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Abstract

The goal of this paper is to assess the improvement in performance that might' be

achieved by optimally scheduling a multiclass open queueing network. A stochastic process

is defined whose steady-state mean value is less than or equal to the mean number of

customers in a queueing network under any arbitrary scheduling policy. Thus, this process

offers a lower bound on performance when the objective of the queueing network scheduling

problem is to minimize the mean number of customers in the network. Since this bound is

easily obtained from a computer simulation model of a queueing network, its main use is

to aid job-shop schedulers in determining how much further improvement (relative to their

proposed policies) might be achievable from scheduling. Through computational examples,

we identify some factors that affect the tightness of the bound.
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When viewed from a dynamic and stochastic standpoint, the job-shop scheduling prob-

lem is often modeled as a scheduling problem for a multiclass network of queues. Despite

the recent development of effective heuristics for scheduling queueing networks in heavy

traffic (see, for example, Harrison 1988, Laws and Louth 1989, Harrison and Wein 1990,

and Wein 1990a), the exact problem remains mathematically intractable, and the primary

mode of analysis by scheduling researchers (see, for example, Panwalkar and Iskander 1977)

and practitioners is computer simulation. In these studies, a detailed computer simulation

model of the queueing network (or job-shop) is developed, different job-shop scheduling

heuristics are tested, and the resulting performance measures are usually compared to a

straw policy (such as the first-come first-served rule) in order to identify effective schedul-

ing policies. One problem with this approach is that the scheduling analyst has no way of

knowing the proximity to optimality of the proposed scheduling policies.

In this paper, we derive a bound on the achievable performance of an optimal schedul-

ing policy in a general open queueing network. In particular, a stochastic process is defined

whose steady state mean is less than or equal to the mean number of customers in the

network under any possible scheduling policy. Moreover, this stochastic process is easily

obtained from a computer simulation model of the queueing network, and thus offers a

lower bound on performance when the objective of the job-shop scheduling problem is

to minimize the mean work-in-process inventory on the shop floor (or the mean sojourn
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time, by Little's formula). This bound is useful in helping job-shop scheduling analysts

determine the effectiveness of their policies.

The queueing network under study consists of a finite number of single-server stations

and is populated by a variety of different types of customers, where each type has its own

arrival stream and its own arbitrary deterministic route through the stations. We begin

by assuming that the processing times for all operations performed at a given station are

independent and identically distributed exponential random variables; however, the arrival

processes are allowed to be arbitrary. A pathwise lower bound is derived in Section 1 for

this network; this bound is a stochastic process that is less than or equal to the number

of customers in the network under any scheduling policy for all times t with probability

one. The bound is derived in a two-step procedure; first, we use linear programming to

derive a lower bound on the total number of customers in the system at time t in terms of

a vector whose i th component is the number of customers present in the network at time

t that require at least one more service from station i before exiting. Then, a pathwise

lower bound on this vector process is derived by constructing a pathwise upper bound for

the cumulative departure process of exiting customers at each service station under an

arbitrary scheduling policy.

In Section 2, we generalize the network under consideration to allow each stage of

each type's route to have a different exponential service time distribution. However, the

arrival streams for the various customer types are now restricted to be independent Poisson

processes. For this network, we are only able to obtain a lower bound on steady-state,

rather than pathwise, performance; that is, we define a stochastic process whose steady-

state mean value is less than or equal to the steady-state mean number of customers in

the network under any scheduling policy. A similar two-step procedure is used here, but

steady-state mean value bounds, not pathwise bounds, are derived in each step.

In Section 3, we derive a simple bound that ignores all the congestion effects across

classes; this bound is primarily used as a basis for comparison. All the bounds derived in
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this paper are valid for any nonpreemptive scheduling policy that is nonanticipating with

respect to the service times of the various operations; that is, although the service time

distribution of each operation is known by the scheduler, the actual service times do not

become known until they are realized. The scheduler is also allowed to observe the vector

queue length process at each point in time, and to observe each customer's deterministic

route at the moment of their arrival.

In section 4, we perform a simulation experiment on three two-station networks and

a three-station network under a variety of load conditions. Three stochastic processes

are simulated for each example: the total number of customers in the network under the

first-come first-served (FCFS) policy, the total number of customers in the network under

a proposed scheduling policy (which is derived by various analytic and ad-hoc methods),

and the stochastic process (which leads to the bound) derived in Section 1 or 2 (depending

on the particular network).

The numerical results are moderately encouraging, with the time average value of

the bound equaling 78.0%, on average, of the mean number of customers in the network

under the proposed policy. Since the pathwise bound derived in Section 1 is more effective

than the steady-state bound derived in Section 2, the bounds tend to be more effective

for networks in which service rates depend on the station, rather than the customer class.

Also, the bounds tend to become less effective as the amount of feedback in the routes

increases. For all four examples, the bounds were tightest when the load on the network

was very heavy and imbalanced across the stations. However, for examples 2,3, and 4, the

bounds performed worst when the load on the network was heavy and balanced across the

stations. For these same examples, the proposed policies offered a significant improvement

in performance over FCFS when the load was heavy and imbalanced, and the lower bounds

showed that most of the possible improvement from scheduling (relative to FCFS) had been

obtained by these proposed policies. Although we did not test the bound on any network

with a large number of stations, we suspect that the efficiency of the bound will deteriorate
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as the number of stations increases. We hope the slackness in these bounds will motivate

others to further study this problem area.

