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Abstract— Recent progress in understanding the robustness
properties of large-scale networks leads one to consider how
such results can inform design of the all-electric ship. Network
robustness seems to be correlated with certain statistical proper-
ties, which may give rise to a natural design procedure wherein
the statistics of the network become the main design goals. This
would represent a departure from the current design paradigm.
We have performed systematic cascading failure simulations
based on a notional cruiser topology, in comparison with equal-
cost random and scale-free networks. Although preliminary, our
results show that some advantage can be obtained through the
alternative designs.

I. INTRODUCTION

Deterministic design of large-scale, dynamic systems poses
increasingly intractable questions about the complex inter-
actions of components and subsystems. Simulations with
or without hardware in the loop are the usual method for
uncovering weaknesses in both steady state operation and
in response to unexpected component failures, but in very
large systems such simulations are prohibitively expensive,
inaccurate, or simply impossible. The all-electric ship as a
micro-grid is a very good example: the number of distinct
power node points numbers at least in the hundreds, and
when the power system description is augmented by local
controllers and electronics, as well as hierarchical control
structures and agents, the number of participant nodes runs
well into the thousands. Current tools for simulation, which
help to support “design through analysis,” cannot begin to
assess the dynamic behavior of all possible interconnections
in the power distribution system (PDS).

The general properties of very large networks were ad-
dressed in a series of seminal publications in the late 1990’s.
More recent work has turned now to the questions of a priori
design for robustness, and effective reconfiguration. In fact, we
have a growing understanding of what statistical properties in
large-scale networks will lead to robust design, both within
and without the context of an active reconfiguration. Our
main argument here is that such an approach in the AES
can have major benefits, one of which is that a network
could, in principle, be designed to statistically have no failure
mode. This is a network that has no weak points, short of
massive damage at many locations, and a network that is robust
even against deliberate localized attack on the most critical
elements.

We provide a short introduction to some of the recent results
for statistical design in the next section. Then we discuss a
specific simulation carried out to assess, for the first time,
the robustness of a grid based on a notionl cruiser high-
level topology. We compare this with scale-free and random
networks with the same nominal load distribution, capacity,
and number of links, as well as compatible damage conditions.

II. BACKGROUND

A short review of recent results in standard network models
convinces that this is indeed a possible route to robust design.
We distinguish three basic strategies. First, certain global prop-
erties of large networks inherently lead to robustness without
reconfiguration. Second, specific nominal arrangements can be
devised that are robust against several failures, again without
reconfiguration. Third, we can consider active reconfiguration
to maintain network functionality; reconfiguration in large-
scale systems generally homogenizes the remaining links,
and this is not the same objective taken in current PDS
optimization schemes.

A common measure of network functionality is mean short-
est path, i.e. the mean number of edges between all node pairs.
A network’s robustness can be measured in terms of mean
shortest path as well, by measuring its increase as a function
of malignant changes to the network. A first broad result is that
scale-free networks, such as the Internet and terrestrial power
grids, show strong robustness against attacks on or failures in
random links [3]. It is well-known also, however, that such
networks are not robust against deliberate attacks, which are
generally taken occur on the most heavily loaded elements.
A fully random Erdos-Reyni network which does not have
the scale-free property is markedly better in this latter case;
this has been confirmed in particular using accurate models of
the internet and of power grids [6]. The distinction between
these two types of networks has to do with the probability
distribution of node interconnections: in a scale-free network,
this distribution is a power law, whereas in a random network,
the distribution is Poisson.

In specific configuration design, a fundamental question is
how to lay out the nominal topology so that robustness is
achieved with minimal cost, e.g., minimal overcapacity. If the
overcapacity factor is taken as a constant across the network,
scale-free networks are not robust to deliberate attack, and
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One−lattice 4 x 5 grid

Fig. 2. Arrangements of cruiser copies. Left: Connection of twenty notional
cruiser modules in a ring with connections to the two closest neighbors on each
side. Right: Tiling of twenty cruiser modules in a 4x5 lattice, with connections
between adjacent modules.

neither are random networks [10]. Providing overcapacity
only on the most heavily loaded nodes, surprisingly, can
both improve robustness and also create a mechanism for
minimizing cost [14]. Along these lines, Wang and Chen [15]
give a specific recipe for choosing link capacities so as to
avoid cascading failures; a scheme that identifies those paths
which avoid heavily loaded edges and nodes has also been
developed [12]. The role of fluctuating loads is a relatively
new line of inquiry [8].

