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Abstract—We present a method to learn probabilistic object models (POMs) with minimal supervision, which exploit different visual

cues and perform tasks such as classification, segmentation, and recognition. We formulate this as a structure induction and learning

task and our strategy is to learn and combine elementary POMs that make use of complementary image cues. We describe a novel

structure induction procedure, which uses knowledge propagation to enable POMs to provide information to other POMs and “teach

them” (which greatly reduces the amount of supervision required for training and speeds up the inference). In particular, we learn a

POM-IP defined on Interest Points using weak supervision [1], [2] and use this to train a POM-mask, defined on regional features,

which yields a combined POM that performs segmentation/localization. This combined model can be used to train POM-edgelets,

defined on edgelets, which gives a full POM with improved performance on classification. We give detailed experimental analysis on

large data sets for classification and segmentation with comparison to other methods. Inference takes five seconds while learning

takes approximately four hours. In addition, we show that the full POM is invariant to scale and rotation of the object (for learning and

inference) and can learn hybrid objects classes (i.e., when there are several objects and the identity of the object in each image is

unknown). Finally, we show that POMs can be used to match between different objects of the same category, and hence, enable

objects recognition.

Index Terms—Unsupervised learning, object classification, segmentation, recognition.

Ç

1 INTRODUCTION

RECENT work on object classification and recognition has
tended to represent objects in terms of spatial config-

urations of features at a small number of interest points [3],
[4], [5], [6], [7], [8]. Such models are computationally efficient,
for both learning and inference, and can be very effective for
tasks such as classification. But they have two major
disadvantages: 1) the sparseness of their representations
restricts the set of visual tasks they can perform and 2) these
models only exploit a small set of image cues. Sparseness is
suboptimal for tasks such as segmentation that instead

require different representations and algorithms. This has
led to an artificial distinction in the vision literature, where
detection/classification and segmentation are treated as
different problems being addressed with different object
representations, different image cues, and different learning
and inference algorithms. One part of the literature concen-
trates on detection/classification—e.g., [3], [4], [5], [6], [7], [8],
[1], [2], [9]—uses sparse generative models, and learns them
using comparatively little human supervision (e.g., the
training images are known to include an object from a
specific class, but the precise localization/segmentation of
the object is unknown). In contrast, the segmentation
literature—e.g., [10], [11], [12]—uses dense representations
but typically requires that the precise localization/segmen-
tation of the objects is given in the training images. But until
recently—e.g., [13], [14], [15]—there have been few attempts
to combine segmentation and classification or to make use of
multiple visual cues.

Pattern theory [16], [17] gives a theoretical framework to
address these issues—represent objects by state variablesW ,
specify a generative model P ðIjWÞP ðW Þ for obtaining the
observed image I, and an inference algorithm to estimate
the most probable object state W � ¼ argmaxWP ðW jIÞ. The
estimated state W � determines the identity, pose, config-
uration, and other properties of the object (i.e., sufficient to
perform all object tasks). This approach makes use of all
cues available in the image and is formally optimal in the
sense of Bayes decision theory. Unfortunately, it currently
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suffers from many practical disadvantages when faced with
the complexity of natural images. It is unclear how to
specify the object representations, how to learn generative
models from training data, and how to perform inference
effectively (i.e., to estimate W �).

The goal of this paper is to describe a strategy for learning
probabilistic object models (POMs) in an incremental manner
with minimal supervision. The strategy is to first learn a
simple model that only has a sparse representation of the
object, and hence, only explains part of the data and performs
a restricted set of tasks. Once learned, this model can process
the image to provide information that can be used to learn
POMs with increasingly richer representations, which ex-
ploit more image cues and perform more visual tasks. We
refer to this strategy as knowledge propagation (KP) since it
uses knowledge provided by the simpler models to help train
the more complex models (e.g., the simple models act as
teachers). Knowledge propagation is also used after the
POMs have been learned to enable rapid inference to be done
(i.e., estimate W �). To assist KP, we use techniques for
growing simple models using proposals obtained by cluster-
ing [1], [2]. A short version of this work was presented in [18].

We formulate our approach in terms of probabilistic
inference and machine learning. From this perspective,
learning POMs is a structure induction problem [19], where
the goal is to learn the structure of the probability model
describing the objects as well as the parameters of their
distributions. Structure induction is a difficult and topical
problem and differs from more traditional learning, where
the structure of the model is assumed known and only the
parameters need to be estimated. Knowledge propagation is
a method for doing structure learning that builds on our
previous work on structure induction [1], [2], which is
summarized in Section 4.

For concreteness, we now briefly step through the process
of structure learning by KP as it occurs in this paper—see
Fig. 1. First, we learn a POM defined on interest points (IPs),

POM-IP, using the techniques described in [1], [2]. We start
with a POM-IP because the sparseness of the interest points
and their different appearances makes it easy to learn it with
minimal supervision. This POM-IP can be learned from a set
of images each of which contains one of a small set of objects
with variable pose (position, scale, and rotation) and
variable background. This is the only information provided to
the system—the rest of the processing is completely automatic. The
POM-IP is a mixture model, where each component
represents a different aspect of the object (the number of
components is learned automatically). This POM-IP is able
to detect and classify objects, detect their aspect, deal
automatically with scaling and rotation changes, and give
very crude estimates for segmentation. Second, we extend
this model by incorporating different cues to enable accurate
segmentation and improve classification. More specifically,
we use the POM-IP to train a POM-mask, which uses
regional image cues to perform segmentation. Intuitively,
we start by using a version of grab-cut [20], [21], [22], [23],
where POM-IP substitutes for human interaction to provide
the initial estimate of the segmentation (as motion cues do in
ObjCut [24]). This, by itself, yields a fairly poor segmenta-
tions of the objects. But this segmentation can be improved
by using the training data to learn priors for the masks
(different priors for each aspect). This yields an integrated
model, which combines POM-IP and POM-mask and is
capable of performing classification and segmentation/
localization. Third, the combination of POM-IP and POM-
mask allows us to estimate the shape of the object and
provide sufficient context to train POM-edgelets, which can
localize subparts of the object, and hence, improve classifica-
tion (the context provides strong localization for the POM-
edgelets that makes it easy to learn them and perform
inference with them). After the models have been learned,
KP is also used so that POM-IP provides estimates of pose
(scale, position, and orientation), which helps provide initial
conditions for POM-mask that, in turn, provides initial
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Fig. 1. The flowchart of knowledge propagation. POM-IP is learned and then trains POM-mask (using max-flow/min-cut), which includes learning a

probabilistic object mask (see the feedback arrows). Then POM-IP and POM-mask help train POM-edgelets by using the object mask to provide

context for the nine POM-edgelets. Knowledge propagation is also used for inference (after learning) with similar flow from POM-IP to POM-mask to

POM-edgelets.
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conditions for the POM-edgelets. We stress that learning and
performing inference on POM-mask and POM-edgelets is
very challenging without the initial conditions provided by
the earlier models. The full model couples the POM-IP,
POM-mask, POM-edgelets together (as a regular, though
complicated, graphical model) and performs inference on
this model. Jojic et al. [25] provide alternative unsupervised
learning approach, which addresses model coupling for
video segmentation problem.