Although some of the ideas employed here have been used by Laws and Louth (1989)

and Harrison and Wein (1989) to derive pathwise bounds for particular scheduling prob-

lems, this paper appears to contain the first attempt to offer a systematic procedure to

develop performance bounds for general multiclass queueing networks operating under arbi-

trary scheduling policies. Readers are also referred to Weiss (1988), who derives worst-case

bounds for Smith's rule (that is, the weighted shortest expected processing time rule) for

parallel machines serving a fixed set of jobs with stochastic processing times.

1. A Pathwise Bound

The network considered in this section has I single-server stations and is visited by a

variety of different customer types, each with their own arbitrary deterministic route (that

is, sequence of stations to be visited) through the system. As in Kelly (1979) and Harrison

(1988),' we define a different class of customer for each stage of each customer type's route.

Customers of class k = 1,..., hK require service at a particular station s(k), and we define

the I x K matrix M = (Mik), where Mik = 1 if customers of class k require at least one

more service from station i before exiting, and let Mik = 0 otherwise.

Let Qk(t) be the number of class k customers in the network at time t, and let Q =

(Qk) be the vector queue length process. The goal of this section is to derive a lower bound

under any scheduling policy for EK=1 Qk(t) for all times t. Define the I-dimensional

process W = (Wi) by

W(t) = MQ(t) for all t > 0, (1)

so that Wi(t) is the number of customers present in the network at time t that require at

least one more service from station i before exiting.

The derivation of the pathwise lower bound is a two-step procedure. First, a pathwise
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lower bound W*(t) is found for W(t), meaning that

W*(t) < Wi(t) for i = 1,...,I, and t > 0, (2)

for all scheduling policies. (We will construct such a bound shortly.) Then, by (1) and (2),

a lower bound on the number of customers in the network at time t under any schedul-

ing policy can be obtained by solving the following linear program parametrically for all

nonnegative values of W*(t):

K

min E Qk(t) (3)
Q(t)

K

subject to E MikQk(t) > W*(t) for i = 1, ..., I, (4)
k=1

Qk(t) > O for k = 1,...,K. (5)

If we let f(W"(t),..., WI(t)) denote the optimal objective function value of this linear

program, then for any scheduling policy,

K

f (W(t),..., W;(t)) < E Qk(t) for t > 0. (6)
k=l

In (6), the right side depends on the scheduling policy, and the left side is independent of

the scheduling policy and is a pathwise performance bound for the network. The remainder

of this section is devoted to finding a pathwise lower bound W* satisfying (2), but first we

observe that the function f in (6) has a very simple form in a special, but not uncommon,

case.

Proposition 1. If there is a customer type who visits every station in the network,

then

f (W(t),... (t)) = max W,*(t) for t > 0. (7)
I<i< / -
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Proof. If we denote the dual variables by ri,i = 1,..., I, the dual linear program to

(3)-(5) is
I

max riW*(t) (8)

I

subject to riMik 1 for k = 1,...,K, (9)

ri > 0 for i = 1,...,I. (10)

If there is a customer type who visits every station in the network, then there is a constraint

in (9) of the form Z/1 7ri < 1. Since Mik takes on the value of zero or one for all i = 1, ... , I,

and k = 1,..., K, all other constraints in (9) are redundant, and the result follows. I

In summary, a pathwise performance bound (6) has been derived in terms of a hy-

pothetical vector process W* that satisfies (2). In order to construct W*, we need to

complete the specification of the queueing network. Customers of class k = 1,...,K arrive

according to independent arbitrary arrival processes {Nk(t), t > O}, where Nk is assumed

to be nondecreasing, RCLL (that is, its sample paths are right continuous and have left

limits with probability one), and satisfy Nk(O) = 0; thus, Nk(t) = 0 for all t > 0 for any

class that does not correspond to the first stage along some customer type's route. For

i = 1,..., I, let {Si(t),t > 0} be a Poisson process with parameter pi, which is the service

rate for station i, and suppose Si(O) = 0. Thus, we interpret Si(t) as the number of service

completions at station i up to time t if the server was always busy during [0, t]. As in

Harrison and Wein (1989), we assume the network is run according to the following mod-

ified service mechanism that was introduced by Borovkov (1965). The potential service

processes Si, i = 1, ... , I, are always turned on, and whenever a potential service completion

occurs in Si, then a customer is allowed to depart station i; the particular exiting customer

depends on the scheduling policy used at station i, and a departure only occurs if at least

one customer is present at station i. If a customer arrives to station i at time t to an idle

server, then its service time is the residual portion of the potential service time that is in
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progress at time t; thus the service time is still exponential with parameter pi.

The key to constructing W* is to derive an upper bound on the cumulative departure

process from each station under an arbitrary scheduling policy. In order to derive this

bound, we find it useful to consider a modified network where each customer, upon arrival

to the system, immediately splits into a number of different customers, one for each of the

different stations that are visited by the original customer. Each customer in the modified

network is served exclusively at one station. In particular, if a certain customer type in the

original feedback network visits a certain station I times on its route, then the customer

created for that station in the modified network will immediately (that is, without any

delays) feedback I- 1 times after the first visit to that station; thus each station in the

modified network will behave as a multiclass queue with feedback.