Reconfiguration of large networks after failures appears to
be most effective when the objective is to homogenize the
network. In a packet communication setting, Motter [9] ad-
vocates the additional, selective removal of those components
whose presence creates an inordinate amount of traffic, due to
their interconnection. A potential difficulty in reconfiguration
on large scales is the time scale required for such computation.

These approaches should be considered as tools that might
inform the design of the AES. Nominal configuration design
in particular seems to be particularly appealing because it
defines specific system connections and weights, and because
it does not involve the computations associated with real-time
reconfiguration. We provide an analysis on a network repre-
sentative of the integrated power systems being considered for
the electric ship.

III. SIMULATIONS

A. Procedure

We simulate a cascading failure scenario for four networks:
a scale-free network, an Erdos-Renyi random network, and
two networks based on the notional cruiser line diagram in
Fig. 1.

The notional cruiser-based networks are abstractions of a
typical electric ship power grid. For each, the network depicted
in Fig. 1 was replicated twenty times. In one, the copies were
arranged in a ring and connected to their two nearest neighbors
on either side (forming a one-lattice), and in the other each
copy was connected to its neighbors in a four by five grid. Fig.
2 illustrates these two arrangements. The first is representative
of a geographically constrained arrangement on a vessel, with
a full tie-back from bow to stern, whereas the second is a
straight two-dimensional tiling.
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Fig. 3. Histograms of node degree for cruiser networks and realizations
of scale-free and random networks. The random network has a binomial
distribution; the scale-free network follows a power law, p(d) = d−γ

All MTG (main turbine generator) and ATG (auxiliary
turbine generator) nodes were treated as 36 MW and 4 MW
power sources respectively, and the propulsion nodes as 36.5
MW loads. Each PCM was assigned a 0.5 MW load, and all
line capacities were set to 40 MW. Although the PCM loads
are quite small compared with the propulsion loads, rerouting
of power through any line could power a propulsion motor
and this is why we have maintained the 40 MW line capacity
throughout. Connections between cruiser copies were made by
cross-linking their PDM3P and PDM3S nodes (see figure).

In the Erdos-Renyi random network, links were formed
between pairs of nodes with a fixed probability, independent
of other links. A value of p = 0.0027 was used to ensure
each run’s random network had in the mean the same number
of links as the cruiser-based network. The scale-free network
was constructed according to the method of [11]. The basic
procedure is to sample the number of links κ coming out of
each node from a power law distribution p ∼ κ−γ , and then
randomly connect the half-links to those of other nodes. To
make the scale-free network comparable to the cruiser model,
κ was restricted to {1, ..., 10}, and γ = 1.4 was used. These
parameters lead to a network with approximately the same
number of links as the cruiser-based networks.

The loads and sources used by both the scale-free and ran-
dom networks were identical to those used in the cruiser-based
networks. Fig. 3 shows histograms of the degree distributions
for the cruiser-based, scale-free and random networks. The
scale free network follows a power law distribution, while the
random network, the degree distribution of which follows a
binomial distribution, resembles a Poisson distribution [7].

We recompute the load-flow problem after every link or
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Fig. 1. Notional cruiser line diagram from [1]

node failure [6]. The cascading failure scenario was as follows:
1) Compute the network flow solution for the nominal

network.
2) Remove a set of nodes from the graph, as well as all

links connected to them. These nodes can be specified,
randomly chosen, or sampled from a distribution pro-
portional to the degree of each nodes, such that high
degree nodes have a higher chance of being removed.

3) Recompute the load flow solution for the new graph.
4) Remove nodes connected to dead nodes with probability

p = xij/cij , where i is a dead node, j is its neighbor,
xij is the power flow from i to j, and cij is the capacity
of the link.

5) Repeat steps (3) and (4) until there are no new node
removals.

The network flow solution is obtained via linear program-
ming [13], and is a simplified DC load flow for a power
system, in which there are NS power sources S and NL loads
L. The optimization is written

max
∑Nl

i=1
Li

0 ≤ Li ≤ L∗

i ∀ i
0 ≤ Si ≤ S∗

i ∀ i
|xij | ≤ cij ∀ links {i, j}∑

j xij + Si = Li ∀ i

(1)

To avoid defining source and load sets, we adopt the
conventions that S∗

i = 0 at non-source nodes and L∗

i = 0
at non-load nodes, and that xij = −xji.

For each network, the same loads and sources were used, as
well an identical constraint cij = c = 40 MW for all links. The
optimization is similar to that in [4], but with power instead
of current. More detailed model physics can included in the
optimization, e.g. [5]; however, for our purposes a simplified
approach is sufficient.

