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On the Accuracy and Resolution of
Powersum-Based Sampling Methods

Julius Kusuma, Member, IEEE, and Vivek K Goyal, Senior Member, IEEE

Abstract—Recently, several sampling methods suitable for sig-
nals that are sums of Diracs have been proposed. Though they
are implemented through different acquisition architectures, these
methods all rely on estimating the parameters of a powersum se-
ries. We derive Cramér–Rao lower bounds (CRBs) for estimation
of the powersum poles, which translate to the Dirac positions. We
then demonstrate the efficacy of simple algorithms due to Prony
and Cornell for low-order powersums and low oversampling rel-
ative to the rate of innovation. The simulated performance illus-
trates the possibility of superresolution reconstruction and robust-
ness to correlation in the powersum sample noise.

Index Terms—Analog-to-digital conversion, Cramér–Rao bound
(CRB), estimation, parametric modeling, Prony’s method.

I. INTRODUCTION

D IGITAL processing of continuous-time signals relies first
and foremost on accurate data acquisition. In the clas-

sical paradigm, acquisition involves filtering a continuous-time
signal and then measuring uniformly spaced samples; the sam-
ples are construed to specify a unique signal in a particular
subspace of continuous-time signals. Importantly, the combi-
nation of Hilbert-space geometry and the representative signals
forming a subspace makes the influence of noise, as measured
by error, easy to analyze [1].

The focus of this paper is on signal acquisition for certain
classes of signals that do not form subspaces. Through recently
developed architectures and algorithms, these signals can be ac-
quired from a small number of samples, but the greater geo-
metric complexity of these signal sets makes the performance
when samples are subject to noise more difficult to analyze.
We provide a unification of the techniques of [2]–[4], showing
that they each yield a powersum series fitting problem. We an-
alyze the performance limits for powersum series fitting and
the performance of several algorithms. Our analysis method is
adapted for real-valued and complex-roots-of-unity cases, cor-
responding to these different sampling schemes. In particular,
this enables comparison between architectures and highlights
the importance of modeling sources of noise.
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As a specific instance, we are interested in acquiring real-
valued signals from the set

(1)

where the number of components is known.1 Sets of this type
have been used to model many naturally occurring signals [5]
and in ranging and wideband communication systems [6]. A
signal in is uniquely determined by pairs of parameters

, so it can be specified in various ways by
real numbers. One could hope that samples of

would suffice as such a representation. Indeed, it is
shown in [2]—constructively through an algorithm that recovers

—that certain sampling kernels do enable unique
specification of through samples of .

It is useful to separate the (approximate) acquisition of a
signal from into two interrelated phases: measurement
and estimation. In the measurement phase, analog hardware
takes as an input and creates certain quantized samples. As
described further in Section III, several architectures for mea-
surement have been proposed. These each yield a powersum
series fitting problem. In the estimation phase, some algorithm
is applied to the samples to solve the fitting problem.

An important open question is: How robustly can a signal in
be estimated when the measurement process is subject to

noise? Because of the form of , when the are fixed the
estimation of the is a standard linear problem. The most
interesting issue is thus the accuracy of estimating the . We
address this question by explicitly exhibiting the Cramér–Rao
bound (CRB) for the powersum series fitting problem and by
comparing this bound numerically to the performance obtained
with two practical algorithms.

We limit our attention to the and cases and
hint at the infeasibility of an explicit approach for larger values
of . Note also that we are interested in the performance when
the number of samples is at or near the minimum possible
( ). An adequate understanding of the performance when the
number of samples is large can be obtained by interpretation
of results for spectral analysis [7]. As a final caveat, note that
we consider Gaussian additive noise models. These are appro-
priate for cases in which thermal noise—rather than quantiza-
tion noise, aperture uncertainty, and comparator ambiguity—is
the dominant analog-to-digital conversion (ADC) impairment;
this is the case for high-resolution ADC [8].