If a customer arrives to the original queueing network at time t, then the corresponding

customers (one for each station on the original customer's route) in the modified network

will not neccessarily arrive at their respective stations at time t; instead, we will delay

the arrivals in the modified network in order to obtain a tighter bound. In particular, we

define a K- dimensional vector N* = (NL) of delayed arrival processes, but we essentially

ignore Nk if class k does not correspond to the first visit to a station by a customer type.

Thus, let I(k) = i if class k corresponds to the first visit to station i by the corresponding

customer type, and let I(k) = 0 if class k is not the first visit to a station by some customer

type. Then for classes {k: (k) > O}, N*(t) represents the number of class k customers

who have arrived to station s(k) (which is the station that serves them in the original

network) of the modified network in [0,t]. For {k: (k) > 0}, the process NZ will be

constructed so that N*(t) will be greater than or equal to Ak(t), which we define to be the

number of arrivals of class k customers to station s(k) up to time t in the original network

under any arbitrary network scheduling policy. For ease of notation, we assume without

loss of generality that the classes are ordered so that consecutive stages of each customer

type's route are also consecutively numbered classes. The processes N, k = 1, ... ,K , will
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be defined sequentially starting with k = 1. In particular, if class k corresponds to the

first stage along some customer type's route, then let

N (t) = Nk(t) for t > O, (11)

and otherwise, let

N*(t) = S(k1r_)(t) + nf Z.._,(s)- S(-1)(s)} for t > 0. (12)
0<s<t

Notice that NZ is nondecreasing and RCLL for k = 1, ..., K.

Proposition 2. For all t > O0

Ak(t) < N(t), for all scheduling policies and all classes {k: I(k) > 0. (13)

Proof. In order to explain equation (12), suppose class k is the n h stage along a

customer type's route, where n > 2, and suppose 1(k) > 0. Then {N*(t),t > 0} represents

the departure process from a tandem queueing system (not to be confused with the original

or modified queueing network) consisting of n- 1 single-server exponential stations, where

customers arrive to the system according to the process {Ns(k_n+l)(t),t O} (which

equals {N(k-n+l)(t),t > 0}, since class k - n + 1 is the first stage along this customer

type's route), and the service rate at station i = l,...,n - 1 of the tandem system is

/s(k-n+i). Notice that the departure process in (12) is expressed as the potential number

of departures minus the lost number of departures due to an empty queue; readers are

referred to chapter 2 of Harrison (1985) for a full development of this approach. Thus, NZ

represents the arrival process of class k customers to station s(k) in the original network

if they received preemptive priority at each previous stage of their route. Since each

customer class in the original queueing system may be competing with other classes at

their respective stations, Nk (t) is an upper bound on the number of class k arrivals in [0, t]

to station s(k) in the original network under any scheduling policy, for all t > 0, and thus

(13) holds. I
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The arrival process to station i in the modified network is {Z{k:I(k)=,} N;(t),t > 0},

which is a superposition of the delayed arrival processes for the various classes that visit

this station for the first time, and the potential service process for station i in the modified

network is {Si(t),t > 0}. Define {Fi(t),t > 0},i = 1,...,I, to be the cumulative departure

process of exiting customers (that is, customers visiting station i for the last time) from

station i (which is a multiclass feedback queue) in the modified network under the shortest

expected remaining processing time (SERPT) policy; this policy gives nonpreemptive pri-

ority to the customer class that requires the least expected remaining amount of work at

station i before exiting. Since all service operations at station i are independent and iden-

tically distributed, this policy reduces to awarding priority to the class that has the least

number of remaining stages of service on their route. Then define Wf*(t) for i = 1,..., I,

and t > 0, by

K

It (t) = E AMk Nk(t) - F (t), (14)
k=1

which represents the number of customers arriving to the original queueing network in

[O, t] requiring at least one service at station i minus the number of customers departing

(for the last time) station i of the modified queueing network in [0, t under the SERPT

policy.

Proposition 3. For all t > 0 and all scheduling policies, W*(t) Wi(t), i = 1,...,I.

Proof. For {k: I(k) > 0}, recall that {Ak(t),t > 0} is the arrival process of class

k customers to station s(k) in the actual queueing network under an arbitrary scheduling

policy. For the original queueing network, let Di(t) be the number of service completions

by server i in [0, t that constitute the last visit by a customer to station i under any

arbitrary scheduling policy.

We begin by proving the result for the special case where no feedback exists; that is,

customers do not visit any station more than once on their route. In this case, station i of
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the modified network is a single-server queue with no feedback, and

Fi(t)= Si(t)+ inf{( y N *(s)-Si(s) for t>O. (15)o_<8<t {k:I(k)=i}

Although Di(t) depends on the scheduling policy employed, we have, for i = 1,...,I,

and t > 0,

Di(t) < si(t) + nf { A(s)- S(s)} (16)

< Fi(t) by (13) and (15). (17)

Notice that the inequality in (16) is tight if the server at station i in the actual queueing

network services customers whenever the queue is not empty. For i = 1, ..., I, and t > 0,

we have

K

Wi(t) = MikNk(t) - Di(t) (18)
k=l
K

> > AIk Nk(t) - F,(t) by (17), (19)
k=1

= W*(t) by (14). (20)

Now let us consider the general feedback case. By (14) and (18), it suffices to show that

