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Abstract

We consider the survivable network design problem - the problem of designing,

at minimum cost, a network with edge-connectivity requirements. As special cases,

this problem encompasses the Steiner tree problem, the traveling salesman problem

and the k-connected network design problem. We establish a property, referred

to as the parsimonious property, of the linear programming (LP) relaxation of a

classical formulation for the problem. The parsimonious property has numerous

consequences. For example, we derive various structural properties of these LP

relaxations, we present some algorithmic improvements and we perform tight worst-

case analyses of two heuristics for the survivable network design problem.
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1 Introduction

In recent years, researchers have been able to solve large-scale instances of some NP-Hard

combinatorial optimization problems. The successful solution approaches typically rely

on solving, either approximately or exactly, the linear programming (LP) relaxation of

an integer programming formulation of the problem. Even for moderate sized problem

instances, it appears that the choice of the formulation and a deep understanding of the

structure of the problem are crucial for developing efficient solution methods.

In this paper, we study from several perspectives the LP relaxations of a class of net-

work design problems. This class includes a number of classical combinatorial optimiza-

tion problems as special cases such as the Steiner tree problem, the traveling salesman

problem and the k-connected network design problem. The central problem we consider

can be described as follows. Given a complete undirected network G = (V, E) and a

cost cij associated with each edge (i, j) E E we want to select a subset of the edges at

minimum cost, so that the resulting network satisfies certain connectivity properties. In

particular, if we associate to vertex i a connectivity type ri representing the importance

of communication from and to vertex i, we call a network survivable if it has at least

rij = min(ri, rj) edge-disjoint paths between any pair of vertices i and j. In a survivable

network, the loss or failure of any k edges still allows communication between vertices

whose connectivity type is greater than k. An example of a survivable network is given

in Figure 1. Gomory and Hu [12] show that the analysis problem of checking whether

a given network is survivable can be solved by means of n maximum flow problems,

where n is the number of vertices in the graph. In this paper, we consider the problem

of designing a minimum cost survivable network. This problem is also known as the

multiterminal synthesis problem [12,10] or the generalized Steiner problem [34].

The survivable network design problem (SNDP) is of particular importance in the

design of communication or transportation systems in which the lack of communication
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or connectivity between parts of the network might be catastrophic. For example, this

issue is particularly relevant in the design of communication systems using fiber optic

links (see Monma et al. [26,24] for a detailed description).

The Steiner tree problem can be modeled as an SNDP by letting the connectivity

types ri to be 1 for a set S of compulsory vertices and 0 for optional vertices, also called

Steiner vertices. Consequently, the minimum spanning tree (S = V) and the shortest

path problem (IS = 2) are also special cases. When the requirements are uniform, say

equal to k, the SNDP reduces to the problem of designing a minimum cost k-connected

network. As we'll see when presenting the parsimonious property, it is very natural

to allow the addition of degree constraints to the problem formulation.. This extended

version captures the well celebrated traveling salesman problem (TSP).

When all edges have a unit cost, the SNDP can be solved in polynomial time by

an algorithm due to Sridhar and Chandrasekaran [31] - an adaptation of the classical

Gomory and Hu's algorithm [12] producing a network with possibly half edges. For

arbitrary costs, the SNDP, generalizing the Steiner tree problem and the 2-connected

network design problem, is NP-Hard. Typically, such a negative result from complexity

theory leads researchers to obtain approximate rather than optimal solutions. In fact,

heuristic algorithms based on local search have been proposed by Steiglitz et al. [32]

for the SNDP in its full generality, by Monma and Ko [24] for the k-connected network

design problem (ri = k for all i) and by Monma and Shallcross [26] for the case where

ri E {1, 2) for all i. Moreover, a wide variety of heuristics have been proposed for

the Steiner tree problem (for a survey, see Winter [34]) and for the traveling salesman

problem (see Lawler et al. [21]).
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1.1 LP Relaxations in Combinatorial Optimization

The first important application of LP relaxations in combinatorial optimization is in

designing branch and bound or branch and cut algorithms to solve exactly large scale

combinatorial optimization problems. In general the closer the LP relaxation value is

to the integer programming value the better the performance of these algorithms is.

In addition, by solving the linear programming relaxation of certain problems (or its

dual) and using heuristic methods to obtain good feasible solutions, researchers have

been able to solve other large scale applications to near optimality, with performance

guarantees concerning the degree of suboptimality. For example, researchers have solved

network design models with up to 500 design arcs and 2 million flow variables and 2

million constraints to within 1-2% of optimality (Balakrishnan, Magnanti and Wong

[3]), traveling salesman problems with up to 100,000 nodes to within 1% of optimality

(Johnson [15,16]), as well as large scale Steiner tree problems (Wong [36]) and facility

location problems (Cornuejols, Fisher and Nemhauser [5]).

Another important but less understood area where LP relaxations can play a very

significant role is to assess a priori the quality of a heuristic for a hard combinatorial

optimization problem. Indeed, worst-case analyses typically rely on comparing the value

of the heuristic solution to some lower bound for the problem, often obtained from a

linear programming relaxation [35].- This allows one to claim that the heuristic is always

within a certain percentage of the unknown optimal solution.

The above discussion stresses the importance of obtaining efficiently strong LP re-

laxation bounds, analyzing their performance and relating them to heuristic algorithms.

In this paper, we consider these issues for the survivable network design problem and its

special cases.
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1.2 An Overview of the Contributions of the Paper

The foundation of this paper is the derivation of a structural property, the parsimonious

property, of the linear programming relaxation of a classical formulation of the SNDP.

The variety of consequences makes the parsimonious property particularly important.

First, it gives strong relations between different relaxations and different combina-

torial optimization problems which, in turn, have important algorithmic consequences.