The remainder of the paper is organized as follows. We first
introduce powersum series and solution for their parameters in

1The use of a Dirac delta simplifies the discussion. It can be replaced by a
known pulse ���� and then absorbed into the sampling kernel ����, yielding an
effective sampling kernel ���� � ����.
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the noiseless case in Section II. Then Section III shows how pow-
ersum series arise from several sampling architectures for signals
of the class (1) and other signal classes. In particular, this puts ar-
chitectures from[2]–[4] intoacommon framework. InSection IV
we turn to algorithms for fitting powersum series which have
noise. We focus on algorithms that are simple, work well for
small numbers of samples, and do not require initialization.
CRBs for powersum series estimation problems are developed
in Section V, where we give results for real-valued and com-
plex-roots-of-unity powersums. These are applied in Section VI,
which compares various architectures and algorithms, using two
models for the sources of noise in the measurement architectures:
continuous-time white noise and powersum white noise.

The estimation error analysis presented here appeared first in
[9], and the architecture of Section III-C appeared first in [4].

II. POWERSUM SERIES

The nonlinear parameter estimation problems that we con-
sider in this paper are all reduced to estimation problems in-
volving a powersum series. We first introduce the powersum
series, before we review the estimation problems that are rel-
evant in Section III.

Definition 1 (Powersum Series): Samples are said
to be generated by a powersum series of order with ampli-
tudes and poles when

(2)

Sequences of form (2) were first studied by G. C. M. R. de Prony
in 1795 as he attempted to find the decay rates of chemical pro-
cesses [10]. In de Prony’s original problem, the observations
and parameters are real-valued. This is sometimes called “real
exponential fitting” or “exponential analysis” in the natural sci-
ences literature [11], [12].

de Prony’s method is based an idea that is quite intuitive to
readers of this Transactions. Suppose is of the powersum
form (2) for and zero for . Then the -transform of
this infinite sequence is given by

Since has poles, there is a monic annihilating filter
supported on such that is zero
outside of .2 This fact can be written in matrix
form as

...
... ...

...
...

(3)

2Monic means that � � �; some arbitrary normalization is needed because
constant multiples of � will have the same property of annihilating � outside of
��� �� � � � �� � ��.

where we have written equations to have enough to solve
for the unknowns . Looking at the matrix in (3), we
see that samples of are generally sufficient for
recovery of the . (If the solution is not unique, the data are fit
by a lower-order model.) Now factoring yields
the because the annihilating filter satisfies

With the fixed, (2) describes a linear relationship between
and ; thus the are

easily determined.
We return to the fitting of powersum series—there in the pres-

ence of noise—in Section IV. That will be after we exhibit sev-
eral sampling architectures that generate powersum series.

III. SIGNAL MODELS AND ARCHITECTURES YIELDING

POWERSUM SERIES

As aforementioned, we are interested in signal estimation
problems involving powersum series. The form of powersum
series that arises depends on the signal model and the acquisi-
tion architecture. In this section, we consider the following three
scenarios in their order of publication:

1) a signal that is a periodic sum of Diracs, acquired using a
sinc sampling kernel and uniform sampling in time [2];

2) a sum of Diracs signal with a known local rate of inno-
vation, acquired using a sampling kernel that satisfies a
Strang-Fix condition and uniform sampling in time [3];

3) a sum of Diracs signal with a known local rate of innova-
tion, acquired using integrators and simultaneous sampling
in multiple channels [4], [9].

This is not an exhaustive review of the literature; in particular
other scenarios are presented in [2]. The coverage is selected
to include powersums with both real and complex poles and to
facilitate a comparison between 2) and 3) in Section VI.

A. Periodic Sum of Diracs Acquired With Sinc Kernel

Consider a signal that is a 1-periodic extension of
, where . Because of

the periodicity, can be represented using Fourier series
coefficients as

(4)

For the given signal model, the Fourier series coefficients are
given by

(5)

The Fourier domain representation given in (5) has infinite
length, hence we say that this signal is not bandlimited. How-
ever, since (5) is a powersum series, it is possible to estimate
the coefficients from samples of . In this case, the
poles of the powersum series are complex roots of unity.

Vetterli et al. [2] showed that Fourier series coefficient
can be obtained by linear processing of uniform samples of the
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output of a sampling filter with input . Specifi-
cally, for are obtained from

samples.