Di(t) < Fi(t) for i = 1,...,I, and for all scheduling policies. To repeat, {Di(t),t > 0} is

the departure process of exiting customers from station i in the original feedback queueing

network under any arbitrary scheduling policy. Furthermore, for k such that I(k) = i,

class k customers arrive to station i in this network according to {Ak(t),t > 0}, which in

turn depends on the network scheduling policy. Observe that if customers in this network,

after visiting station i for the first time, skip subsequent stages of their route that are not

at station i, then the same sequence of customer services at station i could be realized,

and hence the same departure process {D,(t),t > 0} could be observed. Moreover, if the

actual arrival process of first time customers to station i, {{k:I(k)=i} Ak(t),t > 0}, was
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replaced by our delayed arrival process {C{k:I(k)=i) NZ(t),t > 0}, then, by (13), the same

scheduling policy (and hence the same departure process of exiting customers), could be

realized. Thus, any scheduling policy (and hence any corresponding departure process)

that is feasible for station i of our original feedback queueing network is also feasible for

the corresponding multiclass feedback queue in the modified network.

Therefore, a pathwise upper bound (for any scheduling policy) on the departure pro-

cess of exiting customers for station i of the modified network will also be a pathwise

upper bound on Di(t). For customer classes {k: I(k) = i}, let mk denote the number of

remaining visits to station i before exiting the network. The maximum number of service

completions up to time t at station i of the modified network is

Si(t)+ inft mk(s) - Si(s)} (21)
- {k:I(k)=i}

which is realized by any scheduling policy that always serves customers when the queue

is not empty. Moreover, among this class of policies, the SERPT policy maximizes the

departure process of exiting customers for all t > 0. Thus, F,(t) > Di(t), for all scheduling

policies and all times t > 0, which completes the proof. 

2. A Steady-State Bound

In this section, each customer class is allowed to have a different exponential service

time distribution, but each customer type is constrained to have a Poisson arrival process;

that is, Nk, k = 1,...,K, are now independent Poisson processes. We will use a similar

procedure as in the last section (and will retain most of the notation), but will develop a

steady-state, rather than pathwise, bound; thus, we will need to assume that the arrival

rates, service rates, and customer routes are such that the traffic intensity at each station

in the network is less than one. For k = 1, ..., K, let qk be defined by

T

q = lim - E Qk(t)dt], (22)
T-oo T Jo

11
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so that it represents the long run expected number of class k customers in the system

under an arbitrary policy. Similarly, for i = 1, ... , I, define

wi = lim E[l Wi(t)dt], (23)
T-oo T

which is the long run expected number of customers in the network who require at least

one more service at station i before exiting. Thus, it follows from (1) that

K

wi = M ikqk, for i= 1, ...,I, and k = 1,...,K. (24)
k=l

Suppose we can find an I-dimensional stochastic process W* such that

w = lim El W,(t)dtJ < wi, i = 1, .,I, (25)
T-oo -"

for all scheduling policies. Then a lower bound on the mean number of customers in the

system in steady-state can be found by solving the following linear program parametrically

in w*:
K

min Eqk (26)
k=l

K

subject to E Mikqk > w, for i = 1,...,I, (27)
k=1

qk > O for k = 1,...,K. (28)

Denoting the solution to the linear program by f(w*, ... , we), it follows that for any schedul-

ing policy,

f(w,...,,W) < lim Q(t)t]. (29)T-oo TJo
k=1

By the convexity of f (for a proof of convexity, see, for example, Proposition 4.1 in Wein

1990b) and Jensen's inequality, it can be shown that

f(w ... ,w) < 1im TE[ f(Wr(t),..., W(t))dt], (30)
--- oc "12
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and thus the steady-state bound is not as effective, in general, as the pathwise bound

derived in Section 1. Our inability to find a pathwise bound W* satisfying (2) for the

network described in this section has led us to resort to the less effective steady-state bound.

Also, observe that Proposition 1 still holds, with w? in place of W,*(t), for i = 1, ... , I.

In order to derive a stochastic process W* satisfying (25), we again consider the

modified queueing network described in Section 1; however, the network will be defined

slightly differently, since each customer class can have its own exponential service time

distribution. In particular, let Sk, k = 1,...,K, be the Poisson process corresponding

to the number of potential service completions in [0, t] if class k customers were served

continuously during that interval. The delayed arrival processes N, k = 1,...,K, are

defined exactly as in (11) and (12), except the service processes S8(k) in (12) are replaced

here by Sk; that is, if class k corresponds to the first stage along some customer type's

route, then let

Nl(t) = Nk(t) for t > 0, (31)

and otherwise, let

N*(t) = Sk-l(t) + inf {N_l(s) - Sk_(s)) for t > 0. (32)
O<s<t

The arrival process to station i of the modified network is Z{k:I(k)=i} N-. Since

N = (Nk) are Poisson processes, it follows by the explanation of equation (12) in the proof

of Proposition 2 and by Burke's theorem (Burke 1956) that NZ is a Poisson process for

all k. Since N,* are independent for all k such that l(k) = i, it follows that the arrival

process to each station in the modified network is a superposition of independent Poisson

arrival processes, which is itself Poisson; thus each station in the modified network behaves

as a multiclass M/M/1 feedback queue. Furthermore, Proposition 2 holds true for this

network, where, for all k such that I(k) > 0, {Ak(t), t > 0} is the arrival process of class k

customers to station s(k) in the original feedback network under any arbitrary scheduling

policy. We will also need the following result.
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Proposition 4. For all t > 0,