For example, we prove the surprising result that Steiner or optional vertices (i.e. vertices

with ri = 0) are unnecessary when solving the LP relaxation of the Steiner tree prob-

lem when the triangle inequality holds. This allows to reduce considerably the size of

the problems to be solved. The simplest relation that we derive from the parsimonious

property is the fact that the 1-tree relaxation with Lagrangean objective function for

the traveling salesman problem (TSP), also referred to as the Held-Karp lower bound.

[13,14], is also a lower bound on the cost of the minimum cost 2-connected subgraph.

Another corollary is the surprising result that the LP relaxations under consideration of

the Steiner tree problem, the k-connected network design problem and the TSP are es-

sentially identical under the triangle inequality, the value of the first being exactly equal

to the value of the second divided by k or half the value of the third. This can be used

to compute the corresponding linear programming bounds efficiently. In a companion

paper [11], a new formulation for the Held-Karp lower bound, which follows from the

parsimonious property, is used to perform a probabilistic analysis of the bound when

the vertices are identically and independently distributed in some Euclidean space. The

properties involved in this analysis can also be used to prove the asymptotic optimality

of partitioning schemes a la Karp [18] for obtaining LP relaxation bounds corresponding

to Euclidean problems.

The parsimonious property is also crucial in the analysis of two heuristics for the

survivable network design problem. Our first heuristic, referred to as the tree heuristic,
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is based on the computation of minimum spanning trees and reduces to the minimum

cost path heuristic [33] or the distance network heuristic [9,19,27] when applied to the

Steiner tree problem. The second heuristic, called the improved tree heuristic, reduces to

Christofides' heuristic when applied to the 2-connected network design problem. Among

other results, our worst-case analysis shows that the ratio between the value of either

heuristic and the LP relaxation bound is always less than twice the number of distinct

nonzero connectivity types and also less than twice the logarithm of the largest connec-

tivity type. Moreover, these bounds are tight. For the Steiner tree problem, our analysis

strengthens results due to Takahashi and Matsuyama [33], Kou et al. [19], Plesnik [27]

and El-Arbi [9]. Moreover, whenever ri E {0, 1, 2, ri E {O, 1, 3} or ri E {O, k) for all i, we

show that the improved tree heuristic is within twice the value of the optimal network.

This also generalizes the result on the Steiner tree problem.

The remaining of the paper is structured as follows. In Section 2, we present and

prove the parsimonious property. Consequences of the parsimonious property for the

Held-Karp lower bound are investigated in Section 3. In Section 4, we present several

algorithmic implications of the parsimonious property. Section 5 contains the description

of the tree heuristics for the SNDP and their worst-case analyses. Finally, we conclude

with some possible extensions.

2 The Parsimonious Property

Let G = (V, E) be the complete undirected graph with vertex set V. For any pair (i, j)

of vertices, let rij be the connectivity requirement between i and j (rij is assumed to

be symmetric, i.e. ri = rji). Although we concentrate our attention on the typical

case in which rij = min(ri, rj) for some set {ri) of connectivity types, we will state the

parsimonious property in its full generality. By abuse of notation, r will denote either

the set rij} or, if applicable, the set ri). Call a network survivable if it has at least

6



rij edge-disjoint paths between any pair (i, j) of vertices. If some edge, say e, is selected

in a network, we incur a fixed cost c. In this paper, we assume that any edge may be

chosen repeatedly. The survivable network design problem (SNDP) consists in finding

the minimum cost survivable network. This problem may be formalized by the following

integer program:

IZo(r) = Min Ccxe
eEE

subject to

(IP0 (r)) C >_ max rij VscV,S 0 (1)
eE6(S) (iJ(S)

< z Ve E E

ze integral Ye E E

where 6(S) represents the set of edges connecting S to V \ S. Indeed, constraints (1)

insure that the value of a minimum cut separating i from j is at least rij. By the max-

flow-min-cut theorem (or Menger's theorem), this is equivalent to saying that there are

at least rij edge-disjoint paths between any pair (i, j) of vertices. We denote by (IP 0 (r))

the above integer program and by IZO(r) its optimal value. Let (Po(r)) denote the LP

relaxation of (IP0 (r)) obtained by dropping the integrality restrictions and let Zo(r) be

its optimal value. Clearly Zo(r) is a lower bound on IZO(r). The meaning of the symbol

0 in this notation will become clear shortly.

Although the linear program (Po(r)) has an exponential number of constraints, the

value Z(r) can be computed in polynomial time either using the ellipsoid algorithm

since the separation problem over (Po(:)) can be solved by Gomory and Hu's algorithm

[12] or using Karmarkar's algorithm since (Po(r)) can be reformulated as a compact

linear program using flow variables. However, these computational approaches are not

satisfactory in practice and in fact, so far, no efficient and practical algorithm to compute

Z0(r) exists.
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As noticed in the introduction, the survivable network design problem has some inter-

esting special cases. For example, the Steiner tree problem - the problem of connecting at

minimum cost a subset S of compulsory vertices possibly using some optional or Steiner

vertices in V \ S - can be formulated as (IPo(ls)) where (s)ij = 1 if i,j E S and 0

otherwise (or, (s)i = 1 if i E S and 0 otherwise). When rij = k for all i,j E V we

obtain the minimum-cost k-edge-connected network design problem.

For any feasible solution z either to (IPO(r)) or to (Po(r)), the degree of vertex i,

defined by d,(i)- E zX, is at least equal to max rj because of constraints (1) for
· eEs(i}) jEv\{i)

S = {i}. If d(i) = max rij then we say that z is parsimonious at vertex i. In other
jEV\{.}

words, x is parsimonious at vertex i if the degree of vertex i could not possibly be lower.

