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Abstract

While closed timelike curves (CTCs) are not known to exist, studying their consequences
has led to nontrivial insights in general relativity, quantum information, and other areas. In
this paper we show that if CTCs existed, then quantum computers would be no more powerful
than classical computers: both would have the (extremely large) power of the complexity class
PSPACE, consisting of all problems solvable by a conventional computer using a polynomial
amount of memory. This solves an open problem proposed by one of us in 2005, and gives
an essentially complete understanding of computational complexity in the presence of CTCs.
Following the work of Deutsch, we treat a CTC as simply a region of spacetime where a “causal
consistency” condition is imposed, meaning that Nature has to produce a (probabilistic or
quantum) fixed-point of some evolution operator. Our conclusion is then a consequence of
the following theorem: given any quantum circuit (not necessarily unitary), a fixed-point of the
circuit can be (implicitly) computed in polynomial space. This theorem might have independent
applications in quantum information.

1 Introduction

The possibility of closed timelike curves (CTCs) within general relativity and quantum gravity
theories has been studied for almost a century [11, 15, 13]. A different line of research has
sought to understand the implications of CTCs, supposing they existed, for quantum mechanics,
computation, and information [9, 8, 5].

In this paper we contribute to the latter topic, by giving the first complete characterization of the
computational power of CTCs. We argue that if CTCs containing polynomially many bits could be
created and maintained, then both classical and quantum computers would have exactly the power
of the complexity class PSPACE, which consists of all problems solvable on a classical computer
with a polynomial amount of memory. To put it differently, CTCs would make polynomial time
equivalent to polynomial space as computational resources, and would also make quantum and
classical computers equivalent to each other in their computational power. Our results treat CTCs
using the “causal consistency” framework of Deutsch [9], together with the assumption that a CTC
involving polynomially many bits can be maintained using polynomial resources.

It will not be hard to show that classical computers with CTCs can simulate PSPACE and be
simulated in it (though as far as we know, this result is new). The main difficulty will be to show
that quantum computers with CTCs can be simulated in PSPACE. To prove this, we need to give
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an algorithm for (implicitly) computing fixed points of superoperators in polynomial space. Our
algorithm relies on fast parallel algorithms for linear algebra due to Borodin, Cook, and Pippenger
[7], and might be of independent interest.

The paper is organized as follows. In Section 2, we explain needed background about Deutsch’s
causal consistency framework and computational complexity, and review previous work by Bacon
[5], Brun [8], and Aaronson [1]. In Section 3, we show that classical computers with CTCs have
exactly the power of PSPACE. Section 4 extends the analysis of Section 3 to show that quantum
computers with CTCs have exactly the power of PSPACE. In that section, we make the simplifying
assumption that all quantum gates can be applied perfectly and that amplitudes are rational. In
Section 5, we consider what happens when gates are subject to finite error, and extend previous
work of Bacon [5] to show that quantum computers with CTCs can solve PSPACE problems in a
“fault-tolerant” way. We conclude in Section 6 with some general remarks and open problems.

2 Background

2.1 Causal Consistency

It was once believed that CTCs would lead inevitably to logical inconsistencies such as the Grand-
father Paradox. But in a groundbreaking 1991 paper, Deutsch [9] argued that this intuition fails,
provided the physics of the CTC is quantum-mechanical. While Deutsch’s resolution of the Grand-
father Paradox is not universally accepted, we will adopt it throughout in this paper, since it leads
in a particularly clear and elegant way to a model of computation. Deutsch’s insight was that a
CTC should simply be regarded as a region of spacetime where Nature enforces a requirement of
causal consistency : in other words, that the evolution operator within that region should map the
state of the initial hypersurface to itself. Given the evolution operator f , Nature’s “task” is thus to
find a fixed point of f : that is, an input x such that f (x) = x. Of course, not every deterministic
evolution operator f has a fixed point: that is just one way of stating the Grandfather Paradox.
On the other hand, it is a basic linear-algebra fact that every quantum operation Φ has a fixed
point: that is, a density matrix ρ such that Φ (ρ) = ρ. For any Φ, such a ρ can then be used
to produce a CTC evolution that satisfies the causal consistency requirement. So for example, a
consistent resolution of the Grandfather Paradox is that you are born with 1/2 probability, and
if you are born you go back in time to kill your grandfather, therefore you are born with 1/2
probability, etc.

Notice that Deutsch’s resolution works just as well in classical probabilistic theories as in
quantum-mechanical ones. For just as every quantum operation has a fixed point, so every Markov
chain has a stationary distribution. What matters is simply that the state space and the set of
transformations are such that fixed points exist.

It might be thought mysterious that Nature “finds” a fixed point ρ of Φ: how, one might ask,
does Nature do this? Does Nature not have to find ρ before the CTC computation starts, so that
in some sense, running the computation is not even necessary? While these issues are admittedly
mysterious, to us they are not more mysterious than the starting assumption that CTCs exist! One
should keep in mind that any account of a universe with CTCs is going to be strange, so perhaps
the most one can hope for is that the account should be mathematically clear and consistent. And
at a purely mathematical level, Deutsch’s causal consistency account of CTCs is the clearest we
have seen.