K

A, N-(t) < MkNk(t) for i = 1,...,I. (33)
{k:I(k)=i) k=1

Proof. We begin by supposing that all customer classes {k I(k) = i} visit station

i on the first stage of their route. Then

E Nk(t)= E Nk(t) by (31), (34)
{k:I(k)=i} {k:I(k)=i)

K

= E A kNk(t), (35)
k=1

since Nk(t) = 0 for t > 0 for all classes not on the first stage of some customer type's

route. Notice that EK =l ikNk(t) is independent of whether the classes {k : I(k) = i}

visit station i on the first stage of their route or on a later stage of their route. Now

suppose some customer classes in the set {k : I(k) = i} visit station i at a later stage of

their route. If classes k - 1 and k belong to the same customer type's route, then it is clear

from (32) that Nk_l(t) > N*(t) for t > 0. Thus, {k:I(k)=i} N(t) is less than or equal to

the left side of equation (34), and our result follows. I

As in Section 1, we let {F,(t), t > 0}, i = 1,..., I, be the cumulative departure process

of exiting customers from station i (which is a multiclass lI/M/1 feedback queue) in the

modified network under the shortest expected remaining processing time (SERPT) policy,

and define W 3*(t) for i = 1, ... , I, and t > 0, by

K

WI (t) = E MIkNk(t)- F(t). (36)
k=1

Thus, the steady-state bound w, for i = 1, ..., I, is given by

-lim [TWg = lim TE[/;(l/ik¥(t)- Fi(t))dt (37)T--oo (Ž M5kNk(t) - i .

Proposition 5. For all scheduling policies, w* 1, i = .
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Proof. Notice that (36) can also be expressed as

W*(t)= M Nk(t) E N(t)]

+ E N*(t) - Fi(t) (38)
k:I(k)=s}

where the second bracketed term on the right side represents the number of customers in

a multiclass M/M/1 feedback queue under the SERPT policy. For the original feedback

queueing network, we again define Di(t) to be the number of service completions in [O, t]

that constitute the last visit by a customer to station i under any arbitrary scheduling

policy. Then we have

K

Wi(t) = MikNk(t) - Di(t) (39)
k=l

K

= MikN k(t)- - N;(t)+ E N*(t) - Di(t). (40)
k=1{ k:I(k)=i} {k:I(k)=i}

If station i services m different customer types in the original network, then by (31)-(32),

K

T-oim TE MikNk(t)- E N()] (41)
k=- {k:I(k)=i}

is the mean steady-state number of customers in a set of m different tandem queueing

systems (readers are referred to the proof of Proposition 2 for the interpretation of N*);

this quantity is finite, since the traffic intensity at each station in the original queueing

network is less than one. Thus, by (23), (37)-(38), and (40), it suffices to show that, for

all scheduling policies,

lim-E 7 ~ N( t) - d <lim T E N(t) Di(t)dt]
T-oo T E .{ T-o T 0 {k:I()=

(42)

where the right side is dependent on the scheduling policy used in the original queueing

network.
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By the argument in the paragraph under equation (20) in the proof of Proposition 3,

any scheduling policy (and hence any corresponding departure process) that is feasible for

station i of our original feedback queueing network is also feasible for the corresponding

multiclass M/M/1 feedback queue in the modified network. Thus, inequality (42) follows

by the fact that the SERPT policy minimizes the long run expected number of customers

in a multiclass M/M/1 feedback queue (see Klimov 1974 for a derivation of this classic

result). I

By (33) and (37)-(38), it follows that

wi T-limo T N(t) - F,(t)dt], (43)
{k:I(k)=i)

which is the mean steady-state number of customers in a multiclass M/M/1 feedback

queue (under the SERPT policy) that has the same traffic intensity as station i in the

original queueing network. Thus, if the traffic intensity pi > 1 for some station i in the

original queueing network, then w? will be infinite, as will our steady-state lower bound.

Therefore, scheduling is unable to prevent an open queueing network from instability when

max{l<i<I} pi > 1.

3. A Pathwise Bound for Each Customer Type

In this section, we briefly describe an obvious pathwise bound that can be obtained by

assuming that customer classes do not compete with each other for the network's service

resources, and by analyzing each customer type (rather than each station) in isolation.

This bound allows a different exponential service time distribution for each class (which

again is represented by the potential service processes {Sk(t),t > O0},k = 1,...,K), and

arbitrary interarrival time distributions (denoted by {Nk(t), t > 0}, k = 1, ..., K).

Suppose a certain customer type has n stages on its route and the first stage on its

route corresponds to class k. Then consider an n-station FCFS tandem queueing system

with arrival process {Nk(t),t > O} to the first station, and station i = 1,...,n has service
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time distribution characterized by the potential service process {Sk+i-l(t),t > O}. If

we define Nk, k = 1,..., K, as in (31)-(32), then the number of customers in the tandem

queueing system at time t is

Nk(t) - S+n-l(t) -o i<nsif<{N+nl(S) - Sk+n-l(s)} for t > 0, (44)

which is a lower bound on the total number of customers of this type in the actual queueing

network at time t, for all t > 0. If we index the customer types in the network by

j = 1, ... , J, and let Zj(t) be the number of customers in the jth tandem system at time t,

then J=1 Zj(t),t > O} is a pathwise lower bound on the total number of customers in

the original queueing network under any scheduling policy.