Two scenarios were considered: near-worst-case failures and
a geographic attack. In the former, the initial set of removed
nodes was randomly chosen such that nodes with higher
degree d (the number of links) were chosen with proportionally
higher probability than those with lower degree, such that
the probability that node i was initially removed satisfied the
proportionality P (node i was initially removed) ∼ di. Our
model includes about six hundred nodes, of which thirty
are eliminated in each of these attacks. In the geographic
attack on the cruiser networks, two modules were randomly
selected, and then half the nodes in each chosen modules and
half the nodes in a neighboring module were removed. This
corresponds with sixty nodes being destroyed, or about ten
percent of the total network.

One thousand Monte Carlo simulations of each scenario
were conducted. For each run new scale-free and random
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TABLE I

MEAN RATIO OF LOAD SERVED BEFORE AND AFTER A NEAR WORST-CASE

ATTACK

Network Cruiser lattice Cruiser grid Scale-free Random
LC/LN 0.87 0.87 0.83 0.91
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Fig. 4. Histograms of the ratio of load served after a near-worst-case attack
LC and nominal load served LN for each network. LC/LN = 1 means all
the loads are served.

networks were constructed. As a metric for robustness, we
observe the ratio of load served after the cascade to the
nominal load served, LC/LN . This quantity represents the
functionality of the ship, i.e. how much of it is operating at
its nominal condition.

B. Results

Tables I and II respectively give the mean over all trials for
the near-worst-case attack and geographic failure scenarios,
and Fig. 4 and 5 histograms of LC/LN for each network.

The cruiser-based networks exhibit similar robustness for
the worst-case attacks, significantly better than that of the
scale-free network, but slightly worse than the purely random
network. It is well known that random networks are more
robust to attacks targeting high-degree nodes than scale-free
networks [2], and this explains why the scale-free network
performs poorly. A grid with highly connected hub nodes will
be less robust to substantial damage, whereas by distributing
component dependencies throughout the ship there is a higher
probability that functionality can be maintained through dam-
age.

TABLE II

MEAN RATIO OF LOAD SERVED BEFORE AND AFTER A GEOGRAPHIC

ATTACK.

Network Cruiser lattice Cruiser grid Scale-free Random
LC/LN 0.87 0.87 0.78 0.86
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Fig. 5. Histograms of the ratio of load served after a geographic attack LC

and nominal load served LN for each network.

In a geographic node removal situation once again the
scale-free network performs poorly. In the mean, the random
network is slightly less robust than the cruiser-based networks.
One can see in Fig. 5 that although there are more cases with
higher remaining functionality after the cascade, the tail is
longer, admitting more situations with very substantial damage
propagation.

C. Design Strategy and Future Work

Based on our findings, a clear and well-known guideline is
to avoid centralized architectures with very highly connected
nodes. More broadly, however, the statistical network perspec-
tive can be useful in designing for robustness in a more di-
rected way. Consider for example the following optimization:

maxpd
LC/LN subject to

∑N
i=1

pdi
= 1, pdi

≥ 0

(2)

pdi
is the probability of a node in the network having degree

di. Here the ratio of load served after an attack to the nominal
load served is being optimized over the degree distribution of
the network, i.e. the probability that a node will have a given
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number of links. Note that (2) contains (1) as well as all other
aspects of the failure scenario - the statistics of the network
itself are being optimized for a particular scenario. Although
this does not fully define a network, the degree distribution is
strongly connected to its robustness characteristics.

It would be computationally intractable to optimize the
deterministic layout of a large integrated power system. How-
ever, by knowing the near-optimal degree distribution for a
particular scenario, the statistical robustness of designs can
be assessed merely by looking at their degree distribution,
and hence used to guide design decisions, e.g. how much
redundancy should be incorporated.

IV. CONCLUSION

Our present model of the cruiser/AES architecture is sim-
plistic, but with reasonable upward scaling and load distribu-
tions we have shown that there can be significant variations in
robustness against failures, depending on the interconnections.
In particular, a random network appears to have a consistent
advantage in terms of load served after a cascade that is
caused by a near-worst-case failure or attack. The findings are
preliminary, but serve to motivate further work in this area.
Several focus areas stand out. Needless to say, a randomly
connected network may not be possible on the actual vessel
for practical reasons, such as wireway spaces. Hence, the basic
drivers for conventional layouts have to be articulated and
reconciled with the network point of view. Secondly, as noted
in the Introduction, the AES is a large-scale system in multiple
domains; this fact increases the size of the network under
consideration, and requires different node and link models.
We believe the potential for statistical design over multiple
domains is a rich area, but virtually unexplored to date.
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