If we impose that the solution be parsimonious at all vertices of a set D C V we get

some interesting variations of (IPO(r)) and (PO(r)), denoted by (IPD(r)) and (PD(r)),

respectively. The most interesting special case is the traveling salesman problem. Indeed,

when rij = 2 for all i,j E V, the feasible solutions to (IPv(2)) (2 denotes the vector

of 2's) correspond to Hamiltonian tours. The formulation of (IPD(r)) as an integer

program is:

IZD(r) = MinE ceze
eEE

subject to

(IPD(r)) X z > max ri V s C v,s o
eES(S) (ij)E(S)

esiz = max rij Vi E D
jEV\{i)

cEs({i})

O < ze e E E

xe integral Ve E E

When we have integrality restrictions, the problem is clearly altered by the introduction

of parsimonious constraints. For example, the TSP and the minimum-cost 2-connected

problem have the same edge connectivity requirements but with different parsimonious
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constraints. Another illustration is given by the Steiner tree problem and the minimum

spanning tree problem on S. However, when the integrality restrictions are relaxed, the

value of the LP relaxation is not affected by the introduction of parsimonious constraints

when the costs satisfy the triangle inequality, i.e. when cij + jk > ck for all i, j, k E

V. This somewhat surprising result, which we refer to as the parsimonious property,

constitutes the foundation of this paper.

Theorem 1 (The parsimonious property) If the costs {c.} satisfy the triangle in-

equality then Zo(r) = ZD(r) for all subsets D C V.

The proof of this theorem is based on Lemma 2 which is a stronger version of a result

due to Lovisz [22] on connectivity properties of Eulerian multigraphs. The proof of this

version, similar to the proof given by Lovisz, is given in appendix 1.

Lemma 2 Let G = (V, E) be an Eulerian multigraph. Let cG(i,j) (i,j E V) denote the

maximum number of edge-disjoint paths between i and j. Let x be any vertex of G and

let u be any neighbor of x. Then there exists another neighbor of x, say v, such that, by

splitting (, u) and (, v) i.e., removing the edges (x, u) and (, v) and adding the edge

(u, v), we obtain a multigraph G' satisfying the following two conditions:

1. cG(i, j) = cG(i,j) for all i,j E V \ {z} and

2. cG(x,j) = min(cG(2,j), dG(x)-2) for all j E V \ {x}, where dG() represents the

degree of vertex z in G.

Condition 2, which does not appear in Lovasz's result, states that the splitting operation

can be performed while maintaining most connectivity requirements involving vertex z.

Proof of Theorem 1:

Clearly Zo(r) < ZD(r) since (PD(r)) is more constrained than (Po(r)). In order to

prove that ZO(r) > ZD(r) we consider an optimal solution, say , to (PO(r)). We shall
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construct a feasible solution y to (PD(r)) whose cost is at most equal to the cost of z.

Since all data is rational, we may assume that all components of z are rational. Hence,

there exists some integer k such that kze and krij are even integers for all e = (i, j) E E.

Let G = (V, E) be the Eulerian multigraph which has ke copies of edge e. By the

max-flow-min-cut theorem, cj(i,j) > krij for all (i,j) E E. As a result, by applying

Lemma 2 repeatedly with z chosen among the vertices in D, we will eventually obtain a

multigraph G' such that

(i) cG(ij) > kri v(i,j) E E

(ii) dGc(i) = max kri Vi E D.
jEV\{i}

Therefore, if we let Ye (e E E) be equal to the number of copies of edge e in G' divided by

k, we obtain a feasible solution to (PD(r)). Moreover, since the costs satisfy the triangle

inequality, each time we perform a splitting operation the cost of the solution does not

increase which implies that E ceXe > E cye. Since D was arbitrary, this completes
eEE eEE

the proof of Theorem 1. 10

In general, when the costs do not satisfy the triangle inequality, the parsimonious

property does not hold. Nevertheless, this is not a restriction for the survivable network

design problem and its special cases, such as the Steiner tree problem or the k-edge-

connected network design problem. Indeed, let us consider an instance of the SNDP

with arbitrary costs (ce}. Define 4 (e = (i,j)) to be the length of the shortest path

between i and j with respect to the lengths {(c}. Clearly, {c} satsify the triangle

inequality. Theorem 3 states that we can replace c, by c without affecting IZO(r) or

z0 (r)-

Theorem 3 For any set (ce} of costs, IZo(r) = IZO(r) and ZO(r) = Z(r), where IZ'(.)

and Z'(.) refer to the costs {ce}.

Proof:

Since c, < ce for all e E E, IZO(r) < IZO(r) and ZO(r) < ZO(r). Now, consider an
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optimal solution z' to (IPg(r)) (resp. to (P,(r))) with respect to the costs {4}. In order

to construct an optimal solution with respect to the costs {ce}, we perform the following

transformation. If some edge e = (i,j) with £c < ce has some nonzero weight xz, then we

decrease tx to 0 and increase by zx the weights on the edges of a shortest path from i to

j. Notice that this maintains feasibility and optimality of the solution. By repeating this

operation, we obtain an optimal solution to (IP,(r)) (resp. to (Po(r))) with respect to

the costs {c} such that ie = 0 whenever £4 < c,. As a result, the cost of this solution

remains unchanged if we replace c4 by c,. This and the fact that IZO(r) < IZO(r) (resp.

ZO(r) < Z(r)) imply that is also optimal with respect to {ce}. This completes the

proof of Theorem 3. 0

The above tranformation gives a generic transformation to convert a survivable net-

work of total cost C' with respect to {c'} into a survivable network of the same cost but

with respect to {c}).

The parsimonious property has several important consequences. In Section 3, we de-

rive structural properties of the Held-Karp lower bound [13,14] for the traveling salesman

problem. These properties, such as its monotonicity, can be used to evaluate both on

average and in the worst-case the performance of this bound. In Section 4, we consider

the algorithmic implications of the parsimonious property. As a result, we enlarge the

class of LP relaxations for which efficient algorithms exist. We describe two heuristics for

the survivable network design problem in Section 5 and we show how the parsimonious

property can be used to evaluate their quality in the worst-case.