The main advantage of this bound over the previous bounds is that each customer

class contributes to the bound at each point in time, since we are summing over the number

of customers of each class in a set of tandem queueing systems. In contrast, the function

f appearing in (6) and (29) does not allow us to incorporate a contribution from each

customer class at each point in time. However, the bound derived in this section ignores

all of the queueing effects between the various classes at a station, and hence this bound

will not be useful unless the network has low traffic intensity, or the majority of the offered

load at each station is due to one customer class.

4. Examples

In this section, we test the bounds derived earlier on three two-station networks and

one three-station network; the routing complexity for these examples ranges from a tandem

network to a network with symmetric routing. For each network, we consider six differ-

ent scenarios, which consist of two levels of load balance (abbreviated by BALANCED

and IMBALANCED) crossed with three levels of load intensity (LIGHT, MEDIUM, and

HEAVY). Let pi be the traffic intensity at station i, which is the fraction of the time over

the long run that server i is busy. For the BALANCED networks, the traffic intensity is the
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same at each station, and is .3, .6, and .9 for the three respective load intensities. For the

two-station IMBALANCED networks, the vector p of traffic intensities is (.3,.2), (.6,.4),

and (.9,.6) for the three load intensities, and for the three-station imbalanced networks,

the respective vectors are (.3,.2,.1), (.6,.4,.2), and (.9,.6,.3).

For each scenario of each network, we simulate and record the time average values of

three stochastic processes: (1) the number of customers in the network under the FCFS

policy, (2) the number of customers in the network under a PROPOSED policy (which

is derived from either previous analysis or on a trial-and-error basis), and (3) the lower

BOUND (from either Section 1 or Section 2, depending on the particular network). The

pathwise bound from Section 3 was also tested for each scenario, but we only record the

results for the one case where it was tighter than the other bound; in the majority of cases,

this bound performed poorly, as expected.

For each scenario, 20 independent runs were made, each consisiting of 11,000 time

units in examples 1 and 2, and 91,000 time units for examples 3 and 4. The observations

in the first 1000 time units of each run were discarded to reduce the initialization effect. In

the tables to follow, we provide the mean (and 95% confidence interval) over the 20 runs

of the time average value of the three stochastic processes.

Ideally, the effectiveness of our bounds should be measured by their proximity to the

number of customers under an optimal scheduling policy. Unfortunately, this is impossible

to assess, since the optimal scheduling policy for each of these problems is unknown.

Instead, we will record the ratio of the mean of the pathwise lower bound divided by

the mean number of customers in the system under the PROPOSED policy. This ratio

will be multiplied by 100% and referred to as the efficiency of the lower bound in the

tables and discussion that follow. Since the main use of these bounds is to aid a job-shop

scheduler in determining how much further improvement (relative to their proposed policy)

might be achievable from scheduling, the efficiency seems like an appropriate measure for

consideration. However, the gap between the PROPOSED policy and the BOUND equals
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the gap between the PROPOSED policy and an optimal policy plus the gap between an

optimal policy and the BOUND, and it is difficult to assess how much of the total gap is

due to either portion; that is, some of our recorded gap may be due to our inability to

specify a scheduling policy that is close to optimal.

Example 1. This simple network is pictured in Figure 1, where type A customers

visit station 1 and then exit, and type B customers visit station 1, proceed to station 2,

and then exit. Type A and type B customers arrive to station 1 according to independent

Poisson processes with rates AA and AB, respectively. The exponential service rates Ml and

12 are associated with the two servers, not the three classes, and thus the pathwise bound

derived in Section 1 is valid for this network. The service rates are pl = 2 and p2 = 1

in the three BALANCED scenarios, and are pl = 2 and p2 = 1.5 in the IMBALANCED

scenarios. The arrival rates A4 and AB are both set equal to .3 for the LIGHT scenarios,

.6 for the MEDIUM scenarios, and .9 for the HEAVY scenarios.

The only real scheduling decision in this problem is to dynamically decide which

customer type to serve at station 1. Harrison and Wein (1989) studied this scheduling

problem under the heavy traffic assumptions that l1 = 2, p2 = 1, AA = 1, and AB was close

to 1 (for example, .9). Under these conditions, they analyzed a Brownian approximation

(developed in Harrison 1988) to this problem, and proposed the following scheduling policy,

which is our PROPOSED policy for this example: higher priority is awarded to type A

customers at station 1, unless there are c or fewer customers in queue and in service at

station 2. In the latter case, priority is given to type B customers in order to avoid

idleness at station 2. The most effective value of the parameter c was chosen via computer

simulation.

The results are recorded in Table I. The average efficiency over the six scenarios is

88.2%, and the bound appears to be slightly more efficient when the network is IMBAL-

ANCED. It is also interesting to note that the efficiency of the bound is lowest under the

MEDIUM traffic load. When the load on the system is low, there is little congestion in
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Figure 1. The network for example 1.

the network, and one would not expect a large difference between our pathwise bound and

the proposed policy (or the FCFS policy). Moreover, when the pathwise bound derived

in Section 1 is applied to the problem in Harrison and Wein (1989), it reduces to the

bound denoted by wLRPT(t) V w2LRPT(t) in Proposition 2 of that paper. Harrison and

Wein show that a pathwise bound that is smaller pathwise than w LRPT(t) V WLRPT(t)

weakly converges (under the standard heavy traffic scaling) to the optimal objective func-

tion value of a Brownian control problem that approximates this scheduling problem under

heavy traffic conditions. Thus, it is reasonable to presume that our bound should also per-

form well when the load on this network is very high. In order to test this hypothesis,

we measured the efficiency of the lower bound when AA = AB = .99; the efficiency was

93.9% in the BALANCED case (pl = P2 = .99), and 98.2% in the IMBALANCED case

(pl = .99, p2 = .66). Similarly, for the problem considered in Harrison and Wein (1989),
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readers may refer to Table 2 of that paper to see that the efficiency of the pathwise bound

is 89.2% when p = (.95,.9) and is 95.5% when p = (.995,.99).