Although CTCs need not lead to inconsistencies, Deutsch pointed out that they would have
striking consequences for the theory of computing. As an example, CTCs could be exploited to solve
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NP-complete and other “intractable” computational problems using only polynomial resources. To
see this, suppose some integers x ∈

{

0, 1, . . . , 2n−1
}

are “solutions” and others are not, and that our
goal is to find a solution in time polynomial in n, assuming solutions exist and can be recognized
efficiently. Then we could build a machine M that applied the following transformation to its
input x: if x is a solution then M (x) = x, while if x is not a solution then M (x) = (x + 1) mod2n.
Now suppose we use a CTC to feed M its own output as input. Then it is not hard to see that the
only way for the evolution to satisfy causal consistency is for M to input, and output, a solution.

In this way, an exponentially-hard computational problem could get solved without exponential
effort ever being invested to solve it, merely because that is the only way to satisfy causal consis-
tency. A rough analogy would be Shakespeare’s plays being written by someone from the present
going back in time and dictating the plays to him.

It is sometimes said that if CTCs existed, then one could obviously do computations of unlimited
length in an instant, by simply computing the answer, then sending it back in time to before one
started. However, this proposal does not work for two reasons. First, it ignores the Grandfather
Paradox: what happens if, on receiving the output, one goes back in time and changes the input?
Second, it is perhaps unclear why a computation lasting 101000 years should be considered “feasible,”
merely because we are able to obtain the solution before performing the computation. It seems
that an honest accounting should require the computations performed inside the CTC to be efficient
(say, polynomial-time), with any computational speedup coming from the requirement of causal
consistency.

2.2 Complexity Theory

For background on classical computational complexity theory, see for example Arora and Barak
[4]; for a recent survey of quantum complexity theory, see Watrous [18]. Here, we briefly describe
the main complexity classes we will consider. PSPACE (Polynomial Space) is the class of decision
problems that are solvable by a classical computer, using an amount of memory that is bounded
by a polynomial function of the size of the input n (but possibly an exponential amount of time).
An example of such a problem is, given a configuration of an n × n Go board, to decide whether
White has a winning strategy using n2 or fewer moves. NP (Nondeterministic Polynomial-Time)
is the class of decision problems for which every “yes” answer has a polynomial-time-checkable,
polynomial-size proof or witness. NP-complete problems are, loosely speaking, the “hardest”
problems in NP: that is, those NP problems to which all other NP problems can be efficiently
reduced. An example is, given a graph, to decide whether it has a Hamiltonian cycle (that is,
a cycle that visits each vertex exactly once). PSPACE contains NP (thus, in particular, the NP-
complete problems)—since in polynomial space, one can simply loop over all possible witnesses
and see if any of them are correct. However, PSPACE is believed to be considerably larger than
NP. So in saying that computers with CTCs can efficiently solve PSPACE problems, we are saying
something stronger than just that they can solve NP-complete problems.

Our main result is that computers with polynomial-size CTCs have precisely the power of
PSPACE, and that this is true whether the computers are classical or quantum. Previously,
Watrous [17] showed that BQPSPACE (Bounded-Error Quantum Polynomial Space) is equal to
PSPACE: that is, any problem solvable by a quantum computer with polynomial memory is also
solvable by a classical computer with polynomial memory. (By contrast, quantum computers are
conjectured to offer an exponential improvement over classical computers in time.) Here, we show
that quantum computers are polynomially equivalent to classical computers in the CTC setting as
well.
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Our results will allow CTCs that contain a polynomial number of bits or qubits, as well as a
polynomial number of gate operations. Given our ignorance of the physics of CTCs, it might be
wondered whether these choices are justified. Our response is that the choices arise from treating
CTCs the same way one would treat any other resource in computational complexity theory: for a
“polynomial price,” one gets a polynomial amount of the resource (e.g., bits or qubits). Still, it is
interesting to consider the effects of other choices, and we discuss some possibilities in Section 6.

2.3 Related Work

Besides Deutsch’s paper [9], we know of three other works directly relevant to computational
complexity in the presence of CTCs. First, Brun [8] showed that CTCs would allow the efficient
solution of NP-complete problems.1

Second, Bacon [5] showed that NP-complete problems can be solved with polynomial resources,
even using CTCs that are only “one bit wide” (i.e., able to transmit a single qubit or probabilistic
classical bit back in time).2 Bacon also showed that, using his approach, one can solve not only
NP problems but even #P problems, which involve counting solutions rather than just finding
one. (The class #P—or more formally its decision version P#P—is a subclass of PSPACE, with
the containment believed to be strict.) Finally, Bacon showed that techniques from the theory
of quantum fault-tolerance could be used to make certain CTC computations, including the ones
used to solve #P problems, robust to small errors.

Third, as part of a survey on “NP-complete Problems and Physical Reality” [1], Aaronson
sketched the definitions of PCTC and BQPCTC (classical and quantum polynomial time with CTCs)
that we adopt in this paper. He also sketched a proof that PSPACE = PCTC ⊆ BQPCTC ⊆ EXP.
That is, classical computers with polynomial-size CTCs have exactly the power of polynomial space,
while quantum computers with polynomial-size CTCs have at least the power of polynomial space
and at most the power of classical exponential time. The key problem that Aaronson left open
was to pin down the power of quantum computers with CTCs precisely. This is the problem we
solve in this paper.

