2
6 1,4

Fixed Buffer
% Subopt (cl, c 2)

10 12,7
10 5,6
2.2 5,3
17 3,1
15 4,4

of (c1, c2) were tried and gave the same results.

Three undiscounted cases are presented in Table 1. Case 1 is a balanced system

with a utilization of 5/6. In case 2 station 1 is faster, while in case 3 station 2

is faster. As is known for a variety of manufacturing systems, it is better to have

the faster machine downstream so that the bottleneck is upstream (case 3). Among

the suboptimal policies, base stock performs very well for cases 1 and 3. When the

utilization of the upstream machine is low, as in case 2, stockpiling WIP when there

are many backorders is unnecessary and the base stock policy does not perform as

well as kanban. These results are also explained by Figs. 5, 6, and 7, showing the

optimal busy regions. Case 3 has the 45-degree line characteristic of base stock policies
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Figure 5: Optimal Policy for Case 1 (dashed line is revised base stock)
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Figure 7: Optimal Policy for Case 3

(although, by Theorem 5, this line must turn downward for large x1 ), case 1 is nearly

base stock, and case 2 is quite different.

Table 2 compares the policies in greater detail for additional test cases. The

parameters c and c2 are the hedging point; i.e., the target levels of WIP and FG,

respectively. Case 4 illustrates that much less stock is held and kanban is preferable

when discounting is present (compare case 1). Case 5 shows that little stock is held

when utilizations are low. In case 6, the combination of a faster downstream station

and relatively high WIP holding costs creates a situation where significant FG but

little WIP is held. The optimal policy for case 6, shown in Fig. 6, allows up to six

units of FG to be held but has an even steeper switching curve than case 2.

The good performance of base stock policies suggests a way of quickly generating

a nearly optimal policy: search over base stock policies to find the best one, evaluating

V" for each policy. Then revise the station 1 switching curve for this policy using V"

by setting x E B1 if Al(x) < 0. Performance of this "revised base stock" policy is
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Table 3: Configurations of the Coupled Process in (18)

Configuration
1
2
3
4

States (X, Y)
(x, x + el)

(x, x + e2 )

(x, x - el + e2 )

(x,x)

Cost Rate
1

-b
-b - 1

0

1-

Departure Rate A

/1 + /12

< A < 1
/2 < A < 1 + - 2

0

Y

-Y

Figure 8: Transition Diagram for the Coupled Process in (18); = 1/(1l + 112)-

included in Table 1. As shown in Fig. 6, for case 1 this policy has nearly the same

busy region as the optimal policy. Although we have used a slow, iterative algorithm

to compute V" in this study, a rapid solution should be possible because of the sparse

structure of the linear system (16).

Appendix

Proof of Theorem 1.

In light of Lemma 1, it suffices to show (18-20) and A 1 2 (1,x 2) < 0, x 2 < 0.

(18). Consider the coupled process associated with Al(0, x 2), x2 < 0. Partition its
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Table 4: Configurations of the Coupled Process in (19)

Configuration
1
2
3
4

States (X, Y)

(x, x + el), Xi = 1

(x, x + el), xi = 0

((0, ), e 2)
(x,x + e 2), 2 < 0

Cost Rate
1
1
h

-b

1 - p)

Departure Rate A

I2

Y2 < A < /1 + 2

merge

*
Figure 9: Transition Diagram for the Coupled Process in (19); 7 = 1I/(1I + 2 ).

Table 5: Configurations of the Coupled Process in (20)

Configuration States (X, Y) Cost Rate Departure Rate A
((O, ), e l )

((0, O), e 2)

(x,x + el), 2 < 0
(x, x + e2), 2 < 0
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1 -P

1

Figure 10: Transition Diagram for the Coupled Process in (20); f3 = A/(A + 2).

possible states into the configurations listed in Table 3. It moves through these con-

figurations according to Fig. 8, where the quantity next to each arc is the probability

of moving along that arc. Let Ti be the time of first departure from configuration i,

Tm be the merge time (merge occurs upon entering configuration 4), and V(s, t) be

the cost incurred by the coupled process in the period (s, t], given that the process

has not merged by s. Then

V(T,T 3 ) = E K[b2T e- t dt - (b+ l)e-a(T-T2)J etdt]

< E - b (1 - -C(T2-T1)) b + e-a(T2-T1)
la _ +12 + +

< max b(1 - e- t) b+ e
O<t<oo La Y + 2 + a

= min{ b b + (A.1)
a~ pl + 2 + a

The first integral was evaluated exactly; the second was bounded using the maximum

departure rate. From (16) and Fig. 8,

Al(0, x 2) 1 [ -p2 min {b b+ }] (A.2)

where we have omitted V(T3 , Tm) < 0. The right side is nonpositive when (25) holds,
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i.e., (25) implies (18).

(19). For Al(1, x 2 ), x2 < 0, the relevant configurations are listed in Table 4, with

the transitions in Fig. 9. Here p is the probability that X(T-) = (0, 0) is the last

state visited in configuration 2. A crude bound after entering configuration 4 is

V(T3 , Tm) -(b + 1)/a (define T3 = T2 if configuration 3 is not visited). Denote

the discount factor while in configuration i by ac = E{exp[-a(Ti - Ti-_)]}. Using

the maximum and minimum rates from Table 4 where applicable, and applying (16)

repeatedly gives

A1(l, x2) = V(, +a V(T 1 , T 2 ) + 2 [pV(T 2 ,T 3 )+ pa 3 V(T 3, Tm)

+ 2 (1-p)V(T3, m)]}

I1 + +L2

2 + / +1 +/ (12 + )( + a)

(2(G11+2) p )( 2 )b+l ( A b ]} A3)
PI + P2 + a L P) I \1+P2/ a +P A + a a (A-3)

Taking the minimum over 0 < p < 1,

Al(1,X2 ) > + {1 + 81 + 2 + a [1 a, ])} (A.4)

t2 + /) + a a+ a'

+112 + P2 A12 A b+l

The right side of (A.4) is nonnegative when (26) holds.