Our experiments demonstrate the success of our ap-
proach. First, we show that the full POM—coupling POM-IP,
POM-mask, and POM-edgelet—performs better for classifi-
cation than POM-IP alone. Second, the segmentation ob-
tained by coupling POM-IP with POM-mask is much better
than performing segmentation with grab-cut initialized by
POM-IP only. In addition, we show that the performance of
the system is invariant to scale, rotation, and position
transformations of the objects and can be performed for
hybrid object classes. We give comparisons to other methods
[3], [14], [15]. Finally, we show promising results for
performing recognition by the POM-IP (i.e., distinguishing
between different objects in the same category).

The structure of this paper is as follows: First, we
describe the knowledge propagation strategy in Section 2.
Next, we give detail specifications of the image cues and the
representations used in this paper in Section 3. Then, we
specify the details of the POMs and KP in Sections 4, 5, and
6. Finally, we report the results in Section 7.

2 LEARNING BY KNOWLEDGE PROPAGATION

We now describe our strategy for learning by knowledge
propagation. Suppose that our goal is to learn a generative
model to explain some complicated data. It may be too hard
to attempt a model that can explain all the data in one
attempt. An alternative strategy is to build the model
incrementally by first modeling those parts of the data,
which are the easiest. This will provide the context making
it easier to learn models for the rest of the data.

To make this specific, consider learning a probability
model for an object and background, see Fig. 2, which
uses two types of cues: 1) sparse interest points (IPs) and
2) dense regional cues. The object can occur at a range of
scales, positions, and orientations. Moreover, the object
has several aspects whose appearance varies greatly and
whose number is unknown. In previous work [1], [2], we
have described how to learn a model POM-IP, which is
capable of modeling the interest points of the object (and
the background). After learning, the POM-IP is able to
estimate the pose (position, scale, and orientation) and
aspect of the object for new images. We now want to
enhance this model by using additional regional cues and
a richer representation of the object. To do this, we want
to couple POM-IP with a POM-mask, which has a mask
for representing the object (one mask for each aspect) and
exploits the regional cues. Our strategy, knowledge propaga-
tion, involves learning the full POM sequentially by first
learning the POM-IP and then the POM-mask. We
perform sequential learning—learning POM-IP and then
using it to train POM-mask (because we do not know any
direct algorithm to learn both simultaneously).

We now describe the basic ideas for a simple model and
then return to the more complex models required by our
vision application (which include additional models trained
by both POM-IP and POM-mask).

To put this work in context, we recall the basic
formulation of unsupervised learning and inference tasks.
Suppose that we have data fd�g that is a set of samples from
a generative model P ðdjh; �ÞP ðhj�Þ with hidden states h
and model parameters �;�. The two tasks are: 1) to learn
the model—i.e., determine �;� by MAP estimation ��;�� ¼
arg max�;�P ð�;�jfd�gÞ using training data fd�g (which also
includes learning the structure of the model) and 2) to
perform inference from d to determine hðdÞ by MAP
h�ðdÞ ¼ arg maxhP ðhjd; �;�Þ. But, as described in Section 1,
there may not be efficient algorithms to achieve these tasks.

The basic idea of knowledge propagation can be illustrated
as follows, see Fig. 3. Assume that there is a natural
decomposition of the data into d ¼ ðd1; d2Þ and hidden states
h ¼ ðh1; h2Þ so that we can express the distributions as
P ðd1jh1; �1ÞP ðd2jh2; �2ÞP ðh1j�1ÞP ðh2jh1;�2Þ. These are es-
sentially two models for generating different parts of the
data, which are linked by the coupling termP ðh2jh1;�2Þ, as in
Fig. 3. Knowledge propagation proceeds by first decoupling
the models and learning the model by setting �̂1; �̂1 ¼
arg max�1;�1

Q
�

P
h1
P ðd�1 jh1; �1ÞP ðh1j�1Þ from the data fd�1g

(i.e., ignoring the fd�2g). Once this model has been learned, we
can use it to make inference of the hidden state h�1ðdÞ. This
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Fig. 2. The object is composed of a mask (thick closed contour) plus

interest points (pluses and minuses) and has two aspects. (a) The first

aspect is composed of (b) a POM-IP and (c) a POM-mask. Similarly,

(d) the second aspect is composed of (e) a POM-IP and (f) a POM-mask.

Panels (g) and (h) show examples, where the object is embedded in an

image. Learning the POM-IP is practical, by the techniques described in

[1], [2], but learning the POM-mask—or the full POM that combines IPs

with the mask—is difficult because of the number of aspects (only two

shown here) and the variability in scale and orientation (not shown). But

the POM-IP is able to help train the POM-mask—by providing estimates

of scale, orientation, and position—and facilitate learning of a full POM.
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provides information that can be used to learn the
second part of the model—i.e., to estimate ��2;�

�
2 ¼

arg max�2;�2

Q
�

P
h2
P ðd�2 jh2; �2ÞP ðh2jh�1ðd�Þ;�2Þ. These esti-

mates are only approximate since they make approximations
about the coupling between the two models. But these
estimates can be improved by treating them as initial
conditions for alternating iterative algorithms, such as belief
propagation or Gibbs sampling (e.g., converge to a maxima ofQ

� P ðd
�
1 jh1; �1ÞP ðd�2 jh2; �2ÞP ðh1j�1ÞP ðh2j�2Þ, by doing max-

imization with respect to �1;�1 and �2;�2 alternatively). This
results in a coupled Bayes net for generating the data.
Knowledge propagation can also be used in inference. We use
the first model to estimate h�1ðdÞ ¼ arg maxh1

P ðd1jh1ÞP ðh1Þ
and then estimate h�2ðdÞ ¼ arg maxh2

P ðd2jh2ÞP ðh2jh�1ðdÞÞ.
Once again, we can improve these estimates by using them
as initial conditions for an algorithm that converges to a
maxima of P ðd1jh1ÞP ðh1ÞP ðd2jh2ÞP ðh2Þ by doing maximiza-
tion with respect to h1 and h2 alternatively. It is straightfor-
ward to extend knowledge propagation— both learning and
inference—to other sources of data d3; d4; . . . and hidden
states h3; h4; . . . .