SCENARIO FCFS PROPOSED BOUND EFFICIENCY

BALANCED

LIGHT .856 (.010) .856 (.008) .775 (.010) 90.5%

MEDIUM 2.99 (.058) 2.92 (.051) 2.47 (.046) 84.6%

HEAVY 17.9 (±.912) 15.5 (.872) 13.2 (.824) 85.2%

IMBALANCED

LIGHT .677 (.007) .677 (.007) .621 (.007) 91.7%

MEDIUM 2.16 (.058) 2.14 (.034) 1.85 (.031) 86.4%

HEAVY 10.7 (.565) 10.4 (+.548) 9.46 (.544) 91.0%

Table I. Simulation results for example 1.

Example 2. This example is a simplified two-station version of the nine-station

symmetric job-shop studied in Chapter 11 of Conway et al. (1967). Customers arrive

according to an independent Poisson process at rate A to each station. When customers

complete service at a station, they visit the other station with probability one-half and exit

the network with probability one-half, independent of all previous history. As in Conway et

al. (1967), a customer's entire route is chosen at the time of its arrival to the network, and

is made known to the scheduler. For ease in developing the simulation model, we did not

allow a customer to have more than six operations on its route; hence there are 12 possible

routes through the network. Since we assume that the exponential service rates are the

same for each service operation performed at a given station, only 12 customer classes are

required. For the BALANCED scenarios, the service rates are 1.0 at both stations, and

for the IMBALANCED scenarios, the service rate is 1.0 at one station, and 1.5 at the

other. The arrival rate A is adjusted to achieve the desired loading levels for each of the

six scenarios.
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As in example 1, a Brownian approximation to this queueing network scheduling prob-

lem (under the BALANCED, HEAVY scenario) has already been addressed. In particular,

Wein and Ou (1989) proposed the following dynamic scheduling policy, which is referred

to as the PROPOSED policy in Table 2. For i = 1,2 and k = 1,...,12, let Aik be the

expected remaining processing time for a class k customer at station i before that customer

exits the network, and define {Vi(t),t > 0} by

12

Vj(t) = AikQk(t) for i = 1,2, (45)
k=l

where Q is the vector queue length process. Thus, Vi(t) represents the total amount of work

remaining in the network for station i at time t. When Vl(t) > V2(t), the PROPOSED

policy awards priority to classes with smaller values of Alk, and if there is a tie among

classes, then priority is given to larger values of A2k at station 1 and smaller values of A2k

at station 2. Similarly, when V1(t) < V2(t), priority is given to classes with smaller values

of A2k, and when ties exist, priority is awarded to smaller values of Alk at station 1 and

larger values of Alk at station 2.

The results for example 2 are displayed in Table II. Since all service operations at a

given station have the same service rate, the lower bound is calculated using the pathwise

bound in Section 1. The average efficiency over the six scenarios is only 77.2%, and thus

the bound is not as efficient as it was in example 1. Once again, the pathwise bound

appears to be more efficient in the IMBALANCED networks; in particular, the efficiency

in the BALANCED networks deteriorates as the load becomes heavier, and is below 60%

under a HEAVY load. However, the bound efficiency does improve under very heavy loads;

the efficiency was 61.7% in the BALANCED network ( = p2 = .99) and 91.0% in the

IMBALANCED network (pl = 9 9 , p2 = .66). Since f(zx,x 2) = x V 2 by Proposition

1, it is clear why the bound is most effective when the load on the network is very heavy

and imbalanced; in this case, most of the congestion occurs at one station in the network,

and this congestion is captured by the function f. However, a smaller portion of the total
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congestion is at one station when the network becomes more balanced or the network

becomes more lightly loaded; thus, our bound becomes less effective in these cases. The

function f also implies that our bounds will deteriorate as the number of stations in the

network increases; in particular, it would appear that the bound would perform poorly in

a well balanced network with many stations. However, the bound may still be useful in

a network with many stations, if the network is heavily loaded and possesses a decisive

bottleneck station.

SCENARIO FCFS PROPOSED BOUND EFFICIENCY

BALANCED

LIGHT .864 (.014) .838 (.015) .698 (.010) 83.3%

MEDIUM 3.02 (±.058) 2.78 (.053) 2.07 (.030) 74.5%

HEAVY 18.2 (1.27) 13.6 (.709) 8.03 (.422) 59.0%

IMBALANCED

LIGHT .673 (.011) .665 (.010) .569 (.008) 85.6%

MEDIUM 2.16 (.042) 2.02 (.036) 1.63 (.032) 80.7%

HEAVY 10.4 (.734) 7.53 (.394) 6.03 (.352) 80.1%

Table II. Simulation results for example 2.

The large amount of feedback present in this example is probably the main reason why

the bound is less effective in example 2 than example 1. However, it is possible that the

PROPOSED policy is closer to optimality in example 1 than in example 2, which would

also contribute to the discrepancy.