3 The Classical Case

To state our results, it is crucial to have a formal model of computation in the presence of CTCs.
We define a deterministic CTC algorithm A to be deterministic polynomial-time algorithm

that takes as input a string x ∈ {0, 1}n, and that produces as output a Boolean circuit C = Cx,
consisting of AND, OR, and NOT gates. The circuit C acts on bits in two registers: a CTC
register RCTC , and a causality-respecting register RCR. The registers RCTC and RCR consist
of p (n) and q (n) bits respectively, for some polynomials p and q depending on A. Thus, C can

be seen as a Boolean function C : {0, 1}p(n)+q(n) → {0, 1}p(n)+q(n), which maps an ordered pair
〈y, z〉 ∈ RCTC ×RCR to another ordered pair C (〈y, z〉).

1He also sketched a possible extension to PSPACE problems. However, Brun did not specify the model of
computation underlying his results, and the most natural interpretation of his “CTC algorithms” would appear
to preclude their solving PSPACE problems. For Brun, a fixed-point of a CTC evolution seems to be necessarily
deterministic—in which case, finding such a fixed-point is an NP problem (note that NP is almost universally believed
to be smaller than PSPACE). Thus, to prove that classical or quantum computers with CTCs give the full power of
PSPACE, it seems essential to adopt Deutsch’s causal consistency model.

2On the other hand, Bacon’s approach would require a polynomial number of such CTC’s, rather than a single
CTC as in Deutsch’s approach.
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Figure 1: Diagram of a classical CTC computer. A circuit C performs a polynomial-time compu-
tation involving “closed timelike curve bits” (the register RCTC) as well as “causality-respecting
bits” (the register RCR). Nature must then find a probability distribution over RCTC that satisfies
Deutsch’s causal consistency equation. The final answer is read out from RCR.

For convenience, we assume that the causality-respecting register RCR is initialized to 0q(n).
The CTC register, on the other hand, must be initialized to some probability distribution over p (n)-
bit strings that will ensure causal consistency. More formally, let D be a probability distribution
over RCTC × RCR, and let C (D) be the distribution over RCTC × RCR induced by drawing a
sample from D and then applying C to it. Also, let [·]CTC be an operation that discards the
causality-respecting register (i.e., marginalizes it out), leaving only the CTC register. Then we
need the initial probability distribution D over RCTC×RCR to satisfy the following two conditions:

(i) D has support only on pairs of the form
〈

y, 0q(n)
〉

.

(ii) D satisfies the causal consistency equation [D]CTC = [C (D)]CTC .

We claim that such a D always exists. This is easy to prove: let C ′ (y) :=
[

C
(〈

y, 0q(n)
〉)]

CTC

be the induced circuit that acts only on the CTC register. Then it suffices to find a distribution D′

over RCTC such that C ′ (D′) = D′. To find such a D′, we consider the directed graph representing

the function C ′ : {0, 1}p(n) → {0, 1}p(n), find a cycle in that graph (which must exist, since the
graph is finite), and let D′ be the uniform distribution over points in the cycle. Finally we set
D =

〈

D′, 0q(n)
〉

.
We are now ready to define the complexity class PCTC, of problems solvable using classical

computers with CTCs. We say that a CTC algorithm A accepts the input x if, for every distribution
D satisfying conditions (i) and (ii) above, C (D) has support only on pairs of the form 〈y, z1〉—i.e.,
such that the last bit of the causality-respecting register is a 1. (Recall that C = Cx depends on
the input x.) Likewise, we say A rejects x if for every D satisfying (i) and (ii), C (D) has support
only on pairs of the form 〈y, z0〉. (Of course, it is possible that C (D) has support on both kinds of
pairs, in which case A neither accepts nor rejects.) We say A decides the language L ⊆ {0, 1}∗ if A
accepts every input x ∈ L, and rejects every input x /∈ L. Then PCTC is the class of all languages
L that are decided by some deterministic CTC algorithm.

Let us make a few remarks about the definition. First, the requirement that some polynomial-
time algorithm A output the circuit C = Cx is intended to prevent hard-to-compute information
from being hard-wired into the circuit. This requirement is standard in complexity theory; it is
also used, for example, in the definition of BQP. Second, our definition required C to succeed
with certainty, and did not allow C to introduce its own randomness, besides that produced by the
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causal consistency condition. We could relax these requirements to obtain the complexity class
BPPCTC, or bounded-error probabilistic polynomial time with access to a CTC. However, it will
turn out that PCTC = BPPCTC = PSPACE anyway.

3.1 Results

We now prove PCTC = PSPACE.

Lemma 1 PCTC ⊆ PSPACE.

Proof. Let C be a polynomial-size circuit that maps RCTC ×RCR to itself, as in the definition of
PCTC. Then our PSPACE simulation algorithm is as follows. First, let C ′ (y) :=

[

C
(〈

y, 0q(n)
〉)]

CTC

be the induced circuit that acts only on RCTC . Then given a string y ∈ {0, 1}p(n), say y is cyclic
if C ′(k) (y) = y for some positive integer k. In other words, y is cyclic if repeated application of C ′

takes us from y back to itself. Clearly every C ′ has at least one cyclic string. Furthermore, it is
clear from the definition of PCTC that if x ∈ L then every cyclic string must lead to an output of 1
in the last bit of RCR, while if x /∈ L then every cyclic string must lead to an output of 0. Hence
the problem essentially reduces to finding a cyclic string.

But it is easy to find a cyclic string in polynomial space: the string y∗ := C ′(2p(n)) (y) will be
cyclic for any y. The one remaining step is to compute C

(〈

y∗, 0q(n)
〉)

, and then output the last
bit of RCR.

We are indebted to Lance Fortnow for the following lemma.

Lemma 2 PSPACE ⊆ PCTC.

