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Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum
optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields
technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with
many applications in modern science. In this review the basic tools for coherent atom optics are
described including diffraction by nanostructures and laser light, three-grating interferometers, and
double wells on atom chips. Scientific advances in a broad range of fields that have resulted from the
application of atom interferometers are reviewed. These are grouped in three categories: (i)
fundamental quantum science, (ii) precision metrology, and (iii) atomic and molecular physics.
Although some experiments with Bose-Einstein condensates are included, the focus of the review is
on linear matter wave optics, i.e., phenomena where each single atom interferes with itself.
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I. INTRODUCTION

Atom interferometry is the art of coherently manipu-
lating the translational motion of atoms (and molecules)
together with the scientific advances that result from ap-
plying this art. We begin by stressing that motion here
refers to center of mass displacements and that coher-
ently means with respect for (and often based on) the
phase of the de Broglie wave that represents this mo-
tion. The most pervasive consequence of this coherence
is interference, and the most scientifically fruitful appli-
cation of this interference is in interferometers. In an
interferometer atom waves are deliberately offered the
option of traversing an apparatus via two or more alter-
nate paths and the resulting interference pattern is
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observed and exploited for scientific gain. Atom inter-
ferometers are now valuable tools for studying funda-
mental quantum mechanical phenomena, probing
atomic and material properties, and measuring inertial
displacements.

In historical perspective, coherent atom optics is an
extension of techniques that were developed for ma-
nipulating internal quantum states of atoms. Broadly
speaking, at the start of the 20th century atomic beams
were developed to isolate atoms from their environ-
ment; this is a requirement for maintaining quantum co-
herence of any sort. Hanle (1924) studied coherent su-
perpositions of atomic internal states that lasted for tens
of nanoseconds in atomic vapors. But with atomic
beams, Stern-Gerlach magnets were used to select and
preserve atoms in specific quantum states for several ms.
A big step forward was the ability to change atoms’ in-
ternal quantum states using rf resonance as demon-
strated by Rabi er al. (1938). Subsequently, long-lived
coherent superpositions of internal quantum states were
intentionally created and detected by Ramsey (1949).
The generalization and application of these techniques
has created or advanced many scientific and technical
fields (e.g., precise frequency standards, nuclear mag-
netic resonance spectroscopy, and quantum information
gates).

Applying these ideas to translational motion required
the development of techniques to localize atoms and
transfer atoms coherently between two localities. In this
view, localities in position and momentum are just an-
other quantum mechanical degree of freedom analogous
to discrete internal quantum states. We discuss these co-
herent atom optics techniques in Sec. II and the interfer-
ometers that result in Sec. III. Then we discuss applica-
tions for atom interferometers in Secs. IV-VI.

A. Interferometers for translational states

“Atom Optics” is so named because coherent manipu-
lation of atomic motion requires that the atoms be
treated as waves. Consequently, many techniques to con-
trol atom waves borrow seminal ideas from light optics.
To make atom interferometers the following compo-
nents of an optical interferometer must be replicated:

(1) state selection to localize the initial state (gener-
ally in momentum space);

(2) coherent splitting, typically using diffraction to
produce at least two localized maxima of the wave
function with a well-defined relative phase;

(3) free propagation so that interactions can be ap-
plied to one “arm,” i.e., one of the two localized
components of the wave function;

(4) coherent recombination so that phase informa-
tion gets converted back into state populations;

(5) detection of a specific population, so the relative
phase of the wave-function components can be de-
termined from interference fringes.
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FIG. 1. Interferometry with internal quantum states of atoms. (a) Ramsey’s separated oscillatory fields experiment. (b) The same
experiment depicted as an interferometer for internal states. (c) The detected atom count rate exhibits interference fringes as a
function of the applied rf frequency. These interference fringes, from the NIST-F1 fountain clock (Sullivan et al., 2001), demon-
strate the precision obtained with interference techniques. From Sullivan et al., 2001.

In hindsight, it is possible to reinterpret much of the
work on internal state resonance as an interferometer.
In particular, in the separated oscillatory fields technique
Ramsey (1949) divided a single rf resonance region into
two zones that may be regarded as beam splitters. In this
experiment a Stern-Gerlach filter (the so-called A mag-
net in Fig. 1) selects atoms in state |a). The first reso-
nance region (microwave cavity) then excites atoms into
a superposition of states |a) and |b). Atoms then travel
through a static (C) field in a coherent superposition
whose relative phase oscillates freely until the atoms en-
ter the second microwave cavity. If radiation there is in
phase with the oscillating superposition, then atoms
complete the transition to state |b). But if the radiation
is half a cycle out of phase, then atoms are returned to
state |a). After the final state selector, the detected in-
tensity oscillates as a function of microwave frequency.
Overall, this method to manipulate the internal states of
an atom obviously maps directly onto the steps listed
above and can be regarded as the first atom interferom-
eter even though it is more frequently described in terms
of resonance of a Bloch vector of an atom moving clas-
sically.

B. Preparation, manipulation, and detection

Preparation of position states is hindered by the un-
certainty principle. As soon as free atoms are localized
in position, the attendant momentum uncertainty starts
to cause spatial delocalization. On the other hand,
preparation in momentum space is free of such back
action. Therefore in coherent atom optics, especially
with free atoms, it is desirable to reduce the momentum
and its uncertainty for an ensemble of atoms. This is
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referred to as slowing and cooling the atoms, respec-
tively.

Momentum-state selection can be as simple as two
collimating slits that select atoms with limited transverse
momentum. Alternatively, and preferably, atoms can be
concentrated in phase space by laser cooling and
trapping.’ This is analogous to optical pumping for inter-
nal states. In fact, cooling atoms (or ions) in a trap is
even more exactly analogous to optical pumping be-
cause trapped atoms are in discrete translational states
and can ultimately be prepared in the single ground
state.

The typical momentum uncertainty achieved with
various methods is summarized in Table I. We note that
atom interferometers already work with atoms prepared
in beams, magneto-optical traps, or Bose-Einstein con-
densates.

Manipulation. In most atom interferometers diffrac-
tion or the closely related Raman transitions “split” at-
oms into a coherent superposition of momentum states
that typically differ in momentum by several photon mo-
menta (velocity differences of several cm/s; e.g., the re-

]Original references for cooling and trapping include super-
sonic beams (Beijerinck and Verster, 1981; Campargue, 1984),
optical molasses (Chu et al., 1985; Aspect et al., 1986), optical
traps (Ashkin, 1970; Chu, Bjorkholm, Ashkin, and Cable, 1986;
Chu, Bjorkholm, Ashkin, Gordon, et al., 1986; Miller et al.,
1993), magneto-optical traps (Raab et al., 1987), magnetic traps
(Pritchard, 1983; Migdall er al, 1985), atomic fountains
(Kasevich er al., 1989), velocity selective coherent population
trapping (Aspect et al., 1988), sideband cooling (Neuhauser et
al., 1978; Wineland et al., 1978; Vuletic et al., 1998), cooling to
the ground state of a trap (Jessen et al., 1992; Monroe et al.,
1995), and Bose-Einstein condensation (Anderson et al., 1995).
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TABLE 1. Momentum uncertainty and temperature of atoms
prepared with different techniques. Typical best case values for
sodium atoms are tabulated. The momentum uncertainty o,
=({p?—(p)»)'? is given in units of 590-nm photon momenta
fikp,. Temperature is given by kBT:o’i/2m, where kp is the
Boltzmann constant and m is the atomic mass.

Atomic sample o,/ hkph T (K)
Thermal vapor 24 000 500
Effusive beam (longitudinal) 8000 50
Supersonic beam (longitudinal) 3000 8
Optical molasses or MOT 20 0.000 25
Collimated beam (transverse) 1 10°°
Bose-Einstein condensate 0.1 1078

coil velocity for Na atoms due to absorbing a 590-nm
photon is v,..=fik/my,=2.9 cm/s and the velocity differ-
ence between Oth and 1st diffraction orders for Na at-
oms transmitted through 100-nm period gratings is
himy,d=17 cm/s). As time passes, each atom evolves
into a coherent superposition of spatial positions located
a distance Ax=(p,—p;)t/m apart. Moreover, if the initial
preparation was restrictive enough, then the compo-
nents of each atoms’ wave function will be distinctly
separated in space. Creating such “separated beams” in
an interferometer invites the experimenter to deliber-
ately apply different interactions—and hence different
phase shifts—to each component of an atom’s wave
function.

Observing this phase difference requires recombining
the two components of the superposition. This is gener-
ally achieved using diffraction or Raman processes again
to reverse the momenta of the two states so they subse-
quently overlap. When this is done, interference fringes
are observed and the phase ¢;,, can be determined from
their position.

Detection. Once information is transferred from the
phase of a superposition into the population of observ-
able states using some kind of beam recombiner, then a
state-selective detector is used to measure the output of
an interferometer. In analogy with an optical Mach-
Zehnder interferometer, the fringes can be observed as
atom beam intensity that oscillates between two “out-
put” momentum states as a function of the interaction-
induced phase difference ¢;,,. Alternatively, fringes can
be observed directly in position space either by moiré
filtering with a suitable mask or by directly imaging the
atoms. Bragg reflection of laser light can also be used to
detect fringes in atomic density. If the interferometer
manipulates both the internal and (separated) external
states of atoms, then fringes can be detected as oscilla-
tions in population of the internal states after recombin-
ing the atoms, as in Ramsey’s experiment.

Historically, alkali-metal atoms were the first to be de-
tected efficiently, and this was achieved by counting the
ions produced as the atoms ionized on a hot tungsten or
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rhenium wire.” Metastable atoms can be detected di-
rectly with multichannel plates because of their stored
internal energy. More universal neutral atom detectors
use electron bombardment or laser excitation to pro-
duce countable ions. Fluorescence or absorption can
also reveal fringes, especially if a cycling transition is
used with slow atoms.

C. Scientific promise of atom interferometers

The light interferometers that were developed late in
the 19th century by Fizeau (1853), Michelson (1881),
Rayleigh (1881), and Fabry and Perot (1899) performed
many experiments and precise measurements that have
had a broad impact in physics. Recently, the initial idea
from de Broglie and Schrodinger that propagating par-
ticles are waves has been combined with technologies to
produce interferometers for electrons (Marton et al
1953, 1954) neutrons (Rauch et al., 1974), and now at-
oms. Even after the many advances made possible with
earlier interferometers, further scientific advances from
atom interferometers have long been anticipated. In
fact, the concept of an atom interferometer was pat-
ented by Altschuler and Franz (1973) and it has been
extensively discussed since. Early proposals for atom in-
terferometers were made by Chebotayev et al. (1985),
Clauser (1988, 1989), Keith et al. (1988), Martin et al.
(1988), Bordé (1989), Pritchard (1989), and Kasevich and
Chu (1991).

Even compared to electron- and neutron-wave phys-
ics, interferometry with atoms offers advantages on sev-
eral fronts: a wider selection of atomic properties, larger
cross sections for scattering light, better characterized
environmental interactions, higher precision, better
portability, and far lower cost. Atomic properties like
mass, magnetic moment, and polarizability can be se-
lected over ranges of several orders of magnitude. For
example, Cs has 137 times the mass and 89 times the
electric polarizability of H and is therefore better suited
to measuring inertial effects and detecting weak electric
fields. *Cr has a magnetic moment of 6. while “He has
none. Alkali-metal atoms have 10~°-cm? scattering cross
sections for resonant light while electrons have a
107-cm? cross section for the same light (Compton or
Thomson scattering). Hence interactions of atoms and
their environment can be enlarged for better measure-
ments or to study decoherence, or they can be sup-
pressed to measure something else. Furthermore, atoms
interact with surfaces and other atomic gases with po-
tentials that are easily studied by interferometry. Atoms
can be manipulated by lasers whose frequency and
wavelength are measured with accuracies of 107!° and
107!, respectively, offering far better precision for mea-

Various atom detectors have been discussed by Ramsey
(1985), Scoles (1988), and Campargue (2000). For hot wire de-
tectors see Langmuir and Kingdon (1925), and Delhuille, Mif-
fre, et al. (2002); for universal detectors see Kuhnke et al.
(1994) and DeKieviet, Dubbers, Klein, et al. (2000).
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surements than the crystals or structures used in other
types of interferometers. Finally, atom sources can be as
simple as a heated container with a small hole in the side
or a pulse of laser light that hits a pellet of the desired
material. These sources are far less expensive than
nuclear reactors or even 200-keV electron guns. In fact,
atom interferometers on atom chips can potentially fit in
a briefcase.

This richness and versatility is combined with the re-
wards (and challenges) that stem from the fact that ther-
mal atomic wavelengths are typically 30000 times
smaller than wavelengths for visible light. The power of
atom interferometry is that we can measure phase shifts
di=h~'fUdt due to very small potential energies. A
simple calculation shows that 1000-m/s Na atoms (Ey;,
~0.1 eV) acquire a phase shift of 1 rad for a potential of
only U=6.6X10"2€V in a 10-cm interaction region.
Such an applied potential corresponds to a refractive
index of |n—1|=2.7x107'". Measuring the phase shift
¢ine to 1073 rad corresponds to an energy resolution of
U/E~10"" or a spectrometer with a linewidth of
10 kHz and spectroscopic precision of Hz/ys. Further-
more, this example was for a thermal atomic beam; cold
atoms can increase the sensitivity 1000-fold.

As we document in this review, atom interferometers
have already measured rotations, gravity, atomic polar-
izability, the fine structure constant, and atom-surface
interactions better than previous methods. Yet atom in-
terferometry itself is just over a decade old. The realiza-
tion of such interferometers started with diffraction grat-
ings that are summarized in Sec. II. We catalog atom
interferometer types and features in Sec III. We discuss
fundamental issues such as decoherence in Sec. IV.
Precision measurements are described in Sec. V, and
atomic and molecular physics applications are described
in Sec. VL.

II. ATOM DIFFRACTION

Since half-silvered mirrors do not exist for atoms
(solid matter generally absorbs or scatters atoms), beam
splitters for atom interferometers are often based on dif-
fraction. Diffraction itself is an interesting interference
effect that has already been developed for use with at-
oms. Hence we discuss atom diffraction now, and atom
interferometers next (in Sec. III).

Diffraction occurs when a wave interacts with any-
thing that locally shifts its phase or amplitude (e.g., due
to absorption), and is a hallmark of wave propagation
and interference. It is generally treated as resulting from
the coherent superposition and interference of ampli-
tudes for wave propagation via different paths through
the diffracting region that have the same starting and
ending points.

A diffraction grating is a periodic diffracting region.
Spatial modulation of the wave by the grating generates
multiple momentum components for the scattered
waves. The fundamental relationship between the mo-
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mentum transferred to waves in the nth component and
the grating period d is

o, =nhld =nhG, (1)

where G=2m/d is the reciprocal lattice vector of the
grating and /& is Planck’s constant. When the incoming
wave has a narrow transverse momentum distribution
centered around py..m, this diffraction is generally ob-
served with respect to angle. Since the de Broglie wave-
length is Ngg=//ppeam (de Broglie, 1923), the resulting
diffraction angles (for nearly normal incidence) are

071 = 5pn/pbeam = n)\dB/d' (2)

To observe the interference a grating must be illumi-
nated at least in part coherently, i.e., the incident atom
waves must have a well-defined relative phase across
several grating periods. That means the transverse co-
herence length must be larger than a few grating peri-
ods, i.e., the transverse momentum distribution must be
small enough to resolve the diffraction orders. This is
usually accomplished by collimating the incident beam.’

A. Early diffraction experiments

The first examples of atom interference were diffrac-
tion experiments, and the earliest of these was by Ester-
mann and Stern (1930) just three years after the electron
diffraction experiment by Davisson and Germer (1927).
Figure 2 shows original data in which helium atoms were
reflected and diffracted from the surface of a LiF crystal.
The small lattice period of the crystal surface (40 nm)
gave large diffraction angles and allowed relaxed colli-
mation. This observation proved that composite par-
ticles (atoms) propagate as waves, but this kind of
reflection-type diffraction grating has not led to a beam
splitter suitable for atom interferometry. It did, however,
launch an active field of atom diffraction (both elastic
and inelastic) for studying surfaces.

B. Nanostructures

One of the first demonstrations of atom diffraction
from macroscopic objects was by Leavitt and Bills (1969)
who observed Fresnel diffraction from a single
20-um-wide slit. With the advent of modern nanotech-
nology it became possible to fabricate elaborate arrays
of holes and slots in a thin membrane that allow atoms
to pass through. These can have feature sizes of
50 nm—much smaller then typical transverse coherence
in well-collimated atomic beams. Diffraction from a
nanofabricated structure—a transmission grating with
200-nm-wide slits—was first observed by the Pritchard

The transverse coherence length is €;.,,,= Ngg/ Ocon, Where
Agg is the de Broglie wavelength and 9 is the (local) colli-
mation angle of the beam (the angle subtended by a collimat-
ing slit). Since for thermal atomic beams Agg~ 10 pm a colli-
mation of U, <10 urad is required for a 1-um coherent
illumination.
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FIG. 2. Historic data showing diffraction of He atoms from a
LiF crystal surface. The central peak is due to He atom reflec-
tion. The side peaks are due to first-order diffraction of He
atoms from the LiF crystal lattice. From Estermann and Stern,
1930.

group at MIT (Keith et al., 1988). This led to many in-
terference experiments with atoms and molecules.

Nanotechnology has been used to make single slits,
double slits, diffraction gratings, zone plates, hologram
masks, mirrors, and phase shifting elements for atom
waves. The benefits of using mechanical structures for
atom optics include feature sizes smaller than light
wavelengths, arbitrary patterns, rugged designs, and the
ability to diffract any atom and/or molecule. The pri-
mary disadvantage is that atoms stick to (or bounce back
from) surfaces, so that most structures serve as absorp-
tive atom optics with a corresponding loss of transmitted
intensity.

1. Transmission gratings

After the demonstration of transmission gratings for
atom waves by Keith er al. (1988), these gratings have
seen numerous applications. A 100-nm period nano-
structure grating made at the MIT NanoStructures facil-
ity and atom diffraction data from this kind of grating is
shown in Fig. 3. Material structures absorb atoms that
hit the grating bars but transmit atom waves through the
slots relatively unperturbed.

Classical wave optics recognizes two limiting cases,
near and far field, treated by the Fresnel and Fraunhof-
fer approximations, respectively. Both regimes have re-
vealed interesting effects and led to scientific advance.
In the near-field limit the curvature of the wave fronts

Rev. Mod. Phys., Vol. 81, No. 3, July—September 2009

Diffraction of He Atoms

T=300K, P=130 bar

Countrate [counts/s]

Diffraction Angle [mrad]

FIG. 3. Diffraction of He atoms transmitted through a nano-
structure grating. The average velocity and velocity spread of
the beam, the uniformity of the material grating, and the
strength of atom-surface van der Waals forces can all be deter-
mined from these data (Grisenti et al., 1999). From J. P. Toen-
nies, W. Schollkopf, and O. Kornilov. Inset: A 100-nm-period
grating for atom waves. The dark regions are slots, and light
regions are free-standing silicon nitride bars. From T. A. Savas
and H. I. Smith at the MIT NanoStructure Laboratory (Schat-
tenburg et al., 1990; Savas et al., 1995, 1996).

must be considered and the intensity pattern of the
beam is characterized by Fresnel diffraction. Edge dif-
fraction and the Talbot self-imaging of periodic struc-
tures are examples of near-field atom optics. In the far-
field limit, the intensity pattern of the beam is
characterized by Fraunhofer diffraction in which the cur-
vature of the atom wave fronts is negligible and the dif-
fraction orders can be resolved. For a grating with open
fraction w/d and a purely real and binary valued trans-
mission function the probability for a beam to be dif-
fracted into the nth order is

sin(nwr/d) ]2

nwld

Pn:In/Iinc:(W/d)z[ (3)
Modification of the diffraction patterns due to van der
Waals interaction with the grating bars was first ob-
served by Grisenti et al. (1999). This reduces the flux in
the zeroth order, increases flux in most of the higher
orders and prevents “missing orders” from occurring
(Cronin and Perreault, 2004). Random variations in the
grating bar period can be analyzed as Debye-Waller
damping which preferentially suppresses higher diffrac-
tion orders (Grisenti, Schollkopf, Tonnies, Manson, et
al., 2000). Molecular size effects also modify the relative
efficiencies as described by Grisenti, Schollkopf, Toen-
nies, Hegerfeldt, et al. (2000) and were used to estimate
the size of the very weakly bound He, molecule (Luo et
al., 1993; Schollkopf and Toennies, 1994, 1996).
Molecules such as 4He2, 4He3, and other “He clusters,
Naz, C60? C70, C60F487 and C44H30N4 have been diffracted
from similar gratings (Chapman, Ekstrom, Hammond,
Rubenstein, et al., 1995; Schollkopf and Toennies, 1996;
Arndt et al, 1999; Brezger et al., 2002, 2003; Hacker-
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FIG. 4. (Color online) Double-slit experiment with He*. (a)
Schematic. (b) Atom interference pattern with a=1.05 m and
d=1.95 m recorded with a pulsed source. Adapted from Kurt-
siefer et al., 1997.

muller, Uttenthaler, et al., 2003; Nairz et al., 2003; Bruehl
et al., 2004). Scientific results in this area, such as the
study of decoherence and the formation rate of mol-
ecules in beams, will be discussed in Sec. IV.

2. Young’s experiment with atoms

Atomic diffraction from a double slit recapitulates the
seminal Young’s double slit experiment in which the dif-
fraction pattern is created by the interference of waves
traversing two cleanly separated paths. In that sense it
can be seen as a two path interferometer. The atomic
version by Carnal and Mlynek (1991) used a mechanical
structure with two 1-um-wide slits separated by 8 um to
create the interference (Fig. 4). Diffraction from a single
2-pum-wide slit 62 cm from the double slit prepared the
atom waves (Agg=100 pm) to have a transverse coher-
ence length larger than the double slit separation (€,
=zZAgg/2w=15 um).

In the original experiment, a slit was translated in
front of the detector to observe the interference fringes.
With a beam brightness of B~10'7 s~ cm™ sr™!, the av-
erage count rate was about one atom per second. In a
later version (see Fig. 4) they used a position sensitive
detector to record the whole pattern at once, giving a
larger counting rate. Time of flight resolution was added
in order to measure the Wigner function of the transmit-
ted atoms (Kurtsiefer et al., 1997).

A two slit experiment using cold Ne* atoms was pre-
sented by Shimizu et al. (1992). The atoms were dropped
from a magneto-optical trap 1 m above a mechanical
mask with two slits separated by 6 um. At the location
of the mask the atoms had a speed of 4.5 m/s (Agg
=5 nm) and a speed ratio of v/c,=20. The mask was
equipped with an electrode so that deflection due to an
applied electric field gradient could be measured.

3. Charged-wire interferometer

A variation of the atomic Young’s experiment was
built by Nowak et al. (1998). A single wire put in a He*
beam produces a near-field diffraction pattern. Charging
the wire bends the atom trajectories passing around it
inward, increasing the interference (Fig. 5) analogous to
the charged-wire optical bi-prism interferometer for
electrons (Mollenstedt and Duker, 1955).
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FIG. 5. Charged wire interferometer. (a) Schematic. (b) Mea-
sured diffraction patterns with an uncharged wire. Fresnel
fringes and the Poisson spot are visible. (c) Interference fringes
with different voltages applied to the electrodes. Adapted
from Nowak et al., 1998.

4. Zone plates

Fresnel zone plates have focused atoms to spots
smaller than 2 um (Fig. 6). Zone plates behave locally
like a diffraction grating, therefore the focal length of a
zone plate is f=Rd;,/ \gqg, Where R is the radius of out-
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FIG. 6. A zone plate for focusing atom beams. The plate (in-
set) has free-standing annular rings and radial support struts.
The data show focused (+1) and defocused (-1) atom beam
components. Adapted from Doak et al. 1999.
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FIG. 7. Atom holography. (a) Experimental setup for image
reconstruction of the hologram by an atom beam. (b) A holo-
gram designed by computer and realized with a SiN membrane
with square holes. (c) Far-field diffraction pattern from the ho-
logram mask. (d), (e) Two different diffraction patterns ob-
tained with a switchable hologram. Adapted from Fujita et al.,
2000b and Morinaga, Yasuda, et al., 1996; Fujita et al., 2000a.

ermost zone and d,;, is the period of the smallest fea-
tures. Focal lengths of f=450 mm with R=0.2 mm (Agp
=200 pm) (Carnal et al, 1999) and f=150 mm with R
=0.3 mm (Agg= 180 pm) (Doak et al, 1999) have been
demonstrated.

5. Atom holography

Atom holography with nanostructures can make the
far-field atom flux display arbitrary patterns. Adding
electrodes to a structure allows electric and magnetic
fields that cause adjustable phase shifts for the transmit-
ted atom waves. With this technique, Fujita et al. (1996,
1999, 2000a) demonstrated a two-state atom holographic
structure that produced images of the letters ¢ or 7 as
shown in Fig. 7. The different holographic diffraction
patterns are generated depending on the voltages ap-
plied to each nanoscale aperture.

C. Gratings of light

Laser spectroscopy initially dealt with the internal en-
ergy levels of atoms, and coherent phenomena such as
nonlinear optics. Exploiting the momentum transfer ac-
companying absorption or emission of light was of little
experimental concern until the observation of quantized
deflection (diffraction) in an atom beam by Moskowitz et
al. (1983) and Pritchard and its subsequent application to
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a BEC by Ovchinnikov et al. (1999).* Many experiments
with atoms diffracted from standing waves of light have
been accomplished since these earliest milestones (see,
e.g., Martin et al., 1988; Giltner et al., 1995a, 1995b; Ra-
sel et al., 1995; Stenger et al., 1999; Torii et al., 2000;
Delhuille, Champenois, et al., 2002; Koolen et al., 2002).
Now the interaction between light and atoms is recog-
nized as a rich resource for atom diffraction (and inter-
ference) experiments; and a unified view of all possible
atom diffraction processes using light beams has been
presented by Bordé (1997). Light waves can act as re-
fractive, reflective, and absorptive structures for matter
waves, just as glass interacts with light waves.

In an open two-level system the interaction between
an atom and the light field (with detuning A=wj,
— wa1om) €an be described with an effective optical poten-
tial of the form (Oberthaler, Abfalterer, et al., 1996)

U(x) = hQ3/(4A + i2T) = I(x)/(2A + iT"), (4)

where the (on-resonant) Rabi frequency, O,
=d,," Eqpicar/ 71, 18 given by the atomic transition dipole
moment and the optical electric field, I" is the atomic
decay rate, and I(x) is the light intensity. The imaginary
part of the potential comes from the spontaneous scat-
tering processes, and the real part results from the ac
Stark shift. For a more detailed description we point the
reader to the vast literature on mechanical effects of
light.” If the spontaneous decay follows a path to a state
which is not detected, the imaginary part of the potential
in Eq. (4) is equivalent to absorption. Therefore on-
resonant light can be used to create absorptive struc-
tures. Light with large detuning produces a nearly real
potential and therefore acts as a pure phase object.
Near-resonant light can have both roles.

The spatial shape of the potential is given by the local
light intensity pattern /(x), which can be shaped with the
near- and far-field optics for light, including holography.
The simplest object is a periodic potential created by
two beams of light whose interference forms a standing
wave with reciprocal lattice vector

GzEl—Ez. (5)

This is often called an optical lattice because it is a close
realization of the periodic potentials that electrons expe-
rience in solid state crystals. Thus Bloch states can be
used to understand atom diffraction (Letokhov et al.,
1981; Champenois et al., 2001a) Additional points of
view that we discuss include the thin hologram (Raman-
Nath approximation) (Meystre, 2001), two-photon Rabi
oscillations (Gupta, Leanhardt, et al, 2001) and multi-
beam interference (dynamical diffraction theory).

We distinguish different regimes for atom manipula-
tion, for example, (i) thick versus thin optical lattices, (ii)

*Theoretical work on quantized momentum transfer from
light to matter dates back to Einstein (1917) and Kapitza and
Dirac (1933).

>See, for example, Ashkin (1970, 1980); Dalibard and Cohen-
Tannoudji (1985); Metcalf and van der Stratten (1999).
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FIG. 8. (Color online) Dimensionless parameter space for
atom diffraction. The vertical axis (optical potential in units of
E) and horizontal axis (interaction time in units of w;elc) are
independent of atomic transition dipole moment and atomic
mass [see Egs. (4) and (6)]. Under the first focus line the RNA
[Eq. (8)] is satisfied. KD labels curves corresponding to condi-
tions that maximize Kapitza-Dirac diffraction into orders 1-10
in order from bottom to top [see Eq. (7)]. Bragg indicates
curves that correspond to conditions for complete (7 pulse)
Bragg reflection into orders 1-10 [see Egs. (11) and (12)]. The
vertical dashed line indicates the Talbot time 74 (discussed in
Sec. IL.D). For detuning of A=100I", the average number of
spontaneously scattered photons per atom is greater than 1
above the line marked Ng=1. Experiment conditions are
shown as points. O, Kapitza-Dirac diffraction of an atomic
beam (Gould et al, 1986). @, A, V, Bragg diffraction of an
atomic beam [Martin et al. (1988), Giltner et al. (1995a),
Koolen et al. (2002), respectively]. 4, Bragg diffraction of a
BEC (Kozuma, Deng, et al., 1999) [Bragg spectroscopy of a
BEC (Stenger et al., 1999) at 7w,.=80 would appear to the
right of the charted regions, near the first-order Bragg curve].
». Transition from Kapitza-Dirac diffraction to oscillation of a
BEC in a standing wave light pulse (Ovchinnikov et al., 1999)
H, Coherent channeling. Adapted from Keller et al., 1999, and
Gupta, Leanhardt, et al., 2001.

weakly perturbing versus strongly channeling lattices,
(iii) on-versus off-resonant light, and (iv) static versus
time-dependent optical potentials. These have been dis-
cussed by Oberthaler, Abfalterer, ef al. (1996); Obertha-
ler et al. (1999); Keller et al. (1999); Bernet et al. (2000);
Champenois et al. (2001a); Gupta, Leanhardt, et al.
(2001); Morsch and Oberthaler (2006). We include a
summary chart (Fig. 8) that catalog different effects
caused by gratings of light.

Since light gratings can fill space, they can function as
either thin or thick optical elements. As in light optics,
for a thin optical element the extent of the grating along
the propagation direction has no influence on the final
diffraction (interference). But in a thick element the full
propagation of the wave throughout the diffracting
structure must be considered. In a grating, the relevant
scale is set by the grating period (d) and the atomic de
Broglie wavelength (\gg). If a grating is thicker than
d?/\gg (half the Talbot length) it is considered thick, and
the characteristics observed are Bragg scattering or
channeling, depending on the height of the potentials. If
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the grating is thinner than d/\gp, it can be analyzed in
the Raman-Nath limit, and it produces a symmetric dis-
tribution of intensity into each pair of diffraction orders
of opposite sign (+N). The thin versus thick transition is
labeled first focus line in Fig. 8.

The second distinction, mostly relevant for thick grat-
ings, has to do with the strength of the potential. One
must determine if the potential is only a perturbation, or
if the potential modulations are larger then the typical
transverse energy scale of the atomic beam or the char-
acteristic energy scale of the grating,

Eg=h*G?(2m) = dhw,... (6)

associated with one grating momentum unit #G. fiw, is
an atoms “recoil energy” due to absorbing (or emitting)
a photon. For weak potentials, U< E;, one observes
Bragg scattering. The dispersion relation looks like that
of a free particle with avoided crossings at the edges of
the zone boundaries. Strong potentials, with U> Ej,
cause channeling. The dispersion relations are nearly
flat, and atoms are tightly bound in the wells.

1. Thin gratings: Kapitza-Dirac scattering

If atoms are exposed to a standing wave of off-
resonant light for a short time 7, the resulting optical
potential due to the standing wave acts as a thin phase
grating with period d=\;/2. Atom waves are diffracted
by this grating so that many momentum states (each dif-
fering by AG) are populated as shown in Fig. 9 (left col-
umn). This is known as Kapitza-Dirac scattering,6 and
occurs in the Raman-Nath limit. The probability of find-
ing atoms in the Nth diffracted state is given by the Fou-
rier transform of the imprinted phase shift, resulting in
Gupta, Leanhardt, et al., 2001)

PRP i = 1X(QF724). (7)

Here Jy is an Nth-order Bessel function and 7 is the
duration that the optical intensity is experienced by the
atoms. As defined near Eq. (4), Qy=d,," Epica/ . Equa-
tion (7) is valid for normal incidence; Henkel et al. (1994)
considered all angles of incidence.