B. Aperiodic Sum of Diracs Acquired With Compactly
Supported Kernel

The technique described in Section III-A is an idealized
abstraction because it involves unrealizable filters and infinite
periodic extension. Dragotti et al. [3] introduced more practical
schemes that use compactly supported sampling kernels and
causal sampling kernels with rational transfer functions. We
concentrate here on sampling kernels that satisfy the
Strang-Fix conditions for polynomial reproduction up to degree

for shifts by .
Consider as in (1) where . This is rep-

resentative of having finite local rate of innovation normalized
to . Let be coefficients for polynomial reproduction,
such that

where , for and . Taking
uniform samples of in yields

for . Then we can compute

which is a powersum series. Hence, can be perfectly recon-
structed from samples .

C. Aperiodic Sum of Diracs Acquired With Parallel Sampling

In [4], [9] we proposed a sampling architecture that is im-
plemented by parallel integrators. Consider the same signal
model as in Section III-B. Let be the th integral of

; i.e., and . Samples
are taken simultaneously at the outputs of multiple channels:

, .

To see how a powersum series is obtained, note that

and

etc., where is the Heaviside (unit step) function.
Thus ,

.

IV. ALGORITHMS FOR POWERSUM ESTIMATION

Work on exponential fitting in signal processing has been con-
centrated in the areas of angle-of-arrival estimation and direc-
tion finding, often using multiple antennas or sensors. This body
of work is focused on estimating the signal parameters by first
estimating the signal covariance structure [7], [13]–[15], and on
the case where we have large numbers of samples with multiple
snapshots. Since the parameters of greatest interest are the an-
gles of the coefficients of the powersum series—corresponding
to frequencies of the series components—it is often assumed
that the coefficients lie on the unit circle. Most of the publica-
tions in this area demonstrate the efficacy of their algorithms
by Monte Carlo simulation and give the resulting mean-square
error.

On the other hand, the papers on exponential fitting in the nat-
ural sciences often give proof of concept by using the proposed
algorithms to estimate parameters in an experiment for which
the correct answer is known [11], [12]. Moreover, the number
of observations tends to be small. This is matched to our interest
here, since we focus on signals with low local rate of innovation
and sampling rates near the rate of innovation. However, where
appropriate we still use Monte Carlo simulation and give the re-
sulting mean-square error.

Throughout, we are interested in estimating the parameters of
a powersum series in the presence of additive noise

(6)

We consider two classes of algorithms: algorithms based on
Prony’s method and those based on the Matrix Pencil method,
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also known as the Rotational Invariance Property [13], [14],
[16]. These two classes of algorithms are closely related. (See
[17] for a quick overview of their similarities and differences.)
Several algorithms give performance close to the CRBs in the
presence of additive white Gaussian noise (AWGN), such as
the nonlinear least-squares algorithm [18] and a regularized
maximum-likelihood algorithm [17]. However, while their
performances can exceed those of the Prony- and Matrix
Pencil-based methods, these algorithms require very good
initial conditions and perform poorly when the number of
samples is small. These algorithms are often simulated
and implemented using initial values obtained from the Prony
and Matrix Pencil methods. A review of algorithms such as
the annihilating filter, ESPRIT and MUSIC is given in [15].
We focus on the two methods less known within the signal
processing community.

A. TLS-Prony

We briefly review the algorithm proposed by Rahman and Yu
[19] and analyzed by Steedly and Moses [20] called total least
squares-Prony (TLS-Prony). Suppose that we are given obser-
vations , . Pick an integer ,
recommended to be around .

1) Form the Hankel matrix of size from
observations, where .

2) Compute the SVD of and reconstruct using only the
largest singular values. Call this reconstruction , and the
first column .

3) Compute the least-squares estimate , where
denotes the pseudo-inverse.

4) Find the roots of polynomial representation , ob-
taining estimates for .

5) Do least-squares fitting to find amplitudes for each of
the estimates.

6) For each of the estimates, compute energy

7) Pick estimates with the largest energies.