In this paper, d1ðIÞ denotes the set of IPs in the image, see
Fig. 2. The variable h1 ¼ ðV ; s; GÞ determines the corre-
spondence V between observed IPs and IPs in the model, s
respects the aspect of the model (a choice of mixture
component), and G is the pose of the object (position, scale,
and orientation). The model parameters �1;�1 are described
in Section 4. We refer to the probability distribution over
this model P ðd1ðIÞjs; V ;GÞP ðsÞP ðV ÞP ðGÞ as POM-IP. The
form of this model means that we can do efficient inference
and learning (including structure induction) without need-
ing to know the pose G or the aspect s [1], [2]. See Section 4
for the full description.
d2ðIÞ are feature vectors (e.g., color, or intensity, values)

computed at each pixel in the image. The variable h2 ¼ ðL;~qÞ
denotes the labeling L (e.g., inside or outside boundary), and
the distributions ~q ¼ ðqO; qBÞ specify the distribution of the
features inside and outside the object. The POM-mask is
defined by the distributions P ðd2ðIÞjL;~qÞP ðLjG; sÞP ð~qÞ and
specified by corresponding model parameters �2;�2, see
Section 5. Inference and learning are considerably harder for
POM-mask if not intractable (without a POM-IP or other
help). Attempts to learn image masks (e.g., [26]) assume very

restricted transformation of the object between images (e.g.,

translation), a single aspect s, or make use of motion flow

(with similar restrictions). But, as we show in this paper,

POM-IP can provide the estimates of the poseG, the aspect s,
and a very crude estimation of the object mask (given by the

bounding box of the interest points), which are sufficient to

teach the POM-mask and perform inference after the POM-

mask has been learned.
The coupling between POM-IP and POM-mask is per-

formed by the variables G; s, see Fig. 4, which extends Fig. 3.
Learning the POM-mask will enable us to train additional

models that are specified within specific subregions of the

object. Once POM-mask has been applied, we can estimate
the image region corresponding to the object, and hence,

identify the subregions. This provides sufficient context to

enable us to learn models POM-edgelets defined on edge-

lets, see Section 6, which occur within specific subregions of

the object. The full POM is built by combining a POM-IP

with a POM-mask and POM-edgelets, see Figs. 4 and 1.

3 THE IMAGE REPRESENTATION

This section describes the different image features that we

use: 1) interest points (used in POM-IP), 2) regional features

(in POM-mask), and 3) edgelets (in POM-edgelet).
The interest point features d1ðIÞ of an image I used in POM-

IP are represented by a set of attributed features d1ðIÞ ¼ fzig,
where zi ¼ ð~xi; �i; AiÞwith~xi the position of the feature in the

image, �i is the feature’s orientation, andAi is an appearance

vector. The procedures used to detect and represent the

feature points were described in [1], [2]. Briefly, we detect

interest points and determine their position ~x by Kadir-
Brady [27] and represent them by the SIFT descriptor [28]

using principal component analysis to obtain a 15-dimen-

sional appearance vector A and an orientation �.
The regional image features d2ðIÞ used in POM-mask are

computed by applying a filter �ð�Þ to the image I yielding a

set of responses d2ðIÞ ¼ f�ðIð~xÞÞ : ~x 2 Dg, where D is the

image domain. POM-mask will split the image into the
object region f~x 2 D s:t:Lð~xÞ ¼ 1g and the background

region f~x 2 D s:t:Lð~xÞ ¼ 0g. POM-mask requires us to

compute the feature histograms, fOð:; LÞ and fBð:; LÞ, of

the filter �ð�Þ in both regions:
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Fig. 3. Knowledge propagation. Left panel: The model for P ðd1jh1ÞP ðh1Þ,
where the likelihood and prior are specified by �1;�1. Right panel:
Learning the structure and parameters �1;�1 for P ðd1jh1ÞP ðh1Þ enables
us to learn a model with additional hidden states h2, data d2, and
parameters �2;�2. We can also perform inference on h2 by first
estimating h1 using model P ðd1jh1ÞP ðh1Þ.

Fig. 4. The coupling between POM-IP and POM-mask is provided by the

G; s variables for pose and aspect. This yields a full Bayes net

containing IP-nodes and mask-nodes. Learning of the parameters of the

POM-mask is facilitated by the POM-IP.
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fOð�;LÞ ¼
1

jDOj
X
~x2D

�Lð~xÞ;1��ðIð~xÞÞ; �; ð1Þ

fBð�;LÞ ¼
1

jDBj
X
~x2D

�Lð~xÞ;0��ðIð~xÞÞ; �; ð2Þ

where jDOj ¼
P

~x2D �Lð~xÞ;1; jDBj ¼
P

~x2D �Lð~xÞ;0 are the sizes
of the object and background regions, � is the Kronecker
delta function, and � indicates the histogram bin. In this
paper, the filter �ðIð~xÞÞ is either the color or the gray-
scale intensity.

The edgelet features d3ðIÞ are also represented by
attributed features d3ðIÞ ¼ fzejg, where zej ¼ ð~xj; �jÞ with ~xj
the position of the edgelet and �i its orientation. The
edgelets are obtained by applying the Canny edge detector.

The sparse features of the models—interest points and
edgelets—will be organized in terms of triplets. For each
triplet, we calculate an invariant triplet vector (ITV), which is
a function ~lð~xi; �i;~xj; �j;~xk; �kÞ of the positions ~xi and
orientations �i of the three features that form it and is
invariant to the position, scale, and orientation of the
triplet—see Fig. 5. We note that previous authors have used
triplets defined over feature points (without using orienta-
tion) to achieve similar invariance [29], [30].

4 POM-IP

In this section, we introduce the POM-IP. The terminology
for the hidden states of the full POM is shown in Table 1.

The POM-IP is defined on sparse interest points d1ðIÞ ¼
fzig and is almost identical to the probabilistic grammar
Markov model (PGMM) described in [1], [2], see Fig. 6. The
only difference is that we use an explicit pose variable G
that is used to relate the different POMs and provide a key
mechanism for knowledge propagation (G appeared in [2]
but was integrated out in (9)). But, as we will show in the
experimental section, POM-IP outperforms the PGMM due
to details on the reimplementation (e.g., allowing a greater
number of aspects).