Proof. For some polynomial p, let M be a p (n)-space Turing machine (i.e. every configuration
of M takes p (n) bits to describe). We can assume without loss of generality that M includes a
“clock,” which is incremented at every time step, and which causes M to accept automatically once
it reaches its maximum value. This prevents M from ever going into an infinite loop, regardless
of its starting configuration.

Let m1, . . . ,mT be the successive configurations of M when run on an input x ∈ {0, 1}n.
Then our task is to decide, using a CTC computer, whether mT is an accepting or a rejecting
configuration.

Our CTC algorithm A will produce a circuit C that acts on two registers: a (p (n) + 1)-bit
CTC register RCTC , and a one-bit causality-respecting register RCR. For simplicity, we start by
describing the induced circuit C ′ that acts on RCTC . Given a configuration m of M , let S (m)
be the successor of m: that is, the configuration obtained from m by incrementing the clock and
performing one step of computation. Then the circuit C ′ acts as follows, on ordered pairs 〈m, b〉
consisting of a configuration m and a “control bit” b:

• If m is neither an accepting nor a rejecting configuration, then C ′ (〈m, b〉) = 〈S (m) , b〉.

• If m is an accepting configuration, then C ′ (〈m, b〉) = 〈m1, 1〉.

• If m is a rejecting configuration, then C ′ (〈m, b〉) = 〈m1, 0〉.

In other words, if m produces an output then C ′ sets the control bit to that output and goes
back to the starting configuration; otherwise C ′ increments the computation and leaves the control
bit unchanged (see Figure 2).
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mT-1,0

mT,0

m1,0

m2,0

mT-1,1

mT,1

m1,1

m2,1

Figure 2: To simulate a PSPACE machine with a CTC, we perform a computation for which the
only causally consistent evolution is a loop over all configurations of the machine, with a control
bit b set to its final value (in this example b = 1).

Now consider the graph of the function C ′ : {0, 1}p(n)+1 → {0, 1}p(n)+1. It is not hard to see
that the only cycle in this graph is (〈m1, 1〉 , . . . , 〈mT , 1〉) if mT accepts, or (〈m1, 0〉 , . . . , 〈mT , 0〉)
if mT rejects. Indeed, this is true even if there are configurations that are not reachable from
〈m1, 1〉 or 〈m1, 0〉, since those configurations will ultimately lead back to either 〈m1, 1〉 or 〈m1, 0〉
and therefore not produce new cycles. In other words, the only cycle is a loop over m1, . . . ,mT ,
with the control bit b set to M ’s final output. Therefore, the only probability distribution D′

over {0, 1}p(n)+1 that is stationary, in the sense that C ′ (D′) = D′, is the uniform distribution over
〈m1, b〉 , . . . , 〈mT , b〉 where b is M ’s final output.

Finally, the full circuit C simply applies C ′ to RCTC , and then copies the control bit into the
causality-respecting register.

4 The Quantum Case

Let G be a universal set of quantum gates, with amplitudes having rational real and imaginary
parts. Then a quantum CTC algorithm A is a deterministic polynomial-time algorithm that takes
as input a string x ∈ {0, 1}n, and that produces as output an encoding of a unitary quantum circuit
Q = Qx with gates from G.

The circuit Q acts on two quantum registers: a q (n)-qubit CTC register RCTC and an r (n)-
qubit causality-respecting register RCR. The causality-respecting register RCR is initialized to
|0〉⊗r(n), while the CTC register must be initialized to some q (n)-qubit mixed state ρ that will
ensure causal consistency. More formally, we require that

TrRCR

(

Q
(

ρ ⊗ (|0〉〈0|)⊗r(n)
)

Q†
)

= ρ, (1)

which is equivalent to ρ being a fixed point of the quantum operation defined as

Φ (ρ) := TrRCR

(

Q
(

ρ ⊗ (|0〉〈0|)⊗r(n)
)

Q†
)

.

Deutsch [9] proved that every such quantum operation has a fixed point, and an alternate proof of
this fact follows from our results in Section 4.3 below.

We can now define the complexity class BQPCTC, of problems solvable using quantum computers
with CTCs. Let M be a measurement of the last qubit of RCR in the computational basis.
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Then we say the algorithm A accepts x if for every mixed state ρ satisfying equation (1) above,

M
(

Q
(

ρ ⊗ (|0〉〈0|)⊗r(n)
)

Q†
)

results in output 1 with probability at least 2/3. We say A rejects

x if for every ρ satisfying the equation, M
(

Q
(

ρ ⊗ (|0〉〈0|)⊗r(n)
)

Q†
)

results in output 1 with

probability at most 1/3. We say A decides the language L ⊆ {0, 1}∗ if A accepts every input
x ∈ L, and rejects every input x /∈ L. Then BQPCTC is the class of all languages L that are decided
by some quantum CTC algorithm.

In what follows, we develop some needed background, and then prove the main result that
BQPCTC ⊆ PSPACE.

4.1 Matrix Representation of Superoperators

We will make use of a simple way of representing quantum operations as matrices. This represen-
tation begins with a representation of density matrices as vectors by the linear function defined on
standard basis states as

vec (|x〉 〈y|) = |x〉 |y〉 .

If ρ is an N × N density matrix, then vec(ρ) is the N2-dimensional column vector obtained by
stacking the rows of ρ on top of one another. For example,

vec

(

α β
γ δ

)

=









α
β
γ
δ









.