(20). For A 1(0, 0), a partial list of configurations and their transitions are given in

Table 5 and Fig. 10. The first transition gives

1
Al(0, 0) = [1 + AA1(0, -1) + /1 2A 2(0, 0)]. (A.5)

+ 2 -]-
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Table 6: Configurations of the Coupled Process in (15)

Configuration
1A
1B
2A
2B
3
4
5

States (X, Y)

(x,x - el + e2 ), x2 = 0
(x, x + e2), x2 = 0

(x, x - el + e2 ), x2 = -1

(x, x + e2), x2 = -1

(x,x + el), x2 = 0

(x, x + el), x2 = -1
(x,y), x2 < -1

Cost Rate Departure Rate A
h-1 A

h A
-b- 1 X +/2

-b X +/Y2
1 A <A < X+/ 1

1 A < A < A + l + 2

Change (A.2) to a lower bound using V(T2 ,Tm) > -(b + 1)/a, giving

A1 (0,--1) > Y1 + :2 + a a (A.6)

Expanding A2(0, 0) using the same lower bound, (A.5) can be written

A1 (0,O) > A 12 + I [ i2(b+1)] [2 [- _b+ 1)]}+ 
A + 2+ a /1 + /2 + a a A + a a

(A.7)

The right side is nonnegative when (27) holds.

A 12 (1, x2), x2 < 0. The cost rate of the corresponding coupled process is negative,

-b or -b - 1, until merging. Hence, A 12(1,x 2) < O. D

Proof of Theorem 2.

By assumption, (13) holds. The proof of (14) is identical to that of Theorem

3 except that x2 < 0 and the cost rates differ by -b- 1 < 0, since x 2 can only

decrease until the next job is processed at station 2. In light of Lemma 2, it remains

to show (15) for x2 = 0. Consider the configurations in Table 6 and the transitions

in Fig. 11 for the coupled process corresponding to A 12(x 1 ,0). Here the cost rate

29
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merge

mergemerge

Figure 11: Transition Diagram for the Coupled Process in (15)

merge

1-p

V2

Figure 12: Lower Bound Process
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appears in each configuration and the transition rate appears next to each arc that

has a constant rate (recall that the configurations are collections of states, so that

the configuration does not evolve as a Markov process). The definition of these

configurations is motivated by the fact that, as 2 increases, the probability of entering

configuration 5 (x2 < -1) decreases and more time is spent in configuration 3 with

a positive cost. Adopt the notation Ci = {(x,y): (x,y) E configuration i}, V(x,y) =

V"(y) - Vr(x) (the cost incurred by the coupled process under the no-FG policy 7r),

and Vi = min(,y)Eci V(x, y). Then

A12(X, 0) = V((X1, ), ( 1 - 1, 1)) > ViA > (h-1 + AV2 ). (A.8)

To bound V2, we will approximate Fig. 11 with the process of Fig. 12. For a given

state (, y) E C2, let p be the probability of merging before returning to C2, given

that the system leaves C2 by a 2 transition, and let q be the probability of returning

to configuration 3 upon leaving configuration 4 (by a 2 transition) for the ith time.

We claim that, for this p and qi, the approximate process is a lower bound in the

sense that V(x, y) > V2, where V2' is the value of the approximate process in state 2.

Applying this bound for all states in C2 gives

V2 > V2. (A.9)

To establish that the approximate process is a lower bound, make the following se-

quence of changes to Fig. 11, each of which decreases (or does not change) V2. Elim-

inate configuration 1, replace the cost upon entering configurations 2B and 5 with

their lower bounds V2 and V5, change the cost in 2B to -b- 1, move the merges after

configurations 3 and 4 to after configuration 2B (with an equivalent probability of

merging; the only effect is to reduce the time spent in 3 and 4), and combine 2A and

2B into 2 (the equivalent probability of merging is p, defined above).
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Analyzing Fig. 12,

1

V = + + [-b - 1 + AV5 + (1 - P)'2V3]. (A.10)

To establish bounds, use V5 > -(b + 1)/a and consider the values p = 0 and 1, one

of which will be a worst case. If p = 1,

A 12 (xj, 0) > A -1 -b+ + J) (A.11)

The right side is nonnegative if (29) holds.

Now consider p = 0. Either q = 0 for all i or q = 1 for all i is a worst case

(other than variation in the transition probabilities q, the system is Markov, so that

the minimal cost is achieved by a constant q). If qj = 1,

V3Sl v 1 i+ p 2+a ( ies + 2) + 2Vb) . (A.12)

Solving for V3 and dropping the prime notation gives (32). Combining (A.8-10) and

requiring the right side to be nonnegative gives (30). Hence, for the case q = 1, (30)

implies (15). If qi = 0, V2 replaces V3 in the right side of (A.12). In light of (A.9), we

can replace V2 with V2', substitute into (A.10), and solve for V2' to obtain the lower

bound (35). Since (31) requires the right side of (A.8) to be nonnegative, it implies

(15) for the case q = 0. J
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