The POM-IP is specified as a generative model
P ðfzigjs;G; V ÞP ðGÞP ðsÞP ðV Þ for generating interest points
fzig. It generates IPs both for the object(s) and the
background. It has hidden states s (the model aspect), G
(the pose), and V (the assignment variable which relates the
IPs generated by the model to the IPs detected in the
image). Each aspect s consists of an ordered set of IPs
z1; . . . ; znðsÞ and corresponds to one configuration of the
object. These IPs are organized into a set of nðsÞ � 2 cliques
of triplets ðz1; z2; z3Þ; . . . ; ðznðsÞ�2; znðsÞ�1; znðsÞ�2Þ (see Fig. 7).
The background IPs znðsÞþ1; . . . ; znðsÞþb are generated by a
background process. G is the pose of the POM-IP and can
be expressed as G ¼ ð~xc; �c; ScÞ, where ~xc; �c; Sc are the
center, rotation, and scale of the POM-IP. The assignment
variable V ¼ fiðaÞg indicates the correspondence between
the index a of the IPs in the model and their labels i in the
image. We impose the constraint that each IP in the model
can correspond to at most one IP in the image (i.e.,P

i iðaÞ � 1 for all a 2 f1; . . . ; nðsÞg). Model IPs can be
unobserved—i.e.,

P
i iðaÞ ¼ 0—because of occlusion or fail-

ure of the feature detector. (We require that all IPs
generated by the background model are always observed).

The term P ðfzigjs;G; V Þ specifies how to generate the IPs
for the object (with aspect s) and the background. Ignoring
unobserved points for the moment, we specify this
distribution in exponential form as

logP ðfzigjs;G; V Þ ¼
~�s � ~�ðfð~xiðaÞ; �iðaÞ; GÞ : a ¼ 1; . . . ; nðsÞgÞ
þ ~�A;s � ~�DðfAiðaÞ : a ¼ 1; . . . ; nðsÞgÞ
þ �jBj þ ~�B � ~�BðfziðbÞ : b ¼ nðsÞ; . . . ; nðsÞ þ jBjgÞ
þ log Jðfzig;~l;GÞ � logZ½��:

ð3Þ
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Fig. 5. The oriented triplet is specified by the internal angles 	, the
orientation of the vertices �, and the relative angles � between them.

TABLE 1
The Terminology Used to Describe the Hidden States h of the POMs
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The first term on the right-hand side specifies the prior

on the geometry of the POM-IP, which is given in terms of

Gaussian distributions defined on the clique triplets. More

precisely, it is expressed as ~�s �
PnðsÞ�2

a¼1
~�ð~lðza; zaþ1; zaþ2ÞÞ,

where we define a Gaussian distribution over the ITV
~lðza; zaþ1; zaþ2Þ for each clique triplet za; zaþ1; zaþ2 and set the

clique potential to be the sufficient statistics of the Gaussian

(so the parameters ~�s specify the means and covariances of

these Gaussians). The second term specifies the appearance

model in terms of independent Gaussian distributions for

the appearance of each IP. It is expressed as ~�A;s � ~�DðfAiðaÞ:

a ¼ 1; . . . ; nðsÞgÞ ¼
PnðsÞ

a¼1
~�A;sa � ~�DðAiðaÞÞ, where the poten-

tials �DðAiðaÞÞ are the sufficient statistics of the Gaussian

distribution for the ath IP. The third and fourth terms

specify the probability distribution for the number jBj and

appearance/positions/orientations of the background IPs,

respectively. We assume that the positions and orientations

of the background are uniformly distributed and the

appearances are uncorrelated, so we can re-express ~� �
~�Bð:Þ as

PnðsÞþjBj
b¼nðsÞ

~�B � ~�ðziðbÞÞ. The fifth term is a Jacobian

factor Jðfzig;~l;GÞ, which arises from the change of

coordinates between the spatial positions and orientations

of the IPs f~xiðaÞ; �iðaÞg in image coordinates and the ITVs ~l

and the pose G used to specify the model. In [2], we argue

that this Jacobian factor is approximately constant for the

range of spatial variations of interest (alternatively, we can

use the theory described in [31] to eliminate this factor by

using a default model). The sixth, and final, term Z½��
normalizes the distribution. This term is straightforward to

compute—provided we assume that the Jacobian factor is

constant—since the distributions are either Gaussian (for

the shape and appearance) or exponential (for the number

of background IPs).

The distribution P ðsÞ is also of exponential form

P ðsÞ ¼ 1
Z½�s� expf�s~�ðsÞg. The distribution P ðGÞ is uniform.

The distribution over V assumes that there is a probability 


that any object IP point is unobserved (i.e., iðaÞ ¼ 0).
As described in [1], [2], there are three important

computations we need do with this model: 1) inference,
2) parameter learning, and 3) model evidence for model/structure
induction. The form of the model makes these computations
practical by exploiting the graph structure of the model.

I n f e r e nc e r e q u i r e s e s t i m a t i n g ðV �; s�; G�Þ ¼
arg maxðV ;s;GÞP ðV ; s; Gjd1ðIÞÞ. To do this, for each aspect s,
we perform dynamic programming to estimate V � (exploit-
ing the model structure) and G�. Then we search over and
maximize over s by exhaustive search (the number of aspects
varies between 5 and 20). Two approximations are made
during the process [1], [2]. 1) We perform an approximation,
which enables us to estimate V � by working with the ITVs~l
directly, and then later estimate the G�. 2) If an IP is
undetected (i.e., iðaÞ ¼ 0), then we replace its unobserved
values ziðaÞby the best prediction from the observed values in
its clique (observe that this will break down if two out of three
IPs in a clique are unobserved, but this has not occurred in
our experiments).

Parameter Learning requires estimating the model para-
meters � from a set of training data fd1ðI�Þg by
�� ¼ arg max�P ðfd1ðIÞgjs;G; V ; �ÞP ðsj�ÞP ðV Þ. This can be
performed by the Expectation Maximization (EM) algorithm
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Fig. 6. Graphical illustration of POM-IP. This POM-IP has three aspects
(mixture components), which are children of the OR node. Compare the
first two aspects to the models in Fig. 2. Each aspect model is built out of
triplets, see description in Section 4. There is also a background model
to account for the interest points in the image that are not due to the
object.

Fig. 7. The POM-IP uses triplets of nodes as building blocks. The structure is grown by adding new triangles. The POM-IP contains multiple aspects

of similar form (not shown) and a default background model (not shown). Right panel shows the junction tree representation, which enables dynamic

programming for inference.
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in the free energy formulation [32] by introducing a
probability distribution Qðs; V Þ over the hidden states
ðs; V Þ. (Good estimates for initializing EM are provided by
the dictionary, see two paragraphs below.) The free energy is a
function of Qð:; :Þ and � and the EM algorithm performs
coordinate descent with respect to these two variables. The
forms of the distribution ensure that the minimization with
respect to Qð:; :Þ can be performed analytically (with � fixed)
and the minimization with respect to � can also be performed
simply using dynamic programming (the summation form)
to sum over the possible states of V and exploiting the
quadratic (e.g., Gaussian) forms of the potentials. We make
similar approximations to those made for inference [1], [2]:
1) work with the ITVs and eliminateG and 2) fill in the values
of unobserved IPs by prediction from their clique neighbors.