B. Cornell’s Algorithm

Cornell [11] proposed a procedure for finding the coefficients
of a powersum series from uniformly spaced observations based
on segmenting the observations and computing partial sums. He
gave simple formulas for the and cases. Petersson
and Holmström [21] gave formulas for the and
cases. These are dramatically more complicated, and to quote
the authors, even for they found the formula “trouble-
some,” both due to the complexity of the algebraic expressions
and their poor performance and instability in the presence of
noise. Thus, in this paper we review and utilize only the simple
formulas for and .

Suppose that we are given observations ,
. For convenience, let for some

integer .

For , the steps are given by the following.
1) Compute partial sums of as follows:

2) Compute .
3) Set estimate .
For , the steps are given by the following.

1) Compute partial sums of as follows:

2) Compute

3) Find the roots and of .
4) Set estimates and .
Cornell showed that under the mild condition ,

this algorithm is a consistent estimator. Cornell’s algorithm has
been extended by Agha [22] in order to avoid having to take
powers of real numbers, although Agha’s modified algorithm
gives similar performance for small sample sizes. Cornell’s al-
gorithm has also been modified to allow for nonuniform spacing
of samples by Foss [23].

V. CRAMÉR–RAO LOWER BOUNDS

In the derivation of CRBs we focus on the cases and
. We treat the complex-roots-of-unity and real-valued

cases separately. We write the noisy powersum series as (6).
In this paper, we focus on the case where the additive noise

is i.i.d. zero-mean Gaussian with variance , although we
have results for additive Gaussian noise with arbitrary covari-
ance given in [9].

The derivations of the CRBs are done via the Fisher informa-
tion matrix (FIM), which is derived from the log-likelihood of
the vector of parameters of interest [26]. Proofs of the theorems
in this section appear in the Appendix.

A. , Complex Roots of Unity

This case is applicable to the sampling scheme in
Section III-A. Let the signal of (6) be periodic with period

. The desired parameters are . The noiseless
signal is given by

(7)
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In the presence of additive noise, the signal is given by

(8)

Suppose that we observe samples of ,
. Define

(9)

Further, let and . In the pres-
ence of AWGN, the FIM is given by [26]

(10)

where we have

, , and
. From this computation, we obtain the following

theorem:
Theorem 1: Consider the noisy powersum (8) where is

zero-mean white Gaussian noise with variance . Let
and . Suppose that we obtain sam-

ples of the signal after filtering using an antialiasing filter with
bandwidth rad. The CRB for time estimation is given by

(11)

The bound of Theorem 1 scales as , consistent with the
scaling law of single-component line spectrum estimation [15].
Further, in both cases the bounds do not depend on the loca-
tion of the pulse (or the angle of the pole in line spectrum
estimation). In single-component line spectrum estimation, it
is known that in some regimes several algorithms achieve this
lower bound, such as the TLS-Prony algorithm [20]. For small
sample sizes and high SNR, we will show in Section VI-A that
the Prony method and the Cornell algorithm perform close to
the lower bound for our problem of interest.

B. , Complex Roots of Unity

We now turn the case with poles on the unit circle,
following the technique of Dilaveroglu [24]. Let the noiseless
Fourier series be given by

(12)

Further let and . The FIM is
given by

(13)

For convenience, let ,

and

We obtain the following theorem:
Theorem 2: Let , . Suppose that

we obtain samples of the signal after filtering using an an-
tialiasing filter with bandwidth rad. For convenience, let

Further, let

and

Then the CRB is given by

(14)

The bound of Theorem 2 scales as , consistent with previ-
ously known results in line spectrum estimation and with The-
orem 1. Further, the formula obtained in (14) is similar to that
of Dilaveroglu [24, Theorem 2].
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C. , Real-Valued Case

This case is applicable to the sampling schemes of
Section III-B (where ) and Section III-C (where

). Consider the simplest case where is white
Gaussian with variance . Define the finite summation

(15)

We can write the FIM as

We are interested in finding the CRB for , which is the last
entry of the inverse of the FIM . This can be obtained by using
direct matrix inversion.