Now, suppose that Φ is a given quantum operation acting on an N dimensional system, meaning
that Φ : C

N×N → C
N×N is linear, completely positive, and trace-preserving. Given that the effect

of Φ on density matrices is linear, there must exist an N2 × N2 matrix K(Φ) that satisfies

K(Φ) vec(ρ) = vec (Φ(ρ))

for every possible N ×N density matrix ρ. The matrix K(Φ) is called the natural matrix represen-
tation of the quantum operation Φ, and is uniquely determined by Φ.

The natural matrix representation can easily be calculated from other standard forms. For
example, if an operation Φ is represented in the usual Kraus form as

Φ(ρ) =
k

∑

j=1

AjρA†
j ,

then it holds that

vec (Φ (ρ)) =





k
∑

j=1

Aj ⊗ Aj



 vec (ρ) ,

and therefore

K (Φ) :=
k

∑

j=1

Aj ⊗ Aj .

(Here Aj represents the entry-wise complex conjugate of Aj .)
In the section that follows, we will make use of the following simple way to calculate the natural

matrix representation of a quantum operation that is specified by a quantum circuit. Suppose that
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R is an r-qubit system, S is an s-qubit system, and U is a unitary operation on r + s qubits. Then
for the quantum operation Φ defined as

Φ(ρ) = TrS

[

U
(

ρ ⊗ (|0〉〈0|)⊗s
)

U †
]

,

we have
K(Φ) = M1

(

U ⊗ U
)

M0 (2)

for
M1 =

∑

y∈{0,1}s

I ⊗ 〈y| ⊗ I ⊗ 〈y| and M0 = I ⊗ |0〉⊗s ⊗ I ⊗ |0〉⊗s .

(In both cases, each identity matrix I acts on R, or equivalently is the 2r × 2r identity matrix.)

4.2 Space-Bounded and Depth-Bounded Computations

When we speak of a family {Cn : n ∈ N} of Boolean circuits, we assume that each Cn is an acyclic
circuit, composed of AND, OR, NOT, and constant-sized fanout gates, with n input bits and an
arbitrary number of output bits. Such a family computes a function f : {0, 1}∗ → {0, 1}∗ if, for
each n ∈ N and string x ∈ {0, 1}n, the circuit Cn outputs f(x) when given input x. The depth of
a Boolean circuit C is the length of the longest path in C from an input bit to an output bit. The
size of C is the sum of the number of input bits, output bits, and gates.

For a given function s : N → N, we say that a Boolean circuit family {Cn : n ∈ N} is space
O(s)-uniform if there exists a deterministic Turing machine M that runs in space O(s (n)), and
that outputs a description of Cn on input 1n for each n ∈ N.3 As is usual when discussing space-
bounded computation, a deterministic Turing machine is assumed to be equipped with a read-only
input tape that does not contribute to the space it uses, so it is meaningful to consider sublinear
space bounds. Given a space O(s)-uniform family {Cn : n ∈ N}, the size of Cn can be at most
2O(s(n)).

We say a function f : {0, 1}∗ → {0, 1}∗ is in the class NC (s) if there exists a space O(s)-
uniform family of Boolean circuits {Cn : n ∈ N} that computes f , and where the depth of Cn is at

most s (n)O(1).4 Also, a language L is in NC(s) if its characteristic function is in NC(s). We write
NC for NC(log n), and NC (poly) for the union of NC(nc) over all constants c. Borodin [6] proved
that if s satisfies s(n) = Ω (log n), then every function in NC(s) is computable by a deterministic
Turing machine in space s(n)O(1). It follows that NC (poly) ⊆ PSPACE. (The reverse containment
also holds, so in fact we have NC (poly) = PSPACE.)

It is clear that if f ∈ NC (poly) and g ∈ NC, then their composition g ◦ f is in NC (poly), since
we can create a circuit for g ◦ f by composing the circuits for f and g in the obvious way.

Many functions of matrices are known to be computable in NC. These include sums and
products of matrices, inverses, and the trace, determinant, and characteristic polynomial, all over a
wide range of fields for which computations can be efficiently performed. (See von zur Gathen [10].)
In particular, we will rely on a fact that follows from a result of Borodin, Cook, and Pippenger [7,
Section 4]:

Theorem 3 ([7]) The determinant of an n× n matrix whose entries are rational functions in an
indeterminate z can be computed in NC.

3Considering inputs of the form 1n is just a standard trick to force n to be encoded in “unary,” i.e., such that it
takes n bits to write down.

4
NC stands for “Nick’s Class”; the term is historical. Also, what we call NC (s) is called NC (2s) by Borodin,

Cook, and Pippenger [7].
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4.3 Projecting Onto Fixed Points

In this subsection, we prove a general theorem about efficient construction of quantum operations
that project onto the fixed points of other quantum operations. This theorem is the technical core
of our BQPCTC ⊆ PSPACE result, but it might be of independent interest as well.

Theorem 4 Suppose that Φ : C
N×N → C

N×N is a given quantum operation acting on an N -
dimensional system, meaning that it is a completely positive and trace-preserving linear map. Then
there exists another quantum operation

Λ : C
N×N → C

N×N

that satisfies three properties:

(1) For every density matrix σ ∈ C
N×N , it holds that ρ = Λ(σ) is a fixed point of Φ.

(2) Every density matrix ρ that is a fixed point of Φ is also a fixed point of Λ.

(3) Λ can be computed from Φ in NC.