Model Evidence is calculated to help model/structure
induction by providing a fitness score for each model. We
formulate it as calculating

P
s;V ;G P ðfd1ðIÞgjs;G; V ÞP ðsÞ

P ðGÞP ðV Þ (i.e., we evaluate the performance of each
model with fixed values of its model parameters �). This
requires the standard approximations: 1) work with the
ITVs and eliminate G and 2) fill in unobserved IPs by the
clique predictions.

Model/Structure Induction is performed by specifying a set
of rules for how to construct the model out of elementary
components. In PGMM [1], [2], the elementary components
are triplets of IPs. To help the search over models/
structures, we create a dictionary of triplets by clustering.
More specifically, recall that for each triplet ðz1; z2; z3Þ of IPs,
we can compute its spatial and appearance potentials
�ðz1; z2; z3Þ and �Aðz1; z2; z3Þ. We scan over the images,
compute these potentials for all neighboring triplets, and
cluster them. For each cluster � , we determine estimates of
the parameters f�� ; �A� g. This specifies a dictionary of
probabilistic triplets D ¼ f�c; �Ac g (since the distributions
are Gaussians, this will determine the mean state of the
triplet and the covariances). The members of the dictionary
are given a score to rank how well they explain the data.
This dictionary is used in the following way. For model
induction at each step, we have a default model (which is
initialized to be pure background). Then we propose to
grow the model by selecting a triplet from the dictionary
(elements with high scores are chosen first) and either
adding it to an existing aspect or by starting a new aspect.
In both cases, we estimate the model parameters by the
EM algorithm using initialization provided by the para-
meters of the default model and the parameters of the
selected triplet. We adopt the new model if its model
evidence is better than that of the default model. Then we
proceed to select new triplets from the dictionary.

As shown in [2], the structure and parameters of the
POM-IP can be learned with minimal supervision when the
number of aspects is unknown and the pose (position, scale,
and orientation) varies between images. Its performance on
classification was comparable to other approaches evalu-
ated on benchmarked data. Its inference was very rapid
(seconds) due to the efficiency of dynamic programming.
Nevertheless, the POM-IP is limited because its reliance
only on interest points means that it gives poor performance

on segmentation and fails to exploit all the image cues, as
our experiments show in Section 7.

5 POM-MASK

The POM-mask uses regional cues to perform segmenta-
tion/localization. It is trained using knowledge from the
POM-IP giving crude estimates for the segmentation (e.g.,
the bounding box of the IPs). This training enables POM-
mask to learn a shape prior for each aspect of the object.
After training, the POM-mask and POM-IP are coupled—
Fig. 4. During inference, the POM-IP supplies estimates of
pose and aspect to help estimate the POM-mask variables.

5.1 Overview of the POM-Mask

The probability distribution of the POM-mask is defined by

P ðd2ðIÞjL;~qÞP ðLjG; sÞP ð~qÞP ðsÞP ðGÞ; ð4Þ

where I is the intensity image, d2ðIÞ are the regional
features—see Section 3. L is a binary valued labeling field
fLð~xÞg indicating which pixels ~x belong inside Lð~xÞ ¼ 1 and
outside Lð~xÞ ¼ 0 the object, ~q ¼ ðqO; qBÞ are distributions on
the image statistics inside and outside the object.
P ðd2ðIÞjL;~qÞ is the model for generating the data when
the labels L and distributions ~q are known.

The distribution P ðLjG; sÞ defines a prior probability on
the shape L of the object, which is conditioned on the aspect
s and pose G of the object. It is specified in terms of model
parameters �2 ¼ fMðsÞð~xÞg; ~uðsÞ, where MðsÞð~xÞ 2 ½0; 1� is a
probability mask (the probability that pixel ~x is inside the
object) and ~uðsÞ is the vector between the center of the mask
and center of the interest points (as specified by G).
Intuitively, the probability mask is scaled, rotated, and
translated by a transform T ðG;~uðsÞ; sÞ, which depends on
G;~uðsÞ and s. Estimates of G; s are provided to the POM-
mask by POM-IP for both inference and learning—other-
wise, we would be faced with the challenge of searching
over G; s in addition to L;~q and the model parameters
MðsÞ; ~uðsÞ.

The prior P ð~qÞ is set to be the uniform distribution (i.e.,
an improper prior) because our attempts to learn it showed
that it was extremely variable for most objects. P ðsÞ and
P ðGÞ are the same as for POM-IP.

The inference for the POM-mask estimates

~q�; L� ¼ arg max
~q;L

P ðd2ðIÞjL;~qÞP ðLjG�; s�Þ; ð5Þ

where G� and s� are the estimates of pose and aspect
provided by POM-IP by knowledge propagation. Inference
is performed by an alternative iterative algorithm similar to
grab-cut [20], [21], [23] described in detail in Section 5.2.
This algorithm requires initialization of L. Before learning
has occurred, this estimate is provided by the bounding box
of the interest points detected by POM-IP. After learning,
the initialization of L is provided by the thresholded
transformed probability mask T ðG�; ~uðs�Þ; s�ÞMs� .

Learning the POM-mask is also performed with knowl-
edge propagated from the POM-IP. The main parameter to
be learned is the prior probability of the shape, which we
represent by a probability mask. Given a set of images
fd2ðI�Þg, we seek to find the probability masks fMðsÞg and
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the displacements f~uðsÞg. Ideally, we should sum over the
hidden states fL�g and f~q�g, but this is impractical, so we
maximize over them. Hence, we estimate fMðsÞg; f~uðsÞg;
fL�g; f~q�g by maximizing

Q
� P ðd2ðI�ÞjL�;~q�ÞP ðL�jG�;

uðs��ÞÞ, where fs��;G��g are estimated by POM-IP for image
I�. This is performed by maximizing with respect to
fL�g; fq�g and fMðsÞg; f~uðsÞg alternatively, which com-
bines grab-cut with steps to estimate fM�ðsÞg; f~uðsÞg, see
Section 5.3.

5.2 POM-Mask Model Details

The distribution P ðd2ðIÞjL;~qÞ is of form

1

Z½L;~q� exp

�X
~x2D

�1ð�ðIð~xÞÞjLð~xÞ;~qÞ

þ
X

~x;~y2Nbhð~xÞ
�2ðIð~xÞ; Ið~yÞjLð~xÞ; Lð~yÞÞ

�
;

ð6Þ

where ~x is the index of image pixel, ~y is a neighboring
pixel of ~x, and Z½L; q� is the normalizing constant. This
model gives a trade-off between local (pixel) appearance
specified by the unary terms and binary terms which bias
neighboring pixels to have the same labels unless they are
separated by a large intensity gradient. The terms are
described as follows.