Theorem 3: Let a noisy real-valued powersum be given by
, for , where is zero-

mean white Gaussian noise with variance . Then the CRB for
estimation of from is given by

(16)

where .
The bound of (16) scales as , consistent with the be-

havior of frequency estimates in line spectrum estimation [15].
Suppose for now that the signal of interest consists of com-

plex-valued poles, not necessarily complex roots of unity. This
case was studied by Steedly and Moses in [20]. The magnitude
of the poles in that case corresponds to the damping coefficient
of the signal. They showed that the CRB for the estimation of
this parameter is minimized around the unit circle. By contrast,
(16) is not minimized by . We will revisit this compar-
ison later in Section VI-A.

When the poles are complex-valued, the lack of knowledge
of the exact pole angle leads to large errors in the estimate of
the pole magnitude: a small error in the phase estimate of the
pole will be amplified by the magnitude of the pole, as shown
in Fig. 2 of [20]. Hence, in the complex case, the variance in
a pole magnitude estimate is best near unit magnitude and be-
comes worse as the true pole magnitude increases. In our case,
the poles have positive real values. The variance in the pole es-
timate decreases as the pole magnitude is increased, as there is
no phase ambiguity.

D. , Real-Valued Case

Finally, we examine the case with and real-valued
poles. Let be the vector of unknown pa-
rameters. We wish to derive the CRB for the estimation of and

in terms of when the observations are subjected
to AWGN.

Consider two-term noisy powersum
, where is white Gaussian noise. For conve-

nience, let

where is as given in (15). Then the CRB can be found
via the Schur complement, yielding the following theorem.

Theorem 4: Consider the estimation of from ob-
servations of a two-term noisy powersum subject to AWGN with
variance . Let , . Then the CRB is
given by

where are as given above.

VI. PERFORMANCE EVALUATION

In this section, we first compare the performance of the
schemes of Section IV against the CRBs of Section V, suitable
for the cases where the powersum series is subjected to AWGN.

Then we consider the case of signal parameter estimation in
the presence of continuous-time AWGN, where the different
sampling schemes yield different noise structures in the pow-
ersum. We compare the powersum-based sampling schemes
with the conventional method of applying an antialiasing filter,
taking uniform samples, and estimating the signal pulse delay
by finding the maxima of the cross correlation.

A. Powersum AWGN

It is known from the line spectrum estimation literature that
both the Prony method and rotational invariance algorithms
work well in the presence of AWGN when powersum poles
are complex roots of unity, and that both algorithms have a
superresolution property. Further, the performances of the al-
gorithms are independent of the actual values of the powersum
poles. We show this in Fig. 1 for the estimation of one Dirac,
and in Fig. 2 for the case of two Diracs. We compare the two
algorithms with the derived CRB from Theorem 1 and Theorem
2. In this set of simulations, we set the period of the signal to
be . The results of the Cornell algorithm are not shown
as they are similar to the results of the TLS-Prony algorithm.

The real-valued case is less known. From Fig. 3 we see that
the performance depends on the actual value of the powersum
poles. The TLS-Prony algorithm outperforms the Cornell algo-
rithm, except when the poles are small and the number of sam-
ples is very small, e.g., .

Suppose for now that the signal of interest consists of com-
plex-valued poles, not necessarily complex roots of unity. The
results shown in Fig. 3 are very different from those of Steedly
and Moses in [20], where the poles are complex-valued but are
not necessarily roots of unity. The magnitude of the poles in that
case corresponds to the damping coefficient of the signal. They
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Fig. 1. Comparison between CRB and performance of the Cornell and TLS al-
gorithms in estimating a complex roots of unity powersum with one component
in the presence of powersum AWGN. The SNR is 20 dB.

Fig. 2. Timing estimation result for the case of two signal components using the
FRI in-time sampling system. The SNR is 20 dB, and we compare the Fourier
resolution, the CRB, and the performance of the TLS-Prony algorithm.

showed that the CRB for the estimation of this parameter is min-
imized when the poles are on the unit circle. By contrast, neither
the bound (16) nor the MSE performance of the algorithms in
Fig. 3 is minimized by . This illustrates that translating
the results from the complex-valued case to the real-valued case
is not straightforward and can be misleading.