The Raman-Nath approximation (RNA) is valid pro-
vided the transverse motion of the atoms remains small.
Approximating the potential from a standing wave as
parabolic near a the minimum leads to the condition for
the RNA to be valid:

T< Tosd4 = 112VQREG/T, (8)

where Qz=1]Q|>+A? is the generalized Rabi frequency.
If the interaction time is longer than this, Eq. (7) is no
longer valid, and population transfers to states with the
largest momenta (large N) are suppressed (Raman and

%The original proposal by Kapitza and Dirac (1933) was for
Bragg reflection of electrons by a standing wave of light (Bate-
laan, 2000; Freimund et al., 2001) However, Kapitza-Dirac scat-
tering is now most commonly used to describe diffraction of
atoms by a thin grating of light.
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FIG. 9. (Color online) Comparison between diffraction from a
thick and a thin grating. (a) Kapitza-Dirac (KD) diffraction,
discussed in Sec. II.C.1. (b) Bragg diffraction, discussed in Sec.
I1.C.3. The top row shows the essential difference: thick vs thin
gratings. The bottom row shows data obtained by the Pritchard
group for KD and Bragg diffraction. Adapted from Gould et
al., 1986 and Martin et al., 1988.

Nath, 1935; Moharam and Young, 1978; Wilkens et al.,
1991; Keller et al., 1999; Meystre, 2001).

Early attempts to observe the Kapitza-Dirac (KD) ef-
fect with electrons were controversial [see discussion by
Batelaan (2000) and Freimund et al. (2001)], and at-
tempts with atoms were unable to eliminate the effects
of spontaneous emission (Arimondo et al., 1979).7 The
first observation of Kapitza-Dirac scattering by Mosk-
owitz et al. (1983) and Gould er al. (1986) was therefore a
breakthrough: it showed a symmetric double maximum
and also revealed that momentum transfer was quan-
tized in units of 27k, thereby indicating a coherent
process. Moreover, these experiments showed that quan-
tized momentum transfer (i.e., coherent diffraction) is
possible even if the interaction time 7 is much larger
than the atoms’ radiative lifetime, provided that the ra-
diation is detuned from resonance.

With a BEC Kapitza-Dirac scattering was first ob-
served at NIST by Ovchinnikov ef al. (1999) and has
subsequently become an everyday tool for manipulating
BECs. More recently, a series of light pulses separated in

n fact, T. Oka made a wager with D.E.P. that the MIT ex-
periments would continue to show a maximum at zero deflec-
tion, rather than revealing two maxima displaced from the cen-
ter as predicted.
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FIG. 10. (Color online) Diffraction from a measurement-
induced grating. (a) Schematic of two on-resonant standing
waves of light. The first causes atom diffraction. The second
can be translated to analyze near-field atomic flux. (b) Periodic
structure in the transmitted atomic beam. (c) Far-field atom
diffraction from a measurement induced grating. Adapted
from Abfalterer et al., 1997.

time [by about one-eighth of the Talbot time (7
=2d’m/h)] have been used to diffract atoms with high
efficiency into only the +1 orders (Wang et al., 2005; Wu,
Wang, et al., 2005).

2. Diffraction with on-resonant light

Tuning the light frequency of a standing light wave to
resonance with an atomic transition (A=0) can make an
“absorptive” grating with light. This is possible when the
spontaneous decay of the excited state proceeds mainly
to an internal state which is not detected. (If the excited
state decays back to the ground state, this process pro-
duces decoherence and diffusion in momentum space.)
For a thin standing wave the atomic transmission is
given by

T(x) = exp{— (k/2)[1 + cos(Gx)]}, 9)

where the absorption depth for atoms passing through
the antinodes is «. For sufficiently large absorption only
atoms passing near the intensity nodes survive in their
original state and the atom density evolves into a comb
of narrow peaks. Since the absorption involves sponta-
neous emission such light structures have been called
measurement induced gratings. As with all thin gratings,
the diffraction pattern is then given by the scaled Fou-
rier transform of the transmission function.

Such gratings have been used for a series of near-field
(atom lithography; Talbot effect) and far-field (diffrac-
tion; interferometry) experiments, and an example is
shown in Fig. 10 (Rasel et al., 1995; Johnson et al., 1996,
1998; Abfalterer et al., 1997; Jurgens et al., 2004). These
experiments demonstrate that transmission of atoms
through the nodes of the absorptive light masks is a co-
herent process.

3. Thick gratings: Bragg diffraction

If the standing wave is thick, one must consider the
full propagation of the matter wave inside the periodic
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FIG. 11. Energy states on the energy-momentum dispersion
curve associated with Bragg diffraction. Versions of this classic
figure are found in Martin er al. (1988); Giltner et al. (1995a);
Bordé (1997); Kozuma, Deng, et al. (1999); Gupta, Leanhardt,
et al. (2001).

potential. The physics is characterized by multi wave
(beam) interference. For two limiting cases one can re-
gain simple models. For weak potentials, Bragg scatter-
ing; and for strong potentials, coherent channeling.

When an atomic matter wave impinges on a thick but
weak light crystal, diffraction occurs only at specific
angles, the Bragg angles 6 defined by the Bragg condi-
tion

N)\dB = )\ph Sin( 03) . (10)

Bragg scattering, as shown in Fig. 9 (right column),
transfers atoms with momentum —p, into a state with a
single new momentum, p,=-p,+#AG. Momentum states
in this case are defined in the frame of the standing wave
in direct analogy to electron or neutron scattering from
perfect crystals. Bragg scattering was first observed at
MIT (Martin et al., 1988) and first observed with atoms
in a Bose-Einstein condensate at NIST (Kozuma, Deng,
et al., 1999). Higher-order Bragg pulses transfer mul-
tiples of NAG of momentum, and this has been demon-
strated up to 8th order with an atomic beam (Giltner et
al., 1995b; Koolen et al., 2002). Reviews of Bragg scat-
tering appear in Durr and Rempe (1999); Obrethaler et
al. (1999); Bernet et al. (2000); Gupta, Leanhardt, et al.
(2001).

The Bragg scattering process can be understood in
terms of absorption followed by stimulated emission
(Fig. 11). Viewing Bragg scattering as a two-photon tran-
sition from the initial ground state with momentum to a
final ground state (with new momentum) illuminates the
close connection with Raman transitions (Gupta, Lean-
hardt, et al., 2001).

As a result of the coherently driven two-photon tran-
sition, the probability amplitude oscillates between the
two momentum states |g,~7ik,y) and |g,+7ik,y) in a man-
ner analogous to the Rabi oscillation of atomic popula-
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tion between two resonantly coupled states. The prob-
ability for Bragg scattering of atoms from off-resonant
standing waves of light is

PBrge( 1) = sin?(Q37/4A). (11)

The oscillation between the two Bragg-coupled states
(N=0 and N=1) is known as the Pendellésung and has
been observed for atoms (Martin et al., 1988; Oberthaler
et al., 1999; Koolen et al., 2002), neutrons (Shull, 1968),
electrons, and x rays. The nice feature with atoms is that
the strength of the grating can be controlled by the in-
tensity of the light.

The probability for Nth-order Bragg diffraction is

P77 =sin{QN 2V SN - DIPANLTY,  (12)
where we have assumed A> N?w,..

Bragg diffraction of atoms from off-resonant standing
waves of light is often used for studying a BECs velocity
distribution because of the velocity selectivity of the
Bragg condition (Kozuma, Deng, et al., 1999; Stenger et
al., 1999; Blakie and Ballagh, 2000; Carusotto et al.,
2000; Stamper-Kurn et al., 2001). o, is improved by in-
creasing the duration of interaction with the grating, as
can be deduced from the time-energy uncertainty prin-
ciple, 0,=2/7G.® For first-order Bragg diffraction, the
minimum interaction time required to suppress all but
one diffraction order is 7>h/E;=10 us; so to observe
Bragg scattering with a 1000 m/s Na atom beam typi-
cally requires standing waves nearly 1 cm thick. How-
ever, 7 can be substantially increased with cold atoms,
and o, less than 1/30 of the recoil velocity has been
observed. For higher-order Bragg diffraction the interac-
tion time must be 7> 7/[2(N-1) wyec]-

Bragg scattering can be described as a multibeam in-
terference as treated in the dynamical diffraction theory
developed for neutron scattering. Inside the crystal one
has two waves, the refracted incident “forward” wave
(k) and the diffracted “Bragg” wave (kg). These form a
standing atomic wave field, and the diffraction condition
(kg—kr=G) implies that the standing atomic wave has
the same periodicity as the standing light wave. At any
location inside the lattice, the exact location of atomic
probability density depends on kg, kg and the phase dif-
ference between these two waves.

For incidence exactly on the Bragg condition the
nodal planes of the two wave fields are parallel to the
lattice planes. The eigenstates of the atomic wave field
in the light crystal are two Bloch states, one exhibiting
maximal (¥, and the other minimal (V¥,,;,) interac-
tion:

V= %[eti/Z + e 02] = cos(Gx/2),

8States lie on the energy-momentum dispersion curve (E
=p?/2m) with quantized momentum. Finite interaction times
(7) allow states to be populated with a range of energy op
=po,=2h/7. For an Nth-order Bragg process, the state mo-
mentum is centered around p=N#AG. Hence 0,=2/N7G.
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FIG. 12. (Color online) Bragg diffraction of atoms from reso-
nant standing waves of light. (a) Atoms entering the light crys-
tal at the Bragg angle are less likely to emit a spontaneous
photon and therefore survive the on resonant light field
(anomalous transmission). (b) A resonant standing wave inside
a light crystal serves to measure the atom wave fields inside the
crystal. For on-resonance light crystals one observes the mini-
mal coupled Bloch state. Adapted from Oberthaler, Abfal-
terer, et al., 1996.

Wi = 5[0 = 710¥2] = i 5in(Gx/2). (13)

For ¥ ,.« the antinodes of the atomic wave field coincide
with the planes of maximal light intensity, and for ¥,
the antinodes of atomic wave fields are at the nodes of
the standing light wave. These states are very closely
related to the coupled and noncoupled states in velocity
selective coherent population trapping (Aspect et al.,
1988).

The total wave function is that superposition of ¥ .,
and V¥ ,,;, which satisfies the initial boundary condition.
The incoming wave is projected onto the two Bloch
states which propagate through the crystal accumulating
a relative phase shift. At the exit, the final populations in
the two beams is determined by interference and de-
pends on this relative phase [following Eq. (11)].

Bragg scattering can also be observed with absorptive,
on-resonant light structures (Oberthaler, Abfalterer, et
al., 1996) and combinations of both on- and off-resonant
light fields (Keller et al, 1997). One remarkable phe-
nomenon is that the total number of atoms transmitted
through a weak on-resonant standing light wave in-
creases if the incident angle fulfills the Bragg condition,
as shown in Fig. 12. This observation is similar to what
Borrmann (1941) discovered for x rays and called
anomalous transmission.

The observed anomalous transmission effect can be
understood in the framework of the two beam approxi-
mation outlined above. The rate of de-population of the
atomic state is proportional to the light intensity seen by
the atoms and therefore to the overlap between the
atom wave field and the standing light field. The mini-
mally coupled state ¥,;, will propagate much further
into the crystal than ¥, ... At the exit phase the propa-
gating wave field will be nearly pure ¥ ;.. As a conse-
quence one sees two output beams of (nearly) equal in-
tensity.
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Inserting an absorptive mask (Abfalterer et al., 1997)
inside the light crystal allows one to observe the stand-
ing matter wave pattern inside the crystal (Oberthaler,
Abfalterer, et al., 1996, 1999) and verify the relative po-
sitions between the light field and W ;.

Indeed, tailored complex potentials for atoms can be
made out of combinations of bi-chromatic standing
waves (Keller et al., 1997). For example, a superposition
of standing waves (one on- and one off-resonance) with
a phase shift Ap==/2 results in a combined potential
of U(x)=Uye*"“* which, in contrast to a standing wave,
has only one momentum component. Such a potential
can therefore only diffract in one direction. As this pre-
dicts, various diffraction orders can be suppressed by
adjusting the phase difference between the absorptive
and the refractive grating. The lack of symmetry is re-
ferred to as a violation of Friedel’s law. The asymmetry
in the observed patterns can also be understood as an
interference effect between diffraction at refractive and
absorptive “subcrystals” spatially displaced with respect
to each other (Keller et al., 1997).

4. Bloch oscillations

Bloch oscillations were predicted by Bloch (1929) and
Zener (1934) as an interference phenomenon in connec-
tion with the electronic transport in crystal lattices, but
can in general also be observed in any system where
accelerated matter waves move through a periodic po-
tential. In a simple physical picture the Bloch oscilla-
tions can be viewed as repeated Bragg reflection from an
accelerating grating. To observe high-contrast Bloch os-
cillations it is desirable to prepare the initial sample well
localized in momentum space, with a width of the mo-
mentum distribution much smaller than the Brilloiuin
zone. Therefore a BEC would be an ideal starting con-
dition.

The first to observe Bloch oscillations with atomic
matter waves was Dahan et al. (1996), who studied the
motion of thermal atoms in an accelerated lattice. Since
then, because optical lattices can be precisely controlled,
Bloch oscillations have been used for precision measure-
ments of quantities related to acceleration such as g or
h/matom'

In a real experiments atom-atom interactions damp
the Bloch oscillations (by de-phasing). Roati et al. (2004)
showed that Bloch oscillations survive much longer for
noninteracting fermions (*°K) when compared with
bosons (¥’Rb). Very long lasting Bloch oscillations were
observed for weakly interacting bosons (*Sr) by Ferrari
et al. (2006) with interactions switched off by tuning with
a Feshbach resonance in **Cs by Gustavsson et al.
(2007) or *°K by Fattori, D’Errico, et al. (2008) (see Fig.
13). Bloch oscillations with interactions minimized by
Feshbach resonances were used by Fattori, Roati, et al.
(2008) to study the small remaining magnetic dipolar in-
teractions in a BEC.
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FIG. 13. (Color online) Observation of long lasting Bloch os-
cillations in Cs. The images (left) and graph (right) show how
atoms released from a vertically oriented lattice have a veloc-
ity that oscillates as a function of hold time. To suppress damp-
ing, atom-atom interactions were switched off by tuning the
scattering length close to zero by applying a magnetic field of
17.12 G. Adapted from Gustavsson et al., 2007.

5. Coherent channeling

When the lattice potential becomes higher then Eg;
[Eq. (6)] the atoms can be localized in the standing light
wave. Atoms impinging on such a strong light crystal are
then guided in the troughs through the crystal, and can
interfere afterwards. Such guiding is called channeling.
Channeling of electron beams (Joy et al., 1982) and ion
beams (Feldman ef al., 1982) in material crystals is re-
lated to channeling of atoms in optical lattices (Salomon
et al., 1987; Horne et al., 1999; Keller et al., 1999). If the
process is coherent, one can observe a diffraction pat-
tern reminiscent of the KD diffraction from a thin grat-
ing; see Fig. 14.

D. The Talbot effect

We now turn from far-field atom diffraction to the
near-field region, where a host of different interference
effects occur. The well-known optical self-imaging of a
grating discovered by Talbot in 1832 is most important.
It has many applications in image processing and synthe-
sis, photolithography, optical testing, and optical metrol-
ogy (Patorski, 1989), and has proven to be a powerful

position in um
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incidence angle in ©,

Bragg incidence angle in ©g,, .,

FIG. 14. (Color online) Coherent channeling of atoms through
a strong light crystal. (a) When the light crystal turns on
abruptly (see inset) many transverse momentum states are
populated, and a large number of outgoing diffraction orders
are observed. (b) Atoms entering the light crystal slowly (adia-
batically) only occupy the lowest energy states, hence only one
or two output beams are observed, as in Bragg scattering.
From Keller et al., 1999.
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FIG. 15. The Talbot effect. (a) Schematic of a pulsed source
and a time-resolved detector used to observe near-field diffrac-
tion from a nanograting with 0.6-um-diameter windows spaced
with a period of 6.55 um. (b) Higher-order Talbot fringes. The
spatial atom distribution vs de Broglie wavelength is plotted.
The arrows indicate locations at which Talbot fringes of the
mth order are observed. Adapted from Nowak et al., 1997.

tool for interference experiments with matter waves.

Plane waves incident on a periodic structure form a
“self-image” of the structure at the Talbot distance Lt
=2d*/\¢g and again at integer multiples of the Talbot
length. At half the Talbot distance a similar self-image is
formed but displaced by half a period. At certain inter-
mediate distances higher-order Talbot images are
formed. These have a spatial frequency that is higher
than the original grating by a ratio of small integers. The
position and contrast of the subperiod images are deter-
mined by Fresnel diffraction as discussed by Patorski
(1989); Clauser and Reinisch (1992); Clauser and Li
(1994b). The replica (Fresnel) images and higher-order
(Fourier) images are used in a Talbot-Lau interferom-
eter (Brezger et al., 2003).

Talbot fringes were first observed with an atom beam
and nanostructure gratings by Schmiedmayer et al.
(1993); Clauser and Li (1994b); Chapman, Ekstrom,
Hammond, Schmiedmayer, et al. (1995) and higher-order
Talbot fringes were observed by Nowak et al. (1997); see
Fig. 15. The Talbot effect has also been studied with
on-resonant light (Turlapov et al., 2003, 2005), and Tal-
bot revivals have been observed in the time evolution of
atom clouds after pulses of off-resonant standing waves
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of light (Cahn et al., 1997; Deng et al., 1999). The Talbot
time is 7;=Ly/v=2d*m/h.

Rohwedder (2001) proposed detecting the Talbot ef-
fect for atoms trapped in wave guides, and Ruostekoski
et al. (2001) discussed the formation of vortices in BEC
as a result of the Talbot effect. Proposals to use the Tal-
bot effect to study the state of electromagnetic fields in
cavities have been discussed by Rohwedder et al. (1999)
and Rohwedder and Santos (2000). Using the Talbot ef-
fect with multiple phase gratings has been proposed as a
way to make more efficient beam splitters for atom
waves (Rohwedder, 1999, 2000), and this is related to the
standing-wave light-pulse sequence described by Wu,
Wang, et al. (2005).

The Lau effect is a closely related phenomenon in
which incoherent light incident on two gratings causes
fringes on a distant screen, provided that the gratings
are separated by a half-integer multiple of the Talbot
length. References for the Lau effect in light optics in-
clude Lau (1948); Bartelt and Jahns (1979); Jahns and
Lohmann (1979); Patorski (1989). In essence, for the Lau
effect the first grating serves as an array of mutually
incoherent sources and Fresnel diffraction from the sec-
ond grating makes the pattern on the screen. This forms
the basis for Talbot-Lau interferometers which we dis-
cuss in Sec. IIL

A promising application of Talbot (or Lau) imaging
with atoms is atom lithography as demonstrated by
Timp et al. (1992), and McClelland et al. (2004), and
many others. For reviews, see Bell et al. (1999) and Me-
schede and Metcalf (2003). It is possible to write smaller
gratings and features using the reduced period interme-
diate images discussed above. Similar Fourier images
have been used for x rays to write half-period gratings
(Flanders et al., 1979) and to construct x-ray interferom-
eters (David et al., 2002; Momose et al., 2003; Weitkamp
et al., 2005). Grating self-images may also be used in
quantum optics experiments to produce a periodic atom
density in an optical resonator.

E. Time-dependent diffraction

Many new interference effects arise when the diffract-
ing structures are modulated in time, a situation we have
not considered previously (except for revivals at the Tal-
bot time after pulsed gratings). These new effects arise
with matter waves because the vacuum is dispersive for
atoms—particles with shorter wavelength (higher en-
ergy) propagate faster than those with longer wave-
lengths. In contrast, for light in vacuum all wavelengths
propagate at a constant speed c.

Two matter wave components interfering at (x,f) may
have propagated from the same x’ but originated from
there at different times ¢’ (if they have different veloc-
ity). Time-dependent boundary conditions can cause
matter wave diffraction phenomena in time that are
similar to spatial diffraction phenomena arising from
spatially dependent boundary conditions. This was first
discussed by Moshinsky (1952), who argued that after
opening a shutter one should observe a rise in the mat-
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ter wave intensity with Fresnel fringes in time, similar to
the diffraction of an edge in space. He called this very
general phenomena diffraction in time. Similarly, the
opening and closing of a shutter results in a single slit
diffraction in time; two successive openings makes a
double slit; and a periodic change in the opening of the
slit produces a diffraction pattern in time. With diffrac-
tion in time, new frequency (energy) components are
created (as in an acoustic-optic modulator), resulting in
components with new momenta. In analogy to diffrac-
tion in space one finds that diffraction in time has both
near-field and far-field regimes. One also observes
Raman-Nath and Bragg regimes, depending on the du-
ration of the interaction and the amount of energy (fre-
quency) transfer.

1. Vibrating mirrors

Even though diffraction in time of matter waves was
predicted in 1952 the first experimental demonstrations
had to wait until the late 1980s. The experimental diffi-
culty in seeing diffraction in time is that the time scale
for switching has to be faster than the inverse frequency
(energy) width of the incident matter wave. This condi-
tion is the time equivalent to coherent illumination of
adjacent slits in spatial diffraction. The first (explicit) ex-
periments demonstrating diffraction in time used ultra-
cold neutrons reflecting from vibrating mirrors (Hamil-
ton et al., 1987; Felber et al., 1990; Hils et al., 1998). The
sidebands of the momentum components were ob-
served.

A study of diffraction and interference in time was
performed by Dalibard and co-workers at the ENS in
Paris using ultracold atoms reflecting from a switchable
atom mirror (Steane et al, 1995; Arndt et al., 1996;
Szriftgiser et al, 1996). Ultracold Cs atoms (T
~3.6 uK) released from an optical molasses fell 3 mm,
and were reflected from an evanescent atom mirror. By
pulsing the evanescent light field one can switch the mir-
ror on and off, creating time-dependent apertures that
are diffractive structures in the spirit of Moshinsky
(1952).

Even for these ultracold Cs atoms the energy spread
(7 MHz) is too large for the time-diffraction experiment,
so a very narrow energy window was selected by two
(0.4 ms) temporal slits. The first slit was positioned
26 ms after the atoms were released. Switching on the
mirror a second time, 52 ms later, selected a very narrow
energy slice in the same way as a two-slit collimation
selects a very narrow transverse velocity slice. The ar-
rival time of the atoms at the final “screen” was mea-
sured by fluorescence induced by a light sheet.

If the second slit is very narrow (<10 us), one ob-
serves single-slit diffraction in time; if the mirror is
pulsed on twice within the coherence time of the atomic
ensemble, one observes double-slit interference in time;
and many pulses lead to a time-dependent flux analo-
gous to a grating diffraction pattern, as shown in Fig. 16.
From the measurement of the arrival times the energy
distribution can be reconstructed. Similar diffraction in
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FIG. 16. Diffraction in time from a pulsed mirror. (a) Sche-
matic of the experiment, showing atom trajectories and a trace
indicating when the mirror was switched on. The first pulse
acts as a slit in time, the second pulse is modulated so that it
acts as a grating in time. (b) The diffraction pattern in time
manifests as different energy components in the resulting
atomic beam. Adapted from Steane et al., 1995, and Cohen-
Tannoudji, 1998.
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time is observed when a BEC is reflected from a vibrat-
ing mirror (Colombe et al., 2005).

Because the interaction time between the atoms and
the mirror potential (<1 us) was always much smaller
than the modulation time scale (>10 us), these experi-
ments are in the “thin grating” (Raman-Nath) regime
for diffraction in time.

2. Oscillating potentials

When matter waves traverse a time-modulated poten-
tial one can observe coherent exchange of energy be-
tween the oscillating field and the matter wave. This was
demonstrated in a neutron interference experiment
(Summhammer et al., 1995) where an oscillating mag-
netic potential was applied to one path of a neutron
interferometer. Coherent exchange of up to five quanta
how was observed in the interference patterns, even
though the transit time through the oscillating potential
was much shorter than the oscillation period.

3. Modulated light crystals

The time equivalent of spatial Bragg scattering can be
reached if the interaction time between the atoms and
the potential is long enough to accommodate many
cycles of modulation. When a light crystal is modulated
much faster than the transit time, momentum is trans-
ferred in reciprocal lattice vector units and energy in
sidebands at the modulation frequency. This leads to
Bragg diffraction at two new incident angles.

Bragg scattering in time can be understood as a tran-
sition between two energy and momentum states. The
intensity modulation frequency of the standing light
wave compensates the detuning of the Bragg angle. The
frequency of the de Broglie wave diffracted at the new
Bragg angles is shifted by +Aw,.q (Bernet et al., 1996,
2000). Thus an amplitude modulated light crystal real-
izes a coherent frequency shifter for a continuous atomic
beam. It acts on matter waves just as an acousto-optic
modulator acts on photons, shifting the frequency (ki-
netic energy) and requiring an accompanying momen-
tum (direction) change.

In a complementary point of view, the new Bragg
angles can be understood from looking at the light crys-
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FIG. 17. (Color online) Frequency shifter for matter waves. (a)
A time-modulated light crystal causes diffraction in time and
space. (b) Rocking curves show how the Bragg angle for
frequency-shifted matter waves is controlled by the grating
modulation frequency. (c) Beating between frequency shifted
and unshifted matter waves. Adapted from Bernet et al., 1996.

tal itself. The modulation creates sidebands +wp,,q on
the laser light, creating moving crystals which come from
the interference between the carrier and sidebands.
Bragg diffraction from the moving crystals occurs where
the Bragg condition is fulfilled in the frame co-moving
with the crystal, resulting in diffraction of the incident
beam to new incident angles.

The coherent frequency shift of the Bragg-diffracted
atoms can be measured by interferometric superposition
with the transmitted beam. Directly behind the light
crystal the two outgoing beams form an atomic interfer-
ence pattern which can be probed by a thin absorptive
light grating (Abfalterer et al., 1997). Since the energy of
the diffracted atoms is shifted by Aw,,,4, the atomic in-
terference pattern continuously moves; this results in a
temporally oscillating atomic transmission through the
absorption grating (Fig. 17).

Starting from this basic principle of frequency shifting
by diffraction from a time-dependent light crystal many
other time-dependent interference phenomena were
studied for matter waves (Bernet et al., 1999, 2000).
Light crystals are an ideal tool for these experiments
since one can easily tailor potentials by controlling the
laser intensity and frequency and create more complex
structures by superimposing different independently
controlled crystals.

For example, using light from two different lasers one
can create two coinciding light crystals generated in
front of the retroreflection mirror. Varying detuning and
phase between the two modulated crystals creates situa-
tions where diffraction is completely suppressed, or
where either the frequency unshifted or the frequency
shifted order is suppressed (Fig. 18). The combination of
real and imaginary potentials can produce a driving po-
tential of the form U(t) ~ e**“»' which contains only posi-
tive (negative) frequency components, respectively. Such
a modulation can only drive transitions up in energy (or
down in energy).
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FIG. 18. (Color online) Diffraction in time from two superim-
posed light crystals with a controlled relative phase between
the modulations. The first-order diffraction efficiency is plotted
as a function of grating angle (to generate a “rocking curve”)
for a variety of gratings. Left: Two off-resonant light crystals
are superimposed. The relative phase of the temporal modula-
tion controls the intensity of the frequency shifted and un-
shifted Bragg beams. Right: An on-resonant and an off-
resonant crystal are superimposed. The relative phase controls
the time-dependent potential. For phase 7/3 (37/2) only fre-
quency up (down) shifted components appear. Adapted from
Bernet et al., 2000.

F. Summary of diffractive Atom Optics

To summarize, in Sec. IT we reviewed atom diffraction
from nanostructures and standing waves of light. Nano-
structures absorb atoms, can be arbitrarily patterned
(e.g., holograms), and affect all atomic and molecular
species. Standing waves of light can make a phase (or in
some cases amplitude) grating for a particular species of
atom in a specific state. Light gratings can be thick or
thin, strong or weak, and can be modulated in time.
Both types of grating exhibit interesting and useful in-
terference phenomena in both the near- and far-field re-
gimes.

Figure 19 summarizes the diffraction efficiency of four
different kinds of time-independent gratings: two ab-
sorbing gratings (nanostructures and standing waves of
on-resonant light) and two nondissipative gratings (in
the Kapitza-Dirac and Bragg regimes). These efficien-
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FIG. 19. (Color online) Summary of diffraction efficiency for
different types of gratings. The atomic de Broglie wave ampli-
tude in the nth diffraction order (normalized to the incident
wave amplitude) is plotted for (a) nanostructures using Eq. (3),
(b) standing waves of on-resonant light using Eqs. (4) and (9),
(c) Kapitza-Dirac (thin phase mask) diffraction using Eq. (7),
and (d) Bragg (thick crystal) scattering using Eq. (11).

cies are given by Egs. (3), (7), and (11), and the Fourier
transform of Eq. (9).

Figure 20 summarizes thick and thin gratings in space
and also in time with Ewald constructions to denote en-
ergy and momentum of the diffracted and incident atom
waves. The diffraction from (modulated) standing waves
of light can also be summarized with the Bloch band
spectroscopy picture (Bernet et al., 2000; Champenois
et al., 2001a).

G. Other coherent beam splitters

Whereas diffraction occurs without changing the at-
om’s internal state, another important class of beam
splitters uses laser or rf transitions that do change atoms’
internal state while transferring momentum. Therefore
as they coherently split atomic wave functions into two
(or more) pieces they cause entanglement between the

a) Bragg b) Raman-Nath
- g -

Kin

¢) Raman-Nath in Time &

d) Bragg in Space & Time
Bragg in Space

G
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FIG. 20. Momentum diagrams for (a) a thick grating, (b) a thin
grating, (c) a thick pulsed grating, and (d) a thick harmonically
modulated grating. From Bernet et al., 2000.
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atomic motion and the internal atomic states. Important
examples that are used in atom interferometry include
absorption from a traveling wave of light (Bordé, 1989,
1997), stimulated Raman transitions (Kasevich and Chu,
1992), and longitudinal rf spectroscopy (Gupta, Koko-
rowski, et al., 2001). The longitudinal Stern-Gerlach ef-
fect (Miniatura et al., 1991) also causes entanglement be-
tween motion and internal degrees of freedom. We
discuss these in Sec. III on atom interferometry.

Potentials that change slowly from single well to
double well represent an entirely new type of beam
splitter that is more applicable to trapped atoms than
propagating light. We discuss this tool for coherent split-
ting of atomic wave functions in the next section on
atom interferometry.

Reflecting surfaces have been used for atom diffrac-
tion, atom holography, and Young’s experiment with at-
oms; see, e.g., Deutschmann et al. (1993); Christ et al.
(1994); Landragin et al. (1997); Cognet et al. (1998);
Shimizu and Fujita (2002b); Kohno et al. (2003); Esteve
et al. (2004); and Gunther et al. (2005, 2007), respectively.
The challenges of using reflection-type atom optical ele-
ments include low reflection probability and strict re-
quirements for flatness in order to maintain atom wave
coherence. The toolkit for coherent atom optics is ex-
panded by quantum reflection, in which atom waves re-
flect from an attractive potential, and also classical re-
flection, where repulsive potentials can be formed with
evanescent waves of blue-detuned light or engineered
magnetic domains. Various mirrors for atoms have been
discussed by Seifert et al. (1994); Kaiser et al. (1996);
Landragin et al (1996); Henkel et al. (1997, 1999);
Berkhout et al. (1999); Marani et al. (2000); Shimizu
(2001); Savalli et al. (2002); Shimizu and Fujita (2002a);
Fortagh and Zimmermann (2007).

III. ATOM INTERFEROMETERS

A. Introduction

The essential features of interferometers generally
and atom interferometers in particular are listed in the
succession of five steps: (i) prepare the initial state, (ii)
split the wave functions coherently into two or more
states, (iii) apply interactions that affect the two states
differentially, generally due to their different spatial lo-
cation, (iv) recombine these components coherently, and
(v) measure the phase shift of the detected fringes.

The crucial step of coherent splitting (ii) has been ac-
complished for atom interferometers using diffraction
gratings, photon absorption, Raman transitions, longitu-
dinal Stern-Gerlach magnets, and even physical separa-
tion of confined atoms into multiple potential wells. In
the following we discuss these in the framework of the
interferometers in which they have been used, and re-
view the basic features of several atom interferometer
designs. A detailed survey of scientific research with
atom interferometers is given in Secs. IV-VL
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1. General design considerations

When designing and building interferometers for at-
oms and molecules, one must consider key differences
between matter waves and light. The dispersion rela-
tions, the coherence properties, and our tools to control
the two different kinds of waves are among the impor-
tant differences.

One striking difference is the fact that matter waves
have short deBroglie wavelengths (~10 pm for thermal
atoms, up to ~1 um for ultracold atoms), and also have
a very short coherence lengths (~100 pm for thermal
atomic beams, and seldom larger than 10 um even for
atom lasers or BEC). This requires that the period and
the position of the interference fringes must be indepen-
dent of the de Broglie wavelength of the incident atoms.
In optical parlance this is a property of white light inter-
ferometers.

A second concern with atoms is that they interact
strongly with each other. Therefore matter waves are
often nonlinear, especially when atoms have significant
density as in a BEC or atom laser.

A third distinguishing feature is that atoms can be
trapped. This leads to a new class of interferometers for
confined particles, which we discuss at the end of this
section.

2. White light interferometetry

The challenge of building a white light interferometer
for matter waves is most frequently met by the three-
grating Mach-Zehnder (MZ) layout. This design was
used for the first electron interferometer by Marton
(1952), for the first neutron interferometer by Rauch et
al. (1974) and for the first atom interferometer that spa-
tially separated the atoms by Keith ef al. (1991). In the
MZ interferometer the role of splitter and recombiner is
taken up by diffraction gratings. They also serve as the
mirrors that redirect the separating atom waves back
together. (In fact, simple mirrors will not serve this pur-
pose if the initial state is not extremely well collimated.
This is because most interferometer designs that employ
simple mirrors will make the fringe phase strongly cor-
related with input beam position and direction.) Simp-
son (1954) noted that with grating interferometers, “the
fringe spacing is independent of wavelength. This ‘ach-
romatic’ behavior... appears to be characteristic of in-
struments using diffraction for beam splitting.”