3 Structural Properties of the Held-Karp Bound

In this section, we consider the Held-Karp lower bound [13,14] for the traveling salesman

problem. This bound has been successfully used by several researchers to solve instances

of the TSP by branch and bound methods (see Balas and Toth [4]). Moreover, in a
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striking computational study, D. Johnson [15,16] estimates the degree of suboptimality

of heuristic solutions by computing the Held-Karp lower bound and, as a result, he is able

to show that the solutions he generates are within 1% of optimality for instances with as

many as 100,000 vertices. The Held-Karp lower bound can be formulated in several equiv-

alent ways, the most classical being in terms of the 1-tree relaxation with Lagrangean

objective function [14]. As a linear program [13], it can be expressed by:

ZHK = Min E ceXz
eEE

subject to

(PI) E X < -1 V S C V (2)
eEE(S)

E w,=2 ViE V (3)
E6(({i))

0o< ze Ve E E,

where E(S) denotes the set of edges having both endpoints in S. Note that the con-

straints ze < 1 are included in (2). By adding up constraints (3) over all i in $, we

obtain:

2 E x + E , t = 21SI. (4)
eEE(S) eE6(S)

Using equation (4), constraints (2) are equivalent to:

E Xe > 2, (5)
eE6(S)

12



for all nonempty proper subsets S of V. Hence, the Held-Karp lower bound can also be

expressed by:

ZHK = Min E ZCCe
eEE

subject to

(P2) E > 2 vscv,S$0
eES(S)

Ze =2 ViE V
E6(({i})

< Ve E E.

As a result, ZHK is precisely Zv(2). By the parsimonious property, we have that ZHK =

Zo(2) under the triangle inequality, i.e.

ZHK = Min Ceze
eEE

subject to

(P3 ) E ' > 2 VScv,$0
eE6(S)

O < ze Ve E E.

This new formulation is very helpful in order to derive properties of the bound. For

example, we have:

Theorem 4 (Cunningham [25]) Under the triangle inequality, the Held-Karp lower

bound ZHK is a lower bound on the value of the minimum-cost 2-connected network

design problem.

Proof:

The theorem follows from the fact that by adding integrality constraints to (P3 ) we

obtain an integer programming formulation of the 2-connected network design problem.

O
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By the same argument, the Held-Karp lower bound is also a lower bound on the

Steiner version of the minimum 2-connected network design problem in which optional

vertices are allowed.

In a companion paper [11], formulation (P3) is used to perform a probabilistic analysis

of the bound when the vertices are identically and independently distributed in some

Euclidean space. Under this probabilistic model, the Held-Karp lower bound is proved to

have a similar asymptotic behavior as the traveling salesman problem or the 2-connected

network design problem. More specifically, the bound is almost surely and asymptotically

a fraction of the optimal value, this fraction being empirically evaluated to be greater

than 99% [15,16]. This probabilistic analysis uses several structural properties of the

bound, such as its subadditivity, monotonicity and upperlinearity. This latter property

seems hard to prove without referring to the new formulation (P3). In the next theorem,

we show that the monotonicity of the Held-Karp lower bound is an immediate corollary

of the parsimonious property.

Theorem 5 Let ZHK(S) be the Held-Karp lower bound for the subgraph Gs induced by

the subset S of vertices. If ce} satisfy the triangle inequality then ZHK(S) < ZHK(V)

for all S C V.

Proof:

By definition, ZHK(S) = ZV(2S), where (2s)ij = 2 if i, j E S and 0 otherwise. Moreover,

by the parsimonious property, Zv(2 ) is equal to ZO(2s). Since (PO(2s)) is a relaxation

of (PO(2v)), we have that Z0(2s) < ZO(2v). Using again the parsimonious property, we

obtain ZO(2v) = Zv(2v) = ZHK(V). This proves that ZHK(S) < ZHK(V). 0

The monotonicity of the bound is not only useful for its probabilistic analysis but also

for its worst-case analysis. Shmoys and Williamson [30] use this monotonicity property

to give another proof of a result due to Wolsey [35] stating that the ratio between

Christofides' heuristic and the Held-Karp lower bound is bounded by 3 under the triangle

14



inequality. In Section 5, a monotonicity property similar to Theorem 5 will be the basis

of our worst-case analysis of the tree heuristic for the survivable network design problem.

4 Algorithmic Implications

The parsimonious property also has algorithmic implications in order to compute LP

relaxation bounds efficiently.

For the Steiner tree problem, the integer programming formulation (IPO(s)) is

known as the set covering formulation [1]. Very few algorithmic approaches for the

Steiner tree problem use the LP relaxation (PO(js)) of this formulation because, so far,

no truly efficient algorithm has been devised to compute its value. For clarity, instead

of (ZO(ls)), we use Zsp(S) to denote this value. Using the parsimonious property, we

now propose an efficient approach for obtaining Zsp(S). Let us assume, without loss of

generality (see Theorem 3), that the costs satisfy the triangle inequality. Since optional

or Steiner vertices have a connectivity type of 0, the parsimonious property implies that

these Steiner vertices are unnecessary when solving (Po(ls)). This already allows to

reduce considerably the size of the problems to be solved. Moreover, the following as-

tonishing result, which relates the LP relaxations of the Steiner tree problem and the

TSP, follows from the parsimonious property.

Theorem 6 Let Zsp(S) be the optimal value of the linear program (P(ls)). Then

Zsp(S) = 4ZHK(S), where ZHK(S) is defined in Theorem 5.

Proof:

Using the parsimonious property and our concise notation, we have that Zsp(S) =

ZO(ls) = Zv(Is). By linearity, this last quantity is equal to Zv(2s) = ZHK(S),

which completes the proof of the theorem. o
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The relation expressed in Theorem 6 leads to an algorithm to compute Zsp(S).