In essence, Λ is a (non-orthogonal) projection onto fixed points of Φ, so if we want a fixed point
of Φ it suffices to compute Λ(σ) for any density matrix σ, and moreover every fixed point ρ of Φ
arises in this way from some density matrix σ (which always includes the choice σ = ρ).
Proof. The operation Λ is defined as follows. First, for each real number z ∈ (0, 1), we define a
superoperator Λz : C

N×N → C
N×N as

Λz = z
∞

∑

k=0

(1 − z)kΦk.

Here Φk represents the k-fold composition of Φ and Φ0 is the identity operation. Each Φk is
obviously completely positive and trace-preserving. Given that z(1− z)k ∈ (0, 1) for each choice of
z ∈ (0, 1) and k ≥ 0, and that

∑∞
k=0 z(1− z)k = 1 for every z ∈ (0, 1), we have that Λz is a convex

combination of completely positive and trace-preserving maps. Thus, Λz is completely positive and
trace-preserving as well. Finally, we take

Λ = lim
z↓0

Λz.

We must of course prove that this limit exists—and in the process, we will prove that Λ can be
produced from Φ by an NC computation, which is an important ingredient of our simulation of
BQPCTC in PSPACE. Once this is done, the required properties of Λ will be easily verified.

We assume that Φ is represented by the N2 × N2 complex matrix M = K(Φ) as discussed in
Section 4.1. Since Φ is a quantum operation, every eigenvalue of M lies within the unit circle.5 It
follows that the matrix I − (1 − z)M is invertible for every real z ∈ (0, 1), and moreover there is a
convergent series for its inverse:

(I − (1 − z)M)−1 = I + (1 − z)M + (1 − z)2M2 + · · · (3)

5This fact is proved in [16]. An alternate proof follows from the fact that ‖Φ‖⋄ = 1 and that the diamond norm
is submultiplicative (see Theorem 5.6.9 of [12]).

10



Now, for every z ∈ (0, 1) we define an N2 × N2 matrix Rz as follows:

Rz := z (I − (1 − z)M)−1.

We note that Rz = K(Λz) for Λz as defined above—and as each Λz is completely positive and
trace-preserving, each entry of Rz must be bounded in absolute value by 1.

Next, by Cramer’s rule, we have

z (I − (1 − z)M)−1 [i, j] = (−1)i+j
z det((I − (1 − z)M)j,i)

det (I − (1 − z)M)
, (4)

where (I − (1 − z)M)j,i denotes the (N2 − 1)× (N2 − 1) matrix obtained by removing the jth row

and ith column from I − (1− z)M . It follows that each entry of Rz is given by a rational function
in the variable z having degree at most N2. As the entries of Rz are rational functions that are
bounded for all z ∈ (0, 1), we have that the limit limz↓0 Rz exists. Define

R := lim
z↓0

Rz,

and note that R = K(Λ). We have therefore proved that the limit Λ = limz↓0 Λz exists as claimed.
The fact that R can be computed from M in NC follows from the above discussion, together with

Theorem 3. In particular, equation (4) above expresses the entries of Rz as ratios of polynomials
of degree at most N2 in z having coefficients with rational real and imaginary parts. It remains to
compute the limit, which is also done symbolically for the real and imaginary parts of each entry.
To compute

lim
z↓0

f(z)

g(z)

for polynomials f (z) =
∑

i ciz
i and g (z) =

∑

i diz
i, we perform a binary search on the coefficients

of g to find the smallest k for which dk 6= 0, and then output the ratio ck/dk. Each of the required
computations can be done in NC, and can be applied in parallel for each entry of R to allow R to
be computed from M in NC.

Finally, we verify the required properties of Λ. It is clear that every fixed point ρ of Φ is also a
fixed point of Λ, since

Λz(ρ) = z
∞
∑

k=0

(1 − z)kΦk(ρ) = z
∞
∑

k=0

(1 − z)kρ = ρ,

and therefore Λ(ρ) = limz↓0 Λz(ρ) = ρ. To prove that ρ = Λ(σ) is a fixed point of Φ for every
density matrix σ, it suffices to prove ΦΛ = Λ. For each z ∈ (0, 1) we have

ΦΛz = z

∞
∑

k=0

(1 − z)kΦk+1 =
z

1 − z

∞
∑

k=1

(1 − z)kΦk =
1

1 − z
Λz −

z

1 − z
I,

and therefore

ΦΛ = lim
z↓0

ΦΛz = lim
z↓0

(

1

1 − z
Λz −

z

1 − z
I

)

= Λ

as claimed.
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4.4 Proof of Containment

We can now complete the proof that quantum computers with CTCs are simulable in PSPACE.

Theorem 5 BQPCTC ⊆ PSPACE.

Proof. Let L ∈ BQPCTC be given, and assume that A is a quantum CTC algorithm for L. As
discussed in Section 4.2, it suffices to prove L ∈ NC (poly).

Assume for simplicity that an input x of length n has been fixed. Let Q be the unitary
quantum circuit that is output by A on input x; then as in the definition of BQPCTC, define a
quantum operation

Φ (ρ) := TrRCR

(

Q
(

ρ ⊗ (|0〉〈0|)⊗r(n)
)

Q†
)

.

Our goal will be to compute the probability

Pr
[

M
(

Q
(

ρ ⊗ (|0〉〈0|)⊗r(n)
)

Q†
)

= 1
]

(5)

for some arbitrary fixed point ρ of Φ. This value can then be compared to 1/2 to decide whether to
accept or reject. This computation will be performed in a uniform manner, in NC (poly), therefore
establishing that L ∈ NC (poly).