The explanation is that diffraction separates the split
states by the lattice momentum, then reverses this mo-
mentum difference prior to recombination. Faster atoms
will diffract to smaller angles resulting in less transverse
separation downstream, but will produce the same size
fringes upon recombining with their smaller angle due to
their shorter de Broglie wavelength. For three evenly
spaced gratings, the fringe phase is independent of inci-
dent wavelength, surprisingly also for asymmetric de-
signs [such as that in Fig. 21(a)] where the intensity
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FIG. 21. (Color online) Three grating Mach-Zehnder atom interferometers. (a) Atom interferometer setup used in Keith et al.
(1991). (b) Interference fringe data and best fit with (/)=157 000 counts per second and C=0.42. A total of 5 s of data are shown
and the uncertainty in phase calculated by Eq. (19) is 0,=2.7 X 1073 rad. (c) Average intensity (I) and contrast C as a function of
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maximum for different wavelen‘gths occurs at different
distances off the symmetry axis.

Many diffraction-based interferometers produce
fringes when illuminated with a source whose transverse
coherence length is much less than its (large) physical
width, or even the grating period. Under such condi-
tions, the different diffraction orders will not be sepa-
rated, so diffraction cannot be resolved and it will not be
possible to exploit the physical separation of the orders
to apply an interaction to only one arm of the interfer-
ometer. Nevertheless, high-contrast fringes will still be
formed.

The three-grating interferometer produces a “position
echo” as discussed by Chebotayev et al. (1985). Starting
at one grating opening, one arm evolves laterally with
G more momentum for some time, the momenta are
reversed, and the other arm evolves with the same mo-
mentum excess for the same time, coming back together
with the first arm at the third grating. If the gratings are
in registry, an atom’s trapezoidal pattern starts at a slot
on the first grating, is centered on either a middle grat-
ing slot or groove, and recombines in a slot at the third
grating. Not surprisingly, spin echo and time-domain
echo techniques (discussed below) also offer possibilities
for building an interferometer that works even with a
distribution of incident transverse atomic momenta.

3. Types and categories

A large variety of atom and molecule interferometers
have been built since 1991. The list includes Mach-

“The design in Fig. 21(a) is asymmetric because the interfer-
ometer paths are formed by diffraction orders 0 and 1 for one
arm, and orders 1 and -1 for the other.
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Zehnder, Talbot-Lau, optical Ramsey-Bordé, and stimu-
lated Raman transition interferometers. There are also
longitudinal Stern-Gerlach and longitudinal rf interfer-
ometers. Some of these designs render the interference
fringes in position space. Some make fringes in momen-
tum space. Still other designs make the interference
fringes observable in internal atomic state space. We
catalog these interferometers according to their features
before examining each in detail.

(i) Internal state changing interferometers are one
broad category. Some beam splitters change an
atom’s internal state, analogous to a polarizing
beam splitter in light optics. For example, stimu-
lated Raman transitions entangle internal and ex-
ternal states, so atoms in these interferometers
are in a coherent superposition of different
momentum-spin states.

(if) Time domain versus space domain is another
broad classification. In a time-domain interferom-
eter, the beam splitters are pulsed so all atoms
interact with the gratings and the interferometer
for the same amount of time.

(iii) Near-field (Talbot-Lau) and far-field (Mach-
Zehnder) classification applies for diffractive
atom optics. Near-field interferometers can func-
tion even with poorly collimated beams, but the
gratings in a Talbot-Lau interferometer (TLI)
must be separated by precise multiples of the Tal-
bot length or else the contrast degrades.

(iv) Separated path interferometers are a special
category of atom interferometer in which the
paths are sufficiently physically separated that the
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atom wave in one arm can be isolated and inter-
actions can be applied to it alone.

(v) Freely propagating cold atoms can have long
times of flight ( ~% s) as compared to thermal
atom beams (~ 1 ms). Confinement in a trap dur-
ing the interferometer operation may soon pro-
vide even longer interaction times.

(vi) Atom traps and waveguides offer the possibil-
ity of making confined atom interferometers in
which the atom wave function is split in coordi-
nate space rather than momentum space. Obvi-
ously, the ability to interfere with atoms that are
spatially confined in all three dimensions through-
out the entire interferometer is unprecedented
with light interferometers. Additional topologies
such as multiple wells, ring traps, and longitudinal
waveguides have also been demonstrated.

Finally, we distinguish single atom interferometers
from those in which (nonlinear) collective effects are sig-
nificant. Even atoms launched from a magneto-optical
trap are generally not dense enough to cause significant
nonlinear effects. Interferometry with Bose-Einstein
condensates (or atom lasers), on the other hand, can
show nonlinear atom optics phenomena that range in
significance from phase noise to number squeezing and
Josephson oscillations.

The distinctions (i) internal state changing versus state
preserving, (ii) space domain versus time domain, (iii)
near field versus far field, (iv) separated path or not, (v)
trapped or freely propagating, (vi) dilute versus dense all
affect the performance of atom interferometers for dif-
ferent applications.

Since the first atom interferometers were built for Na,
Cs, Mg, and He* in 1991, others have been made for Ar*,
Ca, H* He, K, Li, Ne*, Rb atoms, and He,, Li,, Na,, I,,
C60a C70, C60F4g, and C44H3QN4 molecules. Interferom-
eters starting with trapped atoms have been made for
Ca, Cs, He*, Mg, Na, and Rb and interferometers using
Bose-Einstein condensates have been demonstrated
with Na and Rb. These lists are still growing.

B. Three-grating interferometers

The simplest white light interferometer is a Mach-
Zehnder interferometer built from three diffraction
gratings. The first grating acts as a beam splitter, the
second as a redirector, reversing the (transverse) mo-
mentum of the beam, and the third as a recombiner or
analyzer of the interference.

1. Mechanical gratings

The first three-grating Mach-Zehnder interferometer
for atoms was built by Keith et al. (1991) using three
0.4- um-period nanofabricated diffraction gratings. Start-
ing from a supersonic Na source with a brightness of B
~10" s cm2 sr7! the average count rate in the inter-
ference pattern was 300 atoms per second. Since then,

Rev. Mod. Phys., Vol. 81, No. 3, July—September 2009

gratings of 100-nm period have been used to generate
fringes with up to 300 000 atoms/s.

We use this design (shown in Fig. 21) to illustrate how
a standing wave interference pattern is formed by the
two running waves. Starting with a common beam that is
incident on two gratings (G1 and G2), one wave is
formed by Oth and 1st order diffraction, while the other
is formed by —1st and +1st order diffraction. The differ-
ence in momentum is thus one unit of 2ZGx. So we de-
scribe the incident running waves by the functions i,
and yne'O%e’> %, These running waves differ in momen-
tum explicitly by #GX due to diffraction. The waves also
differ in phase by A¢;, due to different interactions
along the two paths.

In the zone where these coherent running waves over-
lap, the atom beam intensity is

1(x) = |y + e Pinel |7,

1(x) ={I) + {I)C cos(A i, + Gx). (14)

This interference pattern is a standing wave in space but
is unchanging in time. The fringes have a period of d
=G/(2m) (just as the gratings), and a spatial offset in X
(i.e., a phase) that depends on the location of the two
gratings G1 and G2 as well as the interaction phase
A Equation (14) is a general result, and the fringes
can be detected in many different ways.

The intensity pattern has a mean intensity and con-
trast,

i + iy

- Imax+1min - |'/’1|2+ |’/’2|2 .
If one of the interfering beams is much stronger than the

other, for example, |¢4]|>>|y»|?, then the contrast of the
interference pattern scales as

C ~ 2lgulllwn| = 2011, (15)

Imax - Imin
D=lwlP+lwlP, C=

Consequently, one can observe 20% (2%) contrast for
an intensity ratio of 100:1 (10*:1) in the interfering
beams.

If the waves are not perfectly coherent, then the inco-
herent part adds to the overall intensity, and the contrast
is diminished. If more than two components overlap, the
situation is somewhat more complicated.

The spatial oscillations in intensity can be detected,
for example, by measuring the atom flux transmitted
through a third (absorbing) grating (G3). In this case G3
acts as a mask to transmit (or block) the spatially struc-
tured matter wave intensity. By translating G3 along x
one obtains a moiré filtered interference pattern which
is also sinusoidal and has a mean intensity and contrast

(D) = (wyldXD), (16)

C =[sin(Gw;/2)/(Gw;/2)]C, (17)

where I and C refer to the intensity and contrast just
prior to the mask. The phase of the filtered interference
pattern is given by
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(ZSZ G(x1—2x2+x3) +A¢int’ (18)

where x1, x,, and x5 are the relative positions of gratings
1, 2, and 3 with respect to an inertial frame of reference
(Schmiedmayer et al., 1997).

The phase ¢ will have a statistical variance o‘i in the
simplest case due to shot noise (counting statistics) (Le-
nef et al., 1997, Schmiedmayer et al., 1997) given by

(04)”=((¢—(d))?)=1/C°N, (19)

where N is the total number of atoms counted. For dis-
cussion of how phase fluctuations depend on atom-atom
interactions within the interferometer see Scully and
Dowling (1993); Search and Meystre (2003); Pezze and
Smerzi (2006). To minimize the uncertainty in measured
phase we therefore seek to maximize C*NoCXI) by
choosing the open fractions w;/d for the three gratings,
where w; is the window size for the ith grating and d is
the grating period. The open fractions that maximize
CXI) are (wi/d,w,/d,ws3/d)=(0.56,0.50,0.37). With
these open fractions, the theoretical value of C=0.67
and (I)/I;,;=0.015. If van der Waals interactions be-
tween atoms and gratings are included, then open frac-
tions of the first two gratings should be increased for
best performance (Cronin et al., 2005).

There are in fact several different interferometers
formed by the gratings. For example, the first and sec-
ond orders can recombine in a skew diamond to produce
another interferometer with the white fringe property.
Additional mirror images of these interferometers make
contrast peaks on either side of the original beam axis,
as shown in Fig. 21. All those interferometers can have
fringes with the same phase, and consequently one can
therefore build interferometers with wide uncollimated
beams which have high count rate, but lower contrast.
(The contrast is reduced because additional beam com-
ponents such as the zeroth-order transmission through
each grating will also be detected.)

Mechanical gratings with much larger periods have
been used to make interferometers in the extreme limit
of nonseparated beams. We discuss these in the Talbot-
Lau interferometer section.

For well-collimated incoming beams, the interfering
paths can be separated at the second grating. For ex-
ample, in the interferometer built at MIT the beams at
the second (middle) grating have widths of 30 um and
can be separated by 100 um (using 100-nm period grat-
ings and 1000 m/s sodium atoms with A\gg=16 pm). De-
tails of this apparatus, including the auxiliary laser inter-
ferometer used for alignment and the requirements for
vibration isolation, have been given by Schmiedmayer et
al. (1997).

This geometry was used in the first atom interferom-
eter with physical isolation of the spatially separated
paths. Isolation was provided by inserting a 10-cm-long
metal foil between the two paths, so that the electric or
magnetic field or gas pressure could be varied on the left
or right arm separately. This resulted in measurements
of atomic polarizability (Ekstrom et al., 1995), the index
of refraction due to dilute gases (Schmiedmayer et al.,
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1995; Roberts et al., 2002), contrast interferometry using
magnetic rephasing (Schmiedmayer et al., 1994), and dif-
fraction phases induced by van der Waals interactions
(Perreault and Cronin, 2005, 2006). In experiments not
explicitly needing separated beams, this apparatus has
been used to measure phase shifts due to rotations Le-
nef et al., 1997) and to study decoherence due to scatter-
ing photons and background gas (Chapman, Hammond,
et al., 1995; Kokorowski et al., 2001; Uys et al., 2005).
This apparatus was also used to perform the first sepa-
rated beam experiments with molecules (Na,) (Chap-
man, Ekstrom, et al., 1995).

An interferometer with similar nanogratings was de-
veloped at the MPI in Gottingen and used to measure
the polarizability of He and He, (Toennies, 2001).

2. Interferometers with light gratings

One can also build MZ interferometers with gratings
made from light (Fig. 22). These light gratings are gen-
erally near-resonant standing waves that make species-
specific phase gratings. Because they transmit all atoms,
light gratings are more efficient than material gratings.

The third grating in a light interferometer can func-
tion in many ways to enable detection of the fringes. It
can recombine atom waves so their relative phase dic-
tates the probability to find atoms in one output port
(beam) or another. Alternatively, fringes in position
space can be detected with fluorescence from a resonant
standing wave. Another detection scheme uses back-
ward Bragg scattering of laser light from the density
fringes. This can be used in multipath interferometers
where phase shifts affect the contrast of the fringes. (We
discuss such contrast interferometry in the next section.)
Detecting the direction of exiting beams requires that
the incident beams must be collimated well enough to
resolve diffraction, and may well ensure that the beams
are spatially separated in the interferometer.

Rasel et al. (1995) used light gratings in the Kapitza-
Dirac regime with a 5-um-wide collimated beam. Many
different interferometers were formed, due to symmetric
KD diffraction into the many orders. Two slits after the
interferometer served to select both the specific interfer-
ometer and the momentum of the outgoing beam (ports
1 and 2 in Fig. 22). Fringes with 10% contrast show
complementary intensity variations, as expected from
particle number conservation in a MZ interferometer
with phase gratings.

It is even more efficient to use Bragg diffraction be-
cause no atoms are lost to “unwanted” orders. Giltner et
al. (1995a) used Bragg diffraction and a Ne* beam and
obtained contrast of C=63%. Higher-order Bragg dif-
fraction was also used to demonstrate smaller period in-
terference fringes shown in Fig. 22. A Bragg scattering
interferometer for Li atoms with a contrast of 0.84 and a
count rate of 17 ke/s was used to measure the polariz-
ability of Li atoms (Delhuille, Champenois, et al., 2002;
Miffre et al., 2006b, 2006c¢).
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FIG. 22. Atom interferometers based on three standing waves of light. (a) Atom beam and three Kapitza-Dirac gratings. (b) Atom
interference patterns for output ports demonstrate complementary intensity variations. This is a consequence of atom number
conservation. Figures (a) and (b) from Rasel et al., 1995. (c) Interferometer based on three Bragg gratings. Dashed line shows the
path of auxiliary optical interferometer used for stabilization. (d) Intensity fluctuations in beam A vs position of the Bragg gratings.
For second-order Bragg diffraction, fringes of half the period are formed. Figures (c) and (d) from Giltner er al., 1995a. (e)
Schematic of the 7r/2-m7-m/2 Bragg interferometer for atoms in a BEC falling from a trap. (f) Absorption images and density
profiles demonstrating different outputs of the interferometer. Figures (e) and (f) from Torii et al., 2000.

3. Time-domain and contrast interferometers

Light gratings can easily be turned on and off, allow-
ing one to control the interaction times of atoms with
the three gratings. Thus, independent of initial longitu-
dinal momentum, all atoms will see an equal interaction
and will subsequently separate equally (since they have
the same momentum transferred by the grating). Such
interferometers are valuable in precision experiments
since time is measured accurately. This consideration
also applies to optical Raman pulses, which will be dis-
cussed later. Torii et al. (2000) made a three-grating in-
terferometer for ultracold atoms by pulsing gratings
thrice in time. These pulsed gratings are turned on for a
duration long enough to produce Bragg diffracted mo-
mentum states. This duration does not affect the precise
timing between interactions, but is long enough that dif-
fraction in time is unimportant. Their fringes were read
out in momentum space by measuring the atom cloud
position in absorption images taken shortly after the
third grating pulse. Atoms released from a BEC were
used insuring that the momentum spread of the cloud
was smaller than a photon recoil momentum 7k, thus
allowing resolution of the output states. More examples
of time-domain interferometers based on three diffrac-
tion gratings include Gupta et al. (2002) and Wang et al.
(2005).

Gupta et al. (2002) used one Kapitza-Dirac pulse fol-
lowed by a second-order Bragg pulse to make an inter-
ferometer with three paths as shown in Fig. 23. One can
understand this arrangement as two separate two-path
interferometers whose density fringes overlap. Because
the phase of each two-path interferometer changes in
time in opposite directions, the two density gratings
move in and out of register as time and phase increase,
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hence the contrast oscillates rapidly with time. This in-
terferometer has been used to measure //my, to a pre-
cision of 7 ppm. This demonstrates the utility of contrast
interferometry in which measurements of contrast, not

- = readout | | contrast
a) - b) =\ pulse signal
= matter wave -
= grating -
- - :
- : -
- n
- . -
: : 33 : |
— - —

X At=T/4w o X - A=A
0 T ot oo R
1st order 2nd order Kapitza- 2nd order  readout
Bragg Bragg Dirac Bragg

c)

contrast
signal

=2T

I I T
1000 1020 1040

tus]

T I
960 980

FIG. 23. Contrast interferometry. (a) Space-time representa-
tion of a two-path interferometer that is sensitive to the pho-
ton recoil phase. (b) The three-path geometry. The overall
fringes have large contrast at 27 and zero contrast at 27
+ /4 w.. Bottom: Typical single-shot signal from the contrast
interferometer. From Gupta et al., 2002.
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phase, are used. Contrast interferometry was pioneered
by Schmiedmayer et al. (1994) where interference pat-
terns from atoms with different magnetic sublevels
moved in and out of register.

This contrast interferometer design offers several ad-
vantages compared to phase measurements made with a
regular interferometer. First, the fringe phase can be ac-
curately determined in a single “shot,” eliminating ef-
fects of shot-to-shot atom intensity fluctuations. Second,
most experimental sources of phase noise affect each
two-path interferometer in the same way they move the
fringes but do not change the contrast. For example,
measurements with the interferometer by Gupta et al.
(2002) were nearly insensitive to vibrations, rotation, ac-
celerations, and magnetic field gradients. A relative
phase shift between the two interferometers can be
caused, however, by diffraction phases Buchner et al
(2003). If the Kapitza-Dirac pulse causes a phase shift
between the Oth and 1st diffraction order, then the con-
trast does not peak at exactly 27, where 7 is the time
between diffraction grating pulses. Hence fluctuations in
the intensity of light used for the KD pulse can then lead
to fluctuations in the time at which the total contrast
peak is visible.

Gupta et al. (2002) detected the contrast of the fringes
in space by measuring the intensity of reflected (Bragg
diffracted) light probing the fringes in space. The inten-
sity of reflected light can be continuously monitored as
the two sets of interference fringes pass through each
other in time. This causes oscillations in the intensity of
reflected light as shown in Fig. 23.

4. Talbot-Lau (near-field) interferometer

We now turn to near-field interferometers. As dis-
cussed in Sec. II.D, a high degree of spatial coherence is
needed to create recurring self-images of a grating due
to near-field diffraction (the Talbot effect). But com-
pletely incoherent light can still produce fringes down-
stream of a grating pair (the Lau effect). When two grat-
ings with equal period (d) are separated by a distance
Ly, the Lau fringe contrast is maximum at a distance
beyond the second grating of

L= LiLm/2m ’ (20)
Li—Lmn/2m
where L;=2d?/\gg is the Talbot length and the integers
n and m refer to the nth revival of the mth higher-order
Fourier image. The fringe period is then

d’ :d(L2+L])/mL1. (21)

If a third grating is used as a mask to filter these fringes,
then a single large-area integrating detector can be used
to monitor the fringes. This three-grating arrangement is
a Talbot-Lau interferometer (TLI). A typical TLI uses
three identical gratings and L;=L,=L+/2 with n=1 and
m=2.

The first grating can be regarded as an array of small
but mutually incoherent sources of diverging waves.
Shortly after, the second grating near-field diffraction
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FIG. 24. A sketch of the Talbot-Lau interferometer setup con-
sisting of three gratings. The first grating is illuminated by an
uncollimated molecular beam. Coherent interference occurs
between all paths that originate from one point at the first
grating and meet at the a point on the third grating. By varying
the grating position x3, a periodic pattern in the molecular
distribution can be detected. The second grating can be re-
placed by a light grating (Gerlich et al., 2007; Hornberger et al.,
2009). From Brezger et al., 2003.

causes any shadow effects to become blurred out. At a
distance L, from the second grating, spatial structure in
the intensity starts to re-emerge. The intensity oscilla-
tions observed with a TLI are not a ray-optics phenom-
enon; they are due to wave interference for the multiple
paths shown in Fig. 24. Evidence for this is that L, de-
pends on A\gg (and hence a fairly monochromatic veloc-
ity distribution is needed for optimum contrast). The
second grating can be a phase grating, but the first and
third gratings must be amplitude gratings. The theory of
this interferometer has been discussed by Clauser and
Reinisch (1992); Clauser and Li (1994b, 1997); Batelaan
et al. (1997); Brezger et al. (2003); Hornberger et al.
(2009).

A feature of a TLI is that the contrast is unaffected by
the beam width. A large transverse momentum spread
in the beam is also tolerated. Hence much larger count
rates can be obtained with a TLI.

Furthermore, in a TLI the relationship L;=L,=L7/2
means that the maximum grating period is d <\L{\gg
~M™V4 where M represents the mass for a thermal
beam. In comparison, for a MZI with resolved paths the
requirement is d<\ggL/Ax~M~'? where Ax is the
width of the beam and L is the spacing between gratings.
Thus the TLI design is preferable for massive particles.

A Talbot-Lau interferometer was first built for atoms
by Clauser and Li (1994b) using a slow beam of potas-
sium atoms. The experiment used gratings with a period
of d=100 um, and a count rate of (I)=4 X 107 atoms/s
was achieved. The source brightness was 2500 times
weaker than in the three grating Mach-Zehnder interfer-
ometer of Keith et al. (1991), but the signal was about
3000 times stronger. Because of its attractive transmis-
sion features, and the favorable scaling properties with
Agg, the TLI has been used to observe interference
fringes with complex molecules such as Cgj, Cqg, CgoFas,
and CyH3)N, (Brezger et al, 2002; Hackermuller, Ut-
tenthaler, et al., 2003; Gerlich et al., 2007; Hornberger et
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al., 2009). Of course, the TLI does not separate the
orders—indeed, components of the wave function are
only displaced by one grating period at the Talbot
length. Even though the TLI interferometer cannot of-
fer separated paths, it is still sensitive to inertial forces,
decoherence, and field gradients (Clauser and Li, 1994a;
Hornberger et al, 2003; Hackermuller et al, 2004;
Berninger et al., 2007).

Cahn et al. (1997) used the phrase “time domain inter-
ferometry” to describe a Talbot-Lau interferometer that
consists of two (Kapitza-Dirac) gratings pulsed in time,
and renders interference fringes in position space. A
third pulse of light, a traveling wave, was Bragg reflected
by the atomic density pattern and thus served as the
detection scheme for fringes. The atom fringe contrast
(and backscattered probe light) oscillates with the char-
acteristic Talbot time 7,=#£,/v=2d’m/h, and this read-
out mechanism demonstrates 100% contrast even with
an “uncollimated cloud” of atoms. Talbot-Lau interfer-
ometry with (pulsed) light gratings has also been ex-
plored by Deng et al. (1999); Cohen et al. (2000);
Turlapov et al. (2003, 2005); Wu, Su, et al. (2005); Weel et
al. (20006).

C. Interferometers with path-entangled states

In some interferometers, the internal state of the at-
oms depends on the path through the interferometer.
Hence the state of the atom is entangled with the path.
This usually occurs when the rf or laser photons that
cause a transition between internal states also impart
momentum, thus creating such entanglement.

Such entanglement has implications both for what the
interferometer can measure and for how the interfer-
ence can be detected. Detection is the more obvious; if
recombination results in oscillations between two inter-
nal states, then state-sensitive detection can reveal the
fringes without need for the atom paths to be spatially
resolved. The influence of having different internal
states in the middle of the interferometer is more subtle.
Many atomic properties such as polarizability and scat-
tering lengths depend on the state; hence such interfer-
ometers naturally measure the difference of that prop-
erty between the states which is generally less
informative than the property in one state.

1. Optical Ramsey-Bordé interferometers

When a traveling wave of resonant light intersects a
two-level atom, the atom is put into a superposition of
ground and excited states in which the photon absorbed
in promoting the atom to the excited state has added its
momentum to that of the ground state, resulting in a
differential momentum of %k, between ground and ex-
cited states [Fig. 25(a)],

|la,p) — sin(6)|a,p) + cos()|b,p + k). (22)

ph

Bordé’s seminal 1989 paper that optical Ramsey spec-
troscopy by four traveling laser fields is an atom inter-
ferometer when taking the momentum transfer in the
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FIG. 25. Different schemes used to place atoms in a superpo-
sition of momentum states. (a) Superposition with a metastable
state using a 7/2 pulse. (b) Stimulated Raman transition with
two light fields. (c) Bragg scattering with monochromatic light.
A is the detuning from resonance. The dashed curve is the
kinetic energy pﬁgh[/ 2m.

excitation process into account (Bordé, 1989). Such an
experiment is now often called a Ramsey-Bordé inter-
ferometer. In comparison, the classic Chebotayev paper
(Chebotayev et al., 1985) focused on Kapitza-Dirac or
Bragg diffraction gratings that preserve atoms’ internal
state. A unified description of these cases can be found
in Bordé (1997).

If the excitation is on resonance, the fraction of am-
plitude that is deflected by the transition is determined
by the pulse area 0= [Q;dt, where Q;=d,,-E(/% is the
bare Rabi frequency. A Ramsey-Bordé =/2 pulse
(named for the condition #=m/2) results in an equal
splitting of the amplitude between states |a) and |b) by
resonant light. If the excitation is detuned by A,

Py(1) = 5(Q1/QR)’[1 = cos(Qn)], (23)

where Qg=1Q7+A? is the generalized Rabi frequency.
When the detuning grows the oscillations become more
rapid and less complete.

For an optical Ramsey-Bordé interferometer to work,
the lifetime of the excited state must be comparable to
the transit time through the interferometer in order to
avoid coherence-destroying spontaneous decay of state
|b) (see Sec. IV.B on decoherence). Consequently, opti-
cal Ramsey-Bordé interferometers are generally used
with long-lived, metastable excited states such as the
1S-28§ transition in H, or the lowest-lying intercombina-
tion lines of Mg or Ca (Morinaga et al., 1989; Gross et al.,
1998; Ruschewitz et al., 1998; Oates et al., 1999).

In the four zone Ramsey-Bordé interferometer atoms
passing through the first laser beam are put in a super-
position of internal states |a) and |b). Several possible
paths exit this apparatus, but only the paths shown in
Fig. 26 cause interference fringes in the populations
(outputs I and II of Fig. 26). Oscillations in the state |b)
population are controlled by the phase of the laser at
each of the four zones, therefore the simplest way to
produce fringes is to adjust the laser frequency. Addi-
tional phase shifts in the fringes can be caused by any
interaction that affects the internal states differentially,
for example, magnetic fields. Because of the photon re-
coil, the two paths are also separated in space and are
therefore sensitive to field gradients and inertial dis-
placements.
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FIG. 26. Ramsey-Bordé interferometer. Left: In the first inter-
action zone the matter wave is coherently split into two partial
waves with internal states |a,m,) and |b,m,;) corresponding to
energy levels a and b, respectively, and the number m of pho-
ton momenta transferred to the atom. Right: Fringe shifts due
to rotation at different rates. From Riehle et al., 1991.

This four zone design of a Ramsey-Bordé interferom-
eter was realized by Riehle et al. (1991) who also dem-
onstrated the linear increase of phase shift with rotation
rate ). The data shown in Fig. 26 are the first demon-
stration of the Sagnac effect for atom interferometers.

Since then many Ramsey-Bordé interferometers were
employed for H, Mg, and Ca atoms and I, molecules for
precision experiments such as high-resolution spectros-
copy (Sengstock et al., 1993; Kisters et al., 1994; Gross et
al., 1998; Huber et al., 1998; Oates et al., 1999; Heupel et
al., 2002; Wilpers et al., 2002; Sterr et al., 2004; Degen-
hardt et al., 2005; Keupp et al., 2005) and fundamental
studies such as geometric phases; and light shift poten-
tials (Muller et al., 1995; Mei et al., 2000; Yanagimachi et
al., 2002), transition Stark shifts (Morinaga et al., 1993;
Rieger et al., 1993) and multiple beam high-finesse atom
interferometry (Weitz et al, 1996; Hinderthur et al.,
1997, 1999; Ruschewitz et al., 1998), and molecule inter-
ferometry (Bordé et al., 1994).

2. Raman interferometry

A similar beam splitter can be implemented using Ra-
man transitions between two low-lying (e.g., hyperfine)
states in a three-level atoms [Fig. 25(b)]. The superposi-
tion is now between two long-lived states and can be
driven with lasers tuned off-resonant from the excited
state so that spontaneous emission is no obstacle to co-
herence time. For building an atom interferometer one
has to transfer momentum during the Raman transition.
Consequently, two counter propagating running waves'’
(w; and w,) of light with frequencies tuned to Raman
resonance (fiw;—fw;=E|,—E|,=AEy) are used to
stimulate Raman transitions between two hyperfine
states |a) and |c) [Fig. 25(b)]. Absorption from one light

10Counterpropagating light beams make Doppler sensitive
transitions that are highly selective for atomic velocity; co-
propagating light beams make Doppler insensitive transitions.
Doppler sensitive Raman transitions can prepare atoms with a
momentum uncertainty of less than a photon recoil (Kasevich
et al., 1991).
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FIG. 27. Raman pulse interferometer. (a) Transverse splitting
and (b) longitudinal splitting of atoms with a 7/2-7-7/2 pulse
interferometer. The mechanical recoil from the first 77/2 pulse
(at position 1) coherently splits the atomic wave packet. The 7
pulse (positions 2 and 3) redirects each wave packet’s trajec-
tory. By adjusting the phase of the second /2 pulse (position
4), the atom can be put into either |1) or |2). In the experiment,
the atoms were prepared in the |1) state (solid lines) and de-
tected in the |2) state (dashed lines). Bottom: Interferometer
fringes are observed by scanning the frequency of the Raman
laser beams. From Kasevich and Chu, 1991.

beam and stimulated emission into the other gives atoms
a momentum Kick of Ak=fik,+#hk,~2fiky,. Since the
hyperfine splitting AEy<%w, , is much smaller then the
energy of either of the photons (Aw;,) the momentum
transfer can be approximated by 27k, (reduced by the
cosine of the half angle between light beams).

Transfer of amplitude from |a) to state |c) mimics the
dynamics of a driven two level system with coupling fre-
quency equal to the product of the individual Rabi fre-
quencies divided by A [see Fig. 25(b)].

An alternative to Raman transitions is stimulated
adiabatic rapid passage described by Gaubatz et al.
(1990) and Bergmann et al. (1998). This process is more
controllable since it does not depend so critically on la-
ser power. The method is based on adiabatic change of a
“dark state” and has the disadvantage that only one su-
perposition of the two states survives (the other decays
spontaneously) hence its application to interferometry
gives only one output state.

Starting with laser-cooled sodium atoms launched
from a trap, Kasevich and Chu (1991, 1992) demon-
strated an interferometer based on stimulated Raman
transitions by employing a #/2-m7-m/2 sequence (Fig.
27). The /2 pulses act as beam splitters, and the =
pulse acts to completely change the state and reverse the
differential momentum in each arm of the interferom-
eter, in essence a three-grating interferometer. Similar to
the Ramsey-Bordé interferometer, the paths have inter-
nal state labels. The interference is detected as oscilla-
tions in the population of the different internal states
after the interferometer, as measured with state-
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sensitive fluorescence or ionization. Since the gratings
are pulsed in time such an arrangement is a time domain
atom interferometer. These experiments employed
atomic fountains for Na (Kasevich and Chu, 1991, 1992)
or Cs atoms (Peters et al., 1999) to permit longer inter-
action times. In the first experiments (with Na) a time
delay between pulses of 100 ms gave a wave-packet
separation of 6 mm [cf. 66 um for thermal beams with
fabricated gratings (Keith et al, 1991)]. Chu and co-
workers have refined this technique to get high contrast
(C=65%) fringes with a count rate of (Iy=10%toms/s.
This allowed measurements of g at the part-per-billion
level (Peters et al., 1999, 2001). The theory of this inter-
ferometer has been discussed by Young et al. (1997) and
Kasevich and Chu (1992). Higher-order Raman transi-
tions can be stimulated with multiple pulses, and mo-
mentum differences of 607k, have been used for inter-
ferometry (Weiss et al., 1993).

A beam experiment using the same kind of Raman
transitions was used by Gustavson et al. (1997, 2000) to
measure rotation rates, and achieved slﬁrt—term sensi-
tivity to rotations of (6 X 107!° rad/s)/\VHz as discussed
in Sec. V.A. In this configuration, the gratings were not
pulsed, so this was a space-domain interferometer.

We discuss several other applications of this kind of
interferometer, like precise measurements of gravity
gradients (Snadden et al., 1998; McGuirk et al., 2002),
Newton’s constant G, and the value of #/M (Weiss et al.,
1993; Peters et al., 1997), in Sec. V on precision measure-
ments.