Now we examine the superresolution property of the pro-
posed multichannel sampling method in Fig. 4. Smith proposed
in [25] that the minimum requirement to resolve two signals is
that

RMS of source separation source separation (17)

The statistical resolution limit is then defined as the source sepa-
ration at which (17) is achieved with equality. Consider a signal
with two components: . Let the

Fig. 3. Comparison between CRB and performance of the Cornell and TLS
algorithms in estimating a real-valued powersum with one component in the
presence of powersum AWGN. The SNR is 20 dB.

desired parameters be . We are interested in how
the estimate of depends on .

It can be seen that in some cases, the performance of the
proposed system exceeds the resolution limit of the classical
system. The performance depends on the actual locations of the
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Fig. 4. Comparison between CRB of the proposed system and the Cornell al-
gorithm in the presence of AWGN, in terms of number of samples. In this case
the poles are near unity,� � ���, and we consider �� � � �� � ���� ����.
The simulation is done at ��� � 	� 
�. As the performance of the TLS al-
gorithm is very poor, we omit this from presentation.

Fig. 5. Simulation results for� � � for both real-valued and complex-roots of
polynomial cases. The estimation is done using the TLS-Prony algorithm. The
poles all have amplitude 1. The values of the real-valued poles, and the angles of
the complex poles in radians, are���	, 0.9,����, 0.4. The number of samples
is 16 and the SNR is at 40 dB. The histogram bin widths are 0.02, and we show
the results of 1024 trials.

poles. The Cornell algorithm for shows performance that
is far superior to that of the TLS-based algorithm. We show the
mean-square error result from the Cornell algorithm in Fig. 4
and omit the results from the TLS-based algorithm.

We also demonstrate that the algorithms considered perform
well for larger values of . We show the case where
and SNR is at 40 dB in Fig. 5. As expected, the performance of
the TLS-Prony algorithm is worse for the poles that are closer
together, and in the real-valued case for poles with smaller
magnitudes.

B. Continuous-Time AWGN

The problem of delay estimation in the presence of AWGN
from uniformly spaced samples is a well-known estimation

problem [26]. Let the energy of the signal be . Given sam-
ples of a signal with bandwidth , it is known that the optimal
estimate is the one that maximizes the cross-correlation, and its
performance is bounded by

(18)

where

The sampling rate is and . In this case
we must choose the lowpass sampling filter to be commen-
surate to our desired sampling rate. When the original pulse is a
Dirac, it is well-known that the resulting mean square-error de-
cays as the square of the sampling rate. Finally, by brute-force
search of the cross-correlation peak, it is known that the bound
of (18) is achievable.

1) Vetterli-Marziliano-Blu: For this case, in Section III-A we
have derived that the operation of lowpass filter—sample—Dis-
crete Fourier Transform is equivalent to projection of the input
signal into an orthonormal basis. Hence, white continuous-time
AWGN becomes AWGN powersum noise, which we considered
in Fig. 1 for the estimation of one Dirac and in Fig. 2 for the case
of two Diracs.

2) Dragotti-Vetterli-Blu: In Sections III-B and III-C we saw
that the sampling scheme of Dragotti et al. is equivalent to the
multichannel sampling scheme except for the sampling kernels
used. The span of the union of kernels of the former is larger
than that of the kernels of the latter. More importantly, the ex-
traneous span falls outside the interval where the desired signal
is located [9].

The performance of the Dragotti scheme in the presence
of powersum AWGN is identical to that of the multichannel
scheme, which we consider in Section VI-B-3).