The first step is to compute the matrix representation M = K(Φ) of the operation Φ. This
can be done by a polynomial-space uniform family of Boolean circuits with exponential size and
polynomial depth, since M is expressible as in equation (2), and Q is expressible as a product of a
polynomial number of exponential-size matrices determined by the gates of Q.

Next we compute the matrix representation R = K(Λ), where Λ is the quantum operation that
projects onto fixed points of Φ discussed in Section 4.3. We have argued that R can be computed
from M in NC, and therefore by composing this computation with the NC (poly) computation of
M , we have that R can be computed in NC (poly).

Finally, we compute a fixed point ρ of Φ using R along with an arbitrary choice of a density

matrix input for Λ. For instance, we may take ρ = Λ
(

(|0〉 〈0|)⊗q(n)
)

, so that vec(ρ) = R |0〉⊗2q(n).

The probability (5) can then be evaluated in NC (poly) by performing matrix-vector multiplication.

5 Dealing With Error

In defining the class BQPCTC, we required the quantum circuits to involve amplitudes with rational
real and imaginary parts. However, while this assumption is mathematically convenient, it is also
“unphysical.” Even in a CTC universe, quantum operations can presumably only be implemented
to finite precision. In this section, we consider how to make our upper and lower bounds robust
to small errors.

The basic difficulty is that, in a CTC universe, two quantum operations that are arbitrarily
close can produce detectably different outcomes. As an example, consider the stochastic matrices

(

1 ε
0 1 − ε

)

,

(

1 − ε 0
ε 1

)

.

As ε → 0, these matrices become arbitrarily close to each other and to the identity matrix. Yet
their fixed points remain disjoint: the first has a unique fixed point of (1, 0)T , while the second has
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a unique fixed point of (0, 1)T . Hence, were an algorithm to apply one of these matrices inside a
CTC, an arbitrarily small error could completely change the outcome of the computation.

However, we will show that, while this “pathological” situation can arise in principle, it does
not arise in our simulation of PSPACE by a CTC computer in Lemma 2.

Given two probability distributions D = (px) and E = (qx), recall that their variation distance
is defined as

‖D − E‖ =
1

2

∑

x

|px − qx| .

Also, given two mixed states ρ and σ, their trace distance is defined as

‖ρ − σ‖tr =
1

2
max

U
Tr

∣

∣UρU−1 − UσU−1
∣

∣

where the maximum is over all unitary matrices U . Finally, given two superoperators Φ and Φ′,
their diamond distance is defined as

∥

∥Φ − Φ′
∥

∥

⋄
= max

ρ

∥

∥(Φ ⊗ I) (ρ) −
(

Φ′ ⊗ I
)

(ρ)
∥

∥

tr

where the maximum is over all mixed states ρ on some larger Hilbert space.
Given a superoperator Φ, call ρ an ε-fixed-point of Φ if ‖ρ − Φ (ρ)‖tr ≤ ε.

Proposition 6 Suppose ρ is a fixed point of Φ and ‖Φ − Φ′‖⋄ ≤ ε. Then ρ is an ε-fixed-point of
Φ′.

Proof. Since ρ = Φ (ρ), we have ‖ρ − Φ′ (ρ)‖tr = ‖Φ (ρ) − Φ′ (ρ)‖tr ≤ ε.

Lemma 7 Let Φ be a classical operation mapping a finite set B to itself, and let ρ be an ε-fixed-point
of Φ. Then ‖ρ − σ‖tr ≤ 2 |B| ε for some state σ supported only on the cycles of Φ.

Proof. We prove the contrapositive. Let C be the union of all cycles of Φ, and let C = B \ C.
Also, for each element x ∈ B, let px = 〈x| ρ |x〉. Suppose ρ is not δ-close to any state supported
only on C, where δ = 2 |B| ε. Then

∑

x∈C px > δ. Hence, letting D be the distribution over B
obtained by measuring ρ in the standard basis, we have

‖ρ − Φ (ρ)‖tr ≥ ‖D − Φ (D)‖

=
1

2

∑

x∈B

∣

∣

∣

∣

∣

∣

px −
∑

y:Φ(y)=x

py

∣

∣

∣

∣

∣

∣

≥
1

2

∑

x∈C

∣

∣

∣

∣

∣

∣

px −
∑

y:Φ(y)=x

py

∣

∣

∣

∣

∣

∣

≥
1

2
max
x∈C





∣

∣

∣

∣

∣

∣

px −
∑

y:Φ(y)=x

py

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

y:Φ(y)=x

py −
∑

y:Φ(Φ(y))=x

py

∣

∣

∣

∣

∣

∣

+ · · ·





≥
1

2
max
x∈C

px

>
1

2
·

δ
∣

∣C
∣

∣

≥ ε.
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Here the fourth line follows from the triangle inequality. The fifth line follows from the triangle
inequality, together with the fact that if we fix an x ∈ C maximizing px, and then consider all z’s
“upstream” from x (i.e. such that Φ (z) = x, or Φ (Φ (z)) = x, etc), we must eventually reach
“source” elements: that is, z’s for which there are no y’s such that Φ (y) = z, and hence

∣

∣

∣

∣

∣

∣

pz −
∑

y:Φ(y)=z

py

∣

∣

∣

∣

∣

∣

= pz.

We can now prove the following:

Theorem 8 Every PSPACE language L is decidable in BQPCTC, even if every gate of the BQPCTC

circuit is subject to 2−q(n) error (for some polynomial q depending on L and the circuit).