D. Longitudinal interferometry

The standard description of Ramsey’s separated fields
experiment treats the longitudinal motion classically and
as being the same for both states. This is obviously in-
correct if the states have different magnetic moments
and the beam passes into a region with a different mag-
netic field—the field gradient puts a different force on
components with different magnetic moments, and
could even reflect one state but not the other. Another
source of longitudinal energy shift is excitation by rf ra-
diation whose frequency is below (or above) resonance:
the remaining energy to excite the atom comes from (or
goes into) the kinetic energy of the excited-state compo-
nent. In fact, the transition can be made by a gyrating
field with zero temporal frequency, especially if the
beam is moving fast so that the spin cannot follow the
field as it passes. We discuss these cases below.

1. Stern-Gerlach interferometry

While a Stern-Gerlach magnet can entangle an atom’s
spin and momentum transverse to the beam velocity, it is
difficult to redirect and recombine amplitudes along
these two paths (Englert e al., 1988; Schwinger et al.,
1988; Scully et al., 1989; Reinisch, 1999). In a different
geometry, atoms in a beam can be split longitudinally, so
that components of each atom are separated along the
direction of the beam velocity. This is easy to accom-
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FIG. 28. Longidudinal Stern-Gerlach interferometer. (a) Ex-
perimental setup: source G, polarizing and analyzing magnetic
fields P and A, mixers M and M’, frame FR with current i is
creating a magnetic field B, detector DT. (b) The energy land-
scape for the Zeeman states (—1,0,1) of H* (2s1,, F=1) along
axis Z. (c) Interference pattern obtained with a transverse
magnetic field in region FR. Adapted from Chormaic et al.,
1993.

plish, and has the advantage (for interferometry) that
the two paths overlap (Miniatura et al., 1991; Robert et
al., 1991; DeKieviet et al., 1995).

A longitudinal Stern-Gerlach interferometer from
Robert et al. (1991) is shown in Fig. 28. A partially po-
larized beam of metastable hydrogen atoms in the state
251, F=1 (A\gg=40 pm) is prepared in a linear superpo-
sition of magnetic sublevels by a nonadiabatic passage
(projection on the new eigenstates) through a magnetic
field perpendicular to the atomic beam. The magnetic
field gradient along the beam shifts the longitudinal mo-
mentum of different atomic center of mass wave packets
proportionally to their magnetic state. Next, the differ-
ent magnetic sublevels enter a constant magnetic field
region, and after 10 cm are recombined again in a region
identical to the one used as a beam splitter. Finally, an
analyzing magnetic field selects a particular magnetic
polarization, whose intensity is then measured by detect-
ing Lyman-a photons emitted in the decay of the 2py),
state to the ground state. A typical interference pattern
is shown in Fig. 28 (Robert ef al., 1992; Chormaic et al.,
1993).

Interference fringes are obtained in the beam inten-
sity by changing the magnetic field strength, and arise
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from the different potentials experienced by the mag-
netic sublevels in the region of constant magnetic field.
The longitudinal Stern-Gerlach interferometer was ap-
plied to demonstrate the effect of topological phases on
the atomic wave function for a nonadiabatic cyclic evo-
lution (Miniatura et al., 1992).

2. Spin echo

Along similar lines, DeKieviet et al. (1997) developed
an atomic beam spin-echo (ABSE) interferometer with
*He atoms. Following the Stern-Gerlach arrangement
described above one can apply a reversed field (or a 7
pulse) and extend this type of interferometer with an
“echo,” in complete analogy to the spin-echo technique
used for neutrons (Mezei, 1993). The *He ABSE has the
advantage that *He can reflect from a surface at grazing
incidence, and therefore can be applied as interferomet-
ric probe of surfaces (DeKieviet et al, 1995, 1997,
Zielonkowski et al., 1998; DeKieviet, Dubbers, Hafner,
et al., 2000).

In a quantum mechanical picture, the Larmor preces-
sion can be viewed as a magnetic birefringence [Fig.
29(a)]. Note that the Zeeman states |—) and |«) arrive
with some time delay 7gg (spin-echo time) at the scatter-
ing center, which allows time-correlation spectroscopy of
the sample. The contrast in the measured echo signal
depends on the degree to which the Zeeman states are
scattered coherently. For nonstatic samples this will de-
pend on 7gi [see Fig. 29(b)]. The interference contrast
directly measures the correlation function /(q, 7gg) in the
time domain, which is the Fourier transform of the scat-
tering function S(q, 7sg) (q is determined by the scatter-
ing geometry). ABSE with *He atoms has been success-
fully applied in surface science as an alternative to time-
of-flight experiments. The spin-echo experiment is much
more sensitive, with an energy resolution extending into
the sub-neV range.

ABSE is not restricted to longitudinal interferometry;
depending on the direction of the magnetic field gradi-
ent, the paths of the magnetic substates may diverge per-
pendicular to the beam direction. Using atomic hydro-
gen with a de Broglie wavelength of around 100 pm,
Lang (1998) measured a transverse spin-echo interfer-
ence signal for path separations exceeding 100 nm.

In an entirely optical setup a spin echo was demon-
strated through hyperfine pumping a thermal beam of
lithium atoms (Zielonkowski et al., 1998). Here the spin
echo is induced via a “virtual magnetic field,” by apply-
ing a short pulse of intense, far detuned photons. The
light causes a shift in the hyperfine levels that depends
linearly on the quantum number mp, just like Zeeman
splitting (Cohen-Tannoudji and Dupont-Roc, 1972; Ro-
satzin et al., 1990).

3. Longitudinal rf interferometry

Dhirani et al. (1997) showed that a detuned radio-
frequency field constitutes a beam-splitter in longitudi-
nal momentum space for atoms. If an atom makes a
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FIG. 29. (Color online) Atomic beam spin-echo interference
technique for a spin-1/2 particle. (a) Schematic of setup: upon
entering spin-echo field 1, the linearly polarized wave packet
1) is split into two polarizations |—) and |«<), having different
energies in the longitudinal magnetic field. By inverting the
direction of the spin-echo field 2 with respect to the first one,
the Zeeman states |—) and |«) exchange roles (like a 7 flip).
At the end they overlap and coherently add up to ||) or |])
depending on the phase shift. The initial linearly polarized
wave packet reappears as an echo. (b) Experimental ABSE
data using a 4-K beam of 3He atoms. The beam averaged lin-
ear polarization as a function of the spin-echo field. Spin rota-
tion: when the spin-echo field is off, the interference pattern is
generated through Stern-Gerlach interferometry. Spin echo:
when the same (but inverted) current is applied through both
spin-echo coils an echo appears. Figure courtesy of M. De-
Kieviet.

transition to an excited quantum state by absorbing a
quantum of off-resonant rf radiation, then its longitudi-
nal velocity is changed such that total energy is con-
served.

Using two such beam splitters, Smith ez al. (1998) con-
structed a longitudinal atom interferometer in a gener-
alization of Ramsey’s separated oscillatory fields (SOF)
configuration. This technique is referred to as differen-
tially tuned separated oscillatory fields (DSOF). Oscilla-
tions in excited-state population in both time and space
occur after an atom beam passes the two DSOF regions.
To measure the phase and amplitude of these oscilla-
tions, a third oscillatory field and a state selective detec-
tor were used, as shown in Fig. 30. This interferometer is
well-suited to studying the longitudinal coherence prop-
erties of matter-wave beams. Scanning the position of
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FIG. 30. Longitudinal rf interferometer: (a) schematic. Coils at
longitudinal positions x; and x, with oscillatory fields at w; and
w,, respectively, make the differentially tuned separated oscil-
latory fields (DSOF). The amplitude modulator coil is located
at x,,. The ground state is selected by upstream Stern-Gerlach
magnet SG1, and the excited state by SG2. (b) Wave number k
vs the longitudinal position x for states that are detected.
Dashed lines indicate the excited internal state, and hatched
areas denote the differential phases accrued by atoms excited
at xq (x,). (c) Fringes demonstrated with the DSOF system and
an additional AM modulator. Adapted from Smith et al., 1998.

the third oscillating field demonstrates that the DSOF
system can produce or detect coherent momentum su-
perpositions.

The envelope of the fringes in space, Fig. 30, indicates
the velocity width of the atom beam was 36+4 m/s and
the fringe period in space indicates the most probable
beam velocity was 1080+3 m/s. An argon seeded super-
sonic source of sodium atoms was used.

The same DSOF arangement was used to demon-
strate the absence of off-diagonal elements in the densiy
matrix in a supersonic atom beam, thus showing that
there are no coherent wave packets emerging from this
source (Rubenstein, Dhirani, et al, 1999). In a further
demonstration, the DSOF longitudinal interferometer
was used to measure the complete longitudinal density
matrix of a deliberately modulated atom beam (Dhirani
et al., 1997; Rubenstein, Kokorowski, et al., 1999). A
fully quantum mechanical treatment of this system was
developed for this analysis (Kokorowski et al., 1998), and
these experiment are summarized by Kokorowski et al.
(2000).

4. Stiickelberg interferometers

Stiickelberg oscillations occur when a level crossing
for internal states acts as a beam splitter. For example, if
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FIG. 31. (Color online) An atom mirror inside an interferom-
eter. (a) Diagram of the interferometer. The arrows represent
Raman /2 pulses which create superpositions of different in-
ternal states and momenta. The atomic mirror is an evanescent
wave at the surface of a glass prism represented by the trap-
ezoid. The letters a, b, ¢, and d, label the four possible paths.
(b) Filled symbols show fringes obtained by scanning the pulse
separation 7 with paths reflected from the mirror. For refer-
ence, open symbols show fringes from the same interferometer
operating in free space without mirror. From Esteve et al,
2004.

an atom can change its internal state on the way either
to or from a reflecting surface, then two amplitudes for
making a transition will interfere. Oscillations in the
probability for state-changing atomic reflection can thus
be regarded as longitudinal interferometry. One applica-
tion is to survey the van der Waals potential near sur-
faces (Cognet et al., 1998; Marani et al., 2000).

E. Coherent reflection

Here we list more experiments in which reflected de
Broglie waves are demonstrably coherent. Shimizu dem-
onstrated reflection mode holograms (Shimizu and
Fujita, 2002b) and a reflection-mode double-slit experi-
ment (Kohno et al., 2003). Westbook used a Raman-
pulse atom interferometer to study coherent reflection
from an evanescent light field (Esteve et al., 2004), as
shown in Fig. 31. Dekieviet used a longitudinal Stern-
Gerlach interferometer to study quantum reflection of
*He (Druzhinina and DeKieviet, 2003). Zimmermann
used a chip-integrated magnetic grating to diffract and
interfere reflected BECs (Gunther et al., 2005, 2007
Fortagh and Zimmermann, 2007).

F. Confined atom interferometers with BECs

In this section we discuss a different type of interfer-
ometer, where the atoms are confined in a three-
dimensional potential well during the splitting of their
wave function and application of the interaction. In this
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new type of splitting process, the single trap holding the
ultracold gas of atoms (or BEC) is continuously de-
formed into two adjacent potential wells, each contain-
ing a part of the wave function. Thus the splitting step in
the interferometer occurs in position space.

This splitting in position space is in sharp contrast to
previously discussed atom and most optical interferom-
eters, in which the splitting process occurs in momentum
space. Using diffraction gratings or pulses of light trans-
fers momentum; similarly a partially reflecting surface
changes the momentum of the reflected, but not the
transmitted, beam. The two maxima then separate to a
varying extent in position space only because the wave is
split in momentum space. In the trapped atom interfer-
ometers discussed here the atom waves remain confined
and are separated by moving the potential wells apart.

Important advantages of confined atom interferom-
eters are manifold. The confinement can support the at-
oms against gravity, offering potentially unlimited ex-
periment times with advantages for precision
experiments. The location of the atom wave can be
known precisely. This is essential in experiments study-
ing atom-surface interactions like the Casimir potential,
or for studying spatially varying fields or interactions
with small objects that are coupled to the atoms via an
evanescent wave. If a BEC is confined, the large scale
coherence allows new ways to measure the relative
phase of two condensates using a small sample of the
atoms. Additionally, confined atom interferometers, es-
pecially those using atom chips, can be small and por-
table.

Confined atom experiments differ qualitatively from
the many experiments that have been carried out using
BECs as a bright source of cold atoms propagating in
free space (Torii et al., 2000; Gupta et al., 2002). In those
the physics is dominated by single-particle dynamics and
does not exploit the particular coherence properties of
BECs. In the interferometers described here, the intrin-
sic properties of the BEC allow novel measurements,
and create new problems to be overcome.

Confined atom interferometers naturally operate with
significant density to achieve the advantages of large sig-
nals, from which several disadvantages follow. First, the
matter wave optics becomes nonlinear. The atom-atom
interactions lead to a mean field potential (the chemical
potential in a BEC) that can cause a relative frequency
shift between atoms in the two wells. In addition, the
potential wells have to be controlled very accurately in
stiffness and depth, to prevent additional sources of sys-
tematic frequency shifts. (In waveguide interferometers
where the atoms are confined only in two directions, any
residual potential roughness gives additional problems.)

Splitting a condensate coherently produces a state
whose relative phase is specified at the expense of a su-
perposition of number states with different relative
populations because of the (approximate) number-phase
uncertainty relation. Knowing the relative phase of two
condensates requires an uncertainty in the relative num-
ber of atoms in each well, even though the total number
may be certain. The wave function in each well is there-
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fore a coherent superposition of states with different
relative mean field interactions (different relative chemi-
cal potentials) and therefore evolve at different rates.
The resulting dephasing limits the coherence time to less
than 50 ms for a typical million-atom BEC (with dilute-
ness parameter na’>=~107%).

In addition, one has to carefully consider the collec-
tive excitations of the condensate (e.g., sound or shape
oscillations) which may arise if the potential changes too
suddenly. This can be overcome by applying techniques
from coherent control, as shown by Hohenester et al
(2007) and Grond et al. (2009).

Recombining the split double well into a single trap
allows in principle the readout of the relative phase as a
relative population difference between the ground state
and first excited state (Hinds et al., 2001; Andersson et
al., 2002). In the recombination, the nonlinear interac-
tions lead to creation of (fast moving) solitons. These
can enhance the sensitivity (Negretti and Henkel, 2004)
of phase measurements, but are much harder to control.
Consequently, the experiments recombine the split
waves by releasing them from the trap, then free expan-
sion reduces the nonlinearity and facilitates the overlap.

Confined atom interferometers have so far come in
two types: BECs confined to waveguides (i.e., in two
dimensions) which are described next, and those con-
fined in traps (i.e., in all three dimensions) using focused
light beams (Sec. II1.F.2) and magnetic fields generated
by atom chips (Sec. II1I.F.3). Finally in the last section we
describe an example where it is possible to establish and
read out the relative phase of two condensates that do
not overlap during the entire process and discuss
whether this can be seen as a type of interferometry
involving two classical objects.

1. Interference with guided atoms

Given the existence of optical interferometers using
fiber optical wave guides, and the success in confining
and guiding ultracold atoms, it is natural to consider
similar designs for atoms. While preliminary theoretical
study shows that special designs should allow multimode
interferometers (Andersson et al., 2002), no interferom-
eter devices involving atom waveguide beam splitters
have been demonstrated.

The first waveguide atom interferometer, by Wang et
al. (2005) (see Fig. 32) and improved by Garcia et al.
(2006), was designed to test coherent propagation in
atom waveguides, not waveguide beam splitters. It was a
familiar three-grating interferometer in which pulsed
light gratings split and recombined a BEC confined in a
weakly confining (magnetic) guide along the axis. The
BEC is split at =0 into two momentum components
+2fik; using a double pulse of a standing light wave. A
Bragg scattering pulse at t=7/2 then reverses the mo-
mentum of the atoms and the wave packets propagate
back. At r=T the split wave packets overlap and a third
recombining double pulse completes the interferometer.
The output port is given by the momentum of the atoms
as detected by imaging (typically 10 ms) after release
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FIG. 32. (Color online) Michelson atom interferometer. (a)
Schematic drawing of the atom chip (not to scale). The prism-
shaped mirrors are integrated with microfabricated wires on an
aluminum nitride substrate. The dimensions of the whole chip
are 5 cmX2 cm. (b) Photo of the atom chip on its copper
holder. (c) Interference fringes after 1-ms propagation time in
the waveguide with the magnetic gradient turned on for 500 us
while the average separation of clouds is 8.82 um. Adapted
from Wang et al., 2005.

from the guide. To apply a phase shift between the two
arms of the interferometer, a magnetic field gradient was
turned on for a short (500 us) time while the atom
clouds were separated. In the original experiment (Wang
et al., 2005) the propagation time in the interferometer
was varied from 7=1 to 10 ms. The contrast of the
fringes was as high as 100% for T=1 ms, but droped to
20% for T=10 ms. The degradation of the contrast is
mainly due to the nonlinear term coming from the inter-
action between atoms. By reducing the transverse con-
finement and consequently the nonlinear interaction
Garcia et al. (2006) reached much longer coherent
propagation up to 180 um and times up to 50 ms.

There is ample optical precedent for waveguide inter-
ferometers using two-dimensional confinement since
there is wide application of optical fiber interferometers
both scientifically and commercially. On the other hand,
interferometry with three-dimensionally trapped atoms
has no precedent in light optics.11

2. Coherent splitting in a double well

Three-dimensional trapped atom interferometers are
a qualitatively new type of interferometer without pre-
cedent in optics since it is not possible to trap photons,
move the trap around, and then somehow recombine the
photons. A trapped atom interferometer does just that.

Coherent splitting of the wave function by slowly de-
forming a single trap into a double well is the generic
trapped atom beam splitter, achieving physical separa-
tion of two wave-function components that start with
the same phase. When the two wells are well-separated,

"One could argue that a Fabry-Perot is an (imperfect) trap
for photons and that the LIGO interferometer which uses
Fabry-Perot interferometers nested in a Michelson interferom-
eter is not far from this precedent.
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FIG. 33. A double-well interferometer. Top: Optical double-
well potential. (a) Schematic diagram of the optical setup for
the double-well potential. The inset shows an absorption im-
age of two well-separated condensates in the double-well po-
tential (the field of view is 70X 300 um). (b) Energy diagram,
including the atomic mean field, for the initial single-well trap
with d=6 um and for the final double-well trap with d
=13 um (Uy=5 kHz, atomic mean field energy ~3 kHz, poten-
tial “barrier”). (c) Absorption image of fringes created by con-
densates released from the double-well potential immediately
after splitting (30 ms of ballistic expansion, field of view 600
X350 um). (c) Density profile obtained by integrating the ab-
sorption signal between the dashed lines. Adapted from Shin et
al., 2004.

an interaction may be applied to either. Finally the split
atoms in the two wells are recombined to observe the
interference.

Such coherent splitting was first demonstrated by Shin
et al. (2004) (see Fig. 33) who split a BEC by deforming
an optical single-well potential into a double-well poten-
tial. A BEC was first loaded into the single trap and
allowed 15 s to damp its excitations. The splitting was
done over 5 ms, slow enough compared to a 600-Hz
transverse oscillation frequency in the trap not to excite
substantial transverse excitation of the two new conden-
sates, but not slow enough that the mean field interac-
tion would cause the atom to divide exactly evenly be-
tween the two wells (with exactly N/2 on each side there
would be no number uncertainty and hence the relative
phase would have been indeterminate).

The interferometer was completed by releasing the
trapped separated BECs and determining their relative
phase from the resulting fringes. Releasing the conden-
sates dramatically lowers the mean field interaction
prior to overlap, hence averting problems arising from
the nonlinearity of atom optics. Another advantage is
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that overlapping two BECs produces high-contrast
fringes, enabling an accurate determination of the phase
from each “shot” of the interferometer.

Observing the fringes in repeated experiments, start-
ing with fresh condensates each time, addressed the key
question: Is the relative phase between the split conden-
sates random or consistent from shot to shot? There had
been some theoretical controversy on this subject. The
fringes observed when the load, split, and immediate re-
lease sequence was repeated were in the same place,
showing that the relative phase between the two con-
densates was consistent, i.e., that it can be controlled
deterministically. It was also shown that the phase
evolved coherently for up to 5 ms.

The condensates were separated by 13 um in these
experiments, and the single atom tunneling rate between
the two wells was estimated to be 5x 10~* s71, sufficient
to uncouple the BECs in separated wells and let their
phases evolve independently. It was verified that each
condensate evolved phase independently and was phase
shifted as expected by a local Stark shift.

This experiment showed definitively that splitting the
well led to BECs with a common phase, introduced a
new method to determine the phase that was not af-
fected by mean field interactions, and showed that co-
herence could be maintained for several oscillation pe-
riods of transverse condensate motion.

3. Interferometry on atom chips

The combination of well-established tools for atom
cooling and manipulation with state-of-the-art microfab-
rication technology has led to the development of atom
chips (Folman et al., 2002). Atoms are manipulated by
electric, magnetic, and optical fields created by micro-
fabricated structures containing conductors designed to
produce the desired magnetic and electric fields. Tech-
nologically, atom chip based atom interferometers prom-
ise to be relatively inexpensive and presumably are rela-
tively robust. Atom chips have been demonstrated to be
capable of quickly creating BECs and also of complex
manipulation of ultracold atoms on a microscale. We
trace here the development of techniques to coherently
split the condensate and perform atom interferometry.

Many basic interferometer designs and beam splitters
on an atom chip were conceived and tested (Folman et
al., 2002). Most of them rely on splitting a magnetic po-
tential in multiwire geometry. The first experiments
demonstrating splitting, but not coherence, were carried
out in Innsbruck (1996-1999) with splitting a guide with
a Y-shaped wire (Denschlag er al., 1999; Cassettari,
Chenet, et al., 2000; Cassettari, Hessmo, et al., 2000) and
a trap with a two-wire configuration (Folman et al.,
2002).

At MIT interference with random phase using such a
two wire setup was observed by Shin et al. (2005). Simul-
taneously the first coherent splitting of trapped micro-
manipulated atoms on an atom chip was achieved by
Schumm et al. (2005) at Heidelberg, using radio-
frequency induced adiabatic potentials (Zobay and Gar-
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FIG. 34. (Color online) Coherent splitting with an rf induced
double well on an atom chip. (a) A wire trap is split by cou-
pling the magnetic substates by rf radiation. To achieve the
correct orientation (splitting orthogonal to gravity) the trap is
rotated and placed directly over the rf wire. (b),(c) The energy
landscape before and after splitting. (d) Interference is ob-
served by switching the trap off and letting the atomic cloud
overlap in time of flight. The image integrates over the length
of the condensate. (e) Observed distribution of fringe phase
and contrast obtained from multiple experiments. Adapted
from Schumm et al., 2005.

raway, 2001; Colombe et al., 2004; Lesanovsky, Hoffer-
berth, et al., 2006; Lesanovsky, Schumm, et al., 2006).
Analyzing interference patterns formed after combining
the two clouds in time-of-flight expansion demonstrated
that the splitting is coherent (i.e., phase preserving); see
Fig. 34.

The splitting using radio-frequency induced adiabatic
potentials as developed in Heidelberg overcomes the
disadvantages of the two-wire setup: weak confinement
during the splitting and extreme sensitivity to magnetic
field fluctuations. The new method allows well-
controlled splitting over a large range of distances—
from 2 to 80 um—thus accessing the tunneling regime
as well as completely isolated sites.

The Heidelberg experiments (Schumm et al., 2005;
Hofferberth et al., 2006) are remarkable since they were
performed with one-dimensional (1D) BEC (chemical
potential u<#w,), much longer than the phase coher-
ence length. Nevertheless, the interference patterns per-
sist as long as the condensate. All different regimes from
physically connected to totally separated 1D BECs were
accessible, and phase locking by coherent tunneling in
the intermediate regime could be demonstrated.

With continued progress on these topics, together
with techniques for reducing dephasing of interferom-
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eters using BECs, interferometers using confined atoms
hold the promise to be employed as highly sensitive de-
vices that will allow exploration of a large variety of
physics questions. These range from exploring atom-
surface interactions to the intrinsic phase dynamics in
complex interacting (low dimensional) quantum systems
and the influence of coupling to an external “environ-
ment” (decoherence).

IV. FUNDAMENTAL STUDIES

In this section, we address two questions often asked
once one has understood the basic ideas of atom inter-
ferometry: Can you make interferometers with any ob-
ject, people, for example? and Of what use are atom
interferometers? We discuss the limits to particle size in
Sec. IV.A, experiments that probe the transition from
quantum behavior to classical behavior via the process
of decoherence in Sec. IV.B, and how the ideas of single
particle coherence can be extended in Sec. IV.D. The
question of utility is first addressed in Sec. IV.C, where
we show that measurable phase shifts arise not only
from potential differences, but from things like the
Aharanov-Bohm effect and topological transport in gen-
eral. Then we describe how atom interference can be
used to study four different features of many-body sys-
tems in Sec. IV.E, and finally address fundamental tests
of charge equality for protons and electrons. The order
of the sections does not reflect the answers to these
questions in sequence, however; rather the first three
address single particle questions, Sec. IV.D addresses ex-
tensions of coherence first to extended single particles,
and then to multiparticle systems, and Sec. IV.E is de-
voted to describing studies of many-particle systems that
reveal many-particle coherence and decoherence pro-
cesses, or in which atom interference is the tool that
enabled the study of their collective properties.

A. Basic questions: How large a particle can interfere?

When the first atom interferometers were demon-
strated, some expressed surprise that “composite” par-
ticles would give such high-contrast fringes. These senti-
ments are in line with the idea that there exists a
quantum-classical boundary and that somehow there
must be a limit on the number or spacing of internal
states (i.e., the “complexity”) for particles in an interfer-
ometer. Perhaps the mass, the size of a molecule, or the
strength of interactions with the environment can limit
or eliminate the interference. In this section we investi-
gate the limits to coherent manipulation of the center of
mass motion of larger and more complex particles, and
point to some open problems. We first consider practical
limits set by particle size, grating size, and interactions
with the grating, and then move on to more fundamental
limits determined by interactions with the surrounding
environment.

Experiments with Na, molecules (Chapman, Ekstrom,
et al., 1995) demonstrate that particles with many inter-
nal states show interference fringes even if the paths go
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on opposite sides of a thin conductor. These experiments
also confirm what the first atom interferometers showed:
interference fringes can be observed when the size of the
particle is considerably larger than both its de Broglie
wavelength and its coherence length. For example, in
the separated beam interferometer with Na, Agp
~10 pm and the coherence length /., =100 pm are both
much smaller than the size of the molecule (~400 pm).
For experiments with Cg or larger molecules the param-
eters are even more extreme (Clauser, 1997; Arndt et al.,
1999, 2001, 2005; Brezger et al., 2003; Hackermuller, Ut-
tenthaler, et al., 2003).

Perhaps more surprising is the observation of fringes
in Talbot-Lau interferometers with hot particles like Cg,
the surprise being that they have a spontaneous emis-
sion rate fast enough to emit IR photons during the in-
terference process. But since the maximum separation
of the paths in these experiments (about a grating pe-
riod) is much less than the wavelength of the IR radia-
tion, a few photons of emitted radiation cannot be used
to localize the molecule to one path or the other (Hack-
ermuller et al., 2004; Hornberger, 2006). Thus the inter-
ference is between two spatially separated paths along
which the molecule emitted a photon and changed from
internal state |i) to final state |f). Interestingly, IR emis-
sion would localize a molecule on one side or the other
of a conducting plate, so hot molecule interference
would not occur between paths separated by a
conductor.'? This makes an important point: information
left in the environment is sufficient to destroy the coher-
ence; no actual measurement by a macroscopic appara-
tus is necessary.

Even though a particle’s size itself poses no funda-
mental limit to matter wave interferometry, there are
more practical limitations to interferometry with large
particles, such as (i) the time required to propagate
through an interferometer, (i) the requirement that the
particles fit through the openings on material gratings
without undue effects from van der Waals interactions,
and (iii) whether laser-based beam splitters can work
with particles larger than the laser wavelength.

The time it takes a diffracted particle (with one grat-
ing momentum 7G) to move one grating period sets the
characteristic time for interference of a particle of mass
n,

d md*>  h

= L Gim T h 2Eg @4

where Eg is defined as in Eq. (6). For a grating period
100 nm and a flight time of 1 s this limits the mass to
~107"7 g, or about 10° Na atoms. Such a cluster would
have a size of ~30 nm and would just fit through the
gratings. For the 0.01-s flight times characteristic of cur-
rent Talbot-Lau interferometers, this limit would be
around atomic mass 10°, about an order of magnitude

20f course a separated path interferometer, not a Talbot-Lau
interferomter, would be needed for this experiment.
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heavier than current practice. Increasing the time by an
impractical factor (e.g., to a year, with concomitant iner-
tial stabilization of the gratings) does not improve the
mass limit proportionately. The reason is that the grating
period has to be increased to accommodate the diameter
of the particle (Schmiedmayer et al., 1997, Hegerfeldt
and Kohler, 1998, 2000; Schollkopf et al., 1998) which
grows as m'>. Thus a year-long interferometer can
barely interfere a large bacterium as pointed out by
Schmiedmayer et al. (1997).

While this discussion of size or mass limits applies ac-
curately to Talbot-Lau interferometers, the require-
ments of a separated beam interferometer are several
times more stringent. In order to separate the paths the
beam must be collimated to better than the diffraction
momentum, which requires that the beam (and its trans-
verse coherence length) be several grating periods wide.
To separate these wider beams, the particles must
propagate for several characteristic times. Even worse,
the flux of particles will be dramatically reduced due to
the tight collimation. In contrast, Talbot-Lau interferom-
eters have no restriction on their width. Not surprisingly
they are the interferometer of choice for demonstrating
interference of heavy particles. And even with them, it
will be some time before sentient beings can be sent
through an interferometer and subsequently asked
which path they took.

While Eq. (24) shows that if molecules spend too little
time in the interferometer, they will not exhibit quantum
interference (Oberthaler, Bernet, et al., 1996); on the
other hand, if particles spend too long interacting with
mechanical gratings, they will interact with the grating
bars, or be diffracted into very high orders. This is be-
cause of van der Waals or Casimir-Polder interactions
between molecules and the grating bars (Grisenti et al.,
1999). To keep half the diffracted molecules in the cen-
tral n orders requires

V(r)dr|,—gs < hnvld?, (25)

where V(r) is the atom-surface interaction potential.
Equation (25) assumes a grating with an open fraction of
50% and a grating thickness equal to the grating period
(d) (Perreault et al, 2005). Brezger et al. (2003) and
Hornberger et al. (2004) discussed how the useful range
of molecular velocities for a TLI gets severely restricted
for large molecules or small gratings. van der Waals in-
teractions also set a minimum mechanical grating period
for Sagnac gyroscopes. For a large Sagnac response fac-
tor, one would naturally select small grating periods.
However, van der Waals (vdW) interactions cause the
uncertainty of a Sagnac rotation sensor to increase if
grating periods smaller than 44 nm are used with
1000 m/s Na atoms. For helium atoms, which have
much weaker vdW interactions, the optimum grating pe-
riod for a rotation sensor is 8 nm, about ten times
smaller than current practice. This has been discussed
for a MZI by Cronin et al. (2005).

These limitations from grating bars and van der Waals
interactions have led to new types of Talbot-Lau inter-
ferometers for large molecules where at least one grat-
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ing is replaced by a light grating: Kapitza-Dirac-Talbot-
Lau interferometer (Brezger et al., 2003; Gerlich et al.,
2007; Hornberger et al., 2009). If the particle’s size is a
large fraction of the wavelength, the light forces will
have gradients inside the particle that will excite the col-
lective oscillations of the particle unless the turn on-off
time extends over many periods of oscillation. For even
larger homogeneous particles the light force averages
out to nearly zero. This can be overcome by localizing
the interaction [e.g., with a color center (Nairz et al.,
2001; Hornberger et al., 2004)] or by making particles
with periodic structure on the scale of the wavelength.
Nevertheless, the question of how much internal excita-
tion will occur still remains to be answered. Finally, it
should be possible to impart lots of momentum with
long wavelength photons using multiphoton processes.

B. Decoherence

Quantum mechanics makes assertions so at odds with
everyday experience that the mechanisms by which a
quantum mechanical treatment of macroscopic objects
reduce to purely classical behavior have long been con-
sidered a fascinating topic. Indeed, wrestling with this
problem has led many to make radical suggestions for
changes in quantum theory itself (e.g., spontaneous pro-
jection, pilot wave, etc.) or the nature of reality (many
worlds, etc.). Observation of decoherence, and the sup-
pression, avoidance, control, and correction of decoher-
ence mechanisms is an active field made especially topi-
cal by the fruits of, and need for, advances in quantum
computation and nanotechnology.

Atom interefrometry is based on coherence and
therefore is sensitive to interactions that upset this co-
herence. Relative to neutrons, atoms have large polariz-
ability, magnetic moment, and scattering cross sections
and are therefore both more sensitive to, and easy to use
as quantitative probes for, decoherence processes. In
this section we discuss atom interferometry’s historical
role in gedanken experiments about quantum uncer-
tainty and its present role in providing an environment
in which clean quantitative tests of decoherence is pos-
sible.