The unary potential terms generate the appearance of the
object as specified by the regional features, see Section 3,
and are given by

�1ð�ðIð~xÞÞjLð~xÞ;~qÞ

¼
log qOð�ðIð~xÞÞÞ; if Lð~xÞ ¼ 1;

log qBð�ðIð~xÞÞÞ; if Lð~xÞ ¼ 0:

� ð7Þ

The binary potential �2ðIð~xÞ; Ið~yÞjLð~xÞ; Lð~yÞÞ is an edge
contrast term [24] and makes edges more likely at places,
where there is a big intensity gradient:

�2ðIð~xÞ; Ið~yÞjLð~xÞ; Lð~yÞÞ

¼
�ðIð~xÞ; Ið~yÞ; ~x;~yÞ; if Lð~xÞ 6¼ Lð~yÞ;
0; if Lð~xÞ ¼ Lð~yÞ;

� ð8Þ

where �ðIð~xÞ; Ið~yÞ; ~x;~yÞ ¼ � expf� g2ðIð~xÞ;Ið~yÞÞ
2�2 g 1

distð~x;~yÞ ; gð:; :Þ is a

distance measure on the intensities/colors Ið~xÞ; Ið~yÞ; � is a

constant, anddistð~x;~yÞmeasures the spatial distance between

~x and~y. For more details, see [20], [21].
The prior probability distributionP ðLjG; sÞ for the labelsL

is defined as follows:

P ðLjG; sÞ ¼ 1

Z½G; s� exp

�X
~x2D

 1ðLð~xÞ;G; sÞ

þ
X

~x2D~y2Nbhð~xÞ
 2ðLð~xÞ; Lð~yÞjÞ

�
:

ð9Þ

The unary potentials correspond to a shape prior, or
probabilistic mask, for the presence of the object while the
binary term encourages neighboring pixels to have similar
labels. The binary terms are particularly useful at the start
of the learning process because the probability mask is very
inaccurate at first. As learning proceeds, the unary term
becomes more important.

The unary potential  1ðLð~xÞ;G; sÞ encodes a shape prior
of form

 1ðLð~xÞ;G; sÞ ¼ Lð~xÞ logðT ðG;~u; sÞMð~x; sÞÞ
þ ð1� Lð~xÞÞ logð1� T ðG; u; sÞMð~x; sÞÞ;

ð10Þ

which is a function of parameters Mð~x; sÞ; ~uðsÞ; T ðG;~u; sÞ,
which need to be learned. Here, Mð~x; sÞ 2 ½0; 1� is a
probabilistic mask for the shape of the object for each aspect
s:T ðG;~u; sÞ transforms the probabilistic mask—translating,
rotating, and scaling it—by an amount that depends on the
pose G with a displacement ~uðsÞ (to adjust between the
center of the mask and the center of the interest points). In
summary, T ðG;~uðsÞ; sÞMð~uðsÞ; sÞð~xÞ is the approximate
prior probability that pixel ~x is inside the object (with
aspect s) if the object has pose G. The approximation
becomes exact if the binary potential vanishes.

The binary potential is of Ising form and encourages
homogeneous regions:

 2ðLð~xÞ; Lð~yÞjÞ ¼
0; if Lð~xÞ 6¼ Lð~yÞ;
; if Lð~xÞ ¼ Lð~yÞ;

�
ð11Þ

where  is a fixed parameter.

5.3 POM-Mask Inference and Learning Details

Inference for the POM-mask requires estimating

~q�; L� ¼ arg max
~q;L

P ðd2ðIÞjL;~qÞP ðLjG�; s�Þ; ð12Þ

where G� and s� are provided by POM-IP.
Initialization of L is provided by the thresholded

transformed probability mask T ðG�;~uðs�Þ; s�ÞMð~x; s�Þ (after
the probabilistic mask Mð:; :Þ has been learned) and by the
bounding box of the interest points provided by POM-IP
(before the probabilistic mask has been learned).

We perform inference by maximizing with respect to ~q

and L alternatively. Formally,

~qtþ1 ¼ arg max
q
P ðd2ðIÞjLt;~qtÞ :

which gives qtþ1
O ð�Þ ¼ fOð�;LtÞ;

qtþ1
B ð�Þ ¼ fBð�;LtÞ

Ltþ1 ¼ arg max
L

P ðd2ðIÞjLt;~qtÞP ðLjG�; s�Þ:

ð13Þ

The estimation of ~qtþ1 only requires computing the
histograms of the regional features inside and outside
the current estimated position of the object (specified by
Ltð~xÞ). The estimation of Ltþ1 is performed by max-flow
[21]. This is similar to grab-cut [20], [21], [23] except that:
1) Our initialization is performed automatically and
2) our probability distribution differs by containing the
probability mask. In practice, we only performed a single
iteration of each step since more iterations failed to give
significant improvements.

The learning requires estimating the probability masks
fMð~x; sÞg and the displacement ~uðsÞ. In principle, we
should integrate out the hidden variables fL�ð~xÞg and the
distributions f~q�g. But this is computationally impractical,
so we estimate them also. This reduces to maximizing the
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following quantity with respect to fMð~x; sÞg; ~uðsÞ;
fL�ð~xÞg; f~q�g:Y

�

P ðd2ðI�ÞjL�;~q�ÞP ðL�jG��; s��Þ; ð14Þ

where fs��;G��g are estimated by POM-IP.
This is performed by maximizing with respect to

fMð~x; sÞg,~uðsÞ; fL�ð~xÞg, and f~q�g alternatively. The max-
imization with respect to fL�ð~xÞg and fq�g is given in (13)
and performed for every image fI�g in the training data set
using the current values fMtð~x; sÞg; ~utðsÞ for the probability
masks and the displacement vectors.

The maximization with respect to fMð~x; sÞg corresponds
to estimating:

fMtð~x; s�Þg
¼ arg max

Y
�

P ðd2ðI�ÞjLt�;~qt�ÞP ðLt�jG��; s��Þ; ð15Þ

where P ðLt�jG��; s��Þ is computed from (13) using the current
estimates of fMð~x; s�Þg and ~uðs�Þ.