Now consider the noise characterization when the noise in
the system arises from continuous-time AWGN. In this case,

will be correlated. When the sampling kernel is a first-order
B-spline, the covariance matrix has a tridiagonal form. The di-
agonal entries are given by

and the off-diagonal entries are given by

Simulation results are shown in Fig. 6. In this simulation, we
show the effect of different numbers of samples . The kernel
used is a simple first-order B-spline, which can reconstruct

and within the interval of interest. For the scheme of
Dragotti, we used a B-spline of order 1 as the sampling kernel.
In this comparison we plot the estimate of from the
multichannel scheme versus the estimates of of the Dragotti
scheme for consistency. Clearly, the performance of the
Dragotti scheme is strictly worse than that of the multichannel
scheme, due to the difference in the footprints of the sampling
kernels. In the Dragotti scheme, the width of the B-spline is
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Fig. 6. Performance results for estimation of one Dirac using a first-order
B-spline. The system is implemented using the simple Cornell algorithm. The
plot shows different number of samples � , but the reconstruction first forms a
length-2 powersum series. The AWGN is added in the continuous-time domain,
with spectral density � � ���. DVB refers to the Dragotti-Vetterli–Blu
architecture and KG refers to the architecture proposed by the authors.

Fig. 7. Performance results for estimation of two Diracs using a first-order
B-spline. The reconstruction first forms a length-4 powersum series. The AWGN
is added in the continuous-time domain, with spectral density � � ���.

scaled inversely to the number of samples to be taken. Hence,
as the number of samples and the sampling rate grows, the
extraneous support of the kernels become smaller and approach
that of the multichannel sampling scheme.

For the discrimination of two Diracs, we show the results in
Fig. 7. From the figure we can see that in some regime the RMS
error of the estimate is below the spacing of the two Diracs,
and hence the system under consideration has a superresolution
property.

3) Kusuma-Goyal: We finally come to the case where the
noise is induced in the continuous-time domain. We focus on
the case of continuous-time AWGN . Due to the structure of the
multichannel sampling scheme, the sample domain noise will

Fig. 8. Performance comparison for single-Dirac estimation, located within
��� � �, for the same numbers of samples. KG refers to the architecture proposed
by the authors.

be correlated additive Gaussian noise. We derive the covariance
structure in the following.

Let be white Gaussian noise with spectral density ,
and let the continuous-time signal be:

Following Section III-C, let the sampled signal be:

(19)

where is the additive noise term. The covariance of the noise
term can be written as

(20)

C. Comparison of the Sampling Schemes Using
Continuous-Time AWGN

Although the scheme of Section III-A is suitable for a peri-
odic signal, it is possible to apply this scheme to an aperiodic
signal by applying a lowpass filter, taking samples uniformly
within the time interval of interest, and computing the Discrete
Fourier Transform instead of the Fourier series coefficients. By
this method, we can compare the three architectures together as
applied to an aperiodic signal. In the previous, we have com-
pared the multichannel scheme and the Dragotti scheme and
showed that the former is strictly better than the other in the
presence of continuous-time AWGN. Further, when white sam-
pling noise is present, the Dragotti scheme suffers from noise
amplification.

Using the same continuous-time AWGN model we compare
the periodic sinc scheme, the multichannel scheme, and the con-
ventional scheme based on cross-correlation in Fig. 8. Since the
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performance of the multichannel scheme is dependent on the ac-
tual location of the pulse, we show the mean-square error of the
best-case and worst-case parameters when the pulse is located in

. The conventional scheme gives the best result for the
estimation of a single pulse, but it requires either a brute-force
search or a gradient search to find the peak of the correlation.

VII. CLOSING REMARKS

We examined several sampling architectures that are based on
estimating the parameters of a powersum series. We introduced
less-known algorithms that are suitable for small sample sets,
do not require initialization, and give superresolution properties.
We derived CRBs for when the powersum series is subjected to
additive white Gaussian noise. For cases where the number of
components is or , we showed that the proposed
algorithms work well even when the noise in the powersum is
correlated.

In the real-valued case, although the TLS-Prony method
gives superior performance for estimating single or well-spaced
Diracs when , the Cornell algorithm is better for
separating two closely spaced Diracs. This is also true for
continuous-time white noise [9]. Further, the bounds and per-
formances depend on the true values of the parameters.

In the complex-valued case, TLS-Prony and Cornell algo-
rithms give nearly identical performance. For separating two
closely spaced Diracs, both algorithms again give very similar
results. Unlike the real-valued cases, the performance of the
system does not depend on the true values of the parameters.