1. Interference and ‘““welcher-weg” information

Perhaps the first general realization about interfer-
ence fringes was that they can easily be destroyed by
interactions that, even in principle, allow one to deter-
mine which path an atom took through the interferom-
eter. This is deeply rooted in Bohr’s principle of comple-
mentarity which forbids simultaneous observation of the
wave and particle behaviors. It is best illustrated in the
debate between Einstein and Bohr on the question “can
one know which path the particle took and still observe
the interference of the waves?” (Bohr, 1949; Wooters
and Zurek, 1979). Einstein proposed the famous
recoiling-slit experiment to measure which path the par-
ticle took through a two-path interferometer. In reply
Bohr pointed out that the slit itself must also obey the
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laws of quantum mechanics and therefore is subject to
the Heisenberg uncertainty principle. He showed quan-
titatively that if the initial momentum of the slit assem-
bly is known well enough to permit the recoil measure-
ment of which path the particle took, then the initial
position of the slit must have been so uncertain that
fringes would be unobservable.

According to Feynman, this experiment “has in it the
heart of quantum mechanics. In reality it contains the
only mystery” (Feynman et al., 1965). (Subsequently
Feynman acknowledged that entanglement was another
mystery.) In 1960, Feynman proposed a related gedan-
ken experiment in which a perfect light microscope (i.e.,
one fundamentally limited by Heisenberg uncertainty) is
used to determine “which-way” information in a two-slit
electron interferometer by analyzing a single scattered
photon (Feynman et al., 1965). In Feynman’s analysis of
this gedanken experiment, electron interference (a
manifestly wavelike behavior) is destroyed when the
separation of the interfering paths exceeds the wave-
length of the probe (i.e., when it is possible to resolve on
which path the electron traversed). In fact, the contrast
is lost whether or not anyone actually looks with the
microscope; the ability in principle to identify the elec-
tron’s path is enough to destroy the interference pattern.
Feynman concludes, “If an apparatus is capable of de-
termining which hole the electron goes through, it can-
not be so delicate that it dos not disturb the pattern in an
essential way.”

More recently a quantitative duality relation was de-
rived by Jaeger et al. (1995) and Englert (1996) to quan-
tify how much “which-path” knowledge (K) can be ob-
tained and how much contrast (C) can be observed at
the output of an interferometer,

K+ C?=<1. (26)

It is based on the analysis of a detector that quantifies
how well the two paths can be distinguished. The detec-
tor could be similar to Feynman’s light microscope, as
studied theoretically by Stern et al. (1990); Tan and Walls
(1993); Tegmark (1993); Steuernagel and Paul (1995);
Geotsch and Graham (1996); Holland, Marksteiner, et al.
(1996); Wiseman et al. (1997), and examined experimen-
tally by Clauser and Li (1994b); Chapman, Hammond, et
al. (1995); Kokorowski et al. (2001); Mei and Weitz
(2001). Alternatively the detector could monitor spin po-
larization or the internal state of atoms as proposed by
Scully et al. (1991), discussed by Luis and Sanchez-Soto
(1998); Badurek and Rauch (2000); Englert et al. (2000);
and examined experimentally by Durr et al (1998a,
1998b) and Durr and Rempe (2000a). We also note the
similarity with many neutron spin-superposition experi-
ments (Bonse and Rauch, 1979; Badurek et al., 1983,
1988; Summhammer et al., 1983).

Modern decoherence theories no longer invoke
Bohr’s collapse postulate, and they do not rely on the
uncertainty principle. Instead they treat quantum sys-
tems (such as atoms in an interferometer) as being
coupled to their environment (including the which-way
detector) together as one combined (open) quantum sys-
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tem. In this view, the interaction between the observed
quantum system and its (quantum) environment is a uni-
tary process that causes entanglement so that the state
of the observed quantum system becomes correlated
with the quantum state of the environment. Then a mea-
surement made on the environment allows inferences on
the quantum system. For example, if a photon in the
environment allows an inference of which path the atom
took, then a trace over the environment would reduce
the coherence remaining in the atom density matrix,
even if the coupling interaction were now turned off.
For more details we refer the reader to articles by Joos
and Zeh (1985); Zurek (1991, 2003); Tan and Walls
(1993); Tegmark (1993), and books by Wheeler and
Zurek (1983) and Giulini et al. (1996).

Since atoms couple strongly to electromagnetic fields
in a well-understood way, atom interferometers provide
ideal tools for studying decoherence.

2. Internal state marking

The simplest way of measuring an atom’ “path”
through the interferometer is by marking it with an in-
ternal state of the atom. This is analogous to an interfer-
ometer for light where the polarization is rotated in one
arm. Measuring the internal state of the atom then de-
termines which path it took, and consequently destroys
the interference.

For example, Durr et al. (1998a, 1998b) studied the
complementary nature of fringe contrast and path infor-
mation using atoms prepared in a superposition of inter-
nal states before they pass through an interferometer for
their external (center of mass) states. The interferometer
was based on Bragg diffraction gratings that affect the
internal states differently so that the interferometer
paths became correlated with internal states. This
caused a controllable amount of contrast loss, based on
how well the internal states labeled which path the atom
took.

These experiments are similar to earlier neutron inter-
ferometer experiments where loss of interference caused
by correlations between spin polarization and interfer-
ometer path was studied (Badurek et al., 1983). In both
the atom and neutron experiments the coherence can be
retrieved (Summhammer et al., 1983; Durr and Rempe,
2000a, 2000b) by projecting the internal state vector
onto a measurement basis that does not allow one to
distinguish the encoded internal states. The path infor-
mation is thereby erased and the full interference con-
trast regained. This is a nice demonstration that interfer-
ence will be lost if the internal states contain which-path
information; the loss of interference occurs without in-
voking any coupling to an external environment.

To substantiate that there is no coupling to the envi-
ronment, note that the transitions to prepare the inter-
nal state label are driven with microwave fields that are
in coherent states with large photon number uncertainty,
and hence one cannot use a measurement of the micro-
wave field itself to get information about whether the
atom absorbed a single photon on the labeled path.
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Thus no information about the internal state is trans-
ferred to the environment. The coherence is not really
gone, it is hidden behind the choice of what to measure
(interference or path). One can easily get it back by ro-
tating the basis for the measurement, so that the “which
path information” is erased, as done in experiments by
Badurek et al. (1983) and Durr and Rempe (2000a,
2000b).

This is different from the decoherence described by
the recoiling slit or Feynman’s microscope discussed
above. There one has to look into the environment to
get the coherence back. One has to find the other part of
the entangled state.

3. Coupling to an environment

We now discuss situations in which the interferometer
loses coherence because of coupling to the environment.
It is closely related to modern theories of decoherence
as will become obvious. As an example, consider that
the initial state involves an atom traversing an interfer-
ometer and a well-collimated photon incident on the
atom; then the final state may involve an atom at the
detector and a photon in the environment traveling to-
ward infinity. This is a prototypical example of an inter-
ferometer that becomes entangled with an external en-
vironment or particle. The interaction and its strength is
well-known, but the final state is unknown.

a. Decoherence in diffraction

Several experiments have demonstrated decoherence
due to spontaneous emission of light quanta. Gould et al.
(1991); Pfau et al. (1994); Keller et al. (2000) used atom
diffraction patterns caused by diffraction from a grating
to observe how the spatial coherence of an atom beam
gets reduced by spontaneous emission of a photon. A
good picture is that the recoil from the spontaneously
emitted photon shifts the momentum of each atom ran-
domly, along with its individual diffraction patterns.
Since the direction of the final photon is random, these
experiments revealed a decrease of contrast of the
summed patterns. There was a transition from diffrac-
tion to diffusion with increasing probability of spontane-
ous emission. In a similar spirit, the visibility in the dif-
fraction patterns of fullerenes Cqy and C;, has been used
to bound the amount of decoherence for the molecule
waves caused by emitting thermal photons (Hacker-
muller et al., 2004).

These experiments can be explained by the random
momentum kicks given by the spontaneously emitted
photons. Interestingly, the result is the same regardless
of the place of the photon emission, as long as it is at or
upstream of the grating. Consequently, the effect is the
same as if the incident beam had a wider transverse mo-
mentum distribution, with associated smaller transverse
coherence length.

b. Decoherence in Talbot-Lau interferometer

In a three-grating Talbot-Lau interferometer, Clauser
and Li (1994b) showed that resonant laser light scattered
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from atoms in the middle of the interferometer can de-
stroy fringe contrast. This experiment actually detected
the fringes by selectively destroying the contrast for dif-
ferent velocity classes that were Doppler shifted into
resonance with a laser beam.

More recently, Mei and Weitz (2001) demonstrated
that photon scattering in a multiple beam Ramsey inter-
ferometer also leads to decoherence for atoms that scat-
ter light. Furthermore, because some of the multiple
paths in this experiment cause fringes that are out of
phase with the other two-path combinations, it was
shown that decoherence of one beam can either increase
or decrease the net contrast.

Hackermuller er al. (2004) observed decoherence of
internally hot fullerene matter waves caused by emission
of radiation in a Talbot-Lau interferometer. This experi-
ment is remarkable, since the emission spectrum of the
hot fullerene is very close to thermal radiation, and in
that sense looks more like a (mesoscopic) classical par-
ticle which “cools” internally by emitting photons during
the flight in the TLI.

These experiments can again be explained by the
(classical) random momentum kicks given by the spon-
taneously emitted photons.

c. Photon scattering in an interferometer

Chapman, Hammond, et al. (1995) studied the loss of
coherence in a Mach-Zehnder interferometer when each
atom scattered exactly one photon. Loss of contrast was
observed which depended on the separation between
the two interferometer paths at the point of photon scat-
tering. This is a close realization of Feynman’s gedanken
experiment, and we discuss it below.

d. Scattering from background gas in an interferometer

Scattering from a background gas of massive atoms or
molecules has also been used to cause a controlled
amount of decoherence. Collisional decoherence was
observed by Hackermuller, Hornberger, et al. (2003) and
Hornberger et al. (2003) with Talbot-Lau atom interfer-
ometer, and similar work with a Mach-Zehnder interfer-
ometer (Uys et al., 2005) is shown in Fig. 35.

It is interesting to note the difference between the
decoherence due to photon scattering and atom scatter-
ing. The basic physics processes are very similar, except
that the momentum transfer is much larger in the case of
the atoms and many of the “collisions” lead to atoms
scattered out of the detected beam. Consequently, the
loss of contrast in atom collisions is not so bad, but the
overall intensity goes down significantly. In addition the
atom-atom scattering is a probabilistic process, whereas
the photon scattering can be made deterministic [see
Chapman, Hammond, ef al. (1995)]. Additional theory
work on collisional decoherence with massive particles
can be found in Kleckner and Ron (2001); Fiete and
Heller (2003); Hornberger and Sipe (2003); Hornberger
et al. (2004); Vacchini (2004).

Closely related to these atom scattering decoherence
experiments are the studies of stochastic or deterministic
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FIG. 35. (Color online) Comparison of decoherence from pho-
ton scattering (left) to gas particle scattering (right). Contrast
and atom beam intensity as a function of the resonant laser
beam power or background gas pressure. The light scattering
occurs where the separation d=0.16\, and the gas scattering
occurs throughout the interferometer. The theoretical curves
come from Eq. (33) for the detected atoms as discussed below.
From Uys et al., 2005.

absorption and its effect on coherence in neutron inter-
ferometers (Summhammer et al., 1987, 1988; Rauch and
Summhammer, 1992; Namiki et al., 1993).

4. Realization of Feynman’s gedanken experiment

Scattering a single photon from an atom in superposi-
tion of two locations is one of the icons of decoherence
experiments. It is directly related to Feynman’s gedan-
ken experiment discussed above. To realize such an ex-
periment, Chapman, Hammond, et al. (1995) scattered
single photons from atoms within a two-path Mach-
Zehnder atom interferometer (Fig. 36). Exactly one pho-
ton was scattered by adjusting a tightly focused laser
beam so that each traversing atom made exactly half a
Rabi cycle, exiting the laser beam in the excited state. To
achieve this the transit time of the atoms through the
excitation laser (7,ns~ 5 ns) was much shorter than the
lifetime of the excited state (7~ 16 ns). Translating the
laser beam along the interferometer caused excitations
at different locations corresponding to different spatial
separations of the interfering atom waves.

The experimental results are displayed in Fig. 37. The
contrast (which is a direct measure of coherence) de-
creases smoothly towards zero as the distance between
the two paths grows to d=N/2. At this point, the sepa-
ration between paths is equal to the Heisenberg micro-
scope resolution. The observed contrast recurrences at
d>N\/2 have their mathematical origin in the Fourier
transform of the dipole pattern for spontaneous photon
scattering (Tan and Walls, 1993; Steuernagel and Paul,
1995; Geotsch and Graham, 1996; Holland, Marksteiner,
et al., 1996). Feynman, who might be surprised at their
existence, would be reassured to note that they occur
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FIG. 36. Schematic for the photon scattering decoherence ex-
periment in Chapman, Hammond, er al. (1995) and Koko-
rowski et al. (2001). The path separation d and the number of
photons scattered per atom can both be controlled. From
Chapman, Hammond, et al., 1995.

where the prominent diffraction rings of a perfect light
microscope would lead to path ambiguity.

The specific arrangement of the experiment allowed
separation of the effects of the (classical) momentum
transfer and the entanglement between the atom at two
locations and the scattered photon of the related phase
shift. As seen in Fig. 36 the average shift of the pattern
at the third grating, and its random variation from the
recoil of the emitted photons, is much larger than the
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FIG. 37. Contrast as a function of the path separation d at the
location of scattering. Each atom scattered nearly exactly one
photon in this experiment. From Chapman, Hammond, et al.,
199s.
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FIG. 38. Relative contrast and phase shift of the interferom-
eter as a function of d for the cases in which atoms are corre-
lated with photons scattered into a limited range of directions.
The solid curves are calculated using the known collimator
geometry, beam velocity, and momentum recoil distribution
and are compared with the uncorrelated case (dashed curves).
The upper inset shows atomic beam profiles at the third grat-
ing when the laser is off (thin line) and when the laser is on
(thick line). The arrows indicate the third grating positions for
cases I and II. The lower inset shows the acceptance of the
detector for each case, compared to the original distribution
(dotted line). From Chapman, Hammond, et al., 1995.

period of the interference pattern at the third grating
(~30 wm vs 200 nm). This demonstrates that the mo-
mentum recoil by itself cannot explain the loss of con-
trast (as it can in the diffraction experiments), but the
path separation at the point of scattering and the phase
shift imprinted by the entanglement in the scattering
process must also be taken into account.

The classical recoil shift also allowed a second “reco-
herence” experiment by allowing the experimenters to
infer the momentum of the scattered photon by measur-
ing the atomic recoil. Interference contrast could be re-
gained (Fig. 38) by selecting atoms within a reduced
range of momentum transfer. The modern interpretation
is that coherence lost to the environment because of en-
tanglement can be regained by learning about the envi-
ronment. Feynman might say: By restricting the momen-
tum, the microscope could not use the full 4w
acceptance but only a much smaller numerical aperture.
Consequently, the maximum obtainable resolution
would be degraded, no which path information ob-
tained, and the interference contrast thereby regained.
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This experiment demonstrated the importance of corre-
lations between the recoil momentum and the phase of
interference fringes.

These experiments illustrate how the interaction with
an environment causes decoherence through entangle-
ment with the states of the environment. If an atom in
the two-path interferometer, with the paths separated by
d, scatters a photon the quantum state evolves into

)i = (|x) + x + d)) © |eg)
interaction

- |X> ® |ex> + |x + d> ® |ex+d>a (27)

where |ey) is the initial wave function of the environment
(photon) and |e,) is the post-interaction wave function of
the environment (photon) given an atom at position x.

If the environment is now observed to be in state |e,),
the (unnormalized) state of the atom becomes

e} = |x) + B(d)|x + d), (28)
where
B(d) = <ex|ex+d>‘ (29)

If the two environment states are nearly identical then
|B(d)|=1; very little which-way information is available
in the measured state of the environment, and the atom
is left in nearly the original superposition. If |3(d)|<1,
significant which-way information about the atom has
been left in the environment, and the atom is highly
likely, with probability [1+]8(d)[?]™", to be found in state
|x).

Whereas Eq. (28) gives the atomic state conditioned
on an observation of the environment, we often want to
find the final quantum state of the atom when the envi-
ronment is not observed. This requires averaging over
all possible environment states, obtained by taking the
trace of the atom and environment density matrix over
environment degrees of freedom. Applied to the atom
interferometer, this procedure results in a reduction of
contrast by a factor |B(d)| for every photon scattered,
and can be directly applied to describe the results of the
Feynman gedanken experiment (Chapman, Hammond,
et al., 1995).

Focusing on the which-way information carried away
by the scattered photons is not the only way decoher-
ence may be understood. An alternative, but completely
equivalent picture involves the phase shift between the
two components of the atomic wave function. We switch
to this viewpoint using the translation operator for pho-

ton momentum states [7(£)=e**] to identify that the
environment states are related by

(kfeyuq) = (kfebrFde,, (30)

where the momentum of the absorbed photon k; was
assumed to be defined by the incident laser beam. Thus
if one were to measure the momentum of the scattered

photon (to be Ef), the atom would then be found in a
superposition state with known phase shift between the
two components of
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Ap=(ki—k;)-d. (31)

Interference fringe patterns for atoms with different re-
coil momentum kicks will then be slightly out of phase
and the ensemble average—the measured interference
pattern—will have a reduced contrast. This point of view
is useful to calculate

B(d) = (e ]ex,a) = j ke R (K fe )2, (32)

This is a scaled Fourier transform of the probability dis-
tribution P(Ak).

We have discussed two views (which way and dephas-
ing) of the decoherence that accrues when an atom in an
interferometer scatters photons. They correspond to two
different ways to describe the scattered photon (position
basis versus momentum basis). In these two cases, an
observer in the environment can determine either which
path the atom took or else the phase shift of its fringe
pattern. The key point is that when the experimenter is
completely ignorant of the state of the scattered pho-
tons, whether an apparatus has been set up to measure
them or not, the which-path and phase diffusion pictures
are equally valid (Stern et al., 1990). Both predict deco-
herence, i.e., loss of contrast.

Building upon the simple framework of the single-
photon which-way experiment, we can easily derive the
effect of continuous atom-light interaction involving
many scattered photons. If successive scattering events
are independent, the total decoherence function in-
cludes one factor of 8 for each scattered photon (with
probability P, of scattering n photons). If the separation
does not change (d=const), one obtains a simple rela-
tion

Btotal(d) = E PnIB(d)n (33)

n=0

Even at small separations each successive photon scat-
tering found in le,) (|e,,4)) will reduce by a small factor
the probability that the atom is in state |x+d) (|x)) until
only one component of the superposition has any re-
maining amplitude; that is, until “complete” which-path
information has been obtained.

This was demonstrated in the experiment by Koko-
rowski et al. (2001) studying scattering multiple photons
from each atom inside the interferometer at a location
where the separation is small compared to the light
wavelength. The contrast vanishes as information about
which path each atom took in the interferometer gradu-
ally becomes available in the photon field as a result of
multiple scattering events. These experiments are also
discussed by Schmiedmayer et al. (1997); Pritchard et al.
(1998, 2001) and extended to include two separated en-
vironments inside the interferometer by Cronin et al.
(2003).

Multiple photon scattering results in a Brownian mo-
tion of the phase of the atomic superposition and can be
analyzed as phase diffusion. It leads again to an expo-
nential decay of contrast as a function of time (i.e., the
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average number of scattered photons 7). Taking the spe-
cifics of the photon scattering process one finds, in
agreement with the experiment, a Gaussian loss of con-
trast as a function of the path separation d

CICy = (%) = ¢l o2, (34)

where oy is the rms spread in momentum per scattered
photon.

Contrast loss due to scattering multiple photons
makes contact with more formal theories that describe
the dynamics of open quantum systems. A modified
Heisenberg equation of motion for the density matrix
has been derived for various environments by Dekker
(1981); Caldeira and Leggett (1983); Joos and Zeh
(1985); Gallis and Fleming (1990); Gallis (1993); Teg-
mark (1993); Omnes (1997); Hornberger et al. (2004).
For example, an environment that causes the probability
of scattering waves with wavelength A in an infinitesi-
mal time interval dt to be Adt (where A=flux X cross
section) makes the master equation

(x —x')?

ap(x,x") i A
L _[H ] -
ﬁ[ ,p(x,x")] "

Py plx,x"), (35)

where the final term on the right causes a damping of
the off-diagonal elements of p with a rate expressed by

p.x'st) = plx,x';0)e A =Gl (36)

Here x—x' denotes the separation of the superposition
states in a general coordinate basis, and the diffusion
constant A=A/\2; is also referred to as the localization
rate (Joos and Zeh, 1985) or the decoherence rate (Teg-
mark, 1993). Values of decoherence rates are tabulated
in Joos and Zeh (1985); Tegmark (1993); Holland, Mark-
steiner, et al. (1996) for various systems and scattering
environments. Comparing Egs. (34) and (36) allows one
to discuss the localization rate caused by photon scatter-
ing for atoms in an interferometer.

5. Realization of Einstein’s recoiling slit experiment

To implement Bohr’s original design of Einstein’s re-
coiling slit gedanken experiment, one needs a very light
beam splitter, which shows quantum properties and will
allow an experimenter to distinguish the two possible
paths taken. In a Ramsey experiment, one would need
to be able to distinguish the photons in the microwave
or optical field used to change the state in the first inter-
action region. As discussed above, classical fields cannot
do the job. But if the splitting in the first interaction
region is induced by a vacuum field, or a single photon
field (more generally a field with a definite photon num-
ber), then measuring the field will determine if a transi-
tion has happened, and consequently infer the path the
atom took.

In their seminal experiment Bertet et al. (2001) imple-
mented a Ramsey interferometer with Rydberg atoms
where the first interaction zone is a high-Q cavity which
allows the superposition between the |e) and |g) states to
be created by the interaction with the vacuum field in-
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FIG. 39. Fringe contrast as a function of the mean photon
number N in R;. The points are experimental. The line repre-
sents the theoretical variation of the modulus of the beam-
splitter final-state scalar product. Adapted from Bertet et al.,
2001.

side the cavity. This is the ultimate light beam splitter.
After passing the interaction region, the atom-cavity sys-
tem is in an entangled state described in the |atom) |cav-
ity) basis:

[)]0) — (1\2)[e[e)]0) + |g)[1)], (37)

where ® is an phase difference between the two states
after the interaction.

With this interaction the information about the state
of the atom is left in the cavity field, and no interference
contrast is observed when completing the Ramsey inter-
ferometer with a classical microwave pulse and state se-
lective detection.

The cavity can also be filled with a very small coher-
ent state |@) with a mean photon number of a few 7
=|al?. The interaction region creates the entangled state

[ ae) — AND[e[e)]a) + [ ag)], (38)
with

la,) = 2> C, cos(Q\n + 1t,)|n), (39)

) = 2> C, cos(Qyn + 1t,)|n + 1), (40)

where ¢, is an effective atom-cavity interaction time ad-
justed to give a equal superposition between |g) and |e).

The results of such an experiment are shown in Fig.
39. When employing the lightest beam splitter, that is,
the vacuum state with n=0, the contrast in the Ramsey
interferences vanishes completely. When employing suc-
cessively stronger coherent states, the beam splitter be-
comes “heavier” in Bohr’s argument, and the coherence
returns For 7=12.8 (|a| =3.5) nearly the full interference
contrast is regained.

In a second part of their experiment Bertet et al.
(2001) employed the same field twice. Once as first in-
teraction region, and again as second interaction region.
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In this case even for the vacuum field as a beam splitter
no information about the path within the Ramsey inter-
ferometer remains, and full contrast was observed. This
is an illustration of an unconditional quantum-eraser ex-
periment.

As our understanding of quantum mechanics deepens,
and, in particular, as we attempt to exploit quantum me-
chanics to create more sensitive quantum interferom-
eters, quantum computers, or perfectly secure communi-
cation channels based on quantum entanglement, we
encounter decoherence as a fundamental limit (Unruh,
1995). Progress relies therefore upon understanding and
correcting for decoherence effects. Already our in-
creased understanding of what decoherence means and
how to control it has led to the development of quantum
error correction codes (Shor, 1995; Calderbank and
Shor, 1996; Steane, 1996) and quantum mechanical sys-
tems in which certain degrees of freedom are intrinsi-
cally decoherence free (Lidar ef al., 1998).

C. Origins of phase shifts

Phase shifts for interference fringes [see Sec. I.B, Eq.
(16)] can be induced by photon scattering as discussed in
the previous section [Eq. (31)] or by a variety of other
causes such as (i) different potential energy for atoms in
each path of the interferometer, (ii) transverse or longi-
tudinal forces on atoms, (iii) inertial displacements such
as rotating or accelerating the interferometer platform,
and (iv) geometric and topological phase shifts such as
the Aharonov-Bohm, Aharonov-Casher, and Berry
phases. In the following section we discuss the interrela-
tionship between these types of phase shifts.

1. Dynamical phase shifts

Feynman’s path-integral formulation (Feynman and
Hibbs, 1965; Storey and Cohen-Tannoudji, 1994) relates
the wave function at (x,7) to the wave function at (x,?;)
by

P(x,1) = e WSty(x, 1), (41)

where the classical action Sp is defined in terms of the
Lagrangian

&Efﬁmﬂm (42)
r

and L[x,x] is the Lagrangian and I" is the classical path
from (x,f,) to (x,t). For potentials that are only a func-
tion of position, the wave function acquires a phase shift
due to a potential U(r) of

2 2
b= | { E-Um]- Jﬁ—TE]dz. 43)

This is analogous to light optics where the wave vector
k=n(r)k, depends locally on the index of refraction, and
the phase shift due to the index is




Cronin, Schmiedmayer, and Pritchard: Optics and interferometry with atoms and molecules 1089

b= f (k —ko)dl. (44)

To first order in U/E the interaction phase shifter (43) is
1
G~ -5 | Ulndl, (45)
fLU T

where v is the particle’s velocity.

This brings up the question: When does one measure
a quantity described by classical physics like a deflection,
and when does one measure a quantity only observable
in an interference experiment?. For example, applying a

classical force F to change a particle’s motion is identical
to applying a phase gradient to the matter wave. This is
because force can be viewed as arising from a potential
gradient [ﬁ(r):—ﬁU(r)], and in the same potential U(r)
a propagating matter wave will get a position-dependent
phase shift which is exactly the one needed to account
for the deflection. If there are two paths through the
interferometer, then the fringe phase shift will be given
by

Adint = Gint1 — Din2- (46)

Thus in a classical apparatus (as in a moiré deflectome-
ter) or in an interferometer, forces cause a fringe shift
that is identical to the classical deflection, which can be
observed as an envelope shift (Zeilinger, 1986; Obertha-
ler, Bernet, et al., 1996).

On the other hand, there are many cases where the
fringe shift is different from the envelope shift. A basic
example is a constant potential applied to one arm of an
interferometer with separated beams. In this case there
is no classical deflection, because neither atom (compo-
nent) acquires a transverse phase gradient. Still, there is
a different interaction phase ¢;, for one path through
the interferometer because of the potential. For ex-
ample, one interferometer path may traverse a capacitor
such that the gradient in potential energy is along the
atomic path.

In this case Longitudinal phase gradients can be
caused as atoms enter and exit the interaction region.
For example, an attractive potential causes a classical
force that first accelerates then decelerates the atom
(component); if the potential is confined to one path
through the interferometer, then the affected atom com-
ponent gets displaced ahead of the unperturbed atom
component. Furthermore, if the longitudinal displace-
ment between wave-function components exceeds their
coherence length, then contrast is lost. We prefer to call
this “inhomogeneous broadening” (as opposed to deco-
herence) because the phase shift is correlated (en-
tangled) with the atom’s own longitudinal velocity.

Another interesting case arises when one applies a
time-dependent potential to one arm of the interferom-
eter so the atom never sees a gradient in space. An ex-
ample is the scalar Aharonov-Bohm effect. Then there
will be no change in the classical motion and the enve-
lope of the atomic probability distribution will remain
stationary as high-contrast fringes (there is no velocity
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FIG. 40. The Aharonov-Bohm effect, Aharonov-Casher ef-
fect, and their electromagnetic duals. Adapted from Panchos,
2003 and Dowling et al., 1999.

dispersion) shift underneath. A similar situation arises
when purely topological phases are involved. In these
cases the full quantum mechanical properties of an in-
terferometer are in evidence.

2. Aharonov-Bohm and Aharonov-Casher effects

We call a phase shift A¢;, topological if it depends
neither on the incident k vector (velocity) of the inter-
fering particle nor on the shape of the particle’s path
through the interferometer. Topological phases are char-
acteristic of all gauge theories, and are related to a sin-
gularity enclosed by the interferometer paths.

The most widely known topological phase was de-
scribed by Aharonov and Bohm (1959) for a charged
particle passing on either side of a solenoid. A related
effect was described by Aharonov and Casher (1984) for
a magnetic dipole encircling a line of charge. To realize a
general framework for the discussion of the quantum
interaction between sources and fields we consider Fig.
40. If an electric charge g, circulates around a magnetic
dipole d,, (or vice versa) then a quantum phase arises
(Aharonov and Casher, 1984). Particular configurations
of sources can give a variety of contributions. For ex-
ample, a cylinder filled with aligned magnetic dipoles is
equivalent to a solenoid, and creates a homogeneous
magnetic field inside the cylinder but zero magnetic field
outside. When an electric charge travels around the cyl-
inder it acquires a phase due to the Aharanov-Bohm
effect. On the other hand, if a cylinder is filled with elec-
tric charges, then a magnetic dipole circulating around it
will obtain a quantum phase due to the Aharonov-
Cahser effect. This can be generalized to the case of a
magnetic dipole moving in the presence of a gradient of
electric field.

Employing electromagnetic (EM) duality it is possible
to obtain a series of similar phenomena. While the
charge dual is the magnetic monopole g,,, which has
never been observed, the dual of the dipoles are well-
defined. The interactions between an electric dipole d,
and a monopole (or a monopolelike field) have been
studied (Casella, 1990; He and McKellar, 1993; Wilkens,
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FIG. 41. Aharonov-Casher effect. (a) Geometry of the original
measurement using a neutron interferometer, in which the two
interfering states encircle a charge and have the same magnetic
moments. (b) Geometry used in Sangster et al. (1993). Particles
travel in a uniform magnetic field in a coherent superposition
of opposite magnetic moments +ud. The two states are oppo-
sitely shifted by the Aharonov-Cahser phase as they travel
through the field. From Sangster et al., 1993.

1994; Dowling et al., 1999; Spavieri, 1999, 2006). This can
also be equivalently viewed as the interactions of an
electric dipole d, with an inhomogeneous magnetic field.
It should be understood that this categorization is not
unique or exhaustive, e.g., quadrupole interactions have
not been considered.

The Aharonov-Bohm phase shift is

Adap="T5P A-ds. (47)
where A is the vector potential that represents the fields.
The Aharonov-Casher effect causes a phase shift

1
A(bAC:ﬁ%de E‘dl’, (48)
where d,, is the magnetic dipole.

The Aharonov-Casher effect was observed with neu-
tron interferometers (Cimmino et al, 1989) using the
original geometry proposed by Aharonov and Casher
(1984), and the phase shift was 2.19 mrad. With TIF mol-
ecules the Aharonov-Cahser effect has been observed
using a geometry where components of each molecule
with different spin states occupy the same center of mass
location (Sangster et al., 1993, 1995). This alternative ge-
ometry for the Aharonov-Casher effect, in which the
magnetic dipoles are placed in a superposition of spin
orientations (but not a superposition of center of mass
positions), was described by Casella (1990). The two dif-
ferent geometries are summarized in Fig. 41. With mol-
ecules possessing a nuclear magnetic moment the phase
shift was only 3 mrad. Still, this was sufficient to verify
the predicted linear dependance on the electric field and
independence of particle velocity. Atomic sized mag-
netic moments were used by Gorlitz et al. (1995) to dem-
onstrate a much larger Aharonov-Caher (AC) phase
shift of 300 mrad using Rb atoms. An AC phase of
150 mrad was observed by Yanagimachi et al. (2002) us-
ing Ca atoms, and related measurements are found in
Zeiske et al. (1994, 1995).

The AC phase is a restricted topological phase be-
cause although the phase is independent of the speed |v]
and the size of the interferometer loop, the phase does
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depend on whether d,, is perpendicular to both v and E.
Debate over the topological nature of the AC effect has
stimulated several discussions, among them Boyer
(1987); Aharonov et al. (1988); Zeilinger et al. (1991);
Han and Koh (1992); Lee (2001). The similarity between
the AC and AB effects has also been discussed by
Hagen (1990) and Oh et al. (1994).One controversy arose
over the question of whether or not a sufficiently large
AC phase can lead to decoherence. This position was
suggested by Boyer (1987) since the AC effect can be
explained in terms of a classical force due to a motion-
induced magnetic field in the rest frame of the magnetic
dipole. However, as shown by Zeilinger et al. (1991),
since the classical force depends on velocity a wave-
packet envelope does not get shifted; i.e., ddac/dkyp
=0. The AC and AB effects both shift the phase of the
wave function, but do not displace the wave-packet en-
velope (a common misimpression, e.g., see Figs. 15-7 and
15-8 of Feynman et al. (1965).