This can be approximated (this is exact if the binary
potentials vanish) by

Mtð~x; sÞ ¼
P

� �s��;sT ðG��;~uðs��Þ; s��Þ
�1Lt�ð~xÞP

� �s��;s
; ð16Þ

where � is the Kronecker delta function. Hence, the estimate
forMtð~x; sÞ is simply the average of the estimated labelsLt�ð~xÞ
for those images � that are assigned (by POM-IP) to aspect s,
where the pose of these labels has been transformed
T ðG��;~uðs��Þ; s��Þ

�1Lt�ð~xÞ by the estimated pose Lt�ð~xÞ. Note
that we use T ðG;~uðsÞ; sÞ to transform the probability maskM
to the label L, so T ðG; uðsÞ; sÞ�1 is used to transform L to M.

The maximization with respect to ~uðsÞ can be approxi-
mated by ~uðsÞtþ1 ¼ ~kðLt;G�; s�Þ, where ~kðLt;G�; s�Þ is the
displacement between the center of the label Lt and the
pose center adjusted by the scale and orientation (all
obtained from G�) for aspect s�.

In summary, the POM-mask gives significantly better
segmentation than the POM-IP alone (see Section 7). In
addition, it provides context for the POM-edgelets. But note
that the POM-mask needs the POM-IP to initialize it and
provide estimates of the aspect s and pose G.

6 THE POM-EDGELET MODELS

The POM-edgelet distribution is of the same form as POM-IP
but does not include attributes A (i.e., the edgelets are
specified only by their position and orientation). The data
d3ðIÞ are the set of edges in the image. The hidden states h3

are the correspondence V between the nodes of the models
and the edgelets. The pose and aspect are determined by the
pose and aspect of the POM-IP.

Once the POM-mask model has been learned, we can use it

to teach POM-edgelets that are defined on subregions of the

shape (adjusted for our estimates of pose and aspect).

Formally, the POM-mask provides a mask L�, which is

decomposed into nonoverlapping subregions (3 by 3)

L� ¼
S9
i¼1 L

�
i , where L�i

T
L�j ¼ 0 for i 6¼ j. There are nine

POM-edgelets, which are constrained to lie within these

different subregions during learning and inference. (Note

that training a POM-edgelet model on the entire image is

impractical because the number of edgelets in the image is

orders of magnitude larger than the number of interest points,

and all edgelets have similar appearances). The method to

learn the POM-edgelets is exactly the same as the one for

learning the POM-IP except that we do not have appearance

attributes and the subregion, where the edgelets appear, is

fixed to a small part of the image (i.e., the estimate of the shape

of the subregion).
The inference for the POM-edgelets requires an estimate

for the pose G and aspect s, which is supplied by the
POM-IP (the POM-mask is only used in the learning of
the POM-edgelets).

7 RESULTS

We now give results for a variety of different tasks and
scenarios. We compare performance of the POM-IP [1] and
the full POM. We collect the 26 classes from Caltech 101
[33], which have at least 80 examples (the POMs require
sufficient data to enable us to learn them). In all experi-
ments, we learned the full POM on a training set consisting
of half the set of images (randomly selected) and evaluated
the full POM on the remaining images, or testing set. Some
of the images had complex and varied image backgrounds
while others had comparatively simple backgrounds (we
observed no changes in performance based on the complex-
ity of the backgrounds, but this is a complex issue that
deserves more investigation).

The speed for inference is less than 5 seconds on a 450�
450 image. This breaks down into 1 second for interest-point
detector and SIFT descriptor, 1 second for edge detection,
1 second for the graph cut algorithm, and 1 second for
matching the IPs and edgelets. The training time for
250 images is approximately 4 hours.

Overall, our experiments show the following three
effects demonstrating the advantages of the full POM
compared to POM-IP. First, the performance of the full
POM for classification is better than POM-IP (because of the
extra information provided by the POM-edgelets). Second,
the full POM provides significantly better segmentation
than the POM-IP (due to POM-mask). Third, the full POM
enables denser matching between different objects of the
same category (due to the edgelets in the POM-edgelets).
Moreover, as for POM-IP [2], the inference and learning are
invariant to scale, position, orientation, and aspect of the
object. Finally, we also show that POM-IP—our reimple-
mentation of the original PGMM [2]—performs better than
PGMM due to slight changes in the reimplementation and a
different stopping criterion, which enables the POM-IPs to
have more aspects.

7.1 The Tasks

We tested on three tasks. 1) The classification task is to
determine whether the image contains the object or is
simply background. This is measured by the classification
accuracy. 2) The segmentation task is evaluated by precision
and recall. The precision jR \GTj=jRj is the proportion of
pixels in the estimated shape region R that are in the
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ground-truth shape region GT. The recall jR \GTj=jGTj is
the proportion of pixels in the ground-truth shape region
that are in the estimated shape region. 3) The recognition
task which we illustrate by showing matches.

We performed these tests for three scenarios. 1) The
single object category is when the training and testing images
contain an instance of the object with unknown back-
ground. Due to the nature of the data sets we used, there is
little variation in orientation and scaling of the object, so the
invariance of our learning and inference was not tested.
2) The single object category with variation is where we had
manipulated the training and testing data to ensure
significant variations in object orientation and scale.
3) The hybrid object category is where the training and
testing images contain an instance of one of the three objects
(face, motorbike, or airplane).

7.2 Scenario 1: Classification for Single Object
Category

In this experiment, the training and testing images come
from a single object class. The experimental results, see
Fig. 8, show improvement in classification when we use the
full POM (compared to the POM-IP/PGMM). These
improvements are due entirely to the edgelets in the full
POM because the regional features from POM-mask supply
no information for object classification due to the weakness
of the appearance model (i.e., the qO distribution has
uniform prior). The improvements are biggest for those
objects where the edgelets give more information compared
to the interest points (e.g., the football, motorbike, and grand
piano). We give comparisons to the results reported in [3],
[14], [1] in Table 2.

7.3 Scenario 2: Segmentation for Single Object
Category

Observe that segmentation (see Table 3) is extremely
improved by using the full POM compared to the POM-
IP. To evaluate these comparisons, we show improvements
between using the PGMM model, the POM-IP model (with
grab-cut), the POM-IP combined with the POM-mask, and
the full POM. The main observation is that the bounding
box round the interest points is only partially successful.

There is a bigger improvement when we use the interest
points to initialize a grab-cut algorithm. But the best
performance occurs when we use the edgelets. We also
compare our method with that of [15] for segmentation. See
the comparison in Table 4.

