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A Log-Frequency Approach to the Identification
of the Wiener–Hammerstein Model

Joel Goodman, Member, IEEE, Matthew Herman, Bradley Bond, Member, IEEE, and Benjamin Miller

Abstract—In this paper we present a simple closed-form solution
to the Wiener–Hammerstein (W–H) identification problem. The
identification process occurs in the log-frequency domain where
magnitudes and phases are separable. We show that the theoret-
ically optimal W–H identification is unique up to an amplitude,
phase and delay ambiguity, and that the nonlinearity enables the
separate identification of the individual linear time invariant (LTI)
components in a W–H architecture.

Index Terms—Log-frequency, nonlinear system identification,
power amplifier modeling, predistortion, Wiener–Hammerstein
system.

I. INTRODUCTION

W IENER–HAMMERSTIEN (W–H) architectures are
commonly used to represent the nonlinear response

of RF analog front ends [1], or as a means of compensating
for distortions imparted by high power amplifiers [2]. A W–H
architecture, illustrated in Fig. 1, is a filter-nonlinearity-filter
cascade that is capable of modeling a nonlinear system with
memory in a computationally efficient fashion [3]. Direct
identification of such an architecture is complicated by the filter
preceding the memoryless nonlinearity ( in Fig. 1(a)), as the
discrete-time coefficients of
at the output of a W–H system are nonlinearly coupled. This
coupling can be formulated as

(1)

where represents the memoryless nonlinearity. Previous ap-
proaches to identifying W–H systems assume overly restrictive
parametric models, or use a combination of linear, nonlinear and
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Fig. 1. The W–H architecture. (a) W–H filter-memoryless nonlinearity filter
cascade architecture. Both (b) and (c) represent the non-uniqueness of the W–H
architecture due to an amplitude and delay ambiguity.

iterative optimization techniques to estimate the linear time in-
variant (LTI) parameters and and nonlinearity [4].

Independent of the approach taken, the identification of a
W–H system is not unique. Referring to Fig. 1(b) and 1(c), the
product of and its reciprocal can come before or after the
nonlinearity . Further, a delay before or after the memory-
less nonlinearity is ambiguous, i.e.,

(2)

where and is the Dirac delta
function. In (2), the left hand side of the equation corresponds to
delay occurring prior to the nonlinearity, while the right hand
side corresponds to the delay occurring afterward. This means
that the delay inherent to the system can be shifted between the
two LTI components, as shown in Fig. 1(c).

It is possible, however, to model a W–H system up to an
amplitude, phase and delay ambiguity, and invert this system
without being adversely affected by such ambiguities. We will
show that we can identify a W–H system using several 2-tone
excitation signals by separating the magnitude and phase re-
sponses of the LTI components, and then using least squares in
the log-frequency domain. The identification of the phase com-
ponents is complicated by phase wrapping, and simple 2-dimen-
sional (2D) phase unwrapping with residue testing [5] is used to
mitigate this complication. The rest of this paper is organized
as follows. In Section II, we describe the W–H log-frequency
identification algorithm. In Section III, we demonstrate the per-
formance of the algorithm on a power amplifier model, and in
Section IV we provide a brief summary.
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II. WIENER–HAMMERSTEIN IDENTIFICATION

Consider the discrete-time output of a W–H system due to a
rotating exponential excitation given by

(3)
where is the polynomial order, is the
magnitude and phase response of filter at frequency

, and represents the coefficient associated with the th-order
polynomial with . Note that any nonlinearity can
be represented over a closed interval with arbitrary precision
as using a polynomial series expansion [6]. Unlike
nonlinear systems with memory, a single tone stepped in ampli-
tude can adequately characterize a memoryless nonlinearity [7].
Using the memoryless nonlinearity to separate the two filter re-
sponses and , we reduce the problem to the identification
of two LTI systems, so by exciting the system with several tonal
inputs, finely spaced in frequency, we meet the persistence of
excitation criterion for linear systems. The real and imaginary
components of the log of the th-order nonlinear frequency do-
main output is given by

(4)

where , and
, where

represents the symmetric Fourier transform pair, and
and represent taking the real and imaginary components
of their arguments, respectively.

A two-tone stimulus is preferable for W–H system identifica-
tion in many cases given that it is common in RF transmitters for
harmonic distortions to fall outside of the band of interest where
they cannot be measured digitally. Letting ,
it can be shown that a generalization of (4) with a real two-tone
stimulus is expressed as

(5)

where , and and represent the frequen-
cies of the two different tones, with . In formulating
(5) we use the fact that the coefficients of the LTI system and
the two-tone excitation are real valued. Letting

, and , (5) can be ex-
pressed as a set of linear equations in matrix form as

...

...

. . .
...