The scalar Aharonov-Bohm effect (SAB) for neutral
particles is a topological phase that can arise from
pulsed magnetic fields interacting with an atomic mag-
netic dipole. This has been observed by Muller et al
(1995); Shinohara et al. (2002); Aoki et al. (2003) with
atoms, and by Allman et al. (1992) and Badurek et al.
(1993) with neutrons. It is similar in spirit to the interac-
tion discussed in the original paper (Aharonov and
Bohm, 1959) for electrons interacting with the scalar
electrostatic potential.

The electromagnetic dual of the AC effect, in which
an electric dipole moment moves near a line of magnetic
monopoles (an idealized picture of an experiment), was
investigated theoretically by Wilkens (1994). The phase
shift for polarizable particles moving in both electric and
magnetic fields has also been discussed by Anandan
(1989, 2000); Shevchenko (1995); Audretsch and
Skarzhinsky (1998). Furthermore, in the case that per-
manent electric dipole moments are used, the electro-
magnetic dual to the AC effect can be used to settle any
controversy regarding how the topological nature of the
AC effect depends on the dipole moment being intrinsic
and therefore having quantum fluctuations (Lee, 2001).

3. Berry phase

Phase effects resulting from parallel transport associ-
ated with adiabatic evolution (Berry phase) can also be
topological. Berry (1984) showed that a quantum system
in an eigenstate that is slowly transported round a circuit
by varying parameters R in its Hamiltonian H(R) will
acquire a geometrical phase factor in addition to the
familiar dynamical phase. For example, the Berry phase
of a magnetic moment adiabatically following a mag-
netic field will acquire a phase proportional to the solid
angle proscribed by the field during a closed circuit.
Berry also interpreted the Aharonov-Bohm effect as a
geometrical phase factor.

The Berry phase can be studied with many systems in
physics. It has been observed with light in a coiled opti-
cal fiber (Chiao and Wu, 1986), neutron interferometers
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FIG. 42. Ramsey fringes under (a) a constant magnetic field
and (b) a rotating magnetic field. The rotating angle is . The
phase difference is observed at the center frequency of the
spectra. From Yasuhara et al., 2005.

(Bitter and Dubbers, 1987), nuclear magnetic resonance
experiments (Suter et al., 1987), nuclear quadrupole
resonance experiments (Tycko, 1987), and also meso-
scopic electronic systems (Yau et al., 2002). Phase shifts
due to nonadiabatic circuits (Aharonov and Anandan,
1987), incomplete circuits (Samuel and Bhandari, 1988),
particles in mixed states (Sjoqvist et al., 2000), and par-
ticles moving relativistically have also been studied theo-
retically. For an overview on geometric phases, see
Wilczek and Shapere (1989) and Anandan et al. (1997).
An observation of a Berry phase in atoms in an inter-
ferometer for the polarization states (internal states) has
been described by Commins (1991). The first observa-
tion of a Berry phase in an external state atom interfer-
ometer was accomplished by Miniatura et al. (1992) with
a Stern-Gerlach longitudinal interferometer. However,
in this experiment the Berry phase was somewhat ob-
scured because the dynamics were not adiabatic. A
Berry phase up to 27 rad due to an atomic state inter-
acting with a laser field was observed by Webb et al.
(1999). This verified the spin dependence of the Berry
phase, and realized an “achromatic phase plate for
atomic interferometry” as suggested by Reich et al
(1993) and Olshanii (1994). A Berry phase shift for par-
tial cycles using a time-domain atom interferometer was
measured by Yasuhara ef al. (2005); see Fig. 42.

4. Inertial displacements

Atom interferometers are sensitive to acceleration
and rotation because the long transit times allow gravity
and fictitious forces due to rotation and acceleration to
build up significant displacements of the interference
pattern, which directly influence the measured phase [in-
troduced in Sec. III, Eq. (18)]. These are discussed in
Sec. V on precision measurements.
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D. Extended coherence and BECs

Bose-Einstein condensates of atomic gasses are very
bright sources for atom optics and atom interferometers.
Additionally in a gas cooled below T, a significant frac-
tion of atoms are in the condensate, which occupies the
lowest translational state of the trap. Typical BECs offer
10° atoms confined in a cigar-shaped sample 100 um
long and 100 wm across, with coherence lengths of the
same size, and relative velocities around 0.1 mm/s. A
BEC with its coherence properties (and brightness) con-
stitutes a source analogous to a laser, whereas the tradi-
tional thermal atom sources are analogous to thermal
sources such as candles or light bulbs in optics.

This ideal source is hindered by the fact that atoms
interact which leads to a mean field interactions (chemi-
cal potential). A typical condensate would have a den-
sity of 10'4/cm? with an associated mean field energy of
~1 kHz(X h), much larger then the ground-state energy
of the trap. If the trap is turned off, and the BEC re-
leased, this mean field energy dominates the expansion
and condensate atoms will separate with several mm/s
relative velocity regardless of how small the rms velocity
was inside the trap. Nevertheless, the resulting momen-
tum spread is still an order of magnitude smaller than
the recoil velocity from a resonant photon. It is there-
fore easy to separate the momentum states differing by a
photon momentum in atom interferometers based on
BECs as discussed in Sec. I11 [see, e.g., Fig. 22(c)].

Atom interferometers now offer a powerful tool to
study the properties of a Bose-Einstein condensate.

1. Atom lasers

Early theoretical studies (Bagnato et al., 1987; Stoof,
1991; Moerdijk and Verhaar, 1994) showed that making
a BEC in a trap is easier than making it in free space
because the critical density had to be reached only at the
bottom of the trap. They showed that the perturbation
of the transition temperature and critical number den-
sity due to the s-wave scattering of atoms was less than
1%, encouraging the then-prevalent view that the con-
densate is well-described as a blob of very cold atoms.
This suggested making a laserlike beam of ultracold at-
oms simply by extracting atoms from the condensate—
such a beam would have an incredibly low temperature,
be almost monochromatic, and have an unprecedented
brightness (albeit over a very small cross sectional area
with limited total flux).

Early realizations of atom lasers coupled atoms out
from a condensate with radio-frequency (rf) pulses, rf
chirps, Raman pulses, or weak cw rf radiation (Mewes et
al., 1997; Bloch et al., 1999; Hagley et al., 1999). For dis-
cussions see also Holland, Burnett, et al (1996) and
Kleppner (1997). The out-coupled atoms have energy
given by the out-coupling process plus the mean field
energy they gain when emerging from the condensate.
In addition, they are accelerated by gravity and any ad-
ditional potential gradient. The out-coupling frequency
can be adjusted as the condensate number changes, to
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account for the changing chemical potential. Moreover,
the number of atoms extractable from the condensate is
not limited because the condensate can be recharged
(Chikkatur et al., 2002) to produce a continuous atom
laser beam, although a continuous atom laser is yet to be
demonstrated.

In principle, the output from this type of atom laser
can have a greater coherence length than the condensate
simply because it has the coherence time of the conden-
sate and is traveling. Using a stable BEC as a phase
reference could enable feedback to perfectly compen-
sate the changes in chemical potential. So far, however,
coherence lengths of atom lasers have not exceeded the
size of the condensate.

Phase coherent matter wave amplification, in direct
analogy to laser gain, has been demonstrated (Inouye et
al., 1999; Kozuma, Suzuki, et al., 1999) and discussed
early on by Bordé (1995); Holland, Burnett, et al. (1996);
Janicke and Wilkens (1996).

2. Studies of BEC wave functions

In the simplest picture of a BEC, all atoms in the
condensate occupy the quantum ground state of the
trap. This wave function is modified by the mean field
interaction of the atoms. As more atoms accumulate in
the condensate, their mutual interaction modifies the
condensate wave function. For repulsive interactions the
condensate wave function broadens at the expense of
increased potential energy from the trap in order to
minimize the mean field energy. Each atom in the con-
densate is coherent across the whole condensate and a
double-slit experiment in either space or time should
show interference fringes.

More sophisticated treatments of atoms cooled below
the BEC transition temperature show that they can exist
in states called quasicondensates that have short range
coherence, but not long range coherence over the whole
condensate. Whether BECs have long range coherence
was studied in interference experiments on BECs.

Bragg diffraction offers high momentum selectivity.
As discussed in Sec. I1.C.3, the spread in velocity of at-
oms that can be diffracted (o,) is determined by the in-
verse duration of interaction with the grating, and can
be deduced from the time-energy uncertainty principle
o,=2/7G. Near-resonant standing waves therefore
probe a specific velocity class, creating a high-resolution
tool for studying BEC velocity distribution. By increas-
ing the interaction time to nearly 1 ms (Stenger et al.,
1999) at MIT achieved a velocity selectivity of 0.1 mm/s,
which allowed us to study the momentum distribution
inside the trap and in a released condensate Fig. 43,
demonstrating the mean field acceleration. The coher-
ence length was equal to the transverse dimension of the
condensate (see Fig. 43, inset).

A similar conclusion was reached independently by
Kozuma, Deng, et al. (1999) at NIST using an atom in-
terferometry technique in which brief pulses of out-
coupled atoms were generated at two closely spaced
times. Each ejected pulse mirrors the condensate itself,
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FIG. 43. Bragg resonances for a trapped condensate (circles)
and after 3-ms time of flight (triangles). This maps the momen-
tum distribution in the trapped (or expanding) condensate. For
comparison, the momentum distributions of the ground state
of the trapping potential (dotted curve) and of a 1-mK cold,
thermal cloud (dashed curve) are indicated. Inset: Bragg peak
widths as a function of condensate size. The plotted Bragg
widths have been corrected by subtracting the contribution of
the mean field and the finite pulse duration. The dashed curve
is based on a prediction for the momentum uncertainty due to
the finite size of the condensate and the uncertainty principle.
From Stenger et al., 1999.

so when the front of the second overlapped the back of
the first the interference observed was indicative of co-
herence between two spatially separated places in the
condensate. The decay of the fringe envelope was as
expected for a fully coherent condensate.

Experiments studying the coherence of atom laser
beams were carried out by Bloch er al. (2000) in T.
Haensch’s laboratory in Munich. Two atom laser beams
coupled out from different locations of the trap were
overlapped to interfere. By changing the separation of
the out-coupling locations, and observing the contrast of
the interference between the two out-coupled beams
they probed the coherence properties of the condensate
wave function on length scales approaching 1 um (Fig.
44). Measurement of the temporal coherence of an atom
laser has also been used to give an upper limit for tem-
poral phase fluctuations corresponding to ~700 Hz in
the Bose-Einstein condensate (Kohl et al., 2001). The
coherence length of an elongated condensate was also
studied with matter-wave interferometry by Hugbart et
al. (2005).

In a related experiment Anderson and Kasevich
(1998) observed interference of atoms from an array of
BEC:s trapped in an optical lattice. The interference be-
tween the BECs at different gravitational potential leads
to a pulsed atom laser beam. Since many sources con-
tribute, the pulses are much shorter than the separation
between them, reminiscent of a mode-locked pulsed la-
ser.

Richard et al. (2003) used momentum spectroscopy
(the method of Fig. 43) to study 1D phase fluctuations in
Bose-Einstein condensates.

3. Many-particle coherence in BECs

The above experiments can all be viewed as looking at
single particle coherence.
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FIG. 44. (Color online) Measurement of coherence length. (a)
Interference pattern of matter-wave beams emitted from two
spatially separated regions of a trapped Bose gas. (b) Spatial
correlation function of a trapped Bose gas as measured by the
fringe visibility as a function of slit separation for temperatures
above (white circles 7=450 nK and squares 7'=290 nK) and
below the critical temperature 7. (grey 7=310 nK and black
T=250 nK), where the visibility decays to a nonzero value due
to the long range phase coherence of the BEC. The data points
are corrected for the reduction in visibility which is due to the
limited resolution of the imaging system. Adapted from Bloch
et al., 2000.

BECs have an even more dramatic coherence than
the extended condensate wave function. The atoms in
the condensate are in one macroscopic state with an or-
der parameter, the phase. Consequently, the phase of
one condensate atom is the phase of all. Therefore a
condensate also exhibits coherence properties resulting
from the interference of different (but indistinguishable)
atoms. This gives it coherence properties like a laser: if
the phase is determined by measuring some of the at-
oms, other atoms will have the same phase.

Measuring the phase of condensate atoms requires a
coherent and stable reference. Such a reference can be
provided by another condensate, or by other atoms from
the same condensate. This is in marked contrast to tra-
ditional atom interference discussed up to now, where
interference is only that of each atom with itself. The
BEC experiments using Bragg scattering demonstrate
only the spatial coherence of individual atoms in a BEC.
We now turn to experiments that show the coherence of
different atoms in a BEC.

The existence of a macroscopic wave function with an
order parameter means that atoms from different
sources can interfere. If an atom from one interferes
with an atom from the other, subsequent atom pairs will
interfere with the same relative phase and fringes will be
built up which reflect the relative phase. This is similar
to interference between two independent lasers (Pflee-
gor and Mandel, 1967; Paul, 1986; Castin and Dalibard,
1997; Kaltenbacek et al., 2006), which also generated con-
troversy prior to its observation.

The first experiment demonstrating this behavior was
by Andrews et al. (1997) in the Ketterle group at MIT.
To demonstrate that two independent BECs can inter-
fere, two independent condensates were produced in a
double-trap potential created by dividing a magnetic
trap in half with a focused blue-detuned laser beam. Af-
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FIG. 45. (Color online) Interference from independent BECs.
Left: Schematic setup for the observation of the interference of
two independent BECs separated by a barrier created by a
blue-detuned laser beam. After switching off the trap, the con-
densates expand ballistically and overlap. In the overlap re-
gion, a high-contrast interference pattern is observed using ab-
sorption imaging. Right: Interference pattern of two expanding
condensates observed after 40-ms time of flight. The width of
the absorption image is 1.1 mm. The interference fringes have
a spacing of 15 um and are conclusive evidence for the multi-
particle coherence of Bose-Einstein condensates. Adapted
from Andrews et al., 1997, and Durfee and Ketterle, 1998.

Condensates overlap
and interfere

ter two BECs were created from separate thermal
clouds, the traps were switched off. The atom clouds
expanded ballistically and overlapped.

The atomic density in the overlap region was ob-
served directly with absorption imaging, and revealed a
high-contrast interference pattern extending over a large
region of space (Fig. 45). The interference pattern con-
sisted of straight lines with a spacing of about 15 um.
This experiment provided direct evidence for first-order
coherence and a macroscopic wave function with long-
range order in the BEC, and caused some to puzzle over
why wave packets expanding radially outwards from two
small condensates would produce straight fringes.

In a related atom chip experiment Hofferberth er al.
(2006) compared the interference of a coherently split
BEC with the interference of two independently created
BECs in identical traps (Fig. 46). The coherently split
BEC shows a well-defined phase, i.e., the same phase for
the fringes each time the experiment is run. In compari-
son, the independently formed BECs show high-contrast
interference patterns but with a completely random
phase.

These results are even more surprising than the inter-
ference of independent lasers. Theories describing laser
sources predict something close to coherent states (for
lasers operated well above threshold), which means that
each laser beam may be thought of as having a well-
defined (if unknown) phase. One cannot, however, assert
that the phase of a BEC exists prior to its observation.
This is because a BEC at T=0 can easily contain a
known number of atoms (however many were put in the
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FIG. 46. (Color online) Comparison of independent and coher-
ently split BECs. (a) For the coherent splitting a BEC is pro-
duced in the single well, which is then deformed to a double
well. A narrow phase distribution is observed for many repeti-
tions of an interference experiment between these two matter
waves, showing that there is a deterministic phase evolution
during the splitting. (b) To produce two independent BECs,
the double well is formed while the atomic sample is thermal.
Condensation is then achieved by evaporative cooling in the
dressed state potential. The observed relative phase between
the two BECs is completely random, as expected for two inde-
pendent matter waves. Adapted from Hofferberth et al., 2006.

trap), in which case number-phase uncertainty prevents
the phase from being specified. So the existence of a
well-defined relative phase, and hence fringes in the
overlap region seems puzzling.

The resolution to this puzzle is that the phase of the
fringes (i.e., the relative phase of the condensates)
emerges only as individual atoms are detected in the
overlap region (Castin and Dalibard, 1997). Since these
atoms cannot be attributed to a particular one of the
interfering condensates, an uncertainty develops in the
relative number of atoms in the condensates, and in ac-
cord with the relative number-phase uncertainty prin-
ciple, they can have a definite relative phase (even
though the total number of atoms in both condensates
plus those detected is known). Given that neither the
phase of either condensate nor their relative phase ex-
isted initially, it should not be surprising that the fringes
in each realization of the experiment are observed in a
different place. After averaging over many realizations
of this experiment, the fringe contrast vanishes because
the relative phase of each realization is random.

Even when many independent condensates interfere,
spontaneous fringes appear. Hadzibabic et al. (2004) ob-
served high-contrast matter wave interference between
30 Bose-Einstein condensates produced in a large-
period one-dimensional optical lattice. Interference was
studied by releasing the condensates and allowing them
to overlap. High-contrast fringes were observed even for
independent condensates with uncorrelated phases as
shown in Fig. 47. This can be explained the same way as
the high-contrast speckles formed by laser light reflect-
ing off a diffuser. However, as in the work with two
independent condensates, averaging over many realiza-
tions the experiment causes fringe contrast to vanish be-
cause the phase is random from shot to shot.
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FIG. 47. Interference of 30 Bose-Einstein condensates each
containing ~10* atoms. (a) A deep 1D optical lattice splits a
cigar-shaped condensate into 30 independent BECs. (b) Ab-
sorption image of the cloud after 22 ms of expansion from the
lattice. The density distribution shows interference fringes. (c)
Axial density profile of the cloud, radially averaged over the
central 25 um. (d),(e) Polar plots of the fringe amplitudes and
phases for 200 images obtained under the same experimental
conditions. (d) Phase-uncorrelated condensates. (e) Phase cor-
related condensates. Insets: Axial density profiles averaged
over the 200 images. From Hadzibabic et al., 2004.

4. Coupling two BECs with light

Saba et al. (2005) demonstrated a way to make an in-
terferometer using two BECs that are never in direct
contact and which are separately trapped at all times.
The key is to use stimulated light scattering to continu-
ously sample the relative phase of the two spatially sepa-
rated BECs. In fact this sampling creates a relative
phase between the two condensates which in the begin-
ning had no initial phase relation.

The basis of the measurement is the beating of two
atom lasers out coupled from the two condensates by
imparting a momentum 7%q. If the relative phase of the
condensates is fixed, the total number of out-coupled
atoms oscillates sinusoidally with periodicity //d as fiq is
scanned (d is the separation of the condensates). The
experimental tool used to impart a precise momentum
to atoms is Bragg scattering. Two counterpropagating
laser beams with wave vectors k;, k, hit the atoms so
that by absorbing a photon from one beam and re-
emitting it into the other one the atoms acquire recoil
momentum Aqg=h(k,—k;) (provided that the energy dif-
ference between photons matches the atom recoil en-
ergy). For each atom out coupled, a photon is trans-
ferred from one beam to the counterpropagating one.
Therefore all information contained in the stream of
out-coupled atoms is also present in the light scattered
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from one beam to the other. Relative phase data were
gathered in real time by monitoring the intensity of the
weaker of the Bragg laser beams, instead of terminating
the experiment to measure the out-coupled atoms using
absorption imaging.

Since the relative phase of the condensates can be
measured after scattering only a small fraction of atoms
out of the condensates, this technique gives a relatively
nondestructive measurement of the relative phase. This
technique therefore allows one to prepare an initial rela-
tive phase (by an initial measurement) of the separated
condensates, then to read it out continuously, and
thereby to monitor the phase evolution. This way one
can realize interferometry between two trapped Bose-
Einstein condensates without ever splitting or recombin-
ing the wave function. The condensates cannot be too
far apart, however, as the relative atom number uncer-
tainty cannot arise until atoms out coupled from the first
condensate have time to reach the second atom laser
beam and create a downstream atom laser whose atoms
could have arisen from either condensate. (In fact, when
the atom laser beams interfere destructively, the Bragg
beams operating on the second condensate effectively
capture atoms from the first atom laser beam and insert
them in the second condensate.) The necessity for this
process to have occurred dictates the temporal delay of
the buildup of the light fringes in Fig. 48(a)—it takes
about 250 us for atoms to make this trip.

This atom interferometer, featuring interference be-
tween always-separated ensembles of interacting atoms,
is several significant steps away from the prototypical
interferometer in which uncorrelated noninteracting in-
dividual atoms traverse one at a time. In fact, it re-
sembles a gedanken experiment involving two high-Q
L-C circuits resonant with the ac power source in the
laboratory. Suppose these are both plugged in to differ-
ent power outlets for a while, then disconnected. If some
time later these are attached to the reference and signal
ports of a phase detector, it will read a definite phase.
Moreover, this phase will be reproducible shot to shot. If
one of the L-C circuits is somehow perturbed, then the
phase shift will be systematically modified. Does this
situation involving classical L-C circuits constitute an in-
terferometer, or just classical fields interfering?

In fact, it is almost perfectly analogous to the experi-
ment just described, with the roles of matter and elec-
tromagnetic waves reversed. The L-C resonant circuits
are classical containers containing coherent states of low
frequency photons; the light traps are classical contain-
ers containing coherent states of atoms. In either case
phase shifts can be caused by interactions with the con-
tainer (squeezing one of the L-C circuit components or
light traps), or by interactions with the quantized me-
dium within (e.g., by nonlinear circuit elements added to
the L-C circuit or by a magnetic field that interacts with
the BEC). The initial coherence is induced by the ex-
change of photons with the coherent source provided by
the power generation station in one case, and by the
mutual exchange of atoms in the other. There is a sig-
nificant interaction among the atoms in the BEC,
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FIG. 48. Preparing a relative phase between two independent
BECs with no initial phase relation. (a) The temporal trace of
the Bragg beam intensity shown with the pulse sequence. (b)
Phase of the oscillations recorded during the first pulse. (c)
Phase during the second pulse. (d) Phase difference between
(b) and (c). (e) Phase difference between the oscillations in two
pulses as a function of the phase shift applied during the evo-
lution time between pulses. Each point is the average of sev-
eral shots (between 3 and 10). From Saba ef al., 2005.
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whereas the Kerr effect for L-C circuits is small, but this
is not fundamental. Neither the L-C circuits nor the
light wells are interfering; both function as classical con-
tainers for waves that are phased together. The waves
undergo differential interactions, and interfere later to
produce a measurable phase shift. Ideally this is solely a
measure of the interaction, but in practice small differ-
ences between the two containers cause detrimental
phase shifts.

E. Studies with and of BECs

Up to now we have reviewed experiments and theo-
ries pertaining to the coherence of BECs. Now we shift
perspective and consider them as interesting condensed
objects in their own right. Some of the earliest work that
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FIG. 49. (Color online) Josephson oscillations. (a) Small popu-
lation imbalance causes Josephson oscillations, and large
population imbalance causes self-trapping. (b) Quantum
phase-plane portrait for the bosonic Josephson junction. In the
regime of Josephson oscillations the experimental data are
represented with filled circles and in the self-trapping regime
with open circles. The shaded region indicates the Josephson
regime, and the solid lines are obtained by solving the coupled
differential with the specific experimental parameters. From
Albiez et al., 2005.

showed this was the frequencies of shape oscillations of
the condensate. In this section we review experiments
made using the techniques and ideas of atom optics and
interferometry and that allow one to address other prop-
erties of BECs. We review the coupling of two BECs to
mimic the physics of Josephson junctions, their intrinsic
decoherence, and two experiments that probe their
structure.

1. Josephson oscillations

As shown by Smerzi et al. (1997), two trapped BECs
that are weakly coupled (i.e., by tunneling through the
barrier) are represented by a generalization of the equa-
tions that apply to a Josephson junction. The analog is
that the sine of the phase difference causes a current
flow between the traps that changes the number differ-
ence (and hence the potential difference that drives the
phase change). Given two trapped BECs, by adjusting
the tunneling rate (i.e., the coupling strength between
the two BECs), Josephson oscillations between two
weakly linked Bose-Einstein condensates can be stud-
ied.

The experiments of Albiez et al. (2005) demonstrated
both the nonlinear generalization of tunneling oscilla-
tions in Josephson junctions for small population imbal-
ance z and nonlinear macroscopic quantum self-trapping
for large population imbalance. The distinction between
the two regimes is apparent in the phase-plane portrait
of the dynamical variables z and ® as shown in Fig. 49.
The successful experimental realization of weakly
coupled Bose-Einstein condensates adds a new tool both
to condensed matter physics and to quantum optics with
interacting matter waves. In particular, we have to real-
ize that the beam splitting (and also the recombination if
done at high density) of two BECs must be discussed in
terms of the Josephson effect, or possibly its generaliza-
tion.
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A detailed study of the phase noise in the interference
patterns allowed Gati and co-workers (Gati, Esteve, et
al., 2006; Gati, Folling, et al., 2006; Gati, Hemmerling, et
al., 2006) to measure the temperature of the tunnel
coupled BECs. Further examples of tunneling were in-
vestigated with BECs trapped in optical lattices by
Anderson and Kasevich (1998) and Orzel et al. (2001) in
M. Kasevich’s laboratory and by Cataliotti et al. (2001,
2003) in Florence.

2. Spontaneous decoherence and number squeezing

BECs have an intrinsic decoherence due to fluctua-
tions in the number of atoms they contain. If a BEC is
prepared in a number (Fock) state, its phase is indeter-
minate. If its phase is determined, for example, by plac-
ing the BEC in a coherent state, then it must be in a
superposition of states with different atom number. [For
example, a coherent state is a (coherent) superposition
of states with different number, with rms variation VN.]
Since the mean field energy of a trapped BEC increases
with N (~N?7 in a harmonic trap), this means the differ-
ent components have different energy, evolve at a differ-
ent rate, and get out of phase. The time for this to hap-
pen is typically 25-50 ms, severely limiting the accuracy
of BEC interferometers.

Even if a BEC interferometer starts with a definite
number of atoms in the central well, the VN projection
noise at the beam splitter translates into fluctuations of
the chemical potential which results in fluctuations in
the accumulated phase of the interferometer and, conse-
quently, in a rapid dephasing of the split BEC. The
phase diffusion rate can then be estimated by

R,=——"AN, (49)

where N is the number of atoms in the BEC and w its
chemical potential. With the chemical potential u larger
than the trapping frequency w (u>#w) for trapped at-
oms after typically a few transverse trapping times the
phase is random and the coherence is lost. This phase
diffusion caused by the interactions between atoms puts
stringent limits on the persistence of coherence in a
BEC interferometer.

This interaction-induced dephasing can be reduced in
different ways:

e Reduce the effect of interactions by tuning the scat-
tering length with a Feshbach resonance. This may
permit setting the scattering length to zero. This re-
quires precise control over the magnetic field, and
may limit the number of atoms used in the experi-
ments since the mean field repulsion is proportional
to the scattering length and hence the ground-state
condensate will no longer be spread out.

e If the method of light scattering described above to
measure the phase evolution of the two condensates
is applied to two initially number-squeezed conden-
sates (e.g., if a large condensate were separated adia-
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batically), it will add differential number uncertainty
only in proportion to how well the phase is deter-
mined.

e If the splitting is performed adiabatically, the repul-
sive interaction itself will tend to equalize the chemi-
cal potentials of the splitting condensates. Thus the
relative atom number distribution will be reduced if
the splitting is performed slowly. This will reduce the
relative phase diffusion rate of the initial conden-
sates at the cost of an increased uncertainty in the
initial phase, which can be increased to the measure-
ment noise level without penalty. For interferometers
using large condensates this can lead to significant
increases in their sensitivity and applicability.

In fact, dramatic observations of number squeezing
have already been made. Squeezing between atoms
trapped in arrays of traps was observed by Orzel et al.
(2001). Recently Jo, Shin, et al. (2007) observed a dra-
matically reduced phase diffusion in a trapped BEC split
with an rf splitter on an atom chip, and Esteve et al.
(2008) observed number squeezing directly in a BEC
split in an optical dipole trap. In a recent theoretical
analysis, Grond ef al. (2009) showed how to speed up the
splitting process by more than an order of magnitude by
using optimal coherent techniques.

3. Structure studies of BEC

According to theory, a BEC possesses collective
modes (e.g., sound waves) due to the interactions of the
atoms. In a quantum many-particle description, its dis-
persion relation has the Bogoliubov form

v=\1}+ 2wulh, (50)

where w=ndmh?a/m is the chemical potential, with a
and m denoting the scattering length and the mass, re-
spectively, n is the density of the condensate and Ay
=q?/2m is the free particle dispersion relation (Stamper-
Kurn et al., 2001; Ozeri et al., 2005).

In a typical Rb or Na condensate, w/h is about a kHz,
corresponding to speeds of ~cm/s or less. The Bragg
spectroscopy discussed previously generates atoms with
several times this speed, which therefore have nearly
their free-particle dispersion relation (the mean field en-
ergy term being negligible). However, by reducing the
angle of the Bragg beams from 180° to much smaller
angles, the transferred momentum was correspondingly
reduced, and many fewer atoms are liberated from the
condensate (i.e., the static structure factor is no longer
unity), and the frequency shift relative to a free particle
follows Eq. (50). Studies of BEC structure have been
given by Steinhauer ef al. (2003); Katz et al. (2004), and
theory for these measurements has been discussed by
Blakie and Ballagh (2000) and Carusotto et al. (2000).

Physics which goes deeper into the properties of de-
generate quantum gases and their coherence properties
is outside the purview of this review, so we refer the
reader to a series of reviews which summarize the status
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of this evolving field (Dalfovo et al., 1999; Cornell and
Wieman 2002; Kasevich, 2002; Ketterle, 2002).

4. Dynamics of coherence in 1D systems

Interference allows us to study the dynamics of
(de)coherence in degenerate Bose gases. This is espe-
cially interesting in the one-dimensional (1D) regime
where long-range order is prevented by the ubiquitous
phase fluctuations.

In their experiments Hofferberth, Lesanovsky, Fis-
cher, et al. (2007a) coherently split a 1D quasi conden-
sate, characterized by both the temperature 7 and
chemical potential w fulfilling kzT, u<hv,, along the
transverse direction which initializes the system in a mu-
tually phase coherent state, and phase fluctuation pat-
terns of the two individual 1D systems being identical.
This highly nonequilibrium state relaxes to equilibrium
over time and the evolution of (de)coherence is revealed
in local phase shifts leading to increased waviness of the
interference pattern (Fig. 50).

If the two parts of the system are completely sepa-
rated, the equilibrium state consists of two uncorrelated
quasicondensates and Hofferberth, Lesanovsky, Fischer,
et al. (2007) observed a randomization of the relative
phase 6(z,f) as expressed in the coherence factor W(¢)
=(1/L)|fdze'"*")|. Most interestingly, ¥(f) decays subex-

ponential W(z)oe "/ 0™ as predicted by Burkov et al.
(2007) based on a Luttinger liquid approach (Haldane,
1981). Qualitatively similar behavior was observed at
MIT (Jo, Choi, et al., 2007) for elongated condensates
with u~2hv, and T~5hv,.

For finite tunnel coupling between the two systems
Hofferberth, Lesanovsky, Fischer, et al. (2007) observed
that the final equilibrium state shows a nonrandom
phase distribution (Fig. 50, bottom). The phase random-
ization is counterbalanced by the coherent particle ex-
change between the two fractions, equivalent to injec-
tion locking of two matter wave lasers. The final width
of the observed phase spread depends on the strength of
the tunnel coupling Gati, Hemmerling, et al. (2006).

5. Measuring noise by interference

In many-body systems quantum noise can reveal the
nonlocal correlations of underlying many-body states
(Altman et al., 2004). Recently it has been suggested that
the statistics of the shot-to-shot fluctuations in fringe
contrast probe higher-order correlation functions (Grit-
sev et al., 2006; Polkovnikov et al., 2006).

This rationale was used by Hofferberth, Lesanovsky,
Schumm, et al. (2007) in an experiment investigating the
statistical properties of interference experiments per-
formed with pairs of independently created one-
dimensional atomic condensates (Hofferberth et al.,
2006). The shot-to-shot variations of interference can
then be directly related to the full distribution functions
of noise in the system (Polkovnikov et al., 2006). Probing
different system sizes they observe the crossover from
quantum noise to thermal noise, reflected in a character-
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FIG. 50. (Color online) Direct observation of the phase dynamics through interference. Example images of the observed inter-
ference patterns for hold times t=1,4,7,10 ms (top) in the case of isolated 1D systems and (bottom) for finite tunnel coupling. The
different transverse double-well potentials are shown. Adapted from Hofferberth, Lesanovsky, Fischer, et al., 2007.

istic change in the distribution functions from Gumbel-
type to Poissonian (see Fig. 51). The results are in excel-
lent agreement with the predictions of Gritsev et al
(2006) based on the Luttinger liquid formalism

(Haldane, 1981).
These experiments demonstrate the power of quan-
tum noise analysis in interference patterns as a probe of
L=10pum

L=24um L=37um

F=11] ,

L=51pum

of R F=41] , F=1.7| , F=0.8

FIG. 51. (Color online) Distribution functions of the measured
interference contrasts for different lengths L along the 1D con-
densate. (a) The length-dependent normalized interference
contrasts « with parameters (n,p=60 um™', v, =3.0 kHz, K
=46). The curves show the corresponding calculated distribu-
tions for 7=30 nK (£7=0.9 um). (b) Same parameters as in (a),
but higher temperature 7=60 nK. For both sets Hofferberth,
Lesanovsky, Schumm, et al (2007) observed the predicted
change of overall shape of the distribution functions from
single-peak Gumbel-type characteristic for quantum noise to
Poissonian characteristic for thermal noise. Adapted from
Hofferberth, Lesanovsky, Schumm, et al., 2007.
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correlated systems, and the power of simple ultracold
atom systems to exhibit and illustrate fundamental
quantum processes relevant in many areas of physics.