7.4 Performance for Different Object Categories

To get better understanding of segmentation and classifica-
tion results, and the relative importance of the different
components of the full POM, consider Fig. 9, where we show
examples for each object category (see Fig. 8 and Table 3). The
first column shows the input image and the second column
gives the bounding box of the interest points of POM-IP.
Observe that this bounding box only gives a crude
segmentation and can lie entirely inside the object (e.g., face,
football), or encompass the object (e.g., car, starfish), or only
capture a part of the object (e.g., accordion, airplane, grand
piano, and windsor chair). The third column shows the
results of using grab-cut initialized by the POM-IP. This
gives reasonable segmentations for some objects (e.g.,
accordion, football) but has significant errors for others
(e.g., car, face, watch, and windsor chair) sometimes
capturing large parts of the background while missing
significant parts of the object (e.g., windsor chair). The fourth
column shows that the POM-mask learns good shape priors
(probability masks) for all objects despite the poorness of
some of the initial segmentation results. This column also
shows the positions of the edgelet features learned by the
POM-edgelets. The thresholded probability mask is shown
in the fifth column and we see that it takes reasonable forms
even for the windsor chair. The sixth column shows the
results of using the full POM model to segment these objects
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Fig. 8. We report the classification performance for the 26 object classes, which have at least 80 images. The average classification rate of POM-IP

(PGMM) is 86.2 percent. The average classification rate of POMs is 88.6 percent.

TABLE 2
Comparisons of Classification

with Results Reported in [3], [14], [1]
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(i.e., using the probability mask as a shape prior) and we

observe that the segmentations are good and significantly

better than those obtained using grab-cut only. Observe that

the background is almost entirely removed and we now

recover the missing parts, such as the legs of the chair and the

rest of the grand piano. Finally, the seventh column

illustrates the locations of the feature points (interest points

and edgelets) and shows that the few errors occur for the

edgelets at the boundaries of the objects.
We show some failure modes in Fig. 10. These objects

—Leopard and Chandelier—are not best suited for the

approach in this paper for the following reasons: 1) Rigid
mask (or masks) is (are) not the best way to model the
spatial variability of deformable objects like leopards,
2) the texture of leopards and background are often fairly
similar, which makes POM-mask not very effective (with-
out using more advanced texture cues), and 3) the shapes
of Chandeliers are not well modeled by a fixed mask and
it has few reliable regional cues.

7.5 Scenario 3: Varying the Scale and Orientation of
the Objects

The full POM is designed so that it is invariant to scale and
rotation for both learning and inference. This advantage
was not exploited in scenario 1 since the objects tended to
have similar orientations and sizes. To emphasize and test
this invariance, we learned the full POM for a data set of
faces, where we scaled, translated, and rotated the objects,
see Fig. 11. The scaling was from 0.6 to 1.5 (i.e., by a factor of
2.5) and the rotation was uniformly sampled from 0 to
360 degrees. We considered three cases, where we varied
the scale only, the rotation only, and the scale and rotation.
The results, see Tables 5 and 6, show only slight degrada-
tion in performance for the tasks.

7.6 Scenario 4: Hybrid Object Models

We now make the learning and inference tasks even harder
by allowing the training images to contain several different
types of objects (extending work in [1] for the PGMM).
More specifically, each image will contain either a face, a
motorbike, or an airplane (but we do not know which one).
The full POM will be able to successfully learn a hybrid
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TABLE 3
The Segmentation Performance Precision/Recall for 26 Objects Classes Which Contain At Least 80 Images

TABLE 4
Segmentation Comparison with Cao and Feifei [15]

The measure of segmentation accuracy in pixels is used.
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model because the different objects will correspond to

different aspects. It is important to realize that we can

identify the individual objects as different aspects of the full

POM, see Fig. 12. In other words, the POM does not only

learn the hybrid class, it also learns the individual object

classes in an unsupervised way.

The performance of learning this hybrid class is shown in

Tables 7 and 8. We see that the performance degrades very

little, despite the fact that we are giving the system even less

supervision. The confusion matrix between faces, moto-

bikes, and airplanes is shown in Table 9. Our result is

slightly worse than the one in [14].

1758 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 10, OCTOBER 2009

Fig. 9. The rows show the 14 objects that we used. The seven columns are labeled left to right as follows: (a) original image, (b) the bounding box

specified by POM-IP, (c) the GraphCut segmentation with the features estimating using the bounding box, (d) the probability object-mask with the

edgelets (green means features within the object, red means on the boundary), (e) the thresholded probability mask, (f) the new segmentation using

the probability object-mask (i.e., POM-IP + POM-mask), and (g) the parsed result.
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7.7 Scenario 5: Matching and Recognition

This experiment was designed as a preliminary experiment
to test the ability of the POM-IP to perform recognition
(i.e., to distinguish between different objects in the same
object category). These experiments show that the POM-IP
is capable of performing matching and recognition. Fig. 13
shows an example of correspondence between two images.
This correspondence is obtained by first performing
inference to estimate the configuration of POM-IP and
then to match corresponding nodes. For recognition, we
use 200 images containing 23 persons. Given a query of a
image containing a face, we output the top three
candidates from the 200 images. The similarity between

two images is measured by the differences of intensity of

the corresponding interest points. The recognition results

are illustrated in Fig. 14.

8 DISCUSSION

This paper is part of a research program, where the goal is to

learn object models capable of performing all object-related

visual tasks. In this paper, we built on previous work [1], [2],

which used weak supervision to learn a PGMM that used

interest point features and performed classification. Our

extension is based on combining elementary POMs, which
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Fig. 10. Failure modes. Panel (a) the leopard mask. Panels (c), (g), (k): Input images of leopards. Panels (e), (i), (m): The segmentations output by
POMs are of poor quality—parts of the leopard are missed in (e) and (m) and the segmentation includes a large background region in (g). We note
that segmentation is particularly difficult for leopards because their texture is similar to the background in many images. Panel (b): The chandelier
mask. Panels (d), (h), (l): Example images of chandeliers. Panels (f), (j), (n): The segmentations output by POMs. Chandeliers are not well suited to
our approach because they are thin and sparse, so the regional cues, used in the POM-mask, are not very effective (geometric cues might be
better).

Fig. 11. The full POM can be learned even when the training images are randomly translated, scaled, and rotated.

TABLE 5
Classification Results with Variable Scale and Orientation

TABLE 6
Comparisons of Segmentation by Different POMs

When Scale and Orientation Are Variable

The precision and recall measure is reported.
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use different visual cues and can combine to perform a

variety of visual tasks. The POMs cooperate to learn and do

inference by knowledge propagation. In this paper, the POM-

IP (or PGMM) was able to train a POM-mask model so that

the combination could perform localization/segmentation.

In turn, the POM-mask was able to train a set of POM-

edgelets, which, when combined into a full POM, can use

edgelet features to improve the classification. We demon-

strated this approach on large numbers of images of

different objects. We also showed the ability of our approach

to learn and perform inference when the scale and rotation

of the objects are unknown. We showed its ability to learn a

hybrid model containing several different objects. The

inference is performed in seconds and the learning in hours.
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