Indeed, Held and Karp [13,14] show the equivalence between the relaxation Pv(2) and

the 1-tree relaxation with Lagrangean objective function and show that ZHK(S) can be

obtained by solving a sequence of minimum spanning tree problems. Moreover, their

algorithm can be implemented efficiently to obtain very close approximations of ZHK'(S)

for instances with as many as 100,000 vertices [16]. The reader is referred to the original

paper [14] or to [4] for a detailed presentation of Held-Karp's algorithm.

Similarly, the LP relaxation bound for the k-connected network design problem can

be related to the Held-Karp lower bound. In fact, under the triangle inequality, Zo(k) =

ZHK. Therefore, Held and Karp's approach can also be used to obtain a lower bound

on the cost of a k-connected network. Moreover, given the experimental observation

and some theoretical explanation that ZHK is very close to the cost of the optimal tour

[15,16,4,11], we can assert that ZO(k) is a very good lower bound in order to assess the

quality of a k-connected heuristic network.

The subadditivity and the upperlinearity (for details see [11]) also have algorithmic

consequences. These properties justify the use of partitioning schemes a la Karp [18]

for obtaining LP relaxation bounds corresponding to Euclidean problems. For example,

suppose we would like to compute the Held-Karp lower bound defined by a set of vertices

in the unit square. If {Qi : i = 1,..., m} is a partition of the unit square into subregions
m

of finite perimeter then the upperlinearity implies that E ZHK(V n Qi)-2c < ZHK(V)
i=1

where c is the total length of the boundary of the partition. As a result, we can obtain a

lower bound on the Held-Karp lower bound by solving m smaller subproblems. Moreover,

using the subadditivity of the Held-Karp lower bound we can construct a feasible solution
m

to (P3 ) whose cost is at most Z ZHK(V n Qi) + . When the partition consists of
i=l

m = k2 similar subsquares, this partitioning scheme gives an upper bound and a lower

bound on the Held-Karp lower bound which differ by at most (4+V/2)k units. Moreover,
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the ratio of this difference to the Held-Karp lower bound is almost surely equal to 0

when the vertices are independently and identically distributed in the unit square and

m = o(n).

5 The Tree Heuristics and their Worst-Case Analyses

In this section, we consider the instances of the SNDP for which the requirements are of

the form rij = min(ri, rj). As previously mentioned, this is the most typical case and it

encompasses, for example, the Steiner tree problem and the k-connected network design

problem. We introduce two heuristics, the tree heuristic and the improved tree heuristic,

and we show that they have some interesting worst-case guarantees.

The tree heuristic consists in constructing a survivable network as a union of trees.

More precisely, in the kth iteration, we construct a minimum cost tree spanning all

vertices for which ri > k. The resulting network is survivable since, at iteration k, we

have at least 1 additional path from i to j if both ri and rj are greater or equal to k.

The implementation of this heuristic can be made more efficient by noticing that several

iterations might have the same vertex set. Formally, the tree heuristic can be described

as follows.

Tree Heuristic

Step 1: Compute the shortest path lengths {c' }.

Step 2: Prepare a sorted list L = {po = 0 < P < P2 < ... < pp} consisting

of all distinct connectivity types.

Step 3: x:= 0;

For k =1 to p do

* Let Vk :={i E V: ri > Pk}
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* Compute Tk = (Vk, Ek), the minimum spanning tree with respect

to {c' } of the complete graph induced by Vk

* Let ze := Xz + (Pk - Pk-1) for all e E Ek.

Step 4: Use the tranformation described in Theorem 3 to obtain a survivable

network whose total cost with respect to {c,} is equal to the cost of z

with respect to {c'}.

Step 5: Apply some local improvement heuristic.

Step 1 and 4 reduce the instance into one in which the costs satisfy the triangle

inequality. The tree heuristic is a construction heuristic: it constructs piece by piece

a survivable network. Step 5, which is optional, allows to combine the tree heuristic

with an improvement heuristic - a heuristic which starts from a feasible solution and

iteratively performs some local transformation in order to obtain a solution with smaller

total cost. Improvement heuristics were proposed by Steiglitz et al. [32] for the general

SNDP, by Monma and Ko [24] for the k-connected network design problem (ri = k

for all i) and by Monma and Shallcross [26] for the case where r E {1,2} for all i. If

the original costs satisfy the triangle inequality, the tree heuristic can be implemented

in O(pn2 ) time where n is the number of vertices. Otherwise, step 1 is the bottleneck

operation and the overall time complexity of the tree heuristic is O(n3).

When applied to the Steiner tree problem, the heuristic reduces to the minimum

spanning tree heuristic proposed in slightly different versions by Kou et al. [19], Plesnik

[27], El-Arbi [9], and Takahashi and Matsuyama [33]. The tree heuristic is also a general-

ization of the double spanning tree heuristic for the 2-connected network design problem

or the TSP.

Before analyzing the tree heuristic in its full generality, we consider the worst-case

analysis of the minimum spanning tree heuristic for the Steiner tree problem. Kou et

al. [19], Plesnik [27], El-Arbi [9], and Takahashi and Matsuyama [33] show that the
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ratio between the value of the minimum spanning tree heuristic and the optimal value

of the Steiner tree problem is bounded by 2- 2, where S denotes the set of compulsory

vertices. In fact, we can prove the following stronger result.

Theorem 7 For any set {ce} of costs,

Ztre e(S) < 2- 2
ZsP(S) - ISI'

where Ztree(S) denotes the value of the tree heuristic when applied to a Steiner tree prob-

lem in which S is the set of compulsory vertices and where Zsp(S) is the LP relaxation

bound ZO(ls).

Furthermore, the bound is symmetrically tight in the sense that, for any set S, there

exist instances for which

IZO(Us) 2 2
ZsP(S) IS!'

and other instances for which

Ztre(S) -2 -_ 2
IZo(ls) IS

Proof:

Using Theorem 3, its proof and the structure of the tree heuristic, we can restrict our

attention to instances which satisfy the triangle inequality. In this case, the tree heuristic

reduces to taking a minimum spanning tree over S. Let x* be the optimal solution to

(Pv(ls)). By the parsimonious property, the value of xz is precisely Zsp(S). The value

of the tree heuristic can be expressed as the optimal value of a linear program by using

a complete description of the minimum spanning tree polytope. More precisely, using
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Edmonds' complete characterization, [8] we have:

Ztree(S) = Min E C,
eEE

subject to

(PMST) Z < ITI-1 VTC S,T 0
eEE(T)

Z We=ISI-1
eEE(S)

0 < e Ve E E(S).