6. Momentum of a photon in a medium

The momentum of a photon propagating in a medium
is a topic fraught with controversy. When an electromag-
netic wave enters a medium with index of refraction n,
its wavelength is reduced, and its wave number is in-
creased by n. Thus is seems evident that a single photon
in this medium would have momentum p =nfik,,., a con-
clusion reached by Minkowski (1908, 1910) using classi-
cal physics. On the other hand, if the photon is consid-
ered as a particle, it seems strange that it should increase
its momentum when entering a medium in which its
speed is reduced. Such a viewpoint is supported by
Abraham (1909) who found p =fik,,./n. Resolving these
two viewpoints has been cited as one of the challenges
of theoretical physics (Peierls, 1991).

When a photon propagating in an atomic gas is ab-
sorbed by one of the atoms in the BEC, what is the
momentum of the atom after the absorption? This ques-
tion seems less subject to uncertainty since it can be
settled by a measurement; it is also important in preci-
sion experiments to measure A/m as discussed in the
next section. For a dilute atomic gas, a third opinion
seems justified: a BEC has only a few atoms per cubic
wavelength, and no obvious mechanism to transfer mo-
mentum to or from the atoms not involved in the
absorption—hence the atom will absorb momentum p
=fikyac-

In a recent experiment done in a BEC by Campbell et
al. (2005), a double pulse Kakpita-Dirac interferometer
was used to measure the recoil energy of Rb atoms in a
BEC for laser frequencies on both sides of the reso-
nance (see Fig. 52). The results showed marked structure
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FIG. 52. (Color online) Recoil frequency measured on two
sides of resonance. The dashed line shows expected result for
free atoms and the solid line corrects for chemical potential
assuming p =hk,,.. The solid line with error shading shows ex-
pectation if p=nfik,,.. From Campbell et al., 2005.

near the resonance, consistent with that predicted from
the variation of n near the resonance only if p=nfik,.

With continued progress on these topics, interferom-
eters with BEC hold the promise to be employed as
highly sensitive devices that will allow exploration of a
large variety of physics questions. These range from
atom-surface interactions to the intrinsic phase dynam-
ics in interacting (possibly low dimensional) quantum
systems or the influence of the coupling to an external
“environment” (decoherence).

F. Testing the charge neutrality of atoms

The equality of the electrical charges of the electron
and proton and the charge neutrality of the neutron are
of great significance in the fundamental theory of par-
ticles (Chu, 1987; Unnikrishnan and Gillies, 2004). Ex-
perimental tests of the electrical neutrality of bulk solid
matter and bulk quantities of gas are precise enough at
present to state that (g,+¢,)/e<107*! (Dylla and King,
1973; Marinelli and Morpurgo, 1982, 1984). An experi-
ment searching for deflection of a neutron beam has set
a similar limit for the electric charge of the neutron g,
<1072! (Baumann et al., 1988). Experiments with indi-
vidual atoms or molecules in a beam have only been
able to verify the net electrical charge of g,+q, is less
than 10" (Zorn et al., 1963; Hughes et al., 1988).

A dedicated atom interferometry experiment could
detect a phase shift if (¢,+¢,)/e=10722. The phase shift
would be

¢=(q,+9,)ZEAxLIvfi ~ 107 rad, (51)

where we have assumed Z=55 is atomic number, &
=10 kV/mm is the applied field, Ax=100 um is the
separation of the paths in the interferometer, L is the
length of the interaction region, and v=100 m/s is the
atomic velocity. Champenois ef al. (2001b) and Dehuille
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TABLE II. Inertial sensing resolutions demonstrated with
atom interferometers.

Sensor Resolution

2x10°8 (g)/\Hz
410~ (g/m)/\Hz
610710 (rad/s)/\Hz

Gravimeter®
Gravity gradiometerb
Gyroscope®

#Peters et al. (2001).
"McGuirk ez al. (2002).
‘Gustavson et al. (2000).

et al. (2001) studied this. The main difficulty will come
from the electric polarizability of atoms which will cause
large phase shifts due to field gradients. But because
these phase shifts are quadratic in the applied electric
field while the proposed effect is linear, these stray phase
shifts should mainly limit sensitivity.

V. PRECISION MEASUREMENTS

Since their demonstration in 1991, atom interferom-
eters have become precision measurements tools. The
advantages of small de Broglie wavelengths, long propa-
gation times, and the narrow frequency response of at-
oms are responsible for atom interferometers already
having made an impact on many fields of fundamental
science and engineering. In the present section, we dis-
cuss measurements of acceleration, platform rotation,
the Molar-Planck constant (N4 X &), and the fine struc-
ture constant («). Although some measurements of
atomic and molecular properties are precision measure-
ments by the standards of those fields, they will all be
discussed in Sec. VI.

A. Gravimeters, gryroscopes, and gradiometers

Inertial sensors based on atom interferometers al-
ready perform comparably to the best available sensors
based on any technology. At their current levels of res-
olution summarized in Table II several applications are
within reach. In fact, development has begun for com-
mercial sensors and applications using atom interferom-
eters. To explore the precision, resolution, accuracy, re-
sponse factor, bandwidth, dynamic range, and stability
achievable with atom interferometers we begin by look-
ing at the different designs used for gravimeters, gyro-
scopes, and gravity gradiometers.

Thermal atom beams for rotation, freely falling atoms
for acceleration, and two clouds of falling atoms with a
common laser beam for the gradiometer have given the
best results to date. This is in part because rotation sen-
sors have a response factor (i.e., phase shift per rotation
rate) that increases linearly in proportion to the atom’s
time of flight; but accelerometers have a response factor
that increases quadratically with time of flight. Part of
the tradeoff is that fast atom beams offer more atoms
per second than cold atom sources. Larger interferom-
eters will improve sensitivity and slow atom interferom-
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eters can make compact sensors. In each case, to judge
the overall performance one must also look at system-
atic errors.

Displacements from an inertial reference frame with a
constant acceleration g and a constant rotation Q) causes

a phase shift for a three-grating interferometer
$=(G-g)7+2G- (A X707, (52)

where G is the reciprocal-lattice vector of the gratings
and 7 is the time of flight for atoms with velocity 7 to
travel between gratings (Dresden and Yang, 1979; Anan-
dan, 1981; Malykin, 2000; Bongs et al., 2006; Dubetsky
and Kasevich, 2006). Referring to our previous section
on the origin of phase shifts, this phase is equivalent to
the envelope shift, a classical property. Equation (52)
can be derived from the grating phase [introduced in
Sec. 111, Eq. (18)]

=G -[%1(t)) - 25,(8,) + T3(13)], (53)

where x; is the transverse position of the ith grating
(with respect to an inertial frame) at time f; (when the
atoms interact with the grating).

Rotation about the center grating in a space-domain
interferometer causes a phase shift

baom =2QGL1=47QOmA/R, (54)

where L is the separation between gratings, 7is the time
of flight between gratings, and A is the area enclosed by
the interferometer paths. For an optical interferometer,

Biight = 2QG L% c = 4TQAIN . (55)

The ratio of phase sifts for a given rotation rate ({}),
assuming equivalent interferometer areas (A), is

Patom — m_cz — Aph € ~ 1010, (56)
Dlight  lw  Agpv

This ratio shows that atom interferometers have a large
Sagnac response factor compared to optical interferom-
eters.

However, to really gain this large increase in reso-
lution (at the expense of bandwidth v/c) both the en-
closed area and the count rate of the two types of inter-
ferometers must be equal. But a fiber optic ring gyro can
easily have an enclosed area of A=10° m? and still have
a much better bandwidth compared with the largest
atom interferometers that have A=10"* m%. So the re-
sponse factor is only a few orders larger for today’s atom
interferometers. Furthermore, while the count rate for
an optical watt of power is on the order of
10" photons/s, typical atom interferometers offer only
107 atoms/s.

For acceleration, one can see from Eq. (52) that

¢atom/¢light = (C/U)z (57)

if identical gratings are used for light and atom interfer-
ometers.

The presence of velocity v in the Eq. (52) has two
important consequences. For a space-domain interfer-
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ometer, the acceleration phase depends on 7 while the
rotation phase depends on 7. Therefore slow atoms are
particularly advantageous for sensing acceleration, but
fast atoms (beams) offer competitive sensitivity for gyro-
scopes. That is why the best gravimeters use cold atoms,
and the best gyroscopes use thermal atomic beams.
From the vector notation in Eq. (52) one can see that
reversing the atom velocity switches the sign for the ro-
tation phase but not the acceleration phase. This pro-
vides a method to distinguish (), from g, or g,. Kassev-
ich used counterpropagating atom beams for this reason
(Gustavson et al., 2000).

Instrument resolution is given by the response factor
times the precision with which the phase shift can be
measured. Since the noise-limited phase precision in-
creases with the square root of time [as discussed in Sec.
IIL, Eq. (19)], it is customary to report the resolution per
root hertz. Instrument bandwidth is limited in part by
the desired resolution and also simply by the atom’s time
of flight. Dynamic range can be limited by dispersion.
For example, if there is a velocity spread in a space-
domain interferometer, then the resulting spread in in-
ertial phase decreases the contrast, as discussed in Secs.
IIT and IV. For a Gaussian distribution in phase with an
rms oy, the contrast is reduced by the factor C/C,
= (el = (11205,

Measurements of gravitational acceleration in the en-
gineering literature are often reported in units of uGal
(1 uGal=10"® m/s?) or the more common unit of g
(g=~9.8 m/s?). Many applications in geophysics are cur-
rently served with sensors that have 5x 107 g (5 uGal)
precision after averaging for 15 min (Allis et al., 2000).
The light pulse (Raman) interferometer by Peters et al.
(2001) (described in Sec. III) attains this precision in less
than 1 min. Measurements with this apparatus that show
time variations in local g due (mostly) to tides are shown
in Fig. 53. Some variations in g due to sources of geo-
physical interest are shown in Table III.

Gravity gradients in the engineering literature are of-
ten measured in units of £ (1E=10" s2=10"1 g/m) or
simply g/m. By measuring the differential gravitational
acceleration in two atom interferometers located 1 m
apart from each other, Snadden et al. (1998) measured
the Earth’s gravity gradient (Vg=3x10"° g/m) with an
uncertainty of 5% and Fixler ef al. (2007) measured the
change in gravity gradient caused by a 540-kg source
mass of Pb (Vg=8x10" g/m) with an uncertainty of
0.3%. Related measurements are also described by Fos-
ter et al. (2002); Kasevich (2002); McGuirk et al. (2002).
Second-order phase shifts due to the Earth’s gravity,
gravity-gradients, and centrifugal and Coriolis forces
due to the Earth’s rotation have been identified by Ber-
toldi et al. (2006); Bongs et al. (2006); Dubetsky and
Kasevich (2006) (see Table 1V).

Historical background. The first measurements of g
with a matter-wave interferometer were done with neu-
trons by Colella et al. (1975). An early proposal for atom
interferometer measurements of g by Clauser (1988) was
followed by several demonstrations with rapidly improv-
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FIG. 53. Measurements of g. (a) Two days of gravity data.
Each data point represents a 1-min gravity measurement. The
solid lines represent two different tidal models. (b) The residu-
als of the data with respect to a tidal model where (i) the Earth
is modeled as a solid elastic object and (ii) the effects of ocean
loading of the Earth are taken into account. From Peters et al.,
2001.

ing resolution and accuracy (Kasevich and Chu, 1992;
Peters et al., 1997, 1999, 2001; Schmiedmayer et al., 1997;
Young et al., 1997). An atom beam sensor for little g
based on the classical moire effect was also constructed
with three material gratings by Oberthaler, Bernet, et al.
(1996).

In 1913, Sagnac (1913a, 1913b) made his famous light-
interferometric measurement of platform rotation.
Michelson (1925) measured the rotation rate (), of the
Earth, with a large optical interferometer. The Sagnac
effect with neutron and electron interferometers has
also been demonstrated (Werner et al., 1979; Hasselbach
and Nicklaus, 1993). Atom interferometer gyroscopes
were proposed early on by Clauser (1988). An atom in-
terferometer Sagnac gyroscope was first built by Riehle
et al. (1991) and large improvements in sensitivity were

TABLE III. List of geophysical sources of change in g (Allis et
al., 2000; Peters et al., 2001; Sasagawa et al., 2003).

Gravitation source Magnitude
Tides at Stanford, CA 2x1077 g
1000 kg, 1.5 m away 3x107% g
Loaded truck 30 m away 2x107% g
Elevation variation of 1 cm 3x107% g
Ground water fluctuation of 1 m 5x107% g
108 kg of oil displacing salt at 1 km 5x1077 g
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TABLE IV. Rotation rates due to various causes.

Cause Rotation rate (rad/s)
Earth’s rotation 0,=72%x1073

Tidal drag in 1 yr 80,=10"1
Lense-Thirring Q=101

Geodetic effect Qgp=10"12

demonstrated by Lenef et al. (1997) and Gustavson et al.
(1997, 2000).

B. Newton’s constant G

Newton’s constant G is the least accurately known
fundamental constant. The 2005 CODATA value of G
has a precision of 1.4Xx10™* (Mohr and Taylor, 2005),
although several individual experiments have recently
claimed precision better than this (Gundlach and
Merkowitz, 2000; Quinn et al., 2001). Atom interferom-
etry is a relatively new method to measure G, and may
soon provide comparable precision to the CODATA
value.

The Kasevich group determined G with a precision of
31073 (Fixler et al., 2007), and the Tino group reported
a value for G with a precision of 1x 1072 (Bertoldi et al.,
2006). Both of these groups use two atom interferometer
gravimeters and a movable source mass of order 500 kg.
The Tino group plans to extend their precision to the
10~* level. Methods to measure G with atom interferom-
etry have also discussed by Kasevich (2002); McGuirk et
al. (2002); Fattori et al. (2003); Stuhler (2003).

C. Tests of relativity

In accord with FEinstein’s principle of equivalence,
atomic mass m does not enter into Eq. (52). However,
theories that go beyond Einstein’s general relativity mo-
tivate the search for composition-dependent gravita-
tional forces. The principle of equivalence has been
tested accurately enough to state Ag/g=1.2+1.7x10"7
for the two different Rb isotopes (Fray et al., 2004) and
there are plans based on current technology to increase
the precision of this test to Ag/g~10"" (300 times bet-
ter than current limits from any method) (Dimopoulos et
al., 2007). There are also proposals to measure g for an-
timatter using interferometry of positronium or antihy-
drogen.

Searches for a breakdown of the 1/r? law are another
test of general relativity, in this case motivated by string
theories and the possibility of compact dimensions. Ex-
periments to detect non-Newtonian gravitational poten-
tials with multiple atom interferometers located at dif-
ferent distances from the Earth’s center have been
discussed by Mathevet et al. (2002) and Dimopoulos et
al. (2007). Experiments to search for a breakdown of the
1/r? law at micrometer length scales using atom interfer-
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ometry were discussed by Dimopoulos and Geraci
(2003) and Ferrari et al. (2006).

The gravitational scalar AB effect would be an inter-
esting test at the intersection of quantum mechanics and
gravity. If a 5-cm-radius lead sphere has a small hole in
the center, Cs atoms placed there have a frequency shift
of about 7 Hz. Thus atoms at the top of their trajectory
could easily experience a phase shift ~10 rad, enabling a
quantum measurement of the gravitational potential. If
the lead is assembled around the atoms in one interfer-
ometer arm, or if the lead is moved into position quickly
compared to the atoms’ transit time, the effects of the
gravitational field (force) can largely be eliminated,
making this a sensitive measure of gravitational poten-
tial.

Atom interferometer rotation sensors in low Earth or-
bit should be able to measure the geodetic effect and
possibly the Lense-Thirring rotation. According to spe-
cial relativity, freely falling gyroscopes orbiting in the
vicinity of the Earth will experience the geodetic effect
caused by the motion of the gyroscope in the gravita-
tional field of the Earth (Schiff, 1960; Jentsch et al., 2004)
For low Earth orbit, the rotation rate induced by the
geodetic effect is 107!2 rad/s, and is independent of the
Earth’s rotation rate.

The Lense-Thirring rotation [Thirring (1918)] is a gen-
eral relativity effect that causes a gyroscope to rotate
relative to the fixed stars due to a massive rotating body
being nearby. It is also called the gravitomagnetic effect.
In low Earth orbit (700-km altitude), this can be as large
as 10" rad/s and depends on the orientation of the
Earth’s spin. Measurements of both the geodetic effect
and the Lense-Thirring effect is the objective of future
space borne atom interferometer missions (Jentsch et al.,
2004).

While optimistic proposals to detect gravity waves us-
ing atom interferometers (Chiao and Speliotopoulos,
2004; Tino and Vetrano, 2007) have been questioned
(Roura et al., 2006) it is clear that precision measure-
ments of G, g, and tests of the 1/r? law are possible
using various atoms as test particles.

D. Interferometers in orbit

In addition to ultraprecise atomic clocks to improve
the atomic clocks already aloft for the GPS system,
physics experiments that could benefit from being in
space include measurements of the gravitational red-
shift, tests of Einstein’s equivalence principle, mapping
the Lense-Thirring effect close by the Earth, and mea-
surements of //m.

NASA works on these goals with the laser cooled
atom physics (LCAP) and ultraprecise primary atomic
reference clocks in space (PARCS) programs planned
for the international space station (Lee and Israelsson,
2003). The European Space Agency’s HYPER-precision
atom interferometry in space project is described in sev-
eral articles in General Relativity and Gravitation, Vol.
36, No. 10, (2004) starting with Jentsch et al. (2004); see
Fig. 54.
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FIG. 54. (Color online) The mission scenario: HYPER, which
follows a nearly polar circular orbit, will measure with two
atomic gyroscopes the two characteristic components of the
Lense-Thirring rotation as a function of latitudinal position 6.
From Jentsch et al., 2004.

E. Fine structure constant and /M

One of the highest precision atom interferometry ex-
periments is the measurement of #/m,,,. This leads to
a measurement of the molar Planck constant N h
=(M giom! Marom)h X 1000, where My, is the atomic
weight of the atom in grams and the factor of 1000
comes in converting the atomic mass into kilograms.
This was done by Weiss et al. (1993, 1994) and Wicht et
al. (2002) and more recently by Biraben and co-workers
(Battesti et al., 2004; Clade et al., 2006). Both groups
achieved a precision of ~14 parts per billion (ppb) by
measuring the velocity change of an atom due to the
photon recoil (from emission or absorption). As we dis-
cuss, these measurements lead to a value for the fine
structure constant at ~7 ppb when combined with other
measurements.

The underlying physics, first exploited using neutrons
by Kruger et al. (1995), is based on the de Broglie wave-
length

)\dB = h/mv . (58)

A simultaneous measurement of both A\gg and v gives
h/m, where m is the mass of the neutron of the particu-
lar atom used in the experiment. In the interferometer
experiment of Chu, the measured quantity is essentially
the frequency with which an atom with the recoil veloc-
ity (from absorbing a photon of wave vector k)

Urec = hk/mCs (59)
crosses the fringes in a standing wave,
@ =270 e/ Ngp ~ Bk /M, (60)

where we have replaced \jg with the wavelength of the
light causing the recoil. In the Biraben experiment, the
Doppler shift associated with this recoil is measured:

wp = kvrec = ﬁkz/mRb. (61)

These frequencies are equal to the recoil frequency
(typically 10 kHz) derived earlier from consideration of
the energy of recoil.

In the actual experiments, the measured frequency is
several times the recoil frequency. Measuring the small
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recoil frequency to ppb accuracy is impossible given a
maximum free fall time for the atoms of a fraction of a
second. Hence both experiments increase the measured
velocity by contriving to add recoil velocities from the
absorption of many photons. In the Chu experiments
these are added in using up to 60 Raman pulses or adia-
batic (stimulated adiabatic rapid passage) transfers, in
the Biraben experiment by accelerating an optical lattice
into which the atoms are embedded. Although the initial
and final lattice speeds are not quantized, the atoms ac-
celerated in them always absorb an integral number of
lattice momenta (sum of momenta in the two laser
beams forming the moving lattice)—up to 900 photon
momenta in Clade et al. (2006).

Both of these experiments are essentially measure-
ments of velocity, using the combined techniques of
atom optics (to add velocity) and atom interferometry to
detect it. This is indicated by the fact that the signal
increases linearly with the extra velocity. An interferom-
eter configuration that uses contrast interferometry to
measure the recoil energy has been proposed and dem-
onstrated (Gupta et al., 2002). It shows the quadratic
dependence of phase shift on photon number (velocity)
expected for an energy measurement, and therefore re-
quires that less additional momentum be added to
achieve the same precision.

An important consequence of the A/m measurement
is to provide a high-accuracy route to the determination
of the fine structure constant a. This is based on the
relationship

o? = (é’/hc)? = 2R./c)him,. (62)

Combining atom interferometer results with indepen-
dent measurements of the optical frequency (w=ck)
(Gerginov et al., 2006), the mass ratios mc,/m,, (Riehle et
al., 1996; Bradley et al., 1999) and m,/m, (Mohr and
Taylor, 2005) and the Rydberg R, (Mohr and Taylor,
2005) gives a value of the fine structure constant.

The determination of « from h/m¢, has a precision of
7 ppb (Wicht et al., 2002), and from Rb of 6.7 ppb (Clade
et al., 2006). Thus this route already offers the second
most accurate value of « (after the measurement of g
-2 for the electron), and therefore allows the most pre-
cise comparison across different subfields of physics, as
shown in Fig. 55. It essentially offers a comparison of
QED with such things as the de Broglie wavelength re-
lationship and calculations of atomic structure in hydro-
gen. Such cross-field comparisons are important for the
unity and global understanding of physics, and provide
one of the few routes to discover underlying errors in an
isolated subfield. It is interesting to note that several of
the values appearing in Fig. 55 have been substantially
re-evaluated between 1998 and 2002, which proves that
the fine structure constant is not so well known (it is
known mostly due to the electron spin anomaly).

No precision experiment is easy, and the 4/m mea-
surements discussed here experience difficulties from vi-
bration that changes the velocity of the reference light
waves [the scheme by Gupta et al. (2002) demonstrated
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FIG. 55. (Color online) Determinations of the fine structure
constant « by several methods. The value from //m(Cs) is
from atom interferometry (Wicht et al., 2002) and the & /m(Rb)
value is determined with Bloch oscillations (Clade et al., 2006).
References are given in Mohr and Taylor (2005) for the values
obtained from measuring the muonium hyperfine splitting
(Avpg,), measuring the von Klitzing constant with the quantum
Hall effect (Rg), measuring recoil velocity of neutrons Bragg
reflecting from silicon crystals (k/m,,), or measuring gyromag-
netic ratios (I', , o), or measuring electron and positron
anomalies (a,=g,/2-1). From Mohr and Taylor, 2005.

vibrational insensitivity], stray field gradients, etc. Other
sources of noise and systematic error in these experi-
ments include the index of refraction for light due to the
atomic ensemble (Wicht e al., 2002; Campbell et al.,
2005), ac Stark shifts for the atomic energy levels due to
the laser fields (Wicht et al., 2002, 2005), beam misalign-
ment and wave-front curvature (Wicht er al., 2002;
Gibble, 2006), and mean field shifts for the atomic en-
ergy states due to interaction with nearby atoms (Gupta
et al., 2002; Le Coq et al., 2006).

The accuracy of these atom interferometric methods
for measuring //m is still increasing due to the rapid
overall progress in atom interferometry with cold atoms
and because sources of error are being understood and
overcome. It is certain that the accuracy of A/m will
soon be improved in both Rb and Cs, which employ
significantly different atom optics methods. This might
mean that the real limit of confidence in this route to «
would be in the measurements of the atomic masses of
Rb and Cs for which there is only one high-precision
measurement (Bradley et al., 1999), and that had unex-
plained systematic errors at the 0.2-ppb level. We know
of no other experiments planned that could check these
heavy masses, whereas there are two or more measure-
ments of both the Rydberg and electron mass ratios that
are consistent.

Here we provide more detail on the Chu group ex-
periment, described by Weiss et al. (1993, 1994) and
Wicht et al. (2002). To determine 4/m they measured the
relative frequency of the final 7/2 pulses in two different
atom interferometers (Fig. 56). The frequency difference
between the resonances of the two interferometers de-
pends only on conservation of energy and conservation
of momentum. As an example of the recoil shift, con-
sider a simplified experiment (Weiss et al., 1994) where
an atom (with mass m) in state |a) with zero velocity in
the laboratory frame first absorbs a photon from a left-
ward propagating laser beam with frequency w. The
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FIG. 56. Measurement of recoil frequency. (a) A double inter-
ferometer where the two interfering pairs have their velocities
shifted with respect to each other by four photon recoils. Solid
lines indicate atoms in internal state a, and dashed lines repre-
sent internal state b. (b) Sets of Ramsey fringes displaced by
27Aw (due to 8 7 pulses in the middle of the interferometers).
Only the frequency of the final two 7/2 pulses is scanned.
From Weiss et al., 1994.

atom recoils by 2k/m and the process has a resonance
condition

o — wg = Hk2m, (63)

where #iw,, is the energy difference between atomic
states |b) and |a) at rest. The atom can then be de-
excited by a rightward propagating beam with frequency
o'. It receives another velocity kick #k’/m in the same
direction and the new resonance condition is

o' — oy, =—hkk'Im - hk'*2m. (64)
The two resonances are shifted relative to each other by
Aw=w-o' =tlk+k')2m. (65)

Furthermore, the resonance condition for an atom in |b)
moving with velocity (N—1)v,.. towards a laser beam is

o' — oy, =~ (W*2m)[(N -1)? - (N)?] (66)
so that
Aw = Ntk*/m, (67)

where N is the total number of photon recoil momenta
imparted to the atom and the approximation comes
from the fact that k' =k. This shows why Aw depends
linearly on N.

VI. ATOMIC PHYSICS APPLICATIONS

A major motivation for atom interference experi-
ments is to learn more about atoms and molecules them-
selves.

Atoms in a separated beam interferometer experience
a phase shift if a uniform but different potential is ap-
plied to each arm. Thus interferometers offer sensitivity
to the potentials (not just forces). This sensitivity has
been used to measure the index of refraction due to
other atoms and energy shifts due to electric and mag-
netic fields. We emphasize that de Broglie wave phase
shift measurements bring spectroscopic precision to ex-
periments where usually classical methods like beam de-
flection or velocity measurement were applied, as dis-
cussed in Secs. I-IV.
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FIG. 57. (Color online) Diffraction of helium atoms and he-
lium molecules through a nanofabricated grating. From Bruch
et al., 2002.

In another application, the nanogratings used as a de
Broglie wave gratings can function as a gentle spectrom-
eter that diffracts different molecular species in a mo-
lecular beam to different angles.

The nanostructures themselves also produce poten-
tials due to atom-surface interactions that have been
measured with interferrometric techniques. For gratings
with 50-nm-wide slots, each transmitted atom must pass
within 25 nm of a grating bar; hence the measured inten-
sities are affected by the nonretarded vdW potential.
With larger gratings, on the other hand, the Casimir-
Polder potential has been probed.

A. Discovery of He, molecules

One application of coherent atom optics laid to rest a
long standing argument concerning whether a stable
bound state of the *He, dimer exists. [The attribution of
He," to He, dimers formed in cryogenic expansion by
(Luo et al., 1993) primarily reported an old debate.] For
this experiment a diffraction grating was used to sepa-
rate and resolve “He, dimers from a helium beam (Fig.
57) (Schollkopf and Toennies, 1996). Subsequently, a
grating was used as a nanosieve to measure the size of
the 4He2 dimers. The value (r)=6.2+1.0 nm was re-
ported by Luo et al. (1996). Grisenti, Schollkopf, Toen-
nies, Hegerfeldt, et al. (2000) reported a value of
5.2+0.4 nm. This size corresponds to a binding energy of
E/kg=1 mK. Diffraction has also been used to study the
formation of more massive clusters (Bruehl et al., 2004),
and searches using this technique are underway for an
Efimov-type excited state in *He;. This would be mani-
fest as a particularly large ({(r)=8.0 nm) excited-state he-
lium trimer (Bruehl et al., 2005; Hegerfeldt and Stoll,
2005; Stoll and Kohler, 2005).

B. Polarizability measurements

1. Ground-state dc scalar polarizability

By inserting a metal foil between the two separated
arms, as shown in Fig. 58, an electric field can be applied
to a single path. The resulting de Broglie wave phase
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FIG. 58. Measurement of atomic polarizability. (a) Schematic
of the interaction region installed behind the second grating.
(b) Measured phase shifts vs applied voltage. The two different
signs of the phase shift stem from the voltage being applied on
either the left (open circles) or the right (filled circles) side of
the interaction region (arm of the interferometer). The fit is to
a quadratic and the residuals are shown on the lower graph.
From Schmiedmayer et al., 1997.

shift was used to measure the static ground-state atomic
polarizability of sodium ay,, with a precision of 0.35%
(Ekstrom et al., 1995). Similar precision has been dem-
onstrated for ap. (Toennies group) and ap; (Vigué
group) using this method (Toennies, 2001; Miffre et al.,
2006b, 2006c¢).

In this experiment a uniform electric field £ is applied
to one of the separated atomic beams, shifting its energy
by the Stark potential U=-a&?/2. The static scalar
ground-state polarizability @, is determined from the
phase shift A¢ of the interference pattern by

o1 = (Ap/V?)(D?/ Legy) 20, (68)

where V is the voltage applied to one electrode in the
interaction region, D is the distance between the elec-
trode and the septum, v is the mean velocity of the
atomic beam, and L. is the effective interaction region
length defined as

(VID)?L oy = f £4dz. (69)

For an accurate determination of electric polarizability,
the three factors in Eq. (68) must each be determined
precisely. They are (i) the phase shift as a function of
applied voltage, (i) the geometry and fringing fields of
the interaction region, and (iii) the velocity of the atoms.
Ekstrom et al. (1995) had an uncertainty in each term
less than 0.2%.

Taking all sources of error into account, and adding
statistical and systematic errors in quadrature, the static
polarizability of the ground state of sodium was mea-
sured to be ap,=24.11Xx1072* cm?, with a fractional un-
certainty of 0.35%. This measurement was a nearly 30-
fold improvement on the best previous direct
measurement of the polarizability of sodium (Hall and
Zorn, 1974) based on beam deflection.

A similar experiment for He was done with a three-
grating Mach-Zehnder interferometer (with nanograt-
ings) by the Toennies group. The phase stability of this
interferometer was so good that the fringes could be
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FIG. 59. Measurement of the electric polarizability of He. The
gratings are held stationary while the electric field is increased.
The measurement uncertainty is statistical only. Figure cour-
tesy of J. P. Toennies and R. Bruehl.

observed directly as a function of applied electric field,
while the gratings were not moved (Fig. 59). The statis-
tical precision in ay, was 0.1% (Toennies, 2001).

Using three Bragg diffraction gratings for Li atoms
and a septum electrode, the group of Vigué measured
ap; with a precision of 0.66% (Miffre et al, 2006b,
2006¢). Using a Talbot-Lau interferometer with a field
gradient, Berninger et al. (2007) measured the polariz-
ability of fullerenes ac, and ac, with a statistical preci-
sion of 1% and an overall uncertainty of 6%.

Because atom interferometry gives sub-hertz preci-
sion on the energy shift of the atomic ground state, ra-
tios of polarizabilities for different species can be accu-
rately determined with multispecies atom
interferometers. Uncertainty in the interaction region
geometry would then be less significant because the
quantity D?/ L. in Eq. (68) cancels out in a ratio of, for
example, agy/ar;. The ratio of velocities of the two spe-
cies would still need to be measured, or taken into ac-
count. Thus improved precision in measurements of a
may come from using an engineered phase shift to can-
cel the velocity dependence of the polarizability phase
shift. This is known as dispersion compensation (Rob-
erts et al., 2004). Velocity multiplexing (Hammond er al.,
1995) and Schmiedmayer and magnetic re-phasing
(Schmiedmayer et al., 1994) are other approaches for
dealing with the experimental spread in velocity. With
these improvements it seems feasible to perform polar-
izability measurements with uncertainties in the 107*
range.