We used a continuous-time white Gaussian noise model to
compare the three measurement architectures considered. For
the estimation of a single Dirac, the conventional scheme of
using a lowpass filter and using a correlation gives the best
mean-square error performance. However, estimating multiple
Diracs requires a multi-dimensional peak finding algorithm. By
contrast, the proposed parametric schemes can give simulta-
neous solutions. Further, the parametric sampling schemes have
a superresolution property.

Finally, we showed that the performance of the multi-channel
scheme is strictly better than that of the scheme based on
Strang-Fix kernels. It also compares favorably with the stan-
dard method and the scheme for periodic Diracs via periodic
approximation.

We have also considered several hardware-centric noise
models that depend on the topology of the system in [9]. We
demonstrated that the systems and algorithms proposed work
well even in the presence of correlation in the noise term of the
powersum series. Some of the CRBs derived in this paper can
also be extended to white Gaussian noise with arbitrary covari-
ance, which is suitable for these hardware-centric models.

APPENDIX

In this appendix we derive the performance limits of
Section V. We are interested in estimating parameters and

from observations of the noisy powersum

(21)

The additive noise has covariance . In vector notation, let
and . The

rows of the Vandermonde matrix are defined to contain scalar
powers of . Then we can write (21) in vector notation as:

Suppose that additive noise is zero-mean Gaussian with
covariance matrix . Then the likelihood is:

(22)

where is a Vandermonde matrix containing powers of the
poles . While it is possible to derive a CRB for additive
Gaussian noise with arbitrary covariance matrix (see [9]), in
this paper we focus on the white noise case.

When the noise is white we obtain a simpler expression for
the FIM (for example see [26]). For convenience, let be the
vector of parameters and let be the noiseless signal given
by . In this case,

The partial derivative is particularly simple:

Then,

Let
. Then we can write the FIM compactly as

(23)

Complex Poles on the Unit Circle

In this section, we examine the case when the poles of the
powersum series are complex roots of unity. This is suitable for
the sampling scheme of Vetterli, Marziliano, and Blu, which we
reviewed in Section III-A.

Single-Component Case: We prove Theorem 1. Recall the
FIM from (10). The inverse of the FIM is given by

(24)

Since the desired estimation bound is for , we have obtained
Theorem 1 from the bottom right corner of .

Resolution of FRI Method: Now we consider Theorem 2.
For convenience define

(25)
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We segment the FIM as follows:

(26)

After some algebra, we obtain

The CRB is found by computing the inverse of the FIM:

(27)
We are interested in the bound on the estimates of and ,

which we obtain via the inverse of the Schur complement of
in :

Finally, we define and obtain

proving Theorem 2 .

Real-Valued Poles

We now examine the case when the poles are real-valued.
This is suitable for the sampling schemes of the Dragotti, Vet-
terli, and Blu—reviewed in Section III-B—and that of the au-
thors, reviewed in Section III-C.

To examine the resolution limit, following Dilaveroglu [24]
we wish to derive the performance for in terms of

. However, Dilaveroglu only considered the undamped
line spectra case, which contains complex exponentials on the
unit circle, say and . He used trigonometric
identities to decompose the parameters into the desired form. In
his case, the final result gives a CRB for and that depends
on , but independent of absolute terms and .
By contrast, we do not obtain such convenient decompositions
and have to rely on numerical evaluation.

Single-Pole Case: We now use the result to consider the
simplest case when there is only one pole in the signal, as in
Theorem 3. First consider the case when is white Gaussian
with variance .

We can write the FIM as:

We are interested in finding the CRB for , which is
the last entry of the inverse of the FIM . This can be obtained
by using direct matrix inversion:

Two-Pole Case: We now consider the case when as
in Theorem 4. For convenience, we define the following:

and

(28)

Recall the definitions from Section V-D. Then the FIM can be
written as

(29)

By defining , then the CRB is given by

Unfortunately, no further simplification has been found in
finding the inverse of the FIM, and we obtain the CRB by
numerical evaluation instead.
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