2
The values Zsp(S) and Ztree(S) can be related by noticing that (2 - ])zx satisfy

all the constraints of (PMST). This follows from the same derivation used to show

the equivalence between (2) and (5) when (3) holds. Therefore, (2 - 2 )Zsp(S) =

(2- IS)Zv(Us) > Zt,.r(s).

The heuristic attains the worst-case bound when there is one Steiner vertex linked

to all other vertices by edges of cost 1, while all other edges have cost 2 (see Figure 2).

Figure 2 shows that the heuristic has value 2(SI - 1) while the optimal Steiner tree has

value ISI.

In order to show that the cost of the optimum Steiner tree can be (2 - ) times the

value of its LP relaxation value, consider the minimum spanning tree problem on S with

Ce = 2 for all e E E (see Figure 3). Clearly, the optimal Steiner tree has value 2(ISI - 1),

while the optimum solution of the LP relaxation is obtained by setting ze = 0.5 along

some Hamiltonian cycle, resulting in a total cost of IS[. E

We can use Theorem 7 to perform a worst-case analysis of the tree heuristic for the

general survivable network design problem.

Theorem 8 For any set ce} of costs,

z,(r) -I-1 ' k=l Pk
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where Ztree(r) denotes the value of the tree heuristic when the connectivity types are

given by the vector r, and pi and Vi are defined in Steps 2 and S of the tree heuristic.

Proof:

As in Theorem 7, we assume without loss of generality that the costs satisfy the tri-

angle inequality. Therefore, Ztree(r) can be expressed by:
p

Ztre,(r) = Z(Pk - Pk-)ZMST(Vk) (6)
k=1

where ZMST(Vk) denotes the cost of the minimum spanning tree over Vk. From Theorem
2 2

7, we know that ZMST(Vk) < (2- I)ZSP(Vk) < (2- l)ZSP(Vk). But,

1
ZSP(Vk) = ZO(lv,)= -ZO(Pkv, ) (7)

Pk

Combining (6) and (7), we obtain:

Ztre(r) < (2 - IV Pk Pk ZO(Plv) (8)

Since, by definition of Vk, the requirements in PklVk are less or equal to the requirements

in r, ZO(Pklv,) < ZO(r). Therefore,

Ztree(r) < (2- ) Pk - Pk-l Z()

which proves the theorem. 0

We now consider the question whether the bound in Theorem 8 is tight. For a given

set L = {po = O, P1,P2,..., pp) of distinct connectivity types, let

f(L) = sup
I:rEL ViEV Z(r)

where the supremum is taken over all instances whose connectivity types are within L.

Notice that f({O,pl,p2, .. , pP}) = f({pl, p2,..., pp}) since vertices whose connectivity

type is 0 affect neither the heuristic nor the LP relaxation. Theorem 8 implies that

f({Po = O.PP2, pp}) < 2 ( Pk Pk-l )

In the next theorem, we show that this bound can be achieved in some cases.

21



Theorem 9 If ,~ . , -- rp and 2 a ar integers then
rl ' 2 r''p-2 rp-1

f({PO=PlP2---,Pp})=2 ( Pk )
\k=1 Pk

The proof of this result is lengthy and technical, and is sketched in appendix 2. From

Theorem 9 we can derive the following result.

Corollary 10 1. f(0,2 0, 21,...,2P-1) = p + 1 for any p > 1,

2. f(0, 1, 2,..., rmax) = (log rma,),

3. sup f(0, pi,..., p,) = E(p), where Zp denotes the set of instances with at most p

distinct connectivity types.

Proof:

* 1 follows directly from Theorem 9.

* By Theorem 8,

f(O, 1, 2,..., rna) _ 2 ) O(log rmal). (9)

Moreover, by definition of f(.), f(L) > f(L') whenever L D L'. Therefore, by 1,

f(0, 1, 2 ,...,rmax) f(0,20 ,2,... , 2 1°02 rmoJ)

= Llog 2 rmaxj + 2 = Q(log rmax) (10)

Combining (9) and (10), we get 2.

* By Theorem 8, f(O, pl, . . . ,) < 2 (PL Pk-pk-I) < 2p. Moreover, using 1,'''k- Pk

sup f(O, p,..., pp) > f(O, 20, 21,...,2 P- 1) = p + 1. This proves 3.
'p

Corollary 10 implies that the tree heuristic has a constant worst-case guarantee when-

ever the number of distinct connectivity types is bounded by a constant.
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In the next theorem, we compare the value of the tree heuristic to the optimal value

rather than the LP relaxation bound. We show that when some vertex has a connectivity

type of 1, we can lower the constant of Theorem 8 by one unit. Although LP relaxations

do not appear in the statement of Theorem 11, they play a priviledged role in its proof.

Theorem 11 If pl = 1 then

Ztree(i) <(2 2 (m Pk - Pk -1

IZ( ) IV1 Pk

where V1 = {i E V: ri > 1).

Proof:

Consider the optimal solution z* to (IPo(r)). This optimal network consists of a maxi-

mal 2-connected block at which trees are attached (see Figure 4). Moreover, this block

spans a set B of vertices containing V2 (the set of vertices whose connectivity types is at

least P2). We decompose z* into the sum of two vectors y and z in the following manner:

Ye i
0 otherwise

and

a if E E(B)
Ze

z e otherwise.