This precision offers an excellent test of atomic
theory, because theoretical uncertainties in light ele-
ments like Li are orders of magnitude smaller than in
heavier alkali metals. Polarizability «, of an atomic
state can be expressed as a sum over dipole matrix ele-
ments:
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FIG. 60. Optical Ramsey-Bordé interferometer for measuring
polarizability differences. (a) Schematic of the atom interfer-
ometer with a capacitor. (b) Frequency shift of the interference
pattern vs voltage across the capacitor. The fit is a parabola.
The inset shows the energy levels as a function of position
through the capacitor. From Rieger et al., 1993.
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where E; is the energy of state |j). Accurate calculation
of static dipole polarizabilities for heavy atoms still re-
mains a great challenge because electron correlation and
relativistic effects become increasingly important for
heavy atoms. Major theoretical efforts so far have in-
cluded the relativistic Hartree-Fock approach, many-
body perturbation theory, density functional theory, and
relativistic coupled-cluster technique. Several calcula-
tions of atomic polarizability all show the need for pre-
cise experimental measurements (Bonin and Kadark-
allen, 1994; Kharchenko et al., 1997; Rerat et al., 1998;
Derevianko et al., 1999; Lim et al., 1999; Safronova et al.,
1999; Hohm, 2000; Kronic et al., 2001; Maroulis, 2001;
Derevianko and Porsev, 2002; Thakkar and Lupinetti,
2005).

2. Transition dc and ac Stark shifts

When two paths have different internal states, e.g., in
an optical Ramsey-Bordé€ interferometer, then a uniform
electric field applied to both paths makes phase shifts
proportional to the difference of polarizability of the
two states. (This is similar to what can be measured with
laser spectroscopy.) For example, the dc Stark shift of
the magnesium 3s%(1S,)-3s3p(°p,) intercombination line
was measured by subjecting both arms of an atom inter-
ferometer to a constant electric field. The Stark energy
perturbation provides two different potentials in the two
arms of the interferometer. The resulting relative phase
shift (Fig. 60) corresponds to a difference of —(8+1)
kHz (kV/cm)~2 in the polarizabilities of the 'S, and P,
(m=1) states. (Rieger et al., 1993).

A related approach was used to measure the differ-
ence between the polarizabilities of the P, state and the
'S, state of Ca to be a(*P))—a('S,)=(13+2) X 10> cm?
(Morinaga, Nakamura, et al., 1996).
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The ac Stark shift of the 4s,'S,-4s4p>P, line in *Ca
was measured with a time-domain Ramsey-Bordé atom
interferometer (in a magneto-optical trap) for perturb-
ing laser wavelengths between 780 and 1064 nm (Degen-
hardt er al., 2004). ac Stark shifts have also been ob-
served in a double-well interferometer (Shin et al., 2004).

C. Index of refraction due to dilute gases

A physical membrane separating the two paths allows
insertion of a gas into one path of the interfering wave,
enabling a measurement of the index of refraction for
atom waves traveling through a dilute gas caused by the
collision-induced phase shift. Measurements have been
presented by Schmiedmayer et al. (1995, 1997); and these
experiments have been discussed by Audouard et al
(1995, 1997); Vigué (1995); Forrey et al. (1996, 1997);
Champenois et al. (1997); Kharchenko and Dalgarno
(2001); Blanchard et al. (2003)

Scattering makes a wave function evolve as

F—0

p—— ™+ flk K )™ T, (71)

where the scattering amplitude f contains all information
about the scattering process (Sakurai, 1994). The com-
plex index of refraction n due to a gas of scattering cen-
ters is related to f by summing the scattered amplitudes
in the forward direction (Newton, 1966), resulting in

n=1+Q2uaN/k>f(kk), (72)

where N is the gas density. Atoms propagating through
the gas are phase shifted and attenuated by the index

w(z) — ¢(0)einkz — lﬂ(o)eikzeiAd)(N,z)e—(N/Z)ototz_ (73)
The phase shift due to the gas,
A¢(N,Z) = (ZWNkZ/kcm)Re[f(kcm)L (74)

is proportional to the real part of the forward scattering
amplitude, while the attenuation is related to the imagi-
nary part. Attenuation is proportional to the total scat-
tering cross section which is related to Im[f] by the op-
tical theorem

Otot = (47T/kcm) Im[f(kcm)] (75)

Measurements of phase shift as a function of gas density
are shown in Fig. 61.

The ratio of the real and imaginary parts of the for-
ward scattering amplitude is a natural quantity to mea-
sure and compare with theory. This ratio,

__ AP(N)  Re[fik)]
" In[A(N)/A(0)]  Im[f(k)]’

p(k) (76)

where A is the fringe amplitude, gives orthogonal infor-
mation to the previously studied total scattering cross
section. In addition it is independent of the absolute
pressure in the scattering region and therefore much
better to measure.
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FIG. 61. Index of refraction measurements. Left: Phase shift

A¢ as a function of gas density N for different gas samples.

Right: Phase shift vs fringe amplitude. The fringe amplitude is

proportional to e~V7©tZ2. From Schmiedmayer et al., 1997.

The ratio p(k) shows structure as a function of k
known as glory oscillations' (Fig. 62). These were pre-
dicted by Audouard et al. (1995, 1997) and Forrey et al.
(1997) and observed by Roberts et al. (2002). Measure-
ments of p(k) plotted as a function of Na beam velocity
v for target gases of Ar, Kr, Xe, and N, are shown in Fig.
62.

To compare these measurements with predictions
based on various potentials V(r), the forward scattering

BGlory oscillations in the absorption cross section were first
measured by Rothe (1962) for Li and K beams, and related
phenomena with light waves have been studied by Bryant and
Cox (1966); Khare and Nussenzveig (1977); Nussenzveig
(1979); Cheville et al. (1998).
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FIG. 62. p as measured for Na waves in Ar, Kr, Xe, and N, (@
using 200 nm gratings, O 100 nm), showing evidence of glory
oscillations in comparison to p as derived from predicted po-
tentials: Na-Ar (Champenois et al, 1997) (—), (Duren and
Groger, 1978) (- —-), (Forrey et al., 1997) (- -+), (Tellinghuisen et
al., 1979) (- — - -), (Tang and Toennies, 1977) (- — -—); Na-Kr
(Champenois et al., 1997) (—), (Duren et al., 1968) (- — -); and
Na-Xe (Baumann et al., 1992) (—), (Duren et al., 1968) (- — -).
From Roberts et al., 2002).
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amplitude was computed using the standard partial wave
treatment and the WKB approximation. Predictions for
p must also include an average over the distribution of
velocities in the gas sample, and this damps the glory
oscillations as discussed by Champenois ez al. (1997) and
Forrey et al. (1997). Figure 62 shows calculations of p(v)
based on predictions of V(r) for Na-Ar, Na-Kr, and
Na-Xe derived from spectroscopic measurements and
beam scattering experiments.

The motivation for studying the phase shift in colli-
sions is to add information to long-standing problems
such as inversion of the scattering problem to find the
interatomic potential V(r), interpretation of other data
that are sensitive to long-range interatomic potentials,
and description of collective effects in a weakly interact-
ing gas (Chadan and Sabatier, 1989; Stoof, 1991; Bagnato
et al., 1993; Lett et al., 1993; Cline et al., 1994; Moerdijk
and Verhaar, 1994; Moerdijk et al., 1994; Walker and
Feng 1994). The glory measurements of p are sensitive
to the shape of the potential near the minimum, where
the transition from the repulsive core to the van der
Waals potential is poorly understood. Measurements of
p(k) also give information about the rate of increase of
the interatomic potential V(r) for large r independently
of the strength of V(r). The real part of f was inacces-
sible to measurement before the advent of separated
beam atom interferometers. Controlled collisions as
phase shifting tools are now widely discussed in the con-
text of quantum computing.

D. Casimir-Polder (atom-surface) potentials

Atom-surface interactions are important in a wide
range of nanoscale phenomena, including gas adsorp-
tion, atomic force microscopy, quantum reflection, atom
chips, and many topics in biophysics and chemistry. Yet
in many situations the forces are difficult to predict ab
initio. Single atoms passing within 50 nm of a dielectric
surface represent a middle ground, where theoretical
calculations are tractable, and precision measurements
are becoming possible. Here we describe some land-
mark theoretical contributions to this field and then sur-
vey measurements done with coherent atom optics.

After J. D. van der Waals suggested modifications to
the equation of state for gases to allow for atom-atom
interactions (which he did in 1873), London (1937) cal-
culated the strength of interactions between two polar-
izabile atoms using quantum mechanics, and similar
ideas were used to describe atom-surface interactions
(Lennard-Jones, 1932). Casimir and Polder (1948) gener-
alized the theory of atom-surface interactions to include
the effect of retardation, and Lifshitz (1956) modified
this theory to allow for a surfaces with a dielectric per-
mittivity. Since then, hundreds of theoretical works used
quantum electrodynamics to predict the interaction po-
tential for real atoms near real surfaces.

The Casimir-Polder potential for an ideal surface is
(Casimir and Polder, 1948; Sukenik et al., 1993)
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1 (e
U(r) = —4f apol(ix/ar)e‘zx[2x2 +2x + 1]dx, (77)
4ar ),

where aj, is atomic polarizability (evaluated as a func-
tion of imaginary frequency), r is the distance to the
surface, and « is the fine structure constant. This has
well-known limits of the van der Waals (vdW) regime,

h - . C
r—0, U@r)= mJO a’pol(lw)dw = }’_33’ (78)

and the retarded regime
r— o, U(r)=2hcay,(0)/32meyr* = = Ky/r*.  (79)

Marinescu et al. (1997) evaluated U(r) for sodium atoms
at arbitrary distances from a perfectly conducting half
space, using a single electron (Lorenz oscillator) model
of the atom. Derevianko et al. (1999) calculated C; for
the alkali-metal atoms using the best available model of
frequency-dependent atomic polarizability. It is note-
worthy that 18% of the interaction potential between
sodium atoms and a perfect mirror is due to excitations
of the core electrons. The one-electron (Lorenz) oscilla-
tor model yields Ci3=fiwya,(0)/8 with  a,,(0)
=e?/ wim,[4me;], where @ is the resonance frequency
and m, is the electron mass. This one-electron model for
sodium atoms and a perfectly conducting surface gives
C3=6.3 meV nm?, while the calculation with many elec-
trons gives C;=7.6 meV nm?. The Lifshitz formula

e(iw) -1

ﬁ e
Cy=— jw)————d 80
} 477,]0 pol(i0) eliw) +1 @ (80)

reduces C; even further. For sodium and silicon nitride
the Lifshitz formula gives C3=3.2 meV nm?. Spruch and
Tikochinsky (1993) and Zhou and Spruch (1995) elabo-
rated on U(r) for arbitrary r and surfaces composed of
multiple layers.

Several experiments can now test these predictions.
Atoms transmitted through a cavity (Anderson et al.,
1988; Sukenik et al., 1993), atoms diffracted from a ma-
terial grating (Grisenti et al., 1999; Grisenti, Schollkopf,
Toennies, Manson, et al., 2000; Shimizu, 2001; Bruehl et
al., 2002; Cronin and Perreault, 2004; Perreault et al.,
2005), atoms undergoing quantam reflection (Anderson
et al., 1986; Berkhout et al., 1989; Shimizu, 2001; Shimizu
and Fujita, 2002a; Druzhinina and DeKieviet, 2003; Pas-
quini et al, 2006), atoms reflecting from evanescent
waves near surfaces (Hajnal et al., 1989; Kaiser et al.,
1996; Westbrook et al., 1998; Esteve et al., 2004), atoms
trapped near surfaces (Lin ef al., 2004; McGuirk et al.,
2004; Harber et al., 2005), and atoms in interferometers
(Brezger et al., 2002; Kohno et al., 2003; Nairz et al.,
2003; Perreault and Cronin, 2005, 2006) have been used
to measure atom-surface interaction potentials. For a re-
view of experiments see the CAMS (2005) proceedings.

1. vdW-modified diffraction

Because of van der Waals interactions with mechani-
cal grating bars, atoms propagating through a nanograt-
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FIG. 63. (Color online) Distorted de Broglie waves. van der
Waals interactions with mechanical grating bars cause near-
field phase shifts. This view is exaggerated: in beam experi-
ments there are typically 10* wave fronts in the 100-nm thick-
ness of a nanograting slot (Grisenti et al., 1999; Perreault et al.,
2005).

ing get a phase shift that depends on position within
each slot, as shown in Fig. 63. An analogous structure in
light optics is an array of diverging lenses held between
absorbing bars. The index of refraction in the free space
between material grating bars gives nanogratings a com-
plex transmission function that has been studied by
Grisenti et al. (1999); Grisenti, Schollkopf, Toennies,
Manson, et al. (2000b); Shimizu (2001); Brezger et al.
(2002); Bruehl et al. (2002); Kohno et al. (2003); Nairz et
al. (2003); Cronin and Perreault (2004); Perreault and
Cronin (2005, 2006); Perreault et al. (2005).

Figure 63 is a schematic of the de Broglie wave phase
fronts in the near-field immediately after a nanograting.
Far-field diffraction orders are affected by van der Waals
interactions too. We can describe the nth far-field order
by

U = A &g, (81)

where the modulus A, and phase ¢, for the nth order
are given by

wi2
A, et = f explip(é) + inGEldE. (82)
-w/2

Here w is the size of the windows (or “nanoslots”) be-
tween grating bars and ¢(¢) is the phase shift in Fig. 63
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FIG. 64. The (a) phase (b) and modulus of far-field diffraction
orders both depend on the vdW coefficient C; divided by atom
velocity [shown in units of meV nm?/(km/s)]. Adapted from
Perreault and Cronin, 2006.
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FIG. 65. (Color online) Diffraction intensities used to measure
the strength of C; for Na-silicon nitride (Perreault ez al., 2005).
Data for two different velocities show how the second- and
third-order change their relative intensity (as predicted in Fig.
64). Diffraction of Na, molecules is also visible.

that can be calculated by putting the atom-surface po-
tential U(r) into the expression for a phase shift [Eq.
(43)]. Thus the modulus and a phase of each diffraction
order depends on the strength of the potential (C; in the
vdW regime) and on atomic velocity as shown in Fig. 64.
Several experiments have measured the intensity |A,,|* in
diffraction orders to determine C; for various atom-
surface combinations, with some results shown in Fig. 65
and 66 (Grisenti et al., 1999; Bruehl et al., 2002; Cronin
and Perreault, 2004; Perreault et al., 2005).

The diffraction intensities |A,|*> depend on phase gra-
dients induced by U(r). To detect the diffraction phases,
¢, an atom interferometer can be used as described in
the next section.

2. Interferometer vdW and CP measurements

The complex transmission function of the gratings
modifies the location at which the Talbot effect revivals
occur. This, in turn, modifies the performance of a
Talbot-Lau interferometer, as discussed by Brezger et al.
(2002, 2003) and shown in Fig. 67. Because gratings in
this experiment have a 1-um period, these results probe
the retarded Casimir-Polder regime.

In a separated-path interferometer, Perreault and
Cronin (2005) inserted an auxiliary interaction grating in
one path. This allowed a measurement of the phase shift
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FIG. 66. Measurements of C; for various atoms and a silicon

nitride surface, obtained by studying atom diffraction patterns.
From Grisenti et al., 1999.
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FIG. 67. Dependence of the interference fringe visibility on
the mean velocity of the molecular beam. Numerical simula-
tion results are plotted for four models without free param-
eters: classical or quantum behavior, with or without consider-
ation of the van der Waals (vdW) interaction of the molecules
with the second grating. The quantum result including the van
der Waals effect is clearly the only adequate theory (Brezger et
al., 2002).

¢, due to transmission through the interaction grating as
shown in Fig. 68. In a separate experiment the higher-
order diffraction phase ¢, was measured by comparing
the output of four different separated-path interferom-
eters (Perreault and Cronin, 2006).

In the atomic beam spin-echo (ABSE) interferometer,
discussed in Sec. III.D.2, Druzhinina and DeKieviet
(2003) observed atoms reflecting from the attractive part
of the atom-surface interaction potential. This quantum
reflection allowed DeKieviet et al. to map the van der
Waals potential in an energy range between 1 neV and a
sub-meV. Figure 69 shows the measured probability of
He atoms quantum reflecting from a quartz surface as a
function of the impinging wave vector. (Later both me-
tallic and semiconductor samples were used.) Deviation
of the experimental data from the high-energy asymp-
tote is attributed to Casimir-Polder retardation. Impor-
tantly the spin-echo interferometer was used to precisely
select the velocity of the detected atoms. In this regard it
complements other quantum reflection experiments
(Anderson et al., 1986; Berkhout et al., 1989; Shimizu,
2001; Shimizu and Fujita, 2002a; Pasquini et al., 2006)

Interaction Grating i Detector
o .
i B 021 °
3 0.0+—mo————
©
S027 o
Left  Neither Right
interaction grating position

FIG. 68. An “interaction grating” was inserted and removed
from each path of an interferometer to measure the phase shift
®, due to van der Waals interactions (Perreault and Cronin,
2005).
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FIG. 69. (Color online) Experimental ABSE data for the
quantum reflection of *He atoms from a disordered single crys-
tal quartz surface. From Druzhinina and DeKieviet, 2003.

that do not explicitly use atom interferometers (though
we note that quantum reflection itself is inherently a
wave phenomenon).

VII. OUTLOOK

In the early 1980s “mechanical effects of light” was
the name for the study of light forces on atoms; see, for
example, Chebotayev et al. (1985) and Table V. At first
these forces were used simply to change the momentum
of atoms. Then it emerged that, with care in application,
light forces could be conservative. When atom diffrac-
tion from a standing light wave was demonstrated
(Gould et al., 1986), it became appreciated that interac-
tions with classical light fields can transfer momentum in
precise quanta and preserve the coherence of atomic de
Broglie waves. This led to many papers contrasting “dif-
fraction and diffusion” and emphasizing that diffraction
of atoms by light was coherent, whereas the occurrence
of some spontaneous decay processes led to diffusion
which is not coherent (Tanguy et al., 1983; Gould et al.,
1991; Wilkens et al., 1991; Ryytty et al, 1998; Deng
2006). It also led workers in the field to consider other
coherent ways to manipulate atoms. The term “optics”
started to replace “diffraction” in conversations. Al-
though some felt that “atomic optics” was the preferable
phrase (in part to emphasize that atomic physics was the
driving force), we felt that atom optics was more closely
analogous to “electron optics” and decided to make it
the title of our 1991 review in ICAP12 (Pritchard, 1991).

The reviews on atom optics that the MIT group wrote
in 1990 and 1991 considered atom optics as a way to
mimic photon optics. Relative to a list of standard opti-
cal components, it was pointed out that atom lenses
could be made in various ways but that material beam
splitters were impossible, shifting the burden for coher-
ent beam splitting and recombining to diffractive pro-
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TABLE V. Selected books, special journal issues, and review
articles germane to atom interferometers.

Books

Atom Interferometry (Berman, 1997)
Atom Optics (Meystre, 2001)

Laser Cooling and Trapping (Metcalf and van der Stratten,
1999)

Neutron Interferometry (Rauch and Werner, 2000)

Electron Interferometry (Tonomura, 1999; Tonomura et al.,
1999)

Molecular Beams (Ramsey, 1985)
Atomic and Molecular Beam Methods (Scoles, 1988)

Atomic, Molecular, and Optical Physics Handbook (Drake,
1996)

Atom and Molecular Beams, State of the Art (Campargue,
2000)

Encyclopedia of Modern Optics (Robert and Bayvel, 2004)

Special journal issues

JOSA-B: Mechanical effects of light (1985)
JOSA-B: Mechanical effects of light (1989)
JOSA-B: Atom Optics (1992)

Applied Physics B 54 (1992)

JOSA-B: Atom Optics (1994)

Journal de Physique: Optics and Interferometry with Atoms
4 (11) (1994)

Journal of Modern Optics: Quantum State Preparation and
Measurement 44 (1997)

Comptes Rendus de L’ Academie des sciences Dossier on
BEC and atom lasers, t.2 serie IV, (2001)

General Relativity and Gravitation, 36 (10) (2004)
Insight Review Articles in Nature 416 (2002)

Applied Physics B: Quantum Mechanics for Space
Application 84 (4) (2006)

Selected review articles

Atom optics (Pritchard, 1991)
Atom interferometry (Schmiedmayer et al., 1993)

The Feynman path-integral approach to atomic
interferometry—A tutorial (Storey and Cohen-Tannoudji,
1994)

Atom optics (Adams et al., 1994)

Atom interferometry (Carnal and Mlynek, 1996)
de Broglie optics (Wilkens, 1996)

Precision atom interferometry (Peters et al., 1997)

Matter-wave index of refraction, inertial sensing, and
quantum decoherence in an at. interf. (Hammond et al., 1997)

Interferometry with atoms and molecules: A tutorial
(Pritchard et al., 1997)

Atomic interferometry (Baudon et al., 1999)
Prospects for atom interferometry (Godun et al., 2001)

Atom optics: Old ideas, current technology, and new results
(Pritchard et al., 2001)
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TABLE V. (Continued.)

Miniaturizing atom optics: from wires to atom chips
(Schmeidmayer and Folman, 2001)

Coherence with atoms (Kasevich, 2002)

Microscopic atom optics: From wires to an atom chip
(Folman et al., 2002)

Atom interferometry (Miffre er al., 2006a)
For nonlinear atom optics

Nonlinear and quantum atom optics (Rolston and Phillips,
2002)

Nonlinear atom optics (Anderson and Meystre, 2003)

Physics with coherent matter waves (Bongs and Sengstock,
2004)

cesses using matter and light gratings. The observation
that light and matter diffraction gratings would be the
beam splitters has been borne out by the vast majority
of work with atom interferometers over the past
15 years. However, their refinement has been quite re-
markable. In addition, a host of new developments in
atom optics have lengthened the list of atom optical
components and devices; see the Atom Optics Toolkit in
Table VI. The art of atom optics is in its golden age
because the techniques listed in this toolkit are just be-
ginning to have an impact on scientific questions beyond
the specialty of atom optics. As larger and more con-
trolled atom optical systems are constructed, opportuni-
ties abound to efficiently and coherently manipulate at-
oms for scientific gain.

Not all predictions by Pritchard (1991) were so pre-
scient, however; although coherent atom amplifiers were
discussed, they were not anticipated. Hence the demon-
stration of coherent atom amplification (using interfer-
ometry to verify its phase coherence) was an unexpected
development, as was nonlinear atom optics generally.
The power of, and interest in, nonlinear atom optics
should lead to many more advances in atom interferom-
etry such as sub-shot-noise measurements of phase shifts
(Scully and Dowling, 1993; Search and Meystre, 2003;
Pezze and Smerzi, 2006; Jo et al., 2007) and coherent
oscillations between atomic and molecular BECs. Non-
linear optics is outside the scope of this review although
techniques of linear atom optics and interferometry are
extremely valuable as tools in this field (Meystre, 2001;
Rolston and Phillips, 2002; Anderson and Meystre, 2003;
Bongs and Sengstock, 2004). Another unanticipated de-
velopment is the immense amount of development on
atom chips.

As this review shows, experimental and theoretical
understanding of atomic and molecular matter waves
has come a long way since the first demonstrations of
coherent diffraction with laser light and nanogratings in
the early 1990s. In the MIT group’s first paper on diffrac-
tion by a light grating, the rms momentum transfer was
far below predictions; the second paper reported it was
low by a factor of 2 noting there was “no explanation for
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this discrepancy.” Recently this effect was used to mea-
sure the standing wave intensity of a standing wave
(depth of optical lattice) to within 1% (Mun et al., 2007).

This shows the transformation of pioneering scientific
work in atom optics into a high-precision tool for use in
cold atom physics. Similarly, our review shows that atom
interferometers are now routinely used for scientific en-
deavors ranging from fundamental investigations of
quantum physics to precision metrology. We now project
anticipated progress over the main categories used in
this review (diffraction, interferometry, fundamental
studies, precision measurements, and atomic properties).
We also speculate on areas that we expect will become
more important: e.g., optics with molecules and ultra-
cold fermions, atom chips and optical lattices, surface
science, fundamental studies of gravitation, new ways to
control atom-atom interactions, entanglement and mul-
tiparticle interferometry, and more formal analogies to
condensed matter phenomena that arise from quantum
coherence.

We expect coherent atom optics to become an even
more flexible, powerful, and precise tool for manipulat-
ing atoms and molecules, especially for interferometers,
and for applications to other scientific and technical
problems. The development of techniques for accelerat-
ing (and in the future decelerating) atoms and especially
molecules, both in light crystals and by optimizing the
temporal envelope of light for higher-order beam split-
ters will enable coherence to be maintained between
wave function components with relative velocities of m/s
that are determined with 1071* accuracy. This will result
in interferometers of far greater precision with much
greater separation of the arms and much greater en-
closed area.

These bigger and better interferometers will be ap-
plied to fundamental problems in gravity and quantum
mechanics. They will allow one to measure the gravita-
tional potential in experiments analogous to the scalar
Aharonov-Bohm effect in which the potential has influ-
ence in the absence of any gravitational field (such as
when one component of the wave function spends time
inside a hollow massive cylinder). Placed in orbit around
the Earth, interferometers with large enclosed area will
be useful for fundamental gravitational measurements
such as tests of parallel vector transport and the Lense-
Thirring frame-dragging effect. As a by-product of de-
veloping interferometers with larger separation for
heavier particles, more stringent limits will placed on
alternative theories of quantum decoherence that in-
volve spontaneous projection. It may also be possible to
observe some new sources of decoherence that are hard
to shield out (Tegmark, 1993). These advances in inter-
ferometer size will also enable better measurements of
inertial effects such as gravitational fields, gravitational
gradients, and in gyroscopes. These will have application
to inertial navigation, geodesy, and prospecting.

Precision in atom and molecular interference experi-
ments will also be increased using higher fluxes and
longer interaction times. This also implies larger instru-
ments in order to reduce the atom densities, thus reduc-
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TABLE VI. Atom optics tool kit organized by analogy to light optics, as in Pritchard (1991). Paren-
theses indicate options.

Light optics Atom optics

Sources thermal (supersonic) beam

(moving) molasses, launched (or dropped)
MOT, Zeeman slower

coherent laser  Bose-Einstein condensate
Lenses spherical  electrostatic quadrupole or magnetic hexapole
cylindrical ~ Gaussian optical beams
Fresnel nanostructure zone plates (cyl. or sph.)
achromat combination zone plate+ E-M lens
axicon  magnetic quadrupole
Mirrors (giant) quantum reflection
helium from (bent) crystal surfaces
evanescent light waves

periodically poled magnetic domains (on
curved surfaces)

Gratings phase standing waves of light: Bragg or
Kapitza-Dirac (pulses)

amplitude  nanostructure gratings
standing waves of resonant radiation
reflection  crystal surfaces

quantum reflection from (nanostructured)
surfaces

structured evanescent light
blazed Bragg scattering
two- and three-color standing waves
Polarizing splitters stimulated Raman transitions
optical Ramsey /2 pulses
Stern-Gerlach magnets
optical Stern-Gerlach effect
Phase plates glass E field
B field
dilute gas
nearby surface
Holograms transmission  perforated nanostructures (with E and B fields)

reflection  nanostructures (with enhanced quantum
reflection)

\ shifters modulators  amplitude modulated standing waves
gravity
bichromatic laser fields
reflection from a receding rotor
Interferometers Young’s experiment  micro (or nano) slits

Mach-Zehnder  space domain using (separated) beams (spin
entanglement)
time domain, with pulsed gratings (spin
entanglement)

longitudinal (rf or Stern-Gerlach beam
splitters)

near field Talbot Lau, Lau, and Talbot interferometers
Michelson  atoms confined in a waveguide
Fabry-Perot  atoms confined in a three-dimensional trap
Wave guides fiber optics B fields from wires (on a chip)

Rev. Mod. Phys., Vol. 81, No. 3, July—September 2009
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TABLE VI. (Continued.)

Light optics

Atom optics

Detectors photon counter

state selective

imaging

Amplifiers stimulated emission

permanent magnets
optical dipole force
evanescent light in hollow fiber

hot wire (or electron bombardment) ionizer and
counter (CEM or MPC)

field ionization, laser ionization, metastable
detection

polarization spectroscopy

multichannel plate for ions or (metastable) atoms
(state selective) fluorescence, absorption, or phase
contrast imaging

four-wave mixing with BEC (nonlinear quantum
optics)

ing the systematic shifts due to atom-atom interactions.
However, more imaginative approaches are needed
since atom-atom interactions can be a severe problem.
For example, they are one of the limiting factors for the
Cs atomic fountain clocks, all interferometers using
Bose-Einstein condensates, and they modify the index
of refraction of near-resonant light passing through even
nondegenerate atom samples. There are at least two so-
lutions to the problem:

e If one uses ultracold fermions in a single atomic
state, the Pauli exclusion principle switches off the
s-wave interaction. Since for neutral atoms at ultra-
cold energies the higher partial waves can be ig-
nored, a fermionic ensemble is nearly interaction
free, and therefore ideal for precision measurements.
This was demonstrated in the Bloch oscillation ex-
periment by Pezze et al. (2004).

e The second solution is to put each atom in a separate
potential well, for example, in an optical lattice. Hav-
ing only one atom per well reduces the nonlinear
interaction. The effects of these additional potential
wells can be mitigated using light that energy shifts
the interfering states equally.

Application of atom interferometers to atomic and
molecular physics will benefit from advances in precision
and should continue to provide definitive measurements
with higher precision. A key application will be determi-
nation of polarizabilities and Stark shifts for atoms and
molecules in applied fields. These will serve as bench-
mark measurements to test and refine atomic theory cal-
culations as discussed in Sec. V.

Since atoms are very small, techniques for their ma-
nipulation on small scales will open up many scientific
frontiers and technical possibilities in surface physics,
nanophysics, and quantum information. The rapid pace
of current developments in atom chips and the more
creative use of focused light beams and light crystals are
both leading to techniques for producing, detecting, and
coherently manipulating atoms on very small spatial
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scales, e.g., where tunneling can be carefully studied.

Small interferometers will enable novel applications
in surface science. Atom interferometry can be used to
(i) measure fundamental atom-surface interactions like
the van der Waals and Casimir potentials or (ii) study
the temporal and spatial behavior of electromagnetic
fields close to the surface. This will allow new probes of
surface structure—both magnetic and electric. The na-
ture of thermally induced time varying fields can be
studied, both for its own sake and because such fields
induce decoherence. This will lead to engineering ad-
vances that reduce deleterious decoherence close to sur-
faces, advancing quantum information technology that
uses ions and atoms close to surfaces as g-bits.

Coherent atom optics generally, and interferometers
in particular, will be applicable to a central problem in
quantum information science: how to characterize, con-
trol, and use entanglement and correlations in atomic
ensembles. The challenge here will be to prepare the
ensembles in complex quantum states with high fidelity,
and to develop methods for their characterization—with
decoherence reduced as much as possible (or with its
effects reduced by error-correction methods). One help-
ful new interferometric technique will be the develop-
ment of powerful homodyne and heterodyne methods
for detecting atoms, in analogy to quantum optics. This
will be greatly aided by the development of detection
methods with high quantum efficiency, which are also
highly desirable in studying atom-atom correlations, par-
ticularly of higher order.

Having a good understanding of the electromagnetic
atom-surface interaction, and ways to mitigate near-
surface decoherence, the physics community will have a
tool to search for fundamental short-range interactions,
as predicted in some unified theories. In principle atom
interferometry has the potential to improve the present
limits on non-Newtonian gravitational potentials at the
micrometer length scale by many orders of magnitude
(Dimopoulos and Geraci, 2003). The main challenge
here will be to control the systematic effects, mainly
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coming from the electromagnetic interactions of the
atom with close-by surfaces, and the atom-atom interac-
tions as discussed below. Smaller and more compact
atom interferometers also have application to inertial
sensors for commercial applications.

Atom interference will be one of the central tools in
the study of many-atom systems generally and of atoms
in lattices that model condensed matter Hamiltonians in
particular. First, diffraction peaks are the hallmark of
atoms in the regime where tunneling dominates in a pe-
riodic lattice (Bloch et al., 2000). As more complex lat-
tices are studied, higher-order interference will play a
role. In their turn, these lattices can have regions where
a particular number of atoms are confined in each lattice
site; this suggests a way to make a source of atomic num-
ber states allowing studies of degenerate atomic systems.
Especially interesting in this arena will be the study of
phase transitions in mesoscopic ensembles, which are
too large to permit full quantum calculations, but too
small for the thermodynamic description to be valid.
This will give us a new and detailed look at the thermo-
dynamic border. There are many new avenues to ex-
plore with dense degenerate quantum gases. In the
present review we focused on single particle interference
or, in the language of quantum optics, to first-order co-
herence. One fruitful avenue will be extension to multi-
particle interferometry, which can give more rapidly
varying fringes and sub-shot-noise statistical precision.
Detecting higher-order coherence requires measure-
ments of correlations between N atoms. Noise correla-
tion with bosons and fermions (Yasuda and Shimizu,
1996; Altman et al., 2004; Schellekens et al., 2005; Grit-
sev et al., 2006; Hofferberth et al., 2006; Morsch and
Oberthaler, 2006; Polkovnikov et al., 2006; Hofferberth,
Lesanovsky, Schumm, et al., 2007; Jeltes et al., 2007) are
examples of recent developments in this field.

The field of atom and molecular interference is young
but has already impacted atomic and quantum physics
across a broad frontier. New techniques and the applica-
tion of previously developed techniques to new scientific
problems promises much future scientific gain.
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