Proof. Let C ′ be the circuit from Lemma 2 that maps RCTC to itself. As part of the proof of
Lemma 2, we showed that the graph of C ′ : {0, 1}p(n) → {0, 1}p(n) has a unique cycle L, in which
every configuration leads to the desired output. Now let C ′′ be a corrupted version of C ′ that
satisfies ‖C ′ − C ′′‖⋄ ≤ ε, and let ρ be any fixed point of C ′′. Then ρ is an ε-fixed-point of C ′

by Proposition 6. By Lemma 7, this in turn means that ‖ρ − σ‖tr ≤ 2p(n)+1ε for some state σ
supported only on L. So provided ε ≪ 2−p(n)−1, a CTC algorithm that uses C ′′ in place of C ′ will
still produce the correct answer with high probability.

Moreover, as pointed out by Bacon [5], even if every gate in our quantum circuit is subject to
(sufficiently small) constant error, we can still use standard results from the theory of quantum
error-correction [3] to ensure that ‖C ′ − C ′′‖⋄ is exponentially small, where C ′ and C ′′ are the
quantum circuits acting on the logical (encoded) qubits. See [5] for a detailed version of this
argument.

But what about our proof of the BQPCTC ⊆ PSPACE upper bound, in Section 4: is that proof
affected by precision issues? It might be thought that we simply need to represent all amplitudes
and matrix elements to poly (n) bits of precision. As discussed earlier, however, the trouble is that
the set of fixed points of a superoperator Φ can depend sensitively on Φ, so that an arbitrarily small
change to Φ produces a large change in the set of fixed points. Indeed, this is precisely reason
why we assumed the amplitudes to be complex rational numbers. Because of that assumption,
we were able to use the algorithm of Borodin, Cook, and Pippenger [7] to compute a fixed point
symbolically rather than just numerically.

6 Discussion and Open Problems

6.1 CTCs in Other Computational Models

In the proof that PSPACE ⊆ PCTC, we did not actually need the full strength of polynomial-time
computation inside the CTC: rather, all we needed was the ability to update the configuration
of a PSPACE machine and increment a counter. Thus, our proof also shows (for example) that
PSPACE = AC0

CTC, where AC0 denotes the class of problems solvable by constant-depth, polynomial-
size circuits consisting of AND, OR, and NOT gates, and AC0

CTC is defined the same way as PCTC

but with AC0 circuits instead of arbitrary polynomial-size circuits.
In the other direction, we could also define PSPACECTC the same way as PCTC, but with PSPACE

machines in place of polynomial-size circuits. Then it is evident that our proof generalizes to show
PSPACECTC = PSPACE.
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It would be extremely interesting to study the consequences of Deutsch’s causal consistency
assumption in other settings besides polynomial-time computation: for example, communication
complexity, branching programs, and finite automata.

6.2 Narrow CTCs

What is the power of classical CTCs with a single bit, or of quantum CTCs with a single qubit (as
studied by Bacon [5])? Let PCTC1, BPPCTC1, and BQPCTC1 be the corresponding deterministic,
randomized, and quantum complexity classes. Then it is not hard to show that NP ∩ coNP ⊆
BPPCTC1: that is, a single use of a one-bit CTC is enough to solve all problems in the class
NP ∩ coNP. For we can guess a random string w ∈ {0, 1}p(n), then set the CTC bit b to 1 if w is a
yes-witness or to 0 if w is a no-witness, and leave b unchanged if w is neither. If there exists a yes-
witness but not a no-witness, then the only fixed point of the induced stochastic evolution is b = 1,
while if there exists a no-witness but not a yes-witness, then the only fixed point is b = 0. Indeed, a
simple extension of this idea yields NP ⊆ BPPCTC1: we set b = 1 if a yes-witness w ∈ {0, 1}p(n) was
guessed, and set b = 0 with some tiny probability ε ≪ 2−p(n) independent of the witness. Again,
the unique fixed point of the induced stochastic map will fix b = 1 with overwhelming probability
if there exists a yes-witness, or b = 0 with certainty if not. Fully understanding the power of
“bounded-width CTCs” remains a problem for the future.

6.3 CTC Computers With Advice

Let BPPCTC/rpoly be defined the same way as BPPCTC, except that instead of being initialized to
0q(n), the chronology-respecting register RCR is initialized to a probability distribution Dn which
depends only on the input length n, but can otherwise be chosen arbitrarily to help the CTC
algorithm. Then we claim that BPPCTC/rpoly = ALL: in other words, BPPCTC/rpoly contains
every computational problem! To see this, let RCR be initialized to the uniform distribution over
all ordered pairs 〈z, f (z)〉, where z is an n-bit input and f (x) ∈ {0, 1} encodes whether x ∈ L.
Also, let the CTC register RCTC contain a single bit b. Then given an input x, our circuit C acts
on b as follows: if z = x then C sets b = f (x); otherwise C leaves b unchanged. It is easy to see
that the unique fixed point of the induced stochastic map on RCTC fixes b = f (x) with certainty.

While it demonstrates that CTCs combined with randomized advice yield staggering compu-
tational power, this result is not quite as surprising as it seems: for it was previously shown by
Aaronson [2] that PP/rpoly = ALL, and by Raz [14] that IP (2) /rpoly = ALL. In other words, ran-
domized advice has a well-known tendency to yield unlimited computational power when combined
with certain other resources.
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