Clearly, x* = y + z. The crucial observation is that, by definition of B, 2y is a feasible

solution to (PO(p21v2)) while z is a feasible solution to (PO(lV,)). Hence,

Z0(r) = E c; = E cYe + E ZC> Z(P2 2) + Z ) (11)
eEE eEE eEE

Combining inequality (8) from the proof of Theorem 8, inequality (11) and the fact that

Zo(pk1v,) < IZO(r), we obtain:

tre (_) (2- Pk - Pk- ZO(PVk )
V 11/ k-- Pk
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= 2- '(Z(lv,)+ -Z-z(Pl,)'( l I) P k=2 Pk )

< 2-) °-k-"' i ) ( I Z0(P2!V2) + o p (,klV)

< I- )- (2 + E Pk - IZO(r)k=2 Pk

(= Ivll E Pk IZ(r), (12)

where we have used the fact that a -1 > 0 since P2 > 2. 0P2 2 -

As a corollary, we obtain that the tree heuristic is within twice the value of the

optimal solution not only for the Steiner tree problem but also for the case in which

ri E {0, 1, 2} for all i E V.

Corollary 12 If ri E {0, 1,2} for all i E V then

Ztre.(r) < 2 2
IZO(r) - Il'

Our second heuristic, the improved tree heuristic, improves upon the tree heuristic

in the worst-case when there is some gap in the sequence {po = 0 < P1 < P2 < ... <

pp}. The improved tree heuristic generalizes Christofides' heuristic [6] for the traveling

salesman problem in the same way as the tree heuristic generalizes the minimum spanning

tree heuristic for the Steiner tree problem [9,19,27,33]. The improved.tree heuristic can

be described as follows:

Improved Tree Heuristic

Step 1: Compute the shortest path lengths {c'}.

Step 2: Prepare a sorted list L = {po = 0 < P1 < P2 < ... < pp} consisting

of all distinct connectivity types.

Step 3: z := 0;

For k = 1 to p do
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* Let Vk := ({i E V: ri > Pk)

* Compute Tk = (Vk, Ek), the minimum spanning tree with respect

to {c'} of the complete graph induced by Vk.

* If Pk = Pk-l + 1 then z := tz + 1 for all e E Ek.

Else

- Let Ok be the vertices of odd degree in Tk.

- Compute Mk = (Ok, Ek), the minimum weight matching with

respect to {c'} of the complete graph induced by Ok.

- Let xe := + [Pk- k -1] for all e E Ek.

- Let re := ze + PkJ for all e E Ek.

Step 4: Use the tranformation described in Theorem 3 to obtain a survivable

network whose total cost with respect to {ce} is equal to the cost of z

with respect to {cc}.

Step 5: Apply some local improvement heuristic.

In other words, whenever we would like to increase the edge-connectivity between

vertices in Vk by 2 units, we add to the current solution a minimum spanning tree Tk

as well as a minimum weight matching Mk on the odd degree vertices of Tk. Since the

union of Tk and Mk is Eulerian and, hence, 2-edge connected, the resulting network has

at least 2 more edge-disjoint paths between any pair of vertices in Vk. If there are no gaps

in the sequence L, the improved tree heuristic reduces to the tree heuristic. Otherwise,

its overall time complexity is O(rn3 ) where r denotes the number of gaps in L. In the

next theorem, we present a worst-case analysis of the improved tree heuristic.

Theorem 13 For any set {cc} of costs,

Zimp(r) < f(Pk - Pk-l)

Z(r) k=l Pk
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where Zimp(r) denotes the value of the improved tree heuristic when the connectivity

types are given by the vector r and f(l) = 3l if I is even and f(l) = l1 + if I is odd.

Proof:

The value Zimp(r) of the tree heuristic is given by:

Zimp(r) = E p 2 1k- ZMST(Vk) + E - 2- ZM(Ok), (13)
k=l k= 2

where ZM(Ok) represents the cost of the minimum cost matching on Ok. From Theorem

8 (see equation (7)), we know that

ZMST(Vk) < -Z(Pklvk), (14)
Pk

the strict inequality arising from the fact that we have replaced 2 - 2 by 2. Moreover,

ZM(Ok) < ZOk(0,) = ZO(ok) < Zo(l,) = -ZO(Pklvk), (15)
Pk

where the first inequality follows from the complete description of the perfect matching

polytope due to Edmonds [7] and the second inequality follows from the parsimonious

property. Combining equations (13), (14) and (15) and the fact that ZO(Pklvk) < Zo(r)

we obtain

Zimp(r) < 2 [Pk Pk- + 1 k Pk-1 f(pk - Pk-i)

ZO(r) k=l Pk 2 k LPk 2 k=l Pk

For the Steiner k-connected network design problem, we obtain:

Corollary 14 If ri E {0, k} for all i E V and some k then

Zimp(r) f 3 for k even,

IZ-(r) 3 + fork odd.

Using the same technique as in Theorem 11, we can improve the constant in Theorem

13 when P1 = 1.
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Theorem 15 If Pl = 1 then

Zimp(r) < e f(Pk - Pk-1) 1

IZO (r) \kl Pk

Proof:

The proof is identical to the proof of Theorem 11 except that equation (12) becomes:

P: Pk

k=2 Pk

2I(~)+f (V - l) _ 1 z-(p1) + Z f(Pk - Pk-)
P2 k=3 Pk

< 1 + E f(Pk - Pk- ) IZO(r)

= (k f(Pk - Pk-1) 1) Z(r)

where we have used the fact that f(P2-) - 1 > 0 since P2 > 2. 0
P2

Corollary 16 If ri E {0, 1, 3} for all i E V then

Zimp(r) 2.
IZo(r)

This corollary also generalizes the result on the worst-case analysis of the Steiner tree

problem.