Example 3. This two-station example, which is pictured in Figure 2, not only al-

lows customer feedback, but also allows each customer class to have its own exponential

service rate; thus, the steady-state bound derived in Section 2 is required. There are two

customer types, A and B, with two and four stages on their respective routes. The six
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customer classes will be indexed by k = 1,..., 6, and referred to by their type-stage pair:

Al, A2, B1, B2, B3, and B4. The mean service times (not rates) for the six scenarios are

(8, 6, 2, 7, 4, 1) in the three balanced scenarios, and (8, 4, 2, 14/3, 4, 1.5) in the three

IMBALANCED scenarios. The Poisson arrival rates AA and AB are 3/14 for the LIGHT

scenarios, 6/14 for the MEDIUM scenarios, and 9/14 for the HEAVY scenarios.

Class A1 

Class B\
B" v

Class A2

Class B2
/

Figure 2. The network for example 3.

Although effective scheduling policies have been developed under balanced heavy load-

ing conditions for two-station closed (that is, constant population size; see Harrison and

Wein 1990) networks and two-station networks with controllable inputs (see Wein 1990a),

the general two-station open network problem has not been successfully analyzed. We

tested several static and dynamic scheduling policies by computer simulation, and found

that the simple shortest expected remaining processing time (SERPT) rule, which gives

priority to customers who are closest to exiting the network, was most effective. Thus, our

PROPOSED policy in Table III is the SERPT policy.

The results for example 3 are displayed in Table III. The average efficiency of the

bounds over the six scenarios is 72.4%, which is lower than example 2; the lower efficiency

may be partially due to the fact that, as explained in (30), the steady-state bound de-
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rived in Section 2 is not as efficient as the pathwise bound derived in Section 1. Once

again, the bound efficiency decreases with the load in the BALANCED networks, and the

lowest efficiency was achieved under the BALANCED, HEAVY scenario. However, under

LIGHT and MEDIUM loads, the efficiency was slightly higher under the BALANCED

network than under the IMBALANCED network. As in example 2, there was a huge dis-

crepancy in the bound efficiency under very heavy loads; the efficiency was only 49.4% in

the BALANCED network (pl = p2 = .99) and was 94.8% in the IMBALANCED network

(pl = .99, 2 = .66). Also, the simple bound derive in Section 3 was tighter than the

Section 2 bound in the IMBALANCED, LIGHT scenario, although the two bounds were

nearly identical in this case.

SCENARIO FCFS PROPOSED BOUND EFFICIENCY

BALANCED

LIGHT .951 (.015) .900 (.013) .734 (.011) 81.6%

MEDIUM 3.76 (.093) 3.06 (.068) 2.18 (.045) 71.2%

HEAVY 23.9 (1.98) 15.1 (1.14) 8.48 (±.611) 56.2%

IMBALANCED

LIGHT .742 (.011) .709 (.010) .560* (.006) 79.0%

MEDIUM 2.64 (.060) 2.22 (.044) 1.47 (.031) 66.2%

HEAVY 13.2 (.906) 8.67 (±.475) 6.94 (±.451) 80.0%

*Section 3 bound

Table III. Simulation results for example 3.

Example 4. Our last example is the three-station tandem queueing system pictured

in Figure 3. The six classes are indexed by k = 1, ... ,6 and ordered by (Al, A2, A3, B1, B2,

B3). The service times for each class are exponential with mean (2, 4, 6, 7, 5, 3) in the three

BALANCED cases, and (2, 2, 1, 7, 4, 2) in the IMBALANCED cases. The Posson arrival
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rates AA and B are both 1/3 for the LIGHT scenarios, 2/3 for the MEDIUM scenarios,

and 1.0 for the HEAVY scenarios. The steady-state bound derived in Section 2 is required

for this example, since each customer class has a different service rate. After testing several

static and dynamic policies in trial simulation runs, we have used the shortest expected

processing time policy, which gives priority to the class whose upcoming operation has the

shortest expected processing time, as the PROPOSED policy in Table 4.

Class Al N
DA 7

Class B1
XB -,

Station

1

Class A2 \
Class B2

Class B2\

Class A3 \

Class B3
-7/

Figure 3. The network for example 4.

SCENARIO

BALANCED

LIGHT

MEDIUM

HEAVY

IMBALANCED

LIGHT

MEDIUM

HEAVY

FCFS

1.37

5.15

32.7

.860

2.79

14.1

PROPOSED

(±.023)

(±.095)

(±2.89)

(±.012)

(+.061)

(+1.40)

1.35

4.68

24.2

.840

2.51

10.3

(±.017)

(±.075)

(±1.79)

(±.012)

(±.046)

(+.903)

BOUND

1.17

3.32

12.2

.717

1.78

8.33

EFFICIENCY

(+.013)

(±.055)

(+.702)

(±.008)

(±.023)

(±.890)

86.7%

70.9%

50.4%

85.4%

70.9%

80.9%

Table IV Simulation results for example 4.

The average bound efficiency over the six scenarios in Table 4 is 74.2%, which is
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higher than the corresponding value in example 3; this higher efficiency is perhaps due to

to the network's simple routing structure. The qualitative results are similar to the other

examples, and only the BALANCED, HEAVY scenario results in a poor bound. The

bound efficiencies were 57.1% when pl = p2 = p3 = .99 and 93.2% when p = (.99,.66,.33).
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