. . .
...

...

...

(6)
and

...

...

. . .
...

. . .
...

...

...

(7)
where , where the row index
that indicates the tone frequencies and mixing product for each
equation has been dropped for notational convenience. Using
(6) and (7),

(8)

where the matrices and have
rank , with . The column rank deficiency is due to
the amplitude and delay ambiguity. Note that to achieve these
ranks and characterize the entire band, the linear components

and (at least) one nonlinear compo-
nent, e.g., , need to be represented in (6), with
the excitation frequencies chosen such that the components in

and uniquely cover each discrete frequency over which the
LTI system is being characterized.

Once the minimum norm solution of (8) is obtained and the
LTI components and , , are known, a lookup table
(LUT) can be used to characterize the nonlinearity [8]. In
many cases, nonlinearities are additive, i.e., the higher-order odd
distortions terms have components which fall on top of lower
ones, e.g., and [2, 1]. Therefore, to isolate

and , we use the simple procedure of adjusting the
power levels of the excitation to suppress (or enhance) higher-
order distortions, although other robust procedures are possible
[9], [10]. In practice, we will use a single polynomial order,
e.g., only a 3rd-order distortion with , in (8)
to characterize the linear components. This enables us to fix

in (7) to 0 and identify the actual phase (either 0 or )
of the other nonlinearities during LUT training. We use only a
3rd-order distortion to separately identify and . After filter
identification, we model the memoryless nonlinearity over
a larger input amplitude range with a computationally efficient
LUT. We will expand upon this further in Section III.

The digitally measured phase terms in (7) are
wrapped, such that
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(9)

where corresponds to the matrix of un-
wrapped phases, and is an array of integers so
that . In the one-tone case, (9) col-
lapses down to a one-dimensional phase unwrapping problem.
However, with a two-tone stimulus, the measured output of a
W–H system at frequency will have multiple functions in
(5) that depend separately on and for differing and .
Therefore, we must treat as a function of two variables.
To unwrap , we first form a serpentine matrix of
phases

...
...

. . .
...

then we vectorize to get . We apply
the simple phase unwrapping algorithm [11]

(10)

for , with and
. After phase unwrapping, is substituted for

in (7).
Phase aliasing, however, may corrupt the unwrapping

process. Given a reasonably high signal-to-noise ratio (SNR),
phase aliasing arises when the frequency space of the phase
functions in (5) are not sampled with a fine enough granularity.
To test for this condition, we use the residue method in [5] with

(11)

where

(12)

where . If residues do not sum to zero,
we sample the frequency space of (5) more finely by increasing
the number of time samples used in the transform to obtain the
log-frequency matrix equations in (8).

III. EXPERIMENTAL RESULTS

To test the efficacy of log-frequency identification of a
W–H architecture, we apply the method derived in Sec-
tion I to characterize a PA model consisting of the following
two filters, and

along with the non-
linearity . We characterize the system over the
middle 2/3 of the Nyquist band. The noisy system output is
given by , where is white gaussian

Fig. 2. Mean square error (MSE) performance of the log-frequency identifi-
cation of a W–H PA model as a function of SNR with respect to the average
third-order intermod power.

noise. Since we use intermodulation products to identify the
W–H system, we measure SNR with respect to the average
intermod power, i.e., the “signal” power is given by

(13)

where is the number of pairs. In our experiments, we
chose .

Each of the two-tone input signals to the system has 256 sam-
ples and maximum amplitude 0.125, which ensures that the im-
pact of all nonlinear distortions greater than third order is negli-
gible. We then measure the magnitude and phase of the
intermodulation product in the output sequence, ignoring all
sets where this product overlaps with either of the fundamental
tones or another third-order intermod. We unwrap the measured
phases using the algorithm described in Section II.

We compute the least squares solution to the linear system
in (8) to find , , , and . The frequency
response of each of the filters, sampled at 256 points, is then
easily found by exponentiating, with

and .
Next, we find the two filters that best model

in the band of interest by solving
, with , for , where

is a pruned DFT matrix consisting of only the inband fre-
quency bins. For this experiment, we choose for
to have 30 taps. After identifying and fixing and , we
finally construct a 128-cell look-up table (LUT) to model the
memoryless nonlinearity . As is evident in Fig. 2, mean
square error modeling performance above 30 dB SNR is on
the order of 50 dB, where the very small modeling error is a
function of the lookup table size and training [8].

IV. SUMMARY

In this paper we have presented a simple least squares
approach to Wiener-Hammerstein system identification in the
log-frequency domain. The identification process is somewhat
complicated by wrapped phases. We circumvent this problem
using simple 2-D phase unwrapping and residue testing. Per-
formance results indicate that the approach is robust at varying
SNR levels.
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