6 Concluding Remarks and Extensions

We conclude by mentioning some generalizations of the parsimonious property. The

property still holds if we have additional degree constraints of the form E xe =

eE6(ji})
ai for all i in some subset T of vertices. In that case, D has to be a subset of V \

T. This generalization allows to consider other combinatorial optimization problems
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such as the k-TSP. Moreover, the parsimonious property remains valid if we impose the

cutset constraints (1) only for those subsets S of odd cardinality. Again, the class of

problems that fit into this framework becomes richer and it now encompasses matching-

type problems. It would be interesting to investigate whether the parsimonious property

has important consequences for this broader class of problems.

We would also like to mention that the parsimonious property was recently used by

Bienstock and Simchi-Levi [2] to propose a constant guaranteed heuristic for the prize

collecting traveling salesman problem without a reward constraint.
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Appendix 1: Proof of Lemma 2

As previously mentioned, Lovisz proves a slightly weaker version of Lemma 2 in

which condition 2 is not present. His elegant proof proceeds along the following lines.

1. There exists at most one set S satisfying:

(a) z E S, u S,

(b) 16(S) = cG(i,j) for some i,j E V with i E S,j S and i 6 x, and

(c) S is minimal with respect to the above two conditions.

2. If there is no such 5, then any neighbor v of z can be used for the splitting

operation.

3. If such an S exists then there exists at least one neighbor of x in S. Moreover, any

neighbor of z in S can be used for the splitting operation.

Our proof of Lemma 2 directly rests upon Lovasz's proof.

If dG(X) = 2 then the result follows directly from Lovasz's result. Hence, assume

that dG(x) > 4. Let d = (, E) be obtained from G by adding a new vertex and by

linking that vertex to z through dG() - 2 edges. Clearly, G is Eulerian. Moreover,

cd(i,j) = G(i,j) Vi,j E V \ {x},

c,(i,j) = min(c(x, j), dG() -2) Vj E V \ {z}.

Using the first step of Lovisz's proof, we obtain that there exists at most one set S C

V U {i} satisfying

(a) ES, u S,

(b) 1b(S)I = c(i,j) for some i, j E V U {i} with i E S, j S and i # x,

(c) S is minimal with respect to the above two conditions.
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If such a set S exists we see that i E S. Indeed, if i 0 S then 16(S)1 > dG(z) since

both u and 2 4 S, and G is Eulerian. Moreover, 16(S)l would be equal to cd(i,i) for

some i E S\{z). This follows by (b) and the fact that 16(SU{I})l < 16(S)l which implies

that there is no i and j in V \ z} with i E S and j 0 S such that 16(S)I = cd(i, j). This

leads to a contradiction since dG(z) < 16(S)I = cd(i, i) < do(J) < dG(X).

Moreover, if a set S satisfying (a)-(c) exists then there must exist some v E S with

v i such that v is a neighbor of x. Indeed, if S does not contain any neighbor of

x other than x then 16(S)i > dG(x) which certainly dominates cd(i,j). Hence, there

would exist some i E S, x $ i 6 i and j 0 S such that 6(S) = cd(i,j). This leads to a

contradiction since S \ {x, i} would separate i from j and 16(S \ {x, i}) < 16(S)1. As a

consequence, using the last part of Lovgsz's proof we see that there exists some v i

such that by splitting off (x, u) and (x, v) we obtain a graph G with cd(i,j) = cj(i,j)

Vi, j E V U {} \ {x}. By removing £, we get a graph G' which could have been obtained

from G by splitting off (, u) and (x,v). G' satisfies cG(i,j) = c;(i,j) = c(i,j) =

cG(i, j) for all i,j E V \ {x} and

cGI(zx,j) = c(zx,j) > c6(i,j) = c(i, j) = min(cG(x,j),dG(x)-2)

for all j E V \ {z}. Moreover, due to the splitting operation, cG,(z,j) < cG(x,j) and

caG(x,j) < dG(X) - 2. This completes the proof of Lemma 2. 0
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Appendix 2: Proof of Theorem 9

Using Theorem 8, we need to construct a family of instances for which the ratio

Z,,e,(= is arbitrarily close to 2 (= P--l)

Let ok = P for k = 1, . p- 1. The following procedure constructs an instance
Pk

whose connectivity types are in {Pl, PP}.

Step 1: Take a 2acpl-connected 2pl-regular graph GP with np vertices

and npcapl edges. The existence of such a graph can be shown by

induction. Assign each vertex of GP a connectivity type of pp.

Step 2: Replace each edge of GP by a path with npl internal vertices.

Each internal vertex is assigned a connectivity type of pp-l. Denote

the resulting graph by GP- 1.

Step 3: For i = p-2 downto 1 do:

* Replace all edges of G i+l by aci parallel paths, each containing n/

internal vertices of connectivity type pi. Denote the resulting graph

by G'.

Step 4: Let ce (e = (i, j)) be the number of edges in the shortest path in

G1 from i to j.

The cost of the heuristic solution for this instance can be shown to be equal to:

Ztree(r) (Pk Pk-1) ( i ci + o n)
k=l i= i=k i=1

Pp (un Pk Pk-1 + o( n ).
i=1 k=l Pk i=1

A feasible solution to the LP relaxation can be obtained by assigning a weight xz of -

to every edge of G1 and a zero weight otherwise. By computing the cost of this solution,
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we obtain:

(P)l

p

+ (I ,)
i=1

Pp P P
= 2 H ni + O(I ni).

Therefore, as ,..., np oo, we have
Therefore, as n,..., np - oo, we have

Ztree (r)z~. Pk Pk-Pk

Pk

which combined with Theorem 8 completes the proof of Theorem 9.
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Figure 1: Survivable network: the connectivity types are indicated inside each vertex

36



(b) Optimal Steiner tree

Steiner vertex

edge of cost 1

edge of cost 2

Figure 2: Worst-case instance
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(a) Problem instance

0 -0 edge of cost 2

(b) Optimal Steiner tree

0--

(c) LP optimal solution

0.-----0 weight of 0.5

Figure 3: Worst-case instance
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B

Figure 4: Example in proof of